2,737 research outputs found

    Automated Complexity-Sensitive Image Fusion

    Get PDF
    To construct a complete representation of a scene with environmental obstacles such as fog, smoke, darkness, or textural homogeneity, multisensor video streams captured in diferent modalities are considered. A computational method for automatically fusing multimodal image streams into a highly informative and unified stream is proposed. The method consists of the following steps: 1. Image registration is performed to align video frames in the visible band over time, adapting to the nonplanarity of the scene by automatically subdividing the image domain into regions approximating planar patches 2. Wavelet coefficients are computed for each of the input frames in each modality 3. Corresponding regions and points are compared using spatial and temporal information across various scales 4. Decision rules based on the results of multimodal image analysis are used to combine thewavelet coefficients from different modalities 5. The combined wavelet coefficients are inverted to produce an output frame containing useful information gathered from the available modalities Experiments show that the proposed system is capable of producing fused output containing the characteristics of color visible-spectrum imagery while adding information exclusive to infrared imagery, with attractive visual and informational properties

    Atmospheric and Oceanographic Information Processing System (AOIPS) system description

    Get PDF
    The development of hardware and software for an interactive, minicomputer based processing and display system for atmospheric and oceanographic information extraction and image data analysis is described. The major applications of the system are discussed as well as enhancements planned for the future

    Correlation of partial frames in video matching

    Get PDF
    Correlating and fusing video frames from distributed and moving sensors is important area of video matching. It is especially difficult for frames with objects at long distances that are visible as single pixels where the algorithms cannot exploit the structure of each object. The proposed algorithm correlates partial frames with such small objects using the algebraic structural approach that exploits structural relations between objects including ratios of areas. The algorithm is fully affine invariant, which includes any rotation, shift, and scaling

    Target detection, tracking, and localization using multi-spectral image fusion and RF Doppler differentials

    Get PDF
    It is critical for defense and security applications to have a high probability of detection and low false alarm rate while operating over a wide variety of conditions. Sensor fusion, which is the the process of combining data from two or more sensors, has been utilized to improve the performance of a system by exploiting the strengths of each sensor. This dissertation presents algorithms to fuse multi-sensor data that improves system performance by increasing detection rates, lowering false alarms, and improving track performance. Furthermore, this dissertation presents a framework for comparing algorithm error for image registration which is a critical pre-processing step for multi-spectral image fusion. First, I present an algorithm to improve detection and tracking performance for moving targets in a cluttered urban environment by fusing foreground maps from multi-spectral imagery. Most research in image fusion consider visible and long-wave infrared bands; I examine these bands along with near infrared and mid-wave infrared. To localize and track a particular target of interest, I present an algorithm to fuse output from the multi-spectral image tracker with a constellation of RF sensors measuring a specific cellular emanation. The fusion algorithm matches the Doppler differential from the RF sensors with the theoretical Doppler Differential of the video tracker output by selecting the sensor pair that minimizes the absolute difference or root-mean-square difference. Finally, a framework to quantify shift-estimation error for both area- and feature-based algorithms is presented. By exploiting synthetically generated visible and long-wave infrared imagery, error metrics are computed and compared for a number of area- and feature-based shift estimation algorithms. A number of key results are presented in this dissertation. The multi-spectral image tracker improves the location accuracy of the algorithm while improving the detection rate and lowering false alarms for most spectral bands. All 12 moving targets were tracked through the video sequence with only one lost track that was later recovered. Targets from the multi-spectral tracking algorithm were correctly associated with their corresponding cellular emanation for all targets at lower measurement uncertainty using the root-mean-square difference while also having a high confidence ratio for selecting the true target from background targets. For the area-based algorithms and the synthetic air-field image pair, the DFT and ECC algorithms produces sub-pixel shift-estimation error in regions such as shadows and high contrast painted line regions. The edge orientation feature descriptors increase the number of sub-field estimates while improving the shift-estimation error compared to the Lowe descriptor

    Experimental and simulation study results for video landmark acquisition and tracking technology

    Get PDF
    A synopsis of related Earth observation technology is provided and includes surface-feature tracking, generic feature classification and landmark identification, and navigation by multicolor correlation. With the advent of the Space Shuttle era, the NASA role takes on new significance in that one can now conceive of dedicated Earth resources missions. Space Shuttle also provides a unique test bed for evaluating advanced sensor technology like that described in this report. As a result of this type of rationale, the FILE OSTA-1 Shuttle experiment, which grew out of the Video Landmark Acquisition and Tracking (VILAT) activity, was developed and is described in this report along with the relevant tradeoffs. In addition, a synopsis of FILE computer simulation activity is included. This synopsis relates to future required capabilities such as landmark registration, reacquisition, and tracking

    Multi-modal video analysis for early fire detection

    Get PDF
    In dit proefschrift worden verschillende aspecten van een intelligent videogebaseerd branddetectiesysteem onderzocht. In een eerste luik ligt de nadruk op de multimodale verwerking van visuele, infrarood en time-of-flight videobeelden, die de louter visuele detectie verbetert. Om de verwerkingskost zo minimaal mogelijk te houden, met het oog op real-time detectie, is er voor elk van het type sensoren een set ’low-cost’ brandkarakteristieken geselecteerd die vuur en vlammen uniek beschrijven. Door het samenvoegen van de verschillende typen informatie kunnen het aantal gemiste detecties en valse alarmen worden gereduceerd, wat resulteert in een significante verbetering van videogebaseerde branddetectie. Om de multimodale detectieresultaten te kunnen combineren, dienen de multimodale beelden wel geregistreerd (~gealigneerd) te zijn. Het tweede luik van dit proefschrift focust zich hoofdzakelijk op dit samenvoegen van multimodale data en behandelt een nieuwe silhouet gebaseerde registratiemethode. In het derde en tevens laatste luik van dit proefschrift worden methodes voorgesteld om videogebaseerde brandanalyse, en in een latere fase ook brandmodellering, uit te voeren. Elk van de voorgestelde technieken voor multimodale detectie en multi-view lokalisatie zijn uitvoerig getest in de praktijk. Zo werden onder andere succesvolle testen uitgevoerd voor de vroegtijdige detectie van wagenbranden in ondergrondse parkeergarages

    Object Association Across Multiple Moving Cameras In Planar Scenes

    Get PDF
    In this dissertation, we address the problem of object detection and object association across multiple cameras over large areas that are well modeled by planes. We present a unifying probabilistic framework that captures the underlying geometry of planar scenes, and present algorithms to estimate geometric relationships between different cameras, which are subsequently used for co-operative association of objects. We first present a local1 object detection scheme that has three fundamental innovations over existing approaches. First, the model of the intensities of image pixels as independent random variables is challenged and it is asserted that useful correlation exists in intensities of spatially proximal pixels. This correlation is exploited to sustain high levels of detection accuracy in the presence of dynamic scene behavior, nominal misalignments and motion due to parallax. By using a non-parametric density estimation method over a joint domain-range representation of image pixels, complex dependencies between the domain (location) and range (color) are directly modeled. We present a model of the background as a single probability density. Second, temporal persistence is introduced as a detection criterion. Unlike previous approaches to object detection that detect objects by building adaptive models of the background, the foreground is modeled to augment the detection of objects (without explicit tracking), since objects detected in the preceding frame contain substantial evidence for detection in the current frame. Finally, the background and foreground models are used competitively in a MAP-MRF decision framework, stressing spatial context as a condition of detecting interesting objects and the posterior function is maximized efficiently by finding the minimum cut of a capacitated graph. Experimental validation of the method is performed and presented on a diverse set of data. We then address the problem of associating objects across multiple cameras in planar scenes. Since cameras may be moving, there is a possibility of both spatial and temporal non-overlap in the fields of view of the camera. We first address the case where spatial and temporal overlap can be assumed. Since the cameras are moving and often widely separated, direct appearance-based or proximity-based constraints cannot be used. Instead, we exploit geometric constraints on the relationship between the motion of each object across cameras, to test multiple correspondence hypotheses, without assuming any prior calibration information. Here, there are three contributions. First, we present a statistically and geometrically meaningful means of evaluating a hypothesized correspondence between multiple objects in multiple cameras. Second, since multiple cameras exist, ensuring coherency in association, i.e. transitive closure is maintained between more than two cameras, is an essential requirement. To ensure such coherency we pose the problem of object associating across cameras as a k-dimensional matching and use an approximation to find the association. We show that, under appropriate conditions, re-entering objects can also be re-associated to their original labels. Third, we show that as a result of associating objects across the cameras, a concurrent visualization of multiple aerial video streams is possible. Results are shown on a number of real and controlled scenarios with multiple objects observed by multiple cameras, validating our qualitative models. Finally, we present a unifying framework for object association across multiple cameras and for estimating inter-camera homographies between (spatially and temporally) overlapping and non-overlapping cameras, whether they are moving or non-moving. By making use of explicit polynomial models for the kinematics of objects, we present algorithms to estimate inter-frame homographies. Under an appropriate measurement noise model, an EM algorithm is applied for the maximum likelihood estimation of the inter-camera homographies and kinematic parameters. Rather than fit curves locally (in each camera) and match them across views, we present an approach that simultaneously refines the estimates of inter-camera homographies and curve coefficients globally. We demonstrate the efficacy of the approach on a number of real sequences taken from aerial cameras, and report quantitative performance during simulations

    Use of LiDAR in Automated Aerial Refueling To Improve Stereo Vision Systems

    Get PDF
    The United States Air Force (USAF) executes five Core Missions, four of which depend on increased aircraft range. To better achieve global strike and reconnaissance, unmanned aerial vehicles (UAVs) require aerial refueling for extended missions. However, current aerial refueling capabilities are limited to manned aircraft due to technical difficulties to refuel UAVs mid-flight. The latency between a UAV operator and the UAV is too large to adequately respond for such an operation. To overcome this limitation, the USAF wants to create a capability to guide the refueling boom into the refueling receptacle. This research explores the use of light detection and ranging (LiDAR) to create a relative pose estimation of the UAV and compares it to previous stereo vision results. Researchers at the Air Force Institute of Technology (AFIT) developed an algorithm to automate the refueling operation based on a stereo-vision system. While the system works, it requires a large amount of processing; it must detect an aircraft, compose an image between the two cameras\u27 points of view, create a point cloud of the image, and run a point cloud alignment algorithm to match the point cloud to a reference model. These complex steps require a large amount of processing power and are subject to noise and processing artifacts

    Processing of image sequences from fundus camera

    Get PDF
    Cílem mé diplomové práce bylo navrhnout metodu analýzy retinálních sekvencí, která bude hodnotit kvalitu jednotlivých snímků. V teoretické části se také zabývám vlastnostmi retinálních sekvencí a způsobem registrace snímků z fundus kamery. V praktické části je implementována metoda hodnocení kvality snímků, která je otestována na reálných retinálních sekvencích a vyhodnocena její úspěšnost. Práce hodnotí i vliv této metody na registraci retinálních snímků.The aim of my master's thesis was to propose a method of retinal sequence analysis which will evaluate the quality of each frame. In the theoretical part, I will also deal with the properties of retinal sequences and the way of registering the images of the fundus camera. In the practical part the method of evaluating image quality is implemented. This algorithm is tested on real retinal sequences and its success is assessed. This work also evaluates the impact of proposed method on the registration of retinal images.

    ObjectMatch: Robust Registration using Canonical Object Correspondences

    Full text link
    We present ObjectMatch, a semantic and object-centric camera pose estimator for RGB-D SLAM pipelines. Modern camera pose estimators rely on direct correspondences of overlapping regions between frames; however, they cannot align camera frames with little or no overlap. In this work, we propose to leverage indirect correspondences obtained via semantic object identification. For instance, when an object is seen from the front in one frame and from the back in another frame, we can provide additional pose constraints through canonical object correspondences. We first propose a neural network to predict such correspondences on a per-pixel level, which we then combine in our energy formulation with state-of-the-art keypoint matching solved with a joint Gauss-Newton optimization. In a pairwise setting, our method improves registration recall of state-of-the-art feature matching, including from 24% to 45% in pairs with 10% or less inter-frame overlap. In registering RGB-D sequences, our method outperforms cutting-edge SLAM baselines in challenging, low-frame-rate scenarios, achieving more than 35% reduction in trajectory error in multiple scenes.Comment: Project Page: http://cangumeli.github.io/ObjectMatch Video: https://www.youtube.com/watch?v=kuXoKVrzUR
    corecore