6,240 research outputs found

    Safe Concurrency Introduction through Slicing

    Get PDF
    Traditional refactoring is about modifying the structure of existing code without changing its behaviour, but with the aim of making code easier to understand, modify, or reuse. In this paper, we introduce three novel refactorings for retrofitting concurrency to Erlang applications, and demonstrate how the use of program slicing makes the automation of these refactorings possible

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    Trustworthy Refactoring via Decomposition and Schemes: A Complex Case Study

    Get PDF
    Widely used complex code refactoring tools lack a solid reasoning about the correctness of the transformations they implement, whilst interest in proven correct refactoring is ever increasing as only formal verification can provide true confidence in applying tool-automated refactoring to industrial-scale code. By using our strategic rewriting based refactoring specification language, we present the decomposition of a complex transformation into smaller steps that can be expressed as instances of refactoring schemes, then we demonstrate the semi-automatic formal verification of the components based on a theoretical understanding of the semantics of the programming language. The extensible and verifiable refactoring definitions can be executed in our interpreter built on top of a static analyser framework.Comment: In Proceedings VPT 2017, arXiv:1708.0688

    Evaluation of Kermeta for Solving Graph-based Problems

    Get PDF
    Kermeta is a meta-language for specifying the structure and behavior of graphs of interconnected objects called models. In this paper,\ud we show that Kermeta is relatively suitable for solving three graph-based\ud problems. First, Kermeta allows the specification of generic model\ud transformations such as refactorings that we apply to different metamodels\ud including Ecore, Java, and Uml. Second, we demonstrate the extensibility\ud of Kermeta to the formal language Alloy using an inter-language model\ud transformation. Kermeta uses Alloy to generate recommendations for\ud completing partially specified models. Third, we show that the Kermeta\ud compiler achieves better execution time and memory performance compared\ud to similar graph-based approaches using a common case study. The\ud three solutions proposed for those graph-based problems and their\ud evaluation with Kermeta according to the criteria of genericity,\ud extensibility, and performance are the main contribution of the paper.\ud Another contribution is the comparison of these solutions with those\ud proposed by other graph-based tools

    Dynamically typed languages

    Get PDF
    Dynamically typed languages such as Python and Ruby have experienced a rapid grown in popularity in recent times. However, there is much confusion as to what makes these languages interesting relative to statically typed languages, and little knowledge of their rich history. In this chapter I explore the general topic of dynamically typed languages, how they differ from statically typed languages, their history, and their defining features

    Collaborative Verification-Driven Engineering of Hybrid Systems

    Full text link
    Hybrid systems with both discrete and continuous dynamics are an important model for real-world cyber-physical systems. The key challenge is to ensure their correct functioning w.r.t. safety requirements. Promising techniques to ensure safety seem to be model-driven engineering to develop hybrid systems in a well-defined and traceable manner, and formal verification to prove their correctness. Their combination forms the vision of verification-driven engineering. Often, hybrid systems are rather complex in that they require expertise from many domains (e.g., robotics, control systems, computer science, software engineering, and mechanical engineering). Moreover, despite the remarkable progress in automating formal verification of hybrid systems, the construction of proofs of complex systems often requires nontrivial human guidance, since hybrid systems verification tools solve undecidable problems. It is, thus, not uncommon for development and verification teams to consist of many players with diverse expertise. This paper introduces a verification-driven engineering toolset that extends our previous work on hybrid and arithmetic verification with tools for (i) graphical (UML) and textual modeling of hybrid systems, (ii) exchanging and comparing models and proofs, and (iii) managing verification tasks. This toolset makes it easier to tackle large-scale verification tasks

    Automating property-based testing of evolving web services

    Get PDF
    Web services are the most widely used service technology that drives the Service-Oriented Computing~(SOC) paradigm. As a result, effective testing of web services is getting increasingly important. In this paper, we present a framework and toolset for testing web services and for evolving test code in sync with the evolution of web services. Our approach to testing web services is based on the Erlang programming language and QuviQ QuickCheck, a property-based testing tool written in Erlang, and our support for test code evolution is added to Wrangler, the Erlang refactoring tool. The key components of our system include the automatic generation of initial test code, the inference of web service interface changes between versions, the provision of a number of domain specific refactorings and the automatic generation of refactoring scripts for evolving the test code. Our framework provides users with a powerful and expressive web service testing framework, while minimising users' effort in creating, maintaining and evolving the test model. The framework presented in this paper can be used by both web service providers and consumers, and can be used to test web services written in whatever language; the approach advocated here could also be adopted in other property-based testing frameworks and refactoring tools

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the first six months. The project aim is to scale the Erlang’s radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the effectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene
    • …
    corecore