
Automating Property-based Testing of Evolving Web Services

Huiqing Li Simon Thompson
Pablo Lamela Seijas

School of Computing, University of Kent, UK
{H.Li,S.J.Thompson,P.Lamela-Seijas}@kent.ac.uk

Miguel Ángel Francisco
Interoud Innovation, A Coruña,Spain
miguel.francisco@interoud.com

Abstract
Web services are the most widely used service technology that
drives the Service-Oriented Computing (SOC) paradigm. As a re-
sult, effective testing of web services is getting increasingly impor-
tant. In this paper, we present a framework and toolset for testing
web services and for evolving test code in sync with the evolution
of web services. Our approach to testing web services is based on
the Erlang [5, 9] programming language and QuviQ QuickCheck,
a property-based testing tool written in Erlang, and our support for
test code evolution is added to Wrangler, the Erlang refactoring
tool.

The key components of our system include the automatic gen-
eration of initial test code, the inference of web service interface
changes between versions, the provision of a number of domain
specific refactorings and the automatic generation of refactoring
scripts for evolving the test code. Our framework provides users
with a powerful and expressive web service testing framework,
while minimising users’ effort in creating, maintaining and evolv-
ing the test model. The framework presented in this paper can be
used by both web service providers and consumers, and can be used
to test web services written in whatever language; the approach ad-
vocated here could also be adopted in other property-based testing
frameworks and refactoring tools.

Keywords Web Service, Property-based Testing, QuickCheck,
Wrangler, API Evolution, Erlang, WSDL

1. Introduction
Service-Oriented Computing (SOC) is a computing paradigm that
uses services as the basic building blocks to support the rapid and
low-cost development of distributed applications even in heteroge-
neous environments. Web services (WS) are nowadays the most
widely used service technology that drives the SOC paradigm.
However testing web services is more challenging than testing tra-
ditional software due to the complexity of web service technologies
and the limitations that are caused by the SOC environment [22].

Over the last decade, a variety of techniques have been proposed
for testing different aspects of web services. For example, a recent
survey [22] of existing web service testing methods lists dozens of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PEPM ’14, January 20–21, 2014, San Diego, CA, USA.
Copyright c⃝ 2014 ACM 978-1-4503-2619-3/14/01. . . $15.00.
http://dx.doi.org/10.1145/2543728.2543741

tools utilising these methods. The testing methods covered by the
survey include unit-testing, model-based testing, formal verifica-
tion, fault-based testing, partition testing and contract-based test-
ing. Most of these testing frameworks speed up the testing process
to some extent, but are also limited in some way or another. For
example, unit testing approaches reduce the cost of testing by au-
tomated test data generation and test execution, but they lack auto-
mated test oracle generation; model-based testing approaches have
the advantages of automating the test case generation process and
the ability to analyse the quality of web services statically, but a
model based on a WSDL (Web Services Description Language)
specification might not represent the complete behaviour of a web
service due to the lack of behavioural information that it contains.

Web services, like any other applications and libraries, change
their APIs. API changes affect not only client applications that use
the API, but also the code that tests the API. The process of de-
signing an API is itself an evolving processes, and the details of an
API could go through a number of changes before being finalised.
Hence the test code needs to evolve along with the API, a process
which is generally done manually. With some fully-automated test-
ing tools, it might be possible to re-generate the complete test code
from scratch; for testing frameworks that allow users to incorporate
further information about the expected behaviour into the test code,
this is not always an option.

In this paper, we present a property-based approach to testing
web services, and a refactoring approach to evolving test code when
a web service API changes. The framework is based on the Erlang
programming language, and is illustrated with a case study based
at the company Interoud Innovation.

Property-based testing (PBT) provides a powerful, high-level,
approach to testing; rather than focusing on individual test cases,
in PBT this behaviour is specified by properties, expressed in a
logical form. For example, a function without side effects might be
specified by means of the full input/output relation using a universal
quantification over all the inputs; a stateful system will be described
by means of model, which is an extended finite state machine.
The system is then tested by checking whether it has the required
properties for randomly generated data, which may be inputs to
functions, sequences of API calls to the stateful system, or other
representations of test cases.

Property-based testing is gaining popularity, especially in the
community of functional programming languages. For Haskell,
there is the original QuickCheck tool [11] developed by Koen
Claessen and John Hughes in 2000; for Erlang there are Quick-
Check [15] commercialised by QuviQ, and PropEr [20], an open
source tool inspired by QuickCheck.

Erlang QuickCheck is the tool of choice for our property-base
testing framework. In particular, we utilise its support for abstract
state machines through the eqc statem behaviour. With eqc statem,
the user defines an abstract model of the system under test (SUT),
including an abstraction of the state of the SUT itself. This model

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30703871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

includes an initial abstract state in which test cases begin, as well
as describing how each command changes that state. The state is
used by QuickCheck both during test case generation and during
test execution. For each command, a number of things can be
described: preconditions to decide whether or not to include a
candidate command in test cases; postconditions to check that the
value returned by the command executed is correct; a description of
the changes on the abstract state as a result of command execution;
and how to generate an appropriate function call to appear next in
a test case.

We have enhanced QuickCheck with tools that automate those
aspects of the problem that are tedious and cumbersome to write
manually. In particular, our testing framework includes tools to
automatically create data generators according to XSD (XML
Schema Definition) schema and WSDL specification, connector
functions for invoking web services from test, generic WS prop-
erties, and the initial code implementing an eqc statem behaviour.
The initial test code is runnable on its own, and can be used for
response testing purpose. However with the user adding an abstract
model into it, operation-specific test oracles can be specified, which
is particularly useful for testing stateful web services

The tool that lies at the heart of our support for test code evo-
lution is Wrangler [17]. Wrangler, developed at the University of
Kent by the some of the authors, is a user-extensible refactoring and
code inspection tool for Erlang programs. Apart from providing a
set of built-in refactorings, Wrangler allows users to define refac-
torings, code inspections, and general program transformations for
themselves to suit their particular needs. These are defined using
a template- and rule-based program transformation and analysis
framework built into Wrangler. Wrangler also provides an embed-
ded domain-specific language (DSL) [18] for describing composite
refactorings: that is, refactorings that are built up from a number of
primitive refactorings. The DSL gives a powerful and easy-to-use
framework that allows users to script their own composite refac-
torings in order to carry out large-scale batch refactorings in an
efficient way.

Due to the particular nature of the refactorings needed for evolv-
ing eqc statem-based test models, we have extended Wrangler with
a number of domain-specific refactorings, such as add/remove an
operation, rename an operation, add/remove an argument to/from
an operation. The refactorings are defined using Wrangler’s sup-
port for user-extensibility. Our experience demonstrate the useful-
ness for making refactoring tools user-extensible.

To facilitate the evolution of test code, our framework is also
able to compare two different versions of the WSDL description of
a web service, and automatically infer the changes made to the web
service API. Based on the result, the tool generates a composite
refactoring script that can be applied to the test code in batch mode.
In summary, the main contributions of this paper are:

• A property-based testing framework with a toolset that fully
automates the initial runnable test code generation,
https://github.com/RefactoringTools/WSToolkit.

• A library of QuickCheck data generators for generating data
with restrictions.

• A tool for the automatic inference of web service interface
changes.

• A refactoring approach for evolving test code in sync with the
evolution of web services.

• An industrial case study describing how the framework is used
in practice.

The rest of the paper is organised as follows. Section 2 introduces
WSDL and the key existing tools used in this framework, and Sec-
tion 3 introduces how the framework is used in practice in an indus-

trial case study. Section 4 describes the architecture of our testing
and evolution framework. Section 5 presents the components of the
testing framework, and Section 6 presents the components of the
test code evolution framework. A summary and discussion of the
contributions of the paper are included in Section 7. Related work
is discussed in Section 8 and Section 9 concludes the paper.

2. Existing Tools and Technologies
In this section, we give a short introduction to WSDL and the key
existing tools that are used in our framework.

2.1 Web Services Description Language (WSDL)
WSDL [4] is an XML-based interface description language that is
used for describing the functionality offered by a web service. A
WSDL description is a document written in XML. The document
provides a full description of how the service can be called, what
parameters it expects, what data structures it returns, and the ad-
dress or connection point to the web service, etc.

Every WSDL specification contains (or references) an XSD
schema [3] inside. The XSD schema describes the data types of
messages exchanged by the web service methods. The types of
these messages are divided in two categories: simple and complex
types. A simple type can be either a primitive data type, such as
float, integer, string, etc., an aggregate of the primitive data type,
such as list and union, or a restricted version of it, like an enumera-
tion, a string conforming to a pattern or range-constrained integers.
A complex type on the other hand is derived based on other types,
either simple or complex. Usually, complex types are created by
forming element aggregates: sequences, all or choices [3].

2.2 Erlsom
Erlsom [1] is a set of Erlang functions to parse (and generate)
XML documents. It supports various modes of operation: as a SAX
parser, as a simple DOM-like parser, or as a data binder. As a data
binder, Erlsom parses XML documents that are associated with an
XSD schema. It checks whether the XML document conforms to
the schema, and translates the document to an Erlang structure that
is based on the types defined in the schema. The internal Erlang
representation generated by Erlsom is also the internal representa-
tion used by our framework.

The current Erlsom implementation ignores all the restrictions
on simple types. However, restrictions on simple types are cru-
cial for writing good-quality data generators, we have therefore ex-
tended Erlsom with another pass, which extracts information about
simple types from the XSD schema and inserts it into the internal
representation generated by Erlsom.

2.3 Property-based testing with QuickCheck
QuickCheck [15] supports random testing of Erlang, and also of
C programs, through a foreign function interface. Properties of the
programs are stated in a subset of first-order logic, embedded in
Erlang syntax. QuickCheck verifies these properties for collections
of Erlang data values generated randomly, with user guidance in
defining the generators where necessary. When a counterexample
is found, QuickCheck tries to generate a simpler – and thus more
comprehensible – counterexample, in a constructive manner; this
process is called shrinking.

When testing state-based systems it makes sense to build an
abstract model of the system, and to use this model to drive the
testing of real system. The abstract state machine can be imple-
mented as a client module of the pre-defined QuickCheck be-
haviour eqc statem. To do so, the user needs to define a number
of callback functions:

• state state() – returns the initial model state.

• precondition(S, C) – returns true if the symbolic function
call C can be performed in the symbolic state S. This is used to
decide whether or not to include a candidate command in test
cases.

• postcondition(S, C, R) – checks the postcondition of
symbolic call C, executed in dynamic state S, with result R
during test execution.

• next state(S, R, C) – the state transition function of the
abstract state machine. During test generation, it computes the
symbolic state after symbolic call C, performed in symbolic
state S, with result R; during test execution, the same function
is used to compute the next dynamic state.

• command(S) – generate a candidate symbolic function call
to appear next in a test case, if the symbolic state is S. Test
sequences are generated by using command(S) repeatedly.

2.4 Refactoring with Wrangler
Wrangler [17, 18] is an interactive refactoring tool, implemented
in Erlang, and is integrated with (X)Emacs and with Eclipse. It is
downloadable from https://github.com/RefactoringTools/
Wrangler. One of the features that distinguish Wrangler from most
other refactoring tools is its user-extensibility:

• Wrangler provides a high-level template- and rule-based API [17],
so that users can write refactorings, or general program trans-
formations, that meet their own needs in a concise and intuitive
way without having to understand the underlying AST repre-
sentation and other implementation details.

• Wrangler is built with an embedded, domain-specific lan-
guage for describing composite refactorings: refactorings that
are composed from a number of elementary refactorings. The
DSL [18] gives a powerful and easy-to-use framework that al-
lows users to script their own reusable composite refactorings
in order to carry out large-scale batch refactorings.

User-defined refactorings can be invoked via the Emacs interface
to Wrangler, in exactly the same way as built-in refactorings, and
so their results can be previewed and undone.

3. Industrial Case Study at Interoud Innovation
The framework presented here is used by Interoud Innovation

(http://www.interoud.com/) to test their web services. Inter-
oud Innovation is a company based in Spain, whose main activity
is the development and commercialisation of software products for
media distribution, mainly IPTV and OTT for telecommunications
service providers and hospitality environments.

Interoud testing workflow. The design of the framework was
influenced by the way Interoud Innovation test web services in
practice using property-based testing. Thus, the steps they follow
to test a web service consist of implementing a QuickCheck state
machine, in which each API operation to test is a command of
the state machine, and a WS connector module that allows the
operations of the web service to be invoked from Erlang.

The Interoud web service for which this approach is being used
has 363 operations, from which approximately 160 are invoked by
POST and 203 by GET. All the operations return data in XML. The
existing QuickCheck state machine implemented by Interoud tests
98 operations of this web service (around 27% of the total). This
implementation requires a hand-crafted WS connection module
with approximately 1K lines of code.

The benefits of using the framework to create a QuickCheck
state machine. With the use of this framework, both the WS
connector module and a skeleton of the QuickCheck state machine

are automatically generated from a description of the web service
to test, specifically, from a WSDL specification.

As Interoud Innovation already has WSDL descriptions for their
web services, no extra work is required to use these new tools. The
automation provided by this framework therefore saves a signif-
icant amount of time in the creation of the test code, as well as
minimising the introduction of errors in the implementation of that
test code, in particular in the WS connector module.

In fact, the use of this new framework allowed Interoud’s testers
with no effort at all to add the operations of the web service
described in the WSDL to the Quickcheck state machine, and hence
they will be invoked in every test execution.

Evolution of Interoud’s web services. Interoud’s web services
evolve very rapidly. For example, in September and October 2013,
ten new operations were added to the web service, and fifteen
existing operations were modified, many of them by extending their
functionality with new parameters. Every time a developer changes
the web service, the test code needs to be changed as well.

Before using the framework described in this paper, all the
changes in the test code had to be done manually. Now, it is possible
to use Wrangler with auto-generated refactoring scripts to help
testers to change their test code according to the changes made to
the web service. This new approach makes it easier to update the
test code, because it automates many of the changes to be applied
to the test code to align it with the new version of the web service.

Conclusions. Despite this automation, testers still have to modify
the QuickCheck state machine manually, specifically by adding se-
mantic information related to the new or modified API operations.
However, even though some manual work is required, Interoud’s
testers find this framework useful for two reasons. Firstly, it is pos-
sible to have a test module that invokes all the operations of the
web service simply by providing a WSDL description of the ser-
vice. And secondly, the auto-generated refactoring scripts help to
change the test code without overlooking parts that might be af-
fected by the changes in the WSDL, therefore making the process
more robust.

4. System Architecture
In this section, we give an overview of our testing and evolution

framework architecture. More implementation details are presented
in Sections 5 and 6.

Figure 1 shows the framework for testing web services using
QuickCheck. Given the WSDL description and the associated XSD
schema of a web service, we compile the XSD schema first, and
this gives us the intermediate representation of the data types of
messages exchanged by the web service operations in the format
of Erlang records. We call this intermediate representation the data
model of this web service.

The next step is to parse the WSDL file itself according to the
data model generated from the WSDL schema. This checks if the
WSDL document conforms to the WSDL standard, and translates
the WSDL document to an Erlang structure that is based on the
types defined in the WSDL schema. From this Erlang representa-
tion together with the data model derived, we are able to derive the
operations supported by the web service, the input and output of
each operation and their types, the binding method, location infor-
mation, etc.

The data model and information about the operations are then
used to generate three components that form the initial QuickCheck
test model. The three components generated are:

• The data generators for generating the input data of web service
operations.

Figure 1. The QuickCheck Testing Model of Web Services

• The web service connector module that contains the wrapper
functions, one per operation, for invoking web services from
test code written in Erlang, and generic test oracles that check
the results returned from the web service conforms to the re-
quirements of the data model.

• The initial eqc statem module. At this stage, the eqc statem
has an empty abstract state; however it has the template code
for the callback functions, and another simple layer of wrapper
functions for invoking functions from the connector module and
processing the result returned. So the test module generated
is compilable and runnable on its own. Without an abstract
model defined, only properties defined in the collector module
are checked. This module provides the platform for the user to
further develop the test model.

Figure 2. The Test Code Evolution Model

Figure 2 shows the framework for test code evolution. The
WSDL specifications of two versions of a web service are parsed
and analysed in the same way as in the testing framework, the
results are then fed to a ‘diff’ algorithm, which derives the changes
made to both the data types and the web service operations. The
‘diff’ result is then presented to the user as a change report, but
also used by the tool to generate a composite refactoring script
using Wrangler’s DSL. The refactoring script generator takes both
the change report and the current eqc statem implementation as
input, and returns the composite refactoring as an Erlang module
implementing Wrangler’s gen composite refac behaviour.

The user could apply the composite refactoring script as it is, or
apply the refactoring commands in the script one by one manually.

When an abstract model is defined, the changes made to a web
service API may also affect the logic of the abstract model. Updat-
ing the logic of the abstract model is beyond this paper’s scope. It
is also possible that a user might refine some of the data genera-
tors generated automatically by the tool so that the abstract state
data is used. Our tool respects user’s code, and does not change
it without user’s permission. For this reason, the evolution of data
generators is handled in a slight different way, more details about
this is described in Section 6. Since the WS connector module in
general untouched by the user, we re-generate this module instead
of refactoring it.

5. Automating Property-based Testing
This section discusses the implementation of the various compo-

nents to automate the property-based testing using QuickCheck.

5.1 Automatic Creation of Data Generators
QuickCheck comes with a library of data generators. It supports
not only the random generation of values of an Erlang built-in
type, such as integer, float, char, boolean, etc, but also the
generation of values of compound data types. It allows tuples and
lists containing generators to be used as generators for values of
the same form. For example, {int(), bool()} is a generator that
generates random pairs of integer and booleans.

QuickCheck also provides a collection of macros for controlling
the data generation process. For example the macro ?SUCHTHAT(X,
G, P) generates values X from G such that the condition P is
true; the macro ?SIZED(Size, G) is used to control the size of
the generated data, etc. These macros are useful for generating
data that satisfy certain constraints, but are rather limited when
generating test data for web services, due to the various restric-
tions/facets that a user can specify for data types. Take the string
type as an example, the restrictions that can be used on string
values include: enumeration, length, maxLength, minLength
and pattern, as shown by the examples in Fig 3. A naive use of
the ?SUCHTHAT(X, G, P) macro to generate values satisfying cer-
tain constraints could easily lead QuickCheck to fail with an error
message like: "?SUCHTHAT failed to find a value within
100 attempts.".

However, as QuickCheck allows a user to compose complex
data generators from simpler ones, we were able to define a col-
lection of data generators especially for generating primitive data
types with restrictions. These new generators are defined in a mod-
ule named gen lib. For instance, the following three data genera-
tors have been defined for generating string values:

• string() – generates a printable string of random length.
• string(Min, Max) – generates a printable string of length

between Min and Max.
• string(Pattern) – generates a printable string that satisfies

the pattern constraint.

As an example, the generator string(MinLen, MaxLen) is
defined as:

string(MinLen, MaxLen) ->
?LET(N, eqc_gen:choose(MinLen, MaxLen),

lists:foldl(fun(_X, Acc)->
?LET(C, eqc_gen:choose(32, 127),

[C|Acc])
end, [],lists:seq(1,N))).

where choose(M, N) is a QuickCheck built-in generator that
generates a number in the range M and N; ?LET(Pat,G1,G2) is a
pre-defined QuickCheck macro that generates a value from gener-

<simpleType name="gender"> <simpleType name="password">
<restriction base="string"> <restriction base="string">
<enumeration value="male"/> <minLength value="5"/>
<enumeration value="female"/> <maxLength value="8"/>

</restriction> </restriction>
</simpleType> </simpleType>

Example(a) Example(b)

<simpleType name="password"> <simpleType name="isbn13Type">
<restriction base="string"> <restriction base="string">
<length value="8"/> <pattern value="\d{3}\-\d{10}"/>

</restriction> </restriction>
</simpleType> <simpleType>

Example(c) Example(d)

Figure 3. Example restrictions on string values

ator G1, binds it to Pat, then generates a value from G2, which may
refer to the variables bound in Pat.

The generator string(Pattern) is defined in a similar way,
apart from that the regular expression representing the pattern is
parsed into an internal representation, and that data generators
are composed according to the structure of the regular expression
pattern. As an example, below is a sampling output of generating
isbn13Type (see example (d) in Fig 3) values.

Eshell V5.10.2 (abort with ^G)
1>eqc_gen:sample(gen_lib:string("\d{3}\-\d{10}")).
"557-0879218041"
"060-6994306535"
"188-2111291597"
"298-2437633024"
"800-3253986877"
"980-9306669387"
"338-8755797024"
"265-0014560327"
"456-9514747557"
"818-8831798457"
"145-3571075325"
ok

String values with enumeration constraints can be expressed
with QuickCheck’s built-in generator oneof, which generates a
value using a randomly chosen element of the list of generators.
Hence, a data generator that generates gender (see example (a)
in Fig 3) values can be written as: eqc gen:oneof(["male",
"female"]).

With QuickCheck’s data generator library and our library for
generating primitive data values with restrictions, it is straight-
forward to map the data model generated from the schema to
QuickCheck data generators in most cases. Similar work has been
done by Lampropoulos and Sagonas to automatically generate data
generators from WSDL specification using PropEr [16], however
their tool does not handle the pattern constraining facet on inte-
gers/strings, and some date formats.

5.2 Automatic Creation of the WS Connector Module
The web service connector module defines a collection of functions
that are used by QuickCheck to invoke web service operations.
There is a connector function defined for each web service oper-
ation. Given the large number of operations provided by a web ser-
vice, and the common code structure of these function definitions,

tool support for the automatic generation of this module proved
valuable.

Figure 4 shows an example connector function for invoking
the GetWeather operation from the GlobalWeather web service
hosted at: http://www.webservicex.net/globalweather.
asmx. This function takes the data values generated by the data
generators, encodes them into the format accepted by the service
using generate get params, sends the request to the service, and
processes the response from the web server according to the XSD
schema to ensure that no exception has been raised and the data
returned conforms to the data model specified in the XSD schema.
The name of the file containing the XSD schema is defined as a
macro in the connector module, hence does not appear in the def-
initions of connector functions. While the example shown here is
for an HTTP API, the same idea applies to SOAP APIs.

5.3 Automatic Creation of the eqc statem Behaviour
A number of callback functions, together with data generators
and some utility functions need to be defined in order to im-
plement an eqc statem test module. Callback functions such as
precondition, postcondition and next state in general re-
quire a function clause for each operation to be tested. While our
tool cannot automate the creation of code specifying the logic of
the abstract model in these callback functions, it can automate the
generation of the remaining part, and that is exactly what it does.
Automatic generation of the initial test module also helps to main-
tain the consistency between the WSDL description and the test
code in terms of naming of identifiers and the textual order of func-
tion clauses handling operations.

An an example, Figure 5 shows the test module generated
from the WSDL specification (http://www.webservicex.net/
globalweather.asmx?WSDL) of the GlobalWeather web ser-
vice. Two operations are supported: GetCitiesByCounty and
GetWeather. The test module generated is already compilable
and runnable for response testing purpose as shown below.

1> eqc:quickcheck(weather_test:prop_state_machine()).
..
..
OK, passed 100 tests

As one may have noticed, the state record defining the abstract
state representation is an empty tuple, the state transitions after a
WS operation leave the current state unchanged as defined in the
next state function, and the only post-condition checked after a

get_weather(CityName, CountryName)->
GetParams = generate_get_params(‘GetWeather’, [CityName, CountryName]),
Url = add_get_params(?BASE_URL++"/GetWeather",GetParams),
http_request(‘GET’, Url,

fun(Data) ->
process_response(‘GetWeatherResponse’, Data)

end).

Figure 4. An example connector function

WS operation is that no error has been raised and that the response
data confirms to the data model. The abstract state representation,
state transitions as well as various condition checks are exactly
where the user’s knowledge should be added.

As a design decision, we let a wrapper function take the tuple
of its input elements as the parameter, unless no input is needed.
Another option is to let each input element as a separate parameter,
but grouping input elements into a tuple has the advantage of
allowing dependency between the generators of input elements that
are related to each other.

For instance, with an empty abstract model representation,
country names and city names are generated as random strings
or the literal none (when the name is optional), this results in
the fact that nearly all of the country/city names generated are
semantically invalid, and in most cases the web service either re-
turns <string>Data Not Found</string> as the response or
the complete data set when no input is provided. However, this
could be improved once an abstract state representation has been
defined. Suppose we redefine the state record as:

-record(state,
{country_cities=[]::[{country(), [city()]}]}).

-type country()::string().
-type city()::string().

then we could rewrite the data generators as:

gen_country_name(S)->
Countries = [Country||{Country, _City}

<-S#state.country_cites].
eqc_gen:oneof([none|Countries]).

gen_get_weather(S)->
?LET({Country, Cities},

eqc:oneof(S#state.country_cities),
{eqc:oneof([none|Cities]),
eqc:oneof([none,Country])}).

The next state function can also be refined so that the abstract
state is updated after each WS operation; pre condition can
be enriched to ensure only realistic test cases are generated, and
operation-specific test oracles can be added to post condition.

6. Automating Test Code Evolution
This section describes the implementation of the components to

support test code evolution.

6.1 Automatic Inference of Web Service Interface Changes
The automatic inference of web service API changes is based on
the Levenshtein distance algorithm [2] implemented in Erlang.
The algorithm returns the minimum number of changes (insert,
delete or substitution) required to change from one sequence to
another. In our case, a sequence could be either a sequence of

API operations or a sequence of operation input/output elements.
An API operation consists of the operation name, input elements
with type information, response data with type as well the binding
method; whereas an input/output element consists of the element
name and its type.

The algorithm is first applied to the old and new sequences
of WS operations, which are derived from the old and new ver-
sions of WSDL specifications. This step returns a list of WS oper-
ations (or operation pairs in case of substitution) each tagged with
unchanged, insert, delete, or substitute. The result is fur-
ther processed to

• replace substitution with delete and insert, i.e.
{substitution, A, B} is replaced with {delete, A},
{insert B};

• remove superfluous insertions/deletions, i.e. the deletion and
insertion of the same API. This could happen due to the re-
ordering of operation specifications in the WSDL specification.
In our case, we do not require that the definitions of function
clauses follow the same order in which the descriptions of op-
erations are arranged.

• merge the deletion and insertion of two operations that only
differ in the operation name as rename.

• merge the deletion and insertion of two operations that have the
same name and binding method as input change, output change
or input output change depending on where the differences
are.

For operations with input/output change, the same algorithm is
used to infer the changes required to derive the new input/output
sequence from the old, but since the order may matter (e.g. when
the elements are tagged with sequence in the WSDL specification)
in this case, we do not remove superfluous insertions/deletions.

The report returned is to be inspected, and corrected if needed,
by the user. Correction is needed in cases that substantial changes
have been made to an operation, i.e. both renaming of operation
and input/output changes.

As an example, Fig 6 shows the ‘diff’ report, with some man-
ually added comments, generated during a case study. The report
says that two new operations, FindAllRooms and DeleteDevice,
have been added, and the interface of operation FindDevices has
been changed with three new elements added to the input, two
added to the response data structure and some type changes to ex-
isting input elements.

To be concise, the type information associated with each in-
put/response element is represented in the format of Erlang data
types derived from the internal representation of the XSD schema.
In Erlang, a complex data type is represented as a record, and a sim-
ple data type is represented as a type synonym using the ‘-type’
declaration or an Erlang built-in type. There are certain restrictions
on simple types, such as patterns, that cannot be encoded into Er-
lang data types in a straightforward way, and in this case we put the
restrictions as comments to the base data type. As a by-product of

-module(weather_test).

-include_lib("eqc/include/eqc.hrl").
-include_lib("eqc/include/eqc_statem.hrl").
-define(SUT, weather_sut).
-export([prop_state_machine/0]). %% Prop
-export([initial_state/0, command/1, precondition/2,

postcondition/3, next_state/3]). %%eqc_callbacks.
-record(state, {}).

prop_state_machine() ->
?SETUP(fun setup/0,

?FORALL(Cmds, commands(?MODULE),
begin
{_H, _S, Res} = run_commands(?MODULE, Cmds),
Res==ok

end)).

initial_state()-> #state{}. %% abstract state representation.

command(S)-> oneof([
{call, ?MODULE, get_weather, [gen_get_weather(S)]},
{call, ?MODULE, get_cities_by_country, [gen_get_cities_by_country(S)]}]).

precondition(_S, {call,?MODULE,get_weather,[{_CityName,_CountryName}]})->
true;

precondition(_S, {call,?MODULE,get_cities_by_country,[{_CountryName}]})->
true.

postcondition(_S, {call, ?MODULE, get_weather,
[{_CityName, _CountryName}]}, Result)->

Result == ok;
postcondition(_S, {call, ?MODULE, get_cities_by_country,

[{_CountryName}]}, Result)->
Result == ok

next_state(S,_R,{call,?MODULE,get_weather,[{_CityName,_CountryName}]})->S;
next_state(S,_R,{call,?MODULE,get_cities_by_country,[{_CountryName}]})->S.

%% wrapper functions.
get_weather({CityName,CountryName})->?SUT:get_weather(CityName,CountryName).

get_cities_by_country({CountryName})->?SUT:get_cities_by_country(CountryName).

%% Data generators.
gen_get_weather(S)->{gen_city_name(S), gen_country_name(S)}.

gen_city_name(_S)->eqc_gen:oneof([none, gen_lib:string()]).

gen_country_name(_S)->eqc_gen:oneof([none, gen_lib:string()]).

gen_get_cities_by_country(_S)->{gen_country_name(_S)}.

setup() -> %%utility functions.
inets:start(),
fun teardown/0.

teardown() -> inets:stop().

Figure 5. The automatically created test module for GlobalWeather

the change interface tool, we are able to generate the complete set
of Erlang type definitions of a web service data model, and write
them into a separate Erlang .hrl file. The Erlang representation of
data types are not actually used by the test code, but it provides an-
other way to view the data model of a web service. As an example,
Fig 7 shows the definitions of some of the data types used in Fig 6.

[{api_added,
{"FindAllRooms",[], %% operation name
[{room,[#room{}]}, %% input
{errors,#errors{}}], %% response

"GET"}}, %% binding method
{api_input_output_changed,
%% orginal API interface
{"FindDevices",
[{startIndex,integer()},
{count,integer()}],

[{device,[#device{}]},
{errors,#errors{}}],

"GET"},
%% new API interface
{"FindDevices",
[{startIndex,pos_integer()},
{count,pos_integer()},
{sortBy,none|string()},
{order,none|orderType()},
{’query’,none|string()}],

[{device,[#device{}]},
{errors,#errors{}},
{existsMore,boolean()},
{countTotal,integer()}],

"GET"},
%% changes to input
{[{input_type_changed,

{startIndex,integer()},
{startIndex,pos_integer()}},
{input_type_changed,
{count,integer()},
{count,pos_integer()}},
{input_added,{sortBy,none|string()}},
{input_added,{order,none|orderType()}},
{input_added,{’query’,none|string()}}],

%% changes to respsonse
[{unchanged,{device,[#device{}]}},
{unchanged,{errors,#errors{}}},
{output_added,{existsMore,boolean()}},
{output_added,{countTotal,integer()}}]}},

{api_added,
{"DeleteDevice",
[{deviceId,none|nonempty_list(integer())}],
[{device,[#deletedDevice{}]},
{errors,#errors{}}],

"GET"}}]}

Figure 6. An example web service change report

The final report is used by the framework to generate a refactor-
ing script for evolving the test code. However one should note that
not all the changes can be represented as refactorings. For example,
the effect of changing an operation response data structure depends
on how the data is processed in the abstract model, and is hard to
be described as a refactoring, we hence leave this for the user to
handle while the tool only points out the changes.

-record(room,
{roomId::string(),
description::none|string()

}).

-type orderType()::‘ascending’| ‘decending’.

-record(error,
{code::string(),
params::none|#errorParams{},
description::string()

}).

-record(errors,
{error::nonempty_list(#error{})
}).

Figure 7. Some example Erlang representation of data types

6.2 Domain-specific Refactorings
Our manual study of the change log of a few web services led
to a collection of refactorings, or program transformations, that
could typically be applied to the test code. While the refactorings
identified here only concern API interface changes, Wrangler’s
existing collection of built-in refactorings, both general-purpose
and QuickChick-specific, can equally be applied to the test code
in particular to support the evolution of the abstract model. Some
of the refactorings identified, such as renaming of function name,
swapping function arguments and move functions from one module
to another, are already supported by Wrangler, but many of them
are more domain-specific, hence not included in Wrangler’s set of
built-in refactorings. Nevertheless, with Wrangler’s API and DSL
support for user-extensibility, we were able to define and add these
new refactorings to Wrangler without much hassle.

Our study also revealed the different characteristics between
these domain-specific refactorings and traditional general-purpose
refactorings. Unlike in traditional refactorings, where most of the
changes are caused due to a define-use relation, the refactorings
defined for evolving eqc statem test code involve changes that are
loosely related to each other due to the structure of the code, and
changes to handle the coding idioms, such as symbolic function
calls, used by QuickCheck.

Take the add an input element to an operation refactoring as
an example, one might think that this should be similar to the
general add a parameter to a function refactoring, however, it is
not quite the case. The general purpose add a parameter to a
function refactoring implemented in Wrangler first adds the new
parameter to the function definition, then adds the atom undefined
as a placeholder to the use-sites of this function, since the actual
argument to be supplied cannot be decided by the refactoring tool
in general; whereas for the domain-specific refactoring, we use
domain knowledge to decide what the new argument should be,
and where an argument should be added, etc.

Suppose a new parameter PostCode of base type string has
been added as the first input element to the GetWeather opera-
tion of the GlobalWeather web service, we then need to refactor
the test module shown in Figure 5 to reflect this change. Fig 8
shows the expected code after the refactoring where the changes
are underlined. Since we use a tuple to group together the elements
of a complex type, we actually need to add an element to the tu-
ple of input elements. We could initiate this refactoring from the
wrapper function get weather, and add PostCode as the first el-
ement of the tuple argument, then the same variable name is added

to the call to the get weather function defined in the connec-
tor module. Since the connector module is re-generated automat-
ically, the use-sites of connector functions with interface changes
outside the connector module have to be refactored separately as
here. The new parameter also needs to be added to the use-sites of
the wrapper function. Wrapper functions are used by callback func-
tions precondition, postcondition and next state; however
what is different here is that the wrapper functions are used in the
parameter parts of the three function definitions through a symbolic
function call. Without domain knowledge, a refactoring tool would
not be able to detect those change places.

Adding a new element to the input of a WS operation also
affects the definition of existing data generators. However, since
the definitions of data generators are likely to be refined by the
user, and the code structure could become hard to analyse, we try
not to refactor the definition of existing data generators. Instead,
our tool generates a new file containing all the new data generators
and the user could examine this file and move the generators needed
to the test file using the move function from one module to another
refactoring, or manually refactor some existing data generators to
accommodate the changes. A data generator is treated as new if it
is not defined, or its definition is different from the none derived
from the old WSDL specification.

As to the implementation, most refactorings consist of a set
of transformation rules to be applied to the AST representation
of the test code in a particular way. Some refactorings also need
code analysis to collect certain information about the code under
refactoring, in which case Wrangler’s templated-based information
collection macros can be used.

A transformation rule defines a basic step in the transforma-
tion of a program; it involves recognising a program fragment to
transform and constructing a new program fragment to replace the
old one. In Wrangler, a transformation rule is denoted by a macro
?RULE with the format of:

?RULE(Template, NewCode, Cond),

where Template is a template representing the kind of code frag-
ment to search for; Cond is an Erlang expression that evaluates
to true or false; and NewCode is an Erlang expression that re-
turns the new code fragment in the format of a string. All the
meta-variables/atoms declared in Template are visible to NewCode
and Cond, and therefore can be referenced in defining them; fur-
thermore, it is also possible for NewCode to define its own meta-
variables to represent code fragments.

For instance, the code in Fig 9 defines a transformation rule that
adds a new element NewArg at the Nth position of the input tuple
of operation Op in the symbolic call to this operation. Variables
ending with ‘@’ are meta-variables that match a subtree in the
AST, and variables ending with ‘@@’ are list meta-variables that
match a sequence of elements of the same sort. This@ denotes
the complete subtree that pattern matches the template, which is
denoted by the macro ?T.

Apart from add an input element to an operation, other eqc statem-
specific refactorings added into Wrangler include:

Add an operation. This refactoring is applied when a new
API operation has been added to the web service. It adds a new
function clause to each of these three functions: precondition/2,
postcondition/3 and next state/3, adds an element to the list
of command generators used by the function commands/1, also
adds a new wrapper function for invoking the connector function
defined in the connector module.

Remove an operation. This refactoring is applied when an
operation has been removed from the web service. It removes the
function clauses handing this API operation from precondition/2,

rule(Op, NewArg, Nth) ->
?RULE(?T("{call, M@, F@, [{Args@@}]}"),

begin
Args1@@=lists:sublist(Args@@, Nth-1),
Args2@@=lists:nthtail(Nth-1, Args@@),
?TO_AST("{call, M@, F@, [{Args1@@,"++

NewArg++
", Args2@@}]}")

end,
?PP(F@)==Op andalso
api_refac:is_pattern(_This@)).

Figure 9. A transformation rule

postcondition/3 and next state/3, removes the command
generator for this operation, as well as the wrapper function.

Rename an operation parameter. This is a general variable
renaming refactoring, but needs to be applied to multiple func-
tions/function clauses in the test code in order to keep the consis-
tency of names across the test code. A composite refactoring that
generates a collection of renaming refactorings has been imple-
mented for this purpose. This composite refactoring dynamically
search the test code for symbolic calls to the operation whose pa-
rameter has been renamed, and perform a variable renaming refac-
toring for each candidate found.

Remove an operation parameter. This refactoring is applied
when an element has been removed from the inputs of an operation.
The refactoring can also be initiated by removing the parameter
from the wrapper function for this operation, but since the parame-
ter is used in the call to the connector function, we have to force the
removal of it. In the case that some of the parameters to be removed
are used by the test model, this refactoring may result in code that
does not compile, and we leave this for the user to fix.

These refactorings assume that the coding style used by the
tool is preserved by the user. A different code style may neces-
sitate changes in the refactoring implementation. For example,
QuickCheck allows another way to implement the callback func-
tions so that the pre-condition, post-condition and the state transi-
tion of an operation can be grouped into a single function definition.
The current implementation of the refactorings does not work with
this coding style yet.

6.3 Automatic Creation of Refactoring Scripts
When there are multiple API changes of a web service, a batch
of refactorings may need to be applied to the test code. While it
is possible to apply refactorings one by one, being able to apply
refactorings in a batch mode is desirable, especially when the
number of refactorings to be applied is large. Wrangler’s DSL
support for describing composite refactorings allows us to compose
complex program transformations in order to carry out a large-scale
batch refactoring in an efficient way.

With our test code evolution framework, we have gone one step
further. Instead of requiring users to examine the interface changes
and figure out what refactoring commands should be applied to the
test code, our tool tries to analyse the changes and work out the
refactoring commands needed automatically, and script them into a
composite refactoring. In this way, we eliminate the need for a user
to learn how to write a composite refactoring in Wrangler, but also
allow the user to examine and change the refactoring commands
before they are applied to the test code. The composite refactoring
can be applied to the test code in an interactive way (indicated by
the use of macro interactive), so that the user can still make

-module(weather_test).

-include_lib("eqc/include/eqc.hrl").
-include_lib("eqc/include/eqc_statem.hrl").
-define(SUT, weather_sut).
-export([prop_state_machine/0]). %% Prop
-export([initial_state/0, command/1, precondition/2,

postcondition/3, next_state/3]). %%eqc_callbacks.
-record(state,).

prop_state_machine() ->
?SETUP(fun setup/0,

?FORALL(Cmds, commands(?MODULE),
begin
_H, _S, Res = run_commands(?MODULE, Cmds),
Res==ok

end)).

initial_state()-> #state. %% abstract state representation.

command(S)-> oneof([
call, ?MODULE, get_weather, [gen_get_weather(S)],
call, ?MODULE, get_cities_by_country, [gen_get_cities_by_country(S)]]).

precondition(_S, {call,?MODULE,get_weather,[{_PostCode, _CityName,_CountryName}]})->
true;

precondition(_S, {call,?MODULE,get_cities_by_country,[{_CountryName}]})->
true.

postcondition(_S, {call, ?MODULE, get_weather,
[{_PostCode, _CityName, _CountryName}]}, Result)->

Result == ok;
postcondition(_S, {call, ?MODULE, get_cities_by_country,

[{_CountryName}]}, Result)->
Result == ok;

next_state(S,_R,{call,?MODULE,get_weather,[{_PostCode, _CityName,_CountryName}]})->S;
next_state(S,_R,{call,?MODULE,get_cities_by_country,[{_CountryName}]})->S.

%% wrapper functions.
get_weather({PostCode, CityName,CountryName})

->?SUT:get_weather(PostCode,CityName,CountryName).

get_cities_by_country({CountryName})->?SUT:get_cities_by_country(CountryName).

%% Data generators.
gen_get_weather(S)->{gen_post_code(S), gen_city_name(S), gen_country_name(S)}.

gen_post_code(_S) -> eqc_gen:oneof([none, gen_lib:string()]).

gen_city_name(_S)->eqc_gen:oneof([none, gen_lib:string()]).

gen_country_name(_S)->eqc_gen:oneof([none, gen_lib:string()]).

gen_get_cities_by_country(_S)->{gen_country_name(_S)}.

setup() -> %%utility functions.
inets:start(),
fun teardown/0.

teardown() -> inets:stop().

Figure 8. Add parameter PostCode to the GetWeather operation

decisions as to whether to perform a particular refactoring or not
during the actual execution of the refactoring script.

As an example, Fig 10 shows the composite refactoring gen-
erated from the change report shown in Fig 6. As it shows, five
refactoring commands are generated, two for adding new opera-
tions, and three for adding parameters. The number used in the
refac add op arg commands indicates the position where the
new parameter should be added. For instance ‘1’ indicates that the
new parameter should be added to the end of the parameter list, i.e.
the first element in the tuple counting backwards.

7. Summary and Discussions
We have presented a framework for testing web services using

property-based testing, in particular with the support of QuviQ
QuickCheck, and for evolving test code to adopt changes made
to web services between versions. With these tool support, we are
able to automate the parts of the testing that are tedious to write
manually, while let the user focus on defining the state-based test
model, hence to improve the efficiency and productivity of testing.

Our property-based testing framework supports the fully auto-
matic initial test code generation of web services. It verifies not
only that the web service returns without raising an error message,
but also that the data structure returned conforms to the data model
specified in the schema. What is more important is that the use of
abstract state machine gives the user the power to further develop
the test model to improve the quality of the test in terms of both test
case generation and test oracles, so that more serious testing can be
done. This is especially important when the web service under test
is a stateful web service, in which case the order in which the oper-
ations are executed may affect the result of the test, and the internal
state has to be taken into account in the testing process.

Once an abstract model has been added to the test, the same test
model can also be used to test other web services implementing the
same WSDL specification.

The automatic inference of WSDL specification changes and
the eqc statem-specific refactorings help to reduce the effort of
evolving test code in sync with web service evolution. Automatic
refactoring reduces the chances of human errors being introduced.
Our work also demonstrate the importance of making refactor-
ing tools user-extensible, due to the fact that support for domain-
specific refactorings in most general-purpose refactoring tools is
very limited. Make refactoring tools user-extensible would poten-
tially improve the adoption of refactoring tools in practice.

The framework presented is being used by Interoud Innovation
(http://interoud.com/), a company based in Spain, to test
their web service for managing streaming devices in difference
locations. The design of the framework was also influenced by the
way they test web services in practice using property-based testing.

8. Related Work
The two common test case generation methods used in web service
testing are specification-based and model-based test data genera-
tion. Prior representing work on WSDL-based test case generation
for web services testing includes the work of Bai et al. [7], Bar-
tolini et al. [8], Lampropoulos and Sagonas [16], Zhang et al. [24],
etc. Test data generation using WSDL definitions is limited to the
datatypes due to the lack of behavioural information about the
services. As a result, other alternative specifications that can pro-
vide more behaviour information have also been explored, such as
contracted-based web service testing, where contracts define the
conditions for a component to be accessed and the conditions that
need to hold after the execution of methods of that component
with the specified pre-condition. Some researchers proposed an ex-
tended WSDL that includes contract information for the service

and also a framework that uses this extended WSDL to test ser-
vices [14, 21]. While our approach generates the initial data gen-
erators based on the static analysis of the WSDL specification, it
is different from existing approaches in that it provides the infras-
tructure that allow users to refine the definition of data generators
using the abstract state information. Our approach is different from
contract-based testing in that pre- and post-conditions are specified
in the test model, hence there is no need to extend the WSDL spec-
ification.

Test oracle generation is another major problem in web service
testing. In [6], Atkinson et al. propose the use of a technique called
test sheet in order to generate unit test cases and test oracles. Test
sheets contain contract information which identifies the relation
between the operations of a service, and the included relations
define the effects of each operation from the clients perspective in
order to help validation. Keckel and Lockmannn [14] generate test
oracle using pre-generated contracts which carry information such
as pre- and post-conditions. In [23], Tsai et al. proposed an adaptive
group testing technique that can test multiple web services that have
the same business logic, internal states and input data; a voting
mechanism is used in their approach to automate the generation of
test oracle. Our approach automates the generation of generic test
oracles that apply to all WS operations, such as verifying that the
response data has a valid structure and is correctly typed, but also
allows the specification of particular operation-related test oracles
using the post condition function associated with an operation.

Property-based testing of web services was first proposed by
Zhang et al. In [24], the authors proposed a Haskell QuickCheck
based framework for the automatic generation of test data and
invocation of web services based on their WSDL specifications.
Similar idea is also used by Lampropoulos and Sagonas [16] to
carry out property-based testing using PropEr. Both approaches
however suffer from the same limitations faced by specification-
based approaches. Since PropEr also comes with support for state
machines, and has a very similar user-interface to QuickCheck, the
tools presented in this paper should work with PropEr as well with
little modification.

There is much less work done to support the evolution of test
code in sync with the evolution of a web service, although in the
general context of software engineering, there have been develop-
ments of automated test-repair techniques, mostly focused on re-
pairing unit tests [12] and GUI tests [10]. Our work on domain-
specific refactorings and the automatic change inference reduces
user’s effort on evolving test code, and is also less error-prone than
manual code manipulation and examination.

Finally this research was done within the context of the PROWESS
project focusing on property-based testing of web services. Re-
lated work carried out in the project includes the domain specific
language designed by López et. al [19] for writing QuickCheck
data generators for web services using a syntax similar to the
one used for defining WSDL elements, and the work for deriving
QuickCheck models from a web service’s WSDL description and
its OCL (Object Constraint Language) semantic constraints [13].

9. Conclusions and Future Work
We have presented a framework for testing web services using

stateful property-based testing, in particular with the support of
QuickCheck eqc statem library, and for evolving test code to adopt
changes made to web services between versions. With tool support
for the automatic generation of various components of the test
code, the user only needs to focus on the part defining the logic of
the abstract model. The framework presented can be used by both
web service providers and consumers, and can be used to test web
services written in whatever language; the approach advocated here

-module(refac_evolve_api).

-export([composite_refac/1, input_par_prompts/0, select_focus/1]).
-include_lib("wrangler/include/wrangler.hrl").
-behaviour(gen_composite_refac).

%% callback functions.
input_par_prompts() ->[].
select_focus(_Args) -> {ok, none}.

composite_refac(_Args=#args{current_file_name=File})
?interactive(

[?refac_(refac_add_op,[File,"find_all_rooms",[],[File]]),
?refac_(refac_add_op_arg,[File,"find_devices",1,"SortBy",[File]]),
?refac_(refac_add_op_arg, [File,"find_devices",1,"Order",[File]]),
?refac_(refac_add_op_arg,[File,"find_devices",1,"Query",[File]]),
?refac_(refac_add_op, [File,"delete_device",["DeviceId"],[File]])]).

Figure 10. An example composite refactoring generated by the tool

could also be adopted in other property-based testing frameworks
and refactoring tools.

One direction of our future work is to extend the framework to
work with web service specifications written in other languages,
such as JSON-based web services descriptions; another direction is
to further facilitate the creation of the abstract model by learning
from existing test cases. Integration with other tools developed
within the PROWESS project within the framework is another goal
of our work.

We would like to thank the anonymous referees for their helpful
and insightful suggestions for improving the paper, and also to ac-
knowledge the European Commission for supporting the work re-
ported here through the FP7 PROWESS Project ICT-2011-317820.

References
[1] Erlsom: An Erlang Libary for XML Parsing. http://sourceforge.

net/projects/erlsom/.

[2] Levenshtein Distance. http://en.wikipedia.org/wiki/
Levenshtein_distance.

[3] W3C XML Schema Definition Language (XSD). http://www.w3.
org/TR/xmlschema11-1/, 2007.

[4] Web Services Description Language (WSDL) 2.0. http://www.w3.
org/TR/wsdl20/, 2007.

[5] J. Armstrong. Programming Erlang. Pragmatic Bookshelf, 2007.

[6] C. Atkinson, D. Brenner, G. Falcone, and M. Juhasz. Specifying high-
assurance services. IEEE Computer, 41(8):64–71, 2008.

[7] X. Bai, W. Dong, W.-T. Tsai, and Y. Chen. Wsdl-based automatic test
case generation for web services testing. In Proceedings of the IEEE
International Workshop, SOSE’05, pages 215–220, Washington, DC,
USA, 2005.

[8] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini. WS-TAXI:
A WSDL-based Testing Tool for Web Services. In Software Testing,
Verification, and Validation, 2008 International Conference on, Los
Alamitos, CA, USA, 2009.

[9] F. Cesarini and S. Thompson. Erlang Programming. O’Reilly Media,
Inc., 2009.

[10] S. R. Choudhary, D. Zhao, H. Versee, and A. Orso. Water: Web appli-
cation test repair. In Proceedings of the First International Workshop
on End-to-End Test Script Engineering, New York, NY, USA, 2011.

[11] K. Claessen and J. Hughes. Quickcheck: A lightweight tool for
random testing of haskell programs. In ACM SIGPLAN Notices, pages
268–279. ACM Press, 2000.

[12] B. Daniel, V. Jagannath, D. Dig, and D. Marinov. ReAssert: Suggest-
ing repairs for broken unit tests. In 24th IEEE/ACM International Con-
ference on Automated Software Engineering, pages 433–444, 2009.

[13] M. A. Francisco, M. López, H. Ferreiro, and L. M. Castro. Turn-
ing web services descriptions into quickcheck models for automatic
testing. In Proceedings of the twelfth ACM SIGPLAN workshop on
Erlang, Erlang ’13, pages 79–86, New York, NY, USA, 2013. ACM.

[14] R. Heckel and M. Lohmann. Towards contract-based testing of web
services. Electr. Notes Theor. Comput. Sci., 116:145–156, 2005.

[15] J. Hughes. QuickCheck testing for fun and profit. In Ninth In-
ternational Symposium on Practical Aspects of Declarative Lan-
guages(PADL), Berlin, Heidelberg, 2007.

[16] L. Lampropoulos and K. Sagonas. Automatic WSDL-guided Test
Case Generation for PropEr Testing of Web Service. In The 8th
International Workshop on Automated Specification and Verification
of Web Systems, Stockholm, Sweden, 2012.

[17] H. Li and S. Thompson. A User-extensible Refactoring Tool for Erlang
Programs. Technical Report 4-11, School of Computing, Univ. of
Kent, UK, 2011.

[18] H. Li and S. Thompson. A domain-specific language for scripting
refactorings in erlang. In 15th International Conference on Funda-
mental Approaches to Software Engineering(FASE), pages 501–515,
2012.

[19] L. M. C. Macı́ias López, Henrique Ferreiro and T. Arts. A DSL for
Web Services Automatic Test Data Generation. In Draft Proceedings
of the 25th International Symposium on Implementation and Applica-
tion of Functional Languages, 2013.

[20] E. A. Manolis Papadakis and K. Sagonas. PropEr: A QuickCheck-
Inspired Property-Based Testing Tool for Erlang. http://proper.
softlab.ntua.gr.

[21] H. Mei and L. Zhang. A framework for testing web services and its
supporting tool. IEEE Seventh International Symposium on Service-
Oriented System Engineering, pages 207–214, 2005.

[22] M. H. Mustafa Bozkurt and Y. Hassoun. Testing web services: A
survey. Technical Report TR-10-01, Dept. of Computer Science,
King’s College London, 2010.

[23] W.-T. Tsai, Y. Chen, D. Zhang, and H. Huang. Voting multi-
dimensional data with deviations for web services under group test-
ing. 32nd International Conference on Distributed Computing Sys-
tems Workshops, pages 65–71, 2005.

[24] Y. Zhang, W. Fu, and J. Qian. Automatic Testing of Web Services
in Haskell Platform. Journal of Computational Information Systems,
2010.

