1,169 research outputs found

    On Cognitive Preferences and the Plausibility of Rule-based Models

    Get PDF
    It is conventional wisdom in machine learning and data mining that logical models such as rule sets are more interpretable than other models, and that among such rule-based models, simpler models are more interpretable than more complex ones. In this position paper, we question this latter assumption by focusing on one particular aspect of interpretability, namely the plausibility of models. Roughly speaking, we equate the plausibility of a model with the likeliness that a user accepts it as an explanation for a prediction. In particular, we argue that, all other things being equal, longer explanations may be more convincing than shorter ones, and that the predominant bias for shorter models, which is typically necessary for learning powerful discriminative models, may not be suitable when it comes to user acceptance of the learned models. To that end, we first recapitulate evidence for and against this postulate, and then report the results of an evaluation in a crowd-sourcing study based on about 3.000 judgments. The results do not reveal a strong preference for simple rules, whereas we can observe a weak preference for longer rules in some domains. We then relate these results to well-known cognitive biases such as the conjunction fallacy, the representative heuristic, or the recogition heuristic, and investigate their relation to rule length and plausibility.Comment: V4: Another rewrite of section on interpretability to clarify focus on plausibility and relation to interpretability, comprehensibility, and justifiabilit

    Robust subgroup discovery

    Get PDF
    We introduce the problem of robust subgroup discovery, i.e., finding a set of interpretable descriptions of subsets that 1) stand out with respect to one or more target attributes, 2) are statistically robust, and 3) non-redundant. Many attempts have been made to mine either locally robust subgroups or to tackle the pattern explosion, but we are the first to address both challenges at the same time from a global modelling perspective. First, we formulate the broad model class of subgroup lists, i.e., ordered sets of subgroups, for univariate and multivariate targets that can consist of nominal or numeric variables, and that includes traditional top-1 subgroup discovery in its definition. This novel model class allows us to formalise the problem of optimal robust subgroup discovery using the Minimum Description Length (MDL) principle, where we resort to optimal Normalised Maximum Likelihood and Bayesian encodings for nominal and numeric targets, respectively. Second, as finding optimal subgroup lists is NP-hard, we propose SSD++, a greedy heuristic that finds good subgroup lists and guarantees that the most significant subgroup found according to the MDL criterion is added in each iteration, which is shown to be equivalent to a Bayesian one-sample proportions, multinomial, or t-test between the subgroup and dataset marginal target distributions plus a multiple hypothesis testing penalty. We empirically show on 54 datasets that SSD++ outperforms previous subgroup set discovery methods in terms of quality and subgroup list size.Comment: For associated code, see https://github.com/HMProenca/RuleList ; submitted to Data Mining and Knowledge Discovery Journa

    Efficient learning of large sets of locally optimal classification rules

    Full text link
    Conventional rule learning algorithms aim at finding a set of simple rules, where each rule covers as many examples as possible. In this paper, we argue that the rules found in this way may not be the optimal explanations for each of the examples they cover. Instead, we propose an efficient algorithm that aims at finding the best rule covering each training example in a greedy optimization consisting of one specialization and one generalization loop. These locally optimal rules are collected and then filtered for a final rule set, which is much larger than the sets learned by conventional rule learning algorithms. A new example is classified by selecting the best among the rules that cover this example. In our experiments on small to very large datasets, the approach's average classification accuracy is higher than that of state-of-the-art rule learning algorithms. Moreover, the algorithm is highly efficient and can inherently be processed in parallel without affecting the learned rule set and so the classification accuracy. We thus believe that it closes an important gap for large-scale classification rule induction.Comment: article, 40 pages, Machine Learning journal (2023

    The use of data-mining for the automatic formation of tactics

    Get PDF
    This paper discusses the usse of data-mining for the automatic formation of tactics. It was presented at the Workshop on Computer-Supported Mathematical Theory Development held at IJCAR in 2004. The aim of this project is to evaluate the applicability of data-mining techniques to the automatic formation of tactics from large corpuses of proofs. We data-mine information from large proof corpuses to find commonly occurring patterns. These patterns are then evolved into tactics using genetic programming techniques

    OWL-Miner: Concept Induction in OWL Knowledge Bases

    Get PDF
    The Resource Description Framework (RDF) and Web Ontology Language (OWL) have been widely used in recent years, and automated methods for the analysis of data and knowledge directly within these formalisms are of current interest. Concept induction is a technique for discovering descriptions of data, such as inducing OWL class expressions to describe RDF data. These class expressions capture patterns in the data which can be used to characterise interesting clusters or to act as classifica- tion rules over unseen data. The semantics of OWL is underpinned by Description Logics (DLs), a family of expressive and decidable fragments of first-order logic. Recently, methods of concept induction which are well studied in the field of Inductive Logic Programming have been applied to the related formalism of DLs. These methods have been developed for a number of purposes including unsuper- vised clustering and supervised classification. Refinement-based search is a concept induction technique which structures the search space of DL concept/OWL class expressions and progressively generalises or specialises candidate concepts to cover example data as guided by quality criteria such as accuracy. However, the current state-of-the-art in this area is limited in that such methods: were not primarily de- signed to scale over large RDF/OWL knowledge bases; do not support class lan- guages as expressive as OWL2-DL; or, are limited to one purpose, such as learning OWL classes for integration into ontologies. Our work addresses these limitations by increasing the efficiency of these learning methods whilst permitting a concept language up to the expressivity of OWL2-DL classes. We describe methods which support both classification (predictive induction) and subgroup discovery (descrip- tive induction), which, in this context, are fundamentally related. We have implemented our methods as the system called OWL-Miner and show by evaluation that our methods outperform state-of-the-art systems for DL learning in both the quality of solutions found and the speed in which they are computed. Furthermore, we achieve the best ever ten-fold cross validation accuracy results on the long-standing benchmark problem of carcinogenesis. Finally, we present a case study on ongoing work in the application of OWL-Miner to a real-world problem directed at improving the efficiency of biological macromolecular crystallisation

    Diskretointi osajoukkojen haussa

    Get PDF
    Subgroup discovery is a data mining technique to discoverer interesting subgroups from a selected population. It seeks to discover interesting relationships between different objects in a set with respect to a specific property. The discovered patterns are called subgroups and they are represented in the form of rules. Discretization is technique to replace numerical attributes with nominal ones, making it possible to use them with algorithms that do not support numerical attributes. In this thesis two datasets are discretized for the application of subgroup discovery. For the discretizations four different methods were used and three different bin amounts were applied. The used datasets are the heart disease and the Australian credit approval from the UCI Machine Learning Repository. The subgroup discovery technique produced eleven subgroups sets as result, eight from heart disease dataset and three from Australian credit approval dataset. We observed that the bin amount affects greatly on the results. Also, with the binary discretization there are subgroup sets with a high share of subgroups with discretized attributes. In addition, the importance of expert guidance is emphasized

    Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search

    Get PDF
    International audienceThe discovery of patterns that accurately discriminate one class label from another remains a challenging data mining task. Subgroup discovery (SD) is one of the frameworks that enables to elicit such interesting patterns from labeled data. A question remains fairly open: How to select an accurate heuristic search technique when exhaustive enumeration of the pattern space is infeasible? Existing approaches make use of beam-search, sampling, and genetic algorithms for discovering a pattern set that is non-redundant and of high quality w.r.t. a pattern quality measure. We argue that such approaches produce pattern sets that lack of diversity: Only few patterns of high quality, and different enough, are discovered. Our main contribution is then to formally define pattern mining as a game and to solve it with Monte Carlo tree search (MCTS). It can be seen as an exhaustive search guided by random simulations which can be stopped early (limited budget) by virtue of its best-first search property. We show through a comprehensive set of experiments how MCTS enables the anytime discovery of a diverse pattern set of high quality. It out-performs other approaches when dealing with a large pattern search space and for different quality measures. Thanks to its genericity, our MCTS approach can be used for SD but also for many other pattern mining tasks
    corecore