444 research outputs found

    Multiresolution eXtended Free-Form Deformations (XFFD) for non-rigid registration with discontinuous transforms

    Get PDF
    Image registration is an essential technique to obtain point correspondences between anatomical structures from different images. Conventional non-rigid registration methods assume a continuous and smooth deformation field throughout the image. However, the deformation field at the interface of different organs is not necessarily continuous, since the organs may slide over or separate from each other. Therefore, imposing continuity and smoothness ubiquitously would lead to artifacts and increased errors near the discontinuity interface. In computational mechanics, the eXtended Finite Element Method (XFEM) was introduced to handle discontinuities without using computational meshes that conform to the discontinuity geometry. Instead, the interpolation bases themselves were enriched with discontinuous functional terms. Borrowing this concept, we propose a multiresolution eXtented Free-Form Deformation (XFFD) framework that seamlessly integrates within and extends the standard Free-Form Deformation (FFD) approach. Discontinuities are incorporated by enriching the B-spline basis functions coupled with extra degrees of freedom, which are only introduced near the discontinuity interface. In contrast with most previous methods, restricted to sliding motion, no ad hoc penalties or constraints are introduced to reduce gaps and overlaps. This allows XFFD to describe more general discontinuous motions. In addition, we integrate XFFD into a rigorously formulated multiresolution framework by introducing an exact parameter upsampling method. The proposed method has been evaluated in two publicly available datasets: 4D pulmonary CT images from the DIR-Lab dataset and 4D CT liver datasets. The XFFD achieved a Target Registration Error (TRE) of 1.17 ± 0.85 mm in the DIR-lab dataset and 1.94 ± 1.01 mm in the liver dataset, which significantly improves on the performance of the state-of-the-art methods handling discontinuities

    Navigation system based in motion tracking sensor for percutaneous renal access

    Get PDF
    Tese de Doutoramento em Engenharia BiomédicaMinimally-invasive kidney interventions are daily performed to diagnose and treat several renal diseases. Percutaneous renal access (PRA) is an essential but challenging stage for most of these procedures, since its outcome is directly linked to the physician’s ability to precisely visualize and reach the anatomical target. Nowadays, PRA is always guided with medical imaging assistance, most frequently using X-ray based imaging (e.g. fluoroscopy). Thus, radiation on the surgical theater represents a major risk to the medical team, where its exclusion from PRA has a direct impact diminishing the dose exposure on both patients and physicians. To solve the referred problems this thesis aims to develop a new hardware/software framework to intuitively and safely guide the surgeon during PRA planning and puncturing. In terms of surgical planning, a set of methodologies were developed to increase the certainty of reaching a specific target inside the kidney. The most relevant abdominal structures for PRA were automatically clustered into different 3D volumes. For that, primitive volumes were merged as a local optimization problem using the minimum description length principle and image statistical properties. A multi-volume Ray Cast method was then used to highlight each segmented volume. Results show that it is possible to detect all abdominal structures surrounding the kidney, with the ability to correctly estimate a virtual trajectory. Concerning the percutaneous puncturing stage, either an electromagnetic or optical solution were developed and tested in multiple in vitro, in vivo and ex vivo trials. The optical tracking solution aids in establishing the desired puncture site and choosing the best virtual puncture trajectory. However, this system required a line of sight to different optical markers placed at the needle base, limiting the accuracy when tracking inside the human body. Results show that the needle tip can deflect from its initial straight line trajectory with an error higher than 3 mm. Moreover, a complex registration procedure and initial setup is needed. On the other hand, a real-time electromagnetic tracking was developed. Hereto, a catheter was inserted trans-urethrally towards the renal target. This catheter has a position and orientation electromagnetic sensor on its tip that function as a real-time target locator. Then, a needle integrating a similar sensor is used. From the data provided by both sensors, one computes a virtual puncture trajectory, which is displayed in a 3D visualization software. In vivo tests showed a median renal and ureteral puncture times of 19 and 51 seconds, respectively (range 14 to 45 and 45 to 67 seconds). Such results represent a puncture time improvement between 75% and 85% when comparing to state of the art methods. 3D sound and vibrotactile feedback were also developed to provide additional information about the needle orientation. By using these kind of feedback, it was verified that the surgeon tends to follow a virtual puncture trajectory with a reduced amount of deviations from the ideal trajectory, being able to anticipate any movement even without looking to a monitor. Best results show that 3D sound sources were correctly identified 79.2 ± 8.1% of times with an average angulation error of 10.4º degrees. Vibration sources were accurately identified 91.1 ± 3.6% of times with an average angulation error of 8.0º degrees. Additionally to the EMT framework, three circular ultrasound transducers were built with a needle working channel. One explored different manufacture fabrication setups in terms of the piezoelectric materials, transducer construction, single vs. multi array configurations, backing and matching material design. The A-scan signals retrieved from each transducer were filtered and processed to automatically detect reflected echoes and to alert the surgeon when undesirable anatomical structures are in between the puncture path. The transducers were mapped in a water tank and tested in a study involving 45 phantoms. Results showed that the beam cross-sectional area oscillates around the ceramics radius and it was possible to automatically detect echo signals in phantoms with length higher than 80 mm. Hereupon, it is expected that the introduction of the proposed system on the PRA procedure, will allow to guide the surgeon through the optimal path towards the precise kidney target, increasing surgeon’s confidence and reducing complications (e.g. organ perforation) during PRA. Moreover, the developed framework has the potential to make the PRA free of radiation for both patient and surgeon and to broad the use of PRA to less specialized surgeons.Intervenções renais minimamente invasivas são realizadas diariamente para o tratamento e diagnóstico de várias doenças renais. O acesso renal percutâneo (ARP) é uma etapa essencial e desafiante na maior parte destes procedimentos. O seu resultado encontra-se diretamente relacionado com a capacidade do cirurgião visualizar e atingir com precisão o alvo anatómico. Hoje em dia, o ARP é sempre guiado com recurso a sistemas imagiológicos, na maior parte das vezes baseados em raios-X (p.e. a fluoroscopia). A radiação destes sistemas nas salas cirúrgicas representa um grande risco para a equipa médica, aonde a sua remoção levará a um impacto direto na diminuição da dose exposta aos pacientes e cirurgiões. De modo a resolver os problemas existentes, esta tese tem como objetivo o desenvolvimento de uma framework de hardware/software que permita, de forma intuitiva e segura, guiar o cirurgião durante o planeamento e punção do ARP. Em termos de planeamento, foi desenvolvido um conjunto de metodologias de modo a aumentar a eficácia com que o alvo anatómico é alcançado. As estruturas abdominais mais relevantes para o procedimento de ARP, foram automaticamente agrupadas em volumes 3D, através de um problema de optimização global com base no princípio de “minimum description length” e propriedades estatísticas da imagem. Por fim, um procedimento de Ray Cast, com múltiplas funções de transferência, foi utilizado para enfatizar as estruturas segmentadas. Os resultados mostram que é possível detetar todas as estruturas abdominais envolventes ao rim, com a capacidade para estimar corretamente uma trajetória virtual. No que diz respeito à fase de punção percutânea, foram testadas duas soluções de deteção de movimento (ótica e eletromagnética) em múltiplos ensaios in vitro, in vivo e ex vivo. A solução baseada em sensores óticos ajudou no cálculo do melhor ponto de punção e na definição da melhor trajetória a seguir. Contudo, este sistema necessita de uma linha de visão com diferentes marcadores óticos acoplados à base da agulha, limitando a precisão com que a agulha é detetada no interior do corpo humano. Os resultados indicam que a agulha pode sofrer deflexões à medida que vai sendo inserida, com erros superiores a 3 mm. Por outro lado, foi desenvolvida e testada uma solução com base em sensores eletromagnéticos. Para tal, um cateter que integra um sensor de posição e orientação na sua ponta, foi colocado por via trans-uretral junto do alvo renal. De seguida, uma agulha, integrando um sensor semelhante, é utilizada para a punção percutânea. A partir da diferença espacial de ambos os sensores, é possível gerar uma trajetória de punção virtual. A mediana do tempo necessário para puncionar o rim e ureter, segundo esta trajetória, foi de 19 e 51 segundos, respetivamente (variações de 14 a 45 e 45 a 67 segundos). Estes resultados representam uma melhoria do tempo de punção entre 75% e 85%, quando comparados com o estado da arte dos métodos atuais. Além do feedback visual, som 3D e feedback vibratório foram explorados de modo a fornecer informações complementares da posição da agulha. Verificou-se que com este tipo de feedback, o cirurgião tende a seguir uma trajetória de punção com desvios mínimos, sendo igualmente capaz de antecipar qualquer movimento, mesmo sem olhar para o monitor. Fontes de som e vibração podem ser corretamente detetadas em 79,2 ± 8,1% e 91,1 ± 3,6%, com erros médios de angulação de 10.4º e 8.0 graus, respetivamente. Adicionalmente ao sistema de navegação, foram também produzidos três transdutores de ultrassom circulares com um canal de trabalho para a agulha. Para tal, foram exploradas diferentes configurações de fabricação em termos de materiais piezoelétricos, transdutores multi-array ou singulares e espessura/material de layers de suporte. Os sinais originados em cada transdutor foram filtrados e processados de modo a detetar de forma automática os ecos refletidos, e assim, alertar o cirurgião quando existem variações anatómicas ao longo do caminho de punção. Os transdutores foram mapeados num tanque de água e testados em 45 phantoms. Os resultados mostraram que o feixe de área em corte transversal oscila em torno do raio de cerâmica, e que os ecos refletidos são detetados em phantoms com comprimentos superiores a 80 mm. Desta forma, é expectável que a introdução deste novo sistema a nível do ARP permitirá conduzir o cirurgião ao longo do caminho de punção ideal, aumentado a confiança do cirurgião e reduzindo possíveis complicações (p.e. a perfuração dos órgãos). Além disso, de realçar que este sistema apresenta o potencial de tornar o ARP livre de radiação e alarga-lo a cirurgiões menos especializados.The present work was only possible thanks to the support by the Portuguese Science and Technology Foundation through the PhD grant with reference SFRH/BD/74276/2010 funded by FCT/MEC (PIDDAC) and by Fundo Europeu de Desenvolvimento Regional (FEDER), Programa COMPETE - Programa Operacional Factores de Competitividade (POFC) do QREN

    Modified mass-spring system for physically based deformation modeling

    Get PDF
    Mass-spring systems are considered the simplest and most intuitive of all deformable models. They are computationally efficient, and can handle large deformations with ease. But they suffer several intrinsic limitations. In this book a modified mass-spring system for physically based deformation modeling that addresses the limitations and solves them elegantly is presented. Several implementations in modeling breast mechanics, heart mechanics and for elastic images registration are presented

    Modified mass-spring system for physically based deformation modeling

    Get PDF
    Mass-spring systems are considered the simplest and most intuitive of all deformable models. They are computationally efficient, and can handle large deformations with ease. But they suffer several intrinsic limitations. In this book a modified mass-spring system for physically based deformation modeling that addresses the limitations and solves them elegantly is presented. Several implementations in modeling breast mechanics, heart mechanics and for elastic images registration are presented

    A Deep Learning Framework for Unsupervised Affine and Deformable Image Registration

    Full text link
    Image registration, the process of aligning two or more images, is the core technique of many (semi-)automatic medical image analysis tasks. Recent studies have shown that deep learning methods, notably convolutional neural networks (ConvNets), can be used for image registration. Thus far training of ConvNets for registration was supervised using predefined example registrations. However, obtaining example registrations is not trivial. To circumvent the need for predefined examples, and thereby to increase convenience of training ConvNets for image registration, we propose the Deep Learning Image Registration (DLIR) framework for \textit{unsupervised} affine and deformable image registration. In the DLIR framework ConvNets are trained for image registration by exploiting image similarity analogous to conventional intensity-based image registration. After a ConvNet has been trained with the DLIR framework, it can be used to register pairs of unseen images in one shot. We propose flexible ConvNets designs for affine image registration and for deformable image registration. By stacking multiple of these ConvNets into a larger architecture, we are able to perform coarse-to-fine image registration. We show for registration of cardiac cine MRI and registration of chest CT that performance of the DLIR framework is comparable to conventional image registration while being several orders of magnitude faster.Comment: Accepted: Medical Image Analysis - Elsevie

    CNN-based Lung CT Registration with Multiple Anatomical Constraints

    Full text link
    Deep-learning-based registration methods emerged as a fast alternative to conventional registration methods. However, these methods often still cannot achieve the same performance as conventional registration methods because they are either limited to small deformation or they fail to handle a superposition of large and small deformations without producing implausible deformation fields with foldings inside. In this paper, we identify important strategies of conventional registration methods for lung registration and successfully developed the deep-learning counterpart. We employ a Gaussian-pyramid-based multilevel framework that can solve the image registration optimization in a coarse-to-fine fashion. Furthermore, we prevent foldings of the deformation field and restrict the determinant of the Jacobian to physiologically meaningful values by combining a volume change penalty with a curvature regularizer in the loss function. Keypoint correspondences are integrated to focus on the alignment of smaller structures. We perform an extensive evaluation to assess the accuracy, the robustness, the plausibility of the estimated deformation fields, and the transferability of our registration approach. We show that it achieves state-of-the-art results on the COPDGene dataset compared to conventional registration method with much shorter execution time. In our experiments on the DIRLab exhale to inhale lung registration, we demonstrate substantial improvements (TRE below 1.21.2 mm) over other deep learning methods. Our algorithm is publicly available at https://grand-challenge.org/algorithms/deep-learning-based-ct-lung-registration/

    Non-rigid medical image registration with extended free form deformations: modelling general tissue transitions

    Get PDF
    Image registration seeks pointwise correspondences between the same or analogous objects in different images. Conventional registration methods generally impose continuity and smoothness throughout the image. However, there are cases in which the deformations may involve discontinuities. In general, the discontinuities can be of different types, depending on the physical properties of the tissue transitions involved and boundary conditions. For instance, in the respiratory motion the lungs slide along the thoracic cage following the tangential direction of their interface. In the normal direction, however, the lungs and the thoracic cage are constrained to be always in contact but they have different material properties producing different compression or expansion rates. In the literature, there is no generic method, which handles different types of discontinuities and considers their directional dependence. The aim of this thesis is to develop a general registration framework that is able to correctly model different types of tissue transitions with a general formalism. This has led to the development of the eXtended Free Form Deformation (XFFD) registration method. XFFD borrows the concept of the interpolation method from the eXtended Finite Element method (XFEM) to incorporate discontinuities by enriching B-spline basis functions, coupled with extra degrees of freedom. XFFD can handle different types of discontinuities and encodes their directional-dependence without any additional constraints. XFFD has been evaluated on digital phantoms, publicly available 3D liver and lung CT images. The experiments show that XFFD improves on previous methods and that it is important to employ the correct model that corresponds to the discontinuity type involved at the tissue transition. The effect of using incorrect models is more evident in the strain, which measures mechanical properties of the tissues

    Robot Assisted Object Manipulation for Minimally Invasive Surgery

    Get PDF
    Robotic systems have an increasingly important role in facilitating minimally invasive surgical treatments. In robot-assisted minimally invasive surgery, surgeons remotely control instruments from a console to perform operations inside the patient. However, despite the advanced technological status of surgical robots, fully autonomous systems, with decision-making capabilities, are not yet available. In 2017, a structure to classify the research efforts toward autonomy achievable with surgical robots was proposed by Yang et al. Six different levels were identified: no autonomy, robot assistance, task autonomy, conditional autonomy, high autonomy, and full autonomy. All the commercially available platforms in robot-assisted surgery is still in level 0 (no autonomy). Despite increasing the level of autonomy remains an open challenge, its adoption could potentially introduce multiple benefits, such as decreasing surgeons’ workload and fatigue and pursuing a consistent quality of procedures. Ultimately, allowing the surgeons to interpret the ample and intelligent information from the system will enhance the surgical outcome and positively reflect both on patients and society. Three main aspects are required to introduce automation into surgery: the surgical robot must move with high precision, have motion planning capabilities and understand the surgical scene. Besides these main factors, depending on the type of surgery, there could be other aspects that might play a fundamental role, to name some compliance, stiffness, etc. This thesis addresses three technological challenges encountered when trying to achieve the aforementioned goals, in the specific case of robot-object interaction. First, how to overcome the inaccuracy of cable-driven systems when executing fine and precise movements. Second, planning different tasks in dynamically changing environments. Lastly, how the understanding of a surgical scene can be used to solve more than one manipulation task. To address the first challenge, a control scheme relying on accurate calibration is implemented to execute the pick-up of a surgical needle. Regarding the planning of surgical tasks, two approaches are explored: one is learning from demonstration to pick and place a surgical object, and the second is using a gradient-based approach to trigger a smoother object repositioning phase during intraoperative procedures. Finally, to improve scene understanding, this thesis focuses on developing a simulation environment where multiple tasks can be learned based on the surgical scene and then transferred to the real robot. Experiments proved that automation of the pick and place task of different surgical objects is possible. The robot was successfully able to autonomously pick up a suturing needle, position a surgical device for intraoperative ultrasound scanning and manipulate soft tissue for intraoperative organ retraction. Despite automation of surgical subtasks has been demonstrated in this work, several challenges remain open, such as the capabilities of the generated algorithm to generalise over different environment conditions and different patients

    Estimating and understanding motion : from diagnostic to robotic surgery

    Get PDF
    Estimating and understanding motion from an image sequence is a central topic in computer vision. The high interest in this topic is because we are living in a world where many events that occur in the environment are dynamic. This makes motion estimation and understanding a natural component and a key factor in a widespread of applications including object recognition , 3D shape reconstruction, autonomous navigation and medica! diagnosis. Particularly, we focus on the medical domain in which understanding the human body for clinical purposes requires retrieving the organs' complex motion patterns, which is in general a hard problem when using only image data. In this thesis, we cope with this problem by posing the question - How to achieve a realistic motion estimation to offer a better clinical understanding? We focus this thesis on answering this question by using a variational formulation as a basis to understand one of the most complex motions in the human's body, the heart motion, through three different applications: (i) cardiac motion estimation for diagnostic, (ii) force estimation and (iii) motion prediction, both for robotic surgery. Firstly, we focus on a central topic in cardiac imaging that is the estimation of the cardiac motion. The main aim is to offer objective and understandable measures to physicians for helping them in the diagnostic of cardiovascular diseases. We employ ultrafast ultrasound data and tools for imaging motion drawn from diverse areas such as low-rank analysis and variational deformation to perform a realistic cardiac motion estimation. The significance is that by taking low-rank data with carefully chosen penalization, synergies in this complex variational problem can be created. We demonstrate how our proposed solution deals with complex deformations through careful numerical experiments using realistic and simulated data. We then move from diagnostic to robotic surgeries where surgeons perform delicate procedures remotely through robotic manipulators without directly interacting with the patients. As a result, they lack force feedback, which is an important primary sense for increasing surgeon-patient transparency and avoiding injuries and high mental workload. To solve this problem, we follow the conservation principies of continuum mechanics in which it is clear that the change in shape of an elastic object is directly proportional to the force applied. Thus, we create a variational framework to acquire the deformation that the tissues undergo due to an applied force. Then, this information is used in a learning system to find the nonlinear relationship between the given data and the applied force. We carried out experiments with in-vivo and ex-vivo data and combined statistical, graphical and perceptual analyses to demonstrate the strength of our solution. Finally, we explore robotic cardiac surgery, which allows carrying out complex procedures including Off-Pump Coronary Artery Bypass Grafting (OPCABG). This procedure avoids the associated complications of using Cardiopulmonary Bypass (CPB) since the heart is not arrested while performing the surgery on a beating heart. Thus, surgeons have to deal with a dynamic target that compromisetheir dexterity and the surgery's precision. To compensate the heart motion, we propase a solution composed of three elements: an energy function to estimate the 3D heart motion, a specular highlight detection strategy and a prediction approach for increasing the robustness of the solution. We conduct evaluation of our solution using phantom and realistic datasets. We conclude the thesis by reporting our findings on these three applications and highlight the dependency between motion estimation and motion understanding at any dynamic event, particularly in clinical scenarios.L’estimació i comprensió del moviment dins d’una seqüència d’imatges és un tema central en la visió per ordinador, el que genera un gran interès perquè vivim en un entorn ple d’esdeveniments dinàmics. Per aquest motiu és considerat com un component natural i factor clau dins d’un ampli ventall d’aplicacions, el qual inclou el reconeixement d’objectes, la reconstrucció de formes tridimensionals, la navegació autònoma i el diagnòstic de malalties. En particular, ens situem en l’àmbit mèdic en el qual la comprensió del cos humà, amb finalitats clíniques, requereix l’obtenció de patrons complexos de moviment dels òrgans. Aquesta és, en general, una tasca difícil quan s’utilitzen només dades de tipus visual. En aquesta tesi afrontem el problema plantejant-nos la pregunta - Com es pot aconseguir una estimació realista del moviment amb l’objectiu d’oferir una millor comprensió clínica? La tesi se centra en la resposta mitjançant l’ús d’una formulació variacional com a base per entendre un dels moviments més complexos del cos humà, el del cor, a través de tres aplicacions: (i) estimació del moviment cardíac per al diagnòstic, (ii) estimació de forces i (iii) predicció del moviment, orientant-se les dues últimes en cirurgia robòtica. En primer lloc, ens centrem en un tema principal en la imatge cardíaca, que és l’estimació del moviment cardíac. L’objectiu principal és oferir als metges mesures objectives i comprensibles per ajudar-los en el diagnòstic de les malalties cardiovasculars. Fem servir dades d’ultrasons ultraràpids i eines per al moviment d’imatges procedents de diverses àrees, com ara l’anàlisi de baix rang i la deformació variacional, per fer una estimació realista del moviment cardíac. La importància rau en que, en prendre les dades de baix rang amb una penalització acurada, es poden crear sinergies en aquest problema variacional complex. Mitjançant acurats experiments numèrics, amb dades realístiques i simulades, hem demostrat com les nostres propostes solucionen deformacions complexes. Després passem del diagnòstic a la cirurgia robòtica, on els cirurgians realitzen procediments delicats remotament, a través de manipuladors robòtics, sense interactuar directament amb els pacients. Com a conseqüència, no tenen la percepció de la força com a resposta, que és un sentit primari important per augmentar la transparència entre el cirurgià i el pacient, per evitar lesions i per reduir la càrrega de treball mental. Resolem aquest problema seguint els principis de conservació de la mecànica del medi continu, en els quals està clar que el canvi en la forma d’un objecte elàstic és directament proporcional a la força aplicada. Per això hem creat un marc variacional que adquireix la deformació que pateixen els teixits per l’aplicació d’una força. Aquesta informació s’utilitza en un sistema d’aprenentatge, per trobar la relació no lineal entre les dades donades i la força aplicada. Hem dut a terme experiments amb dades in-vivo i ex-vivo i hem combinat l’anàlisi estadístic, gràfic i de percepció que demostren la robustesa de la nostra solució. Finalment, explorem la cirurgia cardíaca robòtica, la qual cosa permet realitzar procediments complexos, incloent la cirurgia coronària sense bomba (off-pump coronary artery bypass grafting o OPCAB). Aquest procediment evita les complicacions associades a l’ús de circulació extracorpòria (Cardiopulmonary Bypass o CPB), ja que el cor no s’atura mentre es realitza la cirurgia. Això comporta que els cirurgians han de tractar amb un objectiu dinàmic que compromet la seva destresa i la precisió de la cirurgia. Per compensar el moviment del cor, proposem una solució composta de tres elements: un funcional d’energia per estimar el moviment tridimensional del cor, una estratègia de detecció de les reflexions especulars i una aproximació basada en mètodes de predicció, per tal d’augmentar la robustesa de la solució. L’avaluació de la nostra solució s’ha dut a terme mitjançant conjunts de dades sintètiques i realistes. La tesi conclou informant dels nostres resultats en aquestes tres aplicacions i posant de relleu la dependència entre l’estimació i la comprensió del moviment en qualsevol esdeveniment dinàmic, especialment en escenaris clínics.Postprint (published version

    Registration and Deformable Model-Based Neck Muscles Segmentation and 3D Reconstruction

    Full text link
    Whiplash is a very common ailment encountered in clinical practice that is usually a result of vehicle accidents but also domestic activities and sports injuries. It is normally caused when neck organs (specifically muscles) are impaired. Whiplash-associated disorders include acute headaches, neck pain, stiffness, arm dislocation, abnormal sensations, and auditory and optic problems, the persistence of which may be chronic or acute. Insurance companies compensate almost fifty percent of claims lodged due to whiplash injury through compulsory third party motor insurance. The morphological structures of neck muscles undergo hypertrophy or atrophy following damage caused to them by accidents. Before any medical treatment is applied , any such change needs to be known which requires 3D visualization of the neck muscles through a proper segmentation of them because the neck contains many other sensitive organs such as nerves, blood vessels, the spinal cord and trachea. The segmentation of neck muscles in medical images is a more challenging task than those of other muscles and organs due to their similar densities and compactness, low resolutions and contrast in medical images, anatomical variabilities among individuals, noise, inhomogeneity of medical images and false boundaries created by intra-muscular fat. Traditional segmentation algorithms, such as those used in thresholding and clustering-based methods, are not applicable in this project and also not suitable for medical images. Although there are some techniques available in clinical research for segmenting muscles such as thigh, tongue, leg, hip and pectoral ones, to the best of author's knowledge, there are no methods available for segmenting neck muscles due to the challenges described above. In the first part of this dissertation, an atlas-based method for segmenting MR images, which uses linear and non-linear registration frameworks, is proposed, with output from the registration process further refined by a novel parametric deformable model. The proposed method is tested on real clinical data of both healthy and non-healthy individuals. During the last few decades, registration- and deformable model-based segmentation methods have been very popular for medical image segmentation due to their incorporation of prior information. While registration-based segmentation techniques can preserve topologies of objects in an image, accuracy of atlas-based segmentation depends mainly on an effective registration process. In this study, the registration framework is designed in a novel way in which images are initially registered by a distinct 3D affine transformation and then aligned by a local elastic geometrical transformation based on discrete cosines and registered firstly slice-wise and then block-wise. The numbers of motion parameters are changed in three different steps per frame. This proposed registration framework can handle anatomical variabilities and pathologies by confining its parameters in local regions. Also, as warping of the framework relies on number of motion parameters, similarities between two images, gradients of floating image and coordinate mesh grid values, it can easily manage pathological and anatomical variabilities using a hierarchical parameter scheme. The labels transferred from atlas can be improved by deformable model-based segmentation. Although geometric deformable models have been widely used in many biomedical applications over recent years, they cannot work in the context of neck muscles segmentation due to noise, background clutter and similar objects touching each other. Another important drawback of geometric deformable models is that they are many times slower than parametric deformable ones. Therefore, the segmentation results produced by the registration process are ameliorated using a multiple-object parametric deformable model which is discussed in detail in the second part of this thesis. This algorithm uses a novel Gaussian potential energy distribution which can adapt to topological changes and does not require re-parameterization. Also, it incorporates a new overlap removal technique which ensures that there are no overlaps or gaps inside an object. Furthermore, stopping criteria of vertices are designed so that difference between boundaries of the deformable model and actual object is minimal. The multiple-object parametric deformable model is also applied in a template contours propagation-based segmentation technique, as discussed in the third part of this dissertation. This method is semi-automatic, whereby a manual delineation of middle image in a MRI data set is required. It can handle anatomical variabilities more easily than atlas-based segmentation because it can segment any individual's data irrespective of his/her age, weight and height with low computational complexity and it does not depend on other data as it operates semi-automatically. In it, initial model contour resides close to the object's boundary, with degree of closeness dependent on slice thicknesses and gaps between the slices
    corecore