17,662 research outputs found

    QoS support in event detection in WSN through optimal k-coverage

    Get PDF
    Wireless sensor networks promise to guarantee accurate, fault tolerant and timely detection of events in large scale sensor fields. To achieve this the notion of k-coverage is widely employed in WSNs where significant redundancy is introduced in deployment as an event is expected to be sensed by at least k sensors in the neighborhood. As sensor density increases significantly with k, it is imperative to find the optimal k for the underlying event detection system. In this work, we consider the detection probability, fault tolerance and latency as the Quality of Service (QoS) metrics of an event detection system employing k-coverage and present a probabilistic model to guarantee given QoS support with the minimum degree of coverage taking into account the noise related measurement error, communication interference and sensor fault probability. This work eventually resolves the problem of over or under deployment of sensors, increases scalability and provides a well defined mechanism to tune the degree of coverage according to performance needs

    A Deterministic Algorithm for the Deployment of Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are made up by communicating sensor nodes that gather and elaborate information from real world in a distributed and coordinated way in order to deliver an intelligent support to human activities. They are used in many fields such as national security, surveillance, health care, biological detection, and environmental monitoring. However, sensor nodes are characterized by limited wireless communication and computing capabilities as well as reduced on-board battery power. Therefore, they have to be carefully deployed in order to cover the areas to be monitored without impairing network lifetime. This paper presents a new deterministic algorithm to solve the coverage problem of well-known areas by means of wireless sensor networks. The proposed algorithm depends on a small set of parameters and can control sensor deployment within areas even in the presence of obstacles. Moreover, the algorithm makes it possible to control the redundancy degree that can be obtained in covering a region of interest so as to achieve a network deployment characterized by a minimum number of wireless sensor nodes

    On Achieving Diversity in the Presence of Outliers in Participatory Camera Sensor Networks

    Get PDF
    This paper addresses the problem of collection and delivery of a representative subset of pictures, in participatory camera networks, to maximize coverage when a significant portion of the pictures may be redundant or irrelevant. Consider, for example, a rescue mission where volunteers and survivors of a large-scale disaster scout a wide area to capture pictures of damage in distressed neighborhoods, using handheld cameras, and report them to a rescue station. In this participatory camera network, a significant amount of pictures may be redundant (i.e., similar pictures may be reported by many) or irrelevant (i.e., may not document an event of interest). Given this pool of pictures, we aim to build a protocol to store and deliver a smaller subset of pictures, among all those taken, that minimizes redundancy and eliminates irrelevant objects and outliers. While previous work addressed removal of redundancy alone, doing so in the presence of outliers is tricky, because outliers, by their very nature, are different from other objects, causing redundancy minimizing algorithms to favor their inclusion, which is at odds with the goal of finding a representative subset. To eliminate both outliers and redundancy at the same time, two seemingly opposite objectives must be met together. The contribution of this paper lies in a new prioritization technique (and its in-network implementation) that minimizes redundancy among delivered pictures, while also reducing outliers.unpublishedis peer reviewe

    Push & Pull: autonomous deployment of mobile sensors for a complete coverage

    Full text link
    Mobile sensor networks are important for several strategic applications devoted to monitoring critical areas. In such hostile scenarios, sensors cannot be deployed manually and are either sent from a safe location or dropped from an aircraft. Mobile devices permit a dynamic deployment reconfiguration that improves the coverage in terms of completeness and uniformity. In this paper we propose a distributed algorithm for the autonomous deployment of mobile sensors called Push&Pull. According to our proposal, movement decisions are made by each sensor on the basis of locally available information and do not require any prior knowledge of the operating conditions or any manual tuning of key parameters. We formally prove that, when a sufficient number of sensors are available, our approach guarantees a complete and uniform coverage. Furthermore, we demonstrate that the algorithm execution always terminates preventing movement oscillations. Numerous simulations show that our algorithm reaches a complete coverage within reasonable time with moderate energy consumption, even when the target area has irregular shapes. Performance comparisons between Push&Pull and one of the most acknowledged algorithms show how the former one can efficiently reach a more uniform and complete coverage under a wide range of working scenarios.Comment: Technical Report. This paper has been published on Wireless Networks, Springer. Animations and the complete code of the proposed algorithm are available for download at the address: http://www.dsi.uniroma1.it/~novella/mobile_sensors

    Multihop clustering algorithm for load balancing in wireless sensor networks

    Get PDF
    The paper presents a new cluster based routing algorithm that exploits the redundancy properties of the sensor networks in order to address the traditional problem of load balancing and energy efficiency in the WSNs.The algorithm makes use of the nodes in a sensor network of which area coverage is covered by the neighbours of the nodes and mark them as temporary cluster heads. The algorithm then forms two layers of multi hop communication. The bottom layer which involves intra cluster communication and the top layer which involves inter cluster communication involving the temporary cluster heads. Performance studies indicate that the proposed algorithm solves effectively the problem of load balancing and is also more efficient in terms of energy consumption from Leach and the enhanced version of Leach

    Advanced information processing system for advanced launch system: Avionics architecture synthesis

    Get PDF
    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described
    • …
    corecore