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Abstract

The Resource Description Framework (RDF) and Web Ontology Language (OWL)

have been widely used in recent years, and automated methods for the analysis of

data and knowledge directly within these formalisms are of current interest. Concept

induction is a technique for discovering descriptions of data, such as inducing OWL

class expressions to describe RDF data. These class expressions capture patterns in

the data which can be used to characterise interesting clusters or to act as classifica-

tion rules over unseen data. The semantics of OWL is underpinned by Description

Logics (DLs), a family of expressive and decidable fragments of first-order logic.

Recently, methods of concept induction which are well studied in the field of

Inductive Logic Programming have been applied to the related formalism of DLs.

These methods have been developed for a number of purposes including unsuper-

vised clustering and supervised classification. Refinement-based search is a concept

induction technique which structures the search space of DL concept/OWL class

expressions and progressively generalises or specialises candidate concepts to cover

example data as guided by quality criteria such as accuracy. However, the current

state-of-the-art in this area is limited in that such methods: were not primarily de-

signed to scale over large RDF/OWL knowledge bases; do not support class lan-

guages as expressive as OWL2-DL; or, are limited to one purpose, such as learning

OWL classes for integration into ontologies. Our work addresses these limitations

by increasing the efficiency of these learning methods whilst permitting a concept

language up to the expressivity of OWL2-DL classes. We describe methods which

support both classification (predictive induction) and subgroup discovery (descrip-

tive induction), which, in this context, are fundamentally related.

We have implemented our methods as the system called OWL-Miner and show

by evaluation that our methods outperform state-of-the-art systems for DL learning

in both the quality of solutions found and the speed in which they are computed.

Furthermore, we achieve the best ever ten-fold cross validation accuracy results on

the long-standing benchmark problem of carcinogenesis. Finally, we present a case

study on ongoing work in the application of OWL-Miner to a real-world problem

directed at improving the efficiency of biological macromolecular crystallisation.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Research Goal

The prevalence of Linked Open Data (LOD) under the Resource Description Frame-

work (RDF) data model has grown significantly in recent years as the uptake of

Semantic Web technologies continues to increase [13]. The RDF data model and the

Semantic Web technologies which are built on top of RDF are relatively new when

compared to venerable database technologies such as relational systems, and with

them come new challenges around scalability, the design of complex data schemas,

and methods for the analyses of data and knowledge in the RDF formalism.

Schema technologies such as the Resource Description Framework Schema (RDFS)

and the Web Ontology Language (OWL) are designed for constraining the semantics

and structure of RDF data. OWL in particular, being based on highly expressive

predicate logics called Description Logics, is capable of expressing complex state-

ments capturing knowledge about data expressed in RDF. However, this expressivity

comes at a cost. Not only is the manual construction of OWL ontologies a non-trivial

task, but software systems such as automated reasoners for OWL often call for com-

putationally complex algorithms. These two issues pose challenges around the use

of OWL as a schema language, and particularly the formal automated analysis of

RDF which has been described and constrained with OWL in machine learning and

data mining applications. Machine learning and data mining are often already com-

putationally complex in nature, and often require efficient data representations and

query mechanisms to aid in the construction of models or detection of patterns.

In recent years, methods have been developed for automated concept induction, or

the automated construction of OWL classes induced from RDF data [7, 59, 58, 57,

30, 43]. The goals of this body of work appear twofold, firstly to address the com-

1
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plexity of generating OWL classes for ontologies from data and existing background

knowledge by automating their construction for addition to ontologies, but secondly

to leverage these methods to employ OWL as an expressive language suitable for

describing classification rules or cluster descriptions in machine learning and data

mining applications. However, current methods around the application of machine

learning and data mining with OWL either lack support for highly expressive class

languages like OWL2-DL, or are focused on providing support for solving particu-

lar kinds of learning problems such as supervised classification. Furthermore, these

methods do not support scaling up to solving problems with large amounts of in-

stance data and background knowledge. These limitations hinder the applicability of

such learning methods in tackling a broader range of automated learning problems

such as subgroup discovery over large knowledge-rich data sets which are becoming

more prevalent as semantic technologies are more widely adopted. One such domain

where this is particularly the case is in within the life sciences, where large experi-

mental datasets containing rich background knowledge expressed in OWL are being

produced, such as the Kidney and Urinary Pathway Knowledge Base (KUPKB) [49].

The goal of our research is to improve the state of the art of automated concept

induction in OWL and associated highly expressive DLs in terms of the efficiency

and applicability for solving a variety of related supervised machine learning and

data mining problems. The techniques we present are designed to leverage rich

background knowledge captured as RDFS/OWL over the RDF data being analysed

to induce new OWL class expressions. In this way, we treat OWL as a highly expres-

sive hypothesis language, and because the methods we have developed are likely to

generate OWL statements which are consistent with background knowledge, they

can be used to aid in the construction of OWL ontologies in a semi-automated way.

However, our primary focus is to employ OWL as a hypothesis language to support

machine learning and data mining tasks in a way which generates comprehensible

descriptions of classes and clusters to aid in human interpretation directly as a way

of revealing new descriptive knowledge in RDF datasets.

From a practical standpoint, we demonstrate how the methods we have devel-

oped to analyse RDF data by mining and classifying with OWL class expressions

can be applied to a real-world scientific domain known as biological macromolecular

crystallisation. In this domain, several of the world’s largest laboratories are work-

ing towards capturing scientific experiments using linked RDF data, primarily for

the purposes of integration and analysis. Semantic Web technologies such as RDFS
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and OWL are being used to capture an abundance of relevant background knowl-

edge which can be used to organise and classify this experimental data in interesting

ways. In this setting, we show how the application of our concept induction meth-

ods over the rich descriptions of scientific experiments can be used to aid scientists

in analysing their data with a view to increasing experimental efficiency. This do-

main is not dissimilar from many other in the life sciences which produce a lot of

knowledge-rich data with a need to analyse it with mining and classification tech-

niques. Furthermore, we demonstrate how such domains can use concept induction

methods to capture complex axiomatic knowledge as OWL ontologies. This is a use-

ful tool for domain scientists who commonly lack logical modelling skills and may

also be a source of new scientific knowledge.

1.1.2 Approach

We begin with a treatise of Description Logics which underpin the semantics of OWL,

and describe the state of the art in methods for inducing concepts as DL/OWL ex-

pressions from data such as RDF. From there, we identify key limitations with the

approaches around scalability, describe how we aim to address these with novel

methods while detailing their strengths and drawbacks. We also address the novel

problem of subgroup discovery in this setting and implement our methods, demon-

strating their efficacy over a well-known problem in this domain. We compare our

implementation, the OWL-Miner system, to another comparable existing system

known as DL-Learner then we show how OWL-Miner can be used in a real-world

setting to address an efficiency problem in the domain of protein crystallisation.

1.1.3 Results

We have implemented our methods in the software system called OWL-Miner and

have compared its performance with another state-of-the-art DL learning system,

DL-Learner, as covered in Chapter 6. Over a variety of learning problems, we

consistently find that our methods not only outperform DL-Learner in terms of

efficiency, but at times also in the quality of the solutions found. Efficiency was

measured by the number of candidate expressions tested in a search for solutions,

as well as system speed. We conclude that our methods do indeed permit a more

efficient learning strategy which is suitable for analysing large knowledge bases with

highly expressive DLs as the hypothesis language. In Chapter 7, we go on to describe
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how our system is being integrated into a live system for supporting the analysis of

experimental data at CSIRO.

1.2 Thesis Outline

Chapter 2 presents background to the Semantic Web and the problem of knowledge

discovery in OWL knowledge-bases, as well as the machine learning and data mining

problems we consider in this space. We then describe the particular methods we

develop for learning in OWL knowledge-bases around refinement operators, and

discuss challenges and the scope of our research in addressing these.

Chapter 3 presents Semantic Web technologies such as the RDF data model, RDF

Schema and OWL ontology languages, along with Description Logics which under-

pin OWL. We then detail formal definitions of aspects of reasoning and learning with

DLs, before describing the formal machine learning and data mining settings we con-

sider around supervised classification and subgroup discovery, and present several

basic algorithms for learning in relation to these. Finally, we describe the limitations

of learning in the formal settings as described, and discuss a more suitable setting

for learning around a closed-world interpretation of DLs.

Chapter 4 analyses the state-of-the-art in terms of a refinement operator for OWL,

then describes our main contribution which is a novel refinement operator for learn-

ing with highly expressive DLs. We also describe a novel extension to the operator to

handle numerical data and learning with qualified cardinality restrictions. We sum-

marise the chapter by presenting our novel refinement operator in full, and present

an analysis of its properties.

Chapter 5 presents the machine learning and data mining settings we consider

and describe novel algorithms for supervised learning which incorporate the novel

refinement operator we developed in Chapter 4. We also describe and analyse a class

of quality functions for use in learning and describe a novel algorithm for learning in

this general setting. We finish by presenting unique modifications to our algorithm

to address certain limitations to learning with refinement operators over DLs.

Chapter 6 discusses our implementation, the OWL-Miner system, and presents

an evaluation against another state-of-the-art software system, DL-Learner. We

compare the performance of these two systems over several benchmark problems

before concluding that the OWL-Miner system appears to provide superior perfor-

mance in terms of search efficiency and of the quality of solutions found.
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Chapter 7 presents a case study in the application of the OWL-Miner system to

a problem in biology known as protein crystallisation. We begin with background

about the domain, and describe current efforts to collect, integrate and describe data

using Semantic Web technologies. We then describe how OWL-Miner is being used

to aid in the analysis of results to support efficient experimentation, which is ongoing

work.

Finally, we summarise our contributions and discuss current and future work

when concluding in Chapter 8.
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Chapter 2

Background and Related Work

In this chapter we introduce the Semantic Web (§2.1) and the prevalence of new

datasets employing Semantic Web technologies to capture data and knowledge, par-

ticularly in the domain of life-sciences (§2.1.1). Our motivation is to address the lack

of appropriate methods and tools for performing machine learning and data min-

ing over such data sets using Semantic Web technologies directly. We describe the

machine learning and data mining problems we will be considering in this thesis

(§2.2) and discuss how existing work (§2.3) can be leveraged to develop appropri-

ate techniques in these areas. Finally, we outline the challenges we address in this

work to improve the state-of-the-art in machine learning and data mining over OWL

knowledge bases (§2.4).

2.1 The Semantic Web

Tim Berners-Lee, widely recognised as the inventor of the World Wide Web, pre-

sented a vision of the Semantic Web [11, 10] in 2001. The goal was to promote the

publishing of machine-interpretable data on the web to enable people and machines

to easily find and re-use the data in useful ways. Since then, the World Wide Web

Consortium (W3C) has promoted web standards for realising the Semantic Web in-

cluding technologies such as the Resource Description Framework (RDF) data model,

schema (RDFS) and the Web Ontology Language (OWL) [90]. In recent years, the

wide uptake of these technologies has seen an abundance of machine interpretable

data and knowledge being published on the web, particularly within the life sci-

ences and many other domains including those contributing to the Linked Open

Data project [13].

7
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2.1.1 Knowledge Discovery in the Life Sciences on the Semantic Web

As the amount of data and knowledge arriving on the Semantic Web is increasing,

there is a clear need to develop machine learning and data mining techniques for

direct application to such data. The development of such techniques for the Semantic

Web is a current research topic and preliminary studies on the application of existing

machine learning and data mining techniques over data captured with the RDF data

model and OWL ontologies have been undertaken [97]. Of particular interest is the

application of machine learning and data mining methods to knowledge-intensive

scientific data on the Semantic Web, particularly in domains where such methods

may be used for knowledge discovery to aid in scientific understanding [8].

The use of Semantic Web technologies has had significant uptake in the life sci-

ences, primarily for aiding with data integration and the formal capture of knowl-

edge. Prominent examples include SNOMED-CT [88] and the Gene Ontology (GO)

project [103] which aim to provide controlled vocabularies and structured knowl-

edge in the domains of bioinformatics and medicine. Many more ontologies for the

life sciences are emerging, such as the ChEBI ontology [25] for capturing chemistry

domain knowledge which is core to several fields of bioinformatics including drug

discovery [38].

The uptake and abundance of OWL ontologies to describe scientific data presents

an unprecedented opportunity to leverage the knowledge captured when performing

machine learning and data mining. Specifically, OWL ontologies and their associated

terms can be used to describe patterns in the data directly, which make them easily

interpretable by domain experts. Furthermore, the formal nature of OWL defines

constraints over the structure and relationships of the data it describes, which can

be leveraged by machine learning and data mining systems to confine their search

spaces for hypotheses and improve their performance, both in terms of efficiency and

hypothesis quality.

In our research, we have developed ideas with the design and implementation

of novel methods of data mining and machine learning specifically for application

directly to OWL knowledge bases. We will describe algorithms for learning and

mining which generate hypotheses directly as OWL class expressions over terms

from the ontologies used to describe the data being analysed. We will also show how

to leverage the structure imposed by OWL to improve the efficiency of the search for

hypotheses.
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2.2 Machine Learning and Data Mining

Machine learning and data mining are vast and current fields of research. In our

work, we focus on the application and analysis of several specific problems and

techniques from machine learning and data mining to discovering patterns within

OWL knowledge bases. These patterns, when captured as OWL class expressions,

aim to provide human readable hypotheses for understanding the reasons behind

the production of a pattern. In this way, our approach is similar to rule learning

which produces hypotheses which can be read by humans and understood in terms

of the language of the domain, thus providing insight into the problem being solved.

This can be contrast with non-comprehensible learning techniques such as neural

networks (NN) or support vector machines (SVM) which are effectively black-box

numerical models providing no explanatory capability in terms of the domain of the

data.

In this thesis, we are particularly interested in two closely related problems in

machine learning and data mining for application to pattern learning in OWL knowl-

edge bases which capture scientific experimental data: classification and subgroup

discovery.

2.2.1 Classification

Classification is a supervised machine learning problem which takes a labelled set of

examples and seeks to construct hypotheses which differentiate examples based on

their labels. In terms of scientific experimental data, examples may be descriptions of

experiments where their labels describe the experimental outcome, and hypotheses

which differentiate experiments (examples) with one outcome (label) from others

can be used to provide insight as to why those experiments have those outcomes.

For example, a set of chemical experiments may be labelled with one of success, or

failure. Patterns which exclusively identify those with failure and not success, e.g., that

they contain 50mM sodium acetate, could immediately provide the analyst with the

actionable knowledge needed to design successful experiments.

2.2.2 Subgroup Discovery

Subgroup discovery is a supervised data mining problem which takes a labelled set

of examples and seeks to construct hypotheses which describe collections of exam-

ples with a statistically unusual distribution of labels relative to some baseline [109].
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For instance, examples may correspond to chemical experiments evenly partitioned

into (success, failure). An interesting hypothesis may describe a large subgroup of all

experiments (examples) which predominantly contains successful experiments (75%)

with the remainder being failed experiments (25%). As this distribution of examples

is significantly different to the set of all experiments (50% success/50% failure), the

hypotheses describing the subgroup may indicate why the particular set of exam-

ples it describes are mostly successful. In contrast with the supervised classification

problem above, subgroup discovery is useful when it is unnecessary or impossible

to construct individual patterns which capture one label exclusively over another. In

this way, subgroup discovery is used as a descriptive technique for human consump-

tion, as opposed to the prescriptive approach of classification which can be used to

construct predictive models.

2.3 Learning OWL Classes

In this thesis, we focus on methods for learning new OWL class expressions which

describe example data in some way. This is a general technique which can be applied

to describe patterns in sets of example data for the purposes of machine learning and

data mining as described earlier (§2.2). For example, a set of learned OWL classes

may act as a predictive model over unseen example instances, or identify interesting

clusters or subgroups of example instances.

Various methods already exist for learning OWL class expressions from example

data based around inducing expressions in Description Logics (DLs), which under-

pin the formal semantics of OWL. These methods are closely related to those devel-

oped for addressing a similar problem in the different yet related logical formalism

of Logic Programs (LP) within the field of Inductive Logic Programming (ILP). The

following section (§2.3.1) compares learning in DLs to ILP and highlights various DL

learning techniques which were largely motivated by their applicability in ILP.

2.3.1 Comparison with Inductive Logic Programming

Despite the fact that learning in DLs is a new area of research, learning in logic-

based formalisms in general is not. The field of Inductive Logic Programming (ILP)

is a well-researched area of logic-based relational learning which employs Logic Pro-

grams (LP) as the formalism for capturing data, background knowledge and hy-

potheses. There are several key areas in which ILP differs to learning in DLs, includ-
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ing:

• Standards and uptake. The W3C recommended RDF, RDFS, OWL and XML

Schema are widely used web standards which have enjoyed significant uptake

to describe data and knowledge from many domains, particularly in the life

sciences. Existing data and ontologies published in these formalisms may be

leveraged directly to enrich and structure one’s own data for the purposes of

learning in a DL. In contrast, background knowledge and data as logic pro-

grams as used in ILP are not as widely accessible for these purposes.

• Expressivity. ILP algorithms cannot be applied directly to learning in DLs

because of the mismatch in the syntax and semantics of the logics [14]. ILP

systems typically employ a Horn or definite clause hypothesis and background

knowledge representation based on Logic Programs (LP). DLs are different in

that they permit complex concepts including positive disjunction, full negation

and qualified cardinality restrictions which cannot naturally be expressed in

LP, but which may be used in a DL concept based hypothesis language. LP

systems can express multiple horn-clause definitions for predicates in learning,

which enables them to capture more complex background knowledge than a

DL knowledge-base. However, depending on the scale of the data, the results

of such complex processing can nevertheless be captured in a DL-knowledge

base.

• Generality. As semantic entailment of clauses in ILP is undecidable, the syntac-

tic θ-subsumption notion of generality over clauses in ILP is often used as a de-

cidable substitute for comparing the generality or specificity of clausal hypothe-

ses. In many DLs, a natural notion of generality is that of concept subsumption

based on model inclusion for which decidable algorithms are known1. Concept

subsumption in DLs is a semantic notion of generality which, when constrained

by terminological background axioms (TBox), naturally constrain the space of

permissible hypotheses in meaningful ways. This may be contrasted with syn-

tactic θ-subsumption in ILP where, unless mode declarations [68] are used to

control the instantiation of variables in a tight way, many irrelevant hypotheses

may be permissible which can unnecessarily inflate the search space.

• Complexity. Datalog clause coverage and subsumption (determined with θ-

subsumption) in ILP are NP-complete problems [37]. Alternatively, certain DLs

1In fact, most DLs are specifically designed to ensure that satisfiability is decidable. This is important
as the commonly used deductive inference tasks such as concept subsumption and instance checking
are reducible to satisfiability checking.
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such as EL++ permit PTime reasoning procedures for the analogous tasks of

instance checking and concept subsumption [4]. Despite such tasks in expres-

sive DLs having worse computational complexity (e.g. ALC for which such

tasks are PSpace-complete), highly optimised reasoning strategies exist which

make them tractable in practice [35]. A direct comparison of the complexity of

these tasks is not straightforward, as concept subsumption in a DL knowledge

base is usually performed with respect to the entire TBox2, whereas Datalog

clause subsumption in ILP can be performed in a pairwise manner without

respect to background clauses.

• Language bias. For particular DLs, some language bias is captured directly

within the language and may be imposed by a TBox. For instance, the notion

of type bias in ILP [68] may be is captured with domain and range constraints on

roles expressible directly in the language of DLs, restricting their applicability

to certain classes. Additionally, mode declarations in ILP are irrelevant when

learning in DLs as DLs are variable-free.

• Closed vs. open world assumption. Typically, ILP systems will assume a

closed world (CWA), whereby all facts or data not currently known to the system

are assumed to be false. In contrast, DLs in the context of OWL typically

make the assumption of an open world (OWA), whereby no logical conclusions

may be drawn from facts or data which are not currently known. With OWL,

which is underpinned by DLs, an open world suits the nature of the intended

application which is to describe data on the web, not all of which is feasible to

capture in any one system for analysis such as logical reasoning. However, the

chosen assumption has direct implications on the method and computational

complexity of logical reasoning and related tasks such as retrieving the set of

data described by a logical expression. In ILP, such tasks are usually tractable

in a closed world as they involve algorithms of low computational complexity.

In DLs which assume an open world, especially those of high expressivity,

such reasoning tasks can have extremely high computational complexity which

poses practical limitations on the size of any knowledge base and data set.

Despite these differences, several fundamental techniques developed in ILP research

are relevant to learning in DLs. We now describe two of the most influential tech-

niques in sections 2.3.2 and 2.3.3 which have motivated our work.

2However, note that incremental classification is a technique which can be used to test for concept
subsumption which does not require the re-classification of the entire TBox [20].
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2.3.2 Non-standard inferences

Deductive inference problems in DLs are well-studied, including concept subsump-

tion and instance checking. More recent research into so-called non-standard inferences

in DLs include techniques for generating concept expressions from instance data via

the most specific concept (msc) procedure (similar to constructing the so-called bottom

clause with saturation in ILP) and the least common subsumer (lcs) for concept expres-

sions without disjunction (analogous to the least general generalisation (lgg) of clauses

in ILP) [5]. The LCSLearn algorithm for the DL C-Classic [18] employs the msc

and lcs for inducing concepts from instance data in the way the ILP system GOLEM

[67] learns clauses in a bottom-up manner. SONIC is a recent implementation of

algorithms for computing the msc and lcs in the more recent EL++ language [106].

2.3.3 Refinement operators

Motivated by techniques in ILP, refinement operators for generalising or specialising

hypotheses to traverse the hypothesis search space have been researched for a num-

ber of DLs including ALER [7], EL [57] and even highly expressive DLs such

as SROIQ(D) which underpins OWL2-DL [58]. Implementations of DL learn-

ers which implement a top-down search with refinement operators include DL-

Learner [56] and DL-FOIL [30], the latter of which implements a covering (separate-

and-conquer) approach for the DL ALC based on the well-known FOIL algorithm

in ILP [78]. YinYang [43, 29] is another DL learner which combines top-down and

bottom-up refinement search also in ALC. Each of these implementations are de-

signed to induce a single concept expression which classifies instance data with high

accuracy. Fr-ONT [55] uses top-down refinement for the DL EL for discovering fre-

quent patterns in a DL knowledge base akin to the Warmr [48] algorithm for data

mining in ILP. Recently, DL-Learner was extended [73] to learn in the probabilistic

DL known as crALC [19].

Systems which perform concept induction exclusively in the formalism of DLs

using refinement based search have been described recently. Most notably, DL-

Learner [56] is a system for DL concept learning over highly expressive DLs sup-

porting supervised classification and unsupervised learning. Indeed many of our

methods and our implementation, the OWL-Miner system, were designed around

improvements to the methods employed by DL-Learner. OWL-Miner differs from

DL-Learner in its ability to support a variety of data mining and machine learn-
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ing tasks including subgroup discovery. Also, while the search procedure that DL-

Learner employs is based on refinement, it is not guided by the distribution of data

in the knowledge base in the way we have developed the specialisation operator for

OWL-Miner. Other work on DL concept induction for supervised classification in-

clude the YinYang [43] and DL-FOIL [30] systems which employ the less expressive

DLs ALC in their hypothesis languages. Fr-ONT is another implementation of a

concept learner in the DL known as EL++, roughly corresponding to the OWL-EL

profile, and is designed to compute frequent queries in a data mining setting [55]. In

contrast, OWL-Miner uses a more expressive hypothesis language, permits highly

expressive background knowledge, and is capable of other learning tasks such as

subgroup discovery.

2.4 Challenges and Scope

Many challenges remain in developing novel or adapted data mining and machine

learning methods for direct application to knowledge discovery over data and knowl-

edge in DL knowledge bases. The key areas which we focus on in this thesis are:

• Learning under a closed world assumption. So far, most research has focussed

on DL learning settings which rely upon checking the coverage of induced

concepts with computationally expensive methods, namely, knowledge-base

satisfiability checking via entailment. This makes machine learning and data

mining in this setting a difficult prospect, because coverage which is likely to be

computed many times in a learning procedure in this way can be prohibitively

expensive for highly expressive DLs and large knowledge bases which contain

a lot of data and knowledge assertions. Additionally, coverage checking via en-

tailment under an open world assumption may not permit the computation of

examples described by expressions which describe all data in a domain, such as

∀r.X, which states that all examples in the tuples of role r are of type X, which

are assumed to be unknown in an open world. These limitations can be over-

come by learning in a closed world setting, which is traditionally employed in

data mining and machine learning. However, learning which assumes a closed

world over a knowledge base and constraints defined with open world seman-

tics poses challenges. Of these challenges, the most significant is that of correct

coverage computation, and the induction of satisfiable concept expressions with

respect to the background knowledge base.
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• Efficiently learning qualified cardinality restrictions (QCRs). Qualified car-

dinality restrictions (such as the concept expression >4r.X describing how any

instance in the domain of r must have at least four r-successors) pose significant

challenges in DL learning as they vastly expand the search space. Optimised

methods for handling learning in the presence of QCRs in the hypothesis lan-

guage, such as when learning expressive OWL classes, are needed.

• Learning in DLs with various concrete domains. Research into learning in

DLs has so far largely focussed on concept induction exclusively over abstract

domains without handling concrete domains such as numerical data. Scientific

data on the Semantic Web includes numerical data, and learning procedures

which cope with numerical features together with abstract data are required for

knowledge discovery in this context. Preliminary work on handling concrete

domains with refinement operators has been developed and implemented in

DL-Learner [56, 104], however many data mining methods based on search

with refinement operators have yet to be explored over DL knowledge bases

with concrete domains.

• Subgroup discovery. Techniques for performing subgroup discovery over OWL

knowledge bases are interesting as they can have the potential to be aided by

high-quality background knowledge of various forms [3] for improving hy-

pothesis quality and restricting the hypothesis search space. While related work

exists on identifying frequent patterns in EL knowledge-bases with the Warmr

algorithm [55], very little work exists in the context of subgroup discovery in

DL knowledge bases which can be useful sources of highly expressive back-

ground knowledge. In many scientific domains, such analyses are also useful

for gaining insights into experimental data sets.

• Efficient algorithms for mining large DL knowledge bases. Research into DL

learning has so far focussed primarily on theoretical aspects such as learnabil-

ity, various component techniques such as refinement operators and proof-of-

concept implementations of the application of various techniques from ILP as

outlined in section 2.3. However, efficient algorithms for mining knowledge

bases using DLs with a large amount of data and background knowledge have

not yet been explored. This focus is motivated by the observation that knowl-

edge bases employing RDF and OWL are now capable of handling millions

to billions of RDF statements. Results in this area are generally applicable to

mining of data on the Semantic Web, a current research topic [97], and are ap-
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plicable in real-world domains in which vast amounts of data produced as RDF

and described with OWL can be analysed with automated mining and machine

learning techniques. The domain of biological macromolecular crystallisation,

which we explore in a case study in Chapter 7, is an exemplar.

While many challenges remain, we are motivated to focus on the aforementioned

areas which are specifically applicable to knowledge discovery in the life sciences

on the Semantic Web. In particular, we address an important real-world problem in

structural biology, protein crystallisation, for which experimental data and knowledge

are being made available with Semantic Web technologies which has motivated our

work. Protein crystallisation is typical of other life sciences with data and knowl-

edge on the Semantic Web in that it is a highly knowledge-intensive domain which

seeks to use RDF and OWL primarily for the purposes of data integration and min-

ing [71]. Furthermore, protein crystallisation is a field which can benefit greatly

from comprehensible knowledge discovery tools to aid scientists in gaining a deeper

understanding of the field. Throughout the thesis, we will use examples from the

domain of protein crystallisation, and provide a case-study into the application of

the techniques developed in this work in Chapter 7.

2.5 Summary

In this chapter, we have introduced the Semantic Web (§2.1) and the uptake of Se-

mantic Web technologies in capturing important datasets and knowledge-bases in

the life sciences (§2.1.1). The current lack of tools for performing machine learning

and data mining over these datasets is the motivation for the work in this thesis.

We discussed how our work is focussed on developing three useful and general ma-

chine learning and data mining techniques (§2.2) for application to analysing OWL

knowledge bases, and existing work in this area (§2.3). We then described the state-

of-the-art in learning in OWL knowledge bases and highlighted the primary areas

which we address to progress work in this area (§2.4).



Chapter 3

Preliminaries

In this chapter we present the basic formalisms around the data models, logics and

learning methods which are used throughout this thesis. While most of these prelim-

inaries presented in this chapter reflect established work as referenced throughout,

Section 3.5 describes a novel closed-world setting for learning with DLs which we

build upon for our other novel contributions in DL learning in subsequent chapters.

3.1 The RDF Data Model

3.1.1 The Resource Description Framework: RDF

The Resource Description Framework (RDF) is a widely-used model for capturing graph-

based data which is recommended by the World Wide Web Consortium (W3C) for

describing data on the web. RDF prescribes the use of International Resource Identi-

fiers (IRIs) to identify resources, and relates these with other IRIs representing certain

relationships between them. For example, consider the following:

Figure 3.1: An example RDF graph describing information about the chemical cal-
cium nitrate. The graph combines resources from various namespaces including the
ChEBI ontology for describing chemical compounds. It describes calcium nitrate as
belonging to the class of calcium salts labelled CHEBI_35156, also known as saltpeter,
as having a molecular weight of 498.4334 g/mol and a part which is a calcium(2+)
ion, and having a role of fertilizer.

17
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In Figure 3.1, resources are identified with ellipses, directed arcs represent named

properties (also by IRI) which relate resources. Rectangles represent literals which are

XSD Schema types, such as strings or doubles. An RDF database corresponding to a

graph consists of a collection of triples, which are tuples of the form (subject, predicate,

object). Table 3.1 represents several triples from the graph of Figure 3.1.

(xdx:calcium_nitrate, rdf:type, obo:CHEBI_35156)
(xdx:calcium_nitrate, xdx:molWt_gmol, "498.4334"^^xsd:double)
(xdx:calcium_nitrate, obo:has_role, xdx:fertilizer)
(obo:CHEBI_35156, rdfs:label, "calcium salt"^^xsd:string)
... ... ...

Table 3.1: A partial set of RDF triples corresponding to parts of the graph from
Figure 3.1.

In this way, RDF is a flexible data model which can be used to describe arbitrary

objects, relate objects together via properties, and attribute objects to concrete data

such as numbers or strings. RDF is associated with two other W3C recommended

standards which describe schema languages for RDF graphs, which are discussed in

the next section.

3.1.2 RDF Schema Languages: RDFS, OWL

Elements of an RDF graph may be described and constrained in various ways us-

ing two particular schema languages known as RDF Schema (RDFS) and the Web

Ontology Language (OWL).

3.1.2.1 RDFS

RDFS is a schema language which can be used to categorise and constrain RDF

resources in several basic ways. Firstly, RDFS can define classes which describe the

type of a collection of RDF resources. For example, obo:CHEBI_35156 is an RDF

class (which is is itself an RDF resource) which represents “the class of all things which

are calcium salts”. In Figure 3.1, the resource xdx:calcium_nitrate is asserted to be

a member of this class via the rdf:type property.

RDFS can also be used to capture relationships between RDFS classes, such as

the fact that obo:CHEBI_35156 is a subclass of the more general class xdx:Compound,

or obo:CHEBI_33287 (the class of fertilizers) is a subclass of xdx:Role, as shown in

Figure 3.2. Such relationships can be used to construct detailed class hierarchies
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Figure 3.2: An abstract RDFS diagram representing the class hierarchy between
obo:CHEBI_35156 (calcium salts) and all chemical compounds xdx:Compound, and
where the resource xdx:calcium_nitrate is an instance of both. The property rela-
tionship obo:has_role is shown between xdx:Compound and xdx:Role to describe
the domain and range of this property, and its usage is shown between the class
instances xdx:calcium_nitrate and xdx:fertilizer.

which capture knowledge about a domain like chemistry. In this case, the resource

xdx:calcium_nitrate could be inferred to also belong to the class xdx:Compound.

Methods of inference used to determine this are described in detail in subsequent

sections of this chapter.

The use of RDF properties can also be constrained with RDFS by defining the

applicable classes of resources to be used in some property’s domain and range. For

example, the property obo:has_role may be constrained to relate resources which

are of class xdx:Compound to those of class xdx:Role.

RDFS can also describe how some property may be more specific than another,

for example, by denoting that xdx:hasIon is a subproperty of obo:has_part. With

such an assertion, all triples with the property xdx:hasIon may be inferred to also

belong to the property obo:has_part.

3.1.2.2 OWL: The Web Ontology Language

OWL brings much more expressivity than RDFS for describing restrictions on classes

and properties over RDF data and RDFS classes and properties. As it is the focus of

this thesis to employ OWL as the primary hypothesis language for learning, it is

introduced and treated in more detail in the next section.
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3.2 OWL and Description Logics

The Web Ontology Language (OWL) is a schema language for RDF that extends

RDFS with a variety of expressive language constructs for defining classes, properties

and their relationships to capture knowledge about domains. In addition to RDFS

constructs such as subclass, sub-property, and domain and range assertions, OWL

can be used to define complex restrictions on class definitions.

3.2.1 Description Logics

OWL is underpinned by Description Logics (DL) [6], a family of knowledge repre-

sentation languages based on decidable fragments of first-order logic (FOL) which

have well-understood computational properties. The semantics of OWL is expressed

directly in terms of the semantics of DLs and has a correspondence to the semantics

of RDF1.

Description Logics have a variable-free syntax for describing concepts (e.g. Com−
pound, Role, known as classes in RDFS and OWL, corresponding to unary predicates

in FOL), roles (e.g. hasPart, hasRole, known as properties in OWL, corresponding

to binary predicates in FOL), and individuals (e.g. calcium_nitrate, corresponding to

constants in FOL, or resources in RDF). DLs also describe relationships between these

elements, such as the axiom CalciumSalt v Compound to declare that CalciumSalt is

a subclass of Compound, and the assertion CalciumSalt(calcium_nitrate) to assert that

calcium_nitrate is an instance of the class CalciumSalt. Collections of such axioms

and assertions together form a DL knowledge base, which is often separated into two

components: the TBox which maintains terminological knowledge (concept and role

axioms), and the ABox which maintains assertional knowledge (concept and role in-

stance assertions).

Definition 3.2.1. (Knowledge base K) A DL knowledge base is a pair K = (T ,A)
where T is the TBox, A is the ABox.

Definition 3.2.2. (Signature of a Knowledge Base) The signature of a DL knowledge

base K is the triple (NC, NR, NI), where NC is the set of all concept names, NR is the set of

all role names, and NI is the set of all named individuals. NC, NR and NI may be considered

pairwise disjoint2.

1http://www.w3.org/TR/owl2-rdf-based-semantics/#Correspondence_Theorem
2The technique of punning in knowledge bases permits these sets to overlap under certain circum-

stances, and is supported in OWL2. See: https://www.w3.org/TR/owl2-new-features/#F12:_Punning

http://www.w3.org/TR/owl2-rdf-based-semantics/#Correspondence_Theorem
https://www.w3.org/TR/owl2-new-features/#F12:_Punning
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Description Logics permit the construction of new concepts with logical con-

structs which can be used to combine existing concept and role terms. For example,

for concept names C, D and role r, conjunction is denoted by C u D, disjunction by

C t D, negation with ¬C, and existential role restriction as ∃r.C denoting the set of

all individuals which have r-successors which are instances of C. Different families of

DLs are defined by their inclusion (or exclusion) of various constructs such as these.

Two simple DLs which often form the basis of extensions to other DL languages are

ALC (attributive language with complement) and EL (existential language).

Definition 3.2.3. (EL andALC concepts) Given a set of concept names NC and role names

NR, the syntax of EL and ALC concepts are defined inductively as follows:

• All A ∈ NC (atomic concepts), > (top), and ⊥ (bottom) are ALC and EL concepts;

• Where C, D are EL concepts, the following are also EL concepts:

– C u D (conjunction), ∃r.C (existential role restriction)

• Where C, D are ALC concepts, the following are also ALC concepts:

– C u D (conjunction), C t D (disjunction), ¬C (negation)

– ∃r.C (existential role restriction), ∀r.C (universal role restriction).

Various extensions to ALC and EL concepts are identified with labels and include

the following:

S ALC with transitive roles, e.g. r(i, j), r(j, k)→ r(i, k)

H Role hierarchies, e.g. s v r where r, s ∈ NR

R Role composition (r ◦ s v t), e.g. r(i, j), s(j, k)→ t(i, k)

O Nominals, e.g. concept {i} where i ∈ NI

I Inverse roles, e.g. inv(r(j, i))↔ r(i, j)

Q Qualified cardinality restrictions, e.g. >3r.C, 66s.D

D Concrete domains and datatype roles, e.g. ∃r.double[≥ 5.6]

The latest OWL specification (W3C OWL2) describes several profiles corresponding to

DLs with various levels of expressivity, including EL, RL, QL, and DL. In this work,

we primarily consider the highly expressive OWL2-DL profile which corresponds to

SROIQ(D) [42]3.

Definition 3.2.4. (DL expressivity φ, all concepts Lφ) The expressivity of a particular

DL φ is the language consisting of the set of permissible constructs for defining concepts,

3See http://www.w3.org/TR/owl2-direct-semantics for more details.

http://www.w3.org/TR/owl2-direct-semantics
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assertions and axioms. The expressivity implies a set of all possible concepts expressible

within that DL, denoted Lφ.

OWL permits so-called concrete domains to describe elements other than abstract

individuals, such as numbers, strings and boolean values, as well as other user-

defined types. In the OWL specification, concrete domains include those which are

modelled to permit restrictions over literals of the various XML Schema types per-

missible in RDF graphs. These restrictions are known as facets which are operators

ranging over a set of concrete values, such as the expression int[> 5], representing

all integers [6, ∞), and boolean combinations thereof, such as double[(> 5∧ <6)∨ (>
6∧ <7)] representing all double values in the ranges [5, 6) and (6, 7). This language

gives us the ability to capture subsets of numbers in the concrete domains of integers

or doubles.

The semantics of DL concepts are defined by a first-order interpretation over a set

of elements called the domain of interpretation ∆ that maps concept expressions to

subsets of ∆, and roles to pairs of elements of ∆.

Definition 3.2.5. (Interpretation) An interpretation is a pair I = (∆I , ·I ) defined over

the signature (NC, NR, NI) of a knowledge base (Definition 3.2.2) where ∆I is a non-empty

set, and ·I maps:

• Concepts C ∈ NC to a subset CI ⊆ ∆I ;

• Roles r ∈ NR to a subset rI ⊆ ∆I × ∆I ;

• Individuals i ∈ NI to an element iI ∈ ∆I .

The syntax and semantics of various DL concept constructs are shown in Table 3.2.

Similarly, the semantics of concrete domains D are defined as follows.

Definition 3.2.6. (Concrete domain D) A concrete domain D describes a domain set ∆D

and a set of predicates pred(D), known as the predicate names of D. Each predicate name

P ∈ pred(D) is associated with an arity n and an n-ary predicate PD ⊆ (∆D)n.

Example 3.2.7. The concrete domains R, Z and N each respectively represent the set of all

reals ∆R = R, integers ∆Z = Z, and non-negative integers ∆N = N. The set pred over

these domains each contains the binary predicate names <,≤,≥,>.
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Construct Syntax Semantics
Concept assertion C(i) iI ∈ CI

Role assertion r(i, j) 〈iI , jI 〉 ∈ rI

Top > >I = ∆I

Bottom ⊥ ⊥I = ∅
Negation ¬C (¬C)I = ∆I \ CI

Nominal {i} {i}I ⊆ ∆I , ]{i}I = 1
Conjunction C u D (C u D)I = CI ∩ DI

Disjunction C t D (C t D)I = CI ∪ DI

Existential role restriction ∃r.C {x | ∃y.〈x, y〉 ∈ rI ∧ y ∈ CI}
Universal role restriction ∀r.C {x | ∀y.〈x, y〉 ∈ rI → y ∈ CI}
Min. quantified role restriction >nr.C {x | ]{y.〈x, y〉 ∈ rI ∧ y ∈ CI} > n}
Max. quantified role restriction 6nr.C {x | ]{y.〈x, y〉 ∈ rI ∧ y ∈ CI} 6 n}
Exact quantified role restriction =nr.C {x | ]{y.〈x, y〉 ∈ rI ∧ y ∈ CI} = n}

Table 3.2: The syntax and semantics of ALCOQ concepts where C, D are concepts, r
is a role name, i, j are individuals, and ]S denotes the cardinality of set S.

Example 3.2.8. Consider the following interpretation I1 over concepts representing chemical

compounds and elements:

∆I1 = {x, na0, cl0,

y, mg0, cl1, cl2,

z, mg1, cit0}
NaI1 = {na0}
ClI1 = {cl0, cl1, cl2}

MgI1 = {mg0, mg1}
CitrateI1 = {cit0}

hasPartI1 = {〈x, na0〉, 〈x, cl0〉, (x: sodium chloride)

〈y, mg0〉, 〈y, cl1〉, 〈y, cl2〉, (y: magnesium dichloride)

〈z, mg1〉, 〈z, cit0〉} (z: magnesium citrate)

Given this interpretation, we can define the following concepts:

(∃hasPart.>)I1 = {x, y, z} (chemical compounds)

(∃hasPart.Cl)I1 = {x, y} (chloride salts)

Consider the concept:

( >2hasPart.Cl)I1 = {y} (salts with ≥ 2 chloride ions)
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Note that under I1, we find that clI1
1 6= clI1

2 , as otherwise there are not at least two chlorine

atoms for individual y to be an instance of ( >2hasPart.Cl). Consider a different interpre-

tation, I2, which is defined similarly to I1 except that it maps clI2
1 = clI2

2 , resulting in

( >2hasPart.Cl)I2 = ∅. While atypical for DLs generally, the DLs which underpin OWL do

not make assumptions about the distinctness of differently named individuals, however the

unique name assumption may be used to ensure this.

Definition 3.2.9. (Unique Name Assumption) An interpretation I respects the unique

name assumption (UNA) if, for any two named individuals with different names i 6= j,

they are mapped to different elements where iI 6= jI .

As described in Table 3.2, an interpretation I can also be applied to the TBox

which consists of a set of axioms of the form C v D called inclusion axioms.

Definition 3.2.10. (Interpretation satisfies/models TBox) An interpretation I satisfies

(is a model of) a TBox T (written as I |= T ) iff CI ⊆ DI holds for each axiom C v D in

T .

Definition 3.2.11. (Consistency) A knowledge base K is said to be consistent iff there

exists at least one interpretation which is a model of K (I |= K).

Definition 3.2.12. (Subsumes) A concept D subsumes concept C (written as C v D) iff

CI ⊆ DI holds for all interpretations I . A concept D strictly subsumes concept C (written

as C < D) iff CI ⊂ DI holds for all interpretations I . (Strict) subsumption in the context

of a TBox T is denoted C vT D (C <T D) iff CI ⊆ DI (CI ⊂ DI ) holds for all models

I |= T .

Definition 3.2.13. (Equivalent) A concept C is equivalent to concept D (written as C ≡
D) iff CI = DI holds for all interpretations I . Equivalence in the context of a TBox T is

denoted C ≡T D iff CI = DI holds for all models I |= T . Note that C ≡T D is equivalent

to the case where both C v D and D v C are in T .

Definition 3.2.14. (Instance) An individual i ∈ ∆I is called an instance of concept C if

iI ∈ CI .

Definition 3.2.15. (Interpretation satisfies/models ABox) An interpretation I satisfies

(is a model of) an ABox A (written as I |= A) if, for all individual assertions φ ∈ A, we

have I |= φ where:

• I |= C(i) if iI ∈ CI ;

• I |= r(i, j) if 〈iI , jI 〉 ∈ rI .
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Definition 3.2.16. (Concept satisfiability) A concept C is said to be satisfiable iff there

exists at least one interpretation I where CI 6= ∅. C is said to be satisfiable wrt T iff there

exists at least one model I |= T where CI 6= ∅.

Definition 3.2.17. (Interpretation satisfies/models knowledge base) An interpretation

I satisfies (is a model of) a knowledge base K = (T ,A) (written as I |= K) iff I |= T
and I |= A.

Definition 3.2.18. (Entailment) A knowledge base K is said to entail some statement φ

(written as K |= φ) iff, for all interpretations I which are models of K (where I |= K), we

have I |= φ. For example, if K |= C(i), then it must hold that iI ∈ CI for all interpretations

I which are models of K (where I |= K).

There may be multiple interpretations which satisfy (are models of) T , A, or K.

Furthermore, there are subtleties in the interpretation of asserted knowledge which

we illustrate in Example 3.2.19.

Example 3.2.19. Consider the follow knowledge base K = (T ,A) where:

T = {Inorganic ≡ ¬Organic,

Na t Cl tMg v Inorganic,

Citrate v Organic,

Compound v ∃hasPart.>}
A = {Na(na0), Cl(cl0), Cl(cl1), Cl(cl2),

Mg(mg0), Mg(mg1), Citrate(cit0),

hasPart(x, na0), hasPart(x, cl0),

hasPart(y, mg0), hasPart(y, cl1), hasPart(y, cl2),

hasPart(z, mg1), hasPart(z, cit0)}

The interpretations I1 and I2 of Example 3.2.8 are models of both A and T , as they

matche all assertions in A, and satisfy all axioms in T , therefore K is consistent. Note

that K 6|= ( >2hasPart.Cl)(y), as not all interpretations which are models of K entail this

(namely, I2 does not). Furthermore, consider the concept:

(∀hasPart.Inorganic)

Because (Na t Cl tMg v Inorganic) ∈ T , we might expect that

K |= (∀hasPart.Inorganic)(x) and K |= (∀hasPart.Inorganic)(y)
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as these do not have inorganic parts asserted to A. However, both of these entailments would

not follow in DL knowledge bases which make the open world assumption. This is because it

is assumed that there may exist other hasPart-successors of x or y which are not inorganic,

but are simply currently unknown, such as 〈x, cit〉 ∈ hasPartI .

Example 3.2.19 highlights the important fact that typically, DL knowledge bases

make the open world assumption. This choice is made to reflect the desire that knowl-

edge bases should have incomplete knowledge of the world, and to minimise the

chance that the addition of new assertions do not render the knowledge base in-

consistent. However, in Example 3.2.19, we may want to assume that A contains all

information relevant to a domain, and that further assertions are not possible. In

this case, we may wish to make the closed world assumption (CWA), which permits us

to assume that our knowledge base is complete. If we use the CWA, we effectively

restrict the set of models I |= K to those where no more assertions exist beyond

A and any entailments from T , such that in Example 3.2.19 we would find that

K |= (∀hasPart.Inorganic)(x) and K |= (∀hasPart.Inorganic)(y). This is an impor-

tant concept for machine learning and data mining which we will explore in more

detail in Section 3.5.

3.2.1.1 Reasoning Tasks in Description Logics

Given a knowledge base, the set of assertions in A comprise the base set of explicit

information asserted about a domain, such as that certain named individuals repre-

sent chemical compounds. When combined with a non-empty set of axioms in T ,

more assertions may be implied, such as in Example 3.2.8 which showed how certain

instances belong in the interpretation of complex concepts like those defining sodium

salts. Inference algorithms for DL reasoning are employed to compute such implicit in-

formation within DL knowledge bases, and are often implemented for particular DL

languages. Implementations of such algorithms are called DL reasoners. For example,

the CEL system4 is designed to compute inferences for the DL EL+, and Pellet5 is

designed to compute inferences for several DLs including EL up to SROIQ. There

are several standard inference tasks for DLs which include terminological reasoning

such as: checking for knowledge base consistency; concept subsumption and equiva-

lence; and assertional reasoning which focuses on individuals, such as instance checking

and retrieval.
4CEL reasoner homepage: http://lat.inf.tu-dresden.de/systems/cel/
5Pellet reasoner homepage: http://clarkparsia.com/pellet

http://lat.inf.tu-dresden.de/systems/cel/
http://clarkparsia.com/pellet
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Definition 3.2.20. (Instance Checking) For some knowledge base K = (T ,A), instance

checking is the problem of verifying if, for some individual i ∈ NI and concept C, that i is an

instance of C for all interpretations I of K, where iI ∈ CI (denoted K |= C(i)). Note that if

K |= ¬C(i), we may conclude that i is not an instance of concept C (denoted K 6|= C(i)), as

otherwise K would be inconsistent.

Definition 3.2.21. (Instance Retrieval) For some knowledge base K = (T ,A), instance

retrieval is the problem of determining the set of instances of some concept C, denoted

RK(C) = {i ∈ NI | K |= C(i)}.

Definition 3.2.22. (Classification of a Knowledge Base) For some knowledge base K =

(T ,A), classification is the problem of determining all entailments of the form K |= (C v
D), where C, D are concepts in the signature NC of K.

The task of classification is often used to re-organise the subsumption hierarchy

of all concepts in the signature NC of a knowledge base by determining where each

concept sits in terms of subsumption to every other concept in NC. Generally, in-

stance checking and retrieval are often tied to the problem of classification which

must be performed to ensure completeness of the entailments. Classification and re-

trieval can be computationally expensive procedures in practice, as they both require

analysis of the relationships potentially between each concept in NC and individual

in NI respectively.

Implementations of reasoning algorithms over DL knowledge bases are often de-

signed to achieve certain desirable computational properties, including soundness,

completeness and decidability.

Definition 3.2.23. (Soundness) Given a knowledge base K, an inference algorithm which

derives conclusion φ from K (written as K ` φ) is said to be sound iff, for all inferred

conclusions, K |= φ (all conclusions are valid).

Definition 3.2.24. (Completeness) An inference algorithm is said to be complete iff for a

knowledge base K and some conclusion φ where K |= φ, it is also true that the algorithm will

derive K ` φ.

Definition 3.2.25. (Decidability) Given a knowledge base K and any statement φ, K is

said to be decidable if there exists an algorithm ` which can compute whether K |= φ holds

which always terminates.

These properties are highly desirable, as soundness ensures that inferences are

valid; completeness ensures that all possible entailments with respect to the seman-

tics of the DL will be inferred; and decidability ensures that inference will never
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get stuck in a loop and will always terminate. Unfortunately, meeting all of these

properties together often comes at a cost, as most inference algorithms for expressive

DLs which are sound, complete and decidable are computationally expensive. For

example, the DL SROIQ is a highly expressive language with most reasoning tasks

having N2ExpTime complexity [47]. This means that reasoning over SROIQ knowl-

edge bases with very many axioms and assertions can quickly become intractable6.

Often, the source of such complexity is linked to the expressiveness of the DL. The

complexity of reasoning in SROIQ may be contrast with that of the relatively inex-

pressive DL EL++ which underpins OWL2-EL for which most inference tasks have

PTime complexity [4].

Most inference tasks including classification, instance checking and retrieval are

reducible to the problem of satisfiability checking (model checking) in a DL knowl-

edge base depending on the particular DL language used [6]. As such, instance

retrieval for any concept C in knowledge base K may require pre-classification of K,

which can be highly computationally expensive.

3.3 Machine Learning and Data Mining

In this work, we aim to describe methods for machine learning and data mining over

data and knowledge maintained in DL knowledge bases. In particular, we are con-

cerned with methods for generating new DL concept expressions as hypotheses which

describe patterns in the data. In this section, we describe the particular settings in

machine learning and data mining which we will address in this thesis, and in Sec-

tion 3.4 we describe how we apply techniques for learning concepts in DL knowledge

bases to these settings.

3.3.1 Supervised Learning Problems

Supervised learning problems typically take a set of examples E for which each mem-

ber eω ∈ E has been attributed with some label ω ∈ Ω where |Ω| ≥ 2. In this way,

the set of examples can be partitioned into sets containing examples with a common

label ω, denoted Eω where E =
⋃
∀ω∈Ω Eω. In a supervised learning problem, we

seek to construct hypotheses h which describe certain proportions of each of the la-

belled examples of each set Eω. We say that a hypothesis covers an example, denoted

6However, highly optimised reasoner algorithms do exist to handle moderately large knowledge
bases, such as the hyper-tableaux calculus implemented by the HermiT system [91]
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by the boolean function covers(h, eω), if h describes example eω where eω ∈ Eω. With

respect to the set of all examples E , we denote the cover of hypothesis h as the set

cover(h, E) = {e ∈ E | covers(h, e)}.

3.3.1.1 Classification

The typical binary classification problem in machine learning has two labels |Ω| =
{+,−}, where E+ are the positive examples and E− are the negative examples. Hy-

potheses are sought which cover all positive examples ∀e ∈ E+ : covers(h, e) and none

of the negative examples ∀e ∈ E− : ¬covers(h, e).

The performance of any hypothesis h in a learning problem is often assessed with

a measure function f which maps hypotheses h from the set of all possible hypotheses

L and their covers cover(h, E) ⊆ E to real values.

Definition 3.3.1. (Measure Function) Given a set of labelled examples E and the space of

all hypotheses L, a measure function is a real-valued function f : L × {E} 7→ R which

maps pairs of hypotheses h ∈ L and the set of labelled examples E to a real value denoting

the performance of h over E .

In order to describe when a hypothesis h may be considered a solution to a learn-

ing problem based on its cover over a set of examples E , we define a threshold τ over

f where f (h, E) ≥ τ describes h as being a solution. A quality function is a boolean

function which succeeds when h is a solution in terms of some threshold τ on a

measure function f .

Definition 3.3.2. (Quality Function) Given a set of labelled examples E and the space of all

hypotheses L, a quality function is a boolean function Q : L×{E} 7→ B which maps pairs

of hypotheses h ∈ L and the set of labelled examples E to a boolean value denoting whether h

may be considered a solution to a learning problem over E . Quality functions are often defined

in terms of a minimum threshold τ over a measure function f where Q(h, E) = f (h, E) ≥ τ.

An example of a commonly used measure function for assessing hypothesis per-

formance in binary classification is accuracy, which is defined as follows.

Definition 3.3.3. (Accuracy) Given a labelled set of examples E where E =
⋃

ω∈Ω Eω and

Ω = {+,−} partitioned into positive examples E+ and negative examples E−, a hypothesis

h and its cover C where C = cover(h, E), the accuracy function is defined as:

acc(h, E) = TP + TN
TP + FP + FN + TN
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where
TP = |E+ ∩ C| (true positives)

FP = |E− ∩ C| (false positives)

TN = |E− \ C| (true negatives)

FN = |E+ \ C| (false negatives)

A quality function over accuracy may be defined as Q(h, E) : acc(h, E) > 0.95 which holds

when hypothesis h has an accuracy over 95%.

As hypotheses in classification problems are often sought to exclusively cover

examples of a single common label, they can be used for prediction. Given a new

unseen, unlabelled example u, we may use a hypothesis h which is deemed a solu-

tion to label u by testing if covers(h, u) succeeds. The performance of a hypothesis

considered a solution for a classification problem relative to a set of labelled exam-

ples E , also known as the training set, can be tested with a test set of unseen labelled

examples, U . Any hypothesis h which was induced over a training set of labelled ex-

amples E can then be assessed for performance over unseen test data by computing

its measure f relative to U . If h performs well over E and U , we may consider h to

be a good classification hypothesis suitable for prediction, and may use it to provide

labels for new examples. If h performs poorly over U , then it may be considered a

poor predictor. In this case, h may have been induced to over-fit the set of training

data E such that is does not generalise well to previously unseen examples U . One

approach to assessing whether h will generalise well to unseen examples is to split

the set of examples E composed of labelled sets Eω for each ω ∈ Ω into k ≥ 2 train-

ing and test set pairs (Ei,Ui) for 1 ≤ i ≤ k, where Ei ⊂ E and Ui = E \ Ei, and where

each pair (Ei,Ui) is composed of roughly the same proportion of labelled examples

relative to E . By training h on each Ei, we assess its performance on the remaining

examples Ui, and compute the overall performance as the average measure over each

set f (h,Ui). This technique is known as cross validation. Partitioning the training set

into k different sets is called k-fold cross validation, as we generate k different ‘folds’ of

test and training data. Other techniques also exist for ensuring that hypotheses gen-

eralise well, such as by ensuring the expressions they are composed of are as simple

as possible, according to the minimum description length principle [84] which for-

malises Occam’s razor in that “among competing hypotheses, the one with the fewest

assumptions should be selected”.



§3.4 Learning in DL Knowledge Bases 31

3.3.1.2 Subgroup Discovery

Subgroup discovery is another interesting supervised learning problem [40]. Subgroup

discovery differs from classification in that hypotheses are intended only to be descrip-

tive of the examples they cover, and are not generally expected to be used for predic-

tion. Typically, a hypothesis which is considered a solution to a subgroup discovery

problem covers an interesting or unusual distribution of labelled examples relative

to the distribution in a population set of examples E . Typically, so-called correlation

measures are used to determine the performance of hypotheses which measure the

amount of deviation in the distribution of labelled examples relative to the popula-

tion. An example of a commonly used correlation function in subgroup discovery is

the weighed relative accuracy measure, which is defined below.

Definition 3.3.4. (Weighed Relative Accuracy) The weighed relative accuracy correlation

measure is a real-valued function σwra : L × E → R which maps pairs (C, E) for some

concept C ∈ L and set of binary labelled examples E where E =
⋃
∀ω∈Ω Eω for Ω = {+,−}

to a real value as follows:

σwra(h, E) = |cover(h, E+)|
|E+| − |cover(h, E−)|

|E−|

Example 3.3.5. Consider two sets of labelled examples, E+ and E−, where |E+| = 50 and

|E−| = 50. Also consider two hypotheses h0, h1 where:

• h0 covers 42 examples, where 3 are from E+ and 49 are from E−;

• h1 covers 46 examples, where 45 are from E+ and 1 are from E−.

We define our quality function Q(h, E) which succeeds if h is sufficiently interesting to

be considered a solution as Q(h, E) = |σwra(h, E)| > 0.9, which represents a significant

deviation from the set of example labels amongst E+ and E−.

σwra(h0, E) = | 3
50 −

49
50 | = 0.92

σwra(h1, E) = | 45
50 −

1
50 | = 0.88

Therefore, we conclude that hypothesis h0 is interesting, while h1 is not.

3.4 Learning in DL Knowledge Bases

Thus far, we have described DLs (§3.2) and several settings for learning (§3.3) which

we aim to apply to learning in DL knowledge bases by generating DL concept expres-
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sions as hypotheses. The method of learning DL concepts we will focus on is known

as induction. Induction seeks to construct new hypotheses which explain or describe

example data. In a DL knowledge base, induction means learning DL concept ex-

pressions which describe (or exclude) certain individuals, subject to constraints such

as background knowledge and quality criteria. In this way, DL concepts induced as

hypotheses in a learning problem are intended to reveal new structural knowledge

about the individuals they cover.

Definition 3.4.1. (Concept Induction) Concept induction in a knowledge base K is the

problem of computing new (complex, non-atomic) concept expressions C where, for all con-

cepts D in the signature of K, we have C 6≡ D.

In a learning problem which seeks to induce DL concepts as hypotheses, we

require a method which generates candidate concept expressions for testing, along

with methods for testing their coverage over examples. We begin by describing meth-

ods of searching for candidates (§3.4.1), describe operators used for searching a space

of concepts called refinement operators (§3.4.2), and describe how they can be used

(§3.4.3). We then conclude the section with a discussion on how hypothesis cover is

computed in DL knowledge bases, along with some important limitations (3.4.4).

3.4.1 Learning as Search for Concepts

In searching for DL concepts as hypotheses in a learning problem, we are required to

generate candidate expressions from the space of all concepts within some DL lan-

guage L. A basic method for achieving this is known as the generate-and-test method

as shown in Algorithm 1. This method enumerates every possible DL concept h from

the space of concepts L, and tests if each h is a solution to a learning problem over

the set of all examples E with a boolean quality function Q(h, E) which succeeds

only if h can be considered a solution relative to the set of examples E . We denote

the space of DL concepts which can be composed of concept and role names from

knowledge base K with expressivity L as LK.

For most DLs, the number of possible concepts in LK may be large or unbounded,

so the enumeration of all concepts for testing by Algorithm 1 is practically infeasible.

Instead, we seek to structure the space of concepts in a way which may permit a

search to be orderly and efficient. Concept subsumption (v) is one such way of

structuring the space of DL concepts appropriate for this purpose. This technique is

used in the field of Inductive Logic Programming (ILP) for structuring expressions
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Algorithm 1 A basic generate-and-test method which enumerates all concept expres-
sions in LK and tests them for sufficient quality over all examples E with the boolean
quality function Q(h, E).

1: S = ∅ . The set of solutions
2: for all C ∈ LK do
3: if Q(C, E) = true then
4: S := S ∪ {C}
5: end if
6: end for

in Logic Programs. In ILP, methods for traversing a structured space of expressions

have been explored with functions called refinement operators. Recently, research into

refinement operators in ILP have been carried over to DLs, and various refinement

operators for a number of DLs which underpin OWL have been studied [59, 58, 57].

We now describe refinement operators (§3.4.2) which reproduces Definitions 3.4.2

to 3.4.8 from this existing body of work, then we will describe how to integrate

refinement operators into search-based algorithms for learning (§3.4.3).

3.4.2 Refinement Operators

The set of all DL concept expressions for some language L can be considered as

being ordered by the subsumption relationship, v. As the relation v is a quasi-order

in that it is reflexive (C v C) and transitive (A v B and B v C imply A v C), we can

define a quasi-ordered space of DL concepts as the pair (L,v). A refinement operator is

a function which is designed to traverse concepts in this ordered space.

Definition 3.4.2. (Refinement Operator) Given a quasi-ordered space (L,v), a refine-

ment operator is a mapping from L to 2L where, ∀C ∈ L, we have:

• ρ(C) : {D |D ∈ L ∧ D v C} (a downward refinement operator);

• υ(C) : {D |D ∈ L ∧ D w C} (an upward refinement operator)

where each D ∈ ρ(C) are called specialisations of C, and each D ∈ υ(C) are called

generalisations of C.

Definition 3.4.3. (Closure of a Refinement Operator) Given a quasi-ordered space (L,v),
a refinement operator τ and some C ∈ L, we define the closure of τ for C, denoted τ∗(C),

as:

τ∗(C) = τ0(C) ∪ τ1(C) ∪ . . . ∪ τn(C) ∪ . . .

where τ0(C) = {C} and τn(C) = {D | ∀E ∈ τn−1 : D ∈ τ(E)}.
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Refinement operators permit the search for concepts by traversing the space in a

stepwise manner with repeated application on refined concepts. For example, from

C we can reach D ∈ τ(C), and from D we can reach E ∈ τ(D), and so on, in a chain

of refinement steps.

Definition 3.4.4. (Refinement Chain, Reachability, Passes Through) A refinement

chain of length n ≥ 1 with refinement operator τ is a finite sequence of refinements of

individual concepts from C0 as C1 ∈ τ(C0), then C2 ∈ τ(C1), . . . , then Cn ∈ τ(Cn−1), oth-

erwise denoted by C0  τ C1  τ C2  τ . . . τ Cn−1  τ Cn. If it is possible to construct a

refinement chain from concept C to some other concept D, we say that D is reachable from

C. If a refinement chain contains some concept C, we say it passes through concept C.

Furthermore, we can describe a number of useful properties which characterise

the behaviour of a particular refinement operator function τ. For example, we may

wish that a refinement operator produces true specialisations or generalisations of

some concept, and not concepts which are equivalent to the input which may other-

wise cause loops in the search, wasting computational resources.

Definition 3.4.5. (Proper, Improper Refinement) A refinement operator τ is proper if, for

any D ∈ τ(C), it holds that D 6≡ C. Properness ensures that τ generates true specialisations

D < C (generalisations D = C) of some concept C. Otherwise, we refer to the refinement as

being improper.

Another desirable property of refinement operators is that they only produce a

finite number of concepts in the refinement of any concept.

Definition 3.4.6. (Locally Finite Refinement) A refinement operator τ is locally finite

if, for any C ∈ L, τ(C) is finite and computable.

When using downward (upward) refinement operator τ to reach concepts within

L, we may want to ensure that if some concept D v C (D w C), that it is reachable in

the closure of τ∗(C). This property is known as completeness and permits a search for

concepts with ρ to be sure that if a concept D v C (D w C), it can be reached with τ

from C.

Definition 3.4.7. (Complete Refinement) A downward (upward) refinement operator ρ (δ)

is complete if ∀C, D ∈ L, D v C (D w C) implies that E ∈ ρ∗(C) (E ∈ δ∗(C)) where

E ≡ D.
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Definition 3.4.8. (Redundant Refinement) A refinement operator τ is redundant if, from

any concept C, it admits at least two refinement chains: C  τ . . .  τ D  τ . . .  τ E

which does not go through concept F, and C τ . . . τ F τ . . . τ E′ where E′ ≡ E. We

say that τ is non redundant if it only ever admits a single unique refinement chain between

any two non-equivalent concepts.

Redundancy is undesirable because a search for concepts with a redundant oper-

ator τ may encounter the same concept more than once, potentially wasting compu-

tational resources. In the next section, we will describe basic algorithms which use

refinement operators to search a space of DL concepts for learning.

3.4.3 Concept Induction by Refinement-Based Search

While Algorithm 1 demonstrated the basics of a generate-and-test search approach,

it did not define how to generate concepts for testing. We now describe how this can

be achieved through the use of refinement operators as described in Section 3.4.2.

Algorithm 2 demonstrates this using a downward refinement operator, ρ.

Algorithm 2 A basic generate-and-test method which uses a refinement operator ρ to
search the space of concepts (L,v), and a quality function Q to assess hypothesis
performance over the dataset E . A frontier list L is maintained for all candidates to
be searched.

1: L = [>] . The hypothesis frontier of candidates
2: S = ∅ . The set of solutions
3: while length(L) > 0 do
4: C := pop(L) . Remove C from L
5: if Q(C, E) = true then
6: S := S ∪ {C} . Hypothesis C is a solution
7: else
8: for all C′ ∈ ρ(C) do
9: push(C′, L) . Add refinement C′ to L

10: end for
11: end if
12: end while

Algorithm 2 demonstrates how a refinement operator can be incorporated into

the search to learn hypotheses. This is a general purpose algorithm which searches a

space of concepts in L from the top concept > and progressively specialises expres-

sions added to a list. If, on line 9, a candidate concept is added to the head the of list,

the search proceeds depth-first, whereas if it is added to the tail of the list, the search

proceeds breadth-first.
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The structuring of the search space permits certain quality functions to have the

property that if a hypothesis h does not pass a quality test, then neither will all of its

(upward, downward) refinements. This property is known as (anti-)monotonicity.

Definition 3.4.9. (Monotonicity, Anti-monotonicity) For all hypotheses C, D ∈ L and

the set of all examples E , a quality function Q is known as monotonic iff

∀E ⊆ E : (C v D) ∧Q(D, E)→ Q(C, E)

and Q is known as anti-monotonic iff

∀E ⊆ E : (C v D) ∧Q(C, E)→ Q(D, E)

[23].

(Anti-)monotonic functions are useful as they permit us to prune potentially large

parts of the search space away. Once a hypothesis h fails by an (anti-) monotonic qual-

ity function, then we can safely exclude, or prune, all (specialisations) generalisations

of h from the search by not considering (downward) upward refinements of h. An

example of an (anti-)monotonic quality function is relative frequency.

Definition 3.4.10. (Relative Frequency) Given a hypothesis C and a set of examples E ,

relative frequency is defined as relFreq(C, E) = |cover(C,E)|
|E | [23].

Example 3.4.11. Consider the quality function relFreq(C, E) ≥ t where 0 ≤ t ≤ 1 as

an anti-monotonic quality criterion for downward refinement. Consider an example where

t = 50, and two hypotheses C, D ∈ L where |cover(C, E)| = 49. Therefore, C fails the

quality function as it does not cover enough examples. By Definition 3.4.9, we know that

all concepts D ∈ ρ(C) refined down from C will never cover more examples than C, so all

refinements of C may be excluded from the search.

By adding (anti-)monotonic quality criteria to a refinement-based search algo-

rithm, we stand to improve the efficiency of the search by excluding hypotheses

which can never be considered solutions. Unfortunately, the space of concepts may

still be vast even with such pruning, so any frontier list of hypotheses candidates

such as that maintained in Algorithm 2 may still grow infeasibly large. One well-

known method for dealing with this problem is to simply fix the maximum size of

the frontier list, known as beam search. A beam search approximates the search over all

concepts reachable by some refinement operator τ by restricting the search to within
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a set of candidates. Typically, the restricted size frontier (known as the beam) is only

populated with new hypotheses deemed the best relative to the set of refinements of

all hypotheses currently maintained in the beam. When the beam is of infinite width,

beam search is equivalent to breadth-first search, or best-first search if the hypothe-

ses are ranked within an infinitely sized beam. In order to rank hypotheses a utility

function is often used, which is often also called a heuristic evaluation function.

Definition 3.4.12. (Utility Function) A utility function u : L × S 7→ R maps a pair

(C, E) where C is a concept expression C ∈ L for some language L together with a set of

examples E ∈ S and maps it to a real number in R. A utility function represents the value of

a concept in a learning problem relative to the examples it describes from E and can be used

to rank concepts C, D such as u(C, E) < u(D, E) which indicates that concept D is preferred

over C. Utility functions are often based on measures, for example accuracy (Definition 3.3.3)

or relative frequency (Definition 3.4.10).

By ordering elements of a beam relative to a utility function u, we can maintain

the list of current best n candidates of the search. In this way, u acts as a heuristic

by permitting the search to proceed into parts of the space of concepts deemed most

likely to contain solutions to the exclusion of other parts. Depending on the size of

the beam and behaviour of the heuristic, a search may reach solutions faster, yet it

may also exclude subsets of concepts from the space which contain the best solutions.

This is why such methods are known to be approximate, as they are not complete,

and may inadvertently confine a search into a sub-space of concepts where the best

solutions are not present, as illustrated in Figure 3.3 where a search may become

trapped in sub-optimal local maxima.

A basic beam search algorithm by downward refinement which maintains a set

of best hypotheses relative to a utility function u is shown as Algorithm 3. This

algorithm also incorporates an anti-monotonic quality function Q to determine if

a refined hypothesis should be added to the frontier, or pruned. Note that while

accuracy (Definition 3.3.3) can be used to rank hypotheses as a utility function, it

is neither monotonic nor anti-monotonic, so cannot be used for pruning hypotheses

from a search, unlike relative frequency.

One method of mitigating the risk that Algorithm 3 becomes trapped in a search

space around a local maxima is to introduce randomness in the search. One such

method for achieving this is known as stochastic beam search. In stochastic beam

search, the reinitialisation of the next beam (Lines 14 to 19) is modified to select

candidates at random with a probability which is proportional to a function of their
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Algorithm 3 A basic best-first beam search with downward refinement operator ρ to
search the space of concepts (L,v) relative to examples E , where u is a utility func-
tion ranking better hypotheses with larger values, and where Q is an anti-monotonic
quality function assessing if hypotheses can be considered solutions. The maximum
beam width is denoted by bmax.

1: B := {>} . The hypothesis frontier beam of search candidates
2: S := ∅ . The set of solutions
3: while |B| > 0 do . While the frontier beam is non-empty
4: E = ∅ . Initialise the expansion set
5: for all C ∈ B do
6: for all D ∈ ρ(C) do
7: if Q(D, E) = true then . Hypothesis D is a sufficient candidate
8: S := S ∪ {D} . Capture solution D
9: else

10: E := E ∪ {D} . Include D in the expansion set
11: end if
12: end for
13: end for
14: B := ∅ . Reinitialise the beam
15: while |E| > 0 and |B| < bmax do
16: D ∈ arg maxD∈E u(D) . Arbitrary best refinement
17: E := E \ {D}
18: B := B ∪ {D} . Include D in the next beam
19: end while
20: end while
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Figure 3.3: A graph where the curve represents the space of all hypotheses (hori-
zontal axis) against their performance (vertical axis). An algorithm (such as a beam
search) which limits the search to the shaded region may only find hypotheses at
local maximum L as being best, and will fail to locate the best solution(s) at the global
maximum G.

utility. A common method is to use the Gibbs distribution e
−c(D)

T for a concept D and

some value T ∈ R where the c : L 7→ R is a cost function, and may be based on a util-

ity function u. This distribution reflects the intuition that stronger hypotheses should

be selected with greater probability than weaker ones. Stochastic refinement is another

approach which incorporates such random selection directly into the behaviour of a

refinement operator which refines to new candidates with certain probabilities [98].

3.4.4 The Limitations of Open-World DL Learning

Up until now, we have not defined precisely how to compute the cover of a concept

C relative to a set of examples E . One such method called learning from entailment is

to perform instance retrieval for any concept C generated in a search.

Definition 3.4.13. (Learning from Entailment) Given a hypothesis C and example e ∈ E ,

learning from entailment in a DL knowledge baseK describes the setting where covers(C, e)

iff K |= C(e).

Definition 3.4.13 is due to De Raedt [23], but is adapted here for use in DL

knowledge-bases. With respect to learning in DL knowledge bases, learning from

entailment poses significant practical and theoretical limitations on the search. From

a practical standpoint, instance retrieval can be a highly computationally expensive

operation. For any DL knowledge K of high expressivity such as SROIQ, instance

checking is at least exponential in the size of the TBox and ABox. Recall that our goal

is to develop methods of machine learning and data mining in DL knowledge bases
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which employ the learning as search algorithms of Section 3.4.3. These algorithms

are designed to generate-and-test many new concepts, and rely on the computation

of hypothesis coverage to be fast. Unfortunately, to perform instance checking, new

concepts generated by refinement which were previously unknown to a knowledge

base need to be re-classified with respect to the TBox. Depending on the size of

the TBox and ABox of the knowledge base, this can be an expensive step which is

at odds with our goal of searching a space of concepts efficiently. For example, re-

classification of a SROIQ knowledge base with logical reasoning has N2ExpTime

complexity [46]. When contrasted with the complexity of querying in most other

machine learning and data mining settings which employ, for example, a relational

database to test for the coverage of hypotheses with low complexity (PTime, or even

LogSpace), this complexity is unacceptable for the sake of the performance of a learn-

ing algorithm.

Secondly, learning from entailment in DL knowledge bases is adversely affected

by the open-world assumption (OWA). For example, consider the hypothesis expres-

sion ∀r.C, along with instances r(e, y) and C(y) asserted to the ABox. Even with an

empty TBox, a knowledge base may not entail K |= (∀r.C)(e) as, according to the

OWA, we do not know if there are other r-successors of e which are not instances

of C. Therefore, as other interpretations exist which permit r-successors of e which

are not instances of C, e will never be attributed as an instance of this hypothesis by

entailment. Similarly, the same can be said for expressions such as 6nr.C. Concept

negation such as ¬C is also affected for the same reason, as unless an example e has

been explicitly asserted to be an instance of an expression E ≡ ¬C, a knowledge base

may not entail K |= (¬C)(e) as this also remains unknown. These restrictions pose

limitations on the expressiveness of a hypothesis language such as SROIQ con-

cepts, which we otherwise desire as such a language permits powerful descriptions

of patterns in a knowledge base for learning.

Typically in machine learning and data mining, it is assumed that examples are

completely specified in that there is are missing data assertions to describe them.

This assumption is at odds with the OWA made by DL knowledge bases, where

instances are assumed to be incompletely specified. Therefore, it is reasonable to

want to make a closed world assumption (CWA) over a DL knowledge base which

permits the default assumption to reflect our intention that examples are completely

specified. However, because the CWA is highly restrictive by imposing many more

assumptions, the number of possible models of any knowledge base under the CWA
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diminishes, thus increasing the possibility of inconsistency within knowledge bases

with TBoxes based on expressive logics such as SROIQ.

In the next section, we will define an appropriate interpretation for SROIQ
concepts which reflects the CWA, and demonstrate how such an interpretation can

be used for efficient coverage checking of concepts. Such an interpretation effectively

addresses both our concerns around the use of the OWA and expensive knowledge

base entailment. We then discuss the implications of the use of the interpretation in

the context of learning relative to complex background knowledge in DL knowledge

bases.

3.5 Closed-World DL Learning

In Section 3.4.4, we discussed the limitations of learning from entailment in DL knowl-

edge bases which make the OWA. In this section, we describe how we address these

limitations with a different setting for learning known as learning from interpretations,

which is also adapted from De Raedt [23].

Definition 3.5.1. (Learning from Interpretations) Given a hypothesis C and example

e ∈ E , learning from interpretations in a DL knowledge base K = (T ,A) describes the

setting where covers(C, e) iff there exists some interpretation J where J |= C(e), and where

cover(C, E) = {e′ ∈ E | J |= C(e′)} and J |= A.

In this setting, we will be describing the use of a single interpretation J which

is at least a model of A. In practical terms, this means that J is a fixed model which

reflects the set of examples as all of the asserted instance data in a knowledge base.

As we will discuss in Section 3.5.2, it may be unlikely that a DL knowledge base

with expressive TBox axioms has a single interpretation. This means that J may

not model all background knowledge, J 6|= T , however we may still utilise J for

learning concepts efficiently. We will now describe an instance of such an interpreta-

tion and then discuss its advantages and disadvantages over the typical open-world

interpretation I (Definition 3.2.5) for learning DL concepts.

3.5.1 A Closed-World Interpretation for SROIQ Concepts

An example of an interpretation applicable for interpreting SROIQ concepts which

reflects the CWA has been described by Tao et. al. [100] as the IC-interpretation for

handling so-called integrity constraints in OWL2-DL.
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Definition 3.5.2. (IC Interpretation) The IC interpretation [100] is defined as the pair

(I ,U ) = (∆(I ,U ), ·(I ,U )) over the signature (NC, NR, NI) of a knowledge base K (Defini-

tion 3.2.2) where I is a SROIQ interpretation (Definition 3.2.5) I = (∆I , ·I ), U is the

set of all interpretations I of SROIQ knowledge base K, ∆(I ,U ) is a non-empty set, a is an

individual a ∈ NI , A is a concept name A ∈ NC, r is a role name r ∈ NR, and where ·(I ,U )

maps:

A(I ,U ) = {xI | x ∈ NI s.t. ∀J ∈ U , xJ ∈ AJ }

r(I ,U ) = {〈xI , yI 〉 | x, y ∈ NI s.t. ∀J ∈ U , 〈xJ , yJ 〉 ∈ rJ }

a(I ,U ) = aI

and which extends to arbitrary concepts inductively as follows, where ] denotes set cardinal-

ity:

>(I ,U ) = ∆(I ,U )

⊥(I ,U ) = ∅

(¬C)(I ,U ) = ∆(I ,U ) \ C(I ,U )

(C u D)(I ,U ) = C(I ,U ) ∩ D(I ,U )

(C t D)(I ,U ) = C(I ,U ) ∪ D(I ,U )

{x}(I ,U ) = {x : x ∈ ∆(I ,U )}
(∃r.C)(I ,U ) = {x : x ∈ ∆(I ,U ) s.t. ∃y.〈x, y〉 ∈ r(I ,U ) ∧ y ∈ C(I ,U )}
(∀r.C)(I ,U ) = {x : x ∈ ∆(I ,U ) s.t. ∀y.〈x, y〉 ∈ r(I ,U ) → y ∈ C(I ,U )}

( >nr.C)(I ,U ) = {x : x ∈ ∆(I ,U ) s.t. ]{y.〈x, y〉 ∈ r(I ,U ) ∧ y ∈ C(I ,U )} > n}
( 6nr.C)(I ,U ) = {x : x ∈ ∆(I ,U ) s.t. ]{y.〈x, y〉 ∈ r(I ,U ) ∧ y ∈ C(I ,U )} 6 n}

In this way, the IC interpretation of atomic concepts A(I ,U ) and roles r(I ,U ) re-

flects what is known in K, or in other words, the sets and tuples comprised of known

individuals a(I ,U ) which are entailed as instances of each (following from Defini-

tion 3.2.18). Furthermore, this interpretation is defined to make the weak unique name

assumption, in that it is intended for use under a weaker form of the unique name

assumption (Definition 3.2.9).

Definition 3.5.3. (Weak Unique Name Assumption) Given a knowledge base K, the set

of all first-order models U of K, the IC interpretation (I ,U ) and two named individuals

i, j ∈ NI with distinct names i 6= j, the weak unique name assumption (weak UNA)

describes the case where, if ∀I ∈ U : iI = jI , then i(I ,U ) = j(I ,U ), otherwise i(I ,U ) 6= j(I ,U ).

Given that all instances in ∆(I ,U ) (∆(I ,U ) × ∆(I ,U )) which are not also instances of

C(I ,U ) (r(I ,U )) are assumed to lie in the negation (¬C)(I ,U ) ((¬r)(I ,U )), this reflects
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the CWA as we desire for DL learning, and furthermore, the weak UNA permits

us to respect any entailments which a knowledge base makes about the equivalence

of individuals, and makes the unique name assumption otherwise. In terms of effi-

ciency, the interpretation of arbitrary complex concepts C may be performed directly

in terms of (I ,U ), which permits us to perform coverage checking for any concept C

by way of checking, for any individual e, if the interpretation (I ,U ) |= C(e). Given

that (I ,U ) is fixed, (I ,U ) |= C(e) is at most an ExpTime operation in the size of

(I ,U ) and the concept C (§5.2.1) which contrasts favourably with the typically more

expensive K |= C(e) under the OWA for expressive DLs as discussed in Section 3.4.4.

For such coverage checking to proceed for any arbitrary complex concept expres-

sion C relative to a given SROIQ knowledge base K, the interpretation (I ,U ) must

first be materialised over all named individuals, concept and roles. This necessarily

requires the full classification of K with logical reasoning under the open-world in-

terpretation I which, as we discussed in Section 3.4.4, is computationally expensive.

However, this step is only required once, as new arbitrary concept expressions may

then be interpreted directly with (I ,U ) over the atomic concepts, roles and individ-

uals of which they are comprised. In this way, (I ,U ) reflects a database (which is

effectively a finite model with closed world semantics), and arbitrary complex con-

cepts can be thought of as queries to that database. This compares favourably to

the alternative of learning from entailment, where new concept expressions must

be integrated into K and re-classified using logical reasoning each time, otherwise

presenting an impediment to efficient learning by generate-and-test methods.

While we have so far argued that learning from interpretations is an appropriate

setting for machine learning and data mining over DL knowledge bases as it reflects

the CWA and permits for efficient hypothesis coverage checking, there are certain

limitations to learning from interpretation (I ,U ) such as the fact it may not model

a knowledge base with incomplete data or expressive TBox axioms. We now discuss

these limitations in the next section.

3.5.2 Limitations of Learning from Interpretations in DL Knowledge Bases

Under the closed-world interpretation (I ,U ), it is possible to induce a concept ex-

pression C which has a non-empty interpretation CI ,U 6= ∅ but where C is actually

unsatisfiable (CI = ∅) under the standard interpretation I with an open-world as-

sumption.
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Example 3.5.4. Consider a knowledge base K = (T ,A) where A = {A(i), r(i, j), C(j)}
and T = {A v >2r.C}, describing how instances of A necessarily have two r-successors

which are instances of C. Recall that an interpretation I is a model of T if, for all axioms

C v D ∈ T we have CI ⊆ DI (Definition 3.2.10). In this example, A(I ,U ) = {i}
and ( >2r.C)(I ,U ) = ∅ and therefore, (I ,U ) 6|= T . This is because the interpretation

( >2r.C)(I ,U ) is composed exclusively of known data in K, and only one r-successor of i was

asserted and therefore known. If information is missing from A with respect to T , such as in

the case that instances of A are expected to have at least two r-successors yet only one was

asserted, it may lead a learning algorithm relying on (I ,U ) for computing hypothesis cover-

age to produce an expression which is unsatisfiable with respect to T . In this case, one such

expression is (A u 61r.C) where (A u 61r.C)(I ,U ) = {i}, however this expression is clearly

unsatisfiable with respect to T given it contains the contradictory axiom (A v >2r.C).

Example 3.5.4 highlights the motion of data which is missing in A with respect

to T , in that if it is expected that examples are structured in a certain way by the

definition of axioms in T , then data which conforms to this structure must have been

asserted toA. Otherwise, a closed-world interpretation such as (I ,U ) may not model

T . Similarly, axioms may exist in T which ambiguously define concepts and this has

implications for their interpretation in a closed-world, as shown in Example 3.5.5.

Example 3.5.5. Consider a knowledge base K = (T ,A), concept names A, B, C, and where

(A v B t C) ∈ T and A(x) ∈ A. Assume that K 6|= B(x) and K 6|= C(x), so that under

the closed-world interpretation (I ,U ), we have B(I ,U ) = ∅ and C(I ,U ) = ∅. However, even

though K |= (B t C)(x), we have (I ,U ) 6|= (B t C)(x) because it is unknown whether x

is an instance of B, C, or both. While the open-world interpretation I admits several possible

models of K, the single closed-world interpretation (I ,U ) is not a model of K.

Furthermore, the use of a closed-world interpretation such as (I ,U ) for deter-

mining the coverage of concepts as hypotheses in a search may lead to erroneous

characterisations of performance as shown in Example 3.5.6.

Example 3.5.6. Consider a knowledge base K = (T ,A) where A = {E1(i), E2(j), r(i, k)}
and T = {E1 v C, E2 v C, C v ∃r.>} for the labelled example classes E1 and E2. In this

case, we find that (∃r.>)I = {i, j, . . .}, however (∃r.>)(I ,U ) = {i} as no r-successor of j

is known in A. From the perspective of a machine learner performing binary classification,

the cover of hypothesis ∃r.> computed by (I ,U ) appears to correctly describe all instances

of example class E1 and no instances of E2, and is thus considered a perfect characterisation
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of E1. However, clearly such a characterisation is incorrect as at least one r-successor of j is

implied by T , yet it simply remains unknown under the OWA.

The underlying problem in each of the Examples 3.5.4, 3.5.5 and 3.5.6 relates

to data which is missing in A with respect to T . In each of these examples, the TBox

implied the existence of data or knowledge which was not asserted to the ABox, such

as missing role tuples or class instance assertions. In order to make use of (I ,U ) for

learning in light of these limitations, we can use it for the purpose it was originally

intended, which is to perform integrity checking of assertions in A against axioms in

T [100].

Definition 3.5.7. (Integrity Checking) Given a SROIQ knowledge base K = (T ,A),
the task of integrity checking seeks to test, for all axioms C v D ∈ T , if C(I ,U ) ⊆ D(I ,U )

holds. For an axiom C v D ∈ T , any individual i ∈ C(I ,U ) where i 6∈ D(I ,U ) fails the

integrity check against C v D.

Integrity checking in SROIQ with the closed-world interpretation (I ,U ) can be

used to compute which data asserted to an ABox is known to be incomplete relative

to axioms in the TBox, subject to certain restrictions on the types of expressions in

the latter [100]. In the next section, we will discuss how integrity checking can be

used to assess the suitability of data in the ABox of a knowledge base against axioms

in a TBox.

3.5.2.1 Detecting and Handling Incomplete Data

Data in the ABox of a knowledge base which is incomplete with respect to the TBox

poses challenges to learning algorithms, as we have shown. Generally, a learning

algorithm which generates concept expressions C and assesses their performance

based on their cover with the IC interpretation is influenced by the distribution of

individuals and literals in the knowledge base relative to concept terms and sub-

expressions of which C is composed. In general, it is difficult to characterise which

missing data will influence a learner to generate problematic concepts, as this de-

pends on the particular distribution of missing data together with the particular

learning strategy being used. However, in order to minimise the possibility of en-

countering problems described in Section 3.5.2, we may employ the use of an al-

gorithm for integrity constraint checking under the IC interpretation to determine

which individual data fails integrity checks over particular TBox axioms, such as that
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described by Tao et. al. [100], as was the original intention behind the development

of the IC interpretation.

For example, consider the case where we have knowledge base K = (A, T ), con-

cepts C, D where (C v D) ∈ T and individual i where C(i) ∈ A. While individual

i(I ,U ) ∈ C(I ,U ), we may have i(I ,U ) 6∈ D(I ,U ). Given individual i was implicated in the

failure of an integrity check on the axiom (C v D), we have several options.

Firstly, we may wish to manually repair examples which incorporate individuals

such as i by adding sufficient extra data to the ABox so as to satisfy the TBox axioms

which were implicated in the failure of integrity checks. An example e which may

be represented by an RDF graph and mapped to a particular set of ABox assertions

may contain or refer to individual i. As we know that i is incompletely defined, we

can highlight it for attention so it can be corrected. This requires a user to under-

stand precisely how to add new instance data linked to i which satisfies the violated

axioms, which may be an unreasonable assumption as axioms in highly expressive

knowledge bases such as those based on OWL2-DL may be quite complex. Notably,

this is a research problem in itself, and has been addressed with methods and algo-

rithms to automatically generate missing data [99].

Alternatively, a simpler approach is to exclude from a learning problem all ex-

amples e which contain or refer to individuals which were implicated in the failure

of integrity checks. Completely excluding examples from a learning problem may

be feasible if an insignificant proportion of examples are to be removed, however the

approach becomes prohibitively restrictive if it requires the exclusion of too many

examples which may result in an insufficient training and test set for a learning

problem.

Lastly, another approach is to prevent a learning algorithm from inducing con-

cepts which cover any individuals or literals which fail integrity checks. In this way,

a learner will not attempt to describe any data which may be incompletely defined.

This approach prevents a learner from generating unreliable expressions which are

posed over incomplete data, effectively excluding any features they represent from

the learning problem. While this approach may also be overly restrictive if there are

many instances which violate integrity checks in many contexts, it is straightforward

to restrict a learning algorithm to avoid the induction of concepts, or subexpressions

thereof, which cover such incompletely defined data.

In the remainder of this thesis, we will make the simplifying assumption that any

IC interpretation (I ,U ) does not lead to integrity violations relative to the TBoxes



§3.5 Closed-World DL Learning 47

for the knowledge bases we consider. This is not an unreasonable assumption, as

often TBoxes may still model significant amounts of background knowledge using

axioms for which instance data does not violate integrity checks. TBoxes which only

contain simple inclusion axioms such as a taxonomy of named concepts, or at most

contains inclusion axioms defining concepts as subclasses of simple existential role

restrictions such as with the DL EL, will often not pose a challenge in this regard.

We also believe that the benefits of using a closed-world interpretation such as

(I ,U ) for efficient concept refinement and coverage testing in learning problems

far outweigh the drawbacks which include the possibility of generating expressions

which violate axioms in T . This is particularly the case when we aim to use concept

induction to perform analyses over the data such as data mining for patterns, where

concepts are induced to be human readable descriptions of interesting patterns, and

are not intended to be re-incorporated into the TBox, which is otherwise known as

class learning. Our approach is distinct from the goal of much of the related research

in DL learning which does focus on class learning with the intention of integrating

concepts back into a TBox.

3.5.2.2 Independence of the expressivity of induced concepts to K

The language expressivity of concepts induced by a learning algorithm can be inde-

pendent of the expressivity of the concepts which pre-exist in the knowledge base.

For example, T may contain complex axioms with concepts composed with the ex-

pressivity of SROIQ, however hypotheses can be confined to concepts which are

composed of logical constructs only found in EL. Conversely, the expressivity of K
may be minimal, such as when T is empty (without background knowledge) and

A assertions are made against atomic concepts. Hypotheses induced over such a

knowledge base can still be very complex, such as concepts induced with the lan-

guage ALCOQ(D) to capture interesting groups of individuals.

The expressivity of the language for hypotheses can be selected to suit the par-

ticular problem being solved. For example, if qualified cardinality restrictions and

disjunction are not desired in the composition of hypotheses for a given problem,

they can be omitted from the learning process by excluding their use by a refine-

ment operator as a form of language bias. This may also be chosen for performance

reasons as such constructs inflate the search space of concepts for induction. Sim-

ilarly, if assertions in a knowledge base contain concrete domain elements such as

numbers, strings and boolean values, we may wish to employ hypotheses which per-
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mit restrictions on these values even if the TBox makes no mention of these. This

may particularly be the case if we are dealing with knowledge bases which capture

numerical experimental results in which we are especially interested.

3.6 Summary

In this chapter, we have described the relationship between RDF data described with

OWL and the underlying Description Logics which underpin OWL, along with basic

notions of how DL concept induction for classification and subgroup discovery can

be performed with refinement-based search. We then highlighted the deficiencies

of learning under an open-world assumption and formalised a suitable setting for

learning under a closed-world setting which addresses these concerns. From here,

the contributions of this thesis will focus on how the closed-world learning setting

can be leveraged to deliver performant DL learning in systems which employ refine-

ment operators especially for classification and subgroup discovery.



Chapter 4

Concept Induction by Refinement

Operators

In the previous chapter, we described both the prerequisites for concept induction

and various learning settings for learning over DL knowledge bases, particularly

with high expressivity where the DL corresponds to OWL2-DL. Our goal is to be able

to apply such techniques to large DL knowledge bases to permit efficient learning to

support classification (machine learning) and subgroup discovery (data mining).

State-of-the-art learning systems such as DL-Learner [58] employ a refinement

procedure in learning which is not optimised for large knowledge bases. The refine-

ment operator used in this system was one of the first to be posed over the highly

expressive DL known as SROIQ(D) for describing OWL2-DL classes, and as such

was integrated into DL-Learner as a proof-of-concept. While certain optimisations

were identified and implemented in DL-Learner, we significantly improve on the

performance of the system through our understanding of concept induction under

a closed-world assumption and in the setting of learning from interpretations, as

presented in the last chapter. The main contributions made in this chapter are:

• Identification of the inefficiencies of the refinement operator used in the state-

of-the-art system DL-Learner for learning in SROIQ(D) knowledge bases

(§4.1);

• Introduction of a method that structures a closed-world interpretation to reveal

knowledge about the structure of the concept search space (§4.2);

• Definition of a modified refinement operator in terms of knowledge gained

from a structured closed-world interpretation which addresses the inefficien-

cies of the previously defined operator (§4.3).

49
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We begin with a discussion on the state-of-the-art refinement operator used in

the DL-Learner system and describe various limitations which we will address in

subsequent sections, before assembling a new refinement operator which addresses

these limitations. In the next chapter, we describe how the new refinement oper-

ator can be incorporated into supervised learning algorithms for classification and

subgroup discovery for efficient learning in SROIQ(D) knowledge-bases.

4.1 A Refinement Operator for OWL2-DL Classes

In this section we describe the downward refinement operator ρ used by the state-of-

the-art system DL-Learner which is used for concept induction for learning OWL2-

DL classes based on highly expressive DL SROIQ(D) [58]. This downward refine-

ment operator was developed from a careful analysis of the properties of refinement

operators for DLs [56] which recognised that while it is complete, it is also redun-

dant, and not proper. Nevertheless, it is used for effective concept induction in DL-

Learner and has been successfully applied to various concept learning problems.

The definition of the refinement operator ρ relies on several functions, such as sh↓
(sh↑) which traverses the subsumption hierarchy of concept names and role names

in T as follows:

sh↓(A) = {A′ | A′ ∈ NC, A′ < A,¬∃A′′ ∈ NC s.t. A′ < A′′ ∧ A′′ < A}
sh↓(r) = {r′ | r′ ∈ NR, r′ < r,¬∃r′′ ∈ NR s.t. r′ < r′′ ∧ r′′ < r}

The functions for upward traversal of the subsumption hierarchy sh↑(A) and sh↑(r)

are defined similarly. The operator also relies on the functions ar(r) (ad(r)) which

map role names in NR to atomic concept names in NC which cover all instances in the

range (domain) of a role r, so as to restrict concept refinements in the range (domain)

of r to appropriate concept names.

The set of concepts which are available for refinement in the context of the range

of a quantified role expression is described as the set MB as follows:

MB = {A | A ∈ NC, A u B 6≡ ⊥, A u B 6≡ B,¬∃A′ s.t. A′ ∈ NC and A < A′} ∪
{¬A | A ∈ NC,¬A u B 6≡ ⊥,¬A u B 6≡ B,¬∃A′ s.t. A′ ∈ NC and A′ < A} ∪
{∃r.(>) | r ∈ mgrB} ∪
{∀r.(>) | r ∈ mgrB}

where mgrB is the set of most general roles applicable to individuals in the domain



§4.1 A Refinement Operator for OWL2-DL Classes 51

of B defined as

mgrB = {r | r ∈ NR, ad(r) u B 6≡ ⊥,¬∃r′ ∈ NR s.t. r < r′ ∧ ad(r′) u B 6≡ ⊥}.

The refinement operator ρB defined in terms of the context B, where B is the atomic

named concept describing the range of a role r, as follows:

ρB(C) =



∅ if C = ⊥

{C1 t . . . t Cn|Ci ∈ MB(1 ≤ i ≤ n} if C = >

{A′ | A′ ∈ sh↓(A)} if C = A (A ∈ NC)

∪ {A u D|D ∈ ρB(>)}

{¬A′ | A′ ∈ sh↑(A)} if C = ¬A (A ∈ NC)

∪ {¬A u D|D ∈ ρB(>)}

{∃r.E|A = ar(r), E ∈ ρA(D)} if C = ∃r.D

∪ {∃r.(D) u E|E ∈ ρB(>)}

∪ {∃s.(D)|s ∈ sh↓(r)}

{∀r.E|A = ar(r), E ∈ ρA(D)} if C = ∀r.D

∪ {∀r.(D) u E|E ∈ ρB(>)}

∪ {∀s.D|s ∈ sh↓(r)}

{C1 u . . . u Ci−1 u D u Ci+1 u . . . u Cn| if C = C1 u . . . u Cn (n ≥ 2)

D ∈ ρB(Ci), 1 ≤ i ≤ n}

{C1 t . . . t Ci−1 t D t Ci+1 t . . . t Cn| if C = C1 t . . . t Cn (n ≥ 2)

D ∈ ρB(Ci), 1 ≤ i ≤ n}

∪{(C1 t . . . t Cn) u D|D ∈ ρB(>)}

The downward refinement operator ρ is then defined in terms of ρB as

ρ(C) =

{⊥} ∪ ρ>(C) if C = >

ρ>(C) otherwise.

Example 4.1.1 demonstrates the application of ρ from > by illustrating a sequence

of single-step refinements of various subexpressions over concepts describing the

composition of chemical molecules.
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Example 4.1.1. Starting from the top concept >, the downward refinement operator ρ can

be applied in a number of ways to generate more complex concepts in a step-wise manner,

such as the following refinement chain describing chemical compounds:

>  Compound

 Compoundu ∃hasPart.(>)
 Compoundu ∃hasPart.(>) u ∀hasPart.(>)
 Compoundu ∃hasPart.(Ion) u ∀hasPart.(>)
 Compoundu ∃hasPart.(Ion) u ∀hasPart.(¬Metal)

 Compoundu ∃hasPart.(Ionu ∃hasGroup.(>)) u ∀hasPart.(¬Metal)

 Compoundu ∃hasPart.(Ionu ∃hasGroup.(Carboxyl)) u ∀hasPart.(¬Metal)

This example describes a single refinement chain amongst potentially very many in the space

of possible refinements to other expressions, and demonstrates how the refinement operator

can be applied in various ways within each expression.

Following on from Example 4.1.1, we observe how the downward operator ρ may

refine to concepts which cannot describe any examples, as shown in Example 4.1.2.

Example 4.1.2. Consider the following complex concept C describing chemical compounds

where:

C =

1︷ ︸︸ ︷
Compoundu∃hasPart.(

2︷︸︸︷
Ion u∃hasGroup.(Carboxyl)) u ∀hasPart.(¬Metal)

The concept C describes the set of chemical compounds with no part metal and at least one

part ion consisting of at least one carboxyl group. The downward operator ρ may permit

the following refinements of labelled subexpressions 1,2 which render C as unsatisfiable, as

follows:

No. Refinement Observations

1. Compound ZnCl2 Zinc chloride ZnCl2 has part metal (zinc), and neither ion

has part carboxyl group.

2. Ion Ionu NH+
4 Ammonium NH+

4 is a subclass of Ion, but has no carboxyl

groups.

In this example, refinements which were permissible to subexpressions of C in isolation

produced the expressions ZnCl2 u ∀hasPart.(¬Metal) and NH+
4 u ∃hasGroup.(Carboxyl)

which are both unsatisfiable. These refinements were permitted on the basis of the axioms

captured in the TBox, such as the fact that ZnCl2 v Compond and NH+
4 v Ion.
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Example 4.1.2 highlights an inefficiency with the operator ρ where refinements of

subexpressions of a concept can be generated in isolation to the rest of the expression.

In this way, refinements may be generated which are of potentially no value, such

as when they are unsatisfiable. Consider the case where we have a knowledge base

consisting of a large number of examples as assertions to the ABox, and where the

TBox contains many thousands of subclasses of Compound which have no carboxyl

groups, or have no part metal. In such a case, a learning algorithm which uses ρ to

generate refinements may evaluate very many ultimately unsatisfiable concepts over

the large number of examples, which may otherwise waste computational resources.

We may be tempted to address such inefficiency by relying on a DL reasoner to

determine if any concept generated by a refinement operator is suitable. For exam-

ple, if in Example 4.1.2 the TBox contained the axioms ZnCl2 v ∃hasPart.(Zn), Zn v
Metal, then the unsatisfiability in case (1) may be detected by incorporating the re-

fined expression C′ into the TBox as C′ v >, and re-classifying to infer that, in fact,

T |= C′ v ⊥. However, this is not a reasonable solution in the setting of concept

induction for learning, as re-classification of a TBox containing many complex ax-

ioms will take too long considering it must be performed repeatedly for each of the

many refinements produced in a generate-and-test based learning algorithm. Un-

less re-classification was possible in milliseconds or less, this approach would be

practically infeasible. Although incremental reasoning algorithms are designed for fast

re-classification when introducing new axioms, no such implementation currently

exists which can perform as efficiently as we require [20]. Furthermore, no such

algorithm exists for incremental classification relative to the closed-world interpre-

tation (I ,U ) that we aim to employ for learning complex concepts as discussed in

Section 3.5.1 of Chapter 3.

Our approach to addressing this limitation is to analyse the closed-world inter-

pretation (I ,U ), which must be pre-computed prior to applying a refinement oper-

ator such as ρ, relative to the concepts in the TBox which are used in refinement.

We aim to pre-compute a static set of axiomatic knowledge about the unsatisfiability

of concept subexpressions being refined, such that it will be possible to detect, at

the time of refinement, if a step may be unsatisfiable without resorting to further

reasoning or coverage checking. We will show how to redefine the behaviour of an

operator like ρ to incorporate such knowledge so that the refinements it produces are

still generated with rewrite rules which are largely syntactic, but are restricted based

on axiomatic knowledge to disallow certain refinements. The result is an operator
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that can quickly produce refinements that are used to traverse the space of concepts

more efficiently than ρ, and that is more suited for application to learning over large

knowledge bases.

4.2 Structuring the Interpretation for Learning

A closed-world interpretation such as (I ,U ) describes how to interpret each of the

components of a DL language like SROIQ as subsets of individuals from ∆(I ,U )

which is fixed and finite. For example, a named concept A ∈ NC is mapped to a set

A(I ,U ) ⊆ ∆(I ,U ). This can be viewed as a global interpretation of the concept A, in

that it describes any and all individuals which are instances of A within the entire

knowledge base. This interpretation may avail knowledge such as A is disjoint from

concept B where A(I ,U ) ∩ B(I ,U ) = ∅. A refinement operator such as ρ can leverage

such information so that it never produces the refinement chain A  A u B when

A u B is known to be unsatisfiable. Similarly, this refinement chain may be avoided

if it is known that A v B where A(I ,U ) ⊆ B(I ,U ), as such a refinement would be

improper since A u B ≡ A.

Consider the case where the interpretation of concepts A and B overlap, where

A(I ,U ) ∩ B(I ,U ) 6= ∅ as illustrated in Figure 4.1.

Figure 4.1: An example set of concepts A, B, C with two role tuples and where A u B
is satisfiable.

The concept A u B is satisfiable because (A u B)(I ,U ) is non-empty, so a refine-

ment operator may permit the refinement step A  A u B. However, consider

this refinement in the context of the filler concept of a role expression such as

∃r.A  ∃r.(A u B). In this case, as there is no r-successor which is an instance

of A u B, the expression ∃r.(A u B) is unsatisfiable with respect to (I ,U ). However,

the refinement step would have been permitted by ρ because Au B is satisfiable with

respect to (I ,U ).
For any knowledge base containing many concept and role names, the space
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of all possible concepts which can be composed with an expressive DL such as

SROIQ(D) can be vast. Learning algorithms which employ refinement operators

to search concept spaces are typically very computationally expensive, as not only

are many concepts generated, but computing their coverage for testing can also be

expensive if the knowledge base contains a large amount of data. We are therefore

motivated to reduce the number of concept expressions generated by a refinement

operator which are unsuitable, such as concepts which are unsatisfiable, or refine-

ment steps which are improper and produce equivalent concepts which unnecessar-

ily inflate the search space.

To achieve this, we aim to utilise the distribution of known data amongst cer-

tain concepts in the knowledge base computable as the closed-world interpretation

(I ,U ) to guide refinement away from unsuitable candidates. Primarily, we aim to

determine when certain refinement steps would otherwise lead to an unsatisfiable or

equivalent expression, so as to prune these from the overall search space of concepts.

As refinement operates over any part of a candidate expression, we need to formally

define these as the subexpressions of concepts as follows.

Definition 4.2.1. (Concept Subexpressions) All subexpressions of a concept expression C

are defined inductively with function sub(C) which maps concepts to sets where:

sub(C) = {C} ∪


{D | ∀C1≤i≤n : D ∈ sub(Ci)} if C = C1 u . . . u Cn

{D | ∀C1≤i≤n : D ∈ sub(Ci)} if C = C1 t . . . t Cn

{E | E ∈ sub(D)} if C = 3r.D

for any role quantifier 3. A subexpression C′ of concept C is any C′ ∈ sub(C).

Example 4.2.2. Consider the following concept expression S along with various numbered

subexpressions:

S =

3︷ ︸︸ ︷
∃r.(A u B︸ ︷︷ ︸

1

)u
4︷ ︸︸ ︷

63 p.(A u B︸ ︷︷ ︸
2

)

In the derivation of S(I ,U ), the interpretation (A u B)(I ,U ) is used twice, once each in the

contexts of subexpression (1) and (2). If (A u B)(I ,U ) 6= ∅, then a refinement operator

such as ρB must have produced this expression because subexpressions (1) and (2) may also

be satisfiable. However, consider the case similar to that shown in Figure 4.1 where no

r-successor is an instance of A u B. In this case, subexpression (3) is unsatisfiable, as is S.

Alternatively, consider the case where there are no individuals with at most three p-successors
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in Au B, which would make subexpression (4) unsatisfiable, and S also. In both of these cases,

refining to the subexpression Au B of (1), (2) would have produced an unsatisfiable expression

overall, however without knowing that either role expression would be unsatisfiable with the

filler concept A u B, a refinement operator such as ρB would generate subexpressions (1) and

(2) on the basis that it is satisfiable under (I ,U ).

For any knowledge base, we aim to derive information about the distribution of

individuals, literals and role tuples of (I ,U ) to identify when, for example, refine-

ment to the expression A u B should be avoided because it is either unsatisfiable or

improper as some subexpression of another concept expression. This information

will then be used in the definition of a new refinement operator similar to ρB to

control whether or not it chooses particular refinements to explicitly avoid generat-

ing concepts which do not progress a search towards solutions and otherwise waste

valuable computational resources.

In order to achieve this, we aim to develop a method of pre-computing the set

of individuals or literals which reside in the closed-world interpretation of subexpres-

sions of concepts encountered in a learning as search problem. This will provide us

with the means by which to identify expressions which can be safely pruned from

a search. We begin with a method for identifying particular subexpressions of a DL

concept expression, delineated by subexpressions which are the fillers of role expres-

sions, which we refer to as role subexpression contexts.

Definition 4.2.3. (Role Subexpression Context) A role subexpression context, also now

referred to simply as a context, identifies a subexpression Cn of a tree-structured DL con-

cept C by decomposition into a finite list of concept fragments λ of length n ≥ 1 concept

expressions [C1, . . . , Cn] where each Ci for 1 ≤ i ≤ n− 1 takes the form of:

• A quantified role expression 3r.(◦i); or

• A quantified role expression in a conjunction D1 u . . . u Dk u3r.(◦i); or

• A quantified role expression in a disjunction D1 t . . . t Dk t3r.(◦i)

for k ≥ 1, any quantifier 3, role name r ∈ NR and subexpression symbol ◦i. To reconstruct

C from λ, we replace each subexpression symbol ◦i in Ci with Ci+1 from i = n− 1 to i = 1,

collapsing the list from right to left to produce C.

Example 4.2.4. Consider the following DL expression over concept names A, B, C, D and
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roles names r, s, d:

λ1︷ ︸︸ ︷
D u >2r.(

λ2︷ ︸︸ ︷
∃d.(double[≥ 5.1]︸ ︷︷ ︸

λ3

) t B) u ∀s.(A u C︸ ︷︷ ︸
λ4

)

All role subexpression contexts for this expression are those labelled λi for 1 ≤ i ≤ 4 where:

λ1 = [D u >2r.(∃d.(double[≥ 5.1]) t B) u ∀s.(A u C)]

λ2 = [D u >2r.(◦1) u ∀s.(A u C), ∃d.(double[≥ 5.1]) t B]

λ3 = [D u >2r.(◦1) u ∀s.(A u C), ∃d.(◦2) t B, double[≥ 5.1]]

λ4 = [D u >2r.(∃d.(double[≥ 5.1]) t B) u ∀s.(◦1), A u C]

Example 4.2.4 illustrates how various subexpressions nested within roles of a

tree-structured SROIQ(D) concept expression can be referred to with a role subex-

pression context λ. To reconstruct a concept expression C from a role subexpression

context λ, we define functions to replace a subexpression identified with symbol ◦
with some other DL expression, and a nesting function which can collapse a list λ to

the single expression C.

repl◦(C, D) =


3r.D if C = 3r.(◦)

C1 u . . . u Cn u3r.D if C = C1 u . . . u Cn u3r.(◦) (n ≥ 1)

C1 t . . . t Cn t3r.D if C = C1 t . . . t Cn t3r.(◦) (n ≥ 1)

nest(λ) =


C if λ = [C]

nest([C1, . . . , C′n−1]) where if λ = [C1 . . . , Cn] (n ≥ 2)

C′n−1 = repl◦(Cn−1, Cn)

We also define the set of individuals or literals that may occur as instances of

the innermost subexpression Cn referred to by λ = [C1, . . . , Cn] for n ≥ 1 as a local

domain.

Definition 4.2.5. (Local Domain) A local domain ∆λ is the set of all individuals (literals)

which may occur in the closed-world interpretation (I ,U ) of the subexpression Cn denoted

by the role subexpression context λ = [C1, . . . , Cn] for n ≥ 1 as ∆λ = Sn where Sk for
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1 ≤ k ≤ n is defined inductively as follows:

Sk =



C(I ,U )
1 if k = 1

{j | ∀〈i, j〉 ∈ r(I ,U ) : i ∈ (C′k−1)
(I ,U ) ∩ Sk−1 ∧ j ∈ (C′k)

(I ,U )} if 2 ≤ k ≤ n

where C′k = nest([Ck, . . . , Cn]), and where

C′k−1 =


3r.(C′k) if Ck−1 = 3r.(◦k−1)

3r.(C′k) if Ck−1 = D1 t . . . t Dm t3r.(◦k−1)

D1 u . . . u Dm u3r.(C′k) if Ck−1 = D1 u . . . u Dm u3r.(◦k−1)

where m ≥ 1.

Example 4.2.6. Consider again the role subexpression contexts labelled λi for 1 ≤ i ≤ 4 of

the following concept expression from Example 4.2.4:

λ1︷ ︸︸ ︷
D u >2r.(

λ2︷ ︸︸ ︷
∃d.(double[≥ 5.1]︸ ︷︷ ︸

λ3

) t B) u ∀s.(A u C︸ ︷︷ ︸
λ4

)

We then have the following descriptions of the local domains:

• ∆λ1 : All instances in the set (D u >2r.(∃d.(double[≥ 5.1]) t B) u ∀s.(A u C))(I ,U ).

• ∆λ2 : All r-successors which are instances of ∃d.(double[≥ 5.1]) t B where there are at

least two per instance of D u ∀s.(A u C).

• ∆λ3 : All d-successors which are double valued literals greater than or equal to 5.1 where

there is at least one per instance of ∆λ2 .

• ∆λ4 : All s-successors of instances of D u >2r.(∃d.(double[≥ 5.1]) t B) where every

s-successor is an instance of A u C.

Intuitively, each local domain ∆λ represents the set of individuals or literals which

can lie in the closed-world interpretation of the subexpression Cn referred to by λ =

[C1, . . . , Cn], and is always a subset of the global closed-world domain where ∆λ ⊆
∆(I ,U ). Relative to each local domain ∆λ in context λ, the subsumption relationships

between concept expressions may be different.

Example 4.2.7. Consider the concepts A, B where B(I ,U ) ⊆ A(I ,U ), or when they overlap

such that A(I ,U ) ∩ B(I ,U ) 6= ∅, with both cases illustrated in Figure 4.2.

Consider the contexts λi for 1 ≤ i ≤ 9 and their associated local domains ∆λi each

of which contain one or more instances of A(I ,U ) ∪ B(I ,U ). The sets which represent the
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A(I ,U )

B(I ,U )
∆λ3

∆λ1

∆λ2

∆λ4
∆λ6

∆λ7

∆λ5

∆λ8

∆λ9

A(I ,U )
B(I ,U )

Figure 4.2: Two subsumption relationships between concepts A, B, the left where
B(I ,U ) ⊆ A(I ,U ) and the right where A(I ,U ) and B(I ,U ) overlap. This represents the
two cases where the concept A u B is satisfiable as A(I ,U ) ∩ B(I ,U ) 6= ∅. For each of
these two cases, intersection with various possible local domains ∆λi for 1 ≤ i ≤ 9 are
shown.

intersection ∆λi ∩ (A t B)(I ,U ) are illustrated as the nine possibilities numbered in Fig-

ure 4.2, where we denote the intersection of either A(I ,U ) or B(I ,U ) with the local domain as

A(I ,U )
λ = A(I ,U ) ∩ ∆λ and B(I ,U )

λ = B(I ,U ) ∩ ∆λ. Depending on the subsumption relation-

ship between A(I ,U ) and B(I ,U ), we summarise whether the concept Au B is equivalent to A

or B relative to each local domain ∆λi as follows.

i for λi and ∆λi Relationship Equivalences in context λi relative to ∆λi

1, 7 B(I ,U )
λ ⊂ A(I ,U )

λ A u B ≡ B

2, 6 B(I ,U )
λ = A(I ,U )

λ A u B ≡ A and A u B ≡ B

8 B(I ,U )
λ ⊃ A(I ,U )

λ A u B ≡ A

3, 4, 9 A(I ,U )
λ ∩ B(I ,U )

λ = ∅ A u B ≡ ⊥
5 A(I ,U )

λ ∩ B(I ,U )
λ 6= ∅ A u B 6≡ A and A u B 6≡ B

The set of instances covered by the subexpression A u B in the context of each λi may be

different depending on the individuals in the local domain ∆λi , and only in the case of ∆λ5 is

the expression Au B not equivalent to one of: A, B, or ⊥. Therefore, we would expect that in

applying a refinement operator to specialise either subexpression A or B in context λ5, that

A u B should be permitted because it is not equivalent to A, B or ⊥, whereas in all other

cases, at least one of these equivalences occur. Where A ≡ A u B or B ≡ A u B holds, such

a specialisation would be improper, and where A u B ≡ ⊥ holds, such a specialisation may

result in an unsatisfiable expression.

The interpretation of subsumption relationships as shown in Example 4.2.7 be-

tween two concepts A, B which share instances with a local domain ∆λ gives rise to
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the notion of context-specific interpretations relative to the closed-world interpretation

(I ,U ) for some context λ, as we will now describe in the next section.

4.2.1 Context-Specific Interpretations

A context-specific interpretation is an interpretation of some concept expression rel-

ative to a context λ and local domain ∆λ. The motivation behind defining such

an interpretation is to provide a means to reveal the subsumption relationships be-

tween concepts relative to a local domain, which as we have demonstrated in the last

section may be different to the relationships implied under the closed-world inter-

pretation (I ,U ). We intend to utilise such concept subsumption information in the

definition of a refinement operator which modifies concept subexpressions, so that

it can recognise when to avoid generating certain refinement steps which result in

producing concepts which are not useful to the search.

Definition 4.2.8. (Context-Specific Interpretation) Given a closed-world interpretation

(I ,U ), a context-specific interpretation Jλ is defined as the tuple Jλ = (·Jλ , ∆λ1 , . . . , ∆λk)

for subexpression contexts λj for 1 ≤ j ≤ k where each ∆λj is a local domain for context λj,

and where ·Jλ is a function which maps atomic concepts A relative to any context λ to subsets

of ∆λ, and roles r relative to any context λ to subsets of ∆λ × ∆(I ,U ) as follows:

AJλ = A(I ,U ) ∩ ∆λ

rJλ = {〈i, j〉 | 〈i, j〉 ∈ r(I ,U ) s.t. i ∈ ∆λ}

The interpretation of complex concepts by Jλ relative to any context λ is defined similarly to

the IC-interpretation as per Definition 3.5.2 as follows, where

>Jλ = ∆λ

⊥Jλ = ∅

(¬C)Jλ = ∆λ \ CJλ

(C u D)Jλ = CJλ ∩ DJλ

(C t D)Jλ = CJλ ∪ DJλ

{i}Jλ = {i | i ∈ ∆λ}
(∃r.C)Jλ = {i | i ∈ ∆λ s.t. ∃j.〈i, j〉 ∈ rJλ ∧ j ∈ C(I ,U )}
(∀r.C)Jλ = {i | i ∈ ∆λ s.t. ∀j.〈i, j〉 ∈ rJλ → j ∈ C(I ,U )}

( >nr.C)Jλ = {i | i ∈ ∆λ s.t. ]{j.〈i, j〉 ∈ rJλ ∧ j ∈ C(I ,U )} > n}
( 6nr.C)Jλ = {i | i ∈ ∆λ s.t. ]{j.〈i, j〉 ∈ rJλ ∧ j ∈ C(I ,U )} 6 n}
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This context-specific interpretation is defined in such a way that, for any concept C, it will be

the case that CJλ ⊆ C(I ,U ) as CJλ is the (I ,U ) interpretation of C relative to a local domain

∆λ in subexpression context λ, and where each ∆λ ⊆ ∆(I ,U ) for any context λ.

A context-specific interpretation Jλ relative to some context λ has some interest-

ing properties which make it useful for inducing concepts with refinement operators.

Most importantly, the set of inclusions C v D relative to a local domain ∆λ modelled

by Jλ denoted C vJλ
D may be tighter than those axioms implied by a TBox T for

the whole knowledge-base K as illustrated in Example 4.2.7. We therefore associate

each context λ with a number of inclusions which we denote local axioms, as follows.

Definition 4.2.9. (Local Axioms) Given two concepts C, D relative to a subexpression

context λ and a closed-world interpretation Jλ, local axioms denoted Tλ are the set of all

axioms of the form:

• Equivalence: C ≡Jλ
D where CJλ = DJλ

• Strict subsumption: C <Jλ
D where CJλ ⊂ DJλ

• Disjointness: C u D vJλ
⊥ where CJλ ∩ DJλ = ∅

Example 4.2.10. Consider concepts A, B in a knowledge base K = (T ,A) where B v
A ∈ T , and where A 6= ∅ and K is consistent. Therefore, all interpretations I which

are models of K have BI ⊆ AI . Consider the closed-world interpretation (I ,U ) which

models B(I ,U ) ⊆ A(I ,U ) over K, and a context-specific interpretation Jλ relative to some

local domain ∆λ. Under Jλ, it is possible that any of the following may hold:

• Tλ |= B ≡ A where AJλ = BJλ

• Tλ |= B u A v ⊥ where BJλ = ∅ (B is unsatisfiable in local domain ∆λ)

• Tλ |= B < A where BJλ ∩ AJλ = BJλ

Note while each of these interpretations are consistent with B(I ,U ) ⊆ A(I ,U ), the first case

recognises that, in the context of λ, a refinement chain A  B is improper. Similarly, the

second case where B ≡Jλ
⊥ can be used to avoid expressions containing B in the context of

λ if it will result in the production of an unsatisfiable concept.

Proposition 4.2.11. For all inclusion axioms φ in the set of local axioms Tλ by Defini-

tion 4.2.9 for some context λ, if T |= φ then Tλ |= φ for the TBox T which models inclusion

axioms φ relative to the closed-world interpretation (I ,U ).

Proof. We prove Proposition 4.2.11 for each form of local axiom φ ∈ Tλ over any two

concepts C, D which can be interpreted by (I ,U ) and Jλ by noting that each context-

specific interpretation CJλ and DJλ are subsets of C(I ,U ) and D(I ,U ) respectively as

CJλ = C(I ,U ) ∩ ∆λ and DJλ = D(I ,U ) ∩ ∆λ.
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• For φ = (C < D), we must show that the implication C(I ,U ) ⊂ D(I ,U ) → CJλ ⊂
DJλ always holds for any subexpression context λ. The implication fails only

if the antecedent C(I ,U ) ⊂ D(I ,U ) holds and the consequent CJλ ⊂ DJλ does

not. As CJλ is always a subset of C(I ,U ) where CJλ = C(I ,U ) ∩ ∆λ, it must be

the case that CJλ ⊂ D(I ,U ). In the case where CJλ = ∅, the consequent holds

trivially. Now consider there exists an individual i ∈ CJλ , and therefore we

also know that i ∈ D(I ,U ). The consequent fails when it can be shown that

i 6∈ DJλ . If we assume i 6∈ DJλ , then it must be the case that i 6∈ D(I ,U ), which

is a contradiction. Therefore, it must be the case that i ∈ DJλ which means

CJλ ⊂ DJλ also holds for any individual i.

• For φ = (C ≡ D), we must show that C(I ,U ) = D(I ,U ) → CJλ = DJλ for

any subexpression context λ. This holds trivially as CJλ and DJλ are the same

subset in the intersection C(I ,U ) ∩ ∆λ and D(I ,U ) ∩ ∆λ.

• For φ = (C u D v ⊥), we must show that C(I ,U ) ∩ D(I ,U ) = ∅ → CJλ ∩ DJλ =

∅. This also holds trivially as there are no common subsets of C(I ,U ) and D(I ,U )

which are not disjoint.

Therefore, we conclude that for any local axiom φ in Tλ it is the case that if T |= φ

then Tλ |= φ for any context λ.

Example 4.2.10 and Proposition 4.2.11 demonstrate that any inclusion axioms

C v D ∈ T where C(I ,U ) ⊆ D(I ,U ) are not contradicted under Jλ relative to a context

λ as it is always the case that CJλ ⊆ DJλ , even if it can be shown that under Jλ

that C ≡Jλ
D or C ∩ D vJλ

⊥ hold, yet this cannot be shown under (I ,U ). While

relationships such as C v D are typically inferred with logical reasoning algorithms

under the open-world assumption relative to the standard first-order interpretation

I , they can be computed explicitly over a fixed model such as (I ,U ) under the

closed-world assumption for any two concepts by testing the relationship between

sets C(I ,U ) and D(I ,U ) composed of asserted data, and similarly, under Jλ between

CJλ and DJλ for any subexpression context λ.

Unfortunately, for any knowledge base consisting of many concept terms, role

terms and individuals, it would be practically infeasible to enumerate all possible

concepts expressible in a concept language like SROIQ(D), along with their subex-

pression contexts λ, in order to pre-compute Jλ in its entirety, unlike (I ,U ). Fur-

thermore, even if it is possible to enumerate each concept and subexpression context,

the computation of each local domain ∆λ and the context-specific interpretation of

all concept terms is again likely to be infeasible especially given a large data set of
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individuals and literals.

Recall that our aim is to define and construct a context-specific interpretation to

provide a refinement operator with information about which concepts to prune when

performing refinements of concept subexpressions which do not aid in the search.

With this aim in mind, we intend to describe how to construct a particular finite fixed

context-specific interpretation Jλ based on (I ,U ) which is small enough to compute

reasonably quickly, but which may still be used to permit a refinement operator to

take advantage of knowledge which Jλ affords relative to a limited set of contexts.

Specifically, the contexts we will describe consist exclusively of single role expres-

sions in conjunction with simple concepts including >, atomic concept names and

negated atomic concept names. At the very least, such contexts will subsume more

complex subexpressions composed of such fragments, and can be used to identify

certain cases where refinements would lead to concepts which can clearly be avoided.

As we will describe in the next section, such a limited interpretation still affords new

knowledge which can be effectively leveraged by a refinement operator to reduce

the search space of concepts. We will begin by describing a method for construct-

ing such a limited context-specific interpretation, and then describe how it can be

incorporated directly into the definition of a new pair of downward and upward

refinement operators ρ
λ̄

and υ
λ̄

which are defined in terms of a set of applicable

contexts λ̄.

4.2.2 The Context Graph

A context graph is a data structure which roughly captures a context-specific interpre-

tation Jλ for some knowledge base K based on its closed-world interpretation (I ,U ).
The context graph represents a restricted and finite collection of contexts λ and asso-

ciates with each a set of information about certain concepts which are satisfiable in

the context. In doing so, the context graph reveals local axiomatic information about

the distribution of (I ,U ) relative to a finite number of particular concept expressions

and their subexpressions.

Definition 4.2.12. (Context Graph) A context graph G is a graph structure G = (V, E)

resembling a set of trees where:

• V is the set of vertices V = {λ1, . . . , λm} where each vertex label λi for 1 ≤ i ≤ m

is a role subexpression context. Each vertex V with label λ is associated with a set ∆λi

which captures all individuals (literals) which comprise a local domain for λi.
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• E is the set of directed edges E = {(λ1, λ′1), . . . , (λn, λ′n)} where each edge label

(λi, λ′i) for 1 ≤ i ≤ n represents the edge from vertex with label λi to λ′i where

λi = [C1, . . . , Ck] for k ≥ 1 and λ′i = [C1, . . . , Ck u3r.(◦k), Ck+1] for some r ∈ NR,

concept expression Ck+1 and role quantifier 3. Each edge (λi, λ′i) is associated with the

set (3r.(Ck+1))
Jλi to capture the context-specific interpretation of the role expression

in context λi.

A context graph G is defined over contexts λ = [C1, . . . , Cn] where any Ci for

1 ≤ i ≤ n is composed exclusively of atomic and negated atomic concept symbols

α = {>,⊥} ∪ {A,¬A, | A ∈ NC} or role expressions as follows:

Ci ∈

{A u3r.(◦i) | A ∈ α, r ∈ NR,3 ∈ {∃, ∀, >n, 6n}} if 1 ≤ i ≤ n− 1

α if i = n

In this way, the context graph is restricted to capture a limited set of possible

subexpression contexts λ. As discussed in Section 4.2.1, this restriction enables the

graph to be computable in practice, as computing the graph for all possible concepts

and their subexpressions is infeasible. However, as we will later show, the context

graph can be used to provide useful information such as local axioms about a broader

space of concepts that are available to a refinement operator.

[>]

[>u ∃r.(◦1),>]

[>u ∃r.(◦1),
>u ∃s.(◦2),>]

[>u ∃r.(◦1),
>u >2s.(◦2), A]

[>u ∃r.(◦1), B] [>u ∃t.(◦1),¬C]

[>u ∃t.(◦1),
¬C u ∀u.(◦2),>]

Figure 4.3: An example context graph structure showing vertex labels only (see Defi-
nition 4.2.12). A context graph represents a collection of directed trees which capture
the set of role subexpression contexts which are permissible for any context λ by
conjunction with an atomic or atomic negated concept and quantified role expres-
sions. The context graph is designed for use in concept refinement as it indicates to
a refinement operator which concepts in some subexpression context λ are available
for refinement as the set of immediate child nodes in the graph. While only a single
tree structure is shown here, there may be several in the entire context graph rooted
at different contexts for each named concept A ∈ NC in the form of λ = [A] or
λ = [¬A].
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A context graph can be computed by way of a procedure known as an instance

chase. Before we describe the algorithm for performing an instance chase, we define

several terms which will aid in its explanation. The instance chase begins with a

set of labelled examples E with labels Ω where E =
⋃
∀ω∈Ω Eω for learning where

E ⊆ NI , and constructs instance chains given the closed-world interpretation of every

role r ∈ NR.

Definition 4.2.13. (Instance Chain) Given a knowledge base K, a set of named individ-

uals NI , datatype literals ND, role names NR and a closed-world interpretation (I ,U ), an

instance chain ic is a sequence of n tuples of the form

ic = [〈a0, a1〉, 〈a1, a2〉, . . . , 〈an−2, an−1〉, 〈an−1, an〉]

where ai, ai+1 ∈ NI for 1 ≤ i ≤ n − 1, and where an ∈ NI or an ∈ ND, and each tuple

〈ai, aj〉 ∈ r(I ,U ) for any role r ∈ NR. An instance chain is acyclic if, for any aj of any tuple

〈ai, aj〉 in ic, aj does not also appear in any tuple 〈aj, ak〉 in ic. We say that an individual

or literal aj is reachable from individual ai if there exists any instance chain which starts

with tuple 〈ai, ai+1〉 and ends with tuple 〈aj−1, aj〉). We say that any ai is contained in an

instance chain ic if it appears in any tuple 〈ai, aj〉 or 〈aj, ai〉 in ic.

The construction of a context graph G is performed by expanding so-called r-

successors for every role r ∈ NR starting from the examples e ∈ E .

Definition 4.2.14. (Role r-Successors, Predecessor) Given a role r ∈ NR, predeces-

sor individual i ∈ NI and the interpretation (I ,U ), the set of r-successors of i is the set

succ(i, r) = {j | 〈i, j〉 ∈ r(I ,U )}.

When expanding r-successors for every individual encountered within an in-

stance chain, we analyse the set of concepts which describe each individual to con-

struct subexpression contexts λ which form the vertices of the context graph. In this

way, the context graph is comprised exclusively of concepts and roles which describe

only those individuals and literals which are reachable via instance chains from the

examples via role assertions in A. As we aim to use the context graph to guide a re-

finement operator in the search for concept expressions, excluding irrelevant concept

and role names effectively reduces the concept search space.

To understand how the context graph can aid in determining possible refine-

ments, consider the concept expression ∃r.(>). There are several ways to downward-
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refine this concept, including:

∃r.(>) ∃r.(>) u C (conjunction with a concept)

∃r.(>) ∃r.(C) (refinement of the filler > C)

∃r.(>) >2r.(>) (refinement of the quantifier)

In order to determine the set of concepts which can be used in conjunction with

∃r.(>), we can compute the set of concepts which describe predecessors of r-successors,

or instances of ∃r.(>). For example, consider the individual i where i ∈ (∃r.(>))(I ,U ).

The set of simple concepts describing i can be computed as sc({i}) as follows:

sc(S) = {C | ∀i ∈ S, C ∈ atom(i)}
atom(i) = atom+(i) ∪ atom¬(i) (all simple concepts describing i)

atom+(i) = {A | A ∈ NC s.t. i ∈ A(I ,U )} (all concept names)

atom¬(i) = {¬A | A ∈ NC s.t. A 6∈ atom+(i)} (all negated concept names)

All concepts C ∈ sc({i}) are those which may appear as ∃r.(>) u C such that C is

satisfiable with respect to (I ,U ). Similarly, we can generate the set of all simple con-

cepts which the filler > may be downward refined to in ∃r.(>) by computing the set

sc(succ(i, r)) for all r-successors of i, where for all C ∈ sc(succ(i, r)) we will find that

∃r.(C) is also satisfiable under (I ,U ), at least relative to the predecessor individual

i. Note that this set may be different for other predecessor individuals. The context

graph will reflect these differences by capturing satisfiable concept subexpressions as

its vertices which were computed from individuals found along instance chains via

r-successors.

Role quantifiers 3 for which concepts of the form 3r.(D) are satisfiable for

various simple concepts D can be computed by analysing the set of r-successors

S = succ(i, r) for some predecessor individual i, along with the set of concepts for

which each successor j ∈ S are instances as sc(S). Pairs (D, n) which capture when

there are exactly n r-successors which are instances of D from i can be computed by

the role filler function r f (S) as follows:

r f (S) = {(D, n) | ∀D ∈ sc(S), n = |S u D(I ,U )| ∧ n ≥ 1}

The pairs (D, n) in r f (S) simply reflect that exactly n individuals in S are instances

of D. If S was computed as the set of r-successors from i, then r f (S) can be used

to compute all satisfiable concepts of the form 3r.(D) for various role quantifiers
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3 ∈ {∃, ∀, >m, 6m} as follows:

• ∃: If (D, n) ∈ r f (S), then ∃r.(D) is satisfiable wrt. (I ,U );
• ∀: If (D, n) ∈ r f (S) where n = |S|, then ∀r.(D) is satisfiable wrt. (I ,U );
• >m: If (D, n) ∈ r f (S), then >mr.(D) for 1 ≤ m ≤ n is satisfiable wrt. (I ,U );
• 6m: If (D, n) ∈ r f (S), then 6mr.(D) for m ≥ n is satisfiable wrt. (I ,U ).

Recall that the vertices of the context graph are the subexpression contexts λ re-

flecting various concept expressions and their subexpressions which are satisfiable

under (I ,U ). These expressions are restricted in form, such as [Cu3r.(◦), D] which,

when collapsed into an expression nest(λ) = C u 3r.(D), where C, D are simple

concepts. In starting from the set of examples E , we begin construction of the con-

text graph by computing sc(E) to give an initial set of vertices. For example, assume

sc(E) = {>, C}. Then, the context graph will consist of two vertices, namely λ1 = [>]
and λ2 = [C]. Then, from each example e ∈ E , we compute all r-successors S for each

role name r ∈ NR and the set of simple concepts r f (S) for which they are instances.

If say, example e0 ∈ E is an instance of > and C, and it has exactly one r-successor

which is an instance of D and >, we would expect to see a partial context graph as

shown in Figure 4.4.

[>]

[>u ∃r.(◦1),>] [>u ∃r.(◦1), D]

[C]

[C u ∃r.(◦1),>] [C u ∃r.(◦1), D]

Figure 4.4: A partial context graph under construction for role r from a set of examples.

To construct the various vertices and edges of the context graph, instance chains

are computed along r-successors for every subexpression corresponding to a vertex

until there are either no more r-successors to expand, or a cycle is detected in the

instance chain. Specifically, the set of all contexts generating new vertices from an

individual i along role r with successor set S = succ(i, r) is computed with the

function con(i, r, S) as follows:

con(i, r, S) = con∃(i, r, S) ∪ con∀(i, r, S) ∪ con≥(i, r, S) ∪ con≤(i, r, S)
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where

con∃(i, r, S) = {[C u ∃r.(◦1), D] | ∀C ∈ sc(i),

∀D ∈ {D | ∀(D, n) ∈ r f (S) s.t. n > 0}}
con∀(i, r, S) = {[C u ∃r.(◦1), D] | ∀C ∈ sc(i),

∀D ∈ {D | ∀(D, n) ∈ r f (S) s.t. n = |S|}}
con≥(i, r, S) = con∃(i, r, S) ∪

{[C u >qr.(◦1), A] | ∀C ∈ iC, ∀q where 2 ≤ q ≤ |S|,
∀A ∈ {A | ∀(A, n) ∈ r f (S) s.t. n ≥ q}}

con≤(i, r, S) = con∀(i, r, S) ∪
{[C u 6qr.(◦1), A] | ∀C ∈ iC, ∀q where 1 ≤ q ≤ succmax(C, r)− 1,

∀A ∈ {A | ∀(A, n) ∈ r f (S) s.t. q ≥ |S|}}

where succmax(C, r) = max {n | ∀i ∈ CJλ s.t. n = |succ(i, r)|} is the maximum car-

dinality of r-successor sets for any instance i of CJλ . However, if at the point of

computing con≤(i, r, S) the set CJλ is unknown for any context λ, the broader in-

terpretation C(I ,U ) may be used until CJλ is computed and elements of con≤(i, r, S)

may be pruned, see Section 4.2.3 for more details. Note that we produce contexts

for >qr.(D) for q ≥ 2 because >1r.(D) ≡ ∃r.(D), and 6qr.(D) for q ≥ 1 because
60r.(D) ≡ ¬∃r.(D) ≡ ∀r.(¬D), and so are already represented by all cases in the sets

con∃(i, r, S) and con∀(i, r, S).

Depending on the desired expressivity of the concept language, we may omit any

set con3(i, r, S) for role quantifier 3 ∈ {∀,≥,≤} from the definition of con(i, r, S), but

will at least ensure that it contains con∃(i, r, S) as a minimum.

Figure 4.5: An example set of concepts and their subsumption relationships with a
single individual i with three r-successors.

Example 4.2.15. Consider the concept names NC = {A, B, C} with their subsumption

relationships as depicted in Figure 4.5 along with the predecessor individual i with three r-

successors S = succ(i, r) as illustrated. In analysing the these r-successors of i, we find the
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following:
|S| = 3

sc({i}) = {A} ∪ {¬B,¬C}
sc(S) = {B, C,¬A,¬C}
r f (S) = {(B, 3), (C, 2), (¬A, 3), (¬C, 1)}

The set of applicable contexts defined by con3(i, r, S) for 3 ∈ {∃, ∀,≥,≤} are as follows:

con∃(i, r, S) = {[A u ∃r.(◦1), B], [A u ∃r.(◦1), C], [A u ∃r.(◦1),¬A],

[A u ∃r.(◦1),¬C], [¬B u ∃r.(◦1), B], [¬B u ∃r.(◦1), C],

[¬B u ∃r.(◦1),¬A], [¬B u ∃r.(◦1),¬C], [¬C u ∃r.(◦1), B],

[¬C u ∃r.(◦1), C], [¬C u ∃r.(◦1),¬A], [¬C u ∃r.(◦1),¬C]}
con∀(i, r, S) = {[A u ∀r.(◦1), B], [A u ∀r.(◦1),¬A], [¬B u ∀r.(◦1), B],

[¬B u ∀r.(◦1),¬A], [¬C u ∀r.(◦1), B], [¬C u ∀r.(◦1),¬A]}
con≥(i, r, S) = {[A u >2r.(◦1), B], [A u >2r.(◦1), C], [A u >2r.(◦1),¬A],

[¬B u >2r.(◦1), B], [¬B u >2r.(◦1), C], [¬B u >2r.(◦1),¬A],

[¬C u >2r.(◦1), B], [¬C u >2r.(◦1), C], [¬C u >2r.(◦1),¬A],

[A u >3r.(◦1), B], [A u >3r.(◦1),¬A], [¬B u >3r.(◦1), B],

[¬B u >3r.(◦1),¬A], [¬C u >3r.(◦1), B], [¬C u >3r.(◦1),¬A]}
con≤(i, r, S) = {[A u 62r.(◦1), A], [A u 62r.(◦1), C], [A u 62r.(◦1),¬B],

[A u 62r.(◦1),¬C], [¬B u 62r.(◦1), A], [¬B u 62r.(◦1), C],

[¬B u 62r.(◦1),¬B], [¬B u 62r.(◦1),¬C], [¬C u 62r.(◦1), A],

[¬C u 62r.(◦1), C], [¬C u 62r.(◦1),¬B], [¬C u 62r.(◦1),¬C],

[A u 61r.(◦1), A], [A u 61r.(◦1),¬B], [A u 61r.(◦1),¬C],

[¬B u 61r.(◦1), A], [¬B u 61r.(◦1),¬B], [¬B u 61r.(◦1),¬C],

[¬C u 61r.(◦1), A], [¬C u 61r.(◦1),¬B], [¬C u 61r.(◦1),¬C]}

Any concept E = nest(λ) where λ ∈ con(i, r, S) will always be satisfiable with respect to

(I ,U ) because each λ was constructed over the role successors of some individual i to ensure,

at the very least, that i ∈ E(I ,U ).

Example 4.2.15 demonstrates how the analysis of a single set S of r-successors for

any individual i and role r can be used as the basis for determining the set of contexts

con3 which can be used to construct new vertices of a context graph. As instance

chains are computed to new individuals such as i from any vertex, con3 gives rise

to new vertices which describe satisfiable subexpressions. These new vertices are

then connected to their predecessors with edges, which are in turn attributed with
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the set of role tuples encountered by expanding r-successors. Algorithm 4 is an

instance chase procedure for constructing a context graph in this way, which begins

by expanding r-successors to construct instance chains to every individual and literal

reachable from every example in E . Each individual reached in the chase is analysed

with respect to each role name r ∈ NR to construct a new set of role subexpression

contexts λ which comprise the vertices of the context graph.

Algorithm 4 Instance chase procedure for computing context graph G for a limited
number of restricted contexts λ.

1: G = (V, E) where V = ∅, E = ∅ . Initialise an empty context graph
2: Q := {(e, [], e) | ∀e ∈ E} . Example e with preceding instance chain ic = []
3: L := ∅ . Containing tuples (λ, i, e) to record i as reachable from e in context λ
4: while Q 6= ∅ do
5: (i, ic, e) ∈ Q . Select an arbitrary tuple, then...
6: Q := Q \ {(i, ic, e)} . ...remove it from Q
7: if iλ = ∅ then . iλ holds all preceding contexts for i
8: iλ := {[A] | A ∈ sc(i)}
9: end if

10: succi = ∅ . All successors of i for any role
11: for all r ∈ NR do
12: S = {j | 〈i, j〉 ∈ r(I ,U )} . All r-successors of i
13: succi := succi ∪ S
14: for all [C1 u3r.(◦1), C2] ∈ con(i, r, S) do
15: for all λ ∈ iL where λ = [D1, . . . , Dn] and Dn = C1 do . (n ≥ 1)
16: λ′ := [D1, . . . , Dn u3r.(◦n), C2]
17: V := V ∪ {λ, λ′} . Add graph vertices
18: E := E ∪ {(λ, λ′)} . Add graph edge
19: (∆λ := ∆λ ∪ {i})
20: L := L ∪ {(λ, j, e)} . Label j as reachable from example e in λ

21: for all j ∈ S where j ∈ C(I ,U )
2 do

22: ∆λ′ := ∆λ′ ∪ {j}
23: jλ := jL ∪ {λ′} . jλ holds all preceding contexts for j
24: end for
25: end for
26: end for
27: end for
28: for all j ∈ succi where j not contained in ic do . Prevent cycles
29: ic′ := ic‖[〈i, j〉)] . Update instance chain with new role successor j
30: Q := Q ∪ {(j, ic′, e)} . Add new tuple to chase from j
31: end for
32: end while

The instance chase Algorithm 4 will always terminate as it enumerates all acyclic

instance chains from the finite set of example instances E over (I ,U ). After construc-
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tion of the context graph G over a knowledge base K for a set of examples E , there

will be n contexts λk where 1 ≤ k ≤ n.

Initially, the context graph is potentially large for knowledge bases with many

concept and role names which describe the individual and literal data reachable from

examples in (I ,U ). As the purpose of the context graph is to enable a refinement

operator to select appropriate refinements of concept expressions in any subexpres-

sion context, we can make several observations about how it will be used, and how

it can be limited in size. After construction by the chase Algorithm 4, the context

graph will contain a set of vertices corresponding to subexpression contexts λ and

with each, a local domain ∆λ capturing all individuals or literals known to reside in

each context. Given each local domain consisting of individuals, we can compute the

set of local equivalence, subsumption and disjointness axioms Tλ between pairs of

simple atomic and negated atomic concept names.

A refinement operator may utilise the axioms of Tλ generated by analysing each

local domain ∆λ for each context λ to ensure that refinements avoid expressions

which are clearly unsatisfiable, or steps which are clearly improper or redundant.

For example, concept equivalence, subsumption and disjointness between concepts

C, D can be utilised to ensure that a conjunction C u D is never produced in the

context of λ. After the analysis of each ∆λ in the context graph, we identify the

groups of concepts which are found to be equivalent, and construct so-called local

equivalence groups as follows.

Definition 4.2.16. (Local Equivalence Group) A local equivalence group relative to a

context λ is a set of equivalent concepts {C1, . . . , Ck | Ci ≡ Cj ∈ Tλ(1 ≤ i < j ≤ k)}.

For any local equivalence group G of any Tλ, we identify a single concept name

C ∈ G to represent all concepts in G for the purposes of refinement, as permitting

refinement to concepts from G \ {C} would produce redundant refinement chains,

such as where G = {A, B} and the two chains C  C u A and C  C u B where

A ≡ B in the subexpression context λ. In order to select an appropriate concept,

we may rely on user defined preference, or simply choose the most general concept

of G relative to the TBox T as our intention is to use the refinement operator for

generating concepts as hypotheses, and aim to ensure hypotheses generalise well

over unseen data, which is discussed in more detail in Chapter 5.

Generally, any concept expression interpreted relative to a context λ is considered

locally minimal if it is not equivalent under Jλ to some other concept as follows.
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Definition 4.2.17. (Locally Minimal Concept Expression) A concept expression C is lo-

cally minimal in context λ under interpretation Jλ iff, for all subexpressions S ∈ subex(C)

where S = S1 u . . . u Sn or S = S1 t . . . t Sn, that removing any subexpression Si where

1 ≤ i ≤ n resulting in concept C′ we find that C 6≡Jλ
C′.

4.2.3 Pruning the Context Graph

The local axioms Tλ for each context λ give rise to ways of pruning the context graph

to exclude irrelevant portions. To explain how, consider the following fragment of a

context graph:

λ1 = [. . . , A]

λ2 = [. . . , A u ∃r.(◦),>] λ3 = [. . . , A u ∃r.(◦), B] λ4 = [. . . , A u ∃r.(◦),¬A]

In this case, all r-successors of individuals in AJλ1 for ∃r.(◦) were instances of >,

B and ¬A. As no r-successor was an instance of A, we would find that > ≡Jλ
¬A in

each context λ2, λ3 and λ4. As we would otherwise opt for the more general concept

> over ¬A in refinement within these contexts, we may safely prune edge (λ1, λ4) in

preference over (λ1, λ2), and along with it the entire subtree rooted at vertex λ4.

In general, consider any context graph G = (V, E) and any vertex λ ∈ V where

λ = [. . . , C] with edge (λ, λ′) ∈ E where λ′ = [. . . , C u 3r.(◦), D]. For any local

equivalence group eq over local axioms Tλ′ , we may select a most general concept

M ∈ eq and exclude all others from the context graph along any edge (λ, λ′′) ∈ E

where λ′′ = [. . . , C u 3r.(◦), F] for F ∈ eq \ {M} where M ≡ F ∈ Tλ′ such that

MJλ′ = FJλ′ . Pruning the vertex λ′′ from the graph removes the edge (λ, λ′′) and

the subtree under λ′′ from G. In doing so, we are eliminating portions of the context

graph which describe concepts which a refinement operator never ought to consider,

because if M ≡Jλ
F for any concept F in context λ′′, then any concept composed with

F is equivalent to concepts where F has been replaced with M, otherwise permitting

redundant refinement steps. Furthermore, any concept containing F u M or F t M

would not be locally minimal, also potentially a source of redundant or improper

refinement steps.

Recall that in the construction of contexts λ = [. . . , 6nr.(◦), C] which were com-

puted by con≤(i, r, S) from some individual i and r-successors S, that the maximum

value for n was initially determined by the maximum size |S| for any i ∈ NI across
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the entire knowledge-base. However, after the context graph has been computed, the

set of instances in each local domain ∆λ permit us to compute tighter upper bounds

for n by inspecting the maximum size S for individuals in the local domain ∆λ only.

Afterwards, we may find that if the maximum size of any set of r-successors which

are instances of C is m, then any vertex such as λ = [. . . , 6nr.(◦), C] where n > m

may also be pruned from the context graph, along with the subtree rooted at any

pruned vertices.

4.2.4 Identifying Concept Subexpression Contexts

Computing the context-specific interpretation DJλ of some arbitrary subexpression

D belonging to some expression C, we necessarily require the local domain ∆λ of the

context λ describing where D is situated within C. However, as we have seen in the

previous section, we do not propose to compute all possible contexts λ representing

all possible subexpressions of C, as this is practically infeasible. Instead, we employ

a context graph to capture a subset of subexpression contexts, which may not be

associated with all local domains.

In this section, we describe how a precise subexpression context λ which identi-

fies any subexpression D in C, along with the local domain ∆λ, can be approximated

over multiple contexts λ1, . . . , λn capturing simpler and more general concepts within

a context graph. To begin, we distinguish exact subexpression contexts from approx-

imate ones with an example.

Example 4.2.18. Consider the following concept expression:

C =

λ1︷ ︸︸ ︷
A u B u ∃r.(D t (∀s.(E u F︸ ︷︷ ︸

λ3

))

︸ ︷︷ ︸
λ2

)

In this expression, the following three exact role subexpression contexts apply:

λ1 = [A u B u ∃r.(D t (∀s.(E u F)))]

λ2 = [A u B u ∃r.(◦1), D t (∀s.(E u F))]

λ3 = [A u B u ∃r.(◦1), D t (∀s.(◦2)), E u F]

As the exact contexts λ1, λ2 and λ3 from Example 4.2.18 contain a disjunction (t),

they cannot be represented in a context graph because the vertices are restricted to

capturing subexpressions of the form [C, . . . ,3r.(◦), D] for simple concepts C, D by
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Definition 4.2.12. Therefore, the local domain ∆λ associated with any vertex λ in the

context graph will not match the local domain of λ1, λ2 and λ3. However, a context

graph may contain contexts representing subexpressions which are super-classes of

some arbitrary subexpression D. In this case, we may still derive useful information

about the local domain of D, along with any local axioms about the local domain. As

an example, consider a context graph G which contains the following vertices and

edges representing subexpression contexts λi for 4 ≤ i ≤ 14 as shown below:

λ4 = [>]
λ5 = [A]

λ6 = [B]

λ7 = [A u ∃r.(◦1),>]
λ8 = [A u ∃r.(◦1), D]

λ9 = [B u ∃r.(◦1),>]
λ10 = [B u ∃r.(◦1), D]

λ11 = [A u ∃r.(◦1),>u ∀s.(◦2), E]

λ12 = [A u ∃r.(◦1),>u ∀s.(◦2), F]

λ13 = [B u ∃r.(◦1),>u ∀s.(◦2), E]

λ14 = [B u ∃r.(◦1),>u ∀s.(◦2), F]

λ4 λ5

λ7

λ11 λ12

λ8

λ6

λ9

λ13 λ14

λ10

Continuing on from Example 4.2.18, consider again the concept C = A u B u
∃r.(D t (∀s.(E u F))) and the context λ1 capturing this whole expression. From

the context graph G above, we find that the subexpression contexts λ4, λ5 and λ6

all represent subexpressions which are super-classes of C, as C v >, C v A, and

C v B. This also means that the local domain ∆λ1 ⊆ ∆λi where 4 ≤ i ≤ 6. In fact,

as each of these local domains contains only those individuals which are instances

of their respective subexpression concepts, we will find that ∆λ1 ⊆
⋂

4≤i≤6 ∆λi , the

intersection of each domain, because C = A u B u . . . or the intersection of these

subexpressions1. As we will soon show, any local axioms which hold in any of

the contexts λ4, λ5 or λ6 will apply to λ1, and therefore be applicable for use by a

refinement operator when modifying the concept in context λ1.

Further continuing on from Example 4.2.18, consider the context λ2 = [A u B u
∃r.(◦1), D t (∀s.(E u F))] which refers to the subexpression D t (∀s.(E u F)). There

are also a number of subexpression contexts in the context graph G above which

describe super-classes of this subexpression, namely λ7 and λ9, as both these contexts

1Note that A u B ≡ A u B u>.
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refer to the subexpression >, and each preceding subexpression is a superclass of C

where C ⊆ A u ∃r.(>) and C ⊆ B u ∃r.(>). Similarly, the context λ3 = [A u B u
∃r.(◦1), D t (∀s.(◦2)), E u F] which refers to the subexpression E u F is a subclass of

the subexpressions referred to by λ11, λ12, λ13 and λ14.

Generally, given any arbitrary subexpression D and role subexpression context

λ, there may be multiple subexpression contexts λ̄ = {λ1, . . . , λn} from a context

graph which, when considered together, approximate λ. Formally, we denote the set

of such contexts λ̄ as applicable subexpression contexts relative to an exact context λ for

some arbitrarily complex subexpression D.

Definition 4.2.19. (Applicable Subexpression Contexts) Any context λ′ = [D1, . . . , Dm]

is applicable to describe a subexpression S of a concept C which is otherwise identified by

an exact context λ = [C1, . . . , Cm] iff Ci v(I ,U ) Di for 1 ≤ i ≤ n, defined as appl(C, λ, S)

where:

appl(C, [D1], S)← C = S ∧ S v(I ,U ) D1

appl(3r.(C), [D1 u3r.(◦1), D2, . . . , Dn], S)← D1 = > ∧
appl(C, [D2, . . . , Dn], S) (for n ≥ 2)

appl(C1 u . . . u Cm u3r.(C), [D1 u3r.(◦1), D2, . . . , Dn], S)←
∃Ci s.t. Ci v(I ,U ) D1 ∧ appl(C, [D2, . . . , Dn], S) (for 1 ≤ i ≤ m, m ≥ 1, n ≥ 2)

appl(C1 t . . . t Cm, [D1 u3r.(◦1), D2, . . . , Dn], S)← C1 t . . . t Cm v(I ,U ) D1 ∧
∃Ci s.t. appl(Ci, [D2, . . . , Dn], S) (for 1 ≤ i ≤ m, m ≥ 2, n ≥ 2)

From a set of contexts V = {λ1, . . . , λn} for n ≥ 1, the set of contexts which are most

applicable to describe subexpression S of a concept C is the set λ̄ where:

λ̄ = {[D1, . . . , Dn] | ∀[D1, . . . , Dn] ∈ V for n ≥ 1∧ appl(C, λ, S) ∧
¬∃[D′1, . . . , D′n] ∈ V s.t. D′i <(I ,U ) Di for any 1 ≤ i ≤ n}

Intuitively, λ̄ is the set of contexts λ which most tightly describe a subexpression context S.

While this method only generally provides us with an estimate of the exact role

subexpression context λ for any concept expression interpreted by Jλ, it can still

be used to detect when subexpressions may be unsatisfiable or not locally minimal,

as we are motivated to detect. For example, once again consider the concept C =

A u B u ∃r.(D t (∀s.(E u F))) where λ̄ = {λ | ∀λ ∈ {λ4, . . . , λ14} → appl(C, λ, C)} =
{λ5, λ6}. With respect to these contexts, if we find that A u B v ⊥ ∈ Tλ5 or A u
B v ⊥ ∈ Tλ6 then the subexpression A u B is unsatisfiable with respect to its exact
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subexpression context λ.

Proposition 4.2.20. For any subexpression S of a concept C and any applicable context λ′

for S where appl(C, λ′, S), it is always the case that ∀φ where Tλ′ |= φ then Tλ |= φ where

λ is the exact subexpression context for S.

Proof. By Proposition 4.2.11, we know that if T |= φ holds over the domain ∆(I ,U )

for any axiom φ defined for local axioms in Definition 4.2.9, then Tλ |= φ holds

over any local domain ∆λ when ∆λ ⊆ ∆(I ,U ). Therefore, for Proposition 4.2.20 to

hold, we need to show that ∆λ ⊆ ∆λ′ always holds. For the exact context λ =

[D1, . . . , Dm] and any applicable context λ′ = [D′1, . . . , D′m] for S, it must have been

the case that each Di v(I ,U ) D′i for 1 ≤ i ≤ m by Definition 4.2.19. Consider the

case where λ′ = [D′1] and λ = [D1], and where both D′1 = > and D1 = >. Then, as

D1 v(I ,U ) D′1, we have ∆λ ⊆ ∆′λ as required by the definition of > relative to each

local domain. Now consider the case where λ′ = [D′1, . . . , D′m] and λ = [D1, . . . , Dm]

for m ≥ 2, where each D′i = C′i u3r.(◦) for 1 ≤ i < m. We know that Di has the

form 3r.(◦) or C1 u . . . Ck u3r.(◦), or C1 t . . . Ck t3r.(◦) for k ≥ 1 describing the

r-successors ◦ which are instances of the concept nest([Di+1, . . . , Dm]). Because λ′ is

applicable, it must have been the case that nest([Di, . . . , Dm]) v(I ,U ) C′i . Therefore,

the set of instances of C′i with r-successors is a superset of the set of instances of

nest([Di, . . . , Dm]) with r-successors for any role quantifier 3. Therefore, the local

domain ∆λ′i+1
for the context λ′i+1 = [D′1, . . . , C′i u3r.(◦), nest([D′i+1, . . . , D′m])] for the

subexpression at level i + 1 will always be a superset of the local domain ∆λi for

the exact context λi = [D1, . . . , Di, nest([Di+1, . . . , Dm])], which shows that ∆λ ⊆ ∆λ′

always holds.

Corollary 4.2.21. From the proof of Proposition 4.2.11, we know that each context λ′ in the

set of most applicable contexts λ′ ∈ λ̄ also each have ∆λ ⊆ ∆′λ. Therefore, the local domain of

the exact context ∆λ must also be a subset of the intersection of the local domains for all most

applicable contexts λ̄ as ∆λ ⊆ ∆λ1 ∩ . . . ∩ ∆λn for all λi ∈ λ̄ for 1 ≤ i ≤ n.

Proposition 4.2.22. Consider a subexpression S = C1 u . . . u Cn for n ≥ 2 and pair Ci, Cj

for 1 ≤ i < j ≤ n with a set of applicable subexpression contexts λ̄. If, for any context

λ′ ∈ λ̄ where λ′ = [D′1, . . . , D′m] for m ≥ 1 where Dm = Ci we have Tλ′ |= Ci u Cj v ⊥
then S is unsatisfiable relative to Jλ where λ is the exact role subexpression context of S.

Proof. From the proof of Proposition 4.2.20, we know that the local domain ∆′λ sub-

sumes the local domain ∆λ for the exact context λ = [D1, . . . , Dm] where S = Dm.

Therefore, if Tλ′ |= Ci u Cj v ⊥, then it must be the case that Tλ |= Ci u Cj v ⊥.



§4.2 Structuring the Interpretation for Learning 77

Proposition 4.2.23. Consider a subexpression S and the set of all applicable subexpression

contexts λ̄. If, for all λ′ ∈ λ̄ where λ′ = [D1, . . . , Dm] for m ≥ 1 the context graph

does not contain a vertex λ′′ = [D1, . . . , Dm u3r.(◦), Dm+1], then the concept expression

T = S u3r.(Dm+1) must be unsatisfiable relative to the exact role subexpression context λ

where TJλ = ∅.

Proof. From the proof of Proposition 4.2.20, we know that the local domain ∆′λ sub-

sumes the local domain ∆λ for the exact context λ = [D1, . . . , Dm] where S =

Dm. Therefore, if there were no individuals in ∆λ′ which are also instances of

Dm u3r.(Dm+1), then the context graph would not contain any edge (λ′, λ′′). There-

fore, if the edge (λ′, λ′′) 6∈ E, we find that the expression T must be unsatisfiable as

it is interpreted over the local domain ∆λ which is subsumed by ∆′λ.

Each vertex in a context graph G labelled with context λ = [D1, . . . , Dm] where

each Di for 1 ≤ i < m has the form Ci u3r.(◦) represents a satisfiable expression

nest(λ). This is because each context λ was generated from role successors along in-

stance chains inspected in (I ,U ) which capture the instances of each subexpression

referred to by λi = [D1, . . . , Di u3r.(◦), nest([Di+1, . . . , Dm])] for 1 ≤ i < m. Continu-

ing our example, the local domains ∆λ5 and ∆λ6 capture all those instances of A and B

in their respective contexts. Note that the local domain ∆λ4 where λ4 = [>] is a super-

set of both of these where ∆λ5 ⊆ ∆λ4 and ∆λ6 ⊆ ∆λ4 . Therefore, if A u B v ⊥ ∈ Tλ4 ,

then it will also hold in Tλ5 and Tλ6 .

Figure 4.6: Concepts A, B have various instances a, c, d and r-successors b, e. While
A u B is satisfiable, no instance of A u B has an r-successor.

Even if A u B is determined to be satisfiable in contexts λ4, λ5 and λ6, we cannot

determine from the context graph that Au Bu ∃r.(>) is satisfiable from the contexts

λ7 and λ9. To illustrate why, consider Figure 4.6 where A u B is satisfiable, but

where the only instance c does not have an r-successor. In this case, contexts λ7 and

λ9 would still have been generated by the instance chase over the role tuples 〈a, b〉
and 〈d, e〉, therefore their existence does not necessarily indicate the satisfiability of

A u B u ∃r.(>). Consider the case where we exclude tuple 〈d, e〉, and where only
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instances of A had r-successors. Then, λ9 would not exist in the context graph, as

no instance of B has an r-successor. Therefore, we can identify when A u B u ∃r.(>)
is clearly unsatisfiable when the context graph does not contain vertices of the form

[φ u ∃r.(◦),>] for all φ ∈ {A, B}, all the operands in the conjunction, as shown in

Proposition 4.2.23.

In general, if any subexpression S of a concept expression C has an empty set

of most applicable contexts K, while it does mean that S is unsatisfiable with re-

spect to Jλ, it does not necessarily mean that C is unsatisfiable under (I ,U ) where

C(I ,U ) = ∅. To understand why, consider the case when C = A t D where DJλ = ∅,

where C is still satisfiable as A. Also, consider when C = A u ∀r.(B) and where no

instance i of A has any r-successors. Then, C is clearly satisfiable with respect to

(I ,U ). However, as there were no r-successors of A, the context graph would not

contain any vertex labelled with λ where λ = [A u ∀r.(◦), B] as no r-successors of

A were present to construct it. Therefore, the set of most applicable contexts for the

subexpression B would be empty, as would its context specific interpretation BJλ . In

this case, the subexpression ∀r.(B) was not particularly interesting, as it describes a

constraint on data which was not present in the knowledge base, and thus is not in-

formative. As our goal is to use the context specific interpretation and context graph

to guide a refinement operator in the construction of concepts which describe data

for the purposes of machine learning and data mining, we are not concerned with

expressions which do not cover at least some portion of the asserted data. For this

reason, we may impose the restriction that every subexpression S of any concept C

under consideration by refinement have a non-empty set of most applicable contexts

which, at the very least, indicate potential satisfiability of S and of C. We encapsu-

late this notion by defining the boolean function ncu(C) which returns true iff all

subexpressions S of C have a non-empty set of most applicable contexts λ̄ and are

therefore not clearly unsatisfiable, as follows:

ncu(C)↔ ∀S ∈ sub(C) : λ̄ 6= ∅

We later use the function ncu(S) to ensure that all subexpressions S of a refined

expression C have non-empty most applicable context sets λ̄ and therefore may be

satisfiable, and do not clearly cover none of the data in the knowledge base.

In summary, the context graph provides a way of permitting us to attribute a set

of broadly applicable contexts λ̄ to any subexpression S of a concept C by retriev-

ing all applicable subexpression contexts appl(C, V, S) for the set of contexts V in
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a context graph G = (V, E). By attributing the set of applicable contexts λ̄ to any

subexpression S of C, we are able to compute from each set of local axioms Tλ for

λ ∈ λ̄ together with the context graph whether:

• The conjunction of new atomic or negated atomic concepts with S results in an

unsatisfiable or non locally minimal expression by Proposition 4.2.22;

• The conjunction of a new quantified role expression with S results in an unsat-

isfiable expression by Proposition 4.2.23.

In the next section, we will define a new pair of downward and upward refinement

operators called ρ
λ̄

and υ
λ̄

which operate in accordance with these restrictions by

inspection of a pre-computed context graph G and accompanying sets of local do-

mains ∆λ and local axioms Tλ. It is important to note that these two restrictions will

not prevent the downward operator ρ
λ̄

from reaching any part of the concept space

which may otherwise contain concepts which are solutions to a problem. This is

because atomic concepts cannot themselves be refined further, so their exclusion by

the identification of their unsatisfiability or improperness in conjunction with other

expressions does not impede the ability of ρ
λ̄

to reach new concepts. New quanti-

fied role expressions can be refined to reach other concepts which could be solutions,

however not if the new quantified role expression is already unsatisfiable, as any

downward refinements produced by ρ
λ̄

from such expressions will also be unsatis-

fiable. Therefore, these restrictions are designed to improve efficiency but not at the

cost of search completeness. Nevertheless, there are practical limitations which re-

quire us to enforce restrictions on the permissible behaviours of ρ
λ̄

and υ
λ̄

which do

result in these operators being incomplete overall, as we will discuss in Sections 4.3.4

and 4.5.1.

4.3 Building a Context-Specific Refinement Operator

In this section, we will introduce a new refinement operator which utilises the infor-

mation captured in local axioms generated by constructing a context graph to permit

it to avoid certain improper or redundant refinement steps or the construction of

unsatisfiable concepts. Use of such an operator in generate-and-test learning algo-

rithms aims to improve the efficiency of the search by excluding concepts which do

not contribute towards the search for solutions. We present our refinement operator

by addressing each of the refinement cases of ρB as described in Section 4.1 and cover

how the context graph and local axioms can be used in each case.
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4.3.1 Atomic and Negated Atomic Concepts

Given a downward refinement operator ρ, a conjunctive step u
 is defined as refine-

ment of the kind:

ρ(C) u C u D

for concept expressions C and D. For this refinement step to be proper we require

that C 6v D, for it to be non-redundant we require that D 6v C, and for C u D to

be satisfiable we require C u D 6v ⊥. In this section, we consider the case when

concepts C and D are both either atomic or negated atomic concepts. The definition

of ρB includes the following relevant cases for refinement of a concept C:

{A′ | A′ ∈ sh↓(A)} ∪ {A u D|D ∈ ρB(>)} if C = A (A ∈ NC)

{¬A′ | A′ ∈ sh↑(A)} ∪ {¬A u D|D ∈ ρB(>)} if C = ¬A (A ∈ NC)

These cases describe the conjunction of any atomic term with another in the con-

text of the role range concept B. Assume the concepts {A, B, C, D} ∈ NC and ap-

ply in the context of B, and where {D v C, C v B, A u D v ⊥} ⊆ T such that

{A,¬A, C,¬C, D,¬D} ∈ MB. Then, the rules above permit the construction of the

following refinement chains:

1. A A u A (as A ∈ ρ>(>), however A ≡ A)

2. A A u ¬A (as ¬A ∈ ρB(>), however A u ¬A v ⊥)

3. A A u C (as C ∈ ρ>(>))
We can simply explicitly avoid the first two cases by recognising them syntactically,

however we cannot do so in the last case. While AuC may be satisfiable with respect

to T , as we discussed in Section 4.2 this concept relative to a particular subexpression

context λ may be unsatisfiable where Tλ |= A u B v ⊥. Because ρB is not aware of

context-specific information about the satisfiability of such concepts, it will otherwise

always permit A u C. Furthermore, consider the refinement case of ρB for handling

conjunctive expressions C1 u . . . u Cn for n ≥ 2:

{C1 u . . . u Ci−1 u D u Ci+1 u . . . u Cn|D ∈ ρB(Ci), 1 ≤ i ≤ n}

If the concept chosen to refine within the expression Ci is atomic, then the atomic

refinement case above applies, but does not take into account any of the other ex-

pressions in the conjunction. In this case, such a refinement step would be permitted:

A u B u C A u B u D (as D ∈ ρ>(C), however A u D v ⊥ ∈ T )
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The operator ρB permitted refinement to the unsatisfiable concept A u B u D in this

case because C was refined in isolation of the remainder of the conjunctive expression

and ignored the other conjuncts. To motivate a tighter definition for a refinement

operator over atomic and negated concepts within any particular local context λ,

consider the following example.

Figure 4.7: A diagram representing subsumption relationships between an example
set of concept names NC = A, B, C, D, E modelled by local axioms Tλ relative to some
subexpression context λ.

Example 4.3.1. Figure 4.7 represents the entirety of a local domain ∆λ with the following

two local equivalence groups:

{B,¬A} {A,¬B}

For the purposes of refinement, we may exclude concepts ¬A and ¬B in preference for their

simpler equivalent concepts B and A. The remaining pairwise relationships between the

reduced set of nine concepts {>, A, B, C,¬C, D,¬D, E,¬E} as captured by Tλ along with

overlapping concepts which are not related by axioms in Tλ are as follows:

Strict subsumption Overlap Disjoint

E < B < ¬D < > A : C,¬C,¬D A : B, E

D < A < ¬E < > B : C,¬C,¬E B : A, D

D < C < > C : A, B, E,¬D,¬E C : ¬C

¬C < > D : (none) D : B, E,¬D

E : C,¬C E : A, D,¬E

¬C : A, B, E,¬E ¬C : C

¬D : A, C,¬E ¬D : D

¬E : B, C,¬C,¬D ¬E : E



82 Concept Induction by Refinement Operators

The strict subsumption and disjointness cases describe pairs of concepts which cannot ap-

pear in conjunction together as they will result in a non locally minimal expression or an

unsatisfiable one. The only conjunctive expressions which are minimal and satisfiable are

the overlapping pairs, such as A u C. For conjunctions with more than two concepts, each

conjunct must overlap with all others for the full expression to be locally minimal, that is for

the conjunctive concept C1 u . . . u Cn, all pairs Ci, Cj where 1 ≤ i < j ≤ n, we have that

CJλ
i and CJλ

j overlap. From Figure 4.7, the full set of minimal conjunctions where n ≥ 3 in

this example are:
A u C u ¬D

B u C u ¬E

B u ¬C u ¬E

C u ¬D u ¬E

Therefore, there are 25 possible minimal conjunctive expressions for this example (the single

top concept, 8 named atomic and atomic negated concepts, 12 overlapping minimal conjuncts

with 2 atoms and 4 overlapping minimal conjunctions of 3 atoms), compared to a total of

29 − 1 = 511 possible atomic and conjunctive expressions, most of which are unsatisfiable or

not locally minimal.

As shown in Example 4.3.1, the set of relationships determined over the set of con-

cepts applicable to some context λ can be used to inform which concept expressions

are minimal with respect to a context-specific interpretation Jλ and local axioms

Tλ. To tighten the definition of ρB so as to restrict the construction of concepts to

avoid unwanted refinement steps, we define a new downward refinement operator

denoted ρλ̄(C) which is parameterised with the set of most applicable contexts λ̄ for

the subexpression C.

Given a set of most applicable contexts λ̄ for some subexpression, the set of

atomic and negated atomic concepts which were found to be satisfiable in the con-

text referred to by λ̄ is the intersection of all concepts which were found to be not

equivalent to ⊥ in each set of local axioms Tλ′ for each λ′ ∈ λ̄. We define the set of

such concepts as ar f (λ̄) to represent all atomic role fillers as:

ar f (λ̄) =
⋂
∀λ′∈λ̄ {A | A ∈ sc(∆λ) s.t. Tλ 6|= A ≡ ⊥}

Furthermore, we denote the common set of equivalence, strict subsumption and dis-

jointness axioms φ over all local axioms Tλ for all λ′ ∈ λ̄ where λ̄ = {λ1, . . . , λn} for



§4.3 Building a Context-Specific Refinement Operator 83

n ≥ 1 with the shorthand Tλ̄ as follows:

Tλ̄ = Tλ1 ∩ . . . ∩ Tλn

By an abuse of notation we also denote the inclusion axioms φ entailed by Tλ̄ with

·Jλ̄
such as C ≡Jλ̄

D when Tλ̄ |= C ≡ D.

The operator ρλ̄ also makes use of a binary preorder relation � which is imposed

on all concepts which can appear as conjuncts or disjuncts. Initially, we introduce

how the preorder relation � orders simple concepts in order to describe the first set

of cases for ρλ̄, but later in Section 4.3.2 will extend it for role expressions, then more

complex concept expressions.

Definition 4.3.2. (Concept Preorder �) Given a set of concept expressions S, a concept

preorder is a binary function �: S× S which imposes an order over concepts, such that for

any three concepts C, D, E ∈ S we have:

• Reflexivity: C � C

• Transitivity: If C � D and D � E, then C � E

The concept preorder � can be used by a refinement operator when generating con-

junctions (disjunctions) of concepts such that C1 u . . . u Cn (C1 t . . . t Cn) satisfies

Ci � Cj for 1 ≤ i < j ≤ n. This ensures, for example, that for concepts A, B

where A � B, that only A u B (A t B) is produced where B u A (B t A) is not, as

A u B ≡ B u A (A t B ≡ B t A) under any interpretation we consider, as the logical

operators u and t are commutative.

We can now describe how the operator ρλ̄ is defined for simple concepts in conjunc-

tions as follows:

ρλ̄(C) =



. . .

{A | A ∈ ar f (λ̄), A <Jλ̄
C,¬∃A′ ∈ ar f (λ̄) s.t. if C ∈ ar f (λ̄)

A <Jλ̄
A′ <Jλ̄

C} ∪ {C u A | C u A ∈ ar f (λ̄),

C � A, C overlaps A}

{C1 u . . . u Cn u A | A ∈ ar f (λ̄), if C = C1 u . . . u Cn

Cn � A, ∀C1≤i≤n∀λ ∈ λ̄ : Ci ∈ ar f (λ̄)→

Ci overlaps A}

. . .
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Note that these cases do not yet cover role expressions (§4.3.2), concept disjunction

(§4.3.3), or concrete domains (§4.4). In contrast with ρB, the operator ρλ̄ incorporates

context-specific knowledge such as local axioms over the concepts it uses to reduce

the chance of generating an improper refinement, or to generate non-minimal or

unsatisfiable concepts. In doing so, ρλ̄ fails to be complete as it explicitly disallows

the construction of certain non-minimal or unsatisfiable concepts. This is by design,

however, as we wish to prune such concepts from the space under consideration by

a refinement operator as they do not aid in the search for solutions for a learning

problem.

Example 4.3.3. Given simple concepts and their relationships from Example 4.3.1 which are

ordered as > � A � B � C � D � E � ¬C � ¬D � ¬E, the refinement operator ρ
λ̄

traverses the concept space as follows:

>  ¬C  ¬C u ¬E

 C  C u ¬E

 C u ¬D  C u ¬D u ¬E

 C u E

 D

 ¬E  A  A u ¬D

 A u ¬C

 A u C  A u C u ¬D

 D

 ¬D  ¬D u ¬E

 B  B u ¬E

 B u ¬C  B u ¬C u ¬E

 B u C  B u C u ¬E

 E  E u ¬C

This represents an exhaustive traversal of all 24 unique minimal satisfiable expressions from

>.

Despite the use of the preorder � over concepts, Example 4.3.3 demonstrates that

the operator ρ
λ̄

generated two refinement chains > C D and > ¬E A 

D which took different paths from > to D. While this indicates that the refinement

operator ρ
λ̄

is redundant, it is still designed in such a way as to reduce redundancy,

as it was shown in Example 4.3.1 that there are a total of 511 possible expressions
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instead of the 24 produced by ρ
λ̄

in this case.

4.3.2 Role Expressions

For any set of most applicable contexts λ̄, the context graph G provides a set of role

names for use in constructing role expressions of the form 3r.C for some quantifier

3 depending on the chosen concept language. For example, for DLs based on EL,

quantifiers may be restricted to ∃ only, whereas ALC also permits ∀, and SROIQ
permits both in addition to cardinality quantifiers >n, 6n. A SROIQ knowledge

base may also impose a subsumption hierarchy on role terms, such as s v r where

r, s ∈ NR. Determining which roles to use together with their quantifiers when

refining concepts is largely pre-computed in the structure of a context graph. In this

section, we will describe how the information captured in a context graph can be

used to extend the definition of the refinement operator ρ
λ̄

for refinements of role

expressions.

Recall that in the definition of ρB, the set MB captures atomic concept expressions

appropriate for use as starting points for refinement in the context of some role range

described by the concept B. The set MB also includes role expressions ∃r.(>) and

∀r.(>) for all roles r with a domain ad(r) not disjoint with B, and are introduced

as refinements of the top concept >. While this definition restricts the set of role

expressions to those which are appropriate in conjunction with a domain concept

B, this is only determined relative to knowledge captured in the TBox. Under a

context-specific interpretation we are able to pre-compute tighter restrictions on the

set of refinements of role expressions relative to certain contexts and local domains.

For example, consider the refinement case for ρB which describes refinements of

concept expressions C where C = ∃r.D:

ρB(C) =



. . .

{∃r.E|A = ar(r), E ∈ ρA(D)} if C = ∃r.D

∪ {∃r.(D) u E|E ∈ ρB(>)}

∪ {∃s.(D)|s ∈ sh↓(r)}

. . .

Now consider a knowledge base containing role r, concepts B, C, D, E, axioms C v
B, E v D ∈ T , where role r has domain B and range D. The operator ρB will permit
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the following two refinement chains:

∃r.D ρB
∃r.E

∃r.D ρB
(∃r.D) u C

Under an open-world interpretation I , the concepts ∃r.E and (∃r.D) u C are both

satisfiable. However, consider the case where no r-successor is an instance of E,

and no instance of C has an r-successor which is an instance of D, as illustrated in

Figure 4.8.

Figure 4.8: Concepts B, C, D, E with their subsumption relationships shown and tu-
ples of role r pairing instances of B and D only.

Under a context-specific interpretation Jλ, we would find that (∃r.E)Jλ = ∅ and

((∃r.D) u C)Jλ = ∅ in this case as no such tuples in rJλ are known to satisfy these

concepts. While this situation can be realised after evaluating such concepts relative

to Jλ, we do not want the refinement operator to produce them in the first instance

if possible, in order to improve the efficiency of a learning algorithm relying on ρB

to generate such expressions. In this case, we aim to use the structure of the context

graph G to guide refinements which explicitly captures permissible combinations of

concepts and pre-quantified role expressions.

Considering the example illustrated in Figure 4.8, a context graph computed over

a knowledge base containing the concepts, role, and role tuples as shown for the role

quantifier ∃ would contain a vertex for context λ = [. . . , B] and edges (λ, λ′) where:

λ′ ∈ {[. . . , B u ∃r.(◦),>], [. . . , B u ∃r.(◦), D], [. . . , B u ∃r.(◦),¬E]},

In this example, there is no context containing [. . . u ∃r.(◦), E] in the context graph,

so the refinement step ∃r.D ∃r.E can be recognised as generating the unsatisfiable

subexpression ∃r.E. Similarly, as there are no contexts containing [. . . , C u ∃r.(◦), D],

the refinement step ∃r.D  (∃r.D) u C can also be recognised as generating the
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unsatisfiable subexpression (∃r.D) u C, which can be avoided.

In general, the set of role expressions 3r.C for some concept C which may be satis-

fiable in any context λ can be determined directly from the context graph G = (V, E)

as follows. Given a set of most applicable contexts λ̄ for any subexpression context,

each λ′ ∈ λ̄ may be associated with a set of succeeding contexts {λ′′ | (λ′, λ′′) ∈ E}.
Where any λ′ = [D1, . . . , Dn] for n ≥ 1, each succeeding context λ′′ has the form

λ′′ = [D1, . . . , Dn u3r.(◦n), Dn+1]. We denote the set of all succeeding role expres-

sion fragments of the form 3r.(Dn+1) given λ̄ as re(λ̄) follows:

re(λ̄) =
⋂
∀λ′∈λ̄

{3r.(Dn+1) | ∀(λ′, λ′′) ∈ E where λ′′ = [D1, . . . , Dn u3r.(◦n), Dn+1]}

As shown in Proposition 4.2.23, if not all succeeding contexts λ′′ end with [. . . , Dn u
3r.(◦n), Dn+1], then the fragment 3r.Dn+1 is unsatisfiable in all applicable subexpres-

sion contexts λ̄, and therefore also in the context of the subexpression being refined

for which λ̄ were applicable. Therefore, the set re(λ̄) contains all role expressions

fragments which are at least permissible, even though some may be unsatisfiable.

In refinement, new role expressions are introduced either as refinements of the

top concept >, or in conjunction with some other expression such as an atomic or

negated atomic concept, another role expression, or some conjunction thereof. For

downward refinement, we select the most general of all role expressions in re(λ̄)

to introduce into any subexpression context. If the knowledge base supports role

inclusions such as r w s for roles r, s, this information may also be used in selecting

the most general set of role expressions. The initial set of role expressions ir(λ̄) to

introduce into downward refinement are the most general of the form ∃r.D, ∀r.D,

and 6nr.D, along with any >nr.D in the absence of any expression ∃r.D, as the

former is downward refined directly from the latter.

ir(λ̄) = {3r.D | 3r.D ∈ re(λ̄) ∧ ¬∃(2s.E) ∈ re(λ̄) s.t. (3r.D) vJλ′
(2s.E)}

Role expression subsumption for roles r, s, concepts D, E and any quantifier 3 ∈
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{∃, ∀, >n} where n ≥ 1 can be summarised as follows:

3s.D v 3r.D when s v r

3r.D v 3r.E when D v E

∀s.D v ∀r.E when s v r and D v E
>ns.D v >mr.E when n ≥ m and s v r and D v E
6ns.D w 6mr.E when n ≥ m and s v r and D v E

Note that the most general expression of the form 6nr.D for n ≥ 0 is the one where

D is as specific as possible, such as when D = ⊥. Downward refinements of 6nr.D

require upward refinements of D, an operator for which will be presented in Sec-

tion 4.3.4. To illustrate why this is the case, consider Example 4.3.4.

Figure 4.9: An example set of concept names A, B, C with a single role tuple group
of three tuples.

Example 4.3.4. Consider a set of concepts A, B, C where C < B, together with a single

role r and assertions r(w, x), r(w, y), r(w, z), A(w), B(x), C(y), C(z) as illustrated in

Figure 4.9. In this example, we have ( 62r.B)(I ,U ) = ∅ as w has three r-successors in B.

Now consider the downward refinement step 62r.B  ρ
62r.C where C ∈ ρ(B) as C < B.

Here, we find that ( 62r.C)(I ,U ) = {w} because w has two r-successors in C. Therefore, as

( 62r.C)(I ,U ) ⊇ ( 62r.B)(I ,U ), the refinement step was generalising (upward). In general,
6nr.C v 6nr.D for role r, concepts C, D where D v C, and n ≥ 0.

We introduce the most general role expressions of the set ir(λ̄) in conjunction with

simple concepts, other role expressions and conjunctions thereof with new cases for
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the operator ρ
λ̄
, as follows.

ρλ̄(C) =



. . .

{C u3r.D | ∀(3r.D) ∈ ir(λ̄) s.t. C � (3r.D)} if C ∈ ar f (λ̄)

{C1 u . . . u Cn u3r.D | ∀(3r.D) ∈ ir(λ̄) s.t. if C = C1 u . . . u Cn

Cn � (3r.D)} (n ≥ 2)

. . .

In this way, we rely on the concept precedence operator permitting atomic and

negated atomic simple concepts before any role expression, as follows:

A � ¬A � 31r.C � 32s.D

For any concept name A, concepts C, D, role names s, r ∈ NR and quantifiers 31,32.

Note that the precedence operator relies on an ordering of role names r1, . . . , rn such

that if any ri ⊆ rj, then i ≤ j. While the precedence order of differently quantified

role expressions is unimportant, we require that they appear after any atomic concept

expression A which includes > or any named concept which is the range of a role

expression. In this way, � ensures that multiple role expressions such as ∃r.D u
. . . u ∃r.E may appear in conjunction, but does not permit both ∃r.D u . . . u ∀s.E

and ∀s.E u . . . u ∃r.D which would lead to redundancy in the search by refinement.

Additionally, because of the equivalence (∀r.C) u (∀r.D) ≡ ∀r.(C u D), the operator

will not permit conjunction with an expression of the form ∀r.C if another conjunct

∀r.D is already present.

Once introduced, existing role expressions 3r.D may be downward refined as

3r.D  2s.E by modifying one of: the quantifier 3  2, the role name r  s, or

the filler D  E. In each case, the preceding expression will have been associated

with a non-empty set of most applicable contexts, λ̄. For any of these refinements,

the set λ̄ may be different, but must be non-empty as otherwise it indicates that

the refinement leads to an unsatisfiable subexpression. For example, consider the

refinement of the nested concept expression:

C u ∃r.(D u ∃s.(E)) C u >2r.(D u ∃s.(E))

In this case, all most applicable contexts λ ∈ λ̄ for the nested subexpression E were

those of the form λ = [A1 u ∃r.(◦1), A2 u ∃s.(◦2), A3] where C v A1, D v A2
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and E vJλ̄
A3 in each of their respective contexts. For this such refinement to be

permissible, we require that there is a non-empty set of most applicable contexts

λ̄′ for every subexpression. For example, for subexpression E, the non-empty set

of most applicable contexts λ̄′ after this particular refinement must have the form

λ′ = [A1 u >2r.(◦1), A2 u ∃s.(◦2), A3]. If not, it must have been the case that this par-

ticular refinement led to an unsatisfiable subexpression, as no instance chains were

found in the instance chase which constructed the context graph which satisfied the

nested expression nest(λ′).

In this way, we are able to use the context graph and most applicable contexts of

some subexpression S to determine if any refinement to S leads to any subexpression

S′ of S which is unsatisfiable. As described in Section 4.2.4, the boolean function

ncu(S) evaluates to false if any subexpression S′ of S has an empty set of most

applicable contexts. In order to compute ncu(S), all most applicable contexts λ̄′

for every subexpression S′ of S need to be recomputed. This is a straightforward

procedure which constructs the sets λ̄′ for each S′ by traversing the structure of S

and matching most applicable contexts over the edges of the context graph G until

all subexpressions S′ are analysed, which we require for further refinements of the

concept containing the subexpressions S′ with ρ
λ̄
. We now describe the cases for ρ

λ̄
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which handle the refinement of role expressions, as follows.

ρλ̄(C) =



. . .

{C1 u . . . u3s.E u . . . u Cn | if C = C1 u . . . u

∀(3s.E) ∈ ρ
λ̄
(2r.D) s.t. 2r.D u Ci u

∀Ci≤j≤n 3s.E � Cj ∧ . . . u Cn (i ≤ n)

ncu(C1 u . . . u3s.E u . . . u Cn)}

{∃r.E | E ∈ ρ
λ̄′
(D)} ∪ if C = ∃r.D

{∃s.(D) | s ∈ sh↓(r)} ∪

{ >nr.(D) | >nr.(D) ∈ re(λ̄) ∧ n ≥ 2∧

¬∃( >mr.(D)) ∈ re(λ̄) s.t. m < n ∧m ≥ 2}

{∀r.E | E ∈ ρ
λ̄′
(D)} ∪ {∀s.(D) | s ∈ sh↓(r)} if C = ∀r.D

{ >nr.D | >nr.D ∈ re(λ̄) ∧ n > m∧ if C = >mr.D

¬∃( >or.(D)) ∈ re(λ̄) s.t. m < o < n} ∪

{ >ms.D|s ∈ sh↓(r)} ∪ { >mr.E | E ∈ ρ
λ̄′
(D)}

{ 6nr.D | 6nr.D ∈ re(λ̄) ∧ n < m∧ if C = 6mr.D

¬∃( 6or.(D)) ∈ re(λ̄) s.t. n < o < m} ∪

{ 6ms.D|s ∈ sh↓(r)} ∪ { 6mr.E | E ∈ υ
λ̄′
(D)}

. . .

In the definition above, the set of most applicable contexts λ̄′ denotes those for the

interior expression ◦ being refined in the role expression 3r.(◦). Note also that down-

ward refinements of maximum qualified cardinality role expression 6nr.C relies on

the use of the upward refinement operator υ
λ̄
, which is described in Section 4.3.4.

With most of the cases for ρ
λ̄

now defined, we now turn our attention to disjunc-

tive subexpressions of the form C1 t . . . t Cn for n ≥ 2 in Section 4.3.3.

4.3.3 Disjunctive Expressions

To extend the operator ρ
λ̄

to handle disjunctive expressions, we follow the definition

of ρB which only permits the construction of disjunctions as refinements of >, as
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follows.

ρB(C) =



. . .

{C1 t . . . t Cn | Ci ∈ MB(1 ≤ i ≤ n} if C = >

{C1 t . . . t Ci−1 t D t Ci+1 t . . . t Cn | if C = C1 t . . . t Cn (n ≥ 2)

D ∈ ρB(Ci), 1 ≤ i ≤ n} ∪

{(C1 t . . . t Cn) u D|D ∈ ρB(>)}

. . .

We observe that refinements of disjunctions with the conjunction of another concept

expression such as (C1 t . . . t Cn)  (C1 t . . . t Cn) u D is simply a short-cut to

refining in n steps to produce ((C1 u D) t . . . t (Cn u D)) because conjunction is

distributive over disjunction where (C t D) u E ≡ (C u E) u (D u E), therefore we

omit this case.

In the case of ρ
λ̄
, we permit the introduction of disjunctive expressions from the

set of any most general atomic concepts permissible in any context λ, which we

define as mga(λ̄) where:

mga(λ̄) = {A | ∀A ∈ ar f (λ̄), ¬∃A′ ∈ ar f (λ̄) s.t. A <Jλ̄
A′}

Note that the set mga(λ̄) may contain > as it is always the most general concept. We

now define the handling of disjunctions with ρ
λ̄

as follows.

ρλ̄(C) =



. . .

{C1 t . . . t Cn | C1≤i≤n ∈ mga(λ̄) if C = >

∀C1≤i<j≤n : Ci � Cj}

{C1 t . . . t Ci−1 t D t Ci+1 t . . . t Cn | if C = C1 t . . . t Cn

D ∈ ρ
λ̄
(Ci) ∧ Ci−1 � D � Ci+1, 1 ≤ i ≤ n} (n ≥ 2)

. . .

Note that these rules permit the introduction of disjunctions such as A t A t . . . t A

for the same atom A. Clearly, such a refinement step is improper, but is necessary in

order to reach concepts or subexpressions such as A1t . . .tAn where each Ai is some

unique complex expression such as A u3r.(B). In a search procedure, introducing

disjunctive expressions with a large number of disjuncts n significantly expands the
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search space. Therefore, we may permit a user to manually impose a global limit on

n, the number of disjuncts in any disjunction, to limit the search space.

Furthermore, improper refinements are possible, for example, when refining A t
B  A t D where D ∈ ρ

λ̄
(B) and D v B v A. In this case, (A t B)Jλ = (A t D)Jλ

in any context λ as A is the subsuming concept. Any number of refinements of the

disjunct B will always produce an equivalent expression, and therefore represents

improper refinement steps.

When applying such refinement operators to a learning problem we may wish

to avoid such refinements as they are not productive, in that they do not alter the

coverage of the concept containing the refined subexpression AtD yet they increase

the complexity of the subexpression in an unguided way. We tackle this problem with

a method of altering the behaviour of ρ
λ̄

by suspending refinement of any disjunctive

operand which is strictly subsumed by another. However, testing the subsumption

of concepts without first computing their interpretation under Jλ is difficult, as it

relies on a description logic reasoner to compute subsumption under an open-world

interpretation which can be computationally expensive. An alternative may be to use

structural subsumption to test if some operand B subsumes D based on its structure

alone, however such algorithms are difficult to define, and as recognised in work

which defines ρB [58], no tractable complete structural subsumption algorithms exist

for the DL ALC [6]. As we are considering more expressive concept languages than

ALC, this is not a feasible solution either. In Chapter 5, Section 5.3.2, we introduce

a novel method which permits us to recognise when operands of disjunctions are

subsumed in any context by persisting information captured during the computation

of their coverage, which is used in subsequent refinements.

4.3.4 Upward Refinement

In the definition of the downward refinement operator ρ
λ̄
, we encountered a need

to refine upwards such as when downward refining maximum qualified cardinality

restrictions 6nr.D as shown in Example 4.3.4). In this section, we will define an up-

ward operator for use in these circumstances to complement the overall construction

of ρ
λ̄
.

Upward refinement, or concept generalisation with operator υ
λ̄

is not as straight-

forward to define as downward refinement as we have presented with the definition

of ρ
λ̄
. Typically, upward refinement begins with refinements of the bottom concept

⊥, just as downward refinement begins with refinements of most general concepts
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like >. In order to generalise ⊥ υ
λ̄

C in a step-wise manner for some C, we require

that each concept C be as specific as possible at each step.

The problem of generalisation has been tacked in ILP before. Amongst the tech-

niques considered are ones which generalise by first computing highly specific con-

cepts which tightly describe example instances in the domain, which in our case

corresponds to each individual i where i ∈ ∆λ. Over these specific concepts, a gen-

eralisation operator is then applied to produce concepts which subsume subsets of

specific concepts progressively until either solutions are found, or the most general

concept is reached [67]. However, when |∆λ| is very large for some context λ, and

the concept language has high expressivity such as those we are considering, this

approach will likely result in the generation of a vast set of concepts for upward

refinement which may be inefficient to traverse.

In order to avoid the potential inefficiency of generalisation over the large space

of possible concepts in any context λ, we intentionally define our upward refine-

ment operator υ
λ̄

to be incomplete by generalising from specific concepts which are

composed exclusively of simple concepts from ar f (λ̄) without role expressions. The

rationale behind this approach is that we may still want to take advantage of max-

imum qualified cardinality restrictions 6nr.C in our hypothesis language, but also

wish to restrict the range of concepts that C may take on to limit the overall search

space of concepts, as has been a goal throughout this chapter. We leave the definition

of a complete upward refinement operator for DL concepts to future work.

We begin by defining the set of most specific concept expressions in a set of most

applicable contexts λ̄ composed exclusively of concepts from ar f (λ̄) as the set msc(λ̄)

as follows:

msc(λ̄) = {A1 u . . . u An | ∀i ∈ ∆λ̄ ∀1≤j<k≤n Aj ∈ atom(i) ∧ ¬∃Ak s.t. Aj <Jλ̄
Ak}

The set msc(λ̄) provides us with all the most specific locally minimal conjunctions

of simple concepts which are permissible in the context described by all the most

applicable contexts λ̄.

Example 4.3.5. Given the set of concepts and strict subsumption, overlap and disjointness

relationships from Example 4.3.1, the set of most specific concepts are:

msc(λ̄) = {D, (C u E), (A u ¬C), (E u ¬C),

(A u C u ¬D), (C u ¬D u ¬E), (B u ¬C u ¬E), (B u C u ¬E)}
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This set can be compared to the top-down traversal of the downward operator ρ
λ̄

of Exam-

ple 4.3.3 where each of the concepts in msc(λ̄) appear at the end of downward refinement

chains.

The upward refinement operator υ
λ̄

employs the set msc(λ̄) as starting points

in refinement from ⊥ to conjunctions in the same way that ρ
λ̄

uses the set mgc(λ̄)

in generating refinements of > to disjunctions. From these concepts, generalisation

operators either remove a conjunct, replace a single atomic or negated atomic concept

with a subsuming concept from ar f (λ̄), or create a disjunction with an element from

msc(λ̄) if it is not already subsumed as shown in the definition of υ
λ̄

below.

Definition 4.3.6. Given a concept expression C and a set of most applicable contexts λ̄, the

upward refinement operator υ
λ̄
(C) is defined as:

υλ̄(C) =



{D | D ∈ msc(λ̄)} if C = ⊥

{A′ | A′ ∈ sh↑(A)} ∪ if C = A, A ∈ msc(λ̄)

{C t A′ | A′ ∈ msc(λ̄), A′ 6vJλ̄
C}

{C1 u . . . u Ci−1 u Ci+1 u Cn | 1 ≤ i ≤ n} ∪ if C = C1 u . . . u Cn(n ≥ 2)

{C t A′ | A′ ∈ msc(λ̄), A′ 6vJλ̄
C}

{C1 t . . . t Ci−1 t D t Ci+1 t Cn|D ∈ υ
λ̄
(Ci), if C = C1 t . . . t Cn(n ≥ 2)

1 ≤ i ≤ n, ∀C1≤i≤n : D 6vJλ
Ci} ∪

{C1 t . . . t Cn t A|A ∈ msc(λ̄),

∀C1≤i≤n : A 6vJλ
Ci}

The definition of operator υ
λ̄

is designed to reduce potential occurrences of im-

proper refinements when refining or generating disjuncts, as it ensures that disjuncts

are not subsumed by some other disjunct. This ensures that the operator does not

generate expressions such as C t D where D vJλ̄
C, as otherwise (C t D) ≡ C.

4.4 Learning Over Concrete Domains

One aspect of concept refinement we have not yet addressed is the handling of ex-

pressions over concrete domains such as number, boolean or string literals. We aim

to improve methods for concept search by refinement over knowledge bases with

potentially large data sets capturing experimental data which is likely to make use
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of concrete domains, so we will incorporate them into the definition of the ρ
λ̄

refine-

ment operator. The DL-Learner system employs methods of handling such domains

as part of the downward refinement operator ρB [56], which we will now describe.

Ordered sets of literals such as the integers Z, reals R, boolean values B and

strings S are all examples of concrete domains in OWL for which so-called datatype

properties range over. Similarly, in a DL, datatype roles are those which pair abstract

individuals from ∆ to literals from some concrete domain, as described in Defini-

tion 3.2.6.

At the time of writing, the DL-Learner system currently supports real (double)

and boolean literals accessible as d-successors of any datatype role d. Real-valued

literals are analysed as valuesd where valuesd = {l|K |= d(i, l)} for real-valued l

sorted in ascending order by <. When viewed as a list, the ordered set valuesd can be

indexed to refer to the ith element with valuesd[i]. In order to generate facet restrictions

(§3.2.1) over this list for use in refinement, a pre-determined number of splits smax is

specified and used to limit the number of ways a refinement operator can partition

valuesd with facet restrictions such as ≤ v and ≥ v into a list of pre-selected values

for datatype role d as splitsd, which is defined as follows:

splitsd = {tj|i =
|valuesd|
smax + 1

, tj = 0.5 · (valuesd[bi · jc] + valuesd[bi · jc+ 1]), 1 ≤ j ≤ smax}

where bvc is the floor function which rounds real values down to the closest integer.

The downward refinement operator ρB then incorporates the list of pre-calculated list

of split values splitsd for the datatype roles d against facet restrictions such as ≤ v,

≥ v where v ∈ splitsd, along with boolean value facet restrictions (= true), (= false)

as follows:

ρB(C) =



. . .

∅ if C = (= true)

∅ if C = (= false)

{≥ w | v = splitsd[i], i > 1, w = splitsd[i− 1]} if C = (≥ v)

{≤ w | v = splitsd[i], i < ]splitsd, w = splitsd[i + 1]} if C = (≤ v)

. . .

The set of terms used as initial expressions for refinement in MB is also extended to

contain the following facet restrictions, depending on the datatype of range expres-
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sion B for datatype role d which is assumed to be either only boolean or double:

{(= true), (= false)} (if d ranges over boolean values)

{≥ splitsd[smax],≤ splitsd[1]} (if d ranges over double values)

As recognised in the presentation of this particular method for handling numerical

facet restrictions by refinement, the pre-determined splits method was chosen to limit

the number of steps a refinement operator takes if there are very many literals in

the domain valuesd for some datatype role d. However, depending on the number

of splits chosen, this approach may permit sub-optimal choices of numerical facet

restriction values if optimal choices lie between two adjacent split values splitsd[i]

and splitsd[i + 1].

In our work, we aim to significantly improve upon the handling of numerical

facet restrictions by the refinement operator ρ
λ̄

by taking advantage of information

in the context graph and associated data structures which capture a more detailed

distribution of literals in each subexpression context λ. We begin by describing an

extension to the closed-world context-specific interpretation Jλ for handling facet

restrictions over boolean, string, integer and double concrete domains in each context

λ.

4.4.1 Context-Specific Interpretation of Datatype Expressions

Datatype restrictions in OWL2-DL and the underlying logic SROIQ(D) permit ex-

pressions which combine facet restrictions appropriate for particular concrete do-

mains D with boolean connectives such as conjunction ∧ and disjunction ∨. For

example, the domain of boolean values B = {true, false} permit the facet restriction

=, the domain of finite strings S permits = along with regular expressions to match

particular strings s ∈ S, and numerical domains such as the integers Z and reals

R permit the facet restrictions ≤,<,>,≥. Restrictions over a common concrete do-

main can then be combined with connectives to represent new expressions such as

double[(≥ 4.2∧ < 5.1) ∨ (> 5.2))] which represents the two sets of double-precision

real-typed literals [4.2, 5.1) and (5.2, ∞). The closed-world context-specific interpreta-

tion of such expressions is as follows, where R, S are facet restrictions over a common
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concrete domain D ∈ {B, S, Z, R}:

(= true)Jλ = {v ∈ ∆B
λ | v = true} (= false)Jλ = {v ∈ ∆B

λ | v = false}
(= s)Jλ = {v ∈ ∆S

λ | v = s}
(int[> n])Jλ = {v ∈ ∆Z

λ | v > n} (double[> n])Jλ = {v ∈ ∆R
λ | v > n}

(int[< n])Jλ = {v ∈ ∆Z
λ | v < n} (double[< n])Jλ = {v ∈ ∆R

λ | v < n}
(int[≥ n])Jλ = {v ∈ ∆Z

λ | v ≥ n} (double[≥ n])Jλ = {v ∈ ∆R
λ | v ≥ n}

(int[≤ n])Jλ = {v ∈ ∆Z
λ | v ≤ n} (double[≤ n])Jλ = {v ∈ ∆R

λ | v ≤ n}
(R ∧ S)Jλ = RJλ ∩ SJλ (R ∨ S)Jλ = RJλ ∪ SJλ

Note that we do not interpret regular expressions over strings in our interpretation,

only equality, as we do not consider refinements of regular expressions in our learn-

ing algorithm. It is plausible, however, that such a refinement may be useful for a

learner over the domain of natural or computer languages.

OWL2 also supports date and time literals which can be constrained by facet

restrictions similar to those with numbers. Again, we do not consider them here,

but they could be included in a straightforward way [66]. Perhaps with the excep-

tion of dates and times, the interpretation Jλ over boolean, string, integer and double

domain restrictions provides us with a degree of expressivity suitable for posing sim-

ple restrictions over most common data types we expect to encounter in knowledge

bases.

Definition 4.2.8 which describes the interpretation Jλ over concept terms extends

naturally with the concrete domain interpretations above, permitting concepts such

as:

Concept Interpretation

(∃r.(boolean[= true]))Jλ All individuals i in ∆λ which have at least one r-

successor literal equal to true.

(∀r.(int[> 5]))Jλ All individuals i in ∆λ for which all r-successors are

integer literals greater than 5.

( 62r.(double[≤ −2.2]))Jλ All individuals i in ∆λ which have at most two r-

successors which are double values less than or equal

to -2.2.

Note that the set of literals applicable in any subexpression context λ ending

with a datatype role d is ∆λ which differs from the sets valuesd for datatype roles d

in the definition of ρB, as it is limited to only those literals which are applicable, or
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reachable from the set of examples, in each context λ. This allows us to partition the

literal data in the interpretation (I ,U ) for any knowledge base into specific subsets

∆λ which permits us to define context-dependent splitting methods over relevant

subsets of literals.

The instance chase of Algorithm 4 describes how to construct local domains ∆λ

for every context λ captured in a context graph G. The construction of each local

domain ∆λ over datatype literals affords the benefit of understanding the limited set

of literals in each context over which to describe facet restrictions.

Given an exact subexpression context λ which corresponds to a role filler as a

quantified datatype literal such as λ = [D1, . . . , Dn u3d.(◦n),>D ] for some datatype

D, we know from Corollary 4.2.21 that an approximation of the local domain ∆λ is

the intersection of all local domains for all most applicable contexts λ̄ describing λ

from the context graph. Therefore, we can compute the limited set of literals ∆D
λ̄

by

taking the intersection of all ∆Dλ′ for all λ′ ∈ λ̄.

Once computed, the limited set of literals in each ∆D
λ̄

can be used to pre-determine

appropriate splits for refinement. However, we aim to take the computation of facet

restrictions in each context a step further by recognising that Algorithm 4 attributes to

each literal in each local domain ∆Dλ′ the set of example individuals e ∈ E from which

they were reachable. This information is useful given the intended use of the concepts

being refined, which is to act as hypotheses in a classification or subgroup discovery

learning problem as we will present in Chapter 5. In these learning problems, the

sets of examples are labelled with symbols from Ω and concepts are often sought

which describe the individuals and literals reachable from examples with one label

ω ∈ Ω to the exclusion of those from all others Ω \ {ω}. Given any set of numerical

literals ∆D
λ̄

where D ∈ Z, R ordered by ≤, we can identify runs of literals which are

reachable only from examples of one label l, as shown in Example 4.4.1.

Example 4.4.1. Consider a set of doubles ∆R
λ̄
= {−0.2, 1.3, 3.5, 4.0, 7.7, 10.6, 11.2}, a set of

examples labels Ω = {+,−} and the set of examples E which are partitioned into two labelled

sets as E = E+ ∪ E−, and where an instance chase procedure has attributed to each of the

doubles the following labels as being reachable from a labelled example e ∈ E+ or e ∈ E− any

of the contexts λ′ ∈ λ̄ as follows:

Literal: −0.2 1.3 3.5 4.0 7.7 10.6 11.2

Labels: + +,− +,− + + − −

All of the doubles reachable from examples labelled with either + or − can be described with
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the following facet restrictions:

Label Restriction

+ double[< 10.6]

− double[> −0.2]

A downward refinement of either of these restrictions targeting a particular label + or − may

be the following:

Label Refinement step Excluded

+ double[< 10.6] double[(< 1.3) ∨ (> 1.3∧ < 10.6)] {1.3}
+ double[< 10.6] double[(< 3.5) ∨ (> 3.5∧ < 10.6)] {3.5}
− double[> −0.2] double[(> −0.2∧ < 4.0) ∨ (> 7.7)] {4.0, 7.7}

In each of these cases, the refinement steps excluded a single largest contiguous run of

literals labelled with the opposite label from the set covered by the preceding expression.

Example 4.4.1 demonstrated that numerical facet restrictions can be constructed

from any approximating local domain ∆D
λ̄

based on the example labels from Ω at-

tributed to each literal in the set. We denote the technique for constructing refine-

ments of numerical domains in this way the run exclusion method. To describe this

method, we first define several functions which aid in its explanation.

For simplicity, we denote the label ω where ω ∈ Ω of any example e ∈ E as being

computable by function label(e) defined as follows:

label(e) = ω where e ∈ Eω

The function label(e) is deterministic for any example e as we assume all examples

are only given one label each, and the sets Eω for all ω ∈ Ω are pairwise disjoint.

However, any single literal v may be reachable via instance chains from several exam-

ples, therefore may be attributed with multiple labels from Ω by the instance chase.

The set of labels attributed to any single literal v amongst a set of most applicable

contexts λ̄ is retrievable by the function labels(v, λ̄) defined as follows:

labels(v, λ̄) = {ω | ∀λ ∈ λ̄, ∃(λ, v, e) ∈ L where label(e) = ω}

where the set L contains triples (λ, v, e) which denote that individual or literal v in

the local domain ∆λ for subexpression context λ was reachable from example e, and
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was constructed by the instance chase of Algorithm 4. The set of literals labelled with

ω common to all contexts λ ∈ λ̄ is denoted literals(ω, λ̄) as follows:

literals(ω, λ̄) = {v | ∀v ∈ ∆Dλ̄ where ω ∈ labels(v, λ̄)}

Assuming a non-empty numerical domain ∆D
λ̄

and non-empty subset literals(ω, λ̄),

we denote the global minimum gmin and maximum gmax, and labelled minimum lω
min

and labelled maximum lω
max as follows:

gmin = min ∆D
λ̄

gmax = max ∆D
λ̄

lω
min = min literals(ω, λ̄)

lω
max = max literals(ω, λ̄)

For some example label ω we may compute the lower bound lb(ω, λ̄) and upper

bound ub(ω, λ̄) over the domain ∆D
λ̄

as follows:

lb(ω, λ̄) =

−∞ if lω
min = gmin

lω
min otherwise

ub(ω, λ̄) =

∞ if lω
max = gmax

lω
max otherwise

We denote the set of predecessor and successor literals pre(v, λ̄) and suc(v, λ̄) over

an entire domain ∆D
λ̄

as follows:

pre(v, λ̄) = {v′ | v′ ∈ ∆D
λ̄

where v′ < v}
suc(v, λ̄) = {v′ | v′ ∈ ∆D

λ̄
where v′ > v}

Given any label ω ∈ Ω, we can now define the lower bound lb(ω, λ̄) = vω
min and

upper bound ub(ω, λ̄) = vω
max for all literals with label ω over set ∆D

λ̄
. Then, again

for any individual label ω, we can compute the set of most general numerical facet

restrictions with function mgnfr(ω, λ̄) as follows where t is a numerical datatype,

either t = int when D = Z or t = double when D = R:

mgnfr(ω, λ̄) =



>D if vω
min = −∞ ∧ vω

max = ∞

t[> max pre(vω
min, λ̄)] if vω

max = ∞ ∧ pre(vω
min, λ̄) 6= ∅

t[< min suc(vω
max, λ̄)] if vω

min = −∞ ∧ suc(vω
max, λ̄) 6= ∅

t[≥ vω
min∧ ≤ vω

max)] if pre(vω
min, λ̄) = suc(vω

max, λ̄) = ∅

t[> max pre(vω
min, λ̄)∧ otherwise

< min suc(vω
max, λ̄)]

Most general numerical facet restrictions describe starting points in refinement which
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cover all literals in a context for each label ω ∈ Ω. As demonstrated in Example 4.4.1,

subsequent refinements of most general numerical facet restrictions generated to

cover literals with label ω will seek to exclude the largest contiguous run of liter-

als with other labels ω′ ∈ Ω where ω′ 6= ω. This strategy aligns with the motivation

for classification and subgroup discovery learning problems where we aim to gener-

ate concepts which describe the literals reachable from examples of one label to the

exclusion of any others.

The kinds of numerical facet restrictions we consider are only those which are

disjunctions of expressions N = t[F1 ∨ . . . ∨ Fn] for n ≥ 1 initially constructed by

mgnfr(ω, λ̄) to target literals with label ω. Once this is performed, the expression N

and all of its subexpressions and refinements thereof will be attributed with label ω,

denoting the target label of the intended labelled literals in the interpretation of N,

which we denote with the subscript Nω.

Any Fi in a targeted numerical facet restriction expression Nω = t[F1 ∨ . . .∨ Fn] for

1 ≤ i ≤ n must represent a range of numbers which is either bounded above, below,

or both as a conjunction of facet restrictions. Specifically, each Fi must take the form

Fi = fmin, Fi = fmax, or Fi = ( fmin ∧ fmax) where fmin ∈ {> vmin,≥ vmin} and fmax ∈
{< vmax,≤ vmax} which, when appearing together in a disjunction, describe non-

overlapping numerical ranges with an inclusive or exclusive lower bound vmin, an

inclusive or exclusive upper bound vmax, or a combination of the two. Each numerical

range expression Fi must cover a non-empty set of literals from the approximate local

domain where NJλ̄
ω ⊆ ∆D

λ̄
for the set of most applicable contexts λ̄ as retrieved from

a context graph.

In order to downward refine any Nω, we modify one of the interior conjunctive

expressions Fi and compute the set of longest contiguous runs of literals labelled

with any other label ω′ where ω′ ∈ Ω and ω′ 6= ω. We define contiguous to mean

any unbroken sequence of literals vi, . . . , vj of length (j− i) ≥ 1 from a set of literals

ordered by < such as V = v1, . . . , vi, . . . , vj, . . . , vn for 1 ≤ i ≤ j ≤ n where each literal

vi to vj shares a common label ω′ and which are bounded by vi−1 and vj+1 labelled

with ω. In Example 4.4.1, the ordered sets {1.3} and {3.5} were examples of largest

contiguous runs of literals labelled with − amongst those labelled with +, and the

ordered set {4.0, 7.7} was the only largest contiguous run of literals labelled with +

amongst those labelled with −. Given an ordered set of labelled numerical literals

V, the function contig(ω, V) can be used to determine all contiguous runs of literals

labelled with ω and is described in Algorithm 5.
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Algorithm 5 The contig(ω, V) function to compute the set of all contiguous non-
empty runs of numerical literals labelled with ω from a non-empty ordered sequence
of numerical literals V = {v1, . . . , vn} where n ≥ 1.

1: function contig(ω, {v1, . . . , vn})
2: S := ∅ . The set of contiguous runs in V
3: R := ∅ . The current set of literals in a run
4: i := 1 . Literal index starting with v1
5: while i ≤ n do
6: if ω ∈ labels(vi) ∧ ∃ω′ ∈ labels(vi) s.t. ω′ 6= ω then
7: if R 6= ∅ then
8: S := S ∪ {R}
9: R := ∅

10: end if
11: S := S ∪ {{vi}}
12: else if ω ∈ labels(vi) then
13: R := R ∪ {vi}
14: else if R 6= ∅ then
15: S := S ∪ {R}
16: R := ∅
17: end if
18: i := i + 1
19: end while
20: if R 6= ∅ then
21: S := S ∪ {R}
22: end if
23: return S
24: end function
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The sets of all equally longest contiguous runs of a set contig(ω, V) is defined as

contigmax(ω, V) as follows:

contigmax(ω, V) = {R | ∀R ∈ contig(ω, V) where ¬∃R′ s.t. |R′| > |R|}

Downward refinements of a disjunctive numerical facet expression Nω = t[F1 ∨ . . . ∨
Fn] can be performed for each Fi where 1 ≤ i ≤ n by the function split(Fi, ω, Ω, λ̄)

as described by Algorithm 6. For each Fi which is intended to target literals labelled

only with ω, the split algorithm targets all other literals labelled with ω′ ∈ Ω \ {ω}
by constructing sets of longest contiguous runs of literals with contigmax(ω

′, FJλ̄
i ),

then subtracts these from FJλ̄
i to produce new literal sets to be covered by the refined

expression F′i . The split algorithm makes use of the function rnr which performs the

expression refinement, and is defined below.

Algorithm 6 The split(F, ω, Ω, λ̄) computes a set of downward refinements for the
numerical facet restriction F targeting literals with label ω by exclusion of runs of
literals with other labels from Ω relative to a set of most applicable contexts λ̄.

1: function split(F, ω, λ̄)
2: FJλ̄ = {v1, . . . , vn} . Ordered set of literals covered by F in ∆D

λ̄
3: S := ∅
4: for all ω′ ∈ Ω where ω′ 6= ω do
5: for all {vi, . . . , vj} ∈ contigmax(ω, FJλ̄) do
6: if i = 1 and j = n then
7: low := ∅, high := ∅ . Entire set removed
8: else if i = 1 and j < n then
9: low := ∅, high := {vj+1, . . . , vn} . LHS removed

10: else if i > 1 and j = n then
11: low := {v1, . . . , vi−1}, high := ∅ . RHS removed
12: else if i > 1 and j < n then
13: low := {v1, . . . , vi−1}, high := {vj+1, . . . , vn} . Split in two
14: end if
15: S := S ∪ rnr(Fi, low, high)
16: end for
17: end for
18: return S
19: end function

The function rnr(F, low, high) takes an existing facet restriction expression F where

FJλ̄ = {v1, . . . , vn} and a new lower and upper target literal set low = {v1, . . . , vi−1}
and high = {vj+1, . . . , vn} as computed by split(F, ω, Ω, λ̄) to produce a set with the
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new facet restriction F′ where (F′)Jλ̄ = low∪ high, v0 < v1 and vn < vn+1 as follows:

rnr =



∅ if low = ∅ ∧ high = ∅

∅ if low∪ high = FJλ̄
i

{> vj} if Fi = (> v0) ∧ low = ∅

{> v0 ∧ < vi} if Fi = (> v0) ∧ high = ∅

{(> v0 ∧ < vi) ∨ (> vj)} if Fi = (> v0)

{> vj} if Fi = (≥ v1) ∧ low = ∅

{≥ v1 ∧ < vi} if Fi = (≥ v1) ∧ high = ∅

{(≥ v1 ∧ < vi) ∨ (> vj)} if Fi = (≥ v1)

{> vj ∧ < vn+1} if Fi = (< vn+1) ∧ low = ∅

{< vi} if Fi = (< vn+1) ∧ high = ∅

{(< vi) ∨ (> vj ∧ < vn+1)} if Fi = (< vn+1)

{> vj ∧ ≤ vn} if Fi = (≤ vn) ∧ low = ∅

{< vi} if Fi = (≤ vn) ∧ high = ∅

{(< vi) ∨ (> vj ∧ ≤ vn)} if Fi = (≤ vn)

{> vj ∧ < vn+1} if Fi = (> v0 ∧ < vn+1) ∧ low = ∅

{> v0 ∧ < vi} if Fi = (> v0 ∧ < vn+1) ∧ high = ∅

{(> v0 ∧ < vi) ∨ (> vj ∧ < vn+1)} if Fi = (> v0 ∧ < vn+1)

{> vj ∧ ≤ vn} if Fi = (> v0 ∧ ≤ vn) ∧ low = ∅

{> v0 ∧ < vi} if Fi = (> v0 ∧ ≤ vn) ∧ high = ∅

{(> v0 ∧ < vi) ∨ (> vj ∧ ≤ vn)} if Fi = (> v0 ∧ ≤ vn)

{> vj ∧ < vn+1} if Fi = (≥ v1 ∧ < vn+1) ∧ low = ∅

{≥ v1 ∧ < vi} if Fi = (≥ v1 ∧ < vn+1) ∧ high = ∅

{(≥ v1 ∧ < vi) ∨ (> vj ∧ < vn+1)} if Fi = (≥ v1 ∧ < vn+1)

{> vj ∧ ≤ vn} if Fi = (≥ v1 ∧ ≤ vn) ∧ low = ∅

{≥ v1 ∧ < vi} if Fi = (≥ v1 ∧ ≤ vn) ∧ high = ∅

{(≥ v1 ∧ < vi) ∨ (> vj ∧ ≤ vn)} if Fi = (≥ v1 ∧ ≤ vn)

We can now define how numerical facet restrictions N over the integers Z and dou-



106 Concept Induction by Refinement Operators

bles R are refined with the downward refinement operator ρ
λ̄
, as follows:

ρλ̄(N) =


{N′ω | ∀ω ∈ Ω, N′ω ∈ mgnfr(ω, λ̄)} if N = >Z or N = >R

{t[F1 ∨ . . . ∨ F′i ∨ . . . ∨ Fn] | ∀i ∈ {1, . . . , n}, if Nω = t[F1 ∨ . . . ∨ Fn]

∀F′i ∈ split(Fi, ω, Ω, λ̄)} where n ≥ 1

Note that the definition of ρ
λ̄
(N) for numerical facet restriction expressions N

relies on functions mgnfr and split. These two functions require the computation of

the approximate local domain of ordered numerical literals ∆D
λ̄

every time they are

invoked. For knowledge bases containing a large amount of numerical literal data,

this may be expensive. However, the knowledge bases we consider will often contain

fewer data literals than abstract individuals, as we will show in Chapter 6. In these

cases, this method performs efficiently given that sets ∆D
λ̄

are restricted in size for

any set of contexts λ̄, and that the functions mgnfr and split are both efficient in that

they have computational complexities which are at most PTIME.

Finally, we include the following rules for downward refining boolean literals B

and string literals S which begin refinement from the top datatype in either domain:

ρλ̄(N) =

{boolean[= v] | ∀v ∈ ∆B
λ̄
} if N = >B

{string[= v] | ∀v ∈ ∆S
λ̄
} if N = >S

These downward refinement rules simply generate t[= v] facet restrictions to single

out individual values in each domain. While this suffices for boolean values as there

are only two, namely boolean[= true] and boolean[= false], clearly more complex rules

can be defined over the set of strings, however we do not consider these.

4.5 An Improved Downward Refinement Operator

Throughout the previous section, we constructed the downward refinement operator

ρ
λ̄

in a piecewise way to address each of the cases for refinement, namely:

• Atomic and negated atomic concept conjunctions (§4.3.1);

• Role expressions (§4.3.2);

• Disjunctions (§4.3.3);

• Numerical, boolean and string-based concrete domains (§4.4).

The full definition for the operator ρ
λ̄

is given in Definition 4.5.1.



§4.5 An Improved Downward Refinement Operator 107

Definition 4.5.1. Given a concept expression C or datatype facet restriction N and a set of

most applicable contexts λ̄, the downward refinement operator ρ
λ̄
(C) is defined as follows:

ρλ̄(C) =



{C1 t . . . t Cn | C1≤i≤n ∈ mga(λ̄) if C = >

∀C1≤i<j≤n : Ci � Cj}

{A | A ∈ ar f (λ̄), A <Jλ̄
C,¬∃A′ ∈ ar f (λ̄) s.t. if C ∈ ar f (λ̄)

A <Jλ̄
A′ <Jλ̄

C} ∪ {C u A | C u A ∈ ar f (λ̄),

C � A, C overlaps A} ∪

{C u3r.D | ∀(3r.D) ∈ ir(λ̄) s.t. C � (3r.D)}

{C1 u . . . u Cn u A | A ∈ ar f (λ̄), if C = C1 u . . . u Cn

Cn � A, ∀C1≤i≤n∀λ ∈ λ̄ : Ci ∈ ar f (λ̄)→ (n ≥ 2)

Ci overlaps A} ∪

{C1 u . . . u Cn u3r.D | ∀(3r.D) ∈ ir(λ̄) s.t.

Cn � (3r.D)}

{C1 u . . . u3s.E u . . . u Cn | if C = C1 u . . . u

∀(3s.E) ∈ ρ
λ̄
(2r.D) s.t. 2r.D u Ci u

∀Ci≤j≤n 3s.E � Cj ∧ . . . u Cn (i ≤ n)

ncu(C1 u . . . u3s.E u . . . u Cn)}

{∃r.E | E ∈ ρ
λ̄′
(D)} ∪ {∃s.(D) | s ∈ sh↓(r)} ∪ if C = ∃r.D

{ >nr.(D) | >nr.(D) ∈ re(λ̄) ∧ n ≥ 2∧

¬∃( >mr.(D)) ∈ re(λ̄) s.t. m < n ∧m ≥ 2}

{∀r.E | E ∈ ρ
λ̄′
(D)} ∪ {∀s.(D) | s ∈ sh↓(r)} if C = ∀r.D

{ >nr.D | >nr.D ∈ re(λ̄) ∧ n > m∧ if C = >mr.D

¬∃( >or.(D)) ∈ re(λ̄) s.t. m < o < n} ∪

{ >ms.D|s ∈ sh↓(r)} ∪ { >mr.E | E ∈ ρ
λ̄′
(D)}

{ 6nr.D | 6nr.D ∈ re(λ̄) ∧ n < m∧ if C = 6mr.D

¬∃( 6or.(D)) ∈ re(λ̄) s.t. n < o < m} ∪

{ 6ms.D|s ∈ sh↓(r)} ∪ { 6mr.E | E ∈ υ
λ̄′
(D)}

{C1 t . . . t Ci−1 t D t Ci+1 t . . . t Cn | if C = C1 t . . . t Cn

D ∈ ρ
λ̄
(Ci) ∧ Ci−1 � D � Ci+1, 1 ≤ i ≤ n} (n ≥ 2)
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ρλ̄(N) =



{N′ω | ∀ω ∈ Ω, N′ω ∈ mgnfr(ω, λ̄)} if N = >Z or N = >R

{t[F1 ∨ . . . ∨ F′i ∨ . . . ∨ Fn] | ∀i ∈ {1, . . . , n}, if Nω = t[F1 ∨ . . . ∨ Fn]

∀F′i ∈ split(Fi, ω, Ω, λ̄)} where n ≥ 1

{boolean[= v] | ∀v ∈ ∆B
λ̄
} if N = >B

{string[= v] | ∀v ∈ ∆S
λ̄
} if N = >S

We now make some remarks about the theoretical properties of this refinement op-

erator in terms of redundancy, completeness, and properness.

4.5.1 Properties of ρ
λ̄

Proposition 4.5.2. The downward refinement operator ρ
λ̄

is not complete.

Proof. It suffices to show that ρ
λ̄

is not complete because refinements of maximum

qualified cardinality restrictions such as 6nr.D  ρ
λ̄

6nr.E where D v E are per-

formed via the incomplete upward refinement operator υ
λ̄

(Definition 4.3.6) where

E ∈ υ
λ̄
(D).

Proposition 4.5.3. The downward refinement operator ρ
λ̄

is redundant.

Proof. It suffices to show that ρ
λ̄

will generate redundant refinement chains as shown

in Example 4.3.3.

Proposition 4.5.4. The downward refinement operator ρ
λ̄

is not proper.

Proof. It suffices to show that ρ
λ̄

may introduce disjunctions of the form A t A for

some concept A, as A t A ≡ A.

Despite the operator ρ
λ̄

being not complete, redundant and not proper, each of

these characteristics has been carefully considered in the design of ρ
λ̄

(§4.2.4) to en-

sure that it only avoids the construction of clearly unsatisfiable concept expressions,

or those with an empty closed-world interpretation, for the purposes of efficiency.

As we will present in Chapter 6, we are able to integrate ρ
λ̄

into learning algo-

rithms which prove to be quite efficient and achieve strong results which outperform

the state-of-the-art with respect to systems like DL-Learner which employ the rela-

tively simple yet complete refinement operator ρB.

As is the case with the DL-Learner system, the inefficiency which results from

the redundancy and improperness of the refinement operators ρB and ρ
λ̄

can be
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handled not by modifying the refinement operator but by detecting redundancy post-

refinement for any concept, such as by checking for duplicate concepts in a search

beam, or a global set of concepts which a search has considered before, at the cost of

extra memory usage at runtime, which we consider in subsequent chapters.

4.6 Summary

In this chapter, we have presented an analysis of a state-of-the-art refinement operator

for the highly expressive DL known as SROIQ and identified several inefficiencies

which we addressed with the definition of a new operator (§4.1). We then presented

novel work around a method of defining the closed-world interpretation of subex-

pressions of any concept expression known as a context-specific interpretation (§4.2).

We then showed how an approximation of a context-specific interpretation can be

computed and then usefully applied to the definition of a new refinement opera-

tor (§4.3) which mitigates the issues identified with the state-of-the-art operator in

Section 4.1, and introduces novel method for extending the downward refinement

operator for learning over concrete domains with a view to supporting classification

and subgroup discovery (§4.4). In Chapter 5, we will describe how we integrate

the refinement operator known as ρ
λ̄

into learning algorithms for classification and

subgroup discovery, before analysing their performance in Chapter 6.
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Chapter 5

Supervised Learning in DL

Knowledge Bases

Supervised learning over DL knowledge bases involves searching for concepts which

cover sets of labelled example individuals which meet some quality criteria. As we

saw in Section 3.3.1 of Chapter 3, two examples of supervised learning are classifica-

tion and subgroup discovery which will be the main focus of this chapter. Although

the supervised learning methods presented in this chapter are applicable to learning

problems involving two or more example labels, we will often restrict our attention

to binary learning problems where any example e from the set of all examples E is

labelled with ω ∈ {+,−}, either positive (+) or negative (-) for ease of exposition

without loss of generality.

Throughout this chapter, we address the problems of classification and subgroup

discovery with application of the refinement operator ρ
λ̄

as developed in Section 4.1

of Chapter 4. We will show how this operator can be incorporated into generate-

and-test learning algorithms (§3.4.1) and how the auxiliary data structures which

ρ
λ̄

depends on, such as the context graph (§4.2.2) and local domains (§4.2), support

the efficient evaluation of concepts with these algorithms. In applying ρ
λ̄

to search

concepts, we will also address how the properties of redundancy and improperness

may adversely affect the performance of the learning algorithms we present (§5.3),

and describe methods to mitigate these problems.

5.1 Supervised Learning

Given a set of example data E where each example e ∈ E is labelled with one of

ω ∈ {+,−}, supervised learning generally seeks to find concepts which cover a set of

examples to represent a certain distribution of labels. In the problem of subgroup dis-

111
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covery, concepts are sought, also known as candidates or hypotheses h, which describe

a set of examples with an unusual distribution relative to the set of all examples.

Consider the case where we have 100 examples labelled + and 100 labelled −, giving

us a 50/50 split of examples labelled + to −. If a hypothesis concept h covers 90

examples labelled + and 10 examples labelled −, the split becomes 90/10 and may

be considered sufficiently unusual compared to 50/50 such that h is deemed to be

interesting. Interestingness is usually defined in terms of a threshold on a correla-

tion measure function which assesses the proportions of labelled examples which are

deemed significant enough for some hypothesis h to be considered a solution to a

learning problem. For example, in subgroup discovery, weighted relative accuracy

(Definition 3.3.4) is one such function which can be used in this way. Generally, hy-

potheses h found to be interesting are descriptive in that the structure of h reveals

what it is about the examples it covers that results in an unusual distribution in the

cover. Subgroup discovery therefore generalises many data mining tasks which seek

hypotheses which describe interesting clusters or groups of labelled examples. The

very structure of a hypothesis h directly reveals why examples are covered, which

ought to provide insight into the problem being solved. Hypotheses posed as DL

concepts are particularly suited for this task, as they can be composed from domain-

specific human comprehensible terms such as class and property names from an

OWL ontology which describes, for example, terms from medicine, genomics, or

manufacturing.

The problem of classification can be seen as a special case of subgroup discovery

where hypothesis concepts h are sought which cover only those examples labelled

with certain labels to the exclusion of all others, such as when h covers all examples

labelled + and no examples labelled −. In this way, hypotheses sought for solving

classification problems are often intended for use in prediction, as given a previously

unseen example e, we may provide a label for e by checking if it may be an instance

of h in which case it is labelled +, otherwise −. Therefore, in classification, we seek

concepts h which generalise well to unseen examples such that it performs well in

prediction tasks.

We will now describe a generalised search strategy which employs the use of the

refinement operator ρ
λ̄

for searching a space of concepts which is appropriate for

both subgroup discovery and the more specialised problem of classification (§5.1.1).

In the definition of our search algorithm, we will analyse various measure functions

used for assessing the performance of concepts and show how they may indicate
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when parts of the search space may be pruned to improve performance (§5.1.1.2).

5.1.1 Learning as Search

In Chapter 4, we developed the downward refinement operator ρ
λ̄

to control the set

of concepts refined from any concept expression C such that it avoids the produc-

tion of many concepts which are clearly unsatisfiable or redundant, with the aim of

reducing the search space of concepts. While ρ
λ̄

may exclude concepts which are

of little value when used to solve learning problems by generate-and-test methods,

the resulting space of concepts which ρ
λ̄

structures and operates over may still be

impractically large for knowledge bases containing a large number of concepts and

roles. Therefore, simple methods which enumerate the entire space of concepts such

as Algorithm 2 cannot be used in practice, and we are instead required to bound

the total number of hypotheses under consideration at any stage of the algorithm to

limit memory usage.

Algorithm 3 of Chapter 3 presented what is known as a basic beam search strategy

appropriate for searching through a large space of candidate concept expressions. In

this algorithm, the set of concepts under consideration at any one time is bounded

with a maximum cardinality, and only the candidates deemed to be the best are

maintained at any point in the algorithm. While this approach effectively addresses

the problem of managing a large search space, it results in the learning algorithm

being approximate as solutions which are refinements of candidates which were ex-

cluded from the beam set at any point will not be explored. Beam search methods

rely on the use of so-called heuristic functions to determine which candidates ought

to be maintained in the beam with the expectation that solutions are to be found

amongst their refinements.

Heuristic functions are often defined in terms of the current performance of a

candidate concept h relative to the learning problem being solved, along with other

measures such as the structural complexity of h. For example, in a classification

problem, the accuracy function may be used to assess current performance, while

structural complexity can be measured simply by the number of terms in the expres-

sion as length(h). These functions can be combined into one heuristic utility function

u as per Definition 3.4.12 as follows:

u(h, E) = acc(h, E)− β · length(h)
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where length : L 7→ N maps concept expressions to their length as the number of

terms in the expression h ∈ L, and where β ∈ [0, 1] is a fixed parameter which

captures the user-defined importance of concept length relative to accuracy, and is

chosen experimentally. By penalising the utility of a concept based on its length, we

are preferring shorter concepts with high accuracy over longer ones, which embodies

the well-known Minimum Description Length (MDL) principle [84], whereby it is antic-

ipated that simpler, shorter hypotheses ought to generalise better than longer ones

over unseen data for the purposes of prediction.

Accuracy gain is another technique which may be used in defining a heuristic

function for use in concept learning which is to incorporate the degree to which

accuracy increased or decreased from some concept h0 to one of its refinements h1,

reflecting the intuition that relatively large stepwise gains or losses in accuracy are

indicative of heading closer to or further away from solutions from h0  h1. This

can be incorporated into a utility function as follows:

u(h1, E) = acc(h1, E) + α · (acc(h1, E)− acc(h0, E))− β · length(h1)

The fixed parameter α ∈ [0, 1] is similar to β in that it determines the user-defined

importance of accuracy gain (or loss) relative to the accuracy of h. This utility func-

tion is used by the DL-Learner system for classification in the CELOE and OCEL

search strategies, except that instead of length(h), the latter employs the length of the

refinement chain > . . . h instead [58].

Recall that a utility function u induces a ranking over concepts where, for two

concepts C, D and a set of examples E , that u(C, E) < u(D, E) implies that D is

preferred over, or is stronger than, concept C. In a search algorithm which selects

candidate expressions such as C or D to refine towards concepts which are solutions,

the utility function can be used to describe which concepts are the best to refine first

over any others. For example, in a beam search with a beam set B of cardinality n

for which all members have been refined into a set E = {h | ∀b ∈ B : h ∈ ρ(b)},
repopulation of the beam B may be performed by selecting the n-best candidates of

E according to their utility u.

In addition to a utility function, a search algorithm will impose a minimum

threshold τ on a measure function to define a boolean quality function Q which

is used to indicate when a hypothesis h may be considered a solution to a learning

problem. For example, hypotheses h which can be considered solutions where ac-

curacy is used as the measure function may threshold accuracy where τ = 0.95 as
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follows:

Q(h, E) = acc(h, E) > 0.95

A search algorithm which assesses the performance of hypotheses based on a mea-

sure function f may also be able to leverage certain properties of f to determine if

refinements of any particular candidate hypothesis h could ever satisfy the quality

function. Such properties of the measure functions are those of anti-monotonicity or

convexity, as we will describe in the next two sections. These properties permit us

to define lower bounds on the coverage of certain sets of labelled examples for any

hypothesis h which indicate if any of the refinements ρ∗(h) could ever be considered

a solution. If they cannot, the space of concepts defined by the set ρ∗(h) may be

effectively pruned from the search space, thus improving efficiency. In the next two

sections, we will analyse these properties against several common measure functions.

5.1.1.1 Anti-Monotonic Quality Criteria

Recall that a boolean quality functionQ is anti-monotonic by Definition 3.4.9 if, for any

two concepts C, D where C v D, that if Q(C) succeeds, Q(D) necessarily succeeds.

If the quality function Q is defined in terms of a threshold τ on a measure function

f (C, E) ≥ τ which fails for any downward refinement E ∈ ρ∗(C), we conclude that

the condition f (h, E) ≥ τ is anti-monotonic for any concept h.

The relFreq function which computes relative frequency of Definition 3.4.10 is an

example of an anti-monotonic measure function which we can use to apply to a

search. Basically, relFreq can be used to ensure that any candidate concept C must

strictly cover a minimum proportion of examples from all examples E as:

relFreq(C, E) ≥ τmin

where τmin ∈ [0, 1] and represents a minimum threshold on relative frequency, for

example, τmin = 0.1 requires that any candidate C must cover at least 10% of all

examples. Clearly, this condition is anti-monotonic as any generalisation D where

C v D will also have relFreq(D, E) ≥ τmin as D cannot cover any fewer examples

than C. This condition can be used for pruning the search space, as if we find that

relFreq(C, E) < τmin, then for all concepts E ∈∈ ρ∗(C) we will have relFreq(E, E) <

τmin.

Other measures of quality, such as the accuracy function, are not anti-monotonic,

and therefore, cannot be used to prune away parts of the search space based on
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simply thresholding on their values. Fortunately, we may still define similar condi-

tions under which refinements of any concept may never be considered of sufficient

quality if the measure function has the property of convexity, in which case we may

impose certain minimum bounds on the cover of hypotheses such that we ensure

that their refinements may still contain a candidate of sufficient quality.

5.1.1.2 Convex Quality Criteria

Generally, if a quality function Q is defined over a measure function f which can be

shown to be convex, we may conclude that f is anti-monotonic which will assist us

in understanding when to prune parts of a search space away to improve efficiency.

To define the convexity of a function such as f , we first define the notion of a convex

set, as follows.

Definition 5.1.1. (Convex Set) A set S in some vector space such as Rd is convex if, for

any two vectors s1, s2 ∈ S and any t ∈ [0, 1], then the vectors described by (1− t)s1 + ts2

must also belong to S. Intuitively, this means that all vectors which lie on the straight line

between any two vectors s1 and s2 appear in S.

Definition 5.1.2. (Convex, Concave Function) A function f : S 7→ R is convex iff S ⊆
Rd is a convex set and ∀s1, s2 ∈ S, t ∈ [0, 1] : f (ts1 + (1− t)s2) ≤ t f (s1) + (1− t) f (s2). If

f is convex, then we say that − f is concave, and vice-versa. [85]

In order to analyse such functions f in terms of the covers of the concepts, we con-

sider the stamp point function sp : L× S 7→ Zd which maps concepts C ∈ L and the

population set of examples E ∈ S where each example e ∈ E is labelled with one of d

distinct labels as eωi where ωi ∈ Ω and d = |Ω| and 1 ≤ i ≤ d as:

sp(C, E) = 〈xω1 , . . . , xωd〉

where xωi = |C(I ,U ) ∩ Eωi |. The function sp maps the example cover of some concept

expression C to a so-called stamp point 〈xω1 , . . . , xωd〉 where each component xωi rep-

resents the number of examples labelled ωi for each label 1 ≤ i ≤ d in d-dimensional

coverage space [65, 33]. Measure functions f can then be redefined in terms of func-

tions in coverage space with σf where:

σf (sp(C, E)) = f (C, E)



§5.1 Supervised Learning 117

For example, consider the accuracy function as per Definition 3.3.3 where Ω =

{+,−} which is mapped into coverage space as follows:

sp(C, E) = 〈x, y〉 where x = TP = |C(I ,U ) ∩ E+|, and y = FP = |C(I ,U ) ∩ E−|

where x describes the number of examples labelled + and y describes the number of

examples labelled − in the cover of C. In terms of two-dimensional coverage space,

the accuracy function acc(C, E) where P = TP + FN = |E+| and N = FP + TN =

|E−| becomes:

σacc(〈x, y〉) = x + (N − y)
x + y + (P− x) + (N − y)

=
x + N − y

P + N

Consider the case where any concept C is considered a solution to a learning problem

by imposing a minimum threshold τmin over accuracy as Q(C, E) = acc(C, E) ≥ τmin.

By rearranging for y, the definition of accuracy in coverage space becomes:

y ≤ x− τmin(N + P) + N

By this equation, concept C meets the criteria to be considered a solution given the

numbers x, y of covered examples labelled +,− when this equation is satisfied. In

Figure 5.1, we plot this as a function in coverage space for various values of minimum

accuracy τmin, which each represent isometric lines passing through all points 〈x, y〉
for a fixed value of τmin. Here, we see that the isometric lines of the accuracy function

are linear, which is the precise condition under which a function may be both convex

and concave.

From Figure 5.1 we see the isometric lines for the accuracy function plotted for

both τmin = 0.75 and τmin = 0.95, where those candidate concepts with covers 〈x, y〉
which lie in the area between each respective isometric line and the x-axis represent-

ing solutions which meet or exceed the minimum accuracy τmin.

The point at which isometric lines in coverage space cross an axis such as where

y = 0 provides us with lower bounds on the other variables, such as x. In this example,

the isometric line for τmin = 0.75 crosses the x-axis at x = 50 when y = 0, therefore no

candidate with a stamp point 〈x, y〉 can ever be a solution where σacc(〈x, y〉) ≥ 0.75

when x < 50. This analysis provides us with conditions with which we may use to

prune candidates and all of their specialisations from a downward-refinement search,

as concept covers 〈x, y〉 may only ever be reduced.
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Figure 5.1: A coverage space plot representing the number of positive examples la-
belled + on the x-axis and negative examples labelled − on the y-axis. Two isometric
lines for accuracy threshold values τmin ∈ {0.75, 0.95} for a problem with 100 positive
and 100 negative examples are shown, along with the diagonal line at x = y. Also
plotted are the stamp points of two hypotheses, C at 〈92, 20〉 and C′ at 〈80, 15〉.

Given any candidate h with stamp point 〈x, y〉 in coverage space, we can also

define upper bounds on the potential future value of any downward refinement of h by

inspecting the value of the measure function σf by setting one of the variables of the

stamp point to 0. For example, consider the two candidates C at stamp point 〈92, 20〉
and C′ at point 〈80, 15〉 from Figure 5.1. The upper bounds on the potential future

value of accuracy for any number of refinements of C or C′ is found by assuming the

refinements have covers which contain no negative examples, as follows:

• C : σacc(〈92, 0〉) = 0.96

• C′ : σacc(〈80, 0〉) = 0.9

With respect to the minimum threshold τmin = 0.95, we find downward refinements

of C can potentially reach a refinement with accuracy 0.96, therefore should be con-

sidered for future refinement. However, as C′ has an upper bound of 0.9, we may

safely prune it from the search as C′ and all of its downward refinements ρ∗(C′) can

never satisfy σacc ≥ 0.95. The notion of computing an upper bound on the future

potential value of convex measure functions σf was formalised by Zimmerman and

De Raedt [111] as follows:

Definition 5.1.3. (Upper Bounds on Convex Measure Functions) The upper bound on

values of a convex measure function σf with respect to a candidate hypothesis h with stamp

point 〈x, y〉 is given by the function ubσf as:

ubσf (〈x, y〉) = max {σf (〈x, 0〉), σf (〈0, y〉)}



§5.1 Supervised Learning 119

Upper bounds on the potential future value of any candidate computed with ubσf

permit us to prune candidates from a search based directly on a minimum threshold

τmin on σf.

While accuracy is useful for binary classification problems, it is not useful for

subgroup discovery in general which aims to locate hypotheses which cover an un-

usual distribution of examples relative to a population, such as hypotheses which

cover more examples labelled − than labelled +. In these problems, so-called cor-

relation measures are often used to assess the interestingness of a candidate to define

which hypotheses are solutions. Two common correlation measures for assessing the

interestingness of subgroups are the χ2 statistic, and weighted relative accuracy (WRA),

which have both been shown to be convex functions [65, 111].
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Figure 5.2: Plots of various isometric lines in coverage space for χ2 on the left, and
weighted relative accuracy (WRA) on the right for a population of 200 examples
labelled + on the x-axis, and 100 examples labelled − on the y-axis.

Figure 5.2 shows various isometric lines for χ2 and WRA, which lie either side

of the diagonal x = y from (0, 0) to (P, N). Note that the isometric lines for various

threshold values are reflected on either side of the diagonal to capture interestingness

irrespective of the proportion of examples labelled either with + or − relative to the

population, which here is shown where P = 200 and N = 100. Candidates with

coverages 〈x, y〉 may be considered solutions when their point in coverage space

does lies outside the space between the two reflected isometric curves [32].

The χ2 function is often used to evaluate the statistical significance of the cov-

erage of candidates relative to the example population in rule learning systems. In

Figure 5.2, χ2 is shown to be thresholded at χ2 ≥ 3.841 beyond which a candi-

date cover represents a statistically significant distribution of examples relative to

the population with a probability of more than 95%, and where χ2 ≥ 10.828, with a
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probability of more than 99.9%.

WRA is a frequently used correlation measure which has been shown to perform

well in rule induction systems such as CN2 [54]. In Figure 5.2, various isometric

lines are shown for various levels of significance of 35% to 95% relative accuracy.

This function differs from the accuracy function in that it accounts for skewed pro-

portions of examples with different labels, whereas accuracy relies of the distribution

of examples between two labels + and − to be relatively even. Secondly, WRA may

be used to determine the significance of a candidate’s cover relative to a population

of examples whether the cover is composed of examples with labels skewed towards

one of + versus −, whereas accuracy is intended to model the performance of covers

of examples relative to one label only, +.

Another commonly used convex correlation measure used in binary classification

is the Matthews correlation coefficient (MCC) [76] function, and is often used as an

alternative to accuracy when the distribution of example labels is uneven. MCC

is related to χ2 where |MCC| =
√

χ2

x+y which, when expressing in terms of x, y in

two-dimensional coverage space is:

σmcc(〈x, y〉) = x(N − y)− y(P− x)√
PN(x + y)(P + N − x− y)

By rearranging for y and thresholding on τ, we obtain the function for isometric lines

of MCC in coverage space:

y =
N2Pτ2 + NP2τ2 ±

√
N
√

Pτ(N + P)
√

NPτ2 + 4Px− 4x2 − 2NPτ2x + 2NPx
2(NPτ2 + P2)

MCC evaluates to 1 when the candidate cover 〈x, y〉 = (P, 0), −1 when 〈x, y〉 = (0, N)

and 0 when 〈x, y〉 lies on the diagonal between (0, 0) and (P, N) representing little to

no difference from the distribution of the example population.

In order to assess the significance of any candidate h with stamp point 〈x, y〉
relative to σmcc, we may impose a threshold τmin on the absolute value as:

|σmcc(〈x, y〉)| ≥ τmin

With this description, we may impose upper bounds on the MCC measure function

for any candidate stamp point 〈x, y〉 as follows:

ubσmcc(〈x, y〉) = max
{∣∣∣∣ −yP√

yPN(P+N−y)

∣∣∣∣ ,
∣∣∣∣ xN√

xPN(P+N−x)

∣∣∣∣}
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Figure 5.3: Various isometric lines for thresholded values of the Matthews correlation
coefficient (MCC) in coverage space for a population of 200 examples labelled + on
the x-axis, and 100 examples labelled − on the y-axis.

Example 5.1.4. Consider a binary labelled set of examples E where E = E+ ∪ E− and

where P = |E+| = 200 and N = |E−| = 100, with three candidate concepts C at stamp

point 〈160, 50〉, D at 〈150, 50〉 and E at 〈150, 70〉. When the minimum MCC threshold

τmin = 0.75 as shown in Figure 5.3 is used, the following upper bounds on σmcc apply:

ubσmcc(sp(C, E)) = max {0.632, 0.756} = 0.756

ubσmcc(sp(D, E)) = max {0.632, 0.707} = 0.707

ubσmcc(sp(E, E)) = max {0.780, 0.707} = 0.780

Candidate D may be pruned as all of its downward refinements D′ ∈ ρ∗(D) will never have

a cover which permits σmcc to exceed the minimum threshold of τmin = 0.75.

Note that the upper bound computed by ubσf for some convex measure func-

tion f given a candidate h over examples E is optimistic in the sense that it is not

guaranteed that some hypothesis h′ will exist where h′ ∈ ρ∗(h) and σf (sp(h′, E)) =
ubσf (sp(h, E)). Instead, the upper bound only indicates the possibility of the ex-

istence of some h′ which maximises σf to the upper bound value for the parent

candidate h. Therefore, given a collection of candidates such as a beam set which is

maintained in a beam search, we may order candidates based on their upper bounds

in order to refine those which may lead to the strongest solutions. In this way, the

upper bound of any candidate may be incorporated as a heuristic into a utility func-

tion uOM to indicate the strength of potential solutions in the set of refinements of
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any candidate.

Definition 5.1.5. (Utility Function uOM) Given a concept d refined from c from the set

of all concepts L, a set of labelled examples E , a convex measure function σf , the upper

bound function ubσf , the stamp point function sp, the length function to compute the number

of symbols in any concept, and real-valued parameters α, β, γ ∈ [0, 1], the utility function

uOM(d, E) is defined as:

uOM(d, E) = |σf (sp(d, E))|+ γ · ubσf (sp(d, E)) +
α · (|σf (sp(d, E))| − |σf (sp(c, E))|)− β · length(d)

The utility function uOM of Definition 5.1.5 incorporates the following:

• The current performance of d according to the convex measure function σf

in the range [−1, 1] where |σf | reflect weak solutions at 0 and the strongest

solutions at 1;

• The optimistic upper bound on σf for d;

• Any stepwise gain in the performance of d relative to its parent concept, c,

according to σf ;

• The complexity of the expression d as the number of symbols it contains.

Note that uOM ranges over the set of reals, where larger values correspond to stronger

candidates as per Definition 3.4.12. This utility function incorporates aspects of the

OCEL and CELOE heuristics used in the DL-Learner system which capture gain

in the measure function and penalise long concepts [58], but also incorporates the

optimistic upper bound ubσf on σf to capture the potential strength of candidates

amongst the set of refinements. The user-defined parameter γ controls the impor-

tance of the optimistic upper bound of future potential of a candidate d. By incor-

porating this upper bound as a heuristic in the utility function, we boost the utility

of currently low-performing candidates with high future potential, without lowering

the utility of currently high-performing candidates also with high future potential.

Experimentally, we have typically used the settings α = 0.5, β = 0.02, γ = 0.2.

The use of the optimistic upper bound for candidate selection in a utility func-

tion for a search algorithm has been described before in the cluster-grouping (CG)

algorithm [111]. This algorithm implements a best-first search which orders candi-

dates for downward refinement exclusively on the value of their upper bound ubσf .

The CG algorithm then employs a pruning strategy which eliminates candidates and

their refinements if it can be shown that their upper bound does not exceed a current

minimum threshold τ which is initially defined by the user, but then is increased at
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runtime to match the weakest solution, if found. In a DL learning setting, concepts

which are solutions may be very sparsely populated amongst the vast set of con-

cepts in L, which we estimate is larger than the hypothesis spaces over which the

CG algorithm is designed to operate over. By ordering on upper bound values only,

we risk exploring large parts of the search space based only on the potential future

performance and may ignore currently high performing candidates which are close

to solutions. Furthermore, we prefer small, simple concepts over longer ones which

are semantically equivalent under a closed-world interpretation such as (I ,U ).
In a learning algorithm, once any solution C has been found which exceeds a

minimum threshold τmin for some measure function σf , we may opt to terminate the

search, or continue to look for other concepts C′ which exceed the performance of

the last found solution C. So-called anytime algorithms work in this way, where the

last best solution to the problem is maintained and is potentially improved given

more computation time. If a solution is found with value σf = τ where τ ≥ τmin

and computation is allowed to continue to search for better solutions, the minimum

bound τmin may be reset to τ which has the effect of permitting the algorithm to prune

more concepts from the search space. For example, consider a search algorithm

which finds a solution with correlation measure value τbest. Then, any subsequent

candidate D under consideration which has an optimistic upper bound t where t ≤
τbest may be pruned, as none of the specialisations in ρ∗(D) can have a correlation

measure value which exceeds τbest. Similarly, if a learning algorithm is designed to

locate the top-k concepts for some fixed k, the threshold τmin may simply be set to

that of the weakest of the current set of j solutions where 1 ≤ j ≤ k.

5.1.2 A Top-k Search Algorithm for Supervised Learning

In Section 3.4.3 of Chapter 3, we introduced the beam search Algorithm 3 for search-

ing a space L of DL concepts by downward refinement. This algorithm traverses

the space of concepts by maintaining a beam set B of maximum cardinality Bmax to

maintain the search frontier, namely, the set of all candidate concepts to consider for

refinement at any one time. This algorithm proceeds by collecting refinements of

the candidate concepts in B into a temporary expansion set E, before repopulating the

beam set B with at most Bmax of the best candidates from E, or by selecting candi-

dates from E at random with a probability proportional to their performance relative

to a utility function, a strategy known as stochastic search.

We aim to generalise this capability by permitting more control over the beam
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set B and expansion set E in a way which supports both memory-bounded beam and

best-first search as follows. We introduce a maximum bound on the expansion set E

as Emax, and maintain it by only permitting the best Emax candidates at any one time.

When the algorithm has refined all candidates in the beam B populating the expan-

sion set E, we permit control over how any remaining candidates in E are treated.

In a beam search such as Algorithm 3, any remaining candidates in the expansion

set E are discarded once the beam B is repopulated, as per line 4 of Algorithm 3.

However, if we permit remaining candidates to reside in E, subsequent refinement of

candidates of the beam B into E can be chosen on a best-first basis. This behaviour

allows candidate concepts of varying lengths in the beam at any one time, and are

selected based on the strength of their utility, which is a best-first search approach.

Furthermore, we will permit the search to maintain up to k ≥ 1 of the best so-

lutions found at any point, and limit the time the algorithm may spend searching

for solutions with a maximum computation time tmax to support an anytime strategy.

Our search method is shown as Algorithm 7, and is a combination of our modifica-

tions to the beam search of Algorithm 3 and the CG algorithm [111]. Our algorithm

reflects the CG algorithm in that it dynamically increases the minimum bound τ on

a measure function σf if any solutions are found such that candidates which have

an upper bound ubσf < τ may be pruned from the search space, as they can never

be stronger than any of the current solutions. Additionally, any solution s which is

subsumed by some pre-existing solution s′ where s v s′ which share the same stamp

point 〈x, y〉 are excluded as they are unlikely to provide any additional information

about the cover.

The main difference between Algorithm 7 and the CG algorithm is that the former

permits bounds on the size of the set of candidates currently under consideration,

as the set of candidates which have upper bounds on σf at any one time may be

impractically large to store in memory. This is why the expansion set E is also

limited with maximum size Emax, and when |E| > Emax, candidates with the worst

upper bounds are pruned, as per line 24. Note that nodes with the weakest utility

uOM may also be used to prune candidates from E, especially if the utility function

incorporates upper bounds on σf , as does uom.

Algorithm 7 is our general-purpose anytime search algorithm which is applicable

for both supervised classification and subgroup discovery problems, and takes the

following:

• E : A set of binary labelled examples as E =
⋃

ω∈Ω Eω for Ω = {+,−};
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• ρ
λ̄
: Our downward refinement operator defined against a concept language L;

• k: The maximum number of concepts to find as solutions where k ≥ 1;

• uOM: Our real-valued heuristic utility function;

• sp: The stamp point function mapping a concept C to a stamp point 〈x, y〉 in

coverage space relative to E and Ω;

• σf : A convex measure function defined over coverage space;

• ub: The upper bound function defined over σf ;

• τmin: A minimum threshold on σf which signifies when candidates with stamp

points 〈x, y〉 are solutions as σf (〈x, y〉) ≥ τmin;

• tmax: The maximum time for which the algorithm may execute;

• Bmax: The maximum width of an open/beam set B where |B| ≤ Bmax of candidates

to refine, so as to bound memory consumption.

• Emax: The maximum width of an expanded/successor set E where |E| ≤ Emax, also

to bound memory consumption.

• beam: A boolean variable which, when beam = true, indicates that the search

should use a beam search strategy similar to that of Algorithm 3 which rejects

expanded candidates every time the beam is repopulated. Otherwise when

beam = false, we revert to a best-first search strategy which constantly maintains

at most Emax best candidates.

The function repopulateBeam as used on line 28 of Algorithm 7 regenerates the

beam set B by selecting candidates from E. We describe two different implemen-

tations of this function, the first being Algorithm 8 which simply selects the best

Bmax candidates from E to repopulate B, and the second being Algorithm 9 which

performs stochastic selection of the best Bmax candidates from E with a probability

proportional to candidate utility, and can be used to increase diversity in the search

to avoid getting trapped in local maxima as illustrated in Figure 3.3.

Algorithm 9 computes the range of scores produced by uOM for all candidates

in the expansion set E to normalised all values into the range [0, 1] where 0 repre-

sents the best utility and 1 represents the worst, as shown on line 18. With utilities

normalised, the algorithm attributes each candidate with normalised utility n with a

probability p proportional to e−n/T, known as the Gibbs distribution, for some value

of T ∈ [0, 1]. Candidates are then chosen at random according to this distribution

until the beam set B is repopulated, or the set E is exhausted. The Gibbs distribution

is commonly used in stochastic search methods as it permits control over the amount

of diversity in the search with the temperature parameter T. For high values of T, the
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Algorithm 7 Time- and Memory-Bounded Top-k Concept Search Algorithm

1: function top-k-search(E , k, σf , uOM, sp, ub, τmin, tmax, Bmax, Emax, beam)
2: S := ∅ . Solution set
3: B := {>} . Open/beam set starting with the top concept >
4: E := ∅ . Expanded/successor set
5: τ := τmin . Initialise user-defined minimum quality on σf
6: t := t0 . Start computation timer at t0
7: while (|B| > 0) ∧ (t < tmax) do . Beam not empty and time not exceeded
8: h := h ∈ B . Arbitrary candidate hypothesis
9: B := B \ {h}

10: C := ρ
λ̄
(h) . Generate all single-step specialisations of h

11: E := E ∪ {c ∈ C | σf (sp(c, E)) < τ ∧ ub(sp(c, E)) ≥ τ}
12: S := S ∪ {c ∈ C | σf (sp(c, E)) ≥ τ} . Add any solutions to S
13: S := S \ {s ∈ S | ∃s′ ∈ S : s 6= s′ ∧ s v s′ ∧ sp(s, E) = sp(s′, E)}
14: while |S| > k do
15: s ∈ arg mins∈S σf (sp(s, E)) . Remove arbitrary weakest solution
16: S := S \ {s}
17: end while
18: if |S| = k then
19: s ∈ arg mins∈S σf (sp(s, E))
20: τ := σf (sp(s, E)) . Update minimum quality threshold
21: end if
22: E := {e ∈ E | ub(sp(e, E)) ≥ τ} . Filter on minimum quality threshold
23: while |E| > Emax do
24: e ∈ arg mine∈F ub(sp(e, E)) . Arbitrary weakest candidate
25: E := E \ {e}
26: end while
27: if (|B| = 0) ∧ (|E| > 0) then
28: B := repopulateBeam(E, Bmax, uOM, E)
29: end if
30: if beam then
31: E := ∅ . Reject remaining candidates (beam search strategy)
32: end if
33: t := t + n . Increment timer with n time units for this loop
34: end while
35: return S . Return up to k top solutions
36: end function

Gibbs distribution will apportion high probabilities to weak candidates, but as T ap-

proaches 0, the distribution will apportion smaller probabilities to weak candidates.

Therefore, gradually reducing T over the course of a search initially permits a large

number of weak candidates, but over time reduces the probability weak candidates

will be accepted over stronger ones into the beam which has the effect of narrowing
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the search over time. The reduction of the parameter T is user-defined with a decay

parameter D ∈ (0, 1), and modifies T from some user-defined initial temperature

T0 every time the repopulateBeam function is called. As per Definition 3.4.12, Al-

gorithm 9 assumes that the utility function u ranks preferred candidates with real

values which are greater than weak candidates.
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Figure 5.4: A plot of the Gibbs distribution function e
−n
T for normalised candidate

utility n ∈ [0, 1] for various temperature values of T ∈ [0, 1]. Note that candidates
with normalised utility closer to 0 are considered stronger, with weaker candidates
having a normalised utility closer to 1.

Algorithm 8 Best-First Beam Repopulation Algorithm

1: B := ∅
2: function repopulateBeam(E, Bmax, u, E )
3: while |B| < Bmax ∧ E 6= ∅ do
4: c ∈ arg maxc∈E u(c, E) . Arbitrary best candidate
5: E := E \ {c}
6: B := B ∪ {c}
7: end while
8: return B
9: end function

5.1.2.1 Search Parallelisation

Learning Algorithm 7 can be easily parallelised. Any candidate h which is refined

to a number of new concepts as ρ
λ̄
(h) on line 10 may each be evaluated in parallel.

Evaluation requires the computation of the stamp point for each refinement in h′ ∈
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Algorithm 9 Stochastic Beam Repopulation Algorithm

1: B := ∅ . Empty beam set
2: T := T0 . Assign initial temperature
3: function repopulateBeam(E, Bmax, u, E , D)
4: U := ∅ . Set of candidate/utility pairs
5: (umin, umax) := (−∞, ∞)
6: for all c ∈ E do
7: u := u(c, E)
8: U := U ∪ {〈c, u〉}
9: umin := min {umin, u}

10: umax := max {umax, u}
11: end for
12: P := ∅ . Set of candidate/probability pairs
13: psum := 0
14: for all 〈c, u〉 ∈ U do
15: if umin = umax then
16: n := 0
17: else
18: n := 1− u−umin

umax−umin
. Normalise utility into the range [0, 1]

19: end if
20: p := e−n/T . Compute the probability of selecting candidate c
21: psum := psum + p . Accumulate the total probability
22: P := P ∪ {〈c, p〉}
23: end for
24: while |B| < Bmax ∧ E 6= ∅ do . Repopulate the beam set B
25: 〈c, p〉 := sample(P, psum) . 〈c, p〉 ∈ P selected with probability p/psum
26: B := B ∪ {c}
27: end while
28: T := T × D . Decay the temperature for the next invocation
29: return B
30: end function

ρ
λ̄
(h), which in turn requires the coverage of each h′ to be computed over the set of

labelled examples E , the process for which will be covered in detail in Section 5.2. As

we will see, this is an ideal opportunity to perform processing in parallel as coverage

checking may be computationally expensive for knowledge bases containing a large

amount of individual and literal data. Alternatively, multiple parallel processing

threads may be used to select candidates h from a beam set (line 10) for parallel

refinement and evaluation within the main while loop, having the advantage of

performing refinement and evaluation in parallel. This is useful when the refinement

operation itself is expensive, as we will explore in Section 6.3.6 of Chapter 6.
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5.2 Coverage Checking

In a supervised learning problem with a number of labelled example sets Eω for all

labels ω ∈ Ω, the problem of coverage checking seeks to determine, given a concept

expression C, which examples e from each labelled set of examples e ∈ Eω lie in the

closed-world interpretation C(I ,U ) for the interpretation (I ,U ). Each subset of Eω

covered by C(I ,U ) as C(I ,U ) ∩ Eω provides a way of assessing the quality of C relative

to a set of criteria for learning, such as the utility of C based on measures like accuracy

in a classification task.

In any generate-and-test learning scenario over knowledge bases containing a

large amount of data, the problem of coverage checking is likely to be the most

computationally costly operation. In this section, we will describe a novel method of

coverage checking for assessing any concept C given a context-specific interpretation

Jλ which is approximated by Jλ̄ as constructed by the instance chase described in

Algorithm 4 of Section 4.2.2.

Our method of coverage checking is based on the method referred to as Fast In-

stance Checking (FIC) as implemented in the DL-Learner system [60]. However,

instead of checking if an individual i is an instance of concept C based on the closed-

world interpretation (I ,U ), we make use of the context-specific interpretation Jλ̄ as

maintained in a context graph G as generated by the instance chase. Algorithm 10

describes the boolean function instanceOf(i, C, λ̄) which succeeds when i is an in-

stance of C given a set of most applicable contexts λ̄ and a context-specific interpre-

tation Jλ.

In contrast with the FIC method, the instance check Algorithm 10 uses local do-

mains ∆λ for each approximated most applicable context λ ∈ λ̄, which were com-

puted as part of the instance chase of Algorithm 4. In this way, the instance check

is able to make use of knowledge captured about individuals chased in each context

to limit the amount of checking performed relative to the full closed world interpre-

tation (I ,U ). For example, consider the instance check of individual i in the role

expression ∃r.D. Naively, we may compute this check by enumerating all known

r-successors of i and testing if at least one is an instance of D. However, if D is

complex and i has many r-successors, this may be expensive. Instead, relative to the

set of most applicable contexts λ̄ for ∃r.D and λ̄′ for D, we can test if i is an instance

of ∃r.D by first checking if it is an instance of all interpretations (∃r.A)Jλ for each

λ ∈ λ̄ where λ = [. . . , ∃r.(◦), A]. If this test fails for any λ, by Corollary 4.2.21 we

know that i 6∈ (∃r.D)Jλ because (∃r.D)Jλ ⊆ (∃r.A)Jλ holds for all most applicable λ,
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Algorithm 10 The boolean instance check function which tests if an individual i is
an instance of concept C given a context-specific interpretation Jλ and set of most
applicable contexts λ̄.

1: function instanceOf(i, C, λ̄)
2: for all λ ∈ λ̄ do
3: if i 6∈ ∆λ then
4: return false
5: end if
6: end for
7: if C = A or C = ¬A or C = {i} then . If C is a simple concept
8: return i ∈ C(I ,U )

9: else if C = C1 u . . . u Cn then
10: return instanceOfConj(i, C1 u . . . u Cn, λ̄)
11: else if C = C1 t . . . t Cn then
12: return instanceOfDisj(i, C1 t . . . t Cn, λ̄)
13: else if C = 3r.D then
14: for all λ ∈ λ̄ where λ = [. . . ,3r.(◦), A] do
15: if i 6∈ (3r.A)Jλ then
16: return false
17: end if
18: end for
19: switch 3 do
20: case ∃
21: return ∃〈i, j〉 ∈ rJλ̄ s.t. instanceOf(j, D, λ̄′)

22: case ∀
23: return ∀〈i, j〉 ∈ rJλ̄ : instanceOf(j, D, λ̄′)

24: case >n

25: return |{j | ∀j.〈i, j〉 ∈ rJλ̄ : instanceOf(j, D, λ̄′)}| ≥ n
26: case 6n

27: return |{j | ∀j.〈i, j〉 ∈ rJλ̄ : instanceOf(j, D, λ̄′)}| ≤ n
28: end if
29: end function
30:
31: function instanceOfConj(i, C1 u . . . u Cn, λ̄)
32: return

∧
1≤j≤n instanceOf(i, Cj, λ̄)

33: end function
34:
35: function instanceOfDisj(i, C1 t . . . t Cn, λ̄)
36: return

∨
1≤j≤n instanceOf(i, Cj, λ̄)

37: end function
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because by definition we know that D v A. This check can be seen on line 14 and is

a precursor to performing more instance checking for r-successors in the potentially

complex expression D.

Generally, it is faster to check if an individual i is an instance of a simple concept

A or ¬A than it is to check membership in quantified role expressions, as the former

simply require a single lookup to see if i ∈ A(I ,U ) or i ∈ ¬A(I ,U ) which were pre-

computed prior to executing the learning algorithm. The precedence operator� used

in the construction of conjunctive concept expressions ensures that simple concepts

appear before role expressions. Therefore, if an individual fails to be an instance

of some simple concept A in a conjunction, this will be detected before checking

potentially more complex role expressions, permitting the instance check to fail fast

where possible.

Given a set of labelled examples E =
⋃
∀ω∈Ω Eω for some |Ω| ≥ 2, the cover of

any concept C is computed as the set:

cover(C, E) = {e ∈ E | instance(e, C, λ̄)}

The intersection of this set cover(C, E) with each labelled set of examples Eω for each

ω ∈ Ω gives rise to the stamp point of C as follows:

sp(C, E) = 〈|cover(C, E) ∩ Eω1 |, . . . , |cover(C, E) ∩ Eωn |〉

for each 1 ≤ i ≤ n where n = |Ω|. As we saw in Section 5.1.1.2, the stamp point of

a concept C relative to labelled examples E is used to assess the performance of C

relative to a measure function σf in a learning problem.

When the set of individuals and literals reachable from each example individual

in E in a knowledge base is large, the computation of the cover of any concept may

be an expensive operation, as we will discuss in Section 5.2.1.

5.2.1 Computational Complexity of Coverage Checking

The complexity of coverage checking for any concept C ∈ L under a closed-world

interpretation (I ,U ) is different from the complexity of the typical instance check-

ing problem for DLs which assume an open-world interpretation I . As discussed

in Section 3.2.1.1 of Chapter 3, under an open-world interpretation, instance check-

ing is reducible to satisfiability checking for most DLs, where sound and complete

satisfiability checking can be as computationally expensive as N2ExpTime [47].
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Under a closed-world interpretation, concepts can be thought of as queries over

the fixed model (I ,U ) which can be thought of as a database. In this way, the com-

plexity of coverage checking can be analysed as a function of the complexity of the

concept C as the query, and the size of the interpretation (I ,U ) as the database.

Central to analysing the complexity of coverage checking is the complexity of the in-

stanceOf function of Algorithm 10 which closely models Definition 3.5.2 of (I ,U )
in computing whether some individual i is an instance of a concept C with optimi-

sations around context-specific local domains.

We will analyse the complexity of the instanceOf function on a case-by-case ba-

sis. Firstly, performing an instance check i ∈ C(I ,U ) where C is a simple concept such

as any atomic A, negated atomic ¬A, or nominal concept {i} is an O(n) operation

where n = |C(I ,U )|, as these concepts will already have their closed-interpretation

under (I ,U ) pre-computed, so the instance check is as complex as set membership.

For concepts which are conjunctions A0 u . . . u Aj or disjunctions A0 t . . . t Aj of

simple conceptsAi for 2 ≤ i ≤ j, the complexity is at most O(j · n) where n is the size

of the largest interpretation |A(I ,U )
i | of any conjunct or disjunct operand Ai.

We now consider the complexity of instance checking for quantified role expres-

sions such as 3r.(D). The complexity of instance checking i ∈ (3r.(D))(I ,U ) is a

function of the maximum possible size of the set of all r-successors for any prede-

cessor i which we will denote b, and the worst-case complexity O(ψ) of performing

the instance check against concept D. If D is a simple concept, or a conjunction or

disjunction of simple concepts, the complexity of the instance check is then O(b · j · n)
as we potentially check all b of i’s r-successors in D.

Now assume that D in 3r.(D) is a quantified role expression 3r.(E) where

the instance check in E has complexity O(ψ). The complexity of checking i ∈
(3r.(3r.(E)))(I ,U ) is O((b · (b · ψ)) = O(b2 · ψ), as at worst, we are required to check

that all r-successors of r-successors of i are in E. For further nestings of quantified

role expressions, the complexity of instance checking is at least O(bd · ψ) where b is

the maximum number of any r-successors of any individual, and d is the maximum

depth of nested quantified role expressions.

Finally, we consider expressions which may permit simple concepts and nested

quantified role expressions along with conjunctions and disjunctions, which repre-

sents the full expressivity of concepts which may be generated by refinement opera-

tors such as ρ
λ̄
. Assume that the maximum number of r-successors for any role r and

any individual i is b, and that the maximum number of operands in any conjunct or
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disjunct is j. For example, consider 3r.(C0 u . . . u Cj) where any Ci = 3r.(A) for

2 ≤ i ≤ j where A is a simple concept. The complexity of instance checking for such

expressions is O(b ·∑j bn) = O(b2 · j · n).

Now assume each operand Ci it itself a nested role expression which has, as a

filler, further conjunctions or disjunctions of nested role expressions where the max-

imum depth of any nested role expression is d. At the outermost conjunction or

disjunction with j operands, there are b · j instance checks for each role expression,

and a subsequent b · j for each operand of the conjunction or disjunction in the fillers

of each, until we eventually reach simple concepts or conjunctions or disjunctions

thereof with instance check complexity n. This results in an overall worst-case com-

plexity of O((j · b)d · n) as we check the r-successors of all j operands in conjunctions

or disjunctions as role fillers with a maximum depth of d.

In practice, the cost of computing set membership in the pre-computed closed-

world interpretation is closer to O(1) when implemented with hash tables, so the

dominating factor in this result is essentially the maximum number of r-successors

b for any predecessor individual and role r, the maximum nested role depth d, and

the maximum number of operands j for any subexpression which is a conjunction or

disjunction. Furthermore, we observe that role depth in concepts is often limited to

small values such as less than 10, but this ultimately depends on the structure of the

examples in the knowledge base.

At most, this places the complexity of closed-world instance checking over a con-

cept C in the class of ExpTime problems. When compared to instance checking by

open-world reasoning, the integration of C into a SROIQ knowledge base for re-

classification to permit instance checking by entailment is a relatively very expensive

operation which is a function of the size of the background knowledge as well as

the ABox, and is an N2ExpTime problem [47]. In practice, we observe that classifi-

cation of certain knowledge bases may take minutes whereas closed-world instance

checking will often take milliseconds over the same knowledge base, and is there-

fore clearly preferable for learning by generate-and-test methods. We analyse this

behaviour in practice in Chapter 6, Section 6.3.5.

When computing the coverage of a concept C relative to a set of example in-

dividuals E , we perform the instance check procedure at most |E | times with the

instanceOf function. As E is of constant size as well as the maximum number

of r-successors b for any role, the computational complexity of coverage checking

remains the same as that of instance checking, namely O((j · b)d · n). Despite the ex-
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pensive exponential worst-case computational complexity of instance checking, there

are several practical optimisations which can significantly improve the performance.

Firstly, given that quantified role expressions are the most expensive concepts to

check instance membership, it is prudent to perform instance checking in conjunc-

tive and disjunctive expressions against any simple operands first, as it is cheaper to

recognise failure (in the case of conjunctions) or success (in the case of disjunctions)

against such atomic expressions before checking more expensive role expressions. In

the definition of the operator ρ
λ̄
, we find that the precedence operator � ensures that

atomic operands always appear before quantified role expressions, which supports

this optimisation. Secondly, note that the implementation of instanceOf as shown

in Algorithm 10 incorporates approximate local domains ∆λ for all most-applicable

domains λ̄ for any subexpression. By testing if an individual i is not an instance of

some approximate local domain ∆λ, we can be assured that i is also not an instance

of any concept C for which λ̄ was most appliable, where C(I ,U ) ⊆ ∆λ. This approach

therefore permits fast-failure on checking potentially expensive role expressions.

Two other optimisations are the caching of concept covers (§5.2.1.1) and fast-

failure given minimum bounds on concept performance relative to a convex measure

function (§5.2.1.2), which we will now describe.

5.2.1.1 Caching of Concept Covers

In the computation of a stamp point such as 〈x0, y0〉 for some concept C over a binary

labelled set of examples E = E+ ∪ E−, the stamp point 〈x1, y1〉 of any refinement

D ∈ ρ∗(C) will necessarily have x1 ≤ x0 and y1 ≤ y0, as the cover of any refinement

D of C will always be a non-strict subset of the cover of C:

D v C → cover(D, E) ⊆ cover(C, E)

because if D v C, then by definition of the closed-world interpretation (I ,U ), it must

be the case that D(I ,U ) ⊆ C(I ,U ). Therefore, when computing the stamp point for any

concept D, it suffices to begin computation from the cover of its parent concept C

where C  ρ D. Therefore, we may trade the computational cost of the time spent

computing the cover of any concept D over the entire set of examples E with the

space required to maintain the cover of its parent concept, C. While this may increase

the space used by a learning algorithm, it may be used to reduce the computation

time of coverage checking which is useful when the knowledge base contains a large
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amount of data, and where candidate hypotheses often cover fewer examples than in

E . However, as we observe in Section 6.3.5, if candidates in the search often cover a

significant proportion of examples in E , the difference in the performance of coverage

testing with caching can be negligible at the cost of increased memory usage.

5.2.1.2 Fast-Failure of Instance Checking with Bounded Convex Measures

Another optimisation to coverage checking which does not require additional space

is to leverage the upper bounds on values of a convex measure function σf given the

cover of a candidate C. As shown in Algorithm 7, any candidate C which does not

have an upper bound ubσf which exceeds a minimum threshold on quality τmin will

be pruned from the search, as it can never lead to a concept with a performance which

exceeds τmin for σf . As shown in Definition 5.1.3, the upper bound function ubσf is

defined as the maximum of either σf (〈x, 0〉) or σf (〈0, y〉), over which the threshold

τmin is imposed, at least for binary labelled examples. By re-arranging the definition

of σf in terms of x for σf (〈x, 0〉) ≥ τmin and for y where σf (〈0, y〉) ≥ τmin, we obtain

two inequalities which impose minimum bounds on the values of x and y, which

correspond to the number of labelled examples from each class x = |C(I ,U ) ∩ E+|
and y = |C(I ,U ) ∩ E−|, as demonstrated in Example 5.2.1.

Example 5.2.1. Given a stamp point 〈x, y〉, the MCC measure σmcc(〈x, y〉) and upper bound

ubσmcc(〈x, y〉) as defined on page 120, we re-arrange to obtain the following two inequalities:

x ≥ τ2P(N + P)
τ2P + N

y ≥ τ2N(N + P)
τ2N + P

These define the minimum number of examples x which a candidate C with stamp point 〈x, y〉
must cover from E+ or the minimum number of examples y candidate C must cover from E−

for the value of measure σmcc to meet or exceed τ.

Generally, for stamp points 〈c1, . . . , cn〉 in labelled learning problems where |Ω| = n,

each variable ci where 1 ≤ i ≤ n corresponds to the number of examples in the

cover of some concept which are labelled with ωi ∈ Ω. As shown in Example 5.2.1,

we computed the minimum bounds on each variable ci which satisfy an inequality

σf (〈c1, . . . , cn〉) ≥ τ where f was MCC by re-arranging for each ci to produce ci ≥
Φ(σf , i, τ) where Φ(σf , i, τ) denotes the right hand side of the re-arrangement of the

inequality for ci.

For a candidate C with stamp point 〈c1, . . . , cn〉 to be pruned from a search based
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on insufficient upper bounds on the performance of σf , it must be the case that ci <

Φ(σf , i, τ) for all 1 ≤ i ≤ n, as all downward refinements D of C where D ∈ ρ∗(C)

with stamp point 〈c′1, . . . , c′n〉 will never satisfy σf (〈c′1, . . . , c′n〉) ≥ τ.

Algorithm 11 computes a coverage for a concept C as a tuple 〈I1, . . . , In〉 where

each Ii for 1 ≤ i ≤ n is the set of examples which are instances of C labelled ωi ∈ Ω.

Such tuples can be used to compute the stamp point of C relative to a set of labelled

examples E as 〈|I1|, . . . , |In|〉. However, Algorithm 11 is designed such that if it

can determine over the course of execution that, for each Ii where 1 ≤ i ≤ n the

inequality |Ii| ≥ Φ(σf , i, τ) cannot be satisfied, each Ii may contain fewer examples

than is actually in the cover of C as it fails fast on the expectation that C will be

pruned from the search as its stamp point will not satisfy the minimum bound τ on

the measure σf . Furthermore, Algorithm 11 ensures that, if any Ii does satisfy its

related inequality |Ii| ≥ Φ(σf , i, τ), that each Ii in the computed tuple 〈I1, . . . , In〉 will

contain the exact number of examples which are instances of C with label ωi.

5.3 Search Efficiency

Methods of supervised learning such as the top-k search of Algorithm 7 are designed

to be efficient by pruning the search space where possible. However, the performance

of such search methods ultimately depends on the behaviour of the refinement op-

erator ρ
λ̄

as presented in Section 4.3 of Chapter 4 which is used to structure and

traverse the space of concepts towards solutions. Recall that the operator ρ
λ̄

has the

properties of being redundant and improper, which are both detrimental to the per-

formance of a search algorithm. The property of redundancy means that the search

will potentially re-visit the same concept more than once which is clearly wasteful

of resources. The property of improperness describes how the operator, when re-

fining any concept C, may produce an equivalent concept D where D ∈ ρ
λ̄
(C) for

which C ≡ D. Concept equivalence here is defined in terms of the closed-world

interpretation where C ≡ D means C(I ,U ) = D(I ,U ), as the refinement operator en-

sures that the concept expression D is not structurally identical to C. Improperness

can be detrimental to the performance of a search algorithm because the measures

used to assess C and D are based primarily on their coverage that is essentially their

interpretation with respect to a set of examples E . If the operator generates multiple

improper refinements D1, . . . , Dn ∈ ρ
λ̄
(C) where ∀1≤i≤n D(I ,U )

i = C(I ,U ), methods

such as the search Algorithm 7 which select the concepts for further refinement us-
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Algorithm 11 The coverage algorithm which computes the vector 〈I1, . . . , In〉 as the
basis for a stamp point of a concept C given labelled example sets 〈Eω1 , . . . , Eωn〉 for
n ≥ 2 and where each Ii ⊆ C(I ,U ) ∩ Eωi for 1 ≤ i ≤ n. The vector 〈|I1|, . . . , |In|〉 is the
stamp point of concept C. The boolean variable q = true indicates that the auxiliary
function coverCheckAux should fail fast when constructing sets Ii, or whether it
should compute the full sets Ii for each 1 ≤ i ≤ n when q = false.

1: function coverCheck(C, λ̄, τ, 〈Eω1 , . . . , Eωn〉)
2: P := 〈(I1, O1, Eω1), . . . , (In, On, Eωn)〉 where ∀1≤i≤n : Ii = ∅ and Oi = ∅
3: q := true . Initially, fail fast if possible
4: return coverCheckAux(C, λ̄, τ, q, P)
5: end function
6:
7: function coverCheckAux(C, λ̄, τ, q, 〈(I1, O1, Eω1), . . . , (In, On, Eωn)〉)
8: b := 〈b1, . . . , bn〉 where ∀1≤i≤n : bi = true
9: for all ωi ∈ Ω where 1 ≤ i ≤ n do

10: for all e ∈ Eωi \ (Ii ∪Oi) do . For all remaining examples to test
11: if instanceOf(e, C, λ̄) then
12: Ii := Ii ∪ {e} . Example e lies inside the cover of C
13: else
14: Oi := Oi ∪ {e} . Example e lies outside the cover of C
15: end if
16: if q ∧ (|Ii|+ (|Eωi | − |Ii| − |Oi|) < Φ(σf , i, τ)) then
17: bi := false
18: break . Fast fail as C will not cover enough examples labelled ωi
19: end if
20: end for
21: end for
22: if q ∧ ∃bi ∈ b s.t. bi = true then
23: q := true . Complete the evaluation of each Ii
24: return coverCheckAux(C, λ̄, τ, q, P)
25: end if
26: return 〈I1, . . . , In〉
27: end function
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ing a heuristic function that ranks candidates based on their cover cannot effectively

select any concept Di as being better or worse than any other equivalent concept,

and the search may then become unguided. This is primarily a concern when the

search method is memory-bounded, as maintaining a limited sized set of candidates

containing many equivalent concepts will result in the search behaving in a largely

unguided manner where it may not be able to select an appropriate trajectory for

traversing the search space towards solutions using the heuristic. Therefore, it is

prudent to limit improper refinements where possible to permit a search algorithm

to apply any heuristic functions it has to aid in directing the search towards spaces

which might contain solutions. In the next two sections, we will discuss how redun-

dancy (§5.3.1) and improperness (§5.3.2) may be identified and mitigated to improve

the performance of search methods like Algorithm 7 which rely on operators like ρ
λ̄

which have such undesirable properties.

5.3.1 Redundancy in Refinement

Redundancy in the refinement operator ρ
λ̄

is characterised by the potential for the

operator to refine two or more different concepts, say, C and D where C 6= D, to the

same concept, E where E ∈ ρ∗
λ̄
(C) and E ∈ ρ∗

λ̄
(D). Redundancy therefore describes

the situation where multiple different refinement chains which reach E from differ-

ent parts of the search space may occur. For example, consider the following two

refinement chains:
A B B u C

A C C u B

where B u C ≡ C u B as conjunction and disjunction are commutative. In terms of

conjunctions, the operator ρ
λ̄

is defined in such a way which prevents redundant

refinement chains such as these because it uses a precedence operator � to impose

an order on any concept as the operand of a conjunction where only one of B u
C or C u B would be permitted, such as the latter when C � B, and recognises

when syntactically equivalent concepts such as B u B may occur so as to exclude

these. Similarly, the operands of disjunctions are constructed so as to ensure that they

conform to precedence rules according to �, except that disjuncts may be repeated,

as in the following refinement chain:

A A t A (A u ∃r.B) t A (A u ∃r.B) t (A u ∀s.C)
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Here, repeated concepts such as A in A t A are necessary as intermediate steps to

reach disjunctive expressions with different operands as shown. By applying the

precedence operator in all refinements, the operator ρ
λ̄

is designed to minimise re-

dundancy which may otherwise occur in the construction of conjunctions and dis-

junctions. However, as we saw in Example 4.3.3, the downward operator ρ
λ̄

may still

generate redundant refinement chains depending on the axioms in the TBox.

In a learning method such as Algorithm 7, the refinements of any concept C

as ρ
λ̄
(C) is maintained as a set which excludes duplicate concepts under syntactic

equality =, therefore any redundant refinements in one application of ρ
λ̄

will be elim-

inated. Similarly, the collection of concepts maintained in a beam or expansion set

in a search may also eliminate syntactic duplicates. However, this does not preclude

the possibility of the search selecting a candidate C for refinement which generates

some D, which is evaluated and either pruned or refined to new concepts. Then, if

some other candidate C′ is selected which refines to the same concept D later, it will

be re-evaluated if it does not appear in the size-limited beam or expansion sets.

One strategy for managing redundancy during the entire execution of a learning

method such as Algorithm 7 is to maintain a set of all previously assessed candidate

expressions, even if they no longer form part of the current beam or expansion set.

In this way, redundancy can be effectively managed by recognising if a syntactically

equivalent concept has been evaluated before at any time during execution. However,

if the search space of concepts is very large and the algorithm searches a large portion

of the space, memory limitations may restrict how many concepts can be maintained

for this purpose. If the number of potentially redundant refinement chains is rela-

tively small when compared to the size of the space of all concepts searched by the

operator, redundancy may not significantly affect the overall performance of a learn-

ing algorithm. In this case, we may permit the re-evaluation of any concept without

a noticeable impact on performance. As we will see in Section 6.3.3 of Chapter 6,

concepts reachable by redundant refinement chains appear in only a small percent-

age of the time spent executing Algorithm 7 for the several problems we analyse,

leading us to believe that the degree to which the operator ρ
λ̄

generates redundant

refinement chains is generally negligible. Therefore, we propose that a strategy that

maintains a record of assessed candidate expressions need not be employed when

using ρ
λ̄

as the refinement strategy.
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5.3.2 Improperness in Refinement

In the last chapter, we described how the refinement operator ρ
λ̄

is improper. Im-

properness of refinement can adversely affect the performance of a refinement-based

search such as Algorithm 7 by introducing many equivalent concepts into a limited

size beam or expansion set, which we denote in combination as the search fronter. If

this occurs, the heuristic utility function (Definition 3.4.12) used by the algorithm to

select the best candidates for further refinement may not be able to select between the

best concepts if there are many equivalent candidates, and the search may become

unguided. In this case, the search is not able to control the trajectory of the search into

the space of concepts toward solutions.

Another complication which can arise from the situation where many improper

refinements populate the fixed-sized frontier is as follows. Consider a frontier of

fixed-sized n which currently contains candidates D1, . . . , Di, . . . , Dn where D1, . . . ,

Di−1 each have utility greater than u, and where Di, . . . , Dn each have utility less than

u. Also consider the case where solutions exist only in refinements of Di, . . . , Dn. As

search algorithms like Algorithm 7 are likely to refine the candidates D1, . . . , Di−1

first as they have greater utility, the fixed-sized frontier may be populated with their

refinements to the exclusion of weaker candidates Di, . . . , Dn and their refinements.

If refinements of the initially stronger candidates D1, . . . , Di−1 do not contain any

solutions whereas those weaker Di, . . . , Dn did, the search will not locate any solu-

tions. This situation is illustrated in Figure 5.5 and is a well-known shortfall of the

local-search strategy such as that implemented by Algorithm 7 with a fixed beam

and expansion set size.

C

D1

. . .

Di

S

Dn

. . .

Figure 5.5: Concept expression C refined to ρ(C) = {D1, . . . , Di, . . . , Dn} for 1 ≤ i ≤ n
showing solution S where S ∈ ρ∗(Di). If concepts Di, . . . , Dn are pruned from a
memory-bounded search because concepts D1, . . . , Di−1 are preferred according to a
utility function, a learning method such as Algorithm 7 will not find solution S.
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The situation illustrated by Figure 5.5 can occur when refining concepts involving

disjunction, such as A  A t A. As we saw in the previous section, such improper

downward refinement steps may be necessary if they act as an intermediate bridge to

reach more specific non-equivalent disjunctive concepts which are solutions. Clearly,

the utility of such improper steps remains unchanged, however other refinements

such as A  B or A  A u C may produce concepts of higher utility, but where

further refinements may not lead to solutions.

One approach to addressing improperness in refinement which has been dis-

cussed in the analysis of ρB [58] and which also applies to ρ
λ̄

is to simply permit

the repeated application of an improper downward refinement operator ρ under

the assumption that proper refinements of predecessor concepts will eventually be

reached. This strategy suggests that if a downward refinement operator ρ is im-

proper, we may perform a finite number of refinements of some concept expression

C0  ρ C1  ρ . . .  ρ Cn where C0 ≡ Ci for 1 ≤ i < n until we reach a proper

refinement where Cn < C0.

The difficulty with this approach is that the number of improper refinements

generated by simply permitting the repeated application of the operator ρ may out-

number any proper refinements, and end up dominating a limited-size frontier such

that learning becomes unguided, or alternatively, such improper refinements may be

pruned from a search in preference for higher-performing proper refinements, such

as illustrated in Figure 5.5.

Without modifying the behaviour of the refinement operator itself, this problem

could be mitigated by increasing the size of the frontier in a memory-bounded search

to accommodate for improper refinements until they can be expanded to proper ones,

at which time the heuristic utility function can again determine in which direction

to drive the search. However, when the concept space is vast, this is not a practical

solution. Instead, we aim to analyse the behaviour of the refinement operator relative

to certain concept expressions to identify when improper refinement steps can be

recognised. Once we identify such improper refinement steps, we will describe how

they can be limited in a way which does not affect the ability of the search to reach

solutions.

For example, consider the case where subexpression S1 is being refined in the

concept T1 t S1 where S1 v T1. In this case, downward refinement may permit the
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following refinement chain:

T1 t S1  ρ T1 t S2  ρ . . . ρ T1 t Sn  ρ T1 t⊥

Ultimately, refinement of the subexpressions S1, . . . , Sn will never alter the closed-

world interpretation of the disjunction T1 t Si for 1 ≤ i ≤ n, which is always equiva-

lent to T1. Note that the space of concepts between S1 and ⊥ may be vast, so permit-

ting the refinement operator ρ to produce such refinements is potentially detrimental

to a memory-bounded search algorithm. We describe such refinements as being in-

effectual, as each improper refinement results in another improper refinement, and

where the quality of each cannot be assessed by the learning algorithm.

Definition 5.3.1. (Ineffectual Downward Refinement) We denote any improper down-

ward refinement step C  D where C ≡ D as being ineffectual if the step modifies S1

where S1 ∈ subex(C) in the context(s) denoted by λ̄ to S2 where S2 ∈ subex(D), where each

subexpression was an operand of a conjunction or disjunction T as follows:

T1 t . . . t Tn t S1  T1 t . . . t Tn t S2 where S2 v S1 v T1 t . . . t Tn, or

T1 u . . . u Tn u S1  T1 u . . . u Tn u S2 where S1 w S2 w T1 u . . . u Tn

Informally, such single-step refinements are denoted as being ineffectual as they do not pro-

duce a proper downward specialisation and were unguided in the sense they cannot be assessed

based on their cover. These two cases are illustrated in Figure 5.6.

(T1 t . . . t Tn t S1)
Jλ̄

SJλ̄
1

SJλ̄
2

(T1 u . . . u Tn u S1)
Jλ̄

SJλ̄
2

SJλ̄
1

Figure 5.6: Illustration of the set-based interpretation of various concepts along with
an ineffectual refinement step, S1  S2, as per Definition 5.3.1. In each case, the
refinement step S1  S2 results in an improperly refined concept relative to a closed-
world interpretation Jλ̄.

Generally, we aim to reduce the number of unguided refinements performed

by a learning algorithm to improve its chances of making informed decisions about
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which concepts to maintain in the search frontier. Our strategy to limit the number of

ineffectual refinements is to perform what we call subexpression suspension. Basically,

if it can be recognised that any operand Ti of a disjunction T1 t . . . t Tn for 1 ≤
i ≤ n is subsumed by T1 t Ti−1 t Ti+1 t Tn, then we suspend the refinement of Ti

and instead permit refinement of all other subsuming operands until Ti is no longer

subsumed. Similarly, if it can be recognised that any operand Ti of a conjunction T1 u
. . . u Tn subsumes T1 u Ti−1 u Ti+1 u Tn, we may suspend the refinement of all other

operands until Ti is refined to an expression which no longer subsumes the conjunct

of the other operands. This method attempts to force the operands of disjunctions to

cover overlapping or disjoint sets of data, and the operands of conjunctions to cover

overlapping sets of data. In this way, refinements of any operand of a disjunction or

conjunction which are subexpressions of some candidate expression C is expected to

generate a proper refinement of C in fewer refinement steps.

Given two concept expressions Ti and Tj which are operands of a disjunction or

conjunction, testing whether Ti v Tj either requires checking if K |= Ti v Tj via

logical reasoning under the open-world interpretation I or directly via the closed-

world interpretation (I ,U ) as T(I ,U )
i ⊆ T(I ,U )

j . Under I , the complexity of checking

a subsumption relationship Ti v Tj between two concept expressions previously un-

seen by the knowledge base requires re-classification of the TBox, which may be

computationally expensive for highly expressive DLs as discussed in Section 3.2.1.1

of Chapter 3. Instead, we can leverage the closed-world interpretation (I ,U ) which

was pre-computed prior to learning in order to check Ti v Tj via the coverage of

each Ti and Tj. For every candidate C under consideration which contains a num-

ber of subexpressions which are conjunctions or disjunctions, a naive method for

computing the subsumption relationship between any two operands is to indepen-

dently compute the cover of each based on the set of individuals in the knowledge

base and then test if T(I ,U )
i ⊆ T(I ,U )

j or T(I ,U )
j ⊆ T(I ,U )

i . However, this is potentially

computationally expensive if the set of individuals in ∆(I ,U ) is large. Instead, we

propose to modify the instanceOf procedure of Algorithm 10 which tests member-

ship of individuals in conjunctions or disjunctions with the instanceOfConj and

instanceOfDisj auxiliary functions.

Consider a candidate concept C in a learning method such as Algorithm 7. Utility

functions such as uOM(C, E) which are used to assess the performance of C do so

relative to the cover of C over the set of labelled examples E with a procedure such

as Algorithm 11, which in turn uses Algorithm 10 to check if example instances e ∈ E
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belong in the cover of C as e ∈ C(I ,U ). If the candidate C contained any conjunction or

disjunction as a subexpression at the exact context λ, then during the coverage check

process, we aim to record for each operand T of the conjunction or disjunction in

context λ the set of individuals which were assessed as being an instance of T as the

partial cover denoted I(T,λ) relative to a context-specific closed-world interpretation

Jλ, where I(T,λ) ⊆ TJλ . Note that the instance check Algorithm 10 relies on two

auxiliary functions for testing instance membership in conjunctions and disjunctions

with the functions instanceOfConj and instanceOfDisj. Here, we will modify

these functions to record the sets I(Ti ,λ) for every conjunct or disjunct operand Ti

over the course of an execution of the coverCheck function over C. Once complete,

subsumption checking between the operands Ti, Tj of any conjunction or disjunction

at context λ in C can then be inferred by testing whether Ti v Tj if I(Ti ,λ) ⊆ I(Tj,λ).

Note that this method is approximate, as the subsumption test relies on the subset S

of individuals selected for instance checks against conjunctions or disjunctions which

will be a subset of all individuals in the context-specific interpretation of any operand

Ti as S ⊆ TJλ
i . Nevertheless, if a subsumption relationship exists between any two

operands in a conjunction or disjunction, this will still be apparent relative to the sets

I(Ti ,λ) which are a subset of S. Algorithm 12 presents modifications to the instance

check functions to permit the construction of sets I(Ti ,λ).

Once a coverage check is computed for some concept C via the coverCheck

function of Algorithm 11 which makes use of the instanceOf function and auxiliary

functions of Algorithm 12, a number of sets I(Ti ,λ) are generated for each conjunct

or disjunct operand with subexpression context λ in C. Once computed, these sets

may be analysed to infer approximate subsumption relationships between operands

of each conjunction or disjunction for the purposes of suspension. Note that we only

intend to suspect quantified role expressions 3r.(D), as these are the only kind of ex-

pressions which can be refined further. To this end, we only compute subsumption

for operands which are role expressions as follows. Given an exact subexpression

context λ which identifies a disjunction T1 t . . . t Tn in a concept C, the set of sub-

sumed role expression operands Sλ,t are computed as follows:

Sλ,t = {Ti | ∀1≤i≤nTi : Ti = 3r.D ∧ I(Ti ,λ) ⊆
⋃
∀j 6=i

: I(Tj,λ)}

for any role name r, concept D and quantifier 3. Similarly, when λ identifies a

conjunction T1 u . . .u Tn in a concept C, the set of subsuming role expression operands
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Algorithm 12 Alternate implementations of the instance check functions for con-
junction and disjunctions to support subexpression suspension for limiting ineffectual
refinements.

1: function instanceOfConj(a, C1 u . . . u Cn, λ̄)
2: return instanceOfCheck(a,u, {Ci | 1 ≤ i ≤ n}, λ̄)
3: end function
4:
5: function instanceOfDisj(i, C1 t . . . t Cn, λ̄)
6: return instanceOfCheck(a,t, {Ci | 1 ≤ i ≤ n}, λ̄)
7: end function
8:
9: function instanceOfCheck(a, con, {C1, . . . , Cn}, λ̄)

10: I := ∅
11: for all Ci ∈ {C1, . . . , Cn} do
12: if instanceOf(a, Ci, λ̄) then
13: I(Ci ,λ) := I(Ci ,λ) ∪ {a} . Where λ is the exact subex context of Ci
14: I := I ∪ {Ci}
15: end if
16: end for
17: switch con do
18: case u
19: return |I| = n . a an instance of all n conjunct operands
20: case t
21: return |I| > 0 . a an instance of at least one disjunct operand
22: end function
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Su are computed as follows:

Sλ,u = {Ti | ∀1≤i≤nTi : Ti = 3r.D ∧ I(Ti ,λ) ⊇
⋃
∀j 6=i

: I(Tj,λ)}

Once computed for each exact subexpression context λ, the sets Sλ,t or Sλ,u contain

the operands which may be temporarily suspended until the conditions of being sub-

sumed no longer hold after future refinements of all other non-suspended operands.

If either set Sλ,t or Sλ,u contains all operands of their respective disjunction or con-

junction subexpressions, then one operand is arbitrarily removed to permit the re-

finement operator to specialise the expression in some way, unless no refinements

were generated on the operand in a previous application of ρ
λ̄
. This requires us to be

able to label any subexpression T with context λ of a candidate concept C to indicate

whether:

1. ρ
λ̄
(T) = ∅: No refinements are possible, so we label T at λ in C as T.

2. T is suspended in C at λ because it appeared in a set Sλ,u or Sλ,u: No refinements

should be performed, so we label T at λ in C as T̃.

We then modify the behaviour of the refinement operator ρ
λ̄

such that it inspects the

label of any subexpression under consideration for refinement such that:

1. ρ
λ̄
(T) = ∅: No refinements are attempted because a previous attempt pro-

duced no refinements.

2. ρ
λ̄
(T̃) = ∅: No refinements are attempted because T is temporarily suspended

in C.

Before the coverage check is performed for any candidate C which computes the

subsumption relationships between operands of conjunctive and disjunctive subex-

pressions of C, all suspension labels T̃ are cleared so that new labels may be applied

after the previous refinement.

While the suspension method we have described will not eliminate improper re-

finements, it modifies the behaviour of ρ
λ̄

to reduce ineffectual refinements while

not preventing the search from being able to reach any concept which would oth-

erwise be reachable with ρ
λ̄

without using the suspension method. As discussed in

Section 6.3.4 of Chapter 6, we have tested the use of the suspension method across

several learning problems where we have found that the method significantly re-

duces the number of improper refinements overall while still permitting the search

to locate high quality results as expected. Furthermore, subjective analysis of the

concepts produced as solutions to the problems tested with the suspension method
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appear to contain fewer terms without a reduction in quality compared to those pro-

duced without suspension, suggesting that the method produces more readable and

compact concepts overall.

5.4 Summary

In this chapter, we have explored the topic of supervised learning in DL knowledge

bases, particularly around the problems of classification and subgroup discovery

(§5.1). We analysed the basic beam search strategy and described the use of heuristics

which guide beam search methods, along with an analysis of the properties of vari-

ous measure functions as used by heuristic functions (§5.1.1). We then presented our

novel search algorithm which leverages existing work on the properties of measure

functions in an improved memory-bounded beam search (§5.1.2). We then presented

our novel method of efficient coverage checking which utilises the context graph as

introduced in the previous chapter (§5.2). Finally, we discussed various inefficien-

cies of our search method based on limitations of our refinement operator ρ
λ̄

and

presented novel methods to mitigate these problems (§5.3). In the next chapter, we

describe our implementation OWL-Miner and evaluate its performance over several

well-known benchmark problems.
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Chapter 6

Implementation and Evaluation

In this chapter, we describe the OWL-Miner system which is our software imple-

mentation of the various methods presented in this thesis (§6.1). We then present

an evaluation of the OWL-Miner system against particular well-known benchmark

problems using either classification or subgroup discovery (§6.2). We then analyse

the performance of certain novel methods which the OWL-Miner system imple-

ments (§6.3), including the construction of the context graph and its use in refinement

(§6.3.1, 6.3.2) to the performance of the instance check and coverage computation pro-

cedures (§6.3.5). We then remark on the effect of parallelisation on the search (§6.3.6).

Overall, we find that the OWL-Miner system achieves strong results in terms of the

quality of solutions found for classification and subgroup discovery and generally

outperforms similar systems such as DL-Learner and various ILP systems which

are designed to solve similar problems.

6.1 Implementation: OWL-Miner

We have developed a new DL-learning system called OWL-Miner for classification

and subgroup discovery which implements the methods introduced in this thesis.

The OWL-Miner system has been developed in Java 8 in an extensible way to sup-

port new refinement operators, convex measure functions and heuristic utility func-

tions. The OWL-Miner system is a fresh implementation of a DL-learner and is

distinct from the open-source DL-Learner software1. This is necessary as the OWL-

Miner implementation relies on methods which are significantly different from DL-

Learner. The main differences are that OWL-Miner constructs a context graph (see

Definition 4.2.12) with the instance chase of Algorithm 4, and implements refinement

operators such as ρ
λ̄

(see Definition 4.5.1) to traverse the context graph and to con-

1DL-Learner is available from: http://dl-learner.org/
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struct most applicable contexts λ̄ for every subexpression of a concept being refined

in order to assess suitable refinement options. The coverage computation by Algo-

rithm 11 and instance check by Algorithm 10 are also different in that they rely on

analyses of convex measure functions for fast-failure, and are also used to determine

hypothesis subexpression suspension options (§5.3.2) for limiting the production and

evaluation of poor candidate hypotheses. Furthermore, the generalised top-k concept

search method of Algorithm 7 is novel and relies on a large amount of thread-safe

code to support parallel execution. While these methods are general in nature and

could be integrated into the open-source DL-Learner project, we have left this task

to future work. The OWL-Miner system relies on several third-party libraries, in-

cluding the following:

• Pellet [92] or HermiT [91] for open-world DL reasoning;

• The OWL-API library [41];

• JGraphT (http://jgrapht.org) for creating, manipulating and querying graph

structures;

• RabbitMQ (https://www.rabbitmq.com/) for accepting learning tasks and pub-

lishing results for integration with the X-plorer system (§7.4);

• Various Apache Commons libraries, including:

– Math (http://commons.apache.org/proper/commons-math/);

– Lang (http://commons.apache.org/proper/commons-lang/);

– CLI http://commons.apache.org/proper/commons-cli/);

– Collections http://commons.apache.org/proper/commons-collections/).

OWL-Miner is designed to support two modes of operation: batch, and online. Batch

mode requires a single configuration file that references an OWL file containing an

ontology and individual examples, and outputs an OWL file containing hypothe-

sis classes which are solutions to a particular learning problem along with various

statistics for each hypothesis relative to the chosen measure function. Online mode

is similar to batch mode in that requires a single configuration file that references

an OWL file containing an ontology and individual examples, but then listens for

requests to perform certain learning tasks on a message channel. Once received,

OWL-Miner will then process a learning task specification and will output the re-

sult as a JSON file on the return channel for consumption by the requesting agent.

In either mode, the flow of major steps in these processes is illustrated in Figure 6.1.

http://jgrapht.org
https://www.rabbitmq.com/
http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-lang/
http://commons.apache.org/proper/commons-cli/
http://commons.apache.org/proper/commons-collections/
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Figure 6.1: The overall OWL-Miner system process flow.

The OWL-Miner process flow of as depicted in Figure 6.1 can be described as fol-

lows:

• Load OWL File. An OWL file which contains an ontology as a set of classes,

properties, class inclusion axioms and data assertions is loaded. This file de-

scribes the DL knowledge base K and contains the axioms of the TBox and

ABox which are used in the system.

• Classify KB. Initially, a DL-reasoner such as Pellet [92] is used to determine all

known individuals for each named concept (atomic OWL class) and role (OWL

object and datatype property) using open-world reasoning. From this set of all

entailed assertions, the fixed closed-world IC interpretation (Definition 3.5.2)

of every atomic concept and role is computed, and the weak UNA is adopted

(Definition 3.5.3). This step produces the fixed closed-world model over which

DL-learning will proceed.

• Build Context Graph. Given a set of example individuals labelled within the

input ontology, the context graph is constructed (§4.2.2, Definition 4.2.12) with

the instance chase by Algorithm 10. The context graph captures the various

ways the examples and the associated individuals which define each can be

described by various atomic concepts, their negations, and quantified roles.

• Classify Local TBoxes. Once the context graph is constructed, so-called lo-

cal domains (§4.2, Definition 4.2.5) which were attributed throughout the con-

text graph are used to define context-specific interpretations (§4.2.1, Defini-

tion 4.2.8). These are then used to deduce axiomatic knowledge about the

relationship of various concept expressions in each context.

• Prune Context Graph. After the computation of local axioms for each con-

text, portions of the context graph may be found to be redundant or irrelevant

(§4.2.3) and are pruned in preparation for learning.

• Start Learning Process. The learning process runs Algorithm 7 until a set of

solution concepts are found. As part of this process, a refinement operator such

as ρ
λ̄

is used to traverse the space of concepts constrained by the context graph.

• Output OWL Classes. If any solutions are found in the previous step, they are
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converted from DL concepts to OWL class expressions and are associated with

each of the individuals they describe, along with annotations describing their

performance in terms of the selected measure function (e.g. accuracy, χ2, etc.).

The OWL-Miner system is configurable to permit users to impose particular declar-

ative biases which control various aspects of how the system will behave at runtime,

including language bias to control the expressivity of the hypothesis language as fol-

lows:

• Limits on overall expression length or the maximum depth of any nested role

expressions;

• The use or exclusion of any concept or role names;

• The use of disjunction, and if permitted, the maximum number of operands in

any disjunction;

• The maximum number of occurrences of a role name appearing in any quanti-

fied role expression as operands to a conjunction;

• Use of any role quantifiers in addition to ∃, namely any of: ∀, >n, 6n;

• Minimum and maximum cardinality of any qualified cardinality restrictions

over particular role names globally;

• Use of the negation symbol against any atomic concept names.

The user is then able to describe the type of problem being solved as follows:

• Whether the problem is a classification or subgroup discovery problem, along

with the convex measure function;

• The set of examples and their corresponding labels.

Once the type of problem is defined, search bias can be controlled as follows:

• Whether to use a best-first or stochastic beam search method, along with a limit

on beam or expansion set size;

• Values for use in a heuristic utility function, such as α, β, γ on uOM;

• The maximum number of seconds to execute the search algorithm;

Lastly, the validation bias is controlled by defining the stopping criterion with:

• A minimum threshold on the convex measure function for recognising solu-

tions and optimistic upper bounds;

• Whether the search algorithm should terminate as soon as k solutions have been

found, or continue processing for the maximum specified time in an attempt to

improve a top-k list of solutions.

Various other system-specific parameters can be controlled, including the maximum
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Java Virtual Machine (JVM) memory limits and the maximum number of threads to

use in refining and evaluating concepts in parallel in the instance chase and search

algorithms. OWL-Miner also supports the automated execution of k-fold stratified

cross-validation where k > 1 for use in assessing the performance of the concepts it

generates as solutions.

The OWL-Miner system is open-source, and is available from GitHub at:

https://github.com/owlminer/owl-miner.

6.2 Evaluation over Supervised Learning Problems

In this section, we describe the application of OWL-Miner to several well-known

problems in classification and subgroup discovery which involve structured data. We

compare the performance of OWL-Miner in terms of both quality of solutions found

and system performance with DL-Learner, a state-of-the-art DL learning system, as

well as reported results in ILP for the various problems.

Each problem described in this section was executed on a Dell PowerEdge R© R820

with four Intel R© Xeon R© E5-4640 CPUs and 750Gb RAM. However, each problem

that was run on this machine by OWL-Miner version 1.0.0 or DL-Learner version

1.2 was performed within a Java 8 JVM configured to use at most 16Gb heap space

with at most one CPU thread, unless otherwise specified.

6.2.1 Michalski Trains

The Michalski Trains is a widely used dataset for testing learning systems which

operate over structured data [64]. This dataset consists of only ten examples of trains

and their features, such as aspects of their cargo, and are divided into two labels

(eastbound and westbound), as depicted in Figure 6.2.

The OWL ontology describing trains consists of features such as the cars of each

train, the shape of each car, the loads of each car, and the shape of each load, along

with numerical counts of wheels per train and car, and load per car. Using the

full expressivity of a DL hypothesis language, OWL-Miner was applied to classify

both eastbound and westbound trains separately, which took a total of less than 1

second each to locate many different concepts of 100% accuracy. Some of the shortest

https://github.com/owlminer/owl-miner
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Figure 6.2: Michalski Trains. Trains numbered 1-5 are classified as belonging to the
class ’eastbound’, and those numbered 6-10 are labelled ’westbound’.

concepts describing eastbound and westbound trains were as follows:

Label # Expression

East

1 Trainu ∃hasCar.(Shortu Closed)

2 (Trainu ∀hasCar.(Short))t
(Trainu >3.hasCar.(Caru ∃.hasShape.(Load)))

West
3 (Trainu 62hasCar.(Car)) t (Trainu ∃hasCar.(Jagged))

4 (Trainu 61hasCar.(Short)) t (Trainu ∃hasCar.(Jagged))

These concepts can be read as: eastbound trains are those which:

1. have at least one car which is short and closed;

2. only have short cars, or have at least three cars with the shape of a load,

where Load ≡ {circle, rectangle, hexagon, triangle} in the background ontology, and

where westbound trains are those which:

3. have at most two cars, or at least one car with a jagged roof;

4. have at most one short car, or at least one car with a jagged roof.

The OWL-Miner system and the methods it implements have been designed to

tackle learning problems which consist of a large amount of background knowledge

and example data and which require a complex hypothesis language. While the

Michalski Trains dataset is small, containing only a few concepts, roles and exam-

ples, it is nevertheless worthwhile demonstrating that OWL-Miner achieves results

which are expected for this well-known problem.
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6.2.2 Poker

The Poker dataset captures a structured representation of various five-card hands

which are labelled with their corresponding poker hand type, such as nothing, straight,

pair, flush, etc. [15]. The dataset presents a classification problem where a learning

system must infer the definition of each of the poker hands to the exclusion of others.

This problem is interesting because it has proven to be very difficult for many

learning systems, primarily because of the scale of the problem in the number of

examples in the dataset, but also because it requires learned theories to be expressive

in order to describe poker hands with high accuracy. The original dataset consists

of a large number of examples of five-card poker hands, where each example is

described only with the rank and suit of each card, for example:

A♠ K♠ Q♠ J♠ 10♠ (royal flush) 3♦ 4♦ 5♦ 6♦ 7♦ (straight flush)

7♦ 7♠ 7♣ 7♥ 3♦ (four of a kind) Q♠ Q♣ Q♥ 9♠ 9♥ (full house)

J♣ 10♣ 8♣ 3♣ 2♣ (flush) 6♥ 5♦ 4♥ 3♥ 2♠ (straight)

5♦ 5♣ 5♠ K♦ 7♠ (three of a kind) 4♥ 4♦ K♠ K♥ 3♠ (two pair)

9♥ 9♠ 10♦ 4♦ 2♠ (one pair) K♦ Q♠ 6♣ 7♠ 3♦ (nothing)

A translation of a portion of the poker dataset to an OWL ontology is distributed

with the DL-Learner system. In this ontology, background knowledge has been

added to aid in classification. Specifically, the roles sameSuit, sameRank, nextRank are

used to assert whether cards within an individual hand have the same suit (e.g., 4♠
sameSuit 6♠), the same rank (e.g., A♦ sameRank A♣), or the next rank (e.g., 10♠
nextRank J♥).

The poker dataset is divided into a training set consisting of 25,010 examples

across all hand types representing 0.00008% of all 311, 875, 200 possible hands, and

a test set consisting of one million examples. In testing OWL-Miner, we have sam-

pled the training dataset alone and have created nine classification problems with

4,000 examples sampled across all classes consisting of a total of 22,307 individuals

overall. Each of these nine problems treats examples of one known poker hand as

the set of positive examples, with the remaining set of examples as negatives which

encompasses examples of all other hands including those labelled with ‘nothing’. In

this way, we require that hypotheses are generated which correctly identify individ-

ual poker hands to the exclusion of all others, a classification approach in multi-class

classification known as one-versus-all. We have added this data into a new ontology
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which incorporates concepts for describing each rank and suit, as well as roles for

describing the cards of a hand, and rank and suit of a card, and the aforementioned

three roles sameSuit, sameRank and nextRank to capture relationships between cards

within each hand, as was incorporated into the poker OWL ontology distributed

with the DL-Learner system. We ran OWL-Miner over this new dataset for each

of the nine hand types, and for each, a concept with 100% accuracy was located in

under 20 minutes of computation time as summarised in Table 6.1. In comparison,

DL-Learner was also able to produce 100% accurate concepts for six of the nine

hand types over the same data set, but failed to reach 100% for three classes within

60 minutes of computation time as shown in Table 6.2.

Hand Concept Acc (%)
One pair Handu >2hasCard.(Cardu ∃sameRank.(Card))u 100.00

62hasCard.(Cardu ∃sameRank.(Card))
Two pair Handu >4hasCard.(Cardu ∃sameRank.(Card)u 100.00

61sameRank.(Card)) u 64hasCard.(Cardu
∃sameRank.(Card) u 61sameRank.(Card))

Three of Handu >3hasCard.(Cardu ∃.sameRank.(Card))u 100.00
a kind 63hasCard.(Cardu ∃.sameRank.(Card))
Straight Handu ∃hasCard.(Cardu 63sameSuit.(Card)u 100.00

∃nextRank.(Cardu ∃nextRank.(Cardu
∃nextRank.(Cardu ∃nextRank.(Card)))))

Flush Handu >4hasCard.(Cardu >4sameSuit.(Cardu 100.00
63sameSuit.(Card) u ∃nextRank.(Card)))

Full Handu >4hasCard.(Cardu ∃sameRank.(Card))u 100.00
house 62.hasCard.(Cardu 61sameRank.(Card))
Four of Handu ∃hasCard.(Cardu >3sameRank.(Card)) 100.00
a kind
Straight Handu ∃hasCard.(Cardu >4sameSuit.(Cardu 100.00
flush ∃nextRank.(Cardu ∃hasRank.(¬Ace))))
Royal Handu ∃hasCard.(Cardu ∃hasRank.(Ace)u 100.00
flush >4sameSuit.(Cardu ∃nextRank.(Card)))

Table 6.1: Best concepts generated by OWL-Miner for each of the poker hand types
for a maximum computation time of 20 minutes.
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Hand Concept Acc (%)
One pair ∃hasCard.(∃sameRank.( 62nextRank.(Thing))u 87.52

61sameRank.(Thing))
Two pair >2hasCard.(∃hasSuit.(¬Spades)u 85.34

∃sameRank.( 61sameRank.(Thing))u
62nextRank.(Thing))

Three of >2hasCard.( >2sameRank.( 61sameRank.( 100.00
a kind ∃sameRank.(∃sameSuit.(∃sameRank.(Thing))))))
Straight ∃hasCard.(∃nextRank.(∃nextRank.(∃nextRank.( 100.00

∃nextRank.(∃hasRank.(¬Fouru ¬Threeu
¬Two)) u ( 63sameSuit.(Thing))))))

Flush ∃hasCard.(∃nextRank.(∃nextRank.(∃nextRank.( 99.51
∃sameSuit.(∃hasRank.(Fourt King))u

( >4sameSuit.(∃hasRank.(¬Tenu ¬Three)))))))
Full ∃hasCard.( >2sameRank.(∃sameRank.(∃sameSuit.( 100.00
house ∃sameRank.(Thing)))))
Four of ∃hasCard.( >3sameRank.(Thing)) 100.00
a kind
Straight ∃hasCard.(∃nextRank.(∃nextRank.(∃nextRank.( 100.00
flush >4sameSuit.(∃nextRank.(∃hasRank.(¬Ace)))))))
Royal ∃hasCard.(∃nextRank.(∃nextRank.(∃nextRank.( 100.00
flush ∃nextRank.( >4sameSuit.(∃sameSuit.(

∃hasRank.(Ace))))))))

Table 6.2: Best concepts generated by DL-Learner with the OCEL search strategy
for each of the poker hand types for a maximum computation time of 60 minutes.
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6.2.3 Mutagenesis

Mutagenesis is a well-known benchmark problem in machine learning [24]. A variety

of machine learning techniques have been applied to the mutagenesis dataset to

construct classification models, from ILP to kernel-based methods [61], however the

application of DL learning systems to the problem has not been described before. The

mutagenesis dataset contains examples of various chemical compounds and their

characteristics, such as the atomic structure including functional groups, and various

real-valued measures such as a water/octanol partition coefficient, log P. The so-

called ‘regression friendly’ dataset contains 188 example compounds, 125 of which

are labelled positive for mutagenicity, and the remaining 63 are labelled negative.

Figure 6.3 shows a sample of three compounds which appear in the mutagenesis

dataset.

2-bromo-4,6-dinitroaniline 5-nitroisatin 6-nitroquinoline

Figure 6.3: Various small molecules from the mutagenesis dataset.

Originally, the mutagenesis dataset was represented in first-order predicate logic

for use in ILP systems, but has also been converted to OWL for use in DL learning

as is distributed with version 1.2 of the DL-Learner system. The resulting OWL

ontology contains 88 classes, 5 object properties, 6 datatype properties and 14,145

individuals. The ontology contains classes which describe types of atoms, bond

types and functional group structures.

We applied both the OWL-Miner and DL-Learner systems to this dataset [81],

running each experiment in isolation on the same machine with 16Gb RAM and one

CPU thread for a maximum runtime of 15 minutes. The same hypothesis concept

language was used in both systems. Algorithm 7 was set to locate one best solution

(k = 1) with beam (Bmax) and expansion set (Emax) sizes of 10,000 each. During

experimentation, we began testing with a minimum threshold on accuracy of 99%,

but only found solutions at around 90% accuracy, which we set as the minimum

accuracy for the experiments described below. In order to compare the performance

of OWL-Miner with DL-Learner, we observed the accuracy of newly discovered

best-performing candidates and the number of concepts which had been tested up

to that point of discovery, as shown in Figure 6.4.
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Figure 6.4: The performance of OWL-Miner and DL-Learner over the mutagenesis
dataset, plotting the number of concepts searched by each system versus the accuracy
of the best performing candidate.

From Figure 6.4, we see that OWL-Miner locates a concept with around 89%

accuracy after searching through around 3,000 concepts, and eventually locates a

concept with around 91% accuracy after searching through around 90,000 concepts.

DL-Learner locates a concept of 86% accuracy after searching through around 8,000

concepts, and eventually locates a concept with around 91% accuracy after searching

through over 1.2 million concepts, more than 13 times the number of concepts OWL-

Miner took to reach a similar result. OWL-Miner located its best concept at 90.96%

accuracy after less than 30 seconds, as follows:

Compoundu >4hasStructure.(¬Methylu ¬HeteroAromatic5Ring u
¬HeteroAromatic6Ringu ¬Benzene) u >4hasAtom.(Hydrogen3) u
∃lumo.[≥ −3.768∧ ≤ −1.102]

This concept can be read as: mutagenic compounds are those with at least four structures

which are not methyl, benzene or hetero-aromatic 5 or 6 rings, and which have at least four

hydrogen-3 atoms, and which have a lumo value of between -3.768 and -1.102. Similarly,

the best concept produced by DL-Learner also with an accuracy of 90.96% was:

Compoundu ∃hasAtom.(∃charge.[≤ −0.368]) u
>4hasStructure.(¬Benzeneu ¬Methyl) u ∃logp.[≥ 1.91]

This concept can be read as: mutagenic compounds are those with at least one atom with

a charge of less than or equal to -0.368, and which has at least four structures which are not
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methyl or benzene, and which has a logp value of at least 1.91. Both of these concepts are

expressive and easily comprehensible, highlighting the applicability of DL learning

as a suitable method for this problem.

To test if the best concepts generated by OWL-Miner were over-fitting the data,

we computed the 10-fold cross validation accuracy and F1 scores for several mini-

mum accuracy thresholds τmin as shown in Table 6.3. We compared this to the best

5-fold2 results produced by DL-Learner, and clearly see OWL-Miner produces a

significantly stronger result.

System τmin Acc.± σ (%) F1 ± σ (%) Runtime ±σ (s) Length ±σ

OWL-Miner

0.88 86.50± 0.09 89.34± 0.08 0.79± 0.81 11.4± 0.97
0.89 88.25± 0.06 91.20± 0.04 13.19± 34.92 12.5± 2.01
0.90 90.50± 0.09 92.25± 0.07 77.09± 104.21 15.7± 1.25

DL-Learner 0.90 84.67± 0.11 88.92± 0.06 916.33± 26.65 20.8± 5.68

Table 6.3: Cross validation accuracy and F1 scores for various minimum thresholds
over accuracy for the mutagenesis dataset with the OWL-Miner and DL-Learner

systems.

A sample of previously reported best accuracies of a variety of methods which

have been applied to the mutagenesis problem can be found in Table 6.4 from Lodhi

and Muggleton [61], to which we have added our results for OWL-Miner, DL-

Learner and also Alchemy, a higher-order logic learning system [72]. From Ta-

ble 6.4 we see that the 10-fold cross validation accuracy for the mutagenesis problem

ranges from around 85% to 95% accuracy, so the best accuracy produced in our ex-

periments by OWL-Miner are comparable.

The strongest reported result for mutagenesis was produced by Aleph, an ILP-

based system [61]. To obtain this result, Aleph generated twenty-five theories for an

ensemble classifier, which differs greatly from the single-concept outputs of OWL-

Miner and DL-Learner. We argue that such multi-clause theories are not as readily

comprehensible as the individual DL concepts we have produced, and nevertheless

observe that both OWL-Miner and DL-Learner could be modified to employ a

similar ensemble strategy. We re-ran this experiment in our environment and found

that Aleph took over 7 minutes of processing time to achieve its best result. We also

note that Aleph was reported to have produced results of 86.3% to 87.7% accuracy

in around 10 to 25 seconds [110], which is outperformed by OWL-Miner in terms of

2DL-Learner failed to complete a full 10-fold test, experiencing memory errors. We reduced the
number of folds to test until the software successfully produced a result at 5-folds.
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Type System Citation Evaluation
Method

Accuracy (%)

ILP
P-Progol [95] 10-fold 88.0± 2.0
FOIL [77] 10-fold 86.7
STILL [89] Single

train/test
split: 90/10

93.6± 4.0

PPILP

MFLOG [50] 10-fold 95.7
RSD

[51]
10-fold 92.6

SINUS 10-fold 84.5
RELAGGS 10-fold 88.0

EMILP
Aleph+RS [61] 10-fold 95.8 ± 3.3
Boosted FOIL [77] 10-fold 88.3

Kernels
MIK [34] N/A 93.0
RK [22] 10-fold 85.4
GK3 [62] leave-one-out 96.1

Naive Bayes + ILP
nFOIL

[53]
10-fold 78.3± 12.0

Aleph+NB 10-fold 72.8± 11.7
Others Neural Networks

[95]
10-fold 89.0± 2.0

Linear Regression 10-fold 89.0± 2.0
CART 10-fold 88.0± 2.0

HOL Alchemy [72] 10-fold 89.39

DLL
OWL-Miner 10-fold 90.50 ± 0.09
DL-Learner 5-fold 84.67 ± 0.11

Table 6.4: Various accuracy results for the mutagenesis problem taken from [61],
with the addition of Higher-Order Learning (HOL) from [72] and Description Logic
Learning (DLL) reported for the first time here. The various other type acronyms are:
Inductive Logic Programming (ILP), Propositionalisation-based ILP (PPILP), and En-
semble Methods in ILP (EMILP). The best result as highlighted in bold was achieved
by an EMILP system based on Aleph [61].

scalability which produced a concept of 89% accuracy in around one second.

We attribute the strong performance of OWL-Miner over DL-Learner to the

efficiency achieved by restricting the set of concepts available to the refinement op-

erator which are suitable for testing as search candidates, together with the method

of early pruning based on upper bound estimation, and the simultaneous learning

of lower and upper bounds on datatype property restrictions with numerical ranges.

These fundamentally different approaches are the main advantages the OWL-Miner

system has over the DL-Learner system which enable it to locate high performing

concepts efficiently.
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6.2.4 Carcinogenesis

The carcinogenesis dataset is another long standing and well-known benchmark

problem in machine learning [96]. Similar to the mutagenesis problem, the carcino-

genesis dataset3 contains structured examples of chemical compounds together with

the results of various bioassays and are labelled as being carcinogenic or not. The full

dataset contains 337 example compounds, 182 of which are labelled positive for car-

cinogenicity, and the remaining 155 are labelled negative as being non-carcinogenic.

The OWL ontology capturing this dataset from the DL-Learner project contains 142

classes, 18 object properties, 1 datatype property and 22,374 instances, along with

class axioms describing the subsumption hierarchy of atom, bond and functional

group structural classes, such as various types of halides or ring structures.

The DL-Learner system has been reported to achieve the best results over the

carcinogenesis dataset as a classification problem when setting a minimum accuracy

of 72% [58]. In our first experiment, we compared the number of concepts searched

by OWL-Miner when running a classification task based on accuracy with a mini-

mum threshold of 72% against the performance of the current best concept. We also

ran the same experiment with DL-Learner and the OCEL search strategy on the

same machine, the results of which are shown in Figure 6.5. These results show that

while OWL-Miner took slightly longer to locate high performing concepts initially,

ultimately it searched fewer concepts (1,516,184) to reach a solution with the greatest

overall accuracy of 71.51% after around 15 minutes of computation time. In com-

parison, DL-Learner found a concept of accuracy 70.33% after searching 2,028,625

concepts in around the same time. As previously reported [58], the DL-Learner

system is indeed capable of locating high accuracy concepts for this problem. The

concepts produced by OWL-Miner were similar to those found by DL-Learner,

however OWL-Miner was generally faster.

The best concept produced by OWL-Miner for this experiment with an accuracy

of 71.513% was:

Compoundu ( >4hasStructure.(Halide) t (∀hasAtom.(¬Sulfur70 u ¬Sulfur75 u
¬Sulfur76 u ¬Titanium134 u ¬Nitrogen31 u ¬Nitrogen35 u ¬Nitrogen36 u
¬Oxygen42) u ∃amesTestPositive.({true})))

The best concept produced by DL-Learner for this experiment with an accuracy

3http://www.cs.ox.ac.uk/activities/machlearn/cancer.html

http://www.cs.ox.ac.uk/activities/machlearn/cancer.html
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Figure 6.5: The performance of OWL-Miner and DL-Learner over the carcinogen-
esis dataset, plotting the number of concepts searched by each system versus the
accuracy of the best performing candidate over a maximum runtime of 15 minutes.

of 70.33% was:

( >3hasStructure.(Halideu ¬Halide10) t ∃amesTestPositive.({true}))u
∃hasStructure.(¬Phenolu ¬Ring)u
>2hasAtom.(¬Iodineu ∃charge.(double[≤ −0.027]))

The 10-fold cross validation accuracy of OWL-Miner for the carcinogenesis prob-

lem is summarised in Table 6.5. In producing these results, OWL-Miner was con-

figured to determine the first top-10 concepts which met the minimum accuracy

threshold as specified in each row of the table. For each fold, the concept with the

highest accuracy over the training set was selected, which did not necessarily have

the greatest test set accuracy. This is particularly apparent when the maximum er-

ror was set to 0.36 and 0.35. When the maximum error was set to 0.30, we find that

OWL-Miner produced the highest reported 10-fold accuracy for this problem. These

figures agree with those reported for DL-Learner, where it is observed that longer

concepts found with a maximum error of 0.30 or less do not necessarily reduce the

cross-validation test error, which may be a sign of over-fitting. Figure 6.6 plots the

training and related test accuracies for this experiment.

Previously reported results for the carcinogenesis problem can be found sum-

marised in Table 6.6 from [58], with the addition of the result for OWL-Miner.
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Error Acc.± σ (%) F1 ± σ (%) Runtime (s) Length
0.40 61.27 ± 6.45 56.69 ± 10.26 0.21 ± 0.14 4 ± 0.00
0.39 62.24 ± 8.13 59.31 ± 12.17 0.17 ± 0.09 4 ± 0.00
0.38 62.31 ± 7.44 59.22 ± 12.03 0.09 ± 1.79 4.8 ± 1.68
0.37 60.99 ± 7.47 57.89 ± 7.64 11.54 ± 21.27 6.5 ± 2.42
0.36 59.81 ± 7.17 57.41 ± 11.13 35.61 ± 71.61 9 ± 2.40
0.35 57.84 ± 9.04 59.12 ± 10.03 158.41 ± 190.48 10.4 ± 1.26
0.34 63.96 ± 9.43 64.08 ± 13.10 237.49 ± 147.04 10 ± 2.62
0.33 65.44 ± 8.90 67.78 ± 8.35 902.62 ± 1374.95 12.1 ± 5.04
0.32 63.57 ± 11.13 65.17 ± 11.72 667.56 ± 872.74 12.9 ± 2.73
0.31 67.12 ± 8.72 68.50 ± 8.41 456.01 ± 324.93 13 ± 1.89
0.30 69.04 ± 7.51 70.28 ± 7.52 1659.21 ± 1110.36 16.9 ± 2.51
0.29 66.36 ± 4.95 67.42 ± 5.52 1706.72 ± 922.55 16.8 ± 2.35
0.28 67.17 ± 9.32 67.96 ± 9.82 2317.14 ± 1040.87 18.4 ± 3.37

Table 6.5: 10-fold stratified cross validation accuracy for the carcinogenesis problem
for OWL-Miner.
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Figure 6.6: The 10-fold stratified cross validation performance of OWL-Miner for
various minimum accuracy (maximum error) values over the carcinogenesis dataset,
where we see from the fitted line that test accuracy mostly increases with training
accuracy.

6.2.5 Mushrooms

The mushroom dataset [87] consists of 8,124 hypothetical examples of the character-

istics of mushrooms from the agaricus and lepiota families, with roughly half labelled

as being edible (4,208) and the other half as being poisonous (3,916).



§6.2 Evaluation over Supervised Learning Problems 165

Type System Citation Accuracy (%)

ILP

Aleph with Ensembles [27] 59.0 to 64.5
Boosted Weak ILP [44] 61.1
Weak ILP [44] 58.7
Aleph Deterministic Top-Down 0.7 [110] 57.9± 9.8
Aleph Randomized Rapid Restarts 0.9 [110] 57.6± 6.4
Aleph Deterministic Top-Down 0.9 [110] 56.2± 9.0
Aleph Randomized Rapid Restarts 0.7 [110] 54.8± 9.0

DLL
DL-Learner [58] 67.4± 7.9
OWL-Miner 69.04± 7.51

Table 6.6: Various accuracy results for the carcinogenesis problem from [58], with the
inclusion of DL-Learning (DLL) results for OWL-Miner and DL-Learner systems.
The best result as highlighted in bold was achieved by OWL-Miner and second-best
in italics with DL-Learner.

Figure 6.7: The mushroom dataset [87] contains feature descriptions of thousands of
mushrooms, labelled as being either edible or poisonous (image from [102]).

Originally, this dataset was presented in an attribute-value format, but for the

purposes of evaluating the performance of OWL-Miner we have converted the data

into RDF and OWL. As part of this process, mushrooms are described by their com-

ponents and sub-components, such as a mushroom having a cap and stalk, which

each have different shapes, surface types, colors, and gills. The resulting ontology

contains 84 classes, 19 object properties, 2 datatype properties and 40,679 individuals

describing each of the examples.

We executed both OWL-Miner and DL-Learner over this problem to learn single

concepts which correctly classify edible mushrooms over poisonous ones, as a simple

known concept already exists for this problem, namely: edible mushrooms are those with

a spore print color which is not green, and which have an odor which is not almond or anise.

As this concept has 99.41% accuracy on the whole dataset, we set the maximum error

rate for concepts learned by either system to be 1%.

Figure 6.8 plots the runtime execution of OWL-Miner and DL-Learner for this

problem, where we observed that OWL-Miner found the highest accuracy concept

at 99.41% in 42 seconds after testing less than 5,000 unique concepts. In compari-

son, DL-Learner using the OCEL search strategy finds concepts of at most 98.82%
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Figure 6.8: The performance of OWL-Miner and DL-Learner over the mushroom
dataset, plotting the number of concepts searched by each system versus the accuracy
of the best performing candidate.

accuracy after testing around 100,000 concepts taking more than 20 minutes of com-

putation time on the same machine. Afterwards the system was allowed to continue

running for a total of 30 minutes but no better concept was found after testing 174,000

concepts and the search was terminated. Similarly, executing DL-Learner with the

CELOE search strategy resulted in the best concept having 98.08% accuracy also after

30 minutes of execution time, which is poorer so is not depicted in Figure 6.8. The

best concept produced by OWL-Miner was:

Mushroomu ∃hasOdor.(¬Foulu ¬Fishyu ¬Spicyu ¬Pungentu ¬Creosote)u
u∃hasSporePrintColor.(¬Green)

This concept has an accuracy of 99.41% and enumerates the odors which indicate

poisonous mushrooms, and is therefore similar to the most general rule with the

same accuracy as described in the literature.

The best concepts produced by DL-Learner were:

Mushroomu ∃hasOdor.(¬Foulu ¬Fishyu ¬Spicyu ¬Pungentu ¬Creosote)u
∃hasRing.(∃ringNumber.(int[≥ 2]) u ∃hasSporePrintColor.(¬Green)
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for the OCEL search strategy with an accuracy of 98.82%, and:

Mushroomu ∃hasOdor.(¬Foulu ¬Fishyu ¬Spicyu ¬Pungentu ¬Creosote)u
∃hasRing.(¬Large)

for the CELOE search strategy with an accuracy of 98.08%. It is possible that con-

cepts without refinements of the property hasRing were rejected in the local search

implemented by DL-Learner, as otherwise it is clear it should have located the

same best concept as found by OWL-Miner. We also tested the 10-fold strati-

fied cross-validation performance of OWL-Miner of this problem, which achieves

a 99.22%± 0.04% accuracy and 99.23%± 0.001% F1 score.

If we assume the mushroom dataset is a representative sample of all species of

mushrooms from the agaricus and lepiota families, we may be equally as interested

in high accuracy concepts which describe poisonous mushrooms. This assumption

may be contrast with the carcinogenesis and mutagenesis datasets which sample

a tiny proportion of all possible molecules, where learning concepts to describe

non-carcinogenic or non-mutagenic molecules would be generally less useful. By

configuring OWL-Miner to seek concepts which classify poisonous mushrooms, it

produced the following concept with 99.41% accuracy within 15 minutes:

(Mushroomu ∃hasRing.(Pendant) u ∃hasSporePrintColor.(Green))t
(Mushroomu ∃hasOdor.(¬Nilu ¬Aniseu ¬Almond))

We also configured and ran DL-Learner to perform the same learning task which

produced the following concept with 98.52% accuracy using the OCEL search strat-

egy after 2 minutes, with no better concept found after searching for a further 58

minutes:

Mushroomu ∃hasOdor.(¬Nilu ¬Aniseu ¬Almond)

Lastly, to construct concepts which describe either poisonous or edible mushrooms,

we ran OWL-Miner to solve this as a subgroup discovery problem with a minimum

threshold of 90% weighted relative accuracy (Definition 3.3.4) for a maximum of 15

minutes. The results of this single experiment are summarised in Table 6.7. From this

table, we see that a variety of features of mushrooms can be used to describe edible

or poisonous subgroups with high accuracy. Because the dataset is hypothetical, in

practice these rules should not be used to distinguish poisonous mushrooms from

edible ones, however the experiment demonstrates the capability of the OWL-Miner
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system to generate different descriptive hypotheses of either type over a variety of

features in a single experiment.

WRA % Acc % Concept
-96.936 1.477 Mushroomu ∃hasOdor.(¬Nilu ¬Aniseu ¬Almond)
-90.472 4.825 Mushroomu ∃hasOdor.(¬Nilu ¬Anise)u

∃hasCap.(Capu ∃hasShape.(¬Bell))
-90.123 4.973 Mushroomu ∃hasPopulation.(¬Numerousu ¬Clustered)u

∃hasOdor.(¬Nilu ¬Almond)u
∃hasSporePrintColor.(¬Purple)

96.936 98.523 Mushroomu ∃hasOdor.(¬Foulu ¬Fishyu
¬Mustyu ¬Spicyu ¬Pungentu ¬Creosote)

92.237 96.012 Mushroomu ∃hasSporePrintColor.(¬Greenu ¬Chocolate)u
∃hasRing.(¬Large) u ∃hasCap.(Capu
∃hasGill.(Gillu ∃hasSize.(Broad)))

91.317 95.569 Mushroomu ∃hasRing.(¬Noneu ¬Large)u
∃hasSporePrintColor.(¬Chocolate)u
∃hasCap.(Capu ∃hasGill.(Gillu ∃hasSize.(Broad)))

Table 6.7: Several top concepts generated by OWL-Miner representing subgroups
in the mushroom dataset using weighted relative accuracy (WRA) with a minimum
threshold of 90%. Concepts with positive WRA values largely correspond to edible
mushrooms, and negative WRA values largely correspond to poisonous mushrooms.
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6.3 Performance Analysis

This section contains an analysis of the performance of novel algorithms imple-

mented in the OWL-Miner system, including: the construction of the context graph

and local axioms in preparation for learning (§6.3.1); the speed of refinement while

learning (§6.3.2); detection of redundancy in learning with our refinement operator

ρ
λ̄

(§6.3.3); the speed of coverage checking (§6.3.5); and the effect of parallelisation in

the construction of the context graph and in our learning algorithm (§6.3.6).

6.3.1 Preparing for Learning

In this section, we analyse the cost of construction of the context graph for each

of the problems of Section 6.2. Prior to the execution of the learning Algorithm 7

in OWL-Miner, the knowledge base is pre-processed with classification by a DL

reasoner, then a context graph (Definition 4.2.12) is constructed to describe the space

of concept terms available to the refinement operator ρ
λ̄
. We assess the performance

of Algorithm 4 which is used to construct a context graph in preparation for learning.

The performance of Algorithm 4 is a function of several parameters, including the

size of the number of examples and the individuals and literals connected to them

by role assertions in A, the number of concepts describing these individuals, and the

expressivity of the chosen hypothesis language. For each of the problems analysed in

Section 6.2, Table 6.8 captures statistics about the time taken to compute the context

graph in each case. As each context graph is shaped like a number of trees, this table

also lists the total number of leaves corresponding to the contexts of the most deeply

nested subexpressions to give an indication of the resulting size. The table also lists

the number of examples, concepts, and roles and the chosen hypothesis expressivity

for each problem. In each case, classification of the knowledge base took less than

two seconds with the Pellet DL reasoner.

From Table 6.8a we see that the time taken to construct the context graph did not

exceed 30 seconds for any problem when existential (∃), universal (∀) and minimum

qualified cardinality restrictions (>n) were included in the hypothesis language. The

resulting context graph, which is structured like a number of trees rooted at every

concept which describes any of the examples e ∈ E , is shown in terms of the number

of leaves which indicates the size of the graph by number of paths from the root of

each tree. By simply including maximum qualified cardinality restrictions across all

roles for each problem, we see from Table 6.8b that the time taken to construct the
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Problem Time (s) Leaves |E | |NI | |NC| |NOR| |NDR| >nr
Poker 15.79 62,237 603 3,635 39 5 0 4
Muta. 16.61 15,221 230 14,145 87 5 6 5
Mush. 25.43 285 8,124 40,679 83 19 2 5
Carc. 29.49 20,086 337 22,374 144 18 1 5

(a) Size of the context graph and time to compute for a number of problems. The maximum
value n for minimum qualified cardinality restrictions (>nr) is shown.

Problem Time (s) Leaves 6nr
Mush. 25.46 285 5
Muta. 41.00 45,188 5
Carc. 68.44 57,790 5
Poker 357.33 927,385 4

(b) As per Table 6.8a above, but also including maximum values n for maximum qualified
cardinality restrictions (6nr) in the hypothesis language.

Table 6.8: Context graph construction times with Algorithm 4 for a variety of prob-
lems along with the size of the resulting context graph viewed as a tree by the num-
ber of leaves, along with problem statistics and the use of existential (∃), universal
(∀) and minimum qualified cardinality restrictions (>n) in the hypothesis language.
|NOR| and |NDR| denote the number of object and datatype roles, respectively.

context graph, along with the size of the resultant graph, increases by a factor of

around 2 to 22 for each problem except the mushroom dataset.

The time taken to execute Algorithm 4 depends on the structure of the examples

in the knowledge base, as well as the number of concepts, roles and role quanti-

fiers available to describe these. Notably, the occurrence of r-successor sets (Defi-

nition 4.2.14) with cardinalities greater than 1 in combination with minimum and

maximum cardinality restrictions generate many new edges between nodes in the

context graph as the various possible cardinalities are enumerated. We observe this

particularly in the Poker dataset (§6.2.2) where each individual representing a card

may have multiple successors for the roles sameRank and sameSuit in each hand, thus

causing Algorithm 4 to generate multiple edges between each class describing cards

by suit and rank. This high branching factor is compounded by the depth of the

context graph which permits nested sequences of roles by describing links between

each card in a hand. Notably, while the Mushroom dataset (§6.2.5) had many more

examples, individuals, classes and roles than the Poker dataset, context graph con-

struction took less than 30 seconds to produce a several trees with 285 leaves in total,

as each individual was often only linked to others by single role assertions. This lim-

ited the branching factor of the context graph as minimum and maximum cardinality
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restrictions were found to be irrelevant for use with the mushroom dataset and were

subsequently excluded by Algorithm 4.

The time taken to construct the context graph compares favourably with the com-

putation time of the learning Algorithm 7 in locating solutions for each of the prob-

lems described above. In each case, the time taken to compute the context graph

in addition to the computation time for learning was less than the time taken by

DL-Learner, and in each case, producing stronger results.

6.3.2 Refinement Evaluation Speed

Once the context graph is computed, it is used in the learning Algorithm 7 by the

refinement operator ρ
λ̄

to determine which concept expressions are available to re-

fine to for any subexpression of a concept. As part of this process, the refinement

operator traverses the context graph to determine the set of most applicable con-

texts (Definition 4.2.19) for every subexpression of a concept C under refinement.

Figure 6.9 presents the various times taken for refinement of all subexpressions of

a single concept for various concept lengths. In each problem displayed, the most

expressive hypothesis language was used to assess the performance of the operator

for the construction of as many concepts as possible.

All values plotted in Figure 6.9 correspond to the time taken for a call of the

refinement operator to produce all refinements of any single expression. As longer

concepts have potentially more subexpressions to refine, we might reasonably expect

the time taken to produce refinements of longer concepts to take longer, however

the figures show otherwise. We attribute this result to the context graph which

limits the number of options available to the refinement operator in deeply nested

subexpressions which cover fewer individuals and literals as computed by the chase

Algorithm 4.

6.3.3 Occurrences of Redundancy

Proposition 4.5.3 describes how the refinement operator ρ
λ̄

is redundant (Defini-

tion 3.4.8) in that the application of this operator may produce multiple refinement

chains leading to equivalent concepts. This property is a source of inefficiency in

the search performed by Algorithm 7 as the operator ρ
λ̄

will direct the search into

previously visited parts of the search space. In each of the problems discussed in

Section 6.2, we analysed how many times a particular concept was generated in the
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Figure 6.9: Refinement speed versus concept length for all four benchmark problems
discussed in Section 6.2. These figures show the average time in milliseconds (with
standard deviation error) taken to produce all refinements of a single concept for
concepts of various lengths.

search by maintaining a set of all concepts generated by ρ
λ̄

and recognising when

concepts were revisited.

From Figure 6.10 we see that redundancy in the search occurs in varying propor-

tions based on the problem being solved. As the hypothesis language was largely the

same for each problem analysed in Figure 6.10, the difference lies in the search space

of concepts which is structured with respect to the input examples and the concepts

and roles in the knowledge base which describe them. After analysis of the execution

of these problems, a common source of redundancy appears to be refinement chains

of the following form:

3r.(A)  ρ
λ̄

3r.(B)  ρ
λ̄

3r.(B) u�s.(C)

3r.(A)  ρ
λ̄

3r.(A) u�s.(C)  ρ
λ̄

3r.(B) u�s.(C)
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Figure 6.10: The proportion of repeated versus unique candidate expressions encoun-
tered in the entire search for solutions to various problems described in Section 6.2.
Repeated expressions occur because of the redundancy of the refinement operator ρ

λ̄
used in the search.

The operator ρ
λ̄

does not restrict which type of refinement steps which are per-

mitted in any one subexpression context, such as in this example with the refinement

of the filler concept A  ρ
λ̄

B or conjunction with �s.(C). As such, both of these

steps are permitted as refinements of 3r.(A). For learning problems which may per-

mit many different quantified role expressions in any one subexpression context, this

particular source of redundancy appears to be more likely. For example, we observe

that this is indeed the case with the Poker data set where each subexpression con-

text referring to instances of Card can be refined in conjunction with several other

quantified roles such as nextRank, sameSuit and sameRank which each have the range

Card, thereby permitting nested expressions of the same kind. This situation results

in a large number of possible redundant refinement chains as shown in Figure 6.10

which reports that around 15% of all concepts were revisited throughout the search

for solutions.

In the OWL-Miner system, redundancy in the search is managed by normalising

all concept expressions by ordering operands by their partial order, permitting the

fast identification of syntactically equivalent concepts. In this way, the set of concepts

in the search frontier or beam of Algorithm 7 can maintain unique sets of concepts at

all times and eliminate duplicates. However, as the frontier or beam is fixed in size,

the search may re-introduce previously seen concepts after they leave the frontier or

beam set. For this reason, OWL-Miner is configurable to maintain a seen set for

recording concepts which have been expanded by refinement to detect redundancy
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globally. This seen set permits the search to avoid refining a concept which has been

refined before. The use of this seen set is optional however, as it potentially consumes

a large amount of memory at runtime for long searches, and the redundancy of ρ
λ̄

appears, at least by Figure 6.10, to be limited in practice.

6.3.4 Occurrences of Improper Refinements

Proposition 4.5.4 describes how the refinement operator ρ
λ̄

is improper (Definition 3.4.5)

in that, for any concept C, the application of this operator as ρ
λ̄
(C) may produce re-

finements which are equivalent to C. As discussed in Section 5.3.2 of Chapter 5,

improperness can negatively impact the performance of a learning algorithm which

searches by refinement by introducing concepts into a limited search space which

cannot be distinguished as better or worse relative to each other by heuristics based

on coverage. In this situation, the search may prune away concepts which lead to so-

lutions, or may at least waste computational resources in considering concepts which

do not lead to solutions.

In each of the problems discussed in Section 6.2, we analysed how many times

improper refinement steps occurred in the search versus all refinement steps. Fur-

thermore, we compared this to the rate of improper refinement steps which occurred

with the subexpression suspension method as described in Section 5.3.2 to limit so-called

ineffectual refinements (Definition 5.3.1), the results of which are presented in Table 6.9

and Figure 6.11.

Problem Improper (%) Improper SS (%) ∆ (%)
Muta. 41.54 33.78 -18.68
Carc. 8.70 6.16 -29.20
Mush. 46.81 36.21 -22.64
Poker 41.55 19.58 -52.88
Trains 69.24 56.26 -18.75

Table 6.9: Proportions of occurrences of improper steps amongst all refinement steps
for a variety of problems discussed in Section 6.2, along with the proportion of oc-
currences of improper refinement steps with subexpression suspension enabled (SS)
(§5.3.2), and the difference between the two.

From Table 6.9 and Figure 6.11 we see that improper refinement steps in the

search occur in varying proportions based on the problem being solved. Note that

the hypothesis language was the same for each problem analysed in Figure 6.11.

Improperness appears to account for a significant proportion of all refinement steps,
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Figure 6.11: The proportion of (proper) versus (improper) refinement steps encoun-
tered in the entire search for solutions to various problems described in Section 6.2
shown both without and with (*) the subexpression suspension method. Improper
refinements occur because of the improperness of the refinement operator ρ

λ̄
used in

the search.

and we observe that this is particularly the case when refining concepts which involve

disjunctions as was enabled for each of the problems tested here where ineffectual re-

finements may occur. The results of various experiments reported in Section 6.2 were

all conducted with subexpression suspension enabled. With subexpression suspen-

sion disabled, we observed that the amount of improper refinement steps increased

by 18% to 52%, however generally still reached the same solutions in comparable

time for these experiments in particular.

6.3.5 Cover Evaluation Speed

During the execution of the learning Algorithm 7, the two main operations are the

refinement of candidate concept expressions with ρ
λ̄
, and their evaluation relative to

certain performance measures which rely on coverage computation by Algorithm 11.

In the previous section, we showed that refinement was generally very fast for a

variety of problems. In this section, we analyse the performance of coverage check-

ing by Algorithm 11 also relative to the same set of problems. From Figure 6.12,

we observe that the computation of coverage for candidate hypothesis expressions

by Algorithm 11 completely dominates the overall processing time of learning Al-

gorithm 7 which includes concept refinement and all other operations. For each of

these problems, we profiled the average time taken to compute coverage for individ-

ual concept expressions of varying lengths, and also by maximum role depth in the
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Figure 6.12: This plot shows the proportion of time spent in refinement (refine), and
coverage evaluation (cover) for each of the various problems described in Section 6.2.
We clearly see that coverage evaluation dominates processing time in each case, with
refinement accounting for generally less than 2% of the total computation time for
each problem.

expression as this was shown to be the dominating factor in the complexity of this

operation in Section 5.2.1.

From Figures 6.13 and 6.14 we observe that the overall processing time to fully

evaluate the cover of each candidate hypothesis rarely exceeds several milliseconds.

On the Carcinogenesis and Mutagenesis problems, complete evaluation generally

took no longer than 1 millisecond. For Carcinogenesis, coverage computation in-

volved testing up to 337 examples spanning a maximum of 22,374 instances and

literals, and for Mutagenesis, coverage computation involved testing up to 230 exam-

ples spanning a maximum of 14,145 instances and literals. The Mushroom and Poker

datasets contained considerably more examples, where Mushrooms contained 8,124

examples spanning a maximum of 40,679 instances and literals, and where Poker

contained 4,000 examples spanning a maximum of 22,307 instances.

In general, we observe that as concepts grow in size, the time taken to evaluate

their cover over all examples does not tend to increase significantly. We expect this

is because longer concepts tend to pose more constraints on examples, permitting

Algorithm 10 for instance checking to fail fast, which in turn permits Algorithm 11

to move on and check other examples. This effect may also apply to concepts with

deeply nested roles, as we observed that the time taken to compute coverage for

concepts with nested roles does not generally significantly increase with nested role

depth.
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Figure 6.13: Average cover evaluation speeds for the Mutagenesis (6.13a) and Car-
cinogenesis (6.13b) datasets.

6.3.6 Parallelisation

Parallelism is exploited in two ways by the OWL-Miner system implementation, in

both the computation of concept coverage, and in the instance chase procedure prior

to learning. As we observed in Figure 6.12, it is clear that the majority of compu-

tation time spent in learning is dominated by concept coverage evaluation. Because

of this, OWL-Miner parallelises the coverage evaluation of all refinements of a con-

cept amongst a pool of worker threads. Once complete, each thread independently

determines if the evaluated refinement should enter the frontier or beam, and if so,

synchronously updates this set with the new candidate. Therefore, as the number

of threads grows, adding new refinement candidates to the frontier or beam is the

bottleneck as multiple threads will block until they gain access.

Figure 6.15 plots the performance of OWL-Miner for the Carcinogenesis prob-
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Figure 6.14: Average cover evaluation speeds for the Mushroom (6.14a) and Poker
(6.14b) datasets.

lem for various numbers of threads for coverage evaluation. As we can see, using

multiple threads reduces the overall processing time to reach solutions of a certain

accuracy, however is limiting in that as the number of threads grows, the longer

they wait to lock the frontier or beam to add new candidates after evaluation. Using

multiple threads to evaluate the cover of concepts and to add them to the frontier or

beam in this way also introduces non-determinism in the search. This occurs because

threads which update the frontier with new candidates may do so in an uncontrolled

order, and as the frontier or beam is fixed in size, various candidates may be pruned

over others simply based on the time at which they were introduced. In practice, we

found that the non-determinism introduced by processing coverages in parallel was

evident in the time taken to reach solutions but not in the quality of solutions, as

the best candidates are the least likely to be pruned when ordered by the heuristic

function.
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The instance chase of Algorithm 4 is also inherently parallelisable as r-successor

sets can be computed for each individual in the knowledge base independently, and

the resulting context graph components can be updated synchronously.
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Figure 6.16: The effect of parallelisation on the instance chase Algorithm 10. As
more threads are available to perform the instance chase, the overall processing time
to compute the context graph for the Carcinogenesis problem is reduced.

Figure 6.16 plots the performance of OWL-Miner for the Carcinogenesis problem

for various numbers of threads when performing the instance chase Algorithm 10
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for constructing the context graph. As we can see, using multiple threads reduces

the overall processing time, but as we saw when parallelising the learning problem,

the performance increase is limited by the requirement to update the context graph

synchronously as threads wait for a lock on parts of the context graph to update

it. This effect appears to be less significant in this case however, as the context

graph is a large, multi-object data structure and threads are more likely to update

different graph components, reducing the possibility that each thread will need to

block to wait for resources. With fine-grained locking, the instance chase algorithm

is therefore more amenable to parallelisation. In Figure 6.16 we note that the overall

computation time increased slightly when the number of threads was set to equal

the maximum number available on the host machine, which in this case was set to

eight. This can be explained by the fact that the main thread executing the overall

algorithm was set to wait while other threads processed the context graph, and was

not able to operate at full capacity as opposed to when the number of threads for

processing the chase was less than eight.

6.4 Conclusion

In this section, we described our system OWL-Miner which implements the var-

ious algorithms discussed in this thesis, from the instance chase Algorithm 10 to

the learning Algorithm 7 and supplementary functions such as the refinement oper-

ator ρ
λ̄

and coverage checking Algorithm 11. We saw that OWL-Miner performs

favourably against other state of the art implementations including DL-Learner

which is the closest system for comparison. In particular, OWL-Miner produces

strong results in terms of both the quality of solutions found as evidenced across

four particularly challenging benchmark datasets: poker, mutagenesis, carcinogene-

sis and mushrooms. In practice, the OWL-Miner system has been developed with a

particular goal in mind, which is to support the analysis of other similarly large and

complex knowledge bases in the life sciences. In the next chapter, we will describe

how we are working on integrating the OWL-Miner system into a suite of analysis

tools to support experimental analysis to address a problem in structural biology

known as biological macromolecular crystallisation [82, 71].



Chapter 7

Case Study: Biological

Macromolecular Crystallisation

In this chapter, we describe a scientific problem domain known as biological macro-

molecular crystallisation (§7.1). This domain is data and knowledge rich and is par-

ticularly amenable to the application of the supervised learning techniques which

we have developed in this thesis. Indeed, this domain was the original motivation

for our work. We discuss how Semantic Web technologies are helping to collate and

organise data and knowledge in this domain (§7.2) and how DL learning systems

like OWL-Miner can be used to mine this data (§7.3) before describing how the

OWL-Miner system is currently being integrated into a laboratory setting to aid in

experimental analysis (§7.4). Finally, we remark on the current progress of this work,

and opportunities for future development (§7.5) before concluding (§7.6).

7.1 Biological Macromolecular Crystallisation

7.1.1 The protein crystallisation bottleneck in structural biology

Recent advancements in proteomics have produced an explosion in the number of

proteins as potential drug targets for treating disease. The field of structural biol-

ogy is concerned with ascertaining a precise understanding of the three dimensional

structure of such proteins which is crucial in determining their function for use in

drug design. Currently, X-ray crystallography is the most accurate and widely used

method to determine protein structures. However, the number of protein targets be-

ing produced has rapidly outpaced our ability to determine their structure using this

method. The necessary step of protein crystallisation in the process of X-ray crystal-

lography is currently a major bottleneck, often taking from weeks to years to deliver

181
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a protein crystal of sufficient quality for further analysis [17].

Protein crystallisation has an unacceptably high failure rate: studies in structural

genomics suggest that, out of around 45,000 soluble, purified target proteins, around

14,000 crystallised and only around 5,000 resulted in a crystal structure [9]. One

study [93] reported that, of a set of 96 proteins, it took around 150,000 crystallisa-

tion experiments to produce 277 crystal leads for 36 of the proteins; this means that

only 0.2% of experiments produced crystal outcomes, and 99.8% produced a dif-

ferent outcome. Such failure rates are commonly encountered for any new protein

crystallisation trial.

Protein crystallisation is a very complex physicochemical process with a large

number of experimental factors [63]. This results is a vast space of possible experi-

mental conditions, and very little science exists to guide the selection of appropriate

conditions for crystallising any given protein ab initio. The best methods for protein

crystallisation to date are still largely based on random sampling. High-throughput

protein crystallisation facilities (such as CSIRO1 Collaborative Crystallisation Cen-

tre, C32) typically tackle the problem using automation, where many crystallisation

experiments can be carried out in parallel using robotics. However, such facilities

are still failing to keep up with the demand for protein structures and protein crys-

tallisation remains a bottleneck in structural genomics studies. Therefore, methods

for assisting crystallographers in making rational choices of experimental conditions

which increase the likelihood of generating high quality crystals are sought to in-

crease the efficiency of the protein crystallisation process [86].

7.1.2 The protein crystallisation method

A single protein crystallisation experiment is typically performed by combining a

small quantity (often µl) of a purified, homogeneous protein sample with a chem-

ical solution called a crystallant cocktail, or precipitant. To coax the protein-protein

molecular interactions necessary for their precipitation into a crystalline solid, the

experiment aims to increase the concentration of the protein in solution to super-

saturation. Figure 7.1 is a crystallisation phase diagram [2] describing regions where

protein molecules are most likely to interact in solution, increasing in probability

from: stable where protein molecules are free in solution; metastable where short-term

protein-protein molecular interactions occur; labile where interactions are more fre-

1The Commonwealth Scientific and Industrial Research Organisation (CSIRO) is Australia’s national
science agency. Website: http://www.csiro.au

2C3 Website: http://crystal.csiro.au

http://www.csiro.au
http://crystal.csiro.au
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quent permitting ordered aggregation (crystalline structure formation); to unstable

precipitation where interactions occur too frequently to form ordered aggregates.

Figure 7.1: A crystallisation phase diagram depicting the regions: stable, metastable,
labile and precipitation. Supersaturation starts at the border between stable and
metastable and increases in magnitude through the labile region to the precipitation
region.

Homogeneous nucleation describes events where protein-protein molecular inter-

actions occur to form small ordered aggregates necessary for crystal growth, and

which only occur in the labile region. Once formed, the growth of crystal nuclei are

maintained if the system remains in the labile or metastable supersaturated phases.

If the system enters the precipitation region, disordered aggregates are formed more

rapidly than crystal structures and protein denaturation3 may occur. On the other

hand, if the system enters or never leaves the stable region, crystal growth cannot

proceed and any existing crystal structures may dissolve.

The phase of a crystallisation experiment can be observed visually, as depicted in

figure 7.2 which labels a number of different experimental states according to their

phase. The class described as clear often corresponds to the stable or metastable

regions; phase separation and crystals lie within the metastable/labile supersaturated

regions; and precipitate (and sometimes also skin) lie in the unstable precipitation

region.

The most popular method to decrease protein solubility in crystallant solution is

via the physical exclusion of volatile chemicals from the crystallant. This method,

known as vapor diffusion, is depicted in figure 7.3.

3Denaturation describes an undesirable event where the native structural conformation of a protein
is disrupted.
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Figure 7.2: Various classifications of protein crystallisation experiment states. This
figure shows images of microbatch experiments [93].

Figure 7.3: A vapour diffusion experiment (by ‘hanging drop’) and related crystalli-
sation phase diagram. Initially, roughly equal proportions of protein and crystallant
solution are suspended in a drop above a reservoir of crystallant solution in a closed
chamber. Over time, volatile components of the crystallant (e.g. water) diffuse into
the reservoir, decreasing the protein solubility in the drop. If protein molecules nu-
cleate in the labile phase region, they may continue to grow until crystals are formed
(path A), else supersaturation of both protein and crystallant may continue into the
precipitation phase region potentially resulting in protein denaturation (path B).

The number of different combinations and concentrations of chemicals in crys-

tallant cocktails, kinds of experiments, and methods for decreasing protein solu-

bility available to a crystallographer are infinite. Additionally, there are often no

indicators with respect to a protein itself that may suggest a particular course of
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experiments that will achieve crystallisation. In practice, crystallographers employ

screening methods for experimentation broadly based on either random or factorial

designs. In random screening, a range of randomly selected experimental conditions

are tested to observe the behaviour of a protein. While not truly random, the popu-

lar sparse matrix screen is a related strategy where the screen conditions are randomly

selected from a range of conditions which have been known to work for a large class

of proteins in the past. The goal of such screening is to determine a starting point

from which further experiments may be refined (optimised) with more screening. In

factorial screening, controllable factors are simultaneously and randomly varied in

a balanced manner across experiments with an aim to enable statistical analyses of

results [16]. In practice, the number of factor levels to vary in a screen can grow very

large, so incomplete factorial screening is usually performed on a carefully chosen

subset of factors. Grid screens are also common which fix all but one or two factors

at a time.

Given a protein sample to crystallise, a crystallographer will often attempt many

hundreds to thousands of screening experiments with no guarantee of success. As

principled methods of crystallisation do not yet exist, the choice of experiments in

these screens is largely guided by preferences of the individual crystallographer

along with their available time and resources.

High-throughput protein crystallisation (HTPC) facilities have emerged in recent

years to cope with the increased demand for protein structure information. These fa-

cilities often employ robotics to automate the setup and observation of a large num-

ber of crystallisation experiments in parallel. One such robotic system is the Rigaku

Minstrel HTTM drop imager4 which was designed to incubate many experiments by

storing plates which can contain from between 24 to 1536 experiments each and to

take images of the experiments over time, which are recorded in a database. Crys-

tallographers can then inspect their experiments at any time using a web interface to

track and label their state with classifications such as those shown in Figure 7.2.

7.1.3 Mining protein crystallisation data

While data generated throughout the course of a protein crystallisation trial may

be used to determine conditions in optimisation experiments, it is common prac-

tice amongst most high throughput facilities to ignore or discard such data once a

suitable protein crystal has been grown. Only the very final experimental condi-

4http://www.rigaku.com/products/automation/minstrelht

http://www.rigaku.com/products/automation/minstrelht
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tions which yielded a crystal used to produce a structure are reported in scientific

publications and public databases such as the Protein Data Bank (PDB) [12] and the

Biological Macromolecule Crystallization Database (BMCD) [105].

Data generated in the process of crystallising proteins, particularly data describ-

ing the majority of crystallisation attempts perceived by crystallographers to have

failed, is a source of valuable information. Machine learning methods could be ap-

plied over such data to reveal trends and patterns which, particularly if encoded as

human-comprehensible rules, could be used as guiding principles for the rational se-

lection of crystallisation conditions towards quality protein crystals, thus increasing

the efficiency of protein crystallisation [36, 74, 86, 94].

Several methods of mining such data have been attempted. The space of ex-

perimental parameter values in which a large number of proteins have successfully

crystallised has been investigated by several attempts to perform statistical clustering

of the BMCD. These methods include Euclidean k-means [31], the results of which

were reproduced and extended with an attribute-value rule learning approach [39,

36]. Other mining attempts include clustering over data within individual HTPC fa-

cilities which include both positive (crystals grown) and negative (failed experiment)

data. Analyses of this data has identified experimental settings which had succeeded

in crystallising a large number of proteins, which gave rise to commercially devel-

oped ready-made screens, many of which are still in use today [74]. Case-based

reasoning [45] and neural networks [26] have been employed as predictive models in

this setting to provide decision support for crystallographers in selecting experimen-

tal conditions which may be likely to crystallise proteins.

In terms of data mining approaches which are capable of generating comprehen-

sible rules to aid in human understanding, the most useful methods to date for clus-

tering and prediction over protein crystallisation data appear to be attribute-value

rule-based approaches [45, 39, 36, 21]. Neural networks models, despite their accu-

racy, are incomprehensible and cannot be interpreted to reveal knowledge which can

aid in understanding how to crystallise proteins and to translate into actions for crys-

tallographers. Studies on mining attribute-value rules from data in the BMCD [39, 36]

report that augmenting the empirical data with hierarchical background knowledge

(such as chemical species and their properties) improved the comprehensibility and

expressive power of the hypotheses generated, as well as providing new features for

learning. However, the expressiveness of the propositional attribute-value rule-based

hypotheses limits such approaches from capturing complex multi-parameter associa-
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tions which are expected to be present in crystallisation data [94]. These studies have

had little practical impact because of the general nature of the knowledge discov-

ered and the fact that statistical analyses of the BMCD are fundamentally ineffective

as they do not take into consideration the number of trials or failed crystallisation

attempts [86].

7.1.4 Integrating heterogeneous protein crystallisation data

Efforts to integrate protein crystallisation experimental data across HTPC facilities

for large-scale analyses like data mining have been hampered by the heterogeneity

of the data and inconsistency in the naming of entities referred to in experiments,

such as chemical names [75]. In order to overcome these difficulties, the Crystallisa-

tion Data Exchange (XDX) Ontology Consortium5 was established in 2011 by CSIRO

and several of the world’s largest leading HTPC facilities to develop an ontology with

the Web Ontology Language (OWL)6 to comprehensively describe the semantics of,

and a standard nomenclature for, protein crystallisation experimental data [71] which

is required to address the data integration problem [28]. The XDX ontology incor-

porates specific domain knowledge in protein crystallisation as well as published

sources of relevant knowledge such as the ChEBI OWL ontology for chemistry [25]

to capture chemical identifiers and relationships, and the Protein Ontology [70] for

capturing protein features. Efforts are currently underway in CSIRO to map het-

erogeneous crystallisation experimental data from various HTPC facilities using the

Resource Description Framework (RDF) data model7. This effort is aligned with the

vision of the Semantic Web [90] whereby RDF is used to capture and publish data

in a machine interpretable way, and which may be directly published and associ-

ated to other data sets as part of the Linked Open Data (LOD) project [13] for wider

scrutiny [82].

The push to formally capture the semantics of protein crystallisation data and

knowledge for data integration with formal ontologies makes protein crystallisation

an ideal domain to explore the development of knowledge-intensive machine learn-

ing and data mining technologies directly over Semantic Web formalisms, and is the

primary motivation for the work of this thesis towards the development of the OWL-

Miner system [80]. In the next section, we will describe how data and knowledge in

5http://www.xdx-ontology.org
6http://www.w3.org/TR/owl-overview/
7http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

http://www.xdx-ontology.org
http://www.w3.org/TR/owl-overview/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
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this domain is captured, and how OWL-Miner is being used to analyse the data to

support crystallographers with their experimental analysis tasks.

7.2 Description Logic learning for protein crystallisation

Motivated by the use of Semantic Web technologies by the protein crystallisation

community for capturing experimental data and knowledge, we are currently work-

ing with the CSIRO C3 laboratory to install the OWL-Miner system to aid crystallo-

graphers with data analysis tasks. In this section, we will describe how experimental

data are captured under the XDX OWL ontology, how experimental data is enriched

with knowledge from other ontologies such as ChEBI OWL, and the application of

OWL-Miner to perform supervised learning over resultant combined knowledge

bases. We will then describe how these tasks can aid the crystallographers in design-

ing their experiments, and remark on how this technique can be applied to larger

collections of crystallography data in general.

7.2.1 Experimental Data and Knowledge Representation

In our work, protein crystallisation experiments are captured in RDF as data asser-

tions against concept and role names from the XDX OWL ontology. To illustrate an

example of an individual experiment, Figure 7.4 presents a set of assertions to de-

scribe how the features of the experiment are captured against components of the

XDX OWL ontology.

Figure 7.4 partially describes a set of assertions about an individual experiment

consisting of a single drop in a hanging vapour diffusion experiment at 20◦ centi-

grade, containing 0.2M of magnesium acetate at pH 6.0, amongst other chemicals.

The experiment is attributed with two observations made on different days, one

where the observed state of the drop was clear, and another five days later indicating

the presence of crystalline structures.

The structure of experiments is amenable for representation by relational struc-

tures such as DLs, as each experiment may contain different sets of chemicals each

with their own properties from a set of several thousand chemicals. Furthermore,

supplementary data and knowledge exists outside of the domain of protein crystalli-

sation which can be added to enrich the experimental descriptions. One such data

source is the ChEBI OWL ontology which contains hierarchical and compositional

knowledge about chemical species which cover those used in crystallisation. For
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e0 : Drop 〈e0, double[20.0]〉 : atTempC
〈e0, m〉 : method m : HangingDropVaporDiffusion
〈e0, c0〉 : hasComponent c0 : Component
〈c0, s0〉 : hasConcentration s0 : Concentration
〈s0, M〉 : unitOfMeasure
〈s0, double[0.2]〉 : hasValue
〈c0, mgac〉 : hasChemical mgac : Chemical
〈c0, double[6.0]〉 : pH
. . .
〈e0, o0〉 : hasObservation o0 : Observation
〈o0, clear〉 : observedState clear : State
〈o0, date[2014-12-14]〉 : atTime
〈e0, o1〉 : hasObservation o0 : Observation
〈o1, precipitate〉 : observedState precipitate : State
〈o1, date[2014-12-19]〉 : atTime

Figure 7.4: A description of an individual protein crystallisation experiment ex-
pressed as assertions over concepts and roles from the XDX OWL ontology.

example, knowledge which can be added about magnesium acetate from ChEBI is

shown below in Figure 7.5.

mgac : CHEBI_62964
CHEBI_62964 v ∃hasFunctionalParent.(AceticAcid)
CHEBI_62964 v ∃hasPart.(MagnesiumAtom)
CHEBI_62964 v ∃hasPart.(Cation)
CHEBI_62964 v ∃hasPart.(Anion)
CHEBI_62964 v ∃hasMolecularWeight.(double[= 142.393])

Figure 7.5: Knowledge and data about the chemical compound magnesium ac-
etate from the ChEBI OWL ontology. These axioms describe how instances of
CHEBI_62964 refer to magnesium acetate which have part magnesium atom, a cation
and an anion (meaning the compound is a salt), is structurally related to acetic acid,
and that it has an average molecular weight of 142.393 g/mol.

The ChEBI ontology provides an identification scheme for chemicals and organ-

ises them into a classification hierarchy based on structural features, properties and

roles [38]. Adding extra information such as axioms from the ChEBI ontology to

a knowledge base containing protein crystallisation experiments provides new fea-

tures which can be leveraged by supervised learning systems such as OWL-Miner

to learn concepts for classifying groups of experiments based on such features. For

example, the ability to classify a collection of experiments which contain chemicals

of a certain class, or which contain a functional structure or part, might be an impor-
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tant predictor of a response like experimental failure. Extra quantitative data such as

the molecular weight of chemical species or their pH values can also be used in this

way. In the next section, we will describe how knowledge bases consisting of this

information can be used in conjunction with learning systems like OWL-Miner to

perform classification and subgroup discovery to aid crystallographers interpret the

results of their experiments.

7.3 Data Mining Protein Crystallisation Conditions

7.3.1 Single Target Experimentation

Given a new protein target to analyse, a crystallographer will often perform a number

of experiments with a so-called random screening approach which samples multiple

chemicals and conditions in a sparse manner. The purpose of these initial screens is

to ascertain the behaviour of the protein in a number of conditions and to locate leads

for further analysis, depending on the response of the protein to each condition. Such

screens can often consist of tens to hundreds of experiments which sample many dif-

ferent chemicals and conditions. Interpreting the space of parameters involved can

be a manual and time-consuming process [63]. Manual interpretation of the results

of such screens is usually performed in such a way that the best individual results are

singled out for fine-grained screening, such as incomplete factorial screening around

a very restricted set of chemicals and conditions, or grid screening which focuses on

a fixed set of chemicals and conditions while varying a small number of parameters

such as concentration or pH levels. This approach necessarily requires the protein

under consideration to have produced reasonable outcomes after initial screening to

permit further experimentation to proceed towards narrower sets of chemicals and

conditions. However, it is often the case that a protein will not crystallise after initial

random screens. In this case, the variety of responses must be manually interpreted

by the crystallographer who will then make an educated guess as to which experi-

ments to try next. When the responses are primarily negative, such as where most

experiments result in clear drops or drops containing precipitate, it is often unclear

which experiments are the best ones to try next amongst a large set of diverse exper-

iments.

To aid in the interpretation of the results of screening, several software packages

have been developed (e.g., AutoSherlock [69]) which visualise the experimental re-

sults, but do not provide the ability to perform automated clustering of experiments
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per result based on phase states. If computed automatically, such clustering has the

potential to provide valuable and rapid insight into complex multi-parameter combi-

nations affecting crystallisation for individual proteins [94]. By clustering in this way,

a crystallographer can determine which experimental parameters are most highly

correlated with certain outcomes which can inform how to proceed with further

experimentation, even when crystalline responses are not achieved. For example,

experiments which transition quickly from clear drops to precipitate are interpreted

as having conditions which force a protein sample directly into the unstable region

of phase space (Figure 7.3), a negative outcome. Understanding the primary factors

of the experiments which produce this result can aid a crystallographer in knowing

which chemicals and their concentrations or pH levels to avoid. Alternatively, exper-

iments which transition relatively slowly from clear to precipitate and are not associ-

ated with other negative outcomes such as skin or phase separation (Figure 7.2) may

be interpreted as having passed from the stable region of phase space through labile

and metastable where crystal growth ought to occur and into the unstable region.

Such behaviour can be interpreted as positive, as it suggests the conditions for the

protein are nearly correct, and deserve further attention even though no crystalline

responses were produced. In this way, a crystallographer can make use of data min-

ing techniques to describe clusters of experiments over their features such as their

constituent chemicals and conditions which most highly correlate with known be-

haviours which are interpreted to be helpful or a hindrance to crystallogenesis. By

clearly elucidating these factors over a number of experiments, the crystallographer

may use this information to inform how further experiments should be carried out.

The descriptions of protein crystallisation experiments as shown in Section 7.2 are

ideally suited for processing by the OWL-Miner system which was developed pri-

marily for the purpose of interpreting results such as these. Given an initial screen of

experiments which represent a sparse sampling of the space of possible parameters

around chemical and conditions, OWL-Miner can be used to perform supervised

subgroup discovery over the experiments to determine which of the features most

highly correlate with certain responses. Subgroup discovery is ideally suited to this

task, as there may be isolated pockets of chemicals and conditions in the space of

parameters which correlate highly with certain responses but which may not cover

the full dataset. The hypotheses produced to describe subgroups which correlate

most highly with positive outcomes can then be used to guide further experimen-

tation, with the crystallographer focussing on fine-grained incomplete factorial or
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grid sampling which involve chemicals matching the descriptions. In Section 7.4, we

present a real example where this kind of analysis was performed in retrospect over

a fully annotated and completed experiment for a single protein called orotic acid

hydrolase (§7.4.2).

As experimentation progresses towards sampling smaller areas of the parameter

space with a reduced number of chemicals and conditions, OWL-Miner can be also

used to perform supervised classification to infer hypotheses which are intended

to range over all experiments with certain responses. The use of DL learning with

systems like OWL-Miner are clearly amenable to these tasks as the results are com-

prehensible models which describe the parameter space directly in terms of chemi-

cals and conditions which the crystallographers can use to understand how further

experiments should be designed.

7.3.2 Multiple Target Interpretation

Given a large collection of experiments accounting for the conditions and responses

for a number of proteins, patterns in the global space of parameters can be inves-

tigated to determine which conditions are most strongly correlated with particular

responses. Indeed, this is precisely how most modern pre-manufactured crystallisa-

tion screening kits are produced, which is to analyse the most commonly successful

chemical conditions which have succeeded in crystallising a large number of pro-

teins in the past [74]. While such work has been undertaken over empirical data in

the BMCD [36], these data represent only positive outcomes extracted from publica-

tions which describe the final successful conditions used to achieve crystallogenesis

for each contributed protein, and ignore all other results such as intermediate be-

haviours or negative responses. Furthermore, the learning over this dataset did not

incorporate more general knowledge about the domain, such as that which is oth-

erwise provided by ChEBI around chemical classifications, structures and functions.

We anticipate that by incorporating such extra knowledge, that cluster descriptions of

experimental conditions over such terms may reveal properties which are influencing

crystallogenesis which have not been discovered before.

It is the ultimate goal of the XDX OWL Ontology Consortium to provide a stan-

dard nomenclature for capturing experimental conditions in a way in which such

data and knowledge can be integrated from a number of contributing sources as a

step toward this goal. The OWL-Miner system was designed to support analysis

directly over such a data and knowledge holding for mining commonly successful
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or unsuccessful conditions. Efforts are currently still ongoing to further develop the

XDX OWL ontology and supporting tools to facilitate their use by HTPC centres

which hold valuable data in heterogeneous formats and storage mechanisms which

aren’t otherwise easily shared.

7.4 The CSIRO Collaborative Crystallisation Centre (C3)

The CSIRO Collaborative Crystallisation Centre (C3) in Parkville, Melbourne is a

world leading protein crystallisation research facility. This centre is host to HTPC

machinery for automating the setup and observation of many crystallisation exper-

iments, and maintains a rigorous database of experimental descriptions and their

outcomes. We have partnered with the director of C3, Dr. Janet Newman, to investi-

gate the application of the OWL-Miner system to experimental data held by C3. To

support this task, a large amount of supporting software and infrastructure has been

put in place which we refer to as the X-plorer system.

Minstrel HT
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Bucket

Image Processing Cluster ChEBI
OWL

Fuseki

XDX
OWL

OWL
Miner

Hypothesis
Visualiser

X-plorer

Web Server

Figure 7.6: The architectural ecosystem of the infrastructure supporting the X-plorer

system for the C3 laboratory.

Figure 7.6 shows a high-level architectural diagram outlining the major software

and hardware components which have been put in place to support the use of OWL-

Miner via the X-plorer system. Automated experiment incubation and monitoring

hardware known as the Rigaku Minstrel HTTM system accepts plates containing mul-

tiple crystallisation experiments and uses a camera to take regular images of each

experiment. These images are then stored in a database which the crystallographers

can inspect with specialised software called CrystalTrakTM. This software permits

crystallographers to view and label their experiments at each inspection time with

their interpretation of each response, such as clear, precipitate, skin, and so on. This

software also supports the design of new experimental screens based on manually
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entered sets of parameters chosen by the crystallographers for further experimenta-

tion, but necessarily requires that the crystallographers manually interpret the results

and select the space of parameters for further testing, which can be a complex and

time-consuming process.

To automate the process of analysing the response of the many experiments by

their images which are produced by the Minstrel system, generated images are

placed into distributed storage on a compute cluster. On this cluster are several

computer vision classifiers which have been trained to recognise certain features in

drop images [108, 107], and an ensemble learner is used to automatically attribute

labels to each image depending on the response identified. Automated labels are

then captured in a separate database labelled as ‘Bucket‘ in Figure 7.6. By providing

automated scoring for images, the crystallographers are free to focus on the task of

analysing the parameter space relative to the various responses. To support the latter

task, the X-plorer system implements procedures for extracting data and knowledge

from both the ‘CT‘ and ‘Bucket‘ databases which respectively contain the experimen-

tal descriptions and their responses. Once extracted, this data is transformed to RDF

under the XDX OWL ontology and stored in a Fuseki8 triplestore database in prepa-

ration for analysis by OWL-Miner.

The X-plorer system also maintains mappings between the chemical entities re-

ferred to in experiments in the ‘CT‘ database and standard terms and synonyms that

are used in other data sets, specifically ChEBI and PubChem. Using this data, in-

clusion axioms which classify chemicals and specify functional parts amongst other

knowledge is extracted from the ChEBI OWL ontology and added to the Fuseki

database of experimental descriptions, such as those shown in Figure 7.5. Further-

more, any extra or missing quantitative data about chemicals is added from Pub-

Chem, which also serves to cross-reference values against existing data to indicate

possible errors, for example, where there is disagreement about the molecular weight

of a chemical substance. The process of extracting knowledge from the ChEBI on-

tology proceeds by identifying the concepts for which the chemicals used in experi-

ments are instances, and extracting all inclusion axioms which refer to these classes

up the classified subsumption hierarchy recursively until all relevant axioms are ex-

tracted. The collective expressivity of the axioms extracted from ChEBI OWL are

selected so as to not exceed EL, as the XDX OWL ontology is also expressed in EL,

resulting in a knowledge base for which classification is efficient to compute.

8Apache Jena Fuseki: https://jena.apache.org/documentation/fuseki2/index.html

https://jena.apache.org/documentation/fuseki2/index.html
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Once entirely transformed to RDF under OWL, the experimental data from the

‘CT‘ database and their combined automated and manual response labelling from

the ‘Bucket‘ database can then be analysed directly with OWL-Miner. The X-plorer

system supports the use of OWL-Miner in a number of ways which greatly simplify

user interaction.

Figure 7.7: A screenshot of the X-plorer system which allows crystallographers
to visualise their experiments, select training sets either manually or based on ex-
perimental responses, and to request subgroup descriptions from the OWL-Miner

system. While OWL-Miner produces DL concepts as hypotheses, the X-plorer sys-
tem translates these into structured natural language. Each subgroup description is
also attributed with the strength of the score used, in this case the value for the χ2

measure, and each are also paired with the set of experiments which are covered to
permit their visualisation in the main screen.

To use the X-plorer system, a crystallographer logs in via http://crystallisation.

csiro.au (not publicly accessible) and enters a number of barcodes corresponding to

plates containing their experiments. The system then loads a visualisation of these

experiments by plate onto the screen as shown in Figure 7.7. The software permits

the user to inspect the specific conditions of each experiment and can highlight them

based on automatically or manually labelled responses. By selecting a set of exper-

iments from a number of plates, the user can then select a positive and negative

training set for supervised learning based on a manual selection, or based on a com-

mon set of responses. For example, the user can select a collection of drops with

crystalline and precipitant responses as the set of positives, and clear drops as the

set of negatives. Once a training set is identified, the user can select parameters for

http://crystallisation.csiro.au
http://crystallisation.csiro.au
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OWL-Miner to begin learning hypotheses, from the problem to be solved (classifica-

tion or subgroup discovery), the measure to be used (χ2, weighted relative accuracy,

etc.), minimum thresholds on the measure, and maximum limits on the number of

hypotheses to locate and time spent searching for them.

Of the options that can be selected, OWL-Miner also supports the explicit in-

clusion or exclusion of ontology terms to use in the generation of hypotheses. It is

planned to permit the user of X-plorer to make such selections on top of a core

set of features such as chemical species which form the basis of terms with which

OWL-Miner will attempt to construct hypotheses, for example, only pH levels. In

this way, the user is free to use OWL-Miner to explore whether there are such con-

cepts which have strong correlations to experiments with certain responses to test

hypotheses. Otherwise, the OWL-Miner system can be used without exclusions and

can be used to derive any and all hypotheses which meet the problem specification

provided by the user.

Once OWL-Miner begins processing over a set of labelled experiments, the cur-

rent set of best hypotheses are returned to the X-plorer interface on a continual basis

to be visualised on the web-page until OWL-Miner terminates. However, the raw

DL concept descriptions are not used directly, as the intended users are potentially

crystallographers with no knowledge of DLs. While a DL concept expression may be

easily understood with minimal training, the X-plorer system implements a novel

translation mechanism which maps DL concepts to structured natural language ex-

pressions as can be seen in Figure 7.7. These expressions are nested and are tightly

linked to the DL concepts returned, and are attributed with links to source infor-

mation, such as the link to reveal more information about hydroxyether compounds

which takes the user to the ChEBI website. The method used is based on templating,

which is to recognise certain DL concept fragments and to map these to structured

English representations for rendering as HTML. For example, the concept:

∃hasComponent.(Componentu
∃hasChemical.(Chemical u CHEBI_46789u
∃hasMolecularWeight.(double[(≥ 400∧ < 1500) ∨ (> 1500∧ ≤ 8000)]))u

∃hasConcentration.(Concentrationu
∃hasValue.(double[≥ 1.2∧ ≤ 28])u
∃unitOfMeasure.({w/v%}))

is simplified, condensed and represented textually as:
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A chemical of:

• Type: hydroxyether, and;

• Molecular weight: [400, 8000] and 6= 1500, and;

• Concentration: [1.2, 28] w/v%.

the latter clearly based directly on the concept itself, however is more readable.

Note the replacement of the concept CHEBI_46789 with its label ‘hydroxyether‘. The

implementation of this translation method is problem-specific, as it is based on hard-

coded rules around the kinds of DL concept fragments which are expected to be

produced by OWL-Miner over the XDX OWL and ChEBI OWL terminologies.

When a user highlights a particular concept found by OWL-Miner in the X-plorer

interface, the set of experiments which are covered by the concept are highlighted,

along with the classification designation of each experiment relative to the concept,

namely all true and false positives, and all true and false negatives. This provides

the user with a quick visual guide as to the appearance of which experiments were

covered by the concept or not relative to the nominated positive and negative training

set.

7.4.1 Optimisation Screen Design

The role of OWL-Miner in the X-plorer system is to aid the crystallographer in

identifying the factors which are significantly correlated with particular experimen-

tal responses. Once identified, the crystallographer may then wish to create new

experimental screens around the conditions they have identified as being suitable for

further analysis. This step is known as optimisation, as given a set of experiments

which did not produce a usable protein crystal structure, parameters are selected for

modification towards optimising the protein conditions towards the growth of high-

quality crystal structures. The existing CrystalTrakTM software supports the creation

of new experiments by plate designs around the selection of one or more existing

experiments by creating new grid, random, or additive design methods across a set

of selected parameters.

By selecting a number of experiments which were covered by a concept produced

by OWL-Miner as being strongly correlated with particular outcomes, the features

described by the concept give an indication of which parameters should be varied in

the new screen. For example, if pH was identified as a feature in a concept which
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Figure 7.8: A screenshot of the Rigaku CrystalTrakTM system for creating optimisa-
tion screens based on a number of experimental parameters.

was highly correlated with a positive response such as crystals or suitable precipitate,

this can be selected for variation over the range as suggested by the constraint on this

feature in the concept. Furthermore, if OWL-Miner produced a concept which was

correlated highly with negative responses such as unsuitable precipitate or skin, these

rules can be combined in the screen design process to ensure that the newly sampled

space does not overlap. Designing screens by integrating knowledge determined by

OWL-Miner in this way supports crystallographers in more closely and explicitly

identifying areas of parameter space which are suitable for further analysis, and is a

capability which is not offered by CrystalTrakTM, Formulatrix RockMakerTM9, or any

other crystallisation design tool known to the author.

9Formulatrix RockMakerTM: http://formulatrix.com/protein-crystallization/products/rock-maker/
index.html

http://formulatrix.com/protein-crystallization/products/rock-maker/index.html
http://formulatrix.com/protein-crystallization/products/rock-maker/index.html
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7.4.2 Orotic Acid Hydrolase

A recent project conducted at the C3 sought to determine the structure of a biolog-

ical macromolecule called orotic acid hydrolase (OAH)10. Samples of OAH were used

in a number of crystallisation experiments, 768 in initial random screening and a fur-

ther 1,920 in optimisation screening. Notably, every experiment in this project was

manually annotated by an expert crystallographer so as to provide labels to support

automated supervised learning.

During the initial random screening phase, 19 of the 768 experiments produced

responses which were favourable towards crystallisation, where the remaining 749

experiments were not considered interesting for further analysis. In order to deter-

mine the primary factors which were correlated with near-crystalline responses over

others, we ran an experiment with OWL-Miner to perform supervised subgroup

discovery with the χ2 measure with a p-value thresholded at 10−6. The initial popu-

lation consisted of 19 near-crystalline experiments labelled as positives (P), and 749

non-crystalline experiments labelled as negatives (N). OWL-Miner quickly produced

several simple hypotheses which are listed in Table 7.1.

No. Hypothesis Cover χ2 p-value
1. Dropu ∃hasComponent.(Componentu P: 5/19 1.0× 10−20

∃hasChemical.(CHEBI_62964)) N: 3/749
2. Dropu ∃hasComponent.(Componentu P: 13/19 2.2× 10−16

∃hasChemical.(CHEBI_36364)) N: 63/749
3. Dropu ∃hasComponent.(Componentu P: 9/19 5.7× 10−11

∃hasChemical.(CHEBI_33975)) N: 47/749
4. Dropu ∃hasComponent.(Componentu P: 4/19 4.5× 10−7

∃hasChemical.(CHEBI_35156)) N: 16/749
5. Dropu ∃hasComponent.(Componentu P: 8/19 6.1× 10−8

∃hasChemical.(CHEBI_23114u N: 52/749
¬CHEBI_26710u ¬CHEBI_31206u
∃hasMolWt.(double[42.39, 136.28])u
∃pH.(double[0.0, 7.5])))

Table 7.1: Hypotheses generated by OWL-Miner to describe the factors strongly
correlated to experiments with crystalline responses for orotic acid hydrolase (OAH).

The hypotheses listed in Table 7.1 describe to the crystallographer that experiments

10Orotic acid hydrolase: https://www.ebi.ac.uk/pdbe/entry/pdb/5hy0

https://www.ebi.ac.uk/pdbe/entry/pdb/5hy0
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containing:

1. Magnesium acetate (CHEBI_62964) tended to crystallise more often than not

(5:3);

2. Experiments containing any chemical belonging to the class of alkaline earth

salts (CHEBI_36364), which includes magnesium and calcium salts, tended to

be correlated more strongly with crystalline responses (13/19, 68.4%) than non-

crystalline responses (63/749, 8.4%).

3. Magnesium salts (CHEBI_33975) and calcium salts (CHEBI_35156) were corre-

lated more strongly with crystalline responses (magensium: 9/19, 47.4%; cal-

cium: 4/19, 21%) than non-crystalline responses (magnesium: 47/749, 6.2%;

calcium: 16/749, 2.1%).

4. Chloride salts (CHEBI_23114) having a molecular weight between [42.39, 136.28]

and a pH between [0.0, 7.5] except specifically sodium chloride (CHEBI_26710)

and ammonium chloride (CHEBI_31206) were correlated more strongly with

crystalline responses (8/19, 42.1%) than non-crystalline responses (52/749, 6.9%).

These results clearly indicate that specific experimental features such as certain chem-

ical species (i.e., magnesium, calcium and chloride salts) and particular molecular

weight and pH ranges were significant to achieve near-crystalline conditions. In this

project, the expert crystallographer chose to proceed after initial random screening

with fine-grained optimisation sampling around variations of experiments contain-

ing magnesium and calcium salts after visual inspection of the results. Ultimately,

crystals of sufficient quality for analysis were produced in this phase which resolved

the structure of OAH with experimental conditions which included magnesium ac-

etate.

Interestingly, the last hypothesis in Table 7.1 indicated that a number of chloride

salts were strongly correlated with near-crystalline responses, however these were

not explicitly chosen by the crystallographer for analysis in optimisation screening.

However, as magnesium salts were chosen for optimisation, magnesium chloride was

included (which is a magnesium, chloride and alkaline earth salt). Post-hoc analy-

sis of the optimisation screen results revealed that experimental conditions which

included magnesium chloride correlated most strongly with crystalline conditions

over any other condition (116 crystalline responses our of a total of 580 containing

magnesium chloride, or 20%), whereas conditions with calcium salts did not perform

nearly as well (8 crystalline responses out of a total of 309 containing any calcium

salts, or 0.03%). The crystallographers conceded that if they could have determined
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that chloride salts were strongly correlated with favourable results as is shown by

OWL-Miner over initial screening, that these chemicals should have been included

in more optimisation experiments. The identification of influential classes of chem-

icals through the use of the CheBI OWL ontology, along with constraints defining

specific sets of chemicals over properties in the XDX OWL ontology, is seen as a

powerful mechanism by which to describe possible areas of the space of chemicals

which can be focused on for experimentation which permit the crystallographer to

make more informed choices.

7.5 Current and Future Work

Currently, the X-plorer system is under active development. The steps which take

generated images for automated classification on the CSIRO compute cluster have

only recently been implemented, and the labelling data are being used to attribute

particular responses to each experiment based on sequences of their observations,

such as transitioning from clear to precipitate. Furthermore, the step which takes the

set of experiments identified as being covered by a DL concept by OWL-Miner for

use in optimisation screen design is incomplete. Shortly, crystallographers working

at C3 will be able to take the concepts generated by OWL-Miner and use them

directly to interpret per-protein results and to inform the construction of optimisation

screens. Once this is achieved, crystallisation experiments which are set up on the

basis of this method can be evaluated against past success rates based on manual

processing to determine if the efficiency of experimentation has improved, as we

reasonably anticipate.

An interesting avenue for future work in this space is to apply OWL-Miner over

the ever-growing RDF dataset of experiments in the Fuseki database. With very

many experiments for a variety of proteins covering a range of responses considered

both negative and positive, OWL-Miner can be used to produce concepts which cor-

relate highly with success or failure across many different proteins as discussed in

Section 7.3.2. Performing this analysis may reveal experimental parameters which

are interesting for protein crystallography generally, such as revealing correlations

between the use of sets of parameter settings and certain responses. As this is the

motivating goal of the XDX Ontology Consortium, performing this step to produce

interesting results on a single laboratory basis is a worthwhile step towards per-

suading other laboratories to adopt our approach, and to potentially combine their
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experimental data which has been standardised under the ontology for a broader

data mining effort.

7.6 Conclusion

This chapter has explored the application of the DL learning techniques developed

in this thesis and implemented as OWL-Miner in a real-world setting. Indeed, the

development of the novel methods in this thesis and the implementation of OWL-

Miner was done to support this domain specifically. While work in this area is

still progressing, the approach holds great promise for improving the efficiency and

effectiveness of experimentation in protein crystallography. This work has become

particularly important of late, not only because of the inherent inefficiency of protein

crystallisation given the high demand for protein structures, but because the emerg-

ing method of cryo-electron microscopy [52] is capable of producing structures for

large biological molecules in a fraction of the time typically taken by protein crystalli-

sation methods. As the analysis of small biological targets is currently only possible

with X-ray crystallography, crystallographers are even more motivated to improve

the rate at which protein crystallisation can be performed in order to keep pace with

these new methods.



Chapter 8

Conclusions and Future Work

We conclude this thesis with a summary of our research contributions (§8.1) and

directions for future work (§8.2).

8.1 Thesis Contributions

In this thesis, we investigated the topic of efficient concept learning over large knowl-

edge bases with highly expressive DL languages, such as SROIQ(D) which un-

derpins OWL2-DL. In particular, our goal was to improve on the performance and

scalability of modern DL learning tools so as to improve their applicability for solv-

ing a variety of machine learning and data mining problems. To this end, our novel

contributions are:

• The formalisation of the problem of learning from closed-world interpreta-

tion in DLs (§3.5, Definition3.5.1) and the definition of a novel context-specific

closed-world interpretation suitable for DL learning (§4.2.1, Definition 4.2.8) [80];

• Practical methods for DL learning that use a potentially infinite context-specific

closed-world interpretation in the construction and use of a context graph (§4.2.2,

Definition 4.2.12);

• The formalisation of downward (ρ
λ̄
) and upward (υ

λ̄
) context-specific refine-

ment operators which are designed to be highly efficient when structuring ex-

pressive DL concept spaces (§4.1);

• The development of a novel splitting algorithm for refining numerical concrete

domains that leverages the context graph and context-specific interpretations

(§4.4, Algorithm 6);

203
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• The development of a versatile, general, memory bounded, top-k stochastic

beam search algorithm for DL learning that employs our novel refinement op-

erators (§5.1.2, Algorithm 7) [80, 81];

• Various improvements to a utility function (Definition 5.1.5), method of cover-

age testing (Algorithm 11), and learning (Algorithm 7) based on an analysis of

the convexity of performance measures (§5.1.1.2) [81];

• Methods to mitigate redundancy and improperness of refinement with practi-

cal strategies around concept normalisation (§5.3.1) and suspension in refine-

ment (§5.3.2);

• The application of DL learning to the real-world problem of protein crystallisa-

tion (Chapter 7) [82].

Our implementation OWL-Miner was constructed to verify the performance of the

novel methods presented in this thesis. Chapter 6 presented results of our analysis

of the performance of OWL-Miner against the state-of-the-art DL learning system

called DL-Learner, currently the only other comparable system. We found that

OWL-Miner outperformed DL-Learner on several significant benchmark problems.

Furthermore, OWL-Miner offers additional modes of learning than DL-Learner

by including top-k and stochastic beam search for both classification and subgroup

discovery with a variety of convex measures including χ2, WRA, and MCC.

We have been motivated to develop improved methods of DL learning by real-

world domains in the life sciences such as protein crystallisation which was discussed

in our case study in Chapter 7. Domains which integrate large amounts of RDF data

and knowledge with RDFS and OWL ontologies which have a need to derive patterns

from the data are ideally suited to the application of our methods, especially where

such patterns need to be comprehensible by their users. In the domain of protein

crystallisation, OWL classes which are induced from experimental data captured as

RDF are helping crystallographers understand more about their scientific domain,

and will aid in their experimental discovery process.
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8.2 Future Work

8.2.1 Application Areas

8.2.1.1 Life Sciences

As discussed in Chapter 7, we are currently deploying OWL-Miner as a real-time

analytical tool for aiding crystallographers in performing scientific experimentation

with the development of the X-plorer system. Our experience thus far suggests that

OWL-Miner is an ideal technology for aiding domain experts who may not have

experience with machine learning or data mining. In particular, the combination

of the X-plorer and OWL-Miner systems will enable its users to clearly under-

stand patterns in their data in domain-specific language which can lead to actionable

knowledge and measurable gains in efficiency. The domain of protein crystallisation

is also interesting from the perspective that the OWL-Miner system is deployed to

operate in real-time, as well as in an off-line batch mode. In off-line processing, we

aim to incorporate more experimental datasets from laboratories other than C3, such

as the Hauptman-Woodward Medical Research Institute’s historical crystallisation

dataset which can be explored at: http://xtuition.org.

Other domains in which OWL-Miner could be applied in the life sciences are

ones which collate rich experimental data and knowledge-based datasets in RDF and

OWL for batch-style analysis, such as the Kidney and Urinary Pathway Knowledge

Base (KUPKB) [49]. The KUPKB contains a large amount of RDF data representing

the results of clinical tests and bioassays in nephrology, with a view to supporting

the exploration and analysis of the data to find clinical indicators of various kidney

diseases.

The abundance of data being generated and described in the life sciences using

RDF and OWL is evidenced by the ever growing number of ontologies hosted by the

NCBI BioPortal (http://bioportal.bioontology.org). The BioPortal currently references

524 distinct OWL ontologies covering 7.8 million classes across domains as diverse

as agriculture, biological anatomy, genetics and medicine. Tools like OWL-Miner

and interfaces like X-plorer can play an important role in analysing knowledge rich

data sets in these domains directly, without requiring transformation to other data

models or formalisms for analysis with different machine learning tools.

http://xtuition.org
http://bioportal.bioontology.org
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8.2.1.2 Integration with Temporal and Spatial Data

The W3C Spatial Data on the Web Working Group1 is currently standardising vocab-

ularies for spatial and temporal data for use on the web with RDF and OWL [101].

As the prevalence of such data increases, we anticipate that learning concepts over

such data with spatial and temporal relationships will become important. However,

deduction with spatial and temporal properties lies outside the scope of traditional

DL reasoning algorithms. For example, the Region Connection Calculus (RCC) [79]

and Allen’s Interval Calculus (AIC) [1] require specialised algorithms for the effi-

cient deduction of relationships and prior exhaustive enumeration is an intractable

problem.

As OWL-Miner works by materialising all known inferences up front into a

closed-world knowledge base, this approach is not feasible with datasets which rely

on inference in RCC, AIC, or similar. For this reason, it would be interesting to in-

vestigate how one may incorporate efficient algorithms for computing spatial and

temporal relationships between objects, such as those by Renz [83], into the coverage

checking methods for learning which we have developed.

8.2.2 Improvements to OWL-Miner

8.2.2.1 Handling Incomplete Data

The methods presented in this thesis rely on the assumption that an OWL knowledge-

base K is consistent relative to its closed-world interpretation J (Definition 3.2.11).

As discussed in Section 3.5.2, certain problems may arise from learning from in-

terpretations as per Definition 3.5.1 when J 6|= T , namely, when the closed-world

interpretation is not a model of the TBox. This situation appears to arise when par-

ticular assertions of data to the ABox describing examples are missing with respect to

axioms in the TBox. OWL-Miner does not recognise when a closed-world interpreta-

tion used for learning is not a model of the TBox, and therefore may induce concepts

which are unsatisfiable with respect to the TBox and its open-world interpretation I
(Example 3.5.4), or induce concepts which appear to solve learning problems relative

to J but which do not perform similarly relative to I (Example 3.5.6).

Further work is required to understand the impact of learning in DL knowledge-

bases by closed-world interpretation. As discussed in Section 3.5.2.1, several sug-

gestions for strategies to mitigate these problems may be interpolating missing data

1Spatial Data on the Web Working Group: https://www.w3.org/2015/spatial/

https://www.w3.org/2015/spatial/
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with statistical methods, or excluding whole examples or parts thereof. Such meth-

ods could be used to ensure that learned concepts are both consistent with back-

ground knowledge in a TBox and that their performance measures can be inter-

preted equally in both closed-world and open-world interpretations. Addressing

this problem would ensure that concepts learned by closed-world interpretation in

DL knowledge bases could be incorporated back into the knowledge-base they were

induced over without causing the knowledge base to become inconsistent.

8.2.2.2 Leveraging Labelled Data in Supervised Learning

As we saw in Section 4.4, our method for learning over concrete domains made

use of the labels attributed to examples from which they were reachable by instance

chains (Definition 4.2.13). This permitted us to define sensible splitting points when

refining numerical range restrictions on the assumption that concepts were to be

generated for the purpose of distinguishing examples labelled with one label over

all others, such as when solving a machine learning classification problem. A similar

approach could be adopted to analyse the distribution of labels amongst instances

in local domains over abstract individuals (Definition 4.2.5). If such a distribution

could be deduced, a context-specific refinement operator such as ρ
λ̄

could leverage

this information to decide whether to refine to certain subexpressions based on the

primary label of the examples they are expected to cover. We anticipate that such an

approach would further reduce the search space of concepts considered by ρ
λ̄

which

ought to further improve the efficiency of the learning methods we have developed.

8.3 Outlook

DL learning has emerged as a powerful method of producing comprehensible de-

scriptions of patterns in RDF/OWL knowledge bases. As the prevalence of RDF

and OWL-based data and knowledge on the web continues to increase, DL learning

methods which scale to even greater amounts of data and knowledge are increasingly

important. Similarly, the need for rich OWL ontologies to describe the abundance

of RDF data will increase, and DL learning tools are ideally suited to support their

development.
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