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ADVANCED INFORMATION PROCESSING SYSTEM
FOR
ADVANCED LAUNCH SYSTEM:
AVIONICS ARCHITECTURE SYNTHESIS

1.0 INTRODUCTION

The goal of the Advanced Information Processing System (AIPS) is to achieve a
validated fault tolerant distributed computer system architecture to meet the real time
computational needs of advanced aerospace vehicles. One such vehicle is the Advanced
Launch System (ALS) being developed jointly by the National Aeronautics and Space
Administration and the Department of Defense to launch heavy payloads into low earth
orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An
avionics architecture that utilizes the AIPS hardware and software building blocks has been
synthesized for ALS. This report describes the AIPS for ALS architecture synthesis
process starting with the ALS mission requirements and ending with an analysis of the
candidate ALS avionics architecture.

1.1 Design for Validation Methodology

The ALS architecture synthesis process follows a new design for validation
methodology that has been developed as part of the AIPS program to assure that fault
tolerant computer system architectures for advanced applications meet the reliability,
performance and other goals of the application. The design methodology is described in
detail and compared to the conventional avionics design methodology in an accompanying
report [1]. It is recapitulated here briefly to put various steps of the ALS architecture
synthesis process in context.

In the AIPS design for validation methodology, a set of functional requirements is
derived from the mission requirements and translated into avionics requirements, as shown
in Figure 1-1. These avionics requirements are then mapped into hardware and software
building blocks using a knowledgebase and future technology projections. Validation of
the AIPS building blocks and generation of the knowledgebase and technology projections
are goals of the AIPS program. The validation is being addressed using a combination of
mathematical proofs, analytical models, and empirical test and evaluation. The architecture
knowledgebase allows the designer to synthesize the architecture in accordance with rules
and guidelines such that the fundamental principles of fault tolerance are adhered to and
rationale for each design decision is related to overall mission requirements. The building
block knowledgebase provides the designer with a detailed characterization of the
performability and other important parameters of each building block. These
characterizations, in conjunction with advanced technology projections, are used to project

1-1



ALS Mission Requirements
(Mission Scenario &
-Operational Environment)

System Functional Requirements
GN&C, Propulsion Control,
Vehicle Health Monitor)

Avionics Requirements
(Performance, RMA, Wt., Vol.,
Power, Cost)

Synthesize Candidate
Avionics Architectures

Technology
Projections

b

Analyze RMA, Performance, etc.
for ALS Mission Scenario

Finalize Architecture

H/W & S/W Implementation
(Brass Board, ASIC Designs)

AIPS Building Block
Performability Knowledgebaseé
(Perf, RMA, Wi, Vol, Power,
ost)

AIPS Architecture
Knowledgebase (Arch
Rules, Guidelines,

Attributes Graph)

A Building Block
Design Knowledgbase
(HW & S/W Requ@rements

Validate Brass Board
and ASIC Implementation

Knowledgebase(Proofs,
Simulations, Test &

Figure 1-1.

Evaluation Results)

Integrate with
Vehicle Subsystems

AIPS Design for Validation Methodology

1-2



building blocks implemented in state-of-the-art hardware and software technology. The
AIPS hardware and software building blocks have been designed such that their major
attributes such as Byzantine resilient fault tolerance, simplex programming model,
reconfigurability, rigorous separation of redundancy management and applications
software, etc. are not dependent on any specific technology of implementation. (The goal
of the AIPS program is to validate these and other reliability and performance attributes of
the AIPS hardware and software building blocks and make these building blocks available
to programs like the ALS.) Furthermore, the system services are implemented such that
their overheads become smaller as the processor and communication speeds increase.
Therefore, the building blocks do not become obsolete with technology advancements.
Their performance increases in direct proportion to improvements in processing and
communication speeds.

This design methodology makes the architecture synthesis task much less of an art
and personal judgement and provides a solid foundation of knowledgebase on which to
base design decisions. In the conventional design methodology, validation of the
architectural characteristics such as redundancy management, reliability, maintainability,
performance, etc. is done in parallel with the validation of the specific hardware and
software implementation of the design. The design for validation methodology decouples
the validation of the architecture design from the validation of a specific hardware and
software implementation of that design. 'The combination of architectural rules and
guidelines, the prevalidated building blocks knowledgebase and the analytical models of the
performability of the synthesized architecture assure a validated architecture. A validated
architecture is defined to be an architectural concept that when implemented in hardware
and software will meet various mission requirements such as reliability, throughput,
transport lag, cost, weight, volume, power, etc.

Section 2 of this report describes the ALS requirements. The very high level
requirements were collectively obtained from the three prime contractors, Boeing, General
Dynamics, and Martin Marietta, and provided to Draper by Martin Marietta. These include
the general ALS mission scenario and related parameters such as time on the launch pad,
launch availability, mission duration and reliability. Other ALS requirements include ALS
computational functions such as Guidance, Control, Navigation, etc. The functional
requirements were translated into detailed computational requirements such as throughput,
memory, processing lag, function iteration rate, I/O and interfunction communication rates,
etc., by Martin Marietta with some feedback from and interaction with Draper on the format
and content. These "raw" 'computa.tional requirements were then converted into "derived"
requirements by Draper with Martin Marietta's assistance. The conversion was necessary
to accurately reflect the overheads of the Ada language and compiler to be used in
programming AIPS for ALS compared to the assembly languages that have traditionally
been used to program the launch vehicle avionics.

1-3



The AIPS architectural attributes, rules and guidelines, and reliability and
performance models of the building blocks are described in detail in the accompanying
report "Advanced Information Processing System: Design and Validation Knowledgebase"”
[1]. It also contains references to the more detailed hardware and software specifications
and simulations that constitute the AIPS knowledgebase. This knowledgebase, which is
quite large, is required to synthesize a validated ALS avionics architecture. Section 3 of
this report briefly recapitulates the AIPS virtual and physical architectures and the key
attributes of the hardware and software building blocks.

The AIPS architecture and its attributes are transparent to the microelectronics
technology. The hardware building blocks can be implemented in the state-of-the-art
technology for improved performance and reliability while still retaining all of the validated
characteristics of the AIPS architecture. Similarly, the software building blocks, i.e., the
system services, can be implemented using the latest Ada run time system and compiler. In
order to project the reliability and performance that can be expected of the AIPS building
blocks if they were implemented using the technology that will be available in the ALS time
frame, a task to survey the technology was undertaken. An accompanying report "Advance
Information Processing System for Advanced Launch System: Hardware Technology
Survey and Projections" [2] describes the results of this survey in detail. Section 3.6 of
this report describes the flight system characteristics, including hardware implementation,
performance projections, and module failure rate projections, of the AIPS for ALS building
blocks. ' ' o ' '

The projected building block performability characteristics are then used to
configure a candidate AIPS for ALS avionics architecture that meets the ALS performance
and reliability requirements. This process of configuring the building blocks is explained
in greater detail in the next subsection 1.2. The resulting ALS avionics architecture is
described in Section 4 of this report.

The reliability and performance of the candidate ALS avionics architecture have
been modeled using the generic models of the AIPS building blocks developed earlier [1]
but using the ALS specific parameters. The ALS specific parameters include the mission
duration, launch pad time, repair strategy and other mission related parameters as well as
the specifics of the AIPS for ALS building blocks such as the projected module failure
rates, the fault detection, isolation and recovery times, various operating system service
and redundancy management overheads, etc. Section 4.3 provides the details of the
reliability and performance projections of the ALS avionics architecture.

Further refinement of the architecture would be necessary if the projected
performability does not meet the ALS requirements. After the configuration has been
revised to meet the requirements, the next step in the ALS avionics design would be the
detailed design of the hardware and software building blocks using the state-of-the-art
microelectronics and software technology. This was outside the scope of the present study
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contract. Section 6 summarizes the results of this study with some thoughts on the steps
necessary to reach a validated AIPS for ALS flight system hardware and software.

One of the prime drivers of the Advanced Launch System design is the reduction in
the cost of launching a pound of payload by an order of magnitude over the current launch
vehicles. The ALS on-board computer systems have the potential to reduce the operational
cost by automating a number of functions that are now performed manually by "standing
armies” of ground controllers, by making the launch window less vulnerable to weather
through the use of adaptive navigation and guidance algorithms, by reducing the cost of
launch pad operations through "maintenance free" fault tolerant computers and by reducing
the cost of launch vehicle failures through the use of fault tolerance techniques. In
addition, the cost of the avionics themselves can be reduced by changing the current design
philosophy of single-string, non-fault tolerant systems built out of the highest quality
(Class S) components with additional quality control checks at every stage from
manufacture to launch to a philosophy of fault tolerant systems that do not use the most
expensive components but are actually more reliable than single string systems. Section 5
of this report discusses in detail the impact of the AIPS for ALS architecture on the ALS
cost.

1.2 Avionics Architecture Synthesis Overview

_ - Architecture synthesis can be thought of as a constrained optimization problem. At
the highest level the problem objective can be stated as: minimize cost subject to meeting all
the avionics requirements. Cost studies, including the one described in Section 5 of this
report, have shown that fault tolerant avionics constructed out of Class B components can
be more cost effective for the ALS as a whole than single string avionics built out of Class
S parts. Since the AIPS architecture provides prevalidated fault tolerant building blocks for
ALS type applications, the architecture synthesis problem can be restated as: configure
AIPS hardware and software building blocks to meet the ALS avionics requirements.

As discussed in the preceding section on the design for validation methodology,
AIPS for ALS configuration(s) are defined using as inputs the AIPS architectural rules,
guidelines and attributes, the projected reliability, performance, physical characteristics and

~ other attributes of the building blocks, and the ALS avionics requirements. The process of
matching the avionics requirements with the building block capabilities is a
multidimensional problem. However, it can be simplified by decomposing the
requirements into two orthogonal sets each of which can be mapped independently of the
other as a first order approximation and each of which determines a different aspect of the
architecture. The performance related ALS requirements such as throughput, memory,
transport lag, input/output latencies, etc. determine the virtual avionics architecture. The
reliability related ALS requirements such as probability of mission success, launch
availability, launch pad maintenance, function criticality, etc. determine the physical
avionics architecture. '
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The virtual avionics architecture definition includes the number of Fault Tolerant
Processors (FTPs), allocation of functions to FTPs, partitioning of functions between the
Computational Processor (CP) and the I/O Processor (IOP) within each FTP, the number
and type of sensors and actuators and their interconnections to FTPs via the 1/O networks,
etc. The physical avionics architecture definition includes such parameters as the
redundancy level of FTPs, the redundancy levels of Inter-Computer and I/O networks, the
physical topologies of networks, the redundancy level of sensors, actuators and other I/O
devices, the cross-strapping of I/O devices to channels of FTPs and the redundancy levels
of interfaces, etc.

A preliminary virtual architecture can be defined by grouping and allocating functions
to processing sites, grouping and allocating corresponding sensors and actuators to the
same FTPs, and partitioning the functions in each site between the IOP and the CP. A
subset of the AIPS System Services and modes of operation, such as scheduling of tasks,
definition of I/O chains to acquire sensor data and send out actuator commands, etc. can
then be selected to complete the virtual architecture definition. Criteria for grouping
functions in one processing site include functions requiring time critical or high
communication rates, physical location (e.g. propulsion controller to be located on the
engine or recoverable avionics to be located in a separate module), like-criticality functions,
etc. Some of the constraints for grouping and allocating functions to one processing site
include the maximum useful throughput available in an FTP and the FTP data exchange
bandwidth which is necessary to perform interactive consistency and internal congruent
distribution of all the sensors connected to that FTP at the iteration rates necessary to
support all the functions executing in that FTP. Once a preliminary allocation of functions
has been completed, one can determine using the ADAS (Architecture Design and
Assessment System) tool and simulations whether the performance criteria have been met.
These include the transport lag for each function, inter-function communication latencies
and rates, processor utilization and reserve throughput, etc. Functions can be reallocated,
regrouped or number of processing sites added or deleted depending upon the results of
performance modeling. The preliminary virtual architecture can be fine tuned using the
results of the analytical models which are described in Section 4 of [1].

The process of defining, analyzing and fine tuning the physical architecture is similar
to that for the virtual architecture; only the analysis tools and measures of merit are
different. The analysis tools include the Markov models, combinatorial models, etc. The
measures of merit include the probability of mission success, launch availability,
probability of repair on the launch pad, etc.

Preliminary AIPS for ALS virtual and physical avionics architectures are presented in

Sections 4.1 and 4.2, respectively, of this report. A preliminary set of reliability and
availability projections are described in Section 4.3.
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2.0 ADVANCED LAUNCH SYSTEM REQUIREMENTS

As explained in the introductory section of this report, one of the inputs to the ALS
architecture synthesis process is the set of ALS requirements. The. very high level
requirements were collectively obtained from the three prime contractors, Boeing, General
Dynamics, and Martin Marietta, and provided to Draper by Martin Marietta. These include
the general ALS mission scenario and related parameters such as time on the launch pad,
launch availability, mission duration and reliability. Other ALS requirements include ALS
computational functions such as Guidance, Control, Navigation, etc. The functional
requirements were translated into detailed computational requirements such as throughput,
memory, processing lag, function iteration rate, I/O and interfunction communication rates,
etc., by Martin Marietta with some feedback from and interaction with Draper on the format
of the contents. These "raw" computational requirements were then converted into
"derived" requirements by Draper with Martin Marietta's assistance. The conversion was
necessary to accurately reflect the overheads of the Ada language and compiler to be used in
programming AIPS for ALS compared to the assembly languages that have traditionally
been used to program the launch vehicle avionics.

Section 2.1 describes the ALS functional requirements. The functional
requirements were translated into processing requirements, described in Section 2.2.1, and
I/O and interfunction communication requirements, described in Section 2.2.2. Section 2.3
captures the other ALS requirements such as relxablhty, ma1nta1nab111ty, availability and
operating environment. :

2.1 Functional Requirements

Nine top-level ALS functions have been identified by Martin Marietta: Central
Control and Processing, Winds Ahead Determination, Vehicle Power System Management,
Steering and Staging Control, Sensor Processing, Propulsion Control, Command and
Telemetry Processing, Range Safety and Destruct, and Programmable Payload Interface.
Figure 2-1 shows the top level requirements along with the breakdown of each function
into its next level component sub-functions. for all except the Programmable Payload
Interface. The function hierarchy is three levels deep, with functions at the third level
assumed to be equivalent to executable, dispatchable tasks.

2.2 Performance Requirements
2.2.1 Processing Requirements
2.2.1.1 Advanced Launch System (ALS) Raw Requirements
The ALS computational and interfunction communication requirements were
provided to CSDL in the format of two Hypercard TM documents: one describes processing

requirements and the other describes interfunction communication requirements {3, 4]. The
most recent such requirements received by CSDL were dated December 7, 1989.
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ALS Avionics System Functions

The ALS processing requirements are expressed by Martin Marietta in a
hierarchical, dataflow-like representation. Currently, the function hierarchy is three levels
deep, with functions at the third level assumed to be equivalent to executable, dispatchable
tasks. Nine top-level functions have been identified. Computational requirements are
given at multiple layers of the hierarchy, with the requirements of a higher-level function
consisting of aggregate summations of the numerical requirements of its lower-level con-
stituent functions. These aggregates have been observed to give an upper bound on the
throughput requirements. To perform an accurate and meaningful synthesis of the avionics

system, the following requirements are needed for each dispatchable task (level three in the
representation hierarchy):

Frame rate

Throughput (or instructions per execution)
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Throughput margin

Processing lag

Scheduling requirements (e.g., preemptible or nonpreemptible)

Task execution order dependencies

Inter-function communication requirements (bits per iteration, latency)

Given this data it is possible to construct a distributed schedule for the task suite
and quantitatively perform system sizing and determine. performance parameters. The
current set of requirements does not yet possess this level of detail, so several simplifying
assumptions are made to allow a rough system sizing. First, it is assumed that all tasks are
preemptible within their frame by higher-frequency tasks, as long as the preempted tasks
complete their execution within that frame. This allows the throughput utilization of a
processor to be determined by summing the throughput requirements of the tasks it hosts.
The second assumption is that the processing lag requirement will be met if the processor
possesses the throughput to execute the requisite number of instructions of a task iteration
within the processing lag. It is realized that these two assumptions may be mutually
inconsistent since a task which is preempted within its frame may not meet its processing
lag requirement. However, reconciliation of this potential inconsistency must be deferred
until the detailed requirements are available.

CSDL has transferred the available numbers from the Hypercard documents to
spreadsheets to facilitate their manipulation. The spreadsheets are presented as Tables 2-1
to 2-9 and are interpreted as follows.

Column A: Name and Nurnber c;f TaskMote 15
Column B: Frame Rate F(Note 1)

Column C: Throughput TOMote 1)

Column D: Margin M(Note 1)

Column E: Processing Lag L(Note 1)

Column F: Margined Throughput TM = TO(1+M)MNote 2)
Column F Row 4: Total Margined Throughput Required = 2 TMMote 3),

. Column G: Instructions per Execution IE = TM/F
Column H: Instantaneous Throughput IT = IE/L.
Column H Row 4:

Maximum Instantaneous Throughput Required = max(IT).

Each task is identified by a name and a hierarchical number (Column A). The number
indicates the place of the task or function in the three-level hierarchy of functional
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requirements. For example, Kalman Filter (1.2.4) is Task 4 of the Nav/IMU (1.2)
function which is sub-function 2 of the Central Control & Processing (1) function.

The Frame Rate (Column B) is the iteration rate in Hertz of the task. For example,
Kalman Filter task must execute at 25 Hz.

The Throughput TO (Column C) is the throughput, measured in instructions per
second, required to perform a task. For example, Kalman Filter task is estimated to require
3.2 million instructions per second throughput.

The margin M (Column D) is the additional throughput requirement for a task. The
margine is provided for the uncertainty in estimating the throughput or for growth
purposes. The margin for Kalman Filter task, for example, is 0.5. The total throughput
required for this task is TO(1+M) or 4.8 MIPS. This is called the Margined Throughput
TM and is shown in Column F. The sum of all the margined throughputs for the tasks
under a function is shown for each function in Column F, Row 4 of each table. For
example, the total throughput for Central Control and Processing function is 21.8 MIPS, as
shown in Table 2-1.

The maximum allowable processing lag for each task is shown in Column E. This is
. the interval from the time a task needs its inputs to the time it produces its outputs. The
maximum allowable processing lag for Kalman Filter task, for example, is 36 milliseconds.

‘The number of instructions executed by a task per iteration is shown in Column G and
is obtained by dividing the margined throughput TM by the frame rate F. For example,
Kalman Filter task executes 210,000 instructions every iteration. The instantaneous
throughput IT is the processing throughput required to execute a task within the requisite
processing lag and is shown in Column H. For Kalman Filter task, this number is 5.83
MIPS. '

Column H, Row 4 of every table indicates the maximum instantaneous throughput
required for that function. For example, the Central Control and Processing function
requires 10.72 MIPS to be able to perform the system identification task (1.4.3) within the
required 10 msec processing lag. This number represents a lower bound on the throughput
required of the processor

Notes:
1. From Martin Marietta ALS Specs.
2. Changed from TM = TO/(1-M) to prevent blowup at M=1.

3. Assuming preemptive scheduling.

Also, note that boldface italicized numbers represent CSDL guesses. Italicized
numbers represent Martin Marietta-supplied aggregates and are not used in calculations
unless otherwise noted.
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A B c — D E_ F G H
1 Frame Thruput Margin Proc. | Margined | Ins/Exec Instant
2 Rate (Hz) (iPs) Lag (ms)|Throughput [Thruput (IPS)
3 [Central Control and Processing 1 Required Required
4 |Exec 1.1 sum:| 21,829,396 max:] 10,722,625
5 |Central Control 1.1.1
6 1 100] 30,000 0.5 8 45,000 450 56,250
7 __|Timing & Sequence 1.1.2
8 L 100] 30,000 0.2 0.8 36,000 360 450,000
9 JIPS Self-Test 1.1.3
10 | l 1] 40,000 1 200 80,000 80,000 400,000
11 |IPS Fault Detect & Mgmt 1.1.4
KN 25 50,000 1 10 100,000 4,000 400,000
1 3 [Subsystem Status Monitor 1.1.5
14 I 25] 38,000] 0.5 70 57,000 2,280 228,000]
15 |Mission Phase Sequence Gen 1.1.6
(16 1 100] 5,000 0.2 S 5.000 60 12,000
17 |[Data_HReporting 1.1.7 ~
(75 I 50 20,000 i T 49,000 800 800.000]
19 |{Nav/IMU 1.2
2 0 IMU_Processing 1.2.1
1 100] 3,200,000 0.2 101 3,840,000 38,400 3,840,000
GPS Processing 1.2.2
100] 3.200.,000 0.2 10 3,840,000 38,400 3,840,000

Error Compensation 1.2.3
I 300] 25,000 0.5 1 37.500 125 125,000

Kalman__Filtering 1.2.4

NMNINNNNN
@ IN O & WDV

25] 3,500,000 0.5 36} 5250,000] 210,000 5,833,333
Nav_Exec 1.2.5

29 100 1,000 1 6 2,000 20 3,333
30 |FDI_1.2.6 _ _
3 1 I 50 132,000] 0.5 0.5 198,000 3,960 7,920,000
3 2 |Bending Processing 1.2.7
33 | 100] 1,200 0.2 0.1 . 1,440 14 144,000
3 4 |[Adptve Gdnce 1.3
3 5 [Two-body Linear Guidance 1.3.1 ’
3 6 50 37,500 0.2 15 45,000 900 60,000
[3 7 |[Non-Llnear_Tra] Shaping 1.3.2 = -
(3 8 I 1! 3,300,000 0.2 960| 3,960,000] 3,060,000 4,125,000
3 9 |[Cont ngency ontro .3.3
30 | 7 ] 1,000 1 7 2,000 2,000 2,000,000]
4 1 |Adaptive Control 1.4
4 2 IMode!l Reference Adaptive Controllgr _1.4.1 - —
43 50 505,100] 0.25 10 631,375] - 12 628 1,262,750

|

Classical Autopilot 1.4.2 | f
I 50| 542 .350| 0.5 10 813,525 16,271 1,627.050

System ldentification 1.4.3 - -
1 25] 2. 144.525] 0.25 10] 2. 680,656 107,226 10,722,625

ajuisibiba]ais
=10jo|® N[O 0L

System RM 1.5 (inciludes CSDL_RM task throughputs approximated las SOKIPS/3)
Fault Response 1.5.1 :

25| 17,000 1 40 34,000 1,360 34,000
| S 1 Fault Determine & Isolate 1.5.2
52 | 25| 17,000] 1 40 34,000 1,360 34,000
5 Contfiguration anager 1.5.
54 | 25| 17,000 1 40 34,000 1,360 34,000
5 5 |Gen scretes 1.
5 6 [Validate Commands 1.6.1
(57 [ 50] 4,200 i 2 8,400 168 84,000
5 8 [Update Outputs 1.6.2
59 50 4,000 7 2 8,000 760 80,000]
6 0 |Discrete Error Handiing 1.6.3
6 1 | | 1,000} 1 0.5 2,000 2,000 4,000,000
6 2 |[Det G&C Wnd Ditas 1.7 (no_task throughputs|availabie)
| 63 1 29,000 0.5 20 43,500
6 4 |Load Relief Algorithm 1.7.1
65 ] 100] [ 0 10 0 0 0
6 6 |[Estimate Fluctuation Stats 1.7.2
6 7 100 0 0 10 0 i 0 0

Table 2-1. Central Control & Processing

2-5



Al B __C D E F G H
1 Frame Thruput | Margin} Proc. Margined | Ins/Exec Instant
2 Rate (Hz) (IPS) Lag (ms)| Throughput Thruput (IPS)
3 |winds Ahead Determination 2 Required Required
4 : sum:! 670,800 max: 656,842
5 1 520,000 0.5 500
6_[Manage Measurement Resources 2.1
7 | 1] 100 ] 1 1
8 |[Lidar Cal and Checkout 2.1.1
9 1 0 1 1 0 0 0
10 |Lidar 1.
11 | 25| 6,000 0.5 1 9,000 360 360,000
12 |Lidar Fauit Handling 2.1.3
13 | 25] 0 0 1 0 0 0
1 4 [Lidar Health Monitoring 2.1.4
15 ] 50| 3,000 0.5 1 4,500 90 80,000
1 6 [Compute Wind Profile 2.2
17 | |
1 8 ILidar_mode Control 2.2.1
19 1 0 1 1 0 0 0
2 0 {Winds Measurement Fitting 2.2.2
1 21 | 1] 520,000/ 0.2 950 624 000] 624,000 656,842
2 2 [Vibration Compensation 2.2.3
23 | 50| 5,000} 0.5 1 7,500 150 150,000
2 4 |Bending Compensation 2.2.
25 | 50| 10,000 1 5 20,000 400 80,000
2 6 |Control Velocimeter 2.3
27 | 100 | 2,000 1 1 4,000
2 8 [Redundant Lidar_ Configuration Contrpl 2.3.1
29 | 100] 0 0 1 0 0 0
3 0.|Lidat Power Control 2.3.2 .
31 25 0] - 0 40 0 ) 0
3 2 JReceive and Process Winds Info 2.4
33 | 50| 800 1 1
3 4 |Detection 2.4.1
35 l___ 1] 0 1 1 0} 0 0
3 6 |Puise Deconvolution 2.4.2
37 1 0 1 1 0 0 0
3 8 [Range Determination 2.4.3
39 ? 1] 0 1 1 0 0 0
4 0 |Doppler Frequency Estimation 2.4.4
41 1] o] 1 1 0 0 0
4 2 |Data Collection & Formatting 2.4.5
43 | . 1] 600 1 10 1,200 1,200 120,000
4 4 [Check Range w/ Exp Values 2.4.6
45 { 1] 500] 0.2 5 600 600 120,000

Table 2-2. Winds Ahead Determination
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Al B __C ») __FE r G H
[ 1 Frame Thruput Margin Proc. _Margined Ins/Exec Instant
2 Rate (Hz (IPS) Laq (ms) Throughput Thruput (IPS
[ 3__| Vehicle Power System Manageient 3 Required j Eequnrd
4 sum: 6,900 max: 138,000
5 25 4,600 0.5 2 6,900 276 138,000
6 | Battery Charge Mgmt 3.1
7 T - "m‘rf__ 0 T T 0 0 0
8 | Charge Mgmt Exec 3.1.1
g T ] - 0 1 i 4 0 T
Control Chargl 1.
1 1 1 I 0 1 1 0 0 0
12 { Monitor Charge 3.1.3
13 | 1] 0 1 i 0 0 0
] ErrorD jon3.2
15 | 1| 1] 0 1 0 0 0
16 | Pwr System Load Error Det 3.2.
1; 1] 0 1 1 0 0 0
1 Pwr Emergency Mgr 3.2.2
19 | % ] 0 1 1 [4] 0 o]
4] Loam
21 3.3 1} 0 1 1 0 0 0
22| Dynamic Load Distribution 3.4
23 I 11 0 1 1 0 0 )
24 | Pwr System Load Control 3.4.1
25 | ; l 0 1 1 0 0 0
26| Mission Power Profile 3.4.2
1 11 0 1 1 0 4] 0
8 | Change Load Distribution 3.4.3
20 1 i1 0 1 1 0 0 0
30__| Power-Up Iinitialization 3.4.4
"'3'1__|_'_l 1] 0 i 1 0 0 0]
32 3.4.5
33 l 1 i 0| 1 1 0 0 0

Table 2-3. Vehicle waer System Management
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B C

F

G

H

Frame__ |Thruput

Margin

Proc.

Margined

Rate (H2) (IPS)

Lag (ms)

Throughput

Ins/Exec

Instant

Thruput (IPS)

Required

Required

sum:

103,502

max:

1,800,000

Steering & Staging Contro
| 50 [ 55,000

S
Oy

15

82,500

1,650

110,000

Provide Steering Signals 4

-

1| 0

Identify Changed Cards 4.1

A

1] 0

Com Cmd to Prev & Limit Rate 4.1.

] 1] 0

1.3

Gen New Steering Signal 4
[ 1] 0

Report Steering Cmd Error

4.1.4

o ol 1alo o

| 1 0

Validate Steering Cmd Response 4.

-t

I 1}

(=

O 19 191 I 9 [I©

ol |9 9] I 9 I©

Ol 19 0] 19 |9 I©

0
Select Outputs and Verifx%

mds 4.2

50]__ 5,000

1

10,000

200

50,000

Validate Discretes 4.2.1

] 04| 1,000

-t

2,000

5,000

1,250,000

Activate Stagl_n? 4.3
1

| 0

0

24 [LFU Control & Monitor 4.3.

1 0

0

Verify & Sequence Power 4.3.2

| 1] 1

1,000

Ordnance BIT 4.3.3

] 6,000

9,000

9,000

~1.800.000

Fault handling 4

3.4

1 1

1,000

LFU Redundancy Control 4.3.5

] 1] 0

Activate Discrete Devices 4

.4

] 1]

(=]

] O

Provide Discrete Outputs

4.1

1

RCS Control 4.5

I 1}

(=] I (= I (=

RCIS Error Generate 4.5.1
1]

Phase Plane Control 4.5.2

| 1]

RCS Command Generato

4.5.3

o O

| 1]

o o lo] o o (o] Id [o] n] o o] o

ol ol Pl o] o ol lo

ol 19O 10l bl P

o] 19 o] o] o] o] |9

Table 2-4. Steering & Staging Control
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A B __C - D _ F G H
1 Frame Thruput __{Margin | Proc. | Margined ins/Exec Instant
2 | Rate (Hz) { (IPS) L ag (ms) {Throughput Thruput (IPS)
3 _[Sensor Processirg 5 Required
4 - i _SUM: 12640,651 Max: 2,030,000
5 25% 636,000 0.5 34
6 |Prescale & Categprize SensoriData 5.1
7 i 25 12,500 0.5 34
8 |identify Format 541.1
9 50 130,000 0.5 40 195000 3,900 97,500 |
10 |[Filter & Store 5.1.2
L 50t 812,000 1 16 1624000 32,480 2,030,000
12 |Format-A Convert & Store 5.1.3
13 25f 95,0004 1 40 10000 - 400 10,000
14 |Format-B Conver} & Store 5.1.4
15 1 7 7 0 7 7 i 1,000 |
16_|Type Processing 5.2 :
17 0 90,000 1 S5 180000 3,600 720,000
18 |Compare With Ll?ﬂs 5.2.1
(1 9 1 0 0 1 0 0 0
20 |Averaging & Votfqg 5.2.2
21 | 1 _ 0 0 1 0 0 0
22 |Count Limits Errdrs 5.2.3
23 { 1% 0 0 1 0 0 0
24 |Count Limits Errgrs 5.2.4
25 y 1 0 0 1 0 0 0
| 26 | Wﬂﬂb{:v 2.2.8 _
127 1 0 Q 1 0 0 Q.
A_caljfmumvm{dmn 53
29 : 25 112 500 0.5 5 168750 6,750 1,350,000
_&._D.exerunlnﬂdﬂs_d!ltv 5.3.1
[ 31 1 (1] g 1 0 (1] 0]
32 | Manage Recovery 5.3.2
33 :‘IA“‘““T__ " ) U 1 ) 0 1)
34 |Sensor Fault Toldgrance 5.4.0 _
35 - 75 {308,500 0.5 51 462750 1 6.170 1.234,000
36 |Limit Checks 5.4.1
371 1§ 1 . 0 0 1 0 0 0
38 |Consistency Chetks 5.4.2
39 i 1 B 0 1 0 0 0
40 [Vaiidation Error Report 5.4.2
a1 i 1 0 0 1 0 0 0
42 |Error & Faiiure Réporting 5.5
i 711 100 0.5 5 150 150 30,000

Table 2-5. Sensor Processing
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A B C D E F G H
1 Frame Thruput Margin| Proc. Margined Ins/Exec Instant
2_| | Rate(Hz2) (IPS) Laq (ms) | Throughput Thruput (IPS)
3 |Propulsion Control 6 _ Required
4 SUM: | 20,000,000 Max: 26,666,667
S 50 | 10,000,000 1 15 | 20,000,000 | 400,000 26,666,667
6 |Manage Propulsion and Fault Tolerance 6.1
7 | 1] 0] 0 1 0] 0 0
8 |Prop Cntrlir Timing & Exec 6.1.1 _
9 | 11 0 0 1 0 0 0
10 _|Prop Memory Mgmt 6.1.2
11 | 1] 0 0 1 0 0 0
12 |Prop Fault Mgmt 6.1.3
13 { 1| 0 0 1 0 [1] 0
14_|Update Data Tables & Report 6.2
15 | 1 I 0 0 1 0 0 0
16 |Report Enqgine Status 6.2.1
17 [ 1] 0 0 1 0 0 0
18 |[Update Table 6.2.2
19 | | 1] [] 0 1 0 0 []
20 |Process Commands 6.3
[ 21 | 11 0 0 1 0 0
22 |Monitor and Verity Commands 6.3.1
[ 23 ] 1 0 0 1 0 0 0
24 |Compute Valve Position 6.4
25 | 1] 0 -0 1 0 0 0
26 _|Engine Control Loops 6.4.1
27 1 1] [1] 0 1 0 0 0
28 |Update Actuator Positions 6.4.2 .
29 l 11 01 0 1 0 0 0
30 _|Compare Actuator Model 6.4.3
31 [ 1] o] 0 1 0 [ 0
32 |Process Propulsion Sensors 6.5
33 L 1 [ [] 1 0 [] 0
34 |Sensor Data Scaling 6.5.1
35 [ 1| [/ 0 1 0 [/ 0
36 |Redun Sensor Process and Qual 6.5.2
| 37 | 1] 0] 0] 1 0 0 0
38 |[Limit Monitor & Failure Detect 6.5.3
39 | 11 0] 0 1 0 0 [¢]
40 |Sensor Failure Handler 6.5.4
41 | 1 0} [/] 1 0 0 0

Table 2-6. Propulsion Control
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A B C_ D E F . G H
1 Frame Thruput | Margin | Proc. | Margined Jns/Exec Instant
| 2 Rate (Hz) (IPS) Lag (ms) [Throughput Thruput (IPS)
3 ___| Required
4 |Command & TLM Processing 7 SUM: 525,000 max: 525.000
5 _ 25 350,000 0.5 40 525,000 21,000 525,000
b |[Decode & Process Command Data 7.1
71 | 1] o] [ 1 0 0 0
8 |Decode & Verify Commands 7.1.1
9 1] o] 0 1 0 0
10 [Validate Ground Data 7.1.2
1] | 1] _o0] 0 1 0 ]
12 |Command Acceptance 7.1.3
13 ] 11 [/ 0 1 0 0
14 |TLM Table Manager 7.2
[ 15 ] 1 0 0 1 0 0
16 [Format Telemetry 7.2.1
17 ] 11 0 0 1 0 0
18 |TLM Transit 7.2.2
19 | 1] 0 0 1 0 0
20 |Control Telemetry Format 7.3.1
21 | 11 01 0 1 0 -0
Table 2-7. Command & Telemetry Processing
A B C D E F | G H
1 Frame Thruput Margin Proc. Margined ns/Exec Instant
Y 4 Rate (Hz) (W&“’"’"‘g" Cag (ms) Tﬁig'but hrupu
Required ]
4 |Hange Safety & Destruct 8 ) SUN: 5,400 max; 18006001
S . 13 3,600 0.5 3 5400 | 5400 1,800.000
6 |Band Transpond 8.1 - ;
7 I 77 0 (] 7 0 (] ]
Heceive & Decode Signal 8.1.1 )
} 11 [7] 0 1 0 0 0
10 ~Test & timing 8.1.2
1 { 1 0 0 1 0 0 0
1< | Transmi an nal 8.1.3
13 1 01 0 1 0 [)] 0
14 [Command Hecelve & Decode 8.2 -
15 I 71 0¥ 0 ] 0 0 0]
T 16| Destruct Command Logic 8.2.7
17 i ; [1] 1] 1 0 0 0
T8 | Select Power Source 8.2.2
19 |1 17 i} (] i 0 1] (]
| 2 Sequece Destruct Signals 8.2.3 .
21 { 1 0 ™0 7 ] ] ]
22 | Destrict System Control 8.3 :
23 i - 1.3 [1] a 1 0 [1] [1]
24 |Safe & Arm 1SDS 8.3.1
25 i 13} 0 0 1 0 [1] 0
26 | Verity Loop Integrity 8.3.3 i
27 i 173 0 0 1 0 0 0
ISDS Redundancy Manager 8.3.3
i ”‘““‘J"?“T‘g“““ 0 0 1 0 0 0
3 Initiate Destruct 8.3.4
K¥ ¥ 1] 0] i} i a- /] g

Table 2-8. Range

Safety & Destruct
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A B __C D E F G H
1 __Frame Thruput  iMargin { Proc. i Margined ilns/Exec { __Instant
Rate (Hz) (IPS) Lag(ms) { Thrupt Thruput (IPS)
3 | B _ Required
4 | Programmable Payload I/F 9
] i 1] 0 0 1 0

Table 2-9. Programmable Payload I/F

2.2.1.2 Derived Requirements

The ALS throughput requirements discussed in the previous section were derived
by Martin Marietta using certain assumptions that can have a substantial impact on the ALS
avionics architecture and the number of processors and other hardware required to meet the
performance requirements. In particular, the overheads for using Ada appeared too high in
comparison with the CSDL experience with the new Ada compilers and Run Time
Systems. As the Ada compilers have matured over the last few years, they have become
much more efficient in generating code. Our recent experience indicates that newer Ada
compilers generate code that is almost as good in code density and execution time as other
high level language compilers such as C [22]. This appears to be true for a wide variety of
programs including computationally intensive programs and operating system oriented
programs. ’ ‘ '

In order to quantify the overheads of using Ada compared to an assembly language,
. and compare this overhead with the factor of 6 assumed by MM, a typical ALS application
algorithm, the Lateral Acceleration Sub-System filter function (LASS), was chosen as a
benchmark. This function had already been coded by MM in Ada. It had also been coded
by CSDL in Ada using the CASE tool. Both versions were compiled with the Verdix 5.5
cross compiler and the XD Ada cross compiler produced by Systems Designers Software,
Inc. and Digital Equipment Corporation. They were compiled with and without Ada
constraint/range checking, thus producing a total of 8 versions. The Verdix 5.5 compiler is
currently being used by CSDL on AIPS and a number of other projects. The XD Ada
compiler is a newer, much more efficient compiler that has been undergoing Beta testing at
CSDL for the past few months.

The eight versions of the LASS filter were run on the AIPS Fault Tolerant
Processor (FTP) that was built for NASA Johnson Space Center (JSC) to obtain
comparative execution times. The object codes of the eight versions were also analyzed to
produce instruction counts. Figures 2-2 and 2-3 summarize the number of instructions and
the execution times for the eight versions of the LASS filter function. Ideally, the
execution time should be compared to the execution time of LASS function coded in an
assembly language to determine the overhead of using Ada. However, the MM-supplied
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requirements do not contain execution times of functions. They consist of an estimate of
the number of instructions for each function. These estimates were arrived at by examining
the function flow charts and using the following assumptions:

Time for 1 add = time for 2 instructions.

Time for 1 multiply = time for 4 instructions.

Time for 1 divide = time for 8 instructions.

Time for high order language (Ada) overhead (addressing, pragmas, etc.) =
sum instructions for adds, multiplies and divides (#1+#2+#3) and multiply sum
by 6.

i S

Since the goal of the benchmarking was to calibrate the MM-supplied requirements
(rather than to compare Ada to an assembly language on an absolute basis), we used the
MM assumptions to compute the number of "assembly language" instructions for the LASS
function. The total number of instructions, using the flow charts and the assumptions 1, 2,
and 3, was calculated to be 74. This was multiplied by 6 (assumption # 4) to arrive at 444.
This number can now be compared to the instruction counts in Figures 2-2 and 2-3.

H/W: AIPS Engineering Model JSC FTP 68020/68881/15.7 MHz

Compiler Num of Instr per Iter Time per Iter
Verdix 5.5 w checks. 415 - -1.09 msec:
Verdix 5.5 w/o checks 341 0.85 msec.
XD Ada w checks 160 0.60 msec.

XD Ada w/o checks 115 0.43 msec.
Figure 2-2. LASS (MM Coded) Benchmark Results

H/W: AIPS Engineering Model JSC FTP 68020/68881/15.7 MHz

Compiler Num of Instr per Iter Time per Iter
Verdix 5.5 w checks 277 1.22 msec.
Verdix 5.5 w/o checks 247 1.14 msec.
XD Ada w check 109 0.54 msec.
XD Ada w/o checks 99 0.51 msec.

Figure 2-3. LASS (CSDL Coded) Benchmark Results
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The following conclusions can be drawn from these benchmarks:

1. The XD Ada compiler consistently produces fewer instructions than the Verdix
5.5. compiler. The ratio varies from 2.5 to 3 depending on whether or not range checks
are turned on.

2. The code produced by the XD Ada compiler consistently outperforms the Verdix
produced code. The ratio approximately varies from 1.8 to 2.2. The code density and
speed ratios between the two compilers are consistent with other benchmarks performed by
CSDL.

3. The manually coded MM version produces more instructions than the CASE but
generally executes faster. The CASE produced version passes many parameters with each
iteration and the instruction used to push a parameter onto the stack apparently takes a
longer time than the average instruction. Other reasons for this disparity have not been
analyzed at this time. :

4. Turning the range checks on or off has a much greater impact both in the
number of instructions as well as execution time on the manually coded version than on the
CASE produced version. This is due to the fact that CASE uses predefined functions for
certain floating point operations which are not affected by turning the checks on or off.

Given the superior performance of the XD Ada compiler which represents state of
the art in Ada compiler technology, it will be assumed here that the ALS will either utilize
this compiler or an advanced Ada compiler of similar performance. The following
conclusions are based on this assumption.

5. XD Ada compiler generates 99 to 160 instructions for the LASS filter compared
to 74 counted in the flowchart, resulting in an overhead factor of 1.34 t0 2.16. (As pdinted
out earlier, the number of instructions would be 444 using the MM overhead factor of 6
which would have been fairly representative of the earlier Ada compilers.) The ALS
throughput requirements have been recomputed in the next section using an Ada overhead
factor of 2.2 as mutually agreed to by MM and CSDL.

6. Martin Marietta used a further multiplicative factor of 2.3 to account for the
"logical and environmental overhead” of scheduling and dispatching a task. This overhead
is actually not dependent on the number of instructions in a given task. Instead, the
overhead is a fixed number of instructions required for each iteration of the task, i.e. each
context switch. The number of instructions for scheduling and dispatching a periodic task
was measured using the Verdix 5.5 compiler and run time system (RTS). A periodic task
dispatch takes 820 microseconds and was equal to 830 instructions. The instructions used
for the context switch take less time (less than 1 microsecond per instruction) than typical
computation intensive instructions. These numbers are currently not available for the XD
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Ada compiler. However, based on the code produced by the two compilers and the fact
that the XD Ada run time system is written in an assembly language while the Verdix run
time system is written in Ada, our estimate is that approximately 500 extra instructions
would be required for each iteration of each task. MM feels that there is still some
overhead that is proportional to task size and a proportional factor of 1.5 in combination
with a fixed overhead of 250 instructions per task per iteration should be used. The ALS
requirements have been recomputed in the next section using these two factors.

A new set of ALS throughput requirements have been derived using the findings
reported in the previous section. Using an Ada overhead of 2.2 rather than 6, and a fixed
scheduling overhead of 250 instructions per task per iteration in combination with a
proportional overhead of 1.5 rather than a factor of 2.3, the new ALS requirements are
summarized in Tables 2-10 to 2-18. The following conclusions can be drawn from the
modified requirements.

The reduced overheads of an advanced Ada compiler make the modified throughput
requirements obviously much smaller than the initial requirements provided by MM.
However, the effect of changing the scheduling overhead from one that is proportional to
the task size to one that is dependent on the task iteration rate is not so obvious. The
dispatch overhead for high fréquency tasks is quite high: for example 25,000 instructions
per second for a 100 Hz task. On the other hand, the requirements for large tasks are
substantially reduced: for example, the Kalman filter function requirement (including -
margins) is reduced from 3.5 MIPS to .84 MIPS.

The net effect of these changes is that the overall ALS throughput requirements
(including margins) for non-propulsion functions are reduced from about 26 MIPS to about
8.8 MIPS. Furthermore, the maximum instantaneous throughput (throughput required to
perform the most demanding indivisible task) for non-propulsion functions is reduced from
about 10.7 MIPS to about 3 MIPS. For propulsion control functions, the total throughput
requirement reduces from 20 MIPS to about 4.8 MIPS and the maximum instantaneous
throughput requirement reduces from 26.7 MIPS to about 6.4 MIPS.

The derived requirements were used to synthesize the ALS avionics architecture as
discussed in Section 4.

2.2.2 I/0 and Interfunction Communication Requirements

To obtain estimates of the Input/Output and Interfunction communication require-
ments, the ALS requirements Hypercard stacks provided by Martin Marietta [3, 4] were
examined. The communication requirements contained in these documents are less
complete than the computational requirements discussed above. For functions for which
relevant communication requirements were absent from the Hypercard stacks but which
were known to possess significant communications needs, other preliminary requirements
documents were consulted [5, 6].
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A B (] D | E F G H 1
1 Frame |MM ThruputMod ThrupusMarqin Proc. | Marqgined | Ins/Exec Instant
2 Rate (Hz) {(IPS) (IPS) Lag (msiThroughput Thruput (IP9
3__ICentral Control and Processing 1 Required Required
4 |Exec 1.1 sum:] 5,841,958 max:} 3,036,730
5 [Central Control 1.1.1
(3 | T00] 30,000 32,174 0.5 8 48,261 483 60,326
7_|Timing & Sequence 1.1.2 —
8 1 100f 30,000 32,174 0.2 0.8 38,609 386 482,609
9 ||PS Self-Test _1.1.3
10 1] 40.000 9,815 1 200 19,630 19,630 98,152
11 [IPS Fault Detect & Mgmt 1.1.4
12 | 25 50,000] 18,207 1 10l 36,413 1,457 145,652
13 |[Subsystem Status Monitor 1.1.5
14 25 38,000] 15,337 0.5 10 23,005 920 92,022
1 5 |[Mission Phase Sequence Gen 1.1.6
16 1 100§ 5,000 26,196 0.2 5 31,435 314 62,870
1 7 |[Data ﬁeporting 1.1.7
18 1 50 20,000 17,283 1 1 34,565 691 691,304
19 |[Nav/IMU 1.2
20 IMU_Processing _1.2.1
21 100 3,200,000 790,217 0.2 10 948,261 9.483 948,261
2 2 |IGPS Processing 1.2.2
23 I 100| 3,200,000 790,217 0.2 10 948,261 9,483 948,261
2 4 |Error Compensation 1.2.3
25 | 300] 25,000 80,978 0.5 1 121,467 405 404,891
2 6 [Kalman Filterin 1.2.4
(2 7 ] 25] 93"!;_'—6, 00,000] 843,207 0.5 36] 1,264,810 50,592] 1,405,344
28 |[Nav _Exec 1.2.5
129 1 100 1,000 25,239 1 6 50,478 505 84,130
30 JFDI _1.2.6
31 50 132,000 44, 065 0.5 0.5 66,098 1,322) 2.643.913
3 2 |Bending Processing 1.2.7
'ST—T_gﬂ'WIJ_i_T.za 25,306 0.2 0.1 30,367 304] 3,036,730
3 4 |Adptve Gdnce 1.3
[3 5 |[Two-body Linear Guldance 1.3.1
[3 6 1 50] 37,500] 21,467 0.2 15 25,761 515 34,348
3 7 |[Non-Linear Tral Shaping 1.3.2 -
38 | 1]__3,300,000] 789,380 0.2 960] 047,257 947 257 986,726
3 9 |contingency Control 1.3.3 :
40 1.1 1,000 489 1 1 978 978 978,261
4 1 |Adaptive Control 1.4
4 2 |Model Reference Adaptive Controller 1.4.1
4 3 50] 505,100] 133,285 0.25 10| 166,606 3,332 333,212
4 4 [Classical Autopilot 1.4.2
45 || 50} 542,350 142,192 0.5 10 213,289 4,266 426,577
46 'System Identification 1.4.
47 | 25| 2.144,525] 519,071 0.25 10] 648,839 25,954] 2,595,356
4 8 |System RM_1.5 (includes CSDL RM; task throughputs approximated as SOKIPS/3)
4 9 [Fault Response 1.5.1
50 [ 25] 17,000 10,315 1 40 20,630 825 20,630
5 1 |Fault Determine & Isolate 1.5.2
(5 2 ] 25] 17.,000] 70,315 i 40 20,630 825 20,630
53 [Configuration Manager 1.5.3
54 i 25| 7,000 10,315 1 40 20,630 825 20,630
55 |Gen Discretes 1.6
S 6 |Validate Commands 1.6.1
57 1 501 4,200 13,504 1 2 27,009 540 270,087
5 8 JUpdate Outputs 1.6.2
59 LSOI 4.000 13,457 1 2 26,913 538 269,130
6 0 |Discrete Error Handling 1.6.3
61 ] 1] 1,000] 489 1 0.5 978 978] 1,956,522
6 2 |Det G&C Wnd Ditas 1.7 (no task throughputs available)
6 3 | 1] 29,000 | 7,185 0.5 20 10,777 10,777
64 |Load Rellef Algorithm 1.7.1
65 1 100] ol 25,000 0 10 25,000 250 25.000
6 6 |Estimate Fluctuation Stats 1.7.2
67 | 100] ol 25,000 0 10 25,000 250 25,000

Table 2-10. Central Control & Processing (Modified)
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A B 1 C D _E E G H 1
1 __Frame M_ThruputiMod Thruputj Marqin| Proc. Margined |ins/Exec Instant
2 Rate (Hz) | (IPS) (IPS) Lag (ms)] Throughput Thruput (IPS)
3_|Winds Ahead Determination 2 Required Requlred
4 . sum: 348 823 max: 507,652
5 1 520,000 124,598 0.5 500
6 |[Manage Measurement Resources 2.1
7 1 1] 100 | 274 1 1
8 |[Lidar Cal and Checkout 2.1.1
9 1 1] 0 250 1 1 500 500 500,000
10 lLidar BITE 2.1.2
11 | 25] 6,000 7.685 0.5 1 11,527 461 461,087
1 2 |Lidar Feult Handling 2.1.3
13 1 25] 0 6,250 0 1 6,250 250 250,000
14 |Lidar Health Monitoring 2.1.4
15 | so'l 3,000 13,217 0.5 1 19,826 397 396,522
16 |Compute Wind Proflle 2.2
17 | |
18 |Lidar_mode Control 2.2.1
19 1] 0 250 1 1 500 500 500,000
2 0 |[Winds Measurement Fitting 2.2.2
21 1 1] 520,000{ 124,598 0.2 950 149,517] 149,517 157,387
2 2 |Vibration Compensation 2.2.3
23 50 5 000 13,696 0.5 1 20,543 411 410,870
2 4 |Bending Compensation 2.2.4
25 50] 10,000 14,891 1 5 29,783 596 119,130
26 |Control Velocimeter 2.3
271 1 100 | 2,000 25478 1- 1 50,957 510
2 8 |Redundant Lidar Confiquration Control 2.3.1
29 1 100| 0 25,000 0 10 25,000 250 25,000
30 |Lidat Power Control 2.3.2
31 | 25] 0 6,250 0 40 6,250 250 6,250
3 2 |Receive and Process Winds Info 2.4
33 50| 800 12,691 1 1 25,383 508 507,652
3 4 |[Detection 2.4.1
35 i 1] [} - 250 1 1 500 500 500,000
3 6 |Pulse Deconvolution 2.4.2 ) .
37 1) 0 250 1 1 500 500 500,000
3 8 |[Range Determination 2.4.3 -
39 1 1} 0 250 1 1 500 500 500,000}
4 0 |Doppler Frequency Estimation 2.4.4
41 1] o] 250 ] 1 500 500 500,000
4 2 |Data Collection & Formatting 2.4.5
43 | 11 600] 393 1 10 787 787 78,696
4 4 |Check _Range w/ Exp Values 2.4.6
45 | 1] 500] 0.2 5 0 0 0

Table 2-11. Winds Ahead Determination (Modified)
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Al B c 1 D E G H I
T Frame |MMThru Mod Thru argin | _Proc. | Margined | Ins/Exec | Tnstant |
2 ate (Hz) } (IPS) I (IPS) Lag {ms]{ Throughpu rupu
3| Vehicle Power Sysiem Management equired Require
4 sum: 18,025 max: 500,000
5 25 4,600 2350 05 11,025 441 220.500
6 | Battery Charge Mgmt 3.1
| il §| 250 1 il 500 500 500000
Charge Mgmt Exec 3.1.1
IJ_QTI‘ 0| 250 i 1 500 500 500,000
1 Control Charging 3.1.2 |
11 1 250 i 1 500 500 500,000
12 | Monitor Charge 3.1.3 11
131 | i 250 i 500 500 500,000
| 14 | Error Detection & Status Determinatign 3.2
[ 250 1 1 500 500 500.000
16 | Pwr System Load Error Det 3.2.1
17 1 | i 25|2 250 1 1 500 500 500,000
18 | Pwr Emergency Mar 3.2.
$ | I 250 1 1 500 500 500,000
20 | Load SHedding 3.3
i - 250 i 1 500 500 500,000
22 | Dynamic Load Distribution 3.4
23 __ 0 250 1 1 500 500 500,000
24 | Pwr System Load Controf 3.4.1
251 1 1] o] 250 1 1 500 500 500000
26 | Mission Power Profile 3.4.2
(27 250 i i 500 500 500,000
28 | Change Load Distribution 3.4.3
29 | 250 7 i 500 500 £00,000
30 | Power-Up initialization 3.4.4
3 [ 250 i i 500 500 500,000
2 | Monitor Load & Predict Deplete 3.4.5
L33 250 1 1 500 500 500,000

Table 2-12.- Vehicle Power System Management (Modified)
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A B G 1 v E F G H |
1 Frame MM Thru Mod Thru__| Margin| Proc. | Margined [Ins/Exec Instant
2 Rate (Hz) (1 (IPS) JLag (ms] Thruput ruFut (lEegi
g equired equir
eering & Staging Control 4 sum: 7%,073 max: 505,435
] 1 50] %3. 000] 25 652 .5 15 38.4/8 /770 51.304
Provide Steering Siqnals 4.1
] 1 250 0 il 250 250 250,000 |
8 lldentity Changed Cards 4.1.1 d
9 ] | 0 0 U 250 250 250,000 |
TU [Com Cmd to Prev & Limit Rate 4.1.2
11 | 50 0 11 250 250 250,000
12 |Gen New Steering Signal 4.1.3
<3 I 1 0} 250 0 250 250 250.000 |
Heport Steering Cmd Error 4.1.4
) U 250 U 250 250 250,000
16 [Valldate Steering Cmd Response 4.1,
rd | il — o) 250 250 250,000
8 | Select Outputs and Verity Cmds 4.2
191 | 501 5,000 13,696 1 4 27,391 548 136,95/
20 | Validate Discretes 4.2.1
21T ] 41,000 339 1 | 6781 1696 423013
22 | Actlvate Staging 4.3
23 | [i! 250 0 j 250 250 250,000
29 ontro onitor 4.3.1
25 1 250 9) 250 250 250.000
20 [Ver equence Power 4.3.2 fl
27 ! 14 | 250 Y 250 250 250239 |
28 nance 3.3 _
- 29 6,000 1,685 K 2527 2527 505,435
S0 [Fauit handling 4.3.4
31 1 250 0 250 250 250,03
32 |LFU Redundancy Control 4.3.5
31 1 T 250 0 250 250 250,000
34 | Activate Discrete Devices 4.3
35 'PJ—IH_DT'ILT—U_F‘IQ 250 0 250 -~ 250 250,000
36 | Provide Discrete Outpuls 4.4.1 } i o
137 250 ) 4 250 250 250,000
35 ] ontrol 4.5
39 250 0] j 250 250 250,000
40 | rror Generate 4.5.
KA L | 250 U 250 250 250,000
[ ¥ mﬁbontroﬂij...
13 250 0 f‘ 250 250 250,000
KLy ommand Generator 4.95.3 '
(451 | | g U d 0 0 d

Table 2-13. Steering & Staging Control (Modified)
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2-20

A B C 3 E F G H | I
1 rrame : VMM 1hru Proe. Ins/Execi  Instant ‘
2 Hate (Hz) (IPS) (IPS) Lag (ms) { Thruput Thruput (IPS)
3 | Sensor Processing 5 T’gﬁﬁ?m
4 SOM:T 753, Wax: | 516,685
25 636,000 158,337 0.5 34 237505 9,500
Prescale & Cateqgorize Sensor Data 5.1
7 P ﬁfzg“”w 25001 9239 0.5
8 |ldentify Format 5.1.1
g :‘T‘!! S0 130,000 43587 0.5 ! 853807 1308 32890
10 | Filter & Store 5.1.2
1)} s0f 812,000 206,674 i 1 413348¢ 8,26/ 516,685
12 | Format-A Convert & Store 5.1.3 1}
13 , 7,446 40 14897 506 14.801
12 : 514 |
_ 11 1 250 0 7 250 2500 250,239 |
© | Type Proces 5.2 .
1 g i 50 90.000 34,022 1 5 68043 1,361 272174
G
19 mﬂwm‘b‘, ) 1] 1 950 A SO I O 4= X[ IO
Averaging & Voting 5.2.2 ]
21 I 1] v 250 0 1 250 250 250,000 |
¥4 59213
23 ____k 4_% 0 250 [1) 1 250 250 250,000 |
.
(251 1 0 2010 1 250 | 2501 250,000 1
20 | Select Redundancy 5.2.5
1) 1ol - (o O 2 [ |
28 [ Callbration & Valldation 5.
<) - 251 112.50 33, 152% 0.5 5 4972871 1,989 397,828
?;C Determine Criticality 5.3.10 - o ;
Z 2501 250 | 250,000 |
7 | Manage Hecovery b.3.2
Rca e S — T S S WV S0 Y, T |
34 | Sensor Fault Tolerance 5.4.0 N
39 ’ /9% 308 500 92,922 0.5 ) 138783 1,850, 370.087
36 | LImit Checks 5.4.1 -
37 i 1 0 <oV [ 71 250 250 250,000
38 | Conslstenc C{\ecks 5.4.2 - ~ :
39 250 (1] 71 250 250 250,000
< (1)_ Validation Er;or Report 5.54.2 s 7 3 ,.
250 250 250,000
2 | Error & Fallure Heporting 5.5 ~
43 I 13 100 i 2/9 0.2 9 411 411 82,174
Table 2-14. Sensor Processing (Modified)



A B C { D E F G s/EH T
)| rame Mod Thruput | Mergin | Proe. Margined | Ins/Exec
Y4 g {ms rougnpu rupu
J | Pro [ equired
3 SUNT 807,600 _|__wWax:_ | 6210,
5 5U_|70,000.000__}_2.403.804 7 TS5 | 2807600 | o6 157 | 6.470.735
"6 | Manage Propulsion and Faull Tolerance b.
5 vrsﬁ:ﬁmvm'ﬁl'gmm ! - = - = :
8| N 1.7
™9 Y [ 250 U 7 250 250 20,000
10_| Prop Memo m
Al 250 U 1 250 250 | 250,000
8.1.3
1 T 0 250 U T 2501 250 | 250,000
14 | Update Data lallles & Heport 6.2
15 0 250 U T 250 250 | 250.000
76 | Report Engine Sfatus 6.2.7
Y7 T 0 250 U Y 250 250 0000
'TB"U‘D‘D]Emb.‘ Z ——
19 | T U 250 U T 250 250 250.000
20U | PTOETS 0.3
Z7 T U 550 U Y 250 250 250000
22 MB'F:EW‘EFG‘V&'IW‘CESFH?H’EHB‘ 3 0.3.1
23 I 7 l (1) 250 1] 7 250 250 250,000
24 ompute Valve Position 6.4
25 1 1) 250 1] 7 250 250 250000
20 [OOPS 6.4.1
27 F 7 (Y 250 0 7 250 250 250,000
28 ale Aclualor Positions 6.4.2
29 Ll— T U 250 U 7 250 250 550 000
30 | Compare Actuatbr Model 6.4.5
T 250 U 7 250 250 | 250,000
32 | Process PropulSion Sensors 6.5
33 250 U 7 250 200 250.000
33 5.7
39 T U 200 1’4 T 200 200 250,000
36 mm 5.5.2 -
37 T [4) [ /] 7 250 250 EU,UUU
35 Elmk Monitor & tailure Detect 6.5.3 _
11 ol 250 0 1 250 250 | 250000
28 ensor Failure Handler 6.5. ] 5
a1 ] T A S 250 U 7 250 250 | 250,000

Table 2-15. Propulsion Control (Modified)
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Al B C D I E | F G H ]
1 Frame |MM Thruput/Mod ThruputiMargin Proc. | Margined |ns/Exec| Instant
2 Rate (Hz {IPS) (IPS) Lag (mgThroughput Thruput
3 Required (IPS)
4 |[Command & TLM Processing 7 SUM: | 134,918 max: 250,000
5 |l 251 350,000] 89,946 0.5 40 134,918 5,397 ] 134,918
6 _|Decode & Process Command Data 7.1
7 1 0 250 0 1 250 250}1250,000
8 |[Decode & Verify Commands 7.1.1
9 | 1] 0| 250 0 1 250 250 1250,000
1 0 {Validate Ground Data 7.1.2
11] | 1] 0| 250 0 1 250 250 1250,000
1 2 |Command Acceptance 7.1.3
13] 1§ 1| 0 250 0 1 250 2501250,000
14 |TLM Table Manager 7.2
15} | 1L| 0 250 0 1 250 2501250,000
16 |Format Telemetry 7.2.1
17] 1 1] 0 250 0 1 250 2501250.000
18 I{TLM Transit 7.2.2
19 1 | 0 250 0 1 250 2501250,.000
2 0 |Control Telemetry Format 7.3.1
21] | 1 | 0| 250 0 1 250 2501250,000
Table 2-16. Command & TLM Processing (Modified)
A — B - | D E E G H 1
1 Frame MM ThruputMod ThruputMarginProc. Margined 3ns/Exec| Instant :
2 Rate (Hz) (IPS) (1PS) ag (ms) Thruput Thruput (IPS)
3 . Required
4_|Range Safety & Destruct 8 SUM: 1,666 max: 555,435
5 i 1.4 3,600 1,111 0.5 3 1666 1,666 555 435
6 |Band Transpond 8.1
7 i 1.4 0 250 0 1 250 250 250,000
8 |Receive & Decode Signal 8.1.1
9 3 1] 0 250 0 1 250 250 250,000
10 |Self-Test & timing 8.1.2
11 1 7] (] 250 [/ 1 250 250 250,000
[12 [Transmit_C-Band _Signai_8.1.3
13 ! 1 i 0 250 0 1 250 250 250,000
1.4 |Command Receive g'__'@ecode 8.
15 11 0 250 0 1 250 250 250,000
16 |Destruct_Command Logic 8.2
17 i 1.1 0 250 0 1 250 250 250,000
1 8 [|Select Power Source 8.2.2
19 i 1} 0 250 0 1 250 250 250,000
2 0 [Sequece Destruct Signals 8.283
21 i 13 0 250 0 1 250 250 250,000
2 2 jDestruct System Control 8.3
¥ 7 0 250 ] 1 250 250 250,000)
24 |Safe & Arm I1SDS 8.3.1 :
(25 1 0 250 0 1 250 250 250,000
2 6 |Verify Loop lIntegrity 8.3.2
27 1 0 250 0 1 250 250 250,000
[Z 8 [I805 Hedundancy Manager 8.1.3
[ 29 { 1} 0 250 0 1 250 250 250,000
3 0 {Initiate Destruct 8.3.4 )
31 [ IR 1 1 0 250 0 1 250 250 250,000

Table 2-17. Range Safety & Destruct (Modified)
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Table 2-18. Programmable Payload I/F (Modified)

Based on the throughput estimates discussed above it was concluded that all ALS
functions except propulsion control can be performed by one FTP. (See Section 4.1 for a
more detailed discussion). For brevity we denote this FTP the “Core FTP.” According to
[5] the propulsion controllers (also assumed to be FTPs) are assumed to reside at the
engines; denote these as the “Propulsion FTPs.” This functional partitioning guided the
interpretation of the communication requirements. Specifically, in analyzing the
communication requirements only the communications between the Core FTP and the
vehicle sensors and actuators, the Core FTP and the Propulsion FTPs, and the Propulsion
FTPs and the propulsion sensors and actuators were considered. Moreover, functions
which did not possess communications requirements or had numerically insignificant
requirements were excluded from this analysis.

Determination of temporal load profiles requires detailed knowledge of task and

.communication request scheduling, and this information is currently unavailable.

Therefore the figures obtained from the requirements are at best average figures and

* primarily of use only in performing a rough sizing of the communications media, and to
predict the average utilization of the media.

Using the assumptions and simplifications noted above, the following .
communication requirements were determined. )

2.2.2.1 Core FTP 1/0

This category comprises input from the vehicle’s sensors to the Core FTP and
output from the Core FTP to the vehicle’s actuators. This I/O would take place over one
or more AIPS 1/O Networks or through memory-mapped I/O devices resident on the Core
FTP’s Shared or Private Bus.

Winds Information: “The winds information signal represents the echo returns
from the electromagnetic probe signals emanated from the winds measurement signal. It
consists of sixty points, obtained every sixth of a second [4].” Each sample is 16 bits.
The average bandwidth required for this I/O function is thus

60 points/sample*16 bits/point*60 samples/sec = ‘56,470 bits/sec

Sensor Signals: This communication path consists of “...2500 non flight critical
sensors and 600 flight critical sensors, or 3100 sensors. We assume most are sampled at
50 Hz rate [4].” Each sample is 16 bits. We assume that the non flight critical sensors are
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simplex and the flight critical sensors are duplex (fail-operational), resulting in 2500 +
1200 = 3700 sensor reads per iteration. The resultant average bandwidth required is

3700 points/sample * 16 bits/point * 50 samples/sec = 2,960,000 bits/sec

Ground Downlink: “The ground downlink contains the telemetry stream which
is normally routed through the radio link [4].” The average bandwidth required for this
function is given directly by the requirements to be ’

8,400,000 bits/sec

Steering Signals: “Two actuator signals of 16 bits each are sent to up to 17
engines...(at a) 25 Hz rate [4].” The bandwidth required for this communication is

2 signals/engine * 17 engines * 16 bits/signals * 25 outputs/sec = 13,600 bits/sec

The aggregate average ALS Core FTP /O bandwidth requirement is 11,160,340
bits/sec.

2.2.2.2 Core FTP - Propulsion FTP Communications

This category comprises communication between the Core FTP and the Propulsion
FTP(s). This communication would most likely take place over the InterComputer Net-
work.

Propulsion Commands: “The propulsion interface is fairly simple. Command
examples: Engine Preparation, Engine Start, Engine BIT, Engine Shutdown. Assume
there (are) at most 16 commands (resulting an a 4-bit command word) [4].” The output
rate is 50 Hz. The bandwidth required for this function is

1 command/engine * 17 engines * 4 bits/command * 50 outputs/sec = 3,400 bits/sec

Propulsion Status: This signal is not described in [4] but is referenced in an
earlier informal requirements document and corroborated via communication with Martin
Marietta. It represents the propulsion control transmitting propulsion status to the
command and telemetry functions, and is of sufficient magnitude to be considered here.
This signal requires a bandwidth of

10,000,000 bits/sec
Total Engine Status: The propulsion control periodically reports the engine
status to the Central Control and Telemetry functions [4]. Each engine possesses 100 bits

of status information and the output is scheduled at a 25 Hz rate, resulting in a bandwidth
of
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100 bits/engine * 17 engines * 25 outputs/sec = 42,500 bits/sec

It is not known whether the Total Engine Status signal supplants the Propulsion Status sig-
nal described above.

Propulsion Memory Dump: The propulsion control function can be
commanded to dump its memory contents to the Command and Telemetry processing.
This is normally done only at prelaunch. The bandwidth requirements are given as

16,000,000 bits/sec

The aggregate average bandwidth required for communication between the ALS
Core FTP and the ALS Propulsion FTP(s) is 10,045,900 bits/sec during flight and
26,045,900 bits/sec during prelaunch propulsion memory dumping.

2.2.2.3 Propulsion FTP I/O

The ALS Propulsion FTPs possess interfaces to the engine sensors and actuators.
This communication would take place over one or more regionally partitioned I/O Net-
works, or through memory-mapped I/O devices resident on the FTPs’ Shared and/or Pri-
vate Bus. : : '

~ Propulsion Sensor Signals: “There are 357 flight critical sensors, reporting at
25 and 50 Hz rates, with up to 16 bits accuracy [4].” We assume that this sensor com-
plement suffices for 17 engines. While it is suggested in [4] that the worst-case of 50 Hz
and 16 bits be used for all sensors, further conversations with Martin Marietta suggest that
approximately 20 sensors are sampled at a 1000 Hz rate. Moreover, since propulsion
sensors are flight critical, they are at least duplex, resulting in a total number of sensor
reads of 337*2 = 674 per 50 Hz sample and 20*2=40 per 1000 Hz sample. The total
bandwidth required is

674 points/sample * 16 bits/pbint * 50 samples/sec
+
40 points/sample * 16 bits/point * 1000 samples/sec = 1,179,200 bits/sec

Propulsion Actuator Controls: The propulsion control transmits actuator
commands to the engines via this communication path. The requirements are obscure but
appear to comprise 4 to 5 fail-operational/fail-operational (triplex) actuators per engine,
each of which is provided with a 16-bit output value at an assumed 100 Hz rate. We
assume that each engine therefore requires 15 outputs. Under these assumptions the
bandwidth requirement is '

15 actuators/engine * 17 engines * 16 bits/point * 100 samples/sec = 408,000 bits/sec
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The aggregate average ALS Propulsion FTP 1/0 bandwidth requirement is
1,587,200 bits/sec.

2.2.2.4 Summary of I/0O and Interfunction Communication Requirements

The aggregate bandwidth requirements for the three ALS categories are depicted in
Tables 2-19. Figure 2-4 depicts a functional partitioning of the ALS virtual architecture
along with the I/O and Interfunction communication bandwidth requirements.

Category Bandwidth, bits/sec

Core FTP 1/O 11,160,340

Core FTP - Propulsion FTP Communications

prelaunch 26,045,900
flight 10,045,900
Propulsion FTP I/O 1,587,200

Table 2-19. Aggregate I/O and Interfunction Communication Bandwidths
for ALS

.2.3. RMA and Environmental -Requirements

2.3.1. Reliability and Availability

The ALS mission scenario and Avionics Réliability and Availability requirements
are summarized in the following paragraphs.

The ALS mission scenario comprises four phases, each of which has different
RMA parameters. These phases are: (1) integration and checkout in a facility such as a
Vehicle Assembly Building, (2) a period of extended launch pad residence, (3) the launch
or the boost phase, and (4) on-orbit operation.

During vehicle integration the ALS avionics must be verified to be in a nonfaulty
state prior to roll out to the launch pad. This implies a degree of testability which has not
been quantified or modeled in the current study but is expected to be high because of the
characteristically high diagnosability of the -AIPS Byzantine resilient approach to fault -
tolerance.

The ALS remains on the pad in a condition of launch readiness for a period of up to
one week, during which no repair or maintenance of the avionics is desirable to avoid costs
associated with such actions. A “Launch with Faults” policy is assumed to be in effect
such that the ALS can be launched with avionics system faults, but only if the avionics
system is known to be capable of fault masking at the time of launch. The availability
requirement used for the current study is that the ALS avionics system must have a 95%
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availability, i.e., must be fault masking with a probability of 0.95, at the end of one week
on the launch pad. The AIPS configured for the ALS consists of a number of triply or
quadruply-redundant FTPs connected by a triply or quadruply-redundant InterComputer
Network. The FTP complement is defined to be fault masking if and only if each FTP is
capable of correct operation in the presence of any single active Byzantine fault.
Representative fault masking FTP configurations are a triplex FTP which has suffered zero
permanent faults and is not in the process of recovering from a transient fault, and a
quadruplex FTP which has suffered, detected, and masked out the channel containing any
single permanent fault (becoming in effect a fault-free triplex FTP), and is not in the
process of recovering from a transient fault. A duplex FTP is not fault masking. The
InterComputer Network is defined to be fault masking if and only if every FTP can
transmit a sufficient number of uncorrupted copies of a message to every other FTP in the
avionics suite to allow voting to generate a correct copy in the presence of any single active
Byzantine fault in the InterComputer Network. Representative fault masking
InterComputer Network configurations are manifold and include the case of a permanent-
fault-free triplex IC Network and a quadruplex IC Network which has suffered a single
permanent Byzantine fault and successfully detected the existence of that fault, in effect
becoming a fault-free triplex IC Network.

The launch or the boost phase, i.e., the powered flight segment, is specified to be
_nominally of ten minutes duration. Finally, the launch vehicle enters the desired earth
. orbit. The amount of time in the orbit until the payload is positioned and released may -
vary. In the worst case, it may extend to as long as 48 hours. The maximum allowable
probability of mission or vehicle loss due to avionics failure for the boost phase and the on-
orbit operations is assumed to be 10-5. Because launch occurs only if the avionics system
is known to be capable of masking a single fault, no single fault can cause the loss of the
ALS avionics during launch. However, during launch the avionics may fail either due to
near-coincident multiple faults occurring in a subsystem designed to tolerate only one fault
at a time, or by the exhaustion of redundant modules in a subsystem such that the
subsystem can no longer perform its computational or communication functions. An
example of the former failure mode is the occurrence of near-coincident error bursts on two
layers of a triplex InterComputer Network. An example of the latter is a series of
sequential covered faults resulting in the loss of the computational services of an FTP.

The operational environment for the ALS avionics on the launch pad, in the boost
phase, and on-orbit is radically different. Different failure rates of components must be
taken into account to model the system reliability and availability accurately. The avionics
module failure rates for the three ALS mission phases are tabulated in Section 3.

2.3.2 Maintainability

One of the assumptions regarding the operation of the ALS is that launch pad
avionics maintenance should be avoided as far as possible. However, in the 5% of the
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launches (the "unavailability" requirement) the avionics would have suffered too many
faults on the launch pad to provide a fault-masking capability, and it will become necessary
to perform maintenance while the vehicle is on the launch facility. The avionics must be
packaged in relatively small units and those units must be located in the vehicle where
removal and replacement of failed components is facilitated. The Line Replaceable Module
(LRM) maintenance philosophy adopted by the Joint Integrated Avionics Working Group
(JIAWG) is one alternative for the maintenance approach.

The JIAWG has defined support systems and support techniques for vehicles
which provide easy access to the equipment locations. Much of the JIAWG maintenance
philosophy can still be used for ALS even though physical access to the ALS Line
Replaceable Units (LRUs) will probably be not as easy as in an aircraft.

The modules within the ALS LRUs can be standardized on the Standard Electronic
Module format E (SEM-E) form factor in accordance with MIL-STD-1389D. These
modules, depicted in Figure 2-5, are designed for conduction cooled applications and can
be used in extremely harsh environments (temperature, acceleration, shock and vibration).

2.3.3. Component Quality

Non-fault tolerant, single-string systems for use in space-borne systems must be
designed such that the probability of failure is sufficiently small so as to "guarantee" the
absence of failures during the useful lifetime of the avionics. This level of system integrity
is accomplished by creating and maintaining a "pedigree" for each item used in the flight
article. A system's pedigree begins with the use of components which have a traceable
history. The components are manufactured on well controlled assembly lines where each
phase of the manufacturing process is reviewed, inspected and certified. Electronic
microcircuits are manufactured, inspected and tested in accordance with MIL-STD-883C,
Class S. Discrete components such as resistors, capacitors and transistors are subject to
equally demanding manufacturing and testing controls (e.g., the JAN-TX quality controls).

The individual components are then combined to create a subassembly and
subassemblies are combined to build the components of the system where each phase of the
manufacturing and assembly process has appropriate inspection and test requirements.

The AIPS, a fault tolerant system, does not require the "pedigree” constraints
required for single-string systems. The ability to ensure the placement of a payload in the
proper orbit is achieved through the redundancy of the system. Since failures are tolerated,
individual components need not be MIL-STD-883C, Class S, or JAN-TX quality. A
comparative cost analysis, described in Section 5 of this report, shows that an effective
alternative to these components is the use of Class B and JAN-T components provided
there is a means for properly handling faults.
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2.3.4. Radiation Hardness

A second issue for an ALS avionics suite is radiation hardness. Many space-borne
systems must be radiation hard where the definition for hardness is determined by the
purpose of the avionics. The significant difference between the ALS avionics hardness and
the hardness of an arbitrary payload is the operational lifetime of the two systems.

A payload boosted to orbit by the ALS may need to be fully operational in a
relatively high radiation environment for time periods exceeding ten years. The ALS
mission, however, is complete after it has placed the payload in a specific orbit within a
few hours after launch, typically 2 hours but in any case no more than 48 hours. Due to
~ the extremely short mission times, the ALS radiation hardness is not constrained by a
technology's total dose capability. The hardness of the ALS avionics will be constrained
by the Single Event Upset (SEU) rate of the logic family. The AIPS architecture can
tolerate transients caused by SEUs in the same manner that it can tolerate transient faults.
However, if the radiation environment and the corresponding SEU rate is sufficiently high
it can overwhelm the architecture's ability to tolerate these transients. Therefore,
technologies which are less susceptible to SEUs are preferable even for the AIPS building
blocks.

Upset rates for the CMOS, Bipolar and GaAs logic families have enjoyed
continuous improvements in radiation tolerance during the time period of 1985 through
1990 and it is reasonable to expect continued improvements through 1993. With the total

- dose and transient dose improvements, both demonstrated and projected, the ALS avionics
will not present significant problems with radiation tolerance. ‘

2.3.5. Power Dissipation

Operation of the ALS avionics at a launch facility can be supported by auxiliary
cooling. This cooling could be forced air or a recirculated liquid such as ethylene glycol.
The avionics must also be capable of operating without degradation after support equipment
has been withdrawn as well as during the launch and the 48 hours allocated for on-orbit
maneuvers. System cooling capacity, therefore, will not be determined by the launch pad
environment but by the ability to cool the avionics while in space.

The avionics cooling system for use in space will be comprised of one or more
"cold plates”, used to mount the avionics assemblies, and the cold plates will, in turn, be
thermally connected to radiators via heat pipes. The radiators will be used to radiate the
heat dissipated by the avionics into space. The thermal capacity of these cooling systems is
severely limited and the power dissipation of the avionics must be minimized. Typical
power capacities of radiative cooling systems are two to five Watts per square foot of the
radiator area. Therefore, the avionic system power dissipation must be minimized.

Power dissipation minimization for the ALS avionics can be accomplished in three
ways. The first approach is to use a non-saturating logic family such as CMOS. Other
logic families such as bipolar are saturating logic and they are characterized by significant
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power dissipation at all frequencies of operation. The second approach is the minimization
of the clock frequency of the system. CMOS logic, while it is not a saturating logic family,
does dissipate power during state transitions. The third approach for power minimization
is the reduction of the bias voltage on the integrated circuits.

The total power dissipation of a CMOS-based system can be estimated by the
following expression:

Pe=(Cpafi+ CLlo) V& (1)

where

P, = total power dissipated by the system
Cpa = gate capacitance of the devices

f; = internal frequency of operation

CL = external load capacitance

f, = frequency of output signals

Ve = supply voltage

As shown in the above expression, power dissipation is directly proportional to the
frequency of operation, both internal and external, and the square of the supply voltage.
The LRUs for the ALS avionics are described in Section 3.5.

2.4 Requirements Conclusions

The overall ALS mission scenario and RMA requirements were obtained from the
three ALS prime contractors via Martin Marietta Astronautics Group. These included the
ALS mission phases and durations, the launch availability and the probability of mission
success. ‘

The ALS computational and communication requirements were obtained from
Martin Marietta Astronautics Group in the form of directed cyclic graphs depicting inter-
function data dependencies and Hypercard stacks depicting numerical throughput and
interfunction communication requirements. The requirements were presented as a three-
level hierarchy. '

Nine top-level functions reside at the top of the depiction hierarchy: Central Control
and Processing, Winds Ahead Determination, Vehicle Power System Management, Steer-
ing and Staging Control, Propulsion Control, Command and Telemetry Processing, Range
Safety and Destruct, and Programmable Payload Interface. Aggregate throughput estimates
were given for many of these functions. These aggregates were observed to comprise an
overestimation of the computational requirements of their constituent functions. The third
level of the hierarchy represents atomically schedulable computational tasks. Currently,
Central Control and Processing is the only function for which level-three task requirements
are available.
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Based on the data provided, the overall ALS throughput requirements were esti-
mated to be approximately 8.8 MIPS for non-propulsion functions and 4.8 MIPS per
engine for propulsion functions. The inter-FTP communication bandwidth requirements
were estimated to be 26 Mbits/sec (prelaunch) between the Core FTP -and the Propulsion
FTP(s) (17 engines), the Core FTP I/O bandwidth requirement was estimated to be 11.2
Mbits/sec, and the Propulsion FTP(s) I/O bandwidth requirement was estimated to be
1.587 Mbits/sec (17 engines).

To more accurately estimate the throughput and bandwidth needs of the ALS
avionics system the following information is desirable for each task: task frame or iteration
rate, instructions per frame, throughput margin, processing lag, scheduling requirements
(i.e., preemptible or nonpreemptible), task execution order and/or data dependencies, and
inter-function communication requirements (i.e., bits per frame, source or destination of
data, and latency requirements). The data presented by Martin Marietta served as an impor-
tant starting point for determining the requirements of the ALS avionics. During the course
of the CSDL-Martin Marietta interaction an active dialogue was set up which would have in
time resulted in a more complete definition of a common requirements vocabulary and fa-
cilitated the acquisition of comprehensive requirements data.
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3.0 AIPS ARCHITECTURE OVERVIEW

Over a period of about six years, the Draper Laboratory has been developing a fault
tolerant distributed computer system architecture suitable for advanced launch vehicles.
The overall program objective of the Advanced Information Processing System (AIPS)
Program, has been to produce the knowledgebase which will allow achievement of
validated fault tolerant distributed computer system architectures suitable for a broad range

_of aerospace vehicles. The architecture that has been conceived to meet these requirements
is based on the notion of prevalidated building blocks.

The AIPS architectural attributes, rules and guidelines, and reliability and
performance models of the building blocks are described in detail in an accompanying
report "Advanced information Processing System: Design and Validation Knowledgebase"
[1]. It also contains references to the more detailed hardware and software specifications
and simulations that constitute the AIPS knowledgebase. This knowledgebase, which is
quite large, is required to synthesize a validated ALS avionics architecture. The following
subsections briefly recapitulates the AIPS virtual and physical architectures and the key
attributes of the hardware and software building blocks.

3.1 Building Blocks

AIPS is a multicomputer architecture composed of hardware and software building -
" blocks that can be configured according to certain des1gn rules and guidelines to meet the
specific requirements of a given application.

The hardware building blocks, as shown in Figure 3-1, are Fault Tolerant
Processors (FTPs), Networks, and Interfaces. The FTPs are general purpose computers
which can be built in varying redundancy levels from simplex to quadruplex, using one to
four identical channels, to meet varying levels of reliability requirements. The networks are
communication media and are composed of circuit-switched nodes linked together with full
duplex links. The networks can be configured in various topologies such as a ring, braided
mesh, irregular mesh, etc. Networks can also be made redundant. Networks are used to
connect FTPs to input/output devices (these are called I/O networks) and to other FTPs
(these are called Inter-Computer or IC networks). I/O and IC networks are built out of
identical nodes and links. The interfaces are the building blocks that are used to interface a
channel of the FTP to an I/O Network, called the I/O sequencer or I0S, and to the IC
Network, called the IC Interface Sequencer or ICIS.

The software building blocks are the major software functions: local system
services, input/output system services, inter-computer system services and the system
manager. This software provides the services necessary in a traditional real time computer
such as task scheduling and dispatching, communication with sensors and actuators, etc.
The software also supplies the redundancy management services necessary in a redundant
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computer and the services necessary in a distributed system such as inter-function
communication across processing sites, management of distributed redundancy,
management of networks, and migration of functions between processing sites.

FAULT TOLERANT :
PROCESSORS Simplex
INTERCONNECTION
NETWORKS
MESH BRAIDED REDUNDANT RING  REDUNDANT
MESH BUSES RINGS
INTERFACES Input/Output Interfaces

Inter-Computer Interface Sequencer
Figure 3-1. AIPS Hardware Building Blocks
3.2 Virtual Architecture

One of the important and unique attributes of the AIPS and other Draper-designed
fault tolerant computers is that redundancy and its management are transparent to
applications software. Furthermore, even most of the system software is unaware of the
redundancy of the underlying hardware on which it executes. The only exceptions are
- those system services that are directly responsible for managing the redundancy. (They
have to know about the existence of redundant hardware in order to manage it.) This AIPS
attribute allows almost all of the software to be developed and validated on a simplex
processor, in a software development environment familiar to most programmers and using
mature tools. We call the architecture, as it appears to the programmer, the virtual
architecture.

The AIPS virtual architecture is a conventional multicomputer architecture as shown in
Figure 3-2. It consists of a number of processing sites each containing an FTP and the
necessary external interfaces. The processing sites are linked together by an Inter-
Computer or IC bus. An FTP at any particular processing site may also have access to
varying numbers and types of I/O buses, which are separate from the IC bus. Separate
buses to carry sensor data and intercomputer data are provided because the bandwidth and
reliability requirements for these two classes of data in most realtime systems are very
different. The I/O buses may be global, regional or local in nature. I/O devices on the
global I/O bus are available to all, or at least a majority, of the AIPS FTPs. Regional buses
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Figure 3-2. AIPS Virtual Architecture

connect I/O devices in a given region to the processing sites located in their vicinity. Local
buses connect an FTP to the I/O devices dedicated to that computer. Additionally, devices
may be connected directly to the internal bus of a processor and accessed as though the I/O
devices reside in the computer memory (memory mapped I/O). The regional and global
buses allow sharing of raw sensor data among functions that reside on different processing
sites, thus reducing the overall system cost. They also allow functions to be migrated
between FTPs in real time in the event of faults, damage or change in mission phase and
work load. The memory mapped I/O is used to access time critical sensors to meet
stringent transport lag requirements for real time control applications. (Transport lag is the
time elapsed from reading a set of sensors to asserting an actuator command in response to
that input). '

The virtual architecture of a processing site is shown in Figure 3-3. It consists of
three sections: a computational section, an I/O section, and the resources shared between
them. The computational and I/O sections are identical, conventional processor
architectures. Each consists of a processor, memory, interval timers and memory mapped
I/O (which is unique to each processor). Although identical in hardware design, the

3-3



computational processor or CP is typically devoted to application functions (such as
executing vehicle control law) while the I/O processor or the IOP is devoted to 1/O
functions such as reading and validating sensors and sending out actuator commands. The
CP and IOP communicate with each other via the shared memory. Other resources shared
by both processors include a data exchange mechanism which is used to exchange and vote
data with other redundant channels in this FTP, a real time clock and interfaces to several
I/O buses and the IC bus.

3.3 Physical Architecture

The parameters that define the physical architecture include redundancy levels of
FTPs, interconnections of redundant channels in an FTP, redundancy level of sensors,
actuators and other I/O devices, cross-strapping of I/O devices to channels of FTPs and
redundancy level of their interfaces, redundancy levels of IC and I/O networks and their
physical topologies. This section highlights some of the salient points of the architecture.

Figure 3-4 shows the physical architecture of the quad redundant AIPS FTP. Itis
designed strictly according to the fundamental fault tolerance theory. It complies with all
the requirements for tolerating two sequential Byzantine failures of Fault Containment
Regions (FCRs). In addition to redundancy, other features that provide hardware and
software fault tolerance include watchdog timers, processor interlocks, a privileged
operating mode, hardware and software exception handlers, and self tests. A majority of.
correctly operating channels can disable all outputs of a failed channel using the processor
interlock mechanism. A channel that is failed active is thus prevented from transmitting
erroneous data or commands on I/O networks and IC networks or to local I/O devices.

Figure 3-4 also illustrates how redundant sensors are connected to the redundant
FTP channels. In this example, three redundant copies (S1, S2, S3) of a sensor S are
attached to three of the four FTP channels. No cross-strapping of the sensors to FTP
channels is shown for simplicity, although it is possible and likely for some critical
sensors. The process by which all four FTP channels derive a congruent value of the
sensor S is as follows. Channel A reads sensor S1 and all four channels then execute the
two-round Byzantine resilient exchange algorithm which culminates in all four channels
receiving a congruent value of S1, say V1. The process is repeated for sensors S2 and S3.
Now all four channels have the same three sensor values, say, V1, V2, and V3. To obtain
a valid sensor value V, the three sensor values must be compared and voted. However, a
bit-for-bit voting of redundant sensors is usually not possible since sensors measure real
world parameters such as pressure, temperature, angle, acceleration, etc. which are all
analog quantities. Even under no fault conditions, digital representations of redundant
sensor values differ from each other. That is, the values V1, V2, and V3 may be different
even though the sensors S1, S2, and S3 are all operating correctly. However, since they
do represent real world physical quantities, a number of reasonableness checks such as rate
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of change and minimum/maximum range of values can be used to filter out a grossly
misbehaving sensor. Mid-value select, average or mean values of the remaining sensors
can then be used to arrive at a valid sensor value in all channels. Note that the value will
also be congruent since all channels execute identical sensor redundancy management
algorithm with congruent sensor inputs.

The physical realizations of the virtual I/O and IC buses are the fault and damage
tolerant circuit-switched networks. A network consists of a number of full duplex links
that are interconnected by circuit-switched nodes. In steady state, the circuit switched
nodes route information along a fixed communication path, or "virtual bus", within the
network, without the delays which are associated with packet switched networks. Once the
virtual bus is set up within the network, the protocols and operation of the network are
similar to typical multiplex buses.

Although the network performs exactly as a bus, it is far more reliable and damage
tolerant than a linear bus. A single fault or limited damage can disable only a small fraction
of the virtual bus, typically a node or a link connecting two nodes. By reconfiguring the
network around the faulty element, a new virtual bus is constructed. The nodes are
sufficiently intelligent to recognize reconfiguration commands from the network manager
(explained in System Services Section) which is resident in one of the FTPs. The network
can also be expanded very easily by adding more nqdes linked to spare ports in existing
nodes. '

To maintain the fault tolerance requirements, each FTP channel receives data from
all three intercomputer network layers but can physically transmit on only one layer, as in
the AIPS Engineering Model shown in Figure 3-5. All three layers of the IC network are -
used together when transmitting and receiving data. Since all channels of a triplex site are
executing the same code synchronously, all three channels (each channel transmitting on a
different layer) transmit identical messages. Thus, within some skew, the redundant layers
of the network contain the same message. This allows the receiving site to vote the three
layers, masking any failure. Although always receiving on all three layers, duplex sites can
transmit on only two of the three layers of the network, and simplex sites on only one of
the three layers. Thus, malicious failure of a channel can disrupt only one layer. An
example of such a failure is a continual broadcast (babbling) by a channel on a network or
intermittent transmissions that collide with legitimate transmissions by other FTPs on that
network layer. '

For access arbitration purposes, the triplex network is treated as a single entity.
FTPs, regardless of their redundancy level, contend for all three layers of the network. At
the end of the contention sequence one, and only one, FTP may have access to all three
layers of the network. :
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The IC networks, the FTP interfaces to the networks (ICISes), and the arbitration
logic are designed in strict accordance with the fault tolerance theory [7]. The system
provides error-masking capability for intercomputer communication between triplex (or
higher redundancy level) FTPs. An arbitrary hardware fault, including Byzantine faults,
anywhere in the system can not disrupt communication between FTPs of triplex or higher
redundancy level.

3.4 System Services

Each processing site has the ability to operate autonomously, particularly for the
performance of critical functions. However, the System Services allow the coordinated use
of the entire information processing system to provide attributes superior to the more
federated systems that are typical for current aerospace vehicles.

The Local System Services in each FTP include FTP initialization, a real time operating
system, local resource allocation, FTP fault detection, isolation and reconfiguration
(FDIR), and local time management. The real time operating system supports task
execution management, including scheduling according to priority, time and event
occurrence, and is responsible for task dispatching, suspension and termination. It uses
the vendor-supplied Ada Run Time System (RTS), and includes additional features
required for the AIPS real time distributed operating system.

FDIR has the responsibility for detecting and isolating hardware faults in the CPs,
IOPs, and shared hardware. It is responsible for synchronizing both groups of processors
in the redundant channels of the FTP and for disabling outputs of failed channel(s) through
interlock hardware. The CPU hardware exception handling and downmoding/upmoding
hardware in response to configuration commands from the system manager are also
performed by the FDIR function in the FTP. It is also responsible for transient hardware
fault detection and for running low priority self tests to detect latent faults. The local time
manager works in cooperation with the system time manager to keep the local real time
initialized and consistent with the universal time.

The I/O system services provide efficient and reliable communication between the
user and external devices (sensors and actuators). The I/O system services software is also
responsible for the fault detection, isolation and reconfiguration of the I/O network
hardware and the IOS.

The IC user communication service is designed along the ISO's seven layer Open
Systems Interconnect model. It provides local and distributed inter-function
communication (point to point or broadcast mode) which is transparent to the application
user. It provides synchronous and asynchronous communication, performs error detection
and source congruency on inputs, and records and reports IC network errors to the IC
network layer managers. The IC network manager is responsible for the fault detection,
isolation and reconfiguration of the inter-computer network.
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The system manager is a collection of system level services: The system resource
manager allocates migratable functions to FTPs. This involves the monitoring of the
various triggers for function migration such as failure or repair of hardware components,
mission phase or workload change, operator or crew requests and timed events. The
system fault detection, isolation and reconfiguration (FDIR) is responsible for the collection
of status from the inter-computer (IC) network managers, the I/O network managers, and
the local GPC redundancy managers. It resolves conflicting local fault isolation decisions,
isolates unresolved faults, correlates transient faults, and handles processing site failures.
The system time manager, in conjunction with the local time manager on each FTP, has the
job of maintaining a consistent time across all FTPs.

3.5 Flight System Characteristics of Building Blocks

3.5.1 Functional Building Blocks

The AIPS hardware building blocks are the Fault Tolerant Processors, the
Input/Output and InterComputer Networks, and the network interfaces as shown in Figure
3-1 and are used to implement the AIPS virtual architecture and the FTP virtual architecture
shown in Figures 3-2 and 3-3, respectively. The building blocks are comprised of the

- Fault Tolerant Processor Channel and the Communications Node and each of these are
composed of smaller functional elements or modules. These hardware building blocks and
the modules which make up the building blocks are described in the followmg paragraphs
and are based on the technology projections for the 1992-1993 time frame. Addmonally,
the implementation considerations for performance, radiation hardness, power dissipation
and maintainability outlined earlier in the requirements section have been incorporated into
these building blocks.

3.5.1.1. Fault Tolerant Processor Channel

The Fault Tolerant Processor Channel is shown in Figure 3-6 and incorporates the
FTP functions identified in Figure 3-3. The channel is comprised of two Central Processor
Unit (CPU) modules, a Shared Devices module, one or more Input/Output Sequencer
(I0S) modules, one or more InterComputer Interface Sequencer (ICIS) modules, and the
Communicator and Interstage module. The channel's modules are interconnected using a
shared bus which is common to all modules in the channel. These modules are described
in Subsections 3.5.1.1.1 to 3.5.1.1.5.

Taken together, the hardware in a quad-redundant FTP will support at least a FAIL-
OP, FAIL-OP mode of operation. A quad-redundant FTP will continue to operate correctly
after two sequential, arbitrarily malicious faults in any two FCRs. Additionally, it can also
survive certain combinations of triple and quadruple FCR failures. For example, sequential
failures of two processors in different channels and their associated Interstages will be
masked. After these four failures have occurred, the FTP will continue to function
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correctly in a duplex mode (two channels still functional and voting inputs, state data and
outputs). The fifth failure can be detected with near perfect coverage resulting in FAIL-
STOP capability. Alternatively, if the operational requirements are such that it is desirable
to continue operation in a simplex mode, then the probability of FAIL-OP after the fifth
failure is directly related to the completeness of a channel's self-tests (self-test coverage).

3.5.1.1.1. Processor

The processor will be based on the MIPS, Inc., R3000 or similar performance 32-
bit RISC architecture. The nominal frequency of operation will be 40 MHz which can
provide 12 to 18 MIPS peak performance (DAIS mix). The CPU module will have both
Random Access Memory (RAM) and Read Only Memory (ROM) and the combined total
will be between one and four megabytes. The processor module will also have
counters/timers used for support of the operating system and an interrupt controller. A
local bus interface will be provided for expansion of the ROM if the size of the operating
system and application software should require additional memory space.

CPU Module CPU Module Shared
1 2 Devices
- 3 Chaqnel's Shared Bus e : ; -
i ! ]
- .- Input / Output ‘—i—>
4—'—’: C°",C,,'2§[‘,;§at°' Sequencer B R
- (10S) -~
Interchannel lle]
Signals 1 ; Network
: E
e ' interComputer ""‘i"—’
e Interstage = Interface -——
- Module Sequencer (ICIS)  |a—dt—a
Interchannel InterComputer
Signals Network

1 1 1 Interchannel

T°"177°°1 Signals
Figure 3-6. Fault Tolerant Processor Channel

The processor, executing instructions at the 40 MHz clock rate, must be provided

instructions and data at that clock rate. Memory devices with access times less than the 25
nsec clock period, however, will continue to have relatively low bit densities (16 KBits to
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256 KBits per integrated circuit) and their active power dissipations will be high (one to
two Watts per integrated circuit). The CPU module's performance and power dissipation,
therefore, will be determined by the memory architecture implemented on the module.

While it is possible to implement a cache memory system (very low access time
memory implementation) to support the fast cycle times of the processor integrated circuit,
the relatively small memory space required in the AIPS for ALS can be implemented such
that all of the memory appears to operate as a cache. This can be accomplished by
implementing the memory array as 64 bit or 128 bit wide memory rather than the 32 bit
words needed by the integrated circuit. For example, if a memory array is implemented as
128 bits wide then the memory array is 64 KWords long (each Word is now 16 bytes).
When a memory read cycle is accomplished, 128 bits of data or instruction are read from
the memory and are held in a memory read buffer. Subsequent memory accesses are
- checked to determine if they are from a memory location contained in the buffer. If the
access is from a location contained in the buffer then the information is provided to the
microprocessor without the penalty of another memory access. Memory write cycles must
be completed by a physical write to memory.

The other circuitry on the CPU module (timers, counters, interrupt controllers, etc.) |
are common to most microprocessor based systems used in real-time control systems.
Their use in the CPU module is comparable to these other applications and to the AIPS
proof-of-concept system. No special provisions are required for these func_tions.

3.5.1.1.2. Shared Devices

System level support circuits to be included on this module are the channel's shared
memory (RAM), real-time clock, timers and interrupt controller.

The shared RAM in the channel is used for interprocessor communications and for
intermediate storage of a limited quantity of data. The use of this memory as a
communications area adds the derived requirement that its access time, including any
shared bus overheads, be minimized. This memory, therefore, must have access times
which are as short as possible. Unlike the memory to be implemented on the processor
module, this memory space will be subjected to random accesses to data structures located
in the shared space and no benefits can be accrued by providing a multiple word access
capability.

3.5.1.1.3. ICIS and IOS Hardware

The InterComputer Interface Sequencer (ICIS) and Input/Output Sequencer (I0S)
provide the FTP channel's interface to the redundant, fiber-optic communication paths
needed in a network of fault tolerant computers and input/output devices. While the
purposes of the IC network and the I/O network are different, the communications protocol
used in each network is identical and common hardware will be implemented to interface to
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both networks. A block diagram of this Network Interface Sequencer (NIS) module which
replaces the functions of the ICIS and IOS is shown in Figure 3-7.

The communications protocol used on the networks will be based on the Fiber
Distributed Data Interface (FDDI) standard with a bit rate of 100 MegaBits per second
(MBPS) which is 50 times the 2 MBPS data rate of the AIPS engineering model network.
FDDI is normally implemented as two counter-rotating physical rings and access to the
rings is controlled using a token passing protocol as defined by IEEE-Std-802.5 (see
Figure 3-8). The implementation of the IC and I/O networks for the ALS will be a
modification of the FDDI standard where a modified Laning Poll will be used to access the
network of virtual buses rather than the FDDI token.
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Figure 3-7. Network Interface Sequencer

The FDDI token consists of three bytes and its construction is specific to ring type
networks. Two bytes are the starting and ending delimiters and these are used for phase-
locked-loop (PLL) synchronization as well as marking the beginning and ending of the
token frame. The third byte is the access control byte and it contains the token bit as well
as other bits for monitor, priority and priority reservation. The monitor bit is used by the
ring monitor (a station responsible for monitoring the operation of the ring) to detect
"orphan" frames and thereby remove them from the network. The priority and priority
reservation bits are used to establish the operating level of the network and to make
"reservations" for future data transfers.
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The Laning Poll supplants the FDDI token and is an extension to the poll
implemented in the AIPS engineering model. The two significant modifications to the
Laning Poll is the addition of the Q-Bit, which is required for quad-redundant processing
sites, and the reduction in the arbitration timing.

The proof-of-concept system was built with triplex, dual and simplex processing
sites and the Laning Poll was implemented accordingly; there were no provisions for the
addition of quad redundant processing sites in the engineering model. The Q-Bit, which
precedes the T- and D-Bits, allows a quad redundant processing site to poll for control of
the network and, because the most significant bits are transmitted first, do so at a high
priority than other processing sites with lower degrees of redundancy. The other bits of the
Laning Poll will have the same significance and will operate like the existing network. The
algorithm for the poll is:

FOR ALL i WHILE contending DO:
TRANSMIT P; on the NETWORK

IF Pj = 1 and RECEIVED = 1 then CONTINUE_VIE
IF Pj =1 and RECEIVED = 0 then VIE_WON
IF Pj = 0 and RECEIVED = 1 then VIE_LOST
IF P; = 0 and RECEIVED = 0 then CONTINUE_VIE

Figure 3-9 depicts the network arbitration timing for the AIPS engineering model
- system and the timing for an advanced technology AIPS with a comparable number of
_ processing sites and Communications Nodes. The incorporation of technology projected to
be available in 1992 will permit an improvement in the arbitration timing in excess of one
order of magnitude. An AIPS network sized for the Advanced Launch Vehicle, however,
requires far fewer processing sites and Communications Nodes and will require even less
arbitration time. Overall, the network can be arbitrated in 1/16th to 1/48th the time required
for the engineering model, depending on the number of nodes, as shown by the timing
values in Figure 3-9.

The physical layer of the network is the FDDI implementation. It does not use
Manchester encoding because this form of data transmission requires frequencies which are
twice the data rate (200 MHz for 100 MBPS). The encoding scheme used at the physical
layer is "four out of five" where each group of four symbols (binary digits) is encoded as a
group of five bits on the medium. Sixteen of the 32 possible combinations are for the data
bit patterns, three combinations are for delimiters, two are for control, three are for
hardware signaling, and eight are reserved for future use.
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" Token Frame Format

[sbl]Aac|Fc| DA | sAa | Data | checksum ] ED | Fs |
Data Frame Format

SD - Starting Delimiter (1 byte)

AC - Access Control (1 byte)

FC - Frame Control (1 byte)

DA - Destination Address (2 or 6 bytes)

SA - Source Address (2 or 6 bytes)

Data - Data Field (any number of bytes)

Checksum - Checksum for DA+SA+Data (4 bytes)

ED - Ending Delimiter (1 byte)

FS - Frame Status (1 byte) FDDI
IEEE-Std-802.5

| FDDI with Laning Poll

- 1
[ Laning Preamble] sSD| ACJ FC | DA | sA | \{ ] Checksum] ED | FS |
Data Frame Format (same as above) “

| Laning Preamble
{stanBit| QBit | TBit | D-Bit | PriorityBits | - Device ID Bits |

Start Bit - Mark the beginning of the Poll Sequence -

" Q-, T- and D-Bits - Identify Quad, Triplex and Duplex processmg sites
Priority Bits - Three bits specifying the priority of the request

Device ID Bits - Six bits specifying the ID of the processing site .

Figure 3-8. IC and I/O Network Data Frame Format

The Network Interface Sequencer module, when used as the interface to the
InterComputer Network, will be connected to the three network layers as was done in the
proof-of-concept system. The I/O network does not have the redundant layers, however,
and the module design, with the three inputs and the state exchange logic, does not appear
to be capable of operating with the single layer I/O network. The common interface module
design will interface to the /O network if a fiber optic beam splitter is used to provide the
| three parallel inputs required by a NIS module, and the state exchange outputs are "looped
back" so the state exchange inputs are monitoring their own exchange outputs. In this
way, an interface module connected to the I/O network will "vote" the single set of input
data and the state machines and state exchange hardware will be "synchronizing" with
itself.
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Figure 3-9. Network Arbitration Timing

3.5.1.1.4. Communicator and Interstage

The communicators, resident on each shared bus and thus shared by the processors
in their respective channels, together with the Interstages are used to tie the four channels of
the FTP together in a manner that guarantees that each FTP processor can maintain
congruent inputs, state information and outputs. The interchannel hardware, the
communicators and the interstages, is used to exchange and vote data, fault—tolerant clocks,
and external interrupts.

The interstages provide the additional Fault Containment Regions (FCRs) and the
connectivity required for an efficient implementation of the two round communication
algorithm required to correctly handle Byzantine failures. To ensure the integrity of these
additional FCRs, the interstages are powered by power supplies independent of the power
supplies used to power the processors and shared hardware. In addition, all inter-FCR
connections are made using fiber optic drivers, receivers and cables so that the integrity of
the FCRs cannot be compromised. This electrical isolation prevents a fault in any given
FCR from migrating past the boundaries of that region and corrupting other FCRs.



The communicator and interstage function will be based on the corresponding
functions developed in the AIPS engineering model. The three fundamental purposes of
the communicator and interstage hardware and its fiber optic data communication paths are:
1) Provide the paths for distributing data in one channel to all other channels; 2) Provide a
mechanism for comparing results of the redundant channels; and 3) Provide a path for
distributing and comparing timing and control signals such as the fault tolerant clock and
external interrupts. As shown in Figure 3-6, the communicator and interstage functions
reside in each channel and are accessed via the channel's shared bus.

Two types of data exchanges are possible. These are simplex exchanges and voted
exchanges. The simplex exchange is used to distribute copies of data from one channel to
all other channels in a congruent fashion. An example of such a data item is the value of a
sensor that is available in only one channel. Voted exchanges, on the other hand, are used
to compare and vote results of the redundant channels. An example is an actuator
command produced by a control law implemented in all channels, which is to be voted
before the command is issued to the actuator.

Data will be exchanged between the redundant channels one 16 bit word at a time.
To perform a voted exchange, each processor writes the value to be voted in the transmit
register. Writing to this register initiates a sequence of events in hardware which
culminates with the voted value being deposited in the receive register of each processor.
The processors in each channel can read the receive register at this point to fetch the voted
value.

A significant portion of the existing communicator function has been implemented
as an Application Specific Integrated Circuit (ASIC). The ASIC, a 6000 gate, 2.0 micron
CMOS Configurable Gate Array, implements the data communicator function but the clock
and interrupt communicator functions are implemented separately. The implementation for
the Advanced Launch System will use a 20,000 gate, 0.8 micron CMOS gate array and will
incorporate the data, clock and asynchronous interrupt communicator functions. The data
paths will be serialized/deserialized using logic also on the new gate array. The serial data
rate will be 128 MBPS which supports peak data exchange rates of eight megabytes per
second.

The interstage functions will also be implemented using a 20,000 gate 0.8 CMOS
gate array. This gate array will integrate the data, clock and asynchronous interrupt
interstage functions. The communicator and interstage functions are all very similar and, as
such, the two ASIC will have approximately 95% common designs.

Figure 3-10 shows the block diagram of the communicator and Figure 3-11 shows
the block diagram of the interstage. Critical to the proper operation of the communicator is
the fault masking action inherent in the design of the hardware voter. The voter compares
the four parallel data streams on a bit-by-bit basis and produces a "majority” output bit for
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each input bit. Any disagreements in the voting process are detected and the identity of the
disagreeing input is stored in an error register. There are five bits in the error register: one
bit for each of the four inputs and a fifth bit which is set to indicate that a pairwise split was
detected. In the presence of a single fault, the voter produces the correct result and latches
the identity of the faulty input.

A voter with four inputs can tolerate two faults if and only if it is has been
configured to vote on only three inputs (assuming one of the faulty inputs is the input being
ignored). Therefore, associated with each voter in the communicator is a voter mask
register. This register contains a four bit mask used by the voter and permits voting of data
only from the unmasked inputs.

The AIPS approach to achieving exact consensus is to use identical software
running on identical, redundant, "clock deterministic" hardware operating in tight, micro-
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Figure 3-10. FTP Communicator
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frame synchrony. As noted earlier, for hardware to be "clock deterministic”, it must
perform each of its operations in a fixed and predictable number of clock
cycles.Synchronous operation of that hardware then allows an efficient, hardware oriented
solution to the Byzantine Generals Problem. It relieves the software of the burden of
maintaining process synchrony. In addition, it allows the necessary voting to be performed
in hardware in a straightforward manner. This means that errors can be detected and
masked as they occur, transparently to the application software.

One way to achieve synchronization of the redundant hardware would be to drive it
with a single clock. However, a common clock would represent a potential single point
failure. Therefore the AIPS FTP uses redundant clocks. To maintain synchrony, the clock
signals are digitally phase-locked to one another. To ensure that they are resilient to
Byzantine failures, they are exchanged and voted in a manner similar to the way data is
exchanged and voted. In this case, exact consensus between channels is achieved on the
relative phase of these clock signals and they are collectively known as the Fault-Tolerant
Clock (FTC). '

Each channel of the AIPS FTP maintains its own version of the FTC. Like the rest
of the FTP, the FTC hardware is partitioned into eight FCRs as depicted in Figure 3-12.
However, the network topology used to interconnect these FCRs is different. Unlike the
communicators described above, each FTC communicator broadcasts its version of the
FTC to all FTC interstages because each channel's version of the FTC is a separate,
simplex clock source which must be exchanged and voted. Requiring each FTC
communicator to broadcast its version of the FTC to every FTC interstage, four simplex
source exchanges are performed in parallel with an additional voting plane at the
interstages. The voted clocks produced at each FTC interstage are then broadcast back to
all FTC communicators where they are voted the second time.

The frequency of the FTC is nominally 2 MHz which is too slow to drive most of

the hardware (for example, the microprocessors require a 40 MHz clock). Therefore, a
faster clock that is deterministically related to FTC is required to drive the hardware in each
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channel. In the AIPS engineering-model, that faster clock is a 16 MHz clock which, in
turn, is used to produce FTC. For the ALS, the faster clock will be the 40 MHz clock
needed by the microprocessors and their supporting logic.

3.5.1.1.5. FTC and 40 MHz Signal Determinism

During normal operation, each channel's FTC is continuously compared to the "majority"
of all FTCs and adjusted accordingly. If a channel's FTC is in phase with the "majority",
no action is taken. If the channel's FTC is too slow, its period is shortened by a known
amount, and if it is too fast, its period is lengthened by the same known amount. The
"majority" can best be defined by illustrating an example. Figure 3-13 shows four clock
signals and the resulting "majority" that would be produced by the clock voter algorithm
used in the AIPS engineering model. Under steady state, no fault conditions, the output of
the voter algorithm is a very slightly delayed version (equivalent to the gate delay through
the voter itself) of the second fastest input to the voter. The voter is performing a second
edge detect algorithm. The "majority” output will only transition from one state to the next,
following the second input signal to transition to the new state.

In order to maintain a deterministic relationship between FTC and the 40 MHz
signal in each channel, whenever an adjustment is made to a channel's version of FTC,
corresponding adjustments are made to that channel's 40 MHz clock. Clock pulses in the
40 MHz pulse train are either unaltered or stretched (one 20 MHz clock pulse in place of
two 40 MHz clock pulses) to guarantee that there will always to be a deterministic number
of clock pulses in each half period of the FTC. When a channel's FTC is in phase with the
"majority”, one 40 MHz clock pulse is stretched in that channel's 40 MHz clock signal (19 -
clock pulses in one period of FTC). Whenever the channel's FTC is late, Case 3 in Figure
3-14, this pulse stretching is suppressed, shortening the FTC period by one 40 MHz clock
cycle while retaining 19 clock cycles in one FTC period. If the channel's FTC is too early,
Case 2 in Figure 3-14, a second stretched clock pulse is included in the FTC period again
keeping 19 clock pulses in one FTC period.

3.5.1.2. Communications Node

- The circuit switched nodes of the IC and I/O networks are identical and are based
extensively on the nodes developed for the AIPS engineering model. The Communications
Node (CN) and the operation of each set of Port Logic is portrayed in Figures 3-15 and 3-
16. Each node has five identical ports (only one port is shown in Figure 3-15) where a
port's input and output are connected via fiber optic cables to a device's output and input
port, respectively.

The FDDI data frame, described above, includes fields for'the destination and
source addresses. Each device connected to the IC and I/O networks (ICIS, IOS and CN)
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will be provided with a unique 16-bit identification code and, during communications, the
Destination Address (DA) field will be set to the desired destination’s identification code.
The Source Address (SA) field will always be used to identify the originator of messages
and thereby specify which device should receive any required response messages.

3.5.1.2.1. Node Controller

There is one Node Controller in each CN and it is responsible for CN initialization,
monitoring the communications traffic for CN messages, and enabling or disabling the Port
Logic regeneration logic and transmitters as directed by the messages received via one or
more Port Logic receivers.
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Figure 3-14. Clock Corrections
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The Port Logic decodes all messages received on any input port and compares each
DA to the 16-bit CN identification node. If the 16-bit address does not match the code for
the CN, the message is automatically discarded by the Protocol Decoder. If the DA
matches the CN's code the Protocol Decoder stores the message in the Receive FIFO and
sets appropriate status bits to indicate the reception of a message the validity/invalidity of
the message based on the Checksum. The Node Controller will then decode the message to
determine if it is a valid message and, if it is a valid message, respond accordingly. If a
reply message is required, the SA included in the original message will be used as the DA
in the reply.
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Figure 3-15. Communications Node

Examples of messages to be sent to CNs include requests for status and direction to
perform CN reconfiguration. The Network Manager, resident in selected processing sites,
can request status as an input to its network monitoring task and issue reconfiguration
messages to establish communication paths or to change the port enable status of the CNs.

3.5.1.2.2. Communications Port Receiver/Transmitter

Each of the five CN port receiver/transmitter are identical and Figure 3-16 is the
block diagram of these ports. Every port has a unique Port Enable signal which enables or
disables the path from the receiver and the path to the transmitter. If the port is disabled
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and is failure free, whatever data presented to the receiver is not repeated and whatever data
is presented to the data encoder is ignored.

If the port is enabled and is failure free, the data presented to the receiver is repeated
and sent to the regeneration logic in the other four ports. The enabled port's regeneration
logic will encode a data stream which is the logical-OR of the other four port's receivers
and the Node Controller transmitter.
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Figure 3-16. Node Port
3.5.2. Projected Performance Parameters

Some performance data was included in the above paragraphs. This section will
summarize the parameters that affect the performance of the AIPS building blocks when
they are implemented using the technologies projected to be available in the 1992-1993 time
frame. The resulting performance projections are summarized in Section 3.5.4.

3.5.2.1. Fault Tolerant Processor Channel

The Fault Tolerant Processor channel will be based on RISC microprocessors with
40 MHz clocks. Additionally, these microprocessors will be supported by instruction
caches which provide an average of one wait state per instruction fetch and a maximum of
four wait states for cache misses. Data caches will not be implemented due to the size
limitations of the SEM-E modules and four wait states will be required for all data accesses.
The memory available on each SEM-E processor module will be four megabytes of random
access memory (RAM) and read only memory (ROM), combined. The mix of RAM and
ROM will be variable in 256 Kbyte increments and will be determined after detailed design
of the application software.
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Each FTP channel will have two processors. These processors may be allocated
such that one performs all of the required computation while the other performs all input
and output or they may each share the computation and I/O burden. As in the engineering
model implementation each channel can be used in quad-, triplex-, dual-redundant or
simplex processing sites. The design of the Communicator and Interstage hardware and
the software supports the use of the same hardware at different levels of redundancy.

3.5.2.2. Communications Node

The IC and I/O Networks operate at a 100 MBPS signalling rate. At that signalling
rate, the information transfer rate is a maximum of 96.4 MBPS if the data frames are
transferring packets with 4,096 bytes of data. The information transfer rate will be
correspondingly lower for data frames with fewer bytes in the information field. The
design of the ALS Communications Node will be based on the engineering model and full-
duplex communication is supported throughout the network. All IC and I/O Network
connections will be made using fiber optic data links for electrical isolation and tolerance to
electromagnetic interference due to lightning strikes and pyrotechnic devices.

Each Communications Node will be implemented using a single SEM-E module.
Each module will provide five ports for connections to the processing sites or I/O devices
and a Node Controller implemented in a 20,000 gate, 0.8 micron ASIC.

© 3.5.2.3. AIPS for ALS Avionics Packaging

The packaging concept for the AIPS for ALS avionics is the Standard Electronic Module -
Format E (SEM-E) conduction cooled modules installed in base-plate cooled chassis.
Module-to-module interconnections are to be made using a motherboard rigidly mounted to
the chassis and the standard SEM-E 250 contact connector is used on all modules. Figure
3-17 illustrates the packaging concept for the AIPS for ALS avionics.

3.5.3. Hardware Failure Rate Projections

MIL-HDBK-217E provides the failure rate data and method for estimating
reliability during early design phases [16]. The information needed to apply the method is:
1) Generic part types including complexity for microelectronics and quantities; 2) Part
quality levels; 3) Estimate of the number and type of opto electronic components; 4)
Estimate of the number and type of passive components (resistors and capacitors); 5)
Estimate of the number of connectors and connector contacts; 6) Estimate of the number of
other connections (e.g., device solder joints); and 7) Equipment environment.
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The expression for generic ﬁans failure rate using this method is as follows:

n
AGeneric=2, Ni(ATQ)i
i=1 (3-1)
where
AGeneric = total generic parts failure rate (failures / 10 hours)
N; = quantity of i generic part
AG = generic failure rate for i®* generic part (failures / 106 hours)
ng = quality factor for i generic part
n = number of different generic parts categories

In addition to the generic part failure rates estimated above, the failure contributions
due to the discrete components and connections can also be estimated using expressions
outlined below. '

The opto electronic devices required for the IC and I/O networks and the FTP inter-
channel data links have per part failure rates estimated by the following:

Ap = Apmrmgnq failures / 108 hours (3-2)
where '
Ay = base failure rate (failures / 10 hours)
© Tt = temperature factor

7g = environmental factor
TQ = quality factor

Digital integrated circuits and analog components require power supply bypass
capacitance and ceramic capacitors are typically used for this function. This type of
capacitor has per part failure rates estimated by the following:

Ap = ApRERQRCy failures / 10° hours (3-3)
where '

Ay = base failure rate (failures / 10® hours)

7g = environmental factor

TQ = quality factor

Tcv = capacitance factor

Film resistors are used to set predefined signal levels, specify analog amplifier
gains and limit currents. They have per part failure rates estimated by the following:

Ap = ApmEmQnR failures / 106 hours  (34)
where

A = base failure rate (failures / 10° hours)

Tg = environmental factor
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nQ = quality factor
TR = resistance factor

Connectors (MIL-C-38999 Circular), to be used on the LRUs, have per part failure
rates estimated by the following:

Ap = Apgmpnk failures / 108 hours
where
Ay = base failure rate (failures / 10% hours) = 0.02ex

X = -_1751‘_9_2_ + (%2%1)536; T = operating temperature

(3-5)

Tg = environmental factor

Ttp = number of active contacts in connector
Tk = mating/unmating factor

Module connectors, to be used on the SEM-E modules, have per part failure rates
estimated by the following:

A = ApTempmk failures / 10° hours (3-6)

where , :
' Ap = base failure rate (failures / 106 houxjs) =0.216e*

« = =2073.6 , T+273,466 — _ . ;
X T + ( 43 ) T operatmg‘temperature

ng = environmental factor

7p = number of active contacts in connector
7K = mating/unmating factor

Other connections in the system, such as integrated circuit leads to circuit boards,
‘have failure rates estimated by the following:

n
Ap=TE Y, Ni(AuidTiTiqi)
i=1 , (3-7
where
‘g = environmental factor
N; = number of connections of the i type
Avi = base failure rate of the i type connection
7T; = tool type factor for the i type connection

mQ;i = quality factor for the i™ type connection

The individual failure contributors, estimated using the above expressions, can then
be summed and the result is the total estimated failure rate.
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Tables 3-1 through 3-10 list the anticipated parts required for the implementation of
the AIPS for ALS avionics and their generic failure rates. Included in the list are the
integrated circuits, resistors used for setting signals to desired states, capacitors used for
filtering noise from the supply voltages, an estimate of the number of gates required for
each integrated circuit, and the number of electrical contacts. Tables 1, 3, 5, 7, and 9 are
for operation while the vehicle is on the launch pad and Tables 2, 4, 6, 8, and 10 are for
system operation during powered flight, i.e., the boost phase. These data are used in the
MIL-HDBK-217E defined calculation of the module mean-time-between-failure (MTBF)
which are also shown in the tables.

The failure rates of the AIPS/ALS avionics modules are summarized in Tables 3-
11, 3-12, and 3-13 for the three ALS mission phases - launch pad, boost phase, and on-
orbit - respectively. The on-orbit failure rates were obtained by using the space
environmental factor ng = 0.9,

Module: cPU ] Environment: Ground Fixed
|_Part No.: Part Name:] Quantity: Gates:] VO Contacts:] Generic Fail Rate:] Env/Temp Factor: Fail./1046Hrs:
1 Microprocessor 1 105,000 168 0.2802 1.00 0.2802
2 Coprocessor 1 80,000 132 0.2802 1.00 0.2802
3 RAM 4] 2,100,000 40 0.5416 1.00 2.1665
4 ROM 30§ 1,100,000 40 . 0.2447 1.00 7.3410
5 CPUA§£C : 1 20,000 200 0.4103 1.00 0.4103
6] Bus Transceivers 10 200 20 0.1627 1.00 1.6270
7 Resistors 80 n/a 2 0.0037 1.00 0.2960]
8 Capacitors 40 n/a 2 0.0170 1:00 0.6800
9 VO Connector 1 n/a 350 3.17E-12 2.00 6.35E-12
: MTBF: 76445.6]

Table 3-1. CPU Module Parts List (Ground Fixed)

Moduie: CPU Environment: Missile Launch

Part No.: Part Name:] _Quantity: Gates:| /O Contacts:] Generic Fail Rate:] Env/Temp Factor:]  Fail./10%6Hrs!
1 Microprocessor 1] 105,000 168 1.2143 1.00 1.2143|

2 Coprocessor 1 80,000 132 1.2143 1.00 1.2143]

3 RAM 4] 2,100,000 40 1.2695 1.00 5.0781

4 HOM 30} 1,100,000 40 0.7060 1.00 21.1800

3 CPUASK 1 20,000 200 1.8097 1.00 1.8097]

61 Bus Transceivers 10 ‘200 20 0.1627 1.00 1.6270

7 Resistors 80 n/a 2 0.0540 1.00 4.3200

8 Capacitors 40 n/a 2 0.0100 1.00 0.4000

9 /O Connector 1 n/a 350 3.17E-12 1.50 4.76E-12
MTBF: - 271418

Table 3-2. CPU Module Parts List (Missile Launch)
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|__Module: §h£e Devices Environment: Ground Fixed
Part No.: Part Name:] Quantity: Gates:] 1O Contacts:] Generic Fail Rate:| Env/Temp Factor; Fail./10*6Hrs:!
1 Real-Time Clock 1 1,500 168 0.0750 1.00 0.0750
2 Watchdogq Timer 1 750 132 0.0391 1.00 0.0391
3 RAM 41 2,100,000 40] 0.5416 1.00 2.1665
4| Maintenance ASIC 1 20,000 200 0.4103 1.00 0.4103
5] Bus Transceivers 10 200 2 0l 0.1627 1.00 1.6270
6 Resistors 80 n/a 2 0.0037 1.00 0.2960
7 Capacitors 40 n/a 2 0.0170 1.00 0.6800
8 /O Connector 1 n/a 350 3.17E-12 2.00] 6.356E-12
MTBF: 188896.8|
Table 3-3. Shared Devices Module Parts List (Ground Fixed)
Module: Share Devices Environment: Missile Launch
Part No.: Part Name:]  Quantity: Gates:] VO Contacts:] Generic Fail Rate:] Env/Temp Factor:]  Fail./10A6Hrs!
1 Real-Time Clock 1 1,500 168 0.3091 1.00 0.3091
2 Watchdog Timer 1 750 132 0.1627 1.00 0.16271
3 RAM 4] 2,100,000 40 1,.2695 1.00 5.0781]
4 Maintenance ASIC 1 20,000 200 1.8097 1.00 1.8097
5| Bus Transceivers 10 200 20 0.2480 1.00 2.4800
6 Resistors 80 n/a 2 0.0540 1.00 4.3200
7 Capacitors 40 n/a 2 0.0100 1.00 0.4000
8 /O Connector 1 n/a 350 3.17E-12 1.50 4.76E-12
MTBF: 68683.4
Table 3-4. Shared Devices Module Parts List (Missile Launch)
Module; COM/INT Environment: Ground Fixed
Part No.: Part Name:| _Quantity: Gates:] VO Contacts:] Generic Fail Rate:| Env/Temp Factor: Fail./10*6Hrs|
1 COMASIC 1 20,000 168 0.4103 1.00 0.4103
2 INT ASIC 1 20,000 132 0.4103 1.00 0.4103|
3 Oscillator 2 50 40 0.0830 1.00 0.1660
4] Bus Transceivers 10 200 20| 0.1627 1.00 1.6270
5 F/O_Transmitter 8 250 40 0.0698 1.00 0.5584
6 F/O Recesiver 8 2,500 40 1.4704 1.00 11.7632
7 Resistors 80 n/a 2 0.0037 1.00 0.2960
8 Capacitors 40 n/a 2 0.0170 1.00 0.6800
9 VO Connector 1 n/a 350 3.17€-12 2.00 6.35E-12
_MIBF: 62848.8
Table 3-5. COM/INT Module Parts List (Ground Fixed)
Module: COM/INT Environment: Missile Launch
Part No.: Part Name:} _ Quantity: Gates:| VO Contacts:] Generic Fail Rate:] Env/Temp Factor: Fail./10*6Hrs:
1 COM ASIC 1 20,000 168 1.8097 1.00 1.8097
2 INT ASIC 1 20,000 132 1.8097 1.00 1.8097]
3 Oscillator 2 50 40 1.1000 1.00 2.2000
4] Bus Transceivers 10 200 20 0.2480 1.00 2.4800
5] F/O Transmitter 8 250 40 1.1552 1.00 9.2416|
6 F/O Receiver 8 2,500 40 18.3091 1.00 146.4728)
7 Resistors 80 n/a 2 0.0540 1.00 4.3200
8 Capacitors 40 n/a 2 0.0100 1.00 0.4000
9 VO Connector 1 n/a 350 3.17E-12 1.50 4.76E-12
MTBF: 5926.5

Table 3-6. COM/INT Module Parts List (Missile Launch)

3-29



Module: NIS Environment: Ground Fixed
Part No.: Part Name:] _Quantity: Gates:} VO Contacts:] Generic Fail Rate:] Env/Temp Factor: Fail./10A6Hrs:|
1 |[EEE-802.5 ASIC 1 30,000 168 0.4103 1.00 0.4103
2 F/O_Transmitter 1 . 250 4Q‘ 0.0698 1.00 0.0698
3 F/O Receiver 1 2,500 40 1.4704 1.00 1.4704
4 RAM 8] 2,100,000 40 0.5416 1.00 4.3330
5{ Bus Transceivers 10 200 20 0.1627 1.00 1.6270
3] Resistors 80 n/a 2 0.0037 1.00 0.2960
7 Capacitors 40 n/a 2 0.0170 1.00 0.6800
8 /O Connector 1 n/a 350 3.17E-12 2.00 6.35E-12
MTBF 112530.4
Table 3-7. NIS Module Parts List (Ground Fixed)
Madule: NIS Environment: Missile Launch
Part No.: Part Name:] Quantity: Gates:| VO Contacts:] Generic Fail Rate:] Env/Temp Factor: Fail./10*6Hrs:
1 |IEEE-802.5 ASIC 1 30,000 168 1.8097 1.00 1.8097
2 F/O Transmitter 1 250 40 1.1552 1.00 1.1552
3 F/O Receiver 1 2.500 40 18.3091 1.00 18.3091
~ 4 \M 8} 2,100,000 40 1.2695 1.00 10.1561
51 Bus Transceivers 10 200 20 0.2480 1.00 2.4800
6 Resistors 80 n/a 2 0.0540 1.00 4.3200
7 Capacitors 40 n/a 2 0.0100 1.00 0.4000
8 /O Connector 1 n/a 350 3.17E-12 1.50 4.76E-12
MTBF: 25886.5
Table 3-8. ICIS/IOS Module Parts List (Missile Launch)
Module: CN Environment: Ground Fixed
Part No.: Part Name:] Quantity: Gates:| VO Contacts:] Generic Fail Rate:] Env/Temp Factor: Fail./1046Hrs!
IEEE-802.5 ASIC 30,000 16 0.410 1.00 0.4103
2 CNASIC 20,000 16 0.4108 1.00 0.4103
3 RAM 2,100,000 40 0.541€ 1.00 0.5416_]
4 M 1,100,000 40 0.2447 .00 0.2447
5 Oscillator 50 40 0.0830 .00 0.1660
6 F/O Transmitter "5 250 40 0.0698 .00 0.3490
7 F/O Receiver 5 2,500 40 1.4704 .00 7.3520
8 Resistors 80 n/a 2 0.0037 .00 0.2960
9 Capacitors 40 n/a 2 0.0170 .00 0.6800
10 VO Connector 20 n/a 20 3.17E-12 2.00 1.27E-10
MTBF: 95694.5
Table 3-9. CN Module Parts List (Ground Fixed)
Module: N Environment: Missile Launch
Part No.: Part Name:] _Quantity: Gates:| /O Contacts:}] Generic Fail Rate:] Env/Temp Factor:] Fail /1 0‘6Hrs;|
1 |IEEE-802.5 ASIC 1 30,000 168 1.8087 1.00 1.8097
2 CNASKC 1 20,000 168 1.8097 1.00 1.8097
3 RAM 1] 2,100,000 40 1.2695 1.00 1.2695
4 ROM 1] 1,100,000 40 0.7060 1.00 0.7060
5 Oscillator 2 50 40 1.1000 1.00 2.2000
6 F/OQ Transmitter 5 250 40| 1.1552 1.00 5.7760
7 F/O_Receiver 5 2,500 40 18.3091 1.00 91.5455
8 Resistors 80 n/a 2 0.0540 1.00 4.3200
9 Capacitors 40 n/a 2 0.0100 1.00 0.4000
10 O Connector 20 n/a 20 3.17E-12 1.50 9.52E-11
MTBF: 9104.4

Table 3-10. CN Module Parts List (Missile Launch)
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Channel Module Complement:| . Qty:] Fail. Rate: Aggregate:
CPU Module 2] 1.31E-05 2.62E-05

Shared Devices Module 1] 5.29E-06 5.29E-06
COM/INT Module 1] 1.59E-05 1.59E-05

NIS Module 2] 8.89E-06 1.78E-05

Channel Failure Rate: 6.51E-05

Channel MTBF: 15,351.4

Communications Node: Qty:] Fail. Rate: Aggregate:
CN Module 1] 1.04E-05 1.04E-05

CN Failure Rate: 1.04E-05

CN MTBF: 95,694.5

Table 3-11. Channel and CN Failure Rates (Ground Fixed)

Channel Module Complement Qty] Fail. Rate: Aggregate

CPU Module 2| 3.68E-05 7.37E-05
Shared Devices Module) 1] 1.46E-05 1.46E-05
COM/INT Module 1| 1.69E-04 1.69E-04
NIS Module 2| 3.86E-05 7.73E-05
Channel Failure Rate: 3.34E-04
Channel MTBF: 2,991.9.

Communications Node Qty] - Fail. Rate: Aggregateq -
CN Module 1] 1.10E-04 1.10E-04
CN Failure Rate: 1.10E-04

CN MTBF: 9,104.4

Table 3-12. Channel and CN Failure Rates (Missile Launch/Boost Phase)

Channel Module Complement: Qty:| Fail. Rate: Aggregate:
CPU Module 2] 2.54E-6 5.10E-6
Shared Devices Module 1| 1.01E-6 1.01E-6
COM/INT Module 1] 117E-5 1.17E-5
NIS Module 2| 2.67E-6 5.35E-6
Channel Failure Rate: 2.31E-5
Channel MTBF: 43,290
Communications Node: Qty:} _ Fail. Rate: Aggregate:
CN Module 1| 7.6E-6 7.6E-6
CN Failure Rate: 7.6E-6
CN MTBF: 131,529

Table 3-13. Channel and CN Failure Rates (On-orbit)
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3.5.4. Performance Projections of AIPS for ALS Building Blocks

This section highlights some of the important performance projections of the AIPS
building blocks for ALS. A complete projection of all the performance metrics is beyond
the scope of this study. However, the performance summary given in this section is
adequate to do a preliminary definition of the ALS architecture. The performance has been
projected using several sources of information. The details of the expected microprocessor
performance in the 1992 time frame are provided in the hardware technology survey and
projections [2]. A complete set of metrics that are considered relevant for the ALS
applications and the empirical performance data for a subset of these figures of merit are
described in [1, 8]. The empirical data collected on the current versions of the AIPS
hardware and software [1, 8] forms the basis which was used with the estimated
parameters of the AIPS/ALS flight system, described earlier in Section 3.5.2, to project the
performance of the AIPS/ALS flight system.

The AIPS/ALS performance is partitioned and summarized along the hardware
building blocks. Table 3-14 is a summary of the performance projections of the FTP
hardware building block and the Local System Services software building block. (The
details of the Local System Services software are provided in [9]). Table 3-15 is a.
summary of the performance projections of the I/O network and IOS hardware building
blocks and the I/O System Services software building block. (The details of the I/O
System Services software are provided in [10] and [11]). Table 3-16 is a summary of the -
performance projections of the Inter-Computer (IC) network and ICIS hardware building
blocks and the IC Communication Services software building block. (The details of the IC
Communication Services software and the ICIS and IC network hardware are provided in
[12].) The table presents the time for a site to site communication between a source
application task executing on one FTP sending a message to a sink application task
executing on a different FTP. It is the time from when the source application task calls the
SEND_OUTPUT routine with a message until the sink application has the message
available. The total projected time for the AIPS/ALS is 1.278 milliseconds.
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1. FTP THROUGHPUT
1.1  Raw CPU Throughput
15 MIPS (DAIS Mix) Per Processor
30 MIPS Per FTP
1.2 Total Overheads
1.2.1 FTP Redundancy Management
CP 1% of Throughput
IOP 1% of Throughput
1.2.2 Cross-Channel Synchronization
CP 5% of Throughput
IOP 5% of Throughput
1.2.3 IOP-CP Contention
CP 5% of Throughput -
IOP 5% of Throughput
1.2.4 1/O and IC Network Management
CP O
IOP  10% of Throughput
1.3 Useful FTP Throughput
CP  89% or 13.35 MIPS
. IOP  79% or 11.85 MIPS
FTP 25.2 MIPS
2. ADA RUN TIME SYSTEM OVERHEADS
2.1  AdaRun Time System on CP or IOP

2.1.1 Timer Dispatch 432 instructions (27 ps)
2.1.2 Local Event ‘ 196 instructions (12 ps)
2.1.3 Simple Context Switch 100 instructions (6 ps)

2.2  IOP-CP Communication
2.2.1 Global Event
Source CPU (CP or IOP) 132 instructions (8 yis)
Sink CPU (IOP or CP) 240 instructions (15 ps)

Table 3-14. AIPS/ALS FTP and Local System Services Projected
Performance
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3. REDUNDANCY MANAGEMENT

3.1.

3.2

3.3

3.4

Permanent FDIR (Fault Detection, Isolation and Reconfiguration)
3.1.1 No Fault Conditions

Cp 736 instructions (46 ps)

IOP 680 instructions (42 ps)
3.1.2 Data Exchange Network Fault :

CP 2024 instructions (126 ps)

IOP 120 instructions (75 ps)
3.1.3 Unsynchronized Channel

Cp 1536 instructions (96 us)

IoP 430 instructions (270 us)
Transient FDIR
3.2.1 No Fault Conditions

Cp 20 instructions (1.25 us)

IOP 56 instructions (3.5 pus)
3.1.2 Data Exchange Network Fault ,

Cp 464 instructions(64 ps)

‘ o IOP ) 64 instructions(4 us) '

3.1.3 Unsynchronized Channel '

Cp 728 instructions(45.5 {s)

I0P 64 instructions(4 pis)

Average Fault Detection, Isolation and Recohﬁgﬁration Time
10 msec
Inter-Channel Data Exchange
3.4.1 Fault Tolerant Clock Frequency 2 MHz
3.4.2 Data Exchange Bandwidth 4 Mwords/sec or 64 Mbits/sec

Table 3-14. AIPS/ALS FIP and Local System Services Projected
Performance (cont.)
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Raw I/O Network Bandwidth = 100 Mbits/Sec

1. COMMUNICATION MANAGEMENT OVERHEADS IOP
1.1  I/O Processing

1.1.1 10 Transaction Chain 7040 instructions (440 ps)
1.1.2 - 8 Transaction Chain 5600 instructions (350 ps)
1.1.3 2 Transaction Chain 3360 instructions (210 us)

2. REDUNDANCY MANAGEMENT OVERHEADS
2.1. Network FDIR

2.1.1 Failed Channel 929 instructions (58 us)
2.1.2 Failed IOS 14800 instructions (925 ps)
2.1.3 Failed Link (Leaf Node) 24134 instructions (1,508 ps)
2.1.4 Failed Leaf Node 35344 instructions (2,208 ps)
2.1.5 Failed Link (Branch) 24664 instructions (1,541 ps)
2.1.6 Failed Branch Node 46264 instructions (2,892 us)
2.2. Network Growth
2.2.1 Full Diagnostics 473600 instructions (29,600 s)
2.2.2 No Diagnostics 81600 instructions (5,100 us)
2.2.3 Single Chain ' 19366 instructions (1,200 ps)
_ Table 3-15. AIPS/ALS I/0O Network and I/O System Services Projected
‘ Performance

Raw IC Network Bandwidth = 100 Mbits/Sec

LOCATION FUNCTION PROJECTED PERFORMANCE
Source FTP SEND_OUTPUT 493 instructions (30.8 ps)
Source FTP Set Event 187 instructions (11.67 Us)
Source FTP MSR Task 760 instructions (47.5 Us)

IC Net Time on Network 67 us '

Sink FTP Ave Time for Polling for msg 1000 ps

Sink FTP ICIS RM | 1293 instructions (80.8 pis)

Sink FTP Context Switch 120 instructions (7.5 ps)

Sink FTP MSR Task 426 instructions (26.7 Us)

Sink FTP GET_INPUT 102 instructions (6.67 ys)

Total Task-to-Task Communication Time on IC Network = 1.278 msec

Table 3-16. AIPS/ALS IC Network and IC Communication Services
Projected Performance
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4.0 PRELIMINARY ALS AVIONICS ARCHITECTURE

As discussed in Section 1 on the design for validation methodology, AIPS for ALS
configuration(s) are defined using as inputs the AIPS architectural rules, guidelines and
attributes, the projected reliability, performance, physical characteristics and other attributes
of the building blocks, and the ALS avionics requirements. The ALS avionics
requirements were described in Section 2 and the performance and reliability parameters of
the AIPS hardware and software building blocks, projected in the ALS time frame, have
been summarized in Section 3.

The proécss of matching the avionics requirements with the building block
capabilities is a multidimensional problem. However, it can be simplified by decomposing
the requirements into two orthogonal sets each of which can be mapped independently of
the other as a first order approximation and each of which determines a different aspect of
the architecture. The performance related ALS requirements such as throughput, memory,
transport lag, input/output latencies, etc. determine the virtual avionics architecture. The
reliability related ALS requirements such as probability of mission success, launch
availability, launch pad maintenance, function criticality, etc. determine the physical
avionics architecture.

A preliminary definition of the AIPS for ALS avionics architecture has been carried
out using the architecture synthesis process described in Section 1.2. Sections 4.1 and 4.2
describe the preliminary virtual and the physical avionics architecture for ALS,
respectively. Using the projected performance and reliability parameters of the building
blocks, analytical models of the ALS architecture were solved to predict the avionics
reliability and the availability for the ALS mission scenario. These results are described in
Section 4.3. Section 4.4 concludes with some thoughts on future work necessary to
complete the ALS architecture synthesis. '

4.1 Virtual Architecture

The ALS functions that require the highest throughput are IMU and GPS
processing, Kalman filter, adaptive guidance and control, and propulsion control. Using
the Martin Marietta supplied processing requirements, all the non-propulsion functions
require a total of about 8.8 MIPS throughput (including margins) with a peak
instantaneous throughput of about 3 MIPS to perform part of the ‘Navigation/IMU
Processing function. The total is the sum of throughput requirements for all tasks. The
peak is the throughput required to perform an indivisible task. If a processor is not fast
enough to execute all the tasks then the workload can be assigned to a number of parallel
processors. However, a processor with at least the peak throughput is required to run the
highest throughput indivisible task. The most demanding non-propulsion peak throughput
requirement of 3 MIPS for the ALS results from the Bending Processing task, which is
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part of the Nav/IMU function. The Bending Processing task executes only 300
instructions per iteration. At the 100 Hz iteration rate of this task, the average margined
throughput requirement is about 0.03 MIPS. However, in order to meet the processing lag
constraint of 0.1 msec, the peak throughput requirement rises to 3 MIPS. Since this is
considerably below the expected processor throughput for the ALS time frame, this
requirement does not pose a problem. However, if such a fast processor were not
available, one would need to analyze the Bending Processing task further to see if it can be
parallelized into two or more parts.

Since all of the non-propulsion functions taken together require less than the total
useful throughput projected to be available in an ALS Fault Tolerant Processor, all of the
non-propulsion functions can be allocated to a single FTP. We will call this the core FTP.
If the total throughput réquiremcnt had exceeded the capacity of a single FTP, some criteria
such as function criticality, interfunction communication rates, etc. would have had to be
used to partition the ALS functions into groups and allocate them to different FTPs. The
core FTP will have a growth margin of 16.4 MIPS (25.2 MIPS useful FTP throughput
from Table 3-14 minus 8.8 MIPS throughput required for all non-propulsion functions

 from Section 2) or 186 per cent. This is in addition to the throughput margins already built
into the processing requirements at the task level as described in Section 2.

Another constraint on allocating functions to a single FTP is the FTP data exchange
bandwidth. All the sensor inputs must be made congruent using the data exchange
hardware before they can be used by the applications functions. All the outputs are also
usually voted before they are sent out to actuators. The output voting also uses the same
data exchange hardware. The total I/O bandwidth requirement for all the non-propulsion
functions is estimated to be 11.2 Mbits/sec. This is well within the projected bandwidth of
64 Mbits/sec of the FTP data exchange mechanism.

The ALS avionics functions allocated to the core FTP are listed below.

CORE FTP Functions

1 Central Control & Processing

2 Winds Ahead Determination

3 Vehicle Power System Management
4 Steering & Staging Control

5 Sensor Processing

7 Command & Telemetry Processing
8 Range Safety & Destruct

9 Programmable Payload
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Each ALS engine requires a controller which must be capable of providing a useful
total throughput of about 4.8 MIPS with a peak of about 6.4 MIPS. Since the controller is
to be colocated with each engine, a dedicated FTP is necessary to host propulsion control
functions for each ALS engine. A single FTP per engine would provide a growth margin
of 20.4 MIPS or 400 per cent. If the colocation of the engine controller with the engine
were not a high level requirement, a single FTP could be allocated to control a group of 4
engines since it will have the throughput and the data exchange bandwidth necessary to
control 4 engines simultaneously. This would reduce the total avionics hardware
substantially and would still leave a growth margin of 6 MIPS. However, it may
complicate the logistics associated with assembling and testing each individual engine. The
propulsion controller I/O bandwidth requirement of less than 0.1 Mbits/sec is quite modest
and is easily accommodated by the FTP. '

The virtual intercomputer communication architecture for ALS is quite
straightforward. It will be a virtual bus that interconnects the core FTP to all the propulsion
control FTPs. The bus bandwidth requirement is quite modest since all the non-propulsion
functions are colocated in a single procéssing site. The communication bandwidth between
the core FTP and all the propulsion FTPs in the ALS launch phase consists of propulsion
commands going to the engine FTPs and the engine status data flowing back to the core
FTP. The requirement for this is expected to be about 10 Mbits/sec which is well within
the projected intercomputer bandwidth of 100 Mbits/sec for the ALS IC network.

The virtual [/O communication architecture for the ALS would consist of a number
of parallel, virtual buses that interconnect ALS sensors and actuators to the FTPs. The
sensors and actuators in each engine will be connected to the FTP controlling that engine on
a local bus. The core FTP will interface with the IMU, GPS, and all the other sensors
required to perform the non-propulsion functions. The number of parallel I/O buses
required in the core FTP and the propulsion FTPs is determined by the number of sensors
and the frequency of their access. Since the total I/O bandwidth required for all the core
FTP functions is 11.2 Mbits/sec, a single virtual I/O bus should suffice. This preliminary
1/0 bus definition may be changed if the detailed performance modeling shows that some
performance criterion such as the transport lag can not be satisfied with a single bus. The
I/O bandwidth required for the propulsion FTPs is even less, only 0.1 Mbit/sec and can be
easily satisfied with a single virtual 1/O bus. :

The vehicle health monitoring functions, their processing requirements or the
number of sensors and the information flow associated with the sensors were not made
available to CSDL during the course of this study. Therefore no conclusions can be drawn
at this time about the virtual architecture that is required to read these sensors and perform
the vehicle health monitoring functions. However, it is possible that the number of these
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sensors and the frequency with which they are read can easily exceed not only the available
bandwidth of I/O buses but also the capability of the processors to process the enormous
amount of collected data in real time. If, on the other hand, the majority of the sensors are
to be used to collect vehicle health data for launch pad monitoring (which would relax the
real time processing constraint) and/or for post-flight analysis, then the problem can be
dealt with quite effectively by providing a separate system which is dedicated to sensor
collection (but no real time analysis) and telemetry.

4.2 Physical Architecture

The architectural parameters that determine the AIPS physical organization for the

ALS avionics include: redundancy level of FTPs; redundancy levels of sensors, actuators

and other I/O devices; cross-strapping of I/O devices to channels of FTPs and redundancy

-level of interfaces; trade-offs between FTP redundancy (triplex or quad) versus system

redundancy (N or N+1 FTPs) for availability; redundancy level of intercomputer and 1/O
networks; and physical topologies of networks.

Since all ALS functions are flight-critical and cannot be suspended for more than a
few milliseconds, a fault-masking computational architecture is required. Therefore, all
FTPs need to be at least triplex at the launch time. Earlier reliability modeling of the FTP
done for the ALS mission has shown that a triplex FTP has sufficient reliability to meet the
ALS ;equirements for short mission durations (of the order of several hours). Also, due to
the short mission time, no in-flight reconfigurations of the FTPs will be required to meet
the reliability requirement. That is, after a channel fails in-flight in an FTP, the outputs of
the failed channel to actuators will be disabled by the Monitor/Interlock circuitry. .
However, no effort would be made to recover the failed channel and retry it to ascertain if
the channel failure was caused by a transient fault. However, for longer ALS missions, of
the order of tens of hours, it may become necessary to change this policy. In the present
AIPS FTP design, the realignment of the state of the faulted channel to the state of the good
channels is performed in software. Although this process is relatively fast for small
amounts of volatile memory, it can become unacceptably long for certain combinations of
large RAM and high iteration tasks that cannot be suspended. A new, hardware
implemented, channel realignment scheme has been developed to increase the speed of
realignment and to do it in background without suspending any applications tasks [13,14].
This will allow the ALS FTPs to recover from transient faults and contiriue to provide the
fault masking capability for longer ALS missions. The projected reliability of the ALS FTP
as a function of mission time, computed using the module failure rates projected for the
ALS time frame, is given in the next subsection.
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The intercomputer bus will be physically implemented as a redundant network. A
triplex redundancy level is required for dynamic masking of intercomputer communication
faults. However, it may be possible to relax this requirement somewhat and use only dual
redundant networks if sufficient progress can be made in the use of authenticated protocols.
The physical topology of the IC network will be determined by the constraints imposed on
the physical location of the core FTP and the propulsion control FTPs. '

The /O buses will also be implemented as redundant networks. Because of the
inherent redundancy in the sensors and actuators, the I/O networks need not be triplicated.
Dual redundant networks with a few spare links in each network are expected to meet the
reliability and availability requirements of ALS. The 1/O network topologies will be
- determined by the physical location of sensors and actuators on the launch vehicle.

The I/O and IC networks will be operated as static, non-reconfigurable buses in-
flight for short missions. For mission lengths of tens of hours, it may become necessary to
make them rcéonfigurable. The flight system performance projections, summarized in
Section 3.5, show that the in-flight reconfigurations of networks can be accomplished
without suspending any of the ALS applications tasks. The reconfigurability of networks
is also intended to tolerate various link and node failures during the relatively long 1 to 2
weeks on the launch pad. This could obviate the launch pad repairs and launch delays
resulting in a reduced overall cost of the ALS.

The core FTP would also be provided with a spare channel to obviate launch pad
repairs. Thus, the core FTP would be quad redundant rather than triplex assuring a high
probability of having at least a triplex level of redundancy at the scheduled launch time.
The FTP will be operated as a quad unit with all four channels active and performing the
same tasks in synchronism. This provides a better fault coverage for the fourth channel in
comparison to a triplex with a étandby spare channel. Since the number of FIPs in the
candidate ALS architecture is small (only 1 is required to perform all the non-propulsion
functions), this strategy of providing a spare channel in the FTP is quite cost effective.
However, if the ALS requirements were to increase or the projected FTP throughput were
to be significantly lower, more FTPs would be required to perform the ALS functions. A
more cost effective strategy in this case may be to add a spare triplex FTP and provide the
sensor and actuator cross-strapping necessary to reassign functions to processing sites.
Use of global /O networks enables a straightforward and cost effective sharing of sensors
and actuators among a number of FTPs. The next subsection provides numerical modeling
results on the availability of the ALS core avionics. '

The sparing of the propulsion control FTPs may or may not be necessary
depending upon the philosophy of launching the ALS with fewer than a complete
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complement of engines. The baseline ALS vehicle design supplied to CSDL has up to 17
engines. If it is necessary to have all the engines operating prior to launch (which is the
current launch philosophy), it will be necessary to make the engine control FTPs quad
redundant as well. However, if a new philosophy of launch with failed components is
applied to the ALS, and this can be more cost effective and safe if designed-in from the
outset, then it is no longer necessary to make sure that every engine controller has a fault
masking capability at the launch time. '

4.3. Physical Characteristics

Each AIPS/ALS Fault Tolerant Processor channel will consist of six SEM-E
modules -- two CPU modules, one Shared Devices module, one Communicator and
Interstage module, and two Network Interface Sequencer modules. The SEM-E modules
are 5.88 in. x 6.68 in. x 0.6 in. and weigh approximately 1 Ib. each. Power supplies will
also meet the SEM-E form-factor and will occupy two additional module slots in each
channel. Power dissipation is estimated to be 8 W for each CPU module, 2 W for the
Shared Devices module, 3 W for the Communicator and Interstage module, and 6 W for
the NIS module. Power dissipation for each channel, therefore, is approximately 41 W
including the power dissipation for 80% efficient power supplies. Each channel will be
packaged in a single chassis and the volume of the chassis is approximately 902 cu. in. (8
in. x 11.5 in. x 9.8 in) or .52 cu. ft. The weight of each channel, including the power
supplies and chassis, will be approximately 27 lb.

The projected physical characteristics of an ALS triplex and a quadruplex FTP are
summarized in Table 4-1.

Triplex FTP Quad FTP
Power 124 W 165W
Weight 81 1b. 108 1b.
Volume 1.5 cu. ft. 2 cu. ft.

Table 4-1. AIPS/ALS Fault Tolerant Processor Projected Physical
Characteristics

It is illustrative to compare the physical characteristics of the AIPS/ALS FTPs to
computers on-board current launch vehicles. Two examples of current generation of space
launch vehicles are the space shuttle and the Titan.

Each of the three Space Shuttle Main Engines (SSME) has a dedicated engine

control computer built by Honeywell. The current version, called the block II, is a dual
redundant processor that controls a number of main propellent valves, solenoids and spark
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" igniters. The inputs to the controller include a number of pressure and temperature
sensors. This computer weighs 200 Ibs and consumes 490 Watts in the standby mode.
During flight, the controller power consumption is 600 watts. The controller dimensions

. are 23.5" x 14.5" x 17.0" or about 3.35 cubic feet.

The Titan series of unmanned launch vehicles use Magic 352 computer produced by
the Delco division of General Motors. This guidance and control computer is single string,
i.e., has no redundancy. It weighs 68 1bs, consumes 220 watts of power and occupies 1.5
cubic feet.

It can thus be seen that the physical characteristics of the AIPS/ALS Fault Tolerant
Processors are well within the realistic constraints that might be imposed on the launch
vehicle avionics.

4.4 Reliability and Availability Projections

The reliability and availability models of the AIPS building blocks are described in
detail in Section 4 of the accompanying report: Advanced Information Processing System:
Design and Validation Knowledgebase [1]. These models were executed using the failure
rates and recovery rates for a 1992-technology ALS FTP summarized earlier in this report
in Section 3.5. The availability and the reliability of the AIPS for ALS avionics architecture
are presented in Tables 4-2 and 4-3. Table 4-2 lists these results for the case where the
core ALS FTP and all the p_ropulsioh FTPs are quadruply redundant. The results for the
ALS configuration consisting of all triplex FTPs are summarized in Table 4-3.

Results have been tabulated for the baseline AIPS for ALS avionics architecture as
well as several variations on the baseline. The baseline architecture, as described earlier,
consists of a core FTP that performs all the non-propulsion functions and a dedicated
propulsion control FTP for each engine. The baseline vehicle design from Martin Marietta
consists of 17 engines. Therefore the baseline architecture consists of 18 FTPs. The
number of FTPs in the avionics architecture is denoted by the term Critical Minimum
Complement. Results have been tabulated for a CMC of 1, 2, 3, and 4, in addition to the
baseline case of 18 FTPs. This allows one to examine the avionics availability and
reliability only for a subset of functions such as the non-propulsion functions which require
only 1 FTP to be operational. Furthermore, if a group of engines is allocated to a single
FTP, as suggested in the earlier discussion on architecture synthesis, or the number of
engines is fewer than 17, then new RMA numbers can be quickly obtained from these
tables. '

The tables present the per cent Launch Availability of the avionics architecture, for a
specified complement of FTPs, in columri 1. The Launch Availability is defined to be the
probability of the CMC of FTPs being in a fault masking state at the end of a week of
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operation on the launch pad. An FTP is capable of masking faults if it has at least three
operational channels. The next column gives the probability of failure of the ALS avionics
during the powered flight or the boost phase. A failure of any one FTP out of the CMCis
considered a total avionics failure. Finally, the last column gives the same failure
probability for the on-orbit phase of ALS.

The avionics reliability for the whole ALS mission, i.e., the boost phase plus on-
orbit phase, R(ALS), can be calculated from the failure probabilities of the two mission
phases, PF(Boost) and PF(Orbit), using the following equation:

R(ALS) = {1-PF(Boost)} * {1-PF(Orbit)}.

However, for small failure probabilities, as is the case for the ALS inission, the
mission failure probability is approximately just the sum of the failure probabilities for each
mission phase. That is,

PF(ALS) = PF(Boost) + PF(Orbit).

The RMA models and their underlying assumptions are described in detail in
Section 4 of [1]. However, it is useful to briefly recapitulate some of the important
assumptions here. These are as follows.

« The launch pad operations last 200 hours (approximately 1 week), the boost
phase lasts 0.2 hours (12 minutes), and the on-orbit phase lasts 50 hours.

« Failure of any single module in an FTP channel results in the loss of that
channel.

« In the boost phase, no recovery is attempted from transient faults, ie.,
transients are treated as permanent faults.

«  On-orbit, transient failure recovery is performed by the FTP in the background
without suspending applications tasks.

« Transient faults occur 10 times more frequently than permanent faults.

« Permanent faults occur at a rate dependent on the mission phase. The
permanent failure rates for the AIPS/ALS modules are as summarized in Tables
3-11, 3-12, and 3-13. '

« The average recovery time from a fault is assumed to be 20 milliseconds.

« Quad and triplex fault recovery coverages are assumed to be 1.0. Duplex fault
coverage is assumed to be 0.9.



Critical Minimum  Launch Availability Failure Probability Failure Probability
_ Complement (Boost Phase) (On-orbit )
1 99.88% 8.90*109 5.33%10°7
2 99.76% 1.78*10-8 1.07*106
3 99.64% 2.67*%108 1.60*106
4 99.52% 3.56*10-8 2.13%106
18 97.86% 1.60*10-7 9.59%10-6

Table 4-2. Availability and Reliability of ALS Avionics (Quad FTPs)

The following conclusions can be drawn from the analytical evaluation of the AIPS
for ALS avionics architecture. For the baseline architecture, consisting of 18 FIPs, it is
necessary to provide a quadruple level of redundancy, in order to meet the 95% launch
availability requirement. The baseline architecture is expected to have 97.86% availability.
This configuration will also meet the mission reliability goals. Specifically, the mission
probability of failure is expected to be 1.6*10-7 for the boost phase, 9.59*10-6 for an
extended on-orbit phase (50 hours), and a total of 9.75%10-6 for the whole ALS mission.

This exceeds the goal of 10-5 just slightly.

Critical Minimum  Launch Availability - Failure Probability Failure Probability
Complement | (Boost Phase) (On-orbit )
1 96.20% 1.67*107 1.01*10-3
2 92.50% 3.34*10-7 2.02%10:3
3 89.0% 5.01*%10-7 3.03*10-3
4 85.6% 6.68*%10°7 4.04*10-3
18 49.8% 3.01*10°6 1.82*%10-4

Table 4-3. Availability and Reliability of ALS Avionics (Triplex FTPs)

The contributions to the unavailability and unreliability come predominantly from
the propulsion avionics since 17 out of the 18 FTPs are for engine control. The availability
of the non-propulsion avionics, which consist of just 1 FTP, is 99.88% for a quad and
96.2% for a triplex FTP. Similarly, the mission loss probability, attributable to non-



propulsion avionics, is 5.42%10-7 for the quad FTP. Evidently, one needs to reexamine
the requirement of dedicating a controller to each engine. If, for example, an FTP was
configured to control 4 engines, which it is capable of doing based on the performance
projections, only 4 FTPs will be necessary to control 16 engines. This would reduce the
probability of mission failure due to a failure of propulsion avionics to 2.16*10-6 using
quad FTPs. The launch availability would improve t0 99.52%.

The ALS vehicle and engine designers should seriously examine the option of
integrating engine controllers outside the engine and with the core avionics. This would
not only improve the overall ALS reliability and availability, as demonstrated above, but
would also result in reduced weight, volume, power and cost.

4.5 Architecture Summary and Conclusions

A preliminary AIPS-based fault tolerant computer system architecture has been
configured to meet the ALS performance, reliability, and availability requirements. A
single quadruply redundant AIPS Fault Tolerant Processor, the core FTP, will perform all
the non-propulsion functions required in the ALS. Additionally, there will be a propulsion
control FTP dedicated to each engine. The core FTP will access the guidance, control,
navigation and other sensors and actuators on one redundant I/O network. Each of the
engine control FTPs will access engine sensors and actuators on a dedicated I/O network.
The core FTP and all of the engine control FTPs will be connected by a fault-masking triply
redundant intercomputer network.

For short ALS missions, lasting an hour or less, it will not be necessary to
reconfigure the FTPs or the I/O and IC networks. Redundant hardware would provide
sufficient fault masking capability to meet the ALS reliability requirement. However, for
longer ALS missions, lasting 1 hour to 48 hours, it will be necessary to re-integrate FTP
channels affected by transient faults and to reconfigure the 1/O and IC networks. The
performance projections show that these in-flight reconfigurations can be accomplished
without suspending any of the ALS applications tasks. The reconfigurability of the
networks is also intended to obviate expensive launch pad repairs.

The AIPS for ALS architecture defined here is preliminary in nature but shows that
the ALS performance and reliability requirements can be met by the AIPS hardware and
software building blocks that are built using the state-of-the-art technology available in the
1992-93 time frame. The level of detail in the architecture definition reflects the level of
detail available in the ALS requirements. As the avionics requirements are refined, the
architecture can also be refined as well as defined in greater detail with the help of analysis
and simulation tools. For example, the functions in the core FTP need to be allocated to the
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computational processor and the I/O processor. This requires a more detailed enumeration
of interfunction communication requirements and I/O communication requirements. Also,
no effort was expended on defining the detailed I/O architecture. This requires as inputs
the sensor details such as the number and type of sensors, their failure rates, and so on.
This information can be used to define redundancy levels of sensors and allocate sensors to
different redundant layers of the I/O network.

Several variations on the baseline architecture presented here are also possible and
should be modeled and analyzed. These include allocating several engines to one
propulsion control FTP, investigating the effects of launch with failures, and using
authentication for the I/O and IC networks.



5.0 IMPACT OF AIPS/ALS ARCHITECTURE ON ALS COST
5.1 - Introduction

The main motivation of the National Aeronautics and Space Administration and the
Department of Defense in sponsoring its Advanced Launch System program is to realize a
substantial reduction in the recurring launch costs over the present launch systems. The
avionics architecture selected for the ALS will have an impact on the recurring launch costs.
However, the impact is not limited to the cost of the avionics system itself or its cost in
terms of the weight or physical displacement it will add to the vehicle. Being mission
critical, the reliability of the avionics suite will directly influence vehicle failure.
Obviously, a failure of the vehicle can incur very sizable costs. A failure while awaiting
launch on the launch pad may require repair and incur the cost of the repair and the cost
resulting from interrupting and delaying the launch. A failure during launch can cause a
loss of the vehicle and of the payload it is carrying. If fault tolerance is also an attribute of
the avionics suite, there is the possibility of exploiting this trait operationally to reduce
costs. Therefore, to address the requirement of reducing recurring launch costs, this
characteristic of the avionics suite needs to be accurately assessed as it is being designed
and developed. In this way, when design freedom exists, choices can be made which will
ultimately reduce launch costs.

The primary objective of this study is to demonstrate a methodology for
investigating the impact of the avionics suite on the recurring launch cost of the ALS. All
the factors influencing cost are investigated, however, this study focuses on the
methodology for quantifying the contribution to the recurring launch costs due to the
reliability and availability characteristics of the avionics suite.

Two secondary objectives are pursued. The first is to evaluate the impact of using
an AIPS Fault Tolerant Processor (FTP) as the avionics computer on the recurring launch
cost of the ALS. The second objective is to investigate the effect of a number of design and
operational parameters on the recurring launch cost of the ALS.

5.2 Problem Definition
5.2.1 General Description

The anticipated mission of the ALS is to launch payloads into orbit about the earth.
For the purpose of this study, the mission is considered to have two separate phases. The
first phase of the mission begins when the vehicle is delivered to the launch site, assembled
and then parked on the launch pad. While on pad the vehicle would undergo testing, be
loaded with fuel (if necessary), have its status monitored and undergo the other normal
preflight activities associated with an orbital rocket launch. The vehicle would probably
remain on the pad for a relatively long length of time. The vehicle would most likely be
parked a week or more before the scheduled launch date. When the scheduled launch time
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did arrive, if the vehicle is judged to be fit for launch, the engines would be ignited and the
vehicle launched. Launching the vehicle would end the first phase and begin the second.
The second phase encompasses the time from launch through ascent until the payload is
delivered to orbit. The time of the launch/ascent phase would be comparatively short — on
the order of minutes or hours.

While parked on the pad, the avionics system would be monitored. The Vehicle
Health Monitoring System (VHMS) is assumed to be a passive subsystem of the ALS
whose function includes relaying the operational status of the avionics system to the ground
operations center. The ground operations center has the ability to control the progress of
the countdown to launch. So, based on the known operational status of the avionics
system, the ground operations center may proceed with the countdown sequence or
interrupt the launch before ignition of the engines.

The bulk of the avionics suite would be carried to orbit along with the payload.
Since the avionics suite includes the sensors, actuators and other equipment which would
be located on the initial stages of the vehicle, parts of the system would be discarded as the
initial stages are separated and abandoned. However, it is assumed that the bulk of the
avionics suite — including the avionics computer — would be located in the final stage and
brought to the delivery orbit of the payload.

Some other assumptions are made to limit the scope of this study. First, the
mission is assumed to be unmanned. The missions of the ALS may include manned
missions. However, associating a monetary cost with the loss of human life brings in
complications which detract from the objective of this study. (The issue should be
approached as a safety requirement for the vehicle and not a parameter which can be traded-
off against cost.) Second, the vehicle is assumed to be non-recoverable. Again, the ALS
may include recoverable subsystems. But, assuming the ALS to be non-recoverable
simplifies the analyses. Third, the ALS is presumed to have a high probability of mission
success.

5.2.2 Contributors to Cost

The contributors to the cost of the avionics suite are divided into three categories —
the cost of the avionics system itself, the cost of its weight, and the cost of its unreliability.
The cost of the avionics system itself is subdivided into fixed and recurring costs. The
fixed costs are the design and development associated with producing the avionics suite,
exclusive of the components which will actually perform the mission. This includes the
development and construction of prototype, validation and verification testing, etc. — any
costs incurred to produce the working design of the avionics system. The recurring costs
are the costs of the avionics suite directly related to the specific mission. That is, the actual
costs to manufacture the system and integrate it with the vehicle given that a validated
design exists. This includes the costs resulting from any design changes to the hardware or
software and any testing (acceptance, validation, etc.) which are mission specific.
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The second category for the cost of the avionics suite is the cost of weight. Since
the bulk of the avionics system rides with the payload all the way to orbit, it's weight
subtracts directly from the ALS payload lift capability. Therefore, a cost penalty is
associated with the weight of the avionics system.

" The third category is the cost of unreliability. The cost of unreliability differs from
the other two costs in that the actual cost is contingent upon a failure occurring. Therefore
the cost will depend on a probabilistic event occurring — a failure of one or more
components within the avionics suite. '

The cost of unreliability is broken up into two subcategories which relate to when
the cost is incurred — on the launch pad and during launch/ascent. The cost of unreliability
on the launch pad is derived from actions taken while the vehicle is on the launch pad
because of detected failures within the avionics suite. While the ALS sits on the pad
awaiting launch, a failure of a component in the avionics system can occur. If the failure is
detected then there is the option of taking some action. If the system is fault tolerant and
sufficient capability for launch still exists then a decision could be made to continue the
countdown. If sufficient capability for launch no longer exists or it is not desirable to
launch with the available configuration, then the countdown can be interrupted and the
failure repaired. Therefore, the cost of unreliability on the launch pad is identified to have
two contributors, the cost of interrupting the count-down and the actual cost of repairing or
replacing the failed component.

Failures of the avionics system occurring while the vehicle sits on the launch pad
may go undetected. The immediate effect is that no costs are incurred as a result of the first
phase of the mission. However, these failures may manifest themselves at the time of
launch and would incur the same costs as catastrophic failures during the launch/ascent
phase.

The second subcategory of the cost of unreliability is the cost due to avionics
system failures during launch/ascent. The cost of a failure of the avionics suite during
ascent is the cost of the entire mission (avionics system, launch vehicle, payloads and
operational costs associated with the mission), the cost of downtime following the failure,
the cost of a post launch failure analysis, and less tangible costs such as the cost of launch
unavailability, the loss of user confidence, and damage to the national image. Note that the
failure modes leading to a vehicle failure during flight may include both avionics system
component failures during the flight and/or during the time on the launch pad.

§.2.3 Architecture Definitions

To demonstrate the applicability of the methodology, the architectures to be focused
" on for the avionics suite should be typical of the systems utilized for this application.
However, if the systems being analyzed are very complex, the task of modeling them will
detract from the primary objective — illustrating the methodology. Therefore, with the
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intention of satisfying the primary objective in whatis a limited study, the two architectures
investigated are defined as simplified versions of two potential candidates for the ALS
avionics.

The two generic architectures defined for the focus of this study are shown in
Figures 5-1 and 5-2, respectively. Architecture 1, shown in Figure 5-1, is an architecture
usually proposed for this type of system. Architecture 2 is presented in Figure 5-2 and is a
distilled version of an AIPS FTP. This permits a comparative evaluation of the impact to
the recurring launch cost of using an AIPS FTP as the avionics computer. More
comprehensive descriptions of the two defined architectures are in the following sections.

5.2.3.1 Architecture 1

Architecture 1 represents an elementary method of incorporating fault tolerance into
the avionics system. The three channels (Channel-1, Channel-2 and Channel-3) are
identical computers. Each channel individually processes the information from its
dedicated sensor and generates an output to control an actuator. (Note that in the actual
avionics system, each channel would receive data from many sources and generate outputs
to many other subsystems.) In this generic representation, each of the three sensors
(Sensor-1, Sensor-2 and Sensor-3) measures the same quantity. Therefore, in the absence
of failures each channel would ideally produce the same output. The outputs of the three
channels would then be voted at the actuator and a majority consensus would determine the
control of the actuator. That is, if the output of one channel was in error (because of a fault
in a sensor or actuator), two of the three channels would still be providing the correct
output. The Voting Actuator would ignore the incorrect output and follow the output of the
two valid channels.

A number of relevant attributes are assumed to be associated with Architecture 1.
These are listed below:

1. The replicated sensors are wired to different processing channels.
2. No sensor data is being exchanged between the channels.

3. The channels are asynchronous.

4. There is no fault masking of channel failures.

5. No Fault Detection, Isolation and Reconfiguration (FDIR) is being done within
the avionics system; errors due to sensor or channel failures will not be
removed from the input to the voting actuator.

6. The VHMS monitors the health of all components.
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Sensor-1 &1 Channel-1
Voting
Sensor-2 —— Channel-2 p——{ Actuator
Sensor-3 |——* Channel-3 |—
Figure 5-1. Architecture 1
To Channel-3
- N
Sensor-1 Channel-1 Actuator-1
Sensor-2 Channel-2 Actuator-2
Sensor-3 Channel-3 Actuator-3
. -
To Channel-1

Architecture 1 contains a single point of failure—the failure of the Voting Actuator.
“Architecture 1 is a generic representation of a fault tolerant architecture typically proposed
for the avionics suite of this type of system. A single string system is replicated and some
element must arbitrate between the outputs of the strings. In this case, the Voting Actuator
acts as the arbitrator and represents a single point of failure for the system. If the Voting
Actuator is highly reliable and its potential failure is easily predictable (which are both
plausible properties for the Voting Actuator), then the redundancy within the architecture
can be expected to significantly contribute to the launch reliability of the avionics suite.
Note that the difference in the redundancy levels for the three functional groups (Sensors,
Computers and Actuator) does not preclude a balanced design with regard to the reliability
allocation for these groups. A balanced design balances the reliability budget allocated to

Figure 5-2. Architecture 2
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each of the distinguished functional groups, not the means utilized to achieve that
reliability.

5.2.3.2 Architecture 2

Architecture 2 represents a very basic application of the AIPS technology into the
avionics system of the ALS. Channel-1, Channel-2 and Channel-3 represent the three
channels of a triplex FTP. Sensor-1, Sensor-2 and Sensor-3 are the same three sensors
used for Architecture 1. However, their outputs are now hard-wired to each channel of the
FTP. The replicated actuators (Actuator-1, Actuator-2 and Actuator-3) individually
perform the same function as the Voting Actuator in Architecture 1. However, they dono
voting of channel outputs. Only the output of one channel would be enabled to control
only one actuator at any one time.

The relevant attributes of Architecture 2 are listed below:

1. The replicated sensors are cross-strapped to all processing channels.
2. In the absence of sensor failures, mid-value selection of sensor data is
performed within the channels.

. There is source congruency between channels .

There is micro-frame synchronization of the channels.

5. Frequent, exact comparisons of channel outputs and intermediate results are
performed in order to detect computational failures.

6. There is fault masking of channel failures.

. Failed components are isolated from the control chain.

8. The health of all components are monitored by the FTP and relayed to the
VHMS. :

W

|

The core FTP of the preliminary ALS avionics architecture is a quadruply redundant
AIPS FTP. The rational for defining Architecture 2 as a triplex FTP is to make it more
comparable to Architecture 1. Keeping the redundancy level similar to the more typical
architecture utilized for this type of application allows a cost comparison to be made
regarding the implementation of the redundancy and not just a more general comparison
between two architectures.

5_.3 The Cost Model

The cost model is implemented as a number of spreadsheets in Microsoft® Excel
running on an Apple® Macintosh™ computer !. The use of a spreadsheet program allows
the easy intermingling of a large number of factors in a tractable manner. This proved to be

1Specifically, version 1.5 of Microsoft® Excel is utilized and all of the results shown in this study are
generated on an Apple® Macintosh Iici with version 6.1.4 of the Finder file and version 6.0.4 of the
System file. -
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very advantageous in the development of the cost model. In total, eleven linked
spreadsheets comprise the cost model. Appendix A presents the highest level spreadsheet
for the baseline run. The highest level spreadsheet provides the interface of the cost model
— it contains the alterable input parameters and provides the more relevant outputs of the
model.

To facilitate discussion of the cost model, the organization of the spreadsheet of
Appendix A is followed. Subsections 5.3.1 through 5.3.5 of this report correlate directly
with Sections I through V of the spreadsheet and are referred to as the cost model is
presented.

5.3.1 System Parameters

The first section of the spreadsheet shown in Appendix A lists the alterable input
parameters of the cost model. The individual entries are discussed in the sections which
follow. The general subcategories are discussed here.

The first four subcategories list the relevant parameters of the avionics suite and
then the ALS from an increasingly wider prospective. The "Component Attributes"
subcategory presents the relevant parameters pertaining to the components of the
architectures presented in Section 5.2.3. The "Avionics System Attributes" subcategory
includes the cost parameters related to the entirety of the avionics suite for each of the two
architectures. Subcategory C, "Vehicle Attributes”, contains the parameters associated with
the vehicle which impact the cost model. The "Fleet Attributes” contains only one
parameter: the number of vehicles in the fleet.

The fifth subcategory, "Operational Attributes" lists the operational parameters
which impact the cost model. These are divided between two further subcategories — "On
the Pad" and "During Launch/Ascent”. Theindividual parameters are discussed in Section
5.3.4.

5.3.2 Cost of System

The cost of the avionics system calculated in Section II of the spreadsheet is the cost
per vehicle to design, develop and construct a fleet of vehicles. It is calculated from

Csystem = % + (zccomponem) + Cconslruclion . i (5_1)

This states that the cost of the avionics system, Csysiem, is the sum of three terms. The first
term is the Design and Development Cost, Cy4, divided by the Number of Vehicles in the

Fleet, n. Cyq represents all the fixed costs of the system. ZCcomponem and C onstruction
are the recurring costs. ZCwmponem is the sum of the costs of the individual components
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and Ceonstruction i all of the other recurring costs. Cconstruction is taken from the
Construction Cost (excluding cost of parts) entry of Section I.B of the spreadsheet.

5.3.3 Cost of Launch Weight

Since the bulk of the avionics system rides with the payload all the way to orbit, it's
weight subtracts directly from the ALS payload lift capability. Section III of the
spreadsheet associates a cost penalty with this weight. The cost of the avionics system
launch weight, Cyeigh, is obtained from

Cweighl =We xpayload (5-2)

where W is the weight of the avionics system (the sum of the weights of the components
and the Weight of the Integration Hardware listed in the cost spreadsheet) and Xpayload iS
the Payload Launch Cost. The payload launch cost is the estimated cost for delivering
payloads to the ALS parking orbit.

-5.3.4 Cost of Unreliability

Section IV of the spreadsheet computes the costs incurred as a result of the
unreliability of the avionics system. The costs due to the unreliability differ from the two
previous categories in that the cost does not materialize until a probabilistic event occurs —
a failure or sequence of failures which results in either a repair action being taken or a
mission failure. Therefore, the cost associated with a repair action or of a failed mission
must be weighted by the probability of the event occurring. This necessitates modeling the
reliability of the avionics system.

The cost of the unreliability of the avionics system is conceptually expressed in the
equation

Cunretiability = PrCr + PfCt (5-3)
where
Cunreliability = Cost of unreliability

P, = Probability that a repair action is taken
C; = Cost associated with repair action

P, = Probability that a mission fails

C: = Cost associated with a failed mission.

The first term of Equation (5-3) accounts for the cost of unreliability while on the launch
pad. The second term is the cost of unreliability during launch. Markov models are
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utilized to calculate the probabilities of P; and Pr. The costs of C; and Cs are calculated
directly from the cost entries in Section I of the spreadsheet.

The models utilized to calculate the reliability of Architectures 1 and 2 are based on
a single mission scenario. The mission begins when the vehicle is rolled out to the launch
pad. It then sits on the pad for a specified number of days. If no repair action is taken, the
engines are ignited and the vehicle launched. The vehicle would then ascend from the
launch pad to the orbit the payload is to be delivered to. The mission ends successfully
when the payload is deposited into orbit.

Three outcomes are possible from this mission scenario. The first is the successful
completion of the mission. The second is that a decision is made to interrupt the
countdown to perform a repair. The third is that a mission failure occurs and the vehicle
and payload are lost. Note that this is slightly different from the actual mission whereby
the mission continues after a repair action is taken. However, if in the actual mission the
probability of two or more repair actions taking place is much smaller than the probability
of only one occurring, then the second and third outcomes of the mission scenario can be
used as calculations of P; and Py, respectively.

The cost of unreliability is dependent on the repair strategy for detected failures
within the avionics system. While the vehicle sits on the launch pad, following each
detected failure of a component, a decision must be made as to whether or not to interrupt
the countdown and repair the failure (or failures). Even for the simple architectures defined

in this study many strategies are possible. The most viable ones are defined here. For
~ Architecture 1, the analyzed repair strategies are:

1. Repair when the first failure is detected. All components must be declared
operational for the launch to occur.

2. Delay repair until either the failure of the Voting Actuator or both Control
Chains is detected. (A Channel and its dedicated Sensor are referred to as a
Control Chain. A failure of either the Channel or its dedicated Sensor results in
the failure of the Control Chain.) The vehicle is permitted to be launched with
the detected failure of one Control Chain.

3. No repairs are performed. The vehicle is launched independent of the
component failures detected while it resides on the pad.

For Architecture 2, the analyzed repair strategies are:
1. Repair when the first failure is detected.

2. Delay repair until either the failure of 2 Sensors or 1 Channel or 2 Actuators is
detected. The vehicle is permitted to be launched with only 2 Sensors and/or 2
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Actuators detected as operational. All 3 Channels must still be detected as
operational to allow the launch.

3. Delay repair until either the failure of 2 Sensors or 2 Channels or 2 Actuators is
detected.

4. Delay repair until either the failure of 3 Sensors or 2 Channels or 3 Actuators is
detected.

5. No repairs are performed.

The calculation of the two terms of Equation (5-3) are respectively performed in
Sections IV.A and IV.B of the spreadsheet and discussed in the two sections which follow.
Section IV.C of the spreadsheet sums these two terms and reports the total cost due to the
unreliability of the avionics system. ‘

5.3.4.1 On the Launch Pad

Section IV.A of the spreadsheet computes the cost of unreliability on the pad for the
two architectures analyzed. The first subsection contains the "Intermediate Calculations".
The "Intermediate Calculations" are the adjustments made to the failure rates and the
calculation of the cost of interrupting the countdown. The second subsection calculates
bounds for the cost of unreliability on the pad.

The base failure rates are adjusted to account for the environment of the launch pad
and the fact that the avionics system may not be powered up continually while the vehicle
sits on the pad. The expression

Aott

leffective =g —/——~— kbase
)+ 1

Lon
L \boff

(5-4)

is used to adjust each respective base failure rate Abase t0 provide the effective failure rate
Aeffecive- All Of the parameters are taken directly from the Section I.E.1 of the spreadsheet.
ng is the Pad Environmental Factor. (ton/toff) and (Aon/Aof) are the Ratio of Hours On/Off
and On/Off Failure Rate Scale Factor, respectively.

The expression to calculate the cost of interrupting the countdown is taken from
Reference 3. The Cost of Interrupting the Countdown, Cinterrupt, is calculated from

C: _(Ta+T)(X-1)Y
interrupt = (S N 1)

- (55)
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For the ALS, it is assumed that repairs are not made on the pad. If repairs are needed, the

entire vehicle is brought back to the vehicle assembly area for rework. The Repair Time,

Tg, reflects the time to move the entire vehicle from the pad to the assembly building, where

the failed unit is replaced, and back to the pad. The total lost time is computed as this

Repair Time plus the time which had already been invested in the countdown when the

failure occurred, T.. Once a vehicle comes back for repair, it is assumed that surge mode is

activated until the original launch schedule is reestablished. The Surge Work Rate, S, is a

scale factor which represents the increase in the nominal work rate during surge mode. The

Overtime Cost, X, is also a scale factor which represents the increase in the nominal
Operating Cost, Y, during surge mode.

The cost associated with a repair action is the Cost of Interrupting the Countdown
plus the possible cost of replacing the defective components. Therefore, this cost is
dependent on the failure mode which led to it. So, the first term of Equation (5-3), the cost
of unreliability while on the launch pad (C;a4), is more accurately expressed as

Cpad = Z Pr.iCr,i
i - (5-6)

where P, ; is the probability of a specific repair action occurring and C; ; is the cost of this
repair action. Sections 5.3.4.1.1 and 5.3.4.1.2 present the Markov models utilized to
calculate the probability of occurrence of the repair actions and their associated costs for
Architectures 1 and 2, respectively.

5.3.4.1.1 Architecture 1

Figure 5-3 presents the Markov model for Architecture 1 for the pad phase of the
mission. Table 1 describes the states defined by Figure 5-3. In Figure 3, A, A and A, are
the effective failure rates of each Sensor, Channel and Actuator, respectively. © is the
VHMS Detection and Interruption Rate and c¢o is the VHMS Self-Test Coverage
Probability.

The Markov model shown in Figure 5-3 is utilized to generate the cost of
unreliability on the pad for all of the defined repairs strategies for Architecture 1. Enough
resolution is incorporated into the model to also make it compatible with the Markov model
used for the second phase of the mission. State 1 represents the initial state of the avionics
system — no failures of its components. States 2 and 3 individually represent the
occurrence of a first fault in the avionics system. In the case of a fault in one of the Control
Chains (State 2), two ensuing events can happen. The VHMS could detect the failure
(State 4) or a near coincidental fault of a second component occurs before this detection can
take place (State 5). Note that it is conservatively assumed that the VHMS is unable to
interpret coincidental faults and, at worst, detects neither fault — resulting in an uncovered
failure of a component. The transitions emanating from State 3 are analogous to those from
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State 4, with the exception that a detection probability, cg, is now associated with the
detection of the Actuator fault. This is because the Actuator is a simplex component and it
is assumed the probability of detecting its failure is less than one.

State 4 represents the failure configuration with one Control Chain providing
incorrect commands to the Voting Actuator. Architecture 1 continues to operate properly in
this failure mode. However, the occurrence of another fault will fail the avionics system.
The reason for distinguishing between States 7, 8, 9 and 10 is to discriminate between
uncovered and covered failures of the avionics system.

For the first defined repair strategy for Architecture 1 — repair when the first failure
is detected — States 4, 6, 7, 8, 9 and 10 are the states which represent a repair action has
been taken. States 1 and 2 are modes from which a successful launch would occur. Being
in States 3 or S would result in a system loss when the vehicle is launched. For this repair
strategy, the cost of unreliability on the pad is

Cpad = PsCs + P4,7,8,9,10C4,7,8,9,10 5-7)

where Pg and P478.9 10 are the probabilities of being in State 6 and States 4, 7, 8, 9 or 10,
respectively. Cgand Cs.7,:89,10 are the respective costs to repair from these states. A
distinction is made between State 6 and the States 4, 7, 8, 9 and 10 because different failure
modes triggered the repair actions and greater modeling accuracy can be attained by
distinguishing between the costs of these repair actions.

State Description

No Failures

[

Fault in one Control Chain

Fault in Actuator

Detected fault in one Control Chain
Undetected failure of one or more components
Detected failure of Actuator

Fault in one of two remaining Control Chains

Fault in Actuator following previous detected failure

O 0 N A W HoW N

Detected failure preventing safe launch

—
o

Undetected failure of one or more components

Table 5-1. States of Architecture 1 Pad Markov Model

5-12



The "First Detected Failure" entry of Section II.A.2.a is calculated directly from
Equation (5-7). Pg and P47.89,10 arc obtained by solving the Markov model for
Architecture 1. The bounds result because the defective components may or may not need
to be replaced. So, Cg and Cs,7,8,9,10 range between Cinerrupt and Cinterrupt plus the
maximum number of components which may have to be replaced. The entries for the other
two repair strategies are calculated analogously.

§.3.4.1.2 Architecture 2

The Pad Unreliability Cost for Architecture 2 is calculated by the same methodology
used for Architecture 1. However, Architecture 2 is divided up into three independent
Markov models. One model is constructed for the Sensors, one for the FTP and one for
the Actuators. The three models are then combined to produce the probabilities of interest.

Figure 5-4 and Table 5-2 present the Markov model for FTP. Table 5-3 defines the
symbols in Table 5-2. This model is based on Markov models used for previous reliability
studies of the FTP.

Note that a unique structure is recognizable in the FTP Markov model. Starting at
State 1, the state of the FTP with no failures of its components, a fault can occur in one of '
the three components (Processor, Memory and Interstage) which are distinguished in each
of its three channels. These faults can be either permanent or transient and are separated
among States 2 through 7. From these states, one of two events can occur. The first event
is the FDIR processes could detect, isolate and reconfigure by eliminating the appropriate
channel if it is a permanent fault (State 8) or resynchronize the affected channel if it is a
transient fault (return to State 1). The second event is that a second, near coincident fault
can occur before the FDIR processes are completed and the result is conservatively
assumed to be an uncovered failure (State 9).

From State 8, as in State 1, a fault can occur in one of the three components in each
of the remaining channels. These are divided among States 10, 12, 14, 16, 18 and 20.
Additional resolution is incorporated at this failure level of the model to separate between
the detection process and the other processes of FDIR. Since the coverage probability at
this failure level is most likely to be dominated by the isolation and reconfiguration
processes, separating the detection processes for the respective faults yields a more accurate
model. The correct detection of these faults is modeled, respectively, as State 11, 13, 15,
17, 19 and 21. Note that there is a distinction between a missed detection (State 24) and an
incorrect isolation or reconfiguration (State 23). State 22 represents the FTP correctly
opcrating with a single channel. The occurrence of the next fault fails the FTP. However,
if the fault is covered (State 25) the launch may be interrupted, whereas, if it is uncovered
(State 26) the launch may result in a mission failure.
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Given the structure of the FTP Markov model and the fact that the rates of the FDIR
processes are much faster than the component failure rates, it is possible to reduce the
model to the form shown in Figure 5-5. Appendix B discusses the reduction techniques
utilized to generate the time invariant transition rates of Figure 5-5. The operational states
of the FTP Markov model are reduced to States 1R (all three channels operational), 2R (only
two of the three channels operational) and 3R (only one of the three channels operational).
States 9, 23, 24, 25, and 26 are these same states in Figure 5-4.

The Markov models for the Sensors and the Actuators are of the same form as the
FTP Markov model, but are smaller in size. A single, permanent failure rate is associated
with each Sensor (or Actuator). Their Markov models would appear as Figure 5-4 minus
States 2 through 6 and 10 through 19 with the parameters for the Sensors (or Actuators)
replacing those for the Interstages. These models are then reduced to the form shown in
Figure 5-5 with the techniques of Appendix B.

The three independent Markov models are combined to generate the entries of
Section IV.A.2.b of the spreadsheet shown in Appendix A. For each of the defined repair
strategies, the probabilities of the appropriate states of each of the three models are
combined to calculate the bounds of the probabilities of the repair actions and weighted by
the respective costs of these actions as in Equation (5-6).

Two points should be noted with regard to the input System Parameters
spreadsheet. None of the repair strategies invoke a repair action when all three Channels
are detected as failed. So, consequently, there are no Simplex Coverage Probability for
any of the Channel components. Also, the spreadsheet only allows a single FDIR Rate
(Recovery Rate) to be input for each type of component failure. The rates for the detection
and isolation and recovery processes are conservatively assumed to be the FDIR Rate
(Recovery Rate).
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Figure 5-3. Pad Markov Model for Architecture 1
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From State — To State

Transition Rate

152
153
1-4
1-5
156
157
21
259
358
359
451
459
558
5-9
61
6—-9
78
7-9
8- 10
8§ > 12
8§ —14 .
8> 16
8> 18
8 — 20
10> 11
10 > 24
11 -8
11523
12513
12 524
13 -5 22

3Ap
3App
3Amt
3hmp
- 3hi
3hip
Ppt v
z(xpt + A'pp) + 30\vml + A-mp) + 30\-it + xip)
Ppp
2()\'pt + )"pp) + 30\-mt + )"rnp) + 30\-it + A'ip)
Pmt
3(Apt + App) + 2(Amt + Amp) + 3(Aix + Aip)
, Pmp
3()\vpt + xpp) + 2(hme + )\'mp) + 3, + xip)
, Pir
30\vpl + )"pp) + 3(lml + xmp) + 2(A-it + xip)
Pip
3(Apt + App) + 3(Ame + Amp) + 2(A5 + Aip)
g
Z}LPP
2Am
2Amp
2)\'il
27»1;, '
8o |
(}\rpt + kpp) +2(Amt + A-mp) + 2y + Avip)
‘ Cpd¥pt

(1- cpd)th + (xpl + )"pp) + 20"ml + )"mp) + 20‘-il + m-ip)

8I’P
(xpt + )‘vpp) + 2(7\vml + xmp) + 20‘vit + xvip)

CpdYpp

Table 5-2. Transition Rates for FTP Markov Model
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From State — To State

Transition Rate

13523
14515
14 —» 24
1558
15523
16 - 17
16 - 24
17 - 22
17 > 23
18 > 19
18 524
1958
19 - 23
20 - 21
20> 24
21 522
21 - 23
22 -5 25
22 - 26

(1 - cpa)¥pp + (pr + App) + 2(hme + Amp) + 2(hit + Aip)
Smt
2(Apt + App) + (Ame + Amp) + 2(Aic + Aip)
Cmd¥mt
(1 - Cmd)¥m: + 2(x'pt + )\pp) + (lmt + xmp) + 2()»“ + ;\-xp)
: Smp
2(Apt + App) + (Ame + Amp) + 2(Air + Aip)
' CmdYmp

(1- Cmd)Ymp + 20"p1 + A'pp) + O‘vm( + xmp) + 20%1 + ;\'ip)

it
Z(Xp[ + )\'pp) + 2(7\,,-“( + lmp) + (lit + x'ip)
CidYit
(1-cia)Yu + 2(7»},‘ + Avpp) +2Am + )\rmp) + (A + k'ip)
dip
2(Ap1 + App) + 2(Amt + Amp) + (A + Aip)
CidYip
(1 - Cialip + 2(hpt + App) + 2(Amy + Amp) + (Rix + Aip)
cpsO‘vpl + xpp) + Cms(Am + 7\vmp) + Cis(Ait + )\vip)
(1- Cps)(}"pt +App) + (1 - Cms)(Amt + Amp)
+ (1 - Cig)(Mig + Aip)

Table 5-2. Transition Rates for FTP Markov Model (Cont.)

5-18




Symbol Description

Apt Transient Processor failure rate

App Permanent Processor failure rate

Amt Transient Memory failure rate
Amp Permanent Memory failure rate

Ait Transient Interstage failure rate

Aip Permanent Interstage failure rate

Ppt Transient Processor recovery rate

Ppp Permanent Processor recovery rate

Pmi Transient Memory recovery rate
Pmp Permanent Memory recovery rate

Pit Transient Interstage recovery rate

Pip Permanent Interstage recovery rate

Spt - Transient Processor detection rate

dpp Permanent Processor detection rate

Omt Transient Memory detection rate

Semp Permanent Memory detection rate

Oit Transient Interstage detection rate

dip Permanent Interstage detection rate

Ypu Transient Processor isolation and reconfiguration rate
Ypp Permanent Processor isolation and reconfiguration rate
Yrnt Transient Memory isolation and reconfiguration rate
Ymp Permanent Memory isolation and reconfiguration rate
Yit Transient Interstage isolation and reconfiguration rate
Yip Permanent Interstage isolation and reconfiguration rate
Cpd Duplex coverage probability of Processor failure

Cmd Duplex coverage probability of Memory failure

Cid Duplex coverage probability of Interstage failure

Cps Simplex coverage probability of Processor failure
Cms Simplex coverage probability of Memory failure

Cis Simplex coverage probability of Interstage failure

Table 5-3. Symbol Definitions for FTP Markov Model
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Figure 5-5. Reduced Triplex FTP Markov Model
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5.3.4.2 During Launch and Flight

Section IV.B of the spreadsheet computes the cost of unreliability from avionics
system failures during the launch and flight of the vehicle for each of the investigated repair
strategies. The first subsection contains the "Intermediate Calculations”. The "Intermediate
Calculations" are the cost associated with a mission failure and the adjustments made to the
failure rates. The second subsection of the spreadsheet calculates the bounds for the cost of
unreliability during launch and flight.

The costs associated with the failure of the avionics system during ascent are
discussed in Section 5.2.2. For the purposes of this study, this cost (C¢ in Equation (5-3))
is limited to the cost of the avionics system, the launch vehicle, payloads and operational -
costs associated with the mission. It is calculated in the spreadsheet directly from

Ce= Csyslem + Wpayload ¢ Xpayload + Cpayl_oad (5-8)

where Cgysiem 1S the cost of the avionics system itself (calculatéd in Equation (5-1));
Wpayload is the Total Payload Weight; Xpayload is Payload Launch Cost; Cpayload is the
Payload Value. ‘

The base failure rates are adjusted to account for the environment of the
launch/ascent, as was done for the on pad phase of the mission. However, for this phase
of the mission the avionics system is assumed to be powered up for its entirety. So, the
relation used to adjust the base failure rates becomes

Aeffective = TEAbase (5-9)
where Ttg is now the Launch Environmental Factor.

Sections 5.3.4.2.1 and 5.3.4.2.2 discuss the Markov models utilized to calculate
the probability that a mission failure occurs in order to generate the cost of unreliability
- during launch.

§.3.4.2.1 Architecture 1

Figure 5-6 shows the Markov model for the launch/flight phase of the mission.
Table 4 describes the states defined by Figure 5-6. During launch it is no longer possible
to interrupt the countdown to repair failed equipment within the avionics system.
Therefore, the VHMS no longer has an impact on the unreliability. Hence, the model
depicted in Figure 5-3 collapses into the first 4 states of the Launch/Flight Markov model.
State 5 accounts for the probability that a repair action is undertaken during the on pad
phase of the mission.
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The initial probabilities of the states of the Launch/Flight Markov model are derived
from the probabilities of the states of the Pad Markov model at the end of the Time on Pad.
The distribution is dependent on the repair strategy. For example, for the strategy which is
to repair on the first detected failure the initial probabilities of the Launch/Flight Markov
model are as listed in Table 5-5. The initial probabilities for the other two repair strategies
are analogously made.

Section IV.B.2.a of the spreadsheet calculates the Launch/Flight unreliability cost
of Architecture 1. The Launch/Flight Markov model is solved using the initial conditions
for each of the repair strategies. The sum of the probabilities in States 3 and 4 at the end of
the Flight Time is Ps. Cg has been previously calculated. Therefore, Launch/Flight
unreliability cost is calculated according to the second term of Equation (5-3).

2F

Figure 5-6. Launch/Flight Markov Model for Architecture 1
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Description
State
1 No failures
2 Fault in one Control Chain
3 Fault in Actuator; System failure
4 System failure
5 Countdown interrupted to perform a repair

Table 5-4. States of Architecture 1 Launch Markov Model

- State Initial Probability is Probability at End of Time On
Pad of Listed States of Pad Markov Model

1 1
2 2
3 | 3
4 _ 5
S 4,6,7,8,9,10

Table 5-5. Initial Probabilities of Launch/Flight Markov Model for
First Detected Failure Repair Strategy of Architecture 1

5§.3.4.2.2 Architecture 2

The Launch Unreliability Cost for Architecture 2 is calculated according to the same
methodology used for Architecture 1. The three Markov models used to calculate the Pad
Unreliability Cost for Architecture 2 are modified slightly to model the cost of unreliability
during the launch/flight phase of the mission. An additional state, analogous to State 5 of
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the Launch/Flight Markov model for Architecture 1, is added to each of the three Markov
models to account for the probability that a repair action is undertaken during the on pad
phase of the mission. It is also assumed that during the launch phase of the mission
channels which are removed by the FDIR processes because of a transient fault are not
brought back into service. Therefore, in the FTP Launch/Flight model transient faults are
modeled as permanent faults.

As is done for Architecture 1, the initial probabilities of the Launch/Flight Models
are derived from the probabilities of the states of the Pad Markov models at the end of the
Time on Pad. This redistribution of the probability is dependent on the repair strategy and
is done analogous to the example presented in Section 5.3.4.2.1.

Section IV.B.2.b of the spreadsheet calculates the Launch/Flight unreliability cost
of Architecture 2. The three Launch/Flight Markov models are solved using the initial
conditions for each of the repair strategies and combined to generated Ps. The entries of
Section IV.B.2.b of the spreadsheet evaluate P; for the Flight Time and multiply it with the
previously calculated Ct to produce the Launch Unreliability Cost.

5.3.5 Total Cost

Section V of the spreadsheet adds the results of Sections I, Il and IV and presents
the result for each of the repair strategies for the two architectures. This is the total cost for
the respective avionics system for the costs which are accounted for in this study.

§.4 Results

The cost model described here is used to predict the respective costs of the two
defined avionics systems — Architecture 1 and Architecture 2. The Baseline System
Parameters are listed as the appropriate entries of Section I of the spreadsheet shown in
Appendix A. Sections II through V of the spreadsheet show the intermediate and final
results using the Baseline System Parameters.

The Baseline System Parameters of Section I are estimates based on currently
available technology and the current operational practices for commercial launch vehicles.
The Component Attributes are chosen under the assumption that Class B parts are utilized.
The Component Attributes and the Avionics System Attributes inputs for Architecture 2 are
selected based on past experience in applying the AIPS technology to similar systems. The
Component Attributes and the Avionics System Attributes inputs for Architecture 1 are
chosen so that they mimic those of Architecture 2. In this way, the differences in the
generated results from these two implementations are less obscured by the effect of the
individual parts. (In actuality, it is reasonable to use equivalent values between
Architectures 1 and 2 for the Component Attributes and the Avionics System Attributes.
As justification, refer to References 23 and 24 which report the experience with an

5-24



asynchronous architecture similar to Architecture 1 for the Flight Control System of the
AFT/F-16 aircraft.)

The Baseline System Parameters of Subsections C, D and E are, again, reasonable
estimates based on experience. The CSDL Report CSDL-R-2109 [15] and Military
Handbook MIL-HDBK-217E [16] served as sources for many of the Operational Attributes
of Subsection E.

Sections II through V of the spreadsheet in Appendix A present the results
produced by the cost model for the Baseline System Parameters.? Figure 5-7 organizes the
more relevant data of the spreadsheet into a more enlightening form. The stacked bar chart
shows the total cost, and breaks down the sources which make up the total cost, for each of
the investigated repair strategies of the respective architectures. It is obvious that the total
cost varies significantly between each of the repair strategies for each architecture and
between the two architectures. These variations are mainly attributed to the cost of
unreliability. The cost of the avionics system itself and the cost of its launch weight are
independent of the repair strategy for any particular architecture and, relatively, do not vary
much between the two architectures. The cost of its launch weight for both architectures
represents a small contribution to the total cost. '

The two classifications for the cost of unreliability (On the Launch Pad and During
Launch/Ascent) monotonically vary with regard to the repair strategy, but in different
directions. In going from the less tolerant repair strategy (First Detected Failure) to the
most tolerant repair strategy (No Repairs), the cost of unreliability on the launch pad
decreases, whereas the cost of unreliability during launch/ascent increases. - For
Architecture 1, these two effects are minimized for the repair strategy which delays repair
until either the failure of the Voting Actuator or both Control Chains is detected. For
Architecture 2 the optimal repair strategy with regard to cost is to delay repair until either
the failure of 2 Sensors or 2 Channels or 2 Actuators is detected — this results in a total
cost of about $362,000. Note that for both architectures, significant reductions in cost can
be obtained by permitting the vehicle to be launched with detected failures within the
avionics system.

Architecture 2 shows the greatest opportunity for minimizing cost. For the Baseline
System Parameters, Architecture 1 has a greater potential for a failure during launch than
Architecture 2. Figure 5-7 shows that, for Architecture 1, even when the policy is not to
allow launch with any detected failures, the total cost is dominated by mission failures
during launch. The only component of its total cost which can be reduced by allowing
launch with detected failures (Cost of Unreliability — On the Pad) is relatively small.

2 Note that in the Adjusted Reliability Parameters of the FTP_Launch_Model worksheet shown in Section
IV.B.1 of the spreadsheet presented in Appendix A the transient failure rates of the FTP Channel
Components are indicated as 0. During the launch phase of the mission, transient failures of a Channel
have the same impact as permanent failures since a Channel will not be resynchronized once it is isolated
off-line. The transient failure rate is accounted for in the respective permanent failure rate of the worksheet.
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Alternately, the cost of unreliability for Architecture 2 for the case which permits launch
only when there are no detected failures within the avionics system is dominated by the
unreliability on the pad. Therefore, potential exists for significantly reducing the total cost
by allowing launch to take place with some detected failures of its components. As pointed
out, the optimal repair strategy is to delay repair until either the failure of 2 Sensors or 2
Channels or 2 Actuators is detected. Note that the total cost of this repair strategy is
substantially less than that of any of those defined for Architecture 1. '
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Using the component quality factors listed in Table 5-6, Figure 5-8 is generated
which shows the sensitivity of total cost to component quality. Table 5-6 is constructed
from information in CSDL Report CSDL-R-2109 [15] and Military Handbook MIL-
HDBK-217E [16]. Table 5-6 specifies the factor by which the failure rates of the
components are multiplied by (Quality Factor) and their respective costs are multiplied by
(Cost Factor) when a different quality level is assumed from the Baseline System
Parameters. With the exception of the No Repairs repair strategy, utilizing B quality level
parts shows itself to be the most economical. If the repair policy is not to repair any
detected failures within the avionics system while the vehicle sits on the launch pad, using
S quality level parts minimizes the total cost. ‘

Quality Level Quality Factor Cost Factor
S 0.25 10.0
B 1.0 1.0
D 10.0 0.50

Table 5-6. Component Quality Factors

Figure 5-9 shows the sensitivity of the total cost for each of the repair strategies of
each of the two architectures to the Payload Value. For each architecture, the sensitivity to
Payload Value appears to be dependent on how lax the launch requirement is. The repair
strategies which permit launch with more detected failures tend to be more sensitive to the
Payload Value. However, the repair strategies of Architecture 2 (the architecture based on
the AIPS FTP), excepting the No Repairs repair policy, are relatively insensitive to the
Payload Value over the region shown.

Figures 5-10 and 5-11 present the sensitivity of the total cost for each of the repair
strategies of each of the two architectures to the Time On Pad and Flight Time,
respectively. As shown in Figure 5-10, the optimum repair strategy for each architecture
appears to be least sensitive to the Time On Pad (Actuator or 2 Chains for Architecture 1; 2
Sensors or 2 Channels or 2 Actuators for Architecture 2). However, the first four repair
strategies of Architecture 2 all remain less than the optimal strategy for Architecture 1 even
when the Time On Pad is increased from the Baseline value of 7 days up to 30 days. As
shown in Figure 5-11, increasing the Flight Time from the Baseline value of 0.167 hours
amplifies the difference between the two architectures. All of the repair strategies of
Architecture 2 are less sensitive to this parameter than any of the strategies of Architecture
1. The least tolerant repair strategies of Architecture 2, First Detected Failure and 2
Sensors or 1 Channel or 2 Actuators, are least sensitive to the Flight Time. '
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Figure 5-9. Sensitivity to Payload Value

Conclusions and Suggestions for Future Work
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Figure 5-12 displays the sensitivity of the total cost for each of the repair strategies
of each of the two architectures to the Repair Time. For the region shown, little sensitivity
to this parameter is observed. For each of the respective architectures, the strategies which
allow the vehicle to be launched with more detected failures tend to be the least sensitive to
Repair Time.

A useful methodology has been demonstrated for investigating the impact of the
avionics suite to the recurring cost of the ALS. The methodology evaluates the cost of the
unreliability of the avionics suite and includes this along with a more traditional assessment
of its cost. This allows a truer appraisal of its recurring launch cost to be made. During



design and development of the avionics system, this methodology would allow the
designer to quantitatively predict the impact on cost that design decisions will have. In this
way, when design freedom exists, choices can be made which will ultimately reduce launch
costs. The methodology also measures the impact on cost that operational decisions can
have — such as allowing the vehicle to launch with detected failures.

When the avionics system is viewed from the perspective of being mission critical,
the cost of its unreliability can represent a significant portion of its total cost. Therefore,
the parameters which affect its unreliability also affect its recurring launch cost. For the
two architectures analyzed in this study, the impacts of two parameters are of particular
interest. The first is the repair strategy which is employed for failures detected while the
vehicle sits on the launch pad. Pre-empting launch on the occurrence of the first detected
failure within the avionics system is not economical. Allowing the vehicle to launch with
selected detected failures can potentially reduce the recurring launch costs. The second
parameter of interest is the quality level of the components used. The use of Class B parts,
as compared with Class S and D parts, minimizes the recurring launch cost for most of the
repair strategies analyzed.

Based on the analysis performed, the AIPS FTP architecture (Architecture 2) shows
itself to be potentially more economical than the more typical architecture employed for this
application (Architecture 1). The more viable repair strategies of the AIPS FTP architecture
show themselves to be much more cost effective than any of the strategies of Architecture 1
for the Baseline System Parameters. These repair strategies of the AIPS FTP architecture
also appear to be more insensitive to a number of the major system parameters. For the
AIPS FTP architecture, allowing the ALS to launch with detected failures in 1 Sensor
and/or 1 Channel and/or 1 Actuator (delaying repair until failures are detected in at least 2
Sensors or 2 Channels or 2 Actuators) appears to be the most economical repair strategy.

Though the methodology presented here shows itself to be very useful in
quantifying the impact of the reliability of the avionics system on the recurring launch cost
of the ALS, the actual analysis performed is of limited benefit. The models of the two
architectures which are the focus of the study are quite simplified in nature and lacked the
complexity of an actual avionics system. Therefore, in the future it would be most useful
to develop more detailed models that reflect the realistic architecture complexities and apply
the techniques illustrated here to these models. More specific conclusions regarding the
architecture and the most optimum repair policies could be made.

With regard to the methodology itself, some areas warrant further work. The costs
associated with interrupting the countdown and a failed mission could be modeled better.
The less tangible costs such as a delay in a launch schedule because of the need to do a
repair or because a vehicle is lost in flight needs to be investigated further. The analysis
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could also be expanded to include other critical subsystems of the' ALS along with the

avionics system. The methodology might also be enhanced to include reusable subsystems

within the ALS and possibly compare the costs of these architectures with their expendable
counterparts.
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6.0 SUMMARY AND CONCLUSIONS

The validated fault tolerant building blocks of the Advanced Information Processing

System (AIPS) have been configured to meet the reliability, availability, performance and

other avionics requirements of the Advanced Launch System (ALS) being developed jointly

by the National Aeronautics and Space Administration and the Department of Defense to

launch heavy payloads into low earth orbit. This report has described the AIPS for ALS

architecture synthesis process starting with the ALS mission requirements and ending with

an analysis of the candidate ALS avionics architecture. The ALS architecture synthesis

process followed a new design for validation methodology that has been developed as part

" of the AIPS program to assure that fault tolerant computer system architectures for
advanced applications meet the reliability, performance and other goals of the application.

The preliminary ALS avionics requirements were obtained by CSDL from the prime
contractors via Martin Marietta. The detailed computational requirements were developed
by Martin Marietta and jointly refined by MM and CSDL. The Reliability, Maintainability,
and Availability (RMA) requirements for the ALS were defined for the launch pad
operations, the launch or the boost phase, and for on-orbit operation. The ALS avionics
availability requirement was defined to be 95%, i.e., the ALS avionics must have a fault
masking capability with a probability of 0.95, at the end of one week on the launch pad.
The avionics reliability requirement was defined in terms of the maximum allowable
probability of mission failure or vehicle loss due to avionics failure. This failure
probability should not exceed 10-5 for the mission duration which may vary from 10
minutes for short missions to as long as 48 hours for the longest ALS mission.

The computational requirements consisted of nine top-level functions: Central
Control and Processing, Winds Ahead Determination, Vehicle Power System Management,
Steering and Staging Control, Propulsion Control, Command and Telemetry Processing,
Range Safety and Destruct, and Programmable Payload Interface. Aggregate throughput
estimates were given for many of these functions. Each function was divided into
subfunctions which was supposed to be further defined at the atomically schedulable task
level. However, this process was carried out only for the Central Control and Processing
function during the course of this study.

Based on the data provided by MM, the overall ALS throughput requirements were
estimated to be approximately 8.8 MIPS for non-propulsion functions and 4.8 MIPS per
engine for propulsion functions. The inter-function communication bandwidth
requirements were estimated to be 26 Mbits/sec (prelaunch) between the non-propulsion
and the propulsion functions (17 engines), the non-propulsion I/O bandwidth requirement
was estimated to be 11.2 Mbits/sec, and the propulsion I/O bandwidth requirement was
estimated to be 1.587 Mbits/sec (17 engines).
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The flight system characteristics of the AIPS hardware and software building
blocks were defined based on a survey and projection of technology expected to be
available in the ALS time frame. The characteristics included the physical characteristics,
performance projections, hardware implementation, module failure rates, and a packaging
concept.

A quadruply redundant AIPS for ALS Fault Tolerant Processor will consist of eight

SEM-E modules -- two CPU modules, one Shared Devices module, one Communicator

and Interstage module, and Network Interface Sequencer modules, and two power

conversion modules. The SEM-E modules are 5.88 in. x 6.68 in. x 0.6 in. and weigh

approximately 1 1b. each. A quad FTP, including all enclosures, will weigh'about 108 lbs,

occupy 2 cubic feet and consume about 165 Watts of power. A triplex FTP will weigh
~about 81 Ibs, occupy about 1.5 cubic feet, and consume about 124 Watts.

The raw throughput of the AIPS for ALS FTP, consisting of two 40 MHz RISC
microprocessors per channel, is projected to be 30 MIPS using the DAIS mix benchmark.
The useful FTP throughput available to the ALS applications tasks, after accounting for all
the fault tolerance and core hardware redundancy management overheads (but not the
sensor RM), is projected to be about 25 MIPS. The I/O and intercomputer network
bandwidths will be 100 Mbits/sec. The internal data exchange bandwidth of the FTP will
be about 64 Mbits/sec. The end-to-end communication time over the intercomputer
network between functions located on different FTPs is expected to be less than 2 msecs
per message. The average recovery time from a fault in the FTP is projected to be 10
mSecs.

The raw hardware failure rates per hour, using Class B components, are projected
to be: 6.5x10"3 per FTP channel and 1.0x10-5 per node on the launch pad; 3.3x10-4 per
FTP channel and 1.1x10-4 per node during the boost phase; 2.3*10-3 per FTP channel and
7.6%1076 per node in orbit. These are the permanent failure rates. Transients are assumed
to occur at 10 times the permanent failure rates.

Using the building block performance and reliability projections, a preliminary
~ AIPS-based fault tolerant computer system architecture was configured to meet the ALS
avionics requirements. A single quadruply redundant AIPS Fault Tolerant Processor, the
core FTP, will perform all the non-propulsion functions required in the ALS. Additionally,
‘there will be a propulsion control FTP dedicated to each engine. The core FTP will access
the guidance, control, navigation and other sensors and actuators on one redundant I/O
network. Each of the engine control FTPs will access engine sensors and actuators on a
dedicated 1/O network. The core FTP and all of the engine control FTPs will be connected
by a fault-masking triply redundant intercomputer network.

For short ALS missions, lasting an hour or less, it will not be necessary to
reconfigure the FTPs or the I/O and IC networks. Redundant hardware would provide
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sufficient fault masking capability to meet the ALS reliability requirement. However, for
longer ALS missions, lasting 1 hour to 48 hours, it will be necessary to re-integrate FTP
channels affected by transient fault and to reconfigure the I/O and IC networks. The
performance projections show that these in-flight reconfigurations can be accomplished
without suspending any of the ALS applications tasks. The reconfigurability of the
networks is also intended to obviate expensive launch pad repairs.

Extensive analytical modeling of the AIPS for ALS architecture was carried out to
predict its reliability and availability. For the baseline architecture, consisting of one core
non-propulsion FTP and 17 propulsion control FTPs, all quadruply redundant, the launch
availability is expected to be 97.9%. This configuration will also meet the mission
~ reliability goals. Specifically, the mission probability of failure is expected to be 9.75*10-6
This exceeds the goal of 10-3 just slightly. ’

The contributions to the unavailability and unreliability come predominantly from
the propulsion avionics since 17 out of the 18 FTPs are for engine control. The availability
of the non-propulsion avionics, which consist of just 1 FTP, is 99.88%. Similarly, the
mission loss probability, attributable to non-propulsion avionics, is 5.42*10-7. Evidently,
one needs to reexamine the requirement of dedicating a controller to each engine. If, for
example, an FTP was configured to control 4 engines, which it is capable of doing based
on the performance projections, only 4 FTPs will be necessary to control 16 engines. This
would reduce the probability of mission failure due to a failure of propulsion avionics to
2.16%10°6. The launch availability would improve to 99.52%.

The ALS vehicle and engine designers should seriously examine the option of
integrating engine controllers outside the engine and with the core avionics. This would
not only improve the overall ALS reliability and availability, as demonstrated above, but
would also result in reduced weight, volume, power and cost.

The AIPS for ALS architecture defined here is preliminary in nature but shows that
the ALS performance and reliability requirements can be met by the AIPS hardware and
software building blocks that are built using the state-of-the-art technology available in the
1992-93 time frame. The level of detail in the architecture definition reflects the level of
detail available in the ALS requirements. As the avionics requirements are refined, the
architecture can also be refined as well as defined in greater detail with the help of analysis
and simulation tools. For example, the functions in the core FTP need to be allocated to the
computational processor and the I/O processor. This requires a more detailed enumeration
of interfunction communication requirements and I/O communication requirements. Also,
no effort was expended on defining the detailed I/O architecture. This requires as inputs
the sensor details such as the number and type of sensors, their failure rates, and so on.
This information can be used to define redundancy levels of sensors and allocate sensors to
different redundant layers of the 1/O network.
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The data presented by Martin Marietta served as an important starting point for
determining the requirements of the ALS avionics. During the course of the CSDL-Martin
Marietta interaction an active dialogue was set up which would have in time resulted in a
more complete definition of a common requirements vocabulary and facilitated the
acquisition of comprehensive requirements data.

Several variations on the baseline architecture presented here are also possible and
should be modeled and analyzed. These include allocating several engines to one
propulsion control FTP, investigating the effects of launch with failures, and using
authentication for the I/O and IC networks.

To complete the design of a validated ALS avionics architecture, the architecture
synthesis process begun in this study needs to be followed up by the steps outlined in the
design for validation methodology. Once an architectural configuration has been selected
that satisfies the reliability, performance and other ALS avionics requirements, the next step
is the detailed hardware and software design. The detailed design phase will utilize the
AIPS building block design knowledgebase. Once the building blocks have been
fabricated using the state-of-the-art microelectronics and the system services implemented
using the latest Ada Run Time System and compiler, the validation of the integrated
avionics system can commence. - This validation pertains to the specific hardware and
software implementation and not the architecture or the building block characteristics since
these have been prevalidated. A test and evaluation of the avionics integrated with
applications and actual or simulated /O should confirm the predicted performability
characteristics. Any discrepancies between the predicted and the actual performability
should be minor and traceable to the detailed implementation phase rather than the
architectural or building block design. These can be corrected by refining the
implementation.

Since a prime design driver for ALS is the cost, a study was also undertaken to
analyze the impact of the avionics architecture on the launch cost of ALS. A methodology
was developed to quantify the contribution to the recurring launch costs due to the
reliability and availability characteristics of the avionics. The resulting cost model was then
used to predict and compare the costs of two different architectures for the ALS avionics.
The two architectures modeled were defined as simplified versions of two potential
candidates for the ALS avionics. Architecture 1 represents an elementary method of
incorporating fault tolerance into the avionics system. Architecture 2 is a simplified version
of the AIPS for ALS architecture defined in the current study. :

A useful methodology has been demonstrated for investigating the impact of the
avionics suite to the recurring cost of the ALS. The methodology evaluates the cost of the
unreliability of the avionics suite and includes this along with a more traditional assessment
of its cost. This allows a truer appraisal of its recurring launch cost to be made. During
design and development of the avionics system, this methodology would allow the
designer to quantitativély predict the impact on cost that design decisions will have. The

6-4



methodology also measures the impact on cost that operational decisions can have — such
as allowing the vehicle to launch with detected failures.

When the avionics system is viewed from the perspective of being mission critical,
the cost of its unreliability can represent a significant portion of its total cost. Therefore,
the parameters which affect its unreliability also affect its recurring launch cost. For the
two architectures analyzed in this study, the impacts of two parameters are of particular
interest. The first is the repair strategy which is employed for failures detected while the
vehicle sits on the launch pad. Pre-empting launch on the occurrence of the first detected
failure within the avionics system is not economical. Allowing the vehicle to launch with
selected detected failures can potentially reduce the recurring launch costs. The second
parameter of interest is the quality level of the components used. The use of Class B parts,
combined with a fault tolerant architecture, as compared with Class S and D parts,
minimizes the recurring launch cost for most of the repair strategies analyzed. It should be
noted here that the current philosophy for launch system avionics is to use the highest
quality, that is, Class S, components in a single string, non-fault tolerant architecture.

Based on the analysis performed, the AIPS FTP architecture (Architecture 2) shows
itself to be potentially more economical than the more typical architecture employed for this
application (Architecture 1). The more viable repair strategies of the AIPS FTP architecture
show themselves to be much more cost effective than any of the strategies of Architecture 1
for the Baseline System Parameters. These repair strategies of the AIPS FTP architecture
also appear to be more insensitive to a number of the major system parameters. For the
AIPS FTP architecture, allowing the ALS to launch with detected failures in 1 Sensor
and/or 1 Channel and/or 1 Actuator (delaying repair until failures are detected in at least 2
Sensors or 2 Channels or 2 Actuators) appears to be the most economical repair strategy.

Though the methodology presented here shows itself to be very useful in
quantifying the impact of the reliability of the avionics system on the recurring launch cost
of the ALS, the actual analysis performed is of limited benefit. The models of the two
architectures which are the focus of the study were quite simplified and lacked the
complexity of an actual avionics system. Higher fidelity models that reflect the details of
the architecture need to be developed.

With regard to the methodology itself, the costs associated with interrupting the
countdown and a failed mission could be modeled better. The less tangible costs such as a
delay in a launch schedule because of the need to do a repair or because a vehicle is lost in
flight needs to be investigated further. The analysis could also be expanded to include
other critical subsystems of the ALS along with the avionics system. The methodology
might also be enhanced to include reusable subsystems within the ALS and possibly
compare the costs of these architectures with their expendable counterparts.
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APPENDIX B
MODEL REDUCTION TECHNIQUE FOR FTP ANALYSIS
B.1 Introduction

There is an increasing demand for fault-tolerant control systems in high
performance, critical applications. At the core of such systems, there is one or more fault
tolerant processors (FTP's). The FTP receives information from sensors, sends
commands to actuators and performs redundancy management. Given its critical role in
any control system, the operation and performance of the FTP must be very carefully
modeled if the safety and performance evaluation process is to be relied upon.

An FTP may contain computing elements, dedicated and/or shared memories,
information replicating components, I/O-dedicated electronics, etc. The key feature of an
FTP is the ability to handle faults in a controlled, timely manner that enables correct
reconfiguration and uninterrupted (on the time scale of interest) operation. An accurate
model must be able to describe in detail rate processes such as component failures, fault
detection, fault isolation and reconfiguration.

The Markov modeling method has clearly emerged as the preferred approach with
regard to the analysis of such pfocessing systems. The ability of this approach to correctly
capture rate processes and event sequence dependencies are of crucial importance. While
discrete simulation approaches might be perfectly adequate from the point of view of
modeling flexibility, computational efficiency strongly tilts the balance towards the
Markovian approach. This is so because, for such highly reliable systems, the component
failure rates are very low. Consequently, the fault occurrence event rate is so low as to
require a prohibitively large number of trials in order to accumulate statistically meaningful
and reasonably accurate results.

The Markov method however suffers from a major drawback. The number of
states proliferate rapidly, often leading to an intractably large model. The FTP proper
represents a system of moderate size, such that even a rather detailed model does not
generally pose a major problem. However, when attempting to analyze the entire control
system which the FTP is part of, maintaining the level of detail desirable for the FTP alone
would most likely give rise to an unwieldy, perhaps even intractable model. Techniques
such as aggregation, truncation and decomposition are used to mitigate this basic difficulty.
Still, it would be highly desirable to devise a simplified model of the FTP which would
greatly contribute to alleviating the space explosion problem while correctly préserving the
main features of the detailed model.

‘The purpose of this appendix is to describe the development of such an approximate
model. First a detailed Markov model of a triply redundant FTP is introduced. The model
reduction technique is then presented, leading to an excellent approximate model for this
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FTP. A complete analytical solution of the reduced model follows. To get a feel for the
approximations involved, the procedure is shown applied to a simple example, for which
analytical solutions are feasible for both the exact and reduced models. The appendix ends
with a few concluding remarks regarding the reduction technique to be presented.

B.2 Detailed Triplex FTP Markov Model

A detailed Markov model for a Quad FTP is described in Section 4 of [1]. The
model tracks separately, within a computational channel, the processor element, the
associated dedicated memory and the corresponding interstage. Both permanent and
transient failures are accounted for, along with the appropriate reconfiguration mechanism.
Provisions are made for including common mode failures as well. This model provides a
realistic paradigm of the fault occurrence/fault handling processes.

The cost analysis presented in Section 5 is focused on a comparison of two triplex
architectures, one of which is based on an AIPS triplex FTP. The approach used in
constructing the quad model was used to generate a similar triplex Markov model. In order
to simplify the description of the model reduction method, some additional assumptions
were made:

- the processor and its associated memory in one channel were treated as one
component,

- the triplex coverage was assumed perfect and
- common mode failure was disregarded.

The Markov model for the triplex FTP, based on these assumptions, is shown in
Figure B-1. The notation used for the state transition rates is the following:

- x;‘b (,s1) is the failure rate for component a (where a = p for the processor and a =1i
for the interstage) from configuration n (where n =t, d or s, i.e., triplex, dual or
single, respectively); b indicates the type of failure, (withb=tor p denoting
transient or permanent failure); sl stands for system loss.

- ph is the rate of the reconfiguration process initiated by a b-type failure of

component a starting from configuration n; here a, b and n have the same meaning
" as above. '

State 1 represents operation with no failures. States 6 and 11 correspond to
degraded modes of operation, namely operation with one channel failed and two channels
failed, respectively. Finally state 12 denotes an aggregated system loss condition. This
state is reached either as a result of incorrect reconfiguration or because of exhaustion.
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The group comprising states 2,3,4 and 5 is associated with the state of the system
after one failure and the group including states 7,8,9 and 10 corresponds to the system after
two failures. The states in these two groups are characterized by extremely short holding
times, when compared to states 1, 6, 11 or 12. Specifically, the "fast” states represent
intermediate configurations, persisting for only very short periods of time during the
reconfiguration processes. The reader should note that both permanent and transient
failures are accounted for, with a distinct reconfiguration path. Specifically, transient
failures, i.e., states 2, 5, 7 and 10, are reconfigured back to their respective origin states,
i.e., states 1 and 6. In contrast, permanent failures, i.c., states 3, 4, 8 and 9, lead to
reconfigurations to the appropriate degraded operational modes, states 6and 11.

This Markov model captures the key fault occurrence and handling processes in a
triplex FTP, designed to withstand Byzantine faults. The actual model used in the cost
analysis contains additional details, which makes it a realistic tool for studying the
performance of an FTP processor.

It is perfectly feasible to use this model to analyze the FTP on a stand alone basis.
Still, care must be taken in the solution technique to overcome difficulties caused by the
very pronounced stiffness of the resulting system of ordinary differential equations.
Indeed, there is an enormous discrepancy between the time constants characterizing the
failure events and those associated with reconfiguration processes.

When the FTP must be analyzed as a subsystem within a much larger control
system, the high level of detail in the model becomes a liability. This is so both because of
the large state space the analyst will have to deal with and in view of the stiffness aspect
mentioned above. It is thus natural to search for an approximation technique allowing a
high level of fidelity, while providing a much more tractable model to work with. Such a
technique will be described in the next section.

B.3‘ FTP Model Reduction

As already mentioned, the detailed Markov model has a number of states
characterized by a very short time constant relative to the time scale of the failure events.
This situation immediately suggests the possibility of a behavioral decomposition. The
existence of distinct time scales is often encountered in control system applications and is
exploited to generate a reduced model of the original system. Reference 17 presents a good
review of this approach in the system control area. The same basic idea is also often used
in simplifying various physical models (see, for example, [17]). These reduction
techniques often rely on detailed eigenvalue analysis and consequently are rather
cumbersome. The reduction techniques become considerably more appealing when it is
obvious which states are characterized by fast time constants and which ones are "slow".
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In the reliability analysis field, the need to model both the fault occurrence (slow)
~ and the fault handling (fast) processes leads naturally to the situation previously described.
There is a strong incentive to perform a systematic behavioral (or temporal) decomposition
in order to both reduce the size of the state space and also remove the severe stiffness of the
mathematical model. References [18] and [19] propose a decomposition approach. While
the approach is well founded, it is quite impractical for complex applications because of
some rather cumbersome probabilistic arguments used to determine aggregated transition
rates. In [20] Bobbio suggests another approach, similar to that used in [21], which leads
to a systematic and straightforward reduction model reduction procedure. The technique
does not use a formal eigenvalue analysis, relying solely on an examination of the original,
detailed model structure and transition rates. This technique will be applied to obtain a
reduced FTP model.

The state transition rates may clearly be divided into two separate sets, one
consisting of the slow rates, i.e., the failure rates, the other consisting of the fast rates, i.e.,
the reconfiguration rates. We can then partition the n states of the model into two disjoint
and exhaustive subsets defined as follows:

- [S}is the set of ng slow states (1, 6, 11 and 12), i.e., states with no outgoing
transitions classified as fast,

- [F] is the set of nf fast states, i.c., states with at least one :fast outgoing transition.

For convenience, we further subdivide the set [F] into the subsets {F1] and [F2],
corresponding to the fast states reached following a single failure (2, 3, 4 and 5) and two
failures (7, 8, 9 and 10), respectively. The transition matrix and the associated probability
vector are then reordered such that the equations governing the states in [S] become the first
ng equations, followed by the ngj equ:: ons corresponding to the states in [F1] and the ng
equations corresponding to the states in {F2], with ng = nf1 + np2.

After this reordering, the equations describing the Markov model can be written as:

q Ps Do Bo1 Bo2 Ps
&t Pri Bio Di O Pgi (B-1)
Pg> Bzo‘ O D Pr2
where: '
[, 0 0 0 ] .
01 x 0 0 D] = diag( '82’ '83a '847 '85 )
DO = e D2 = dlag( '87’ -88! -89s '810)
0 0 -A;; O )
O = null matrix
0 0 +)\.1 1 0
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[ p21 P31 P41 Psi ] 0 0 0 0
| P26 P36 P46 Psé P76 P8 P96  P10.6
| Bo; = Boz =
| o o0 o0 O P7.11 Ps11 P911  P1o,11
[ X2 A3 A4 As L A Ag Ay Ao
(%2 0 0 0 | [ 0 X7 0 0 ]
A O 0 O
By = 13 By = 0 2s 0 O
Aigs O 0 O 0 29 O O
L A5 O 0 0 J | 0 As1o O 0 |

For facility, the notation follows the convention indicated in Figure B-2. The total
‘outgoing transition rate from the fast state "k" is denoted 8k and is given by:
8k = Pii + Pkj + Ak
while the total outgoing transition rate from slow state "i" is denoted A; and is given by:

A=Y, Aik

where the summation is implied over all the fast states "fed" by slow state "1".

fast state

slow state slow state

system loss

Figure B-2 Notation Convention
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At this point, the key approximation is made that the fast states reach their steady
state well within the time scale of interest, i.e., mission time. In other words, the fast
. states are assumed to respond instantaneously to changes in the slow states. Setting the
temporal derivatives of the fast states' probabilities to zero leads to the following
approximate expressions for the probability subvectors Pr; and Pr2:

Pr = -Di'ByoPs and Prz = -D7ByoPs ®2)

These expressions for Pr; and Pr are used to eliminate them in favor of Ps in the
first ng equations, leading to the following reduced system of equations for Ps:

Ps =[Do - By;D{'Byo - BozD'le20] Ps=AsPs - (B-3)

It should be noted that the algebraic manipulations implied in (B-2) and (B-3) are
particularly easy to carry out in our application because of the specific structure of the
Markov model. Indeed, the submatrices D) and D are strictly diagonal, making their
inversion trivial. The significance of their strictly diagonal structure is that no direct
coupling exists among the fast states. Moreover, Bjg and B2g are very sparse, further
reducing the computational effort required to obtain the approximate model equations.

The transition matrix of the reduced model has the following structure:

- -

aj; 0 0 O
* a;l 3‘22 0 0
As = . B-4
S 0 832 333 0 ( )
I ag; ag az 0
where:
5 10
ay; =- Z L3 (Pks + 7\k)’ a3y =- Ask (Pk.n + lk), (B-5a)
k=2 Ok k=7 Ok
10
ay = 2 A Pxe, a3y = Aok Pk,11, _ (B-5b)
k=2 Ok k=7 Ok
5 10 ‘
= 2 Mk Ay, ag= M . (B-50)
k=2 Ok k=7 Ok
a3 =- A1, 23 =An. (B-5d)



The reduced formulation is thus fully defined in terms of the original model
parameters. A more insightful and convenient, but still fully equivalent formulation, that
clearly identifies the successful as well as the failed reconfigurations, can be obtained by
rewriting the reduced model transition matrix in the following form:

— -

aj; 0 0 0
AL -clay, a3, 0 0 ®6)
0 -cday,  ay 0
| -(1-cHa], -(1-cday,  -a3; 0

Here, the equivalent triplex and duplex coverages are obtained by simply comparing
formulations (B-4) and (B-6):

5 10
Z Ak Px6 Aok Pk,11
ct= 5“12 k and cd= wk:; k (B-7)
D, ~lk (Pxs + A A6k (o 11 + M)
k=2 O k=7 O

A few remarks are in order at this point. Since it was assumed that the triplex
coverage (i.e., the detection and the isolation) is perfect, a system loss can be caused only
by a coincident failure. Since the reconfiguration rate is many orders of magnitude greater
than the failure rate, the equivalent triplex coverage is very nearly 1.0. In contrast, the
situation for.the dual operation, reached after a successful recovery following a single
failure, is quite different. Here, the detection is still assumed perfect, but for isolation we
must rely on self-test, which is assigned a probability of success cq isol < 1.0.
Consequently, a transition to system loss may take place not only because of a coincident
failure but also predominantly because of improper reconfiguration. As a result, the
equivalent duplex coverage may be significantly less than 1.0.

A simple example will further clarify this important aspect. Disregarding transient
failures and treating the processor/interstage set as one "component” with a failure rate A
and a reconfiguration rate p, we have, from (B-7):

3\
p+ 2\ _ 1

(B-8)

3 T L2M
(p+2)) 1+44
p+2A P
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22 Cd,isolP
= Ca,isolp + (1-Ca,isol)p + A _ Cd,isol

2 [caisolp + (1-Caiso)Pp +A] 1+ A
Cd,isolp + (1-Caiso)P + A p

(B-9)

Since A « p, then ¢t = 1.0 and ¢d = cq jso1. The expressions (B-7) properly reduce
to the simple model often used to represent a triplex FTP.

The reduced model obtained in this section is illustrated in Figure B-3. The three
operating states (1, 2 and 3) in the reduced model correspond on a one-to-one basis to the
operating states (1, 6 and 11) in the original model. The transition rates used in this model
are given by the expressions (B-5) and and (B-7). From the initial n-state model (n = 12),
an approximate model containing only ng states (ns = 4) has been obtained. Extensive
numerical experimentation, comparing the original model with the reduced one, has
consistently indicated an excellent agreement, proving the validity of this temporal
decomposition technique in our application.

The simplicity of the reduced model allows a fully analytical solution, which will be
introduced in the next section.



no failures one failure two failures
Add

system loss

Figure B-3 Reduced Markov Model of a Triplex FTP

B.4 Analytical Solution of the Reduced FTP Model

The simple, non-cyclic structure of the reduced model allows a compact, analytical
solution. The reduced model is basically a chain, with additional transitions to system loss
before component exhaustion. It can be easily shown that the solution to the model
depicted in Figure B-3 is:

P1 = (3‘)"tt (B-lOa)
t d t
P, =fig [en%- e (B-10b)
py - Wl [y en. iaen’ie bia)e ] i

g ) )

The probabilities correspond to the three operational modes postulated for the
triplex FTP, i.e., operation with no failures, with one failure and with two failures,
respectively. For the particular case when At = 3%, A9 = 2) and AS = A, these formulas
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take on an especially simple, compact form, i.e., a binomial formula modified to account
for imperfect coverage,

Pi=R)  (B-1la)
P, =3ctR3(1-Ro) (B-11b)
P3=3ctcdRo(1-Rof  (B-11¢)

where Rg = exp(-At). In these formulas, the appearance of the coverage
probabilities account for the obvious need for successful reconfiguration if the FTP is to
continue to operate in a degraded mode.

This analytical formulation is a powerful tool for carrying out extensive parametric
studies. The formulation can be easily adapted to a different type of FTP, for example a
quad configuration. '

B.5 Exact and Reduced Models for a Simple Example

It is instructive to examine a simple example to reveal the exact nature of the
approximations involved in carrying out the model order reduction procedure outlined up to
this point. A simple example will further clarify this important aspect. Let us consider a
dual FTP, weating a processor/interstage set as one component, subject to both transient
and permanent failures occurrin g at the rates Agand Ap, respectively. The same
reconfiguration rate, p, is assumed for both transient and permanent failures. The self-test
coverage, accounting for the imperfect isolation characteristic of the dual architecture, is
denoted by c. In view of the much greater rate of the reconfiguration process compared to
the rate of failure events, the effect of a coincident failure will be disregarded. The Markov
model incorporating all these assumptions is illustrated in Figure B-4. This model can be
solved analytically to yield the following expression for the probability of system loss:

PG =1-AeSit- Bes2t - CeAt (B-12)
where the coefficients and the exponents are given by:

_Ms2-2p(10)) 5 _

, _l[sl-2p (l-c)], C © 2chpp
(s1 - s2)(s1-2) (s1-s2)ls2-2)  fs1-2) (s2-3)

A

s; and s are the roots of: s+ (A +p) s +2p [Ap + (l-c)l[] =0

and A is the total failure rate, i.e., A = Ay + Ap.
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Applying the procedure previously outlined, the initial model is reduced to the
approximate model shown in Figure B-5. The probability of system loss for this model is
given by:

P;{prox =1- ﬁc’z[xp + (l-C))\.[]t - 5 C')\-t (B-13)

n(l-h)
B=_1-2¢ s

S

where

‘

It can be easily shown that if A « p, then the roots of the quadratic are well
approximated by:

s3=2[Ap+ (1-0A] and si=p (B.1a)

Substituting (B-14) into the expression of the coefficients in (B-12) leads to the
conclusion that :
A—>0, BoB and C-C,
as (Mp) -0

In addition, it is clear that the first exponential will decay very rapidly compared to
the other two. Consequently, for any length of time sufficiently in excess of the time scale

of the reconfiguration process (i.e., 1/p), the approximate solution, (B-12), is in excellent
agreement with the exact solution, (B-13).
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no failures successful recovery system loss caused by

(duplex operation) after one permanent failure incorrect reconfiguration
: (simplex operation) or exhaustion
c (1-c)
p ’ p

2A,
A+

Figure B-4 Markov Model of a Dual FTP

no failures one failure
2ch
O —()
<
+
2

2 (1-c)(Ap + )

system loss

Figure B-5 Reduced Markov Model of a Dual FTP
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It is interesting to note the expression of the equivalent dual coverage for this
example. From Figure B-5 and according to equations (B-7), this effective coverage is
given by:

od = 2ch, _ c
2(1-c)A + 2cAp 1+(l-c)2"—‘— (B-15)

Ap

The effective coverage is equal to the self-test coverage when the transient failures
are disregarded. It decreases monotonically as the ratio of transient - to - permanent
failures increases. This result is quite general, in spite of the simple model used to illustrate
it.

B.6 Conclusions

A methodology enabling a systematic reduction of a complex FTP model has been
developed. The technique relies solely on an examination of the structure of the transition
matrix, with no eigenvalue analysis and coordinate transformation necessary. The reduced
model captures all the relevant features of the detailed model and represents an excellent
approximation. The simplicity of the reduced model allows a fully analytical solution,
which is extremely effective especially when extensive trade studies are required.

The technique is illustrated on a simple but instructive example, for which an
analytical solution is possible for both the exact and the reduced models. The high quality
of the approximation is clearly shown. In addition, the crucial impact of the transient
failures on the success of the reconfiguration process is demonstrated. '

The methodology and the results presented herein provide considerable insight

regarding the difficulties and the subtleties involved in the rigorous reliability and
performance analysis of an FTP.
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