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Abstract—This paper addresses the problem of collection and
delivery of a representative subset of pictures, in participatory
camera networks, to maximize coverage when a significant
portion of the pictures may be redundant or irrelevant. Consider,
for example, a rescue mission where volunteers and survivors of
a large-scale disaster scout a wide area to capture pictures of
damage in distressed neighborhoods, using handheld cameras,
and report them to a rescue station. In this participatory camera
network, a significant amount of pictures may be redundant (i.e.,
similar pictures may be reported by many) or irrelevant (i.e., may
not document an event of interest). Given this pool of pictures,
we aim to build a protocol to store and deliver a smaller subset
of pictures, among all those taken, that minimizes redundancy
and eliminates irrelevant objects and outliers. While previous
work addressed removal of redundancy alone, doing so in the
presence of outliers is tricky, because outliers, by their very
nature, are different from other objects, causing redundancy-
minimizing algorithms to favor their inclusion, which is at odds
with the goal of finding a representative subset. To eliminate
both outliers and redundancy at the same time, two seemingly
opposite objectives must be met together. The contribution of this
paper lies in a new prioritization technique (and its in-network
implementation) that minimizes redundancy among delivered
pictures, while also reducing outliers.

I. INTRODUCTION

This paper addresses a novel problem that arises in the

context of participatory camera sensor networks; namely, that

of collection and delivery of the most representative subset

of pictures from a vast pool, where a significant portion of

pictures are redundant, irrelevant, or noisy. A representative

subset is one that offers roughly the same coverage of the

environment, but with fewer pictures.

We define a participatory camera (sensor) network as one

where participants contribute pictorial data, either on their

own initiative or through participation in a corresponding

data collection campaign. For example, in the aftermath of a

natural disaster, relief workers and other first responders might

survey an area in search of damage that is then pictorially

documented and reported. Another application might be to

ask residents of a neighborhood to pictorially document issues

that require attention in their neighborhood (e.g., graffiti on

walls, trash piles, hazardous potholes, or other problems).

Yet a third application might be to compile a list of most

visited tourist landmarks from pictures contributed by tourists

in a given location. Participatory camera sensing applications

are made popular by the vast proliferation of cameras and

camera phones in the possession of the average individual, not

to mention the richness of information contained in pictures

compared to other sensing modalities.

Our camera sensing service runs on participants’ phones

(the clients) and on a destination server (the collection point).

When pictures are taken using our application, they are locally

stored on the phone. When two participant phones meet,

they may gossip by exchanging a portion of their pictures.

Similarly, when a phone connects to the destination server

it uploads a portion of its pictures. The contribution of the

paper lies in prioritizing transmission of pictures both when

two phones meet or when a phone meets the server, such

that the most representative subset is sent (instead of sending

all), in order to conserve resources. Resources may need to be

conserved for many reasons. For example, participants, who

upload pictures from their mobile phones, may have to pay for

their data plans. Hence, uploading less data is better. If pictures

taken by participants propagate opportunistically, for example

over a disruption-tolerant network (DTN), an individual par-

ticipant may end up collecting too much redundant content

and may need to do some data triage to fit the local storage or

energy constraints. Such might be the case in disaster recovery

scenarios, where infrastructure may be destroyed leaving only

DTN-style communication, or in military scenarios, where

groups of soldiers in the field may have only a low bandwidth

channel to a remote base, making it advantageous to triage the

data locally prior to transmission on that channel.

We do not make inherent assumptions regarding the type

of network in which our service operates. For example, it

could be a star network, where all phones have a direct way of

connecting to the server whenever they want. Alternatively, it

could be a DTN where the primary data propagation occurs via

phone-to-phone gossiping. The type of the underlying network

is a routing issue. Either way, the decision we are concerned

with is which pictures to send in what order when two nodes

meet (either two clients, or a client and the server).

In this paper, resources are conserved by addressing two

inefficiencies in participatory camera networks. The first lies

in the inherent redundancy among returned pictures. For exam-

ple, if a community of volunteers are independently uploading

pictures of flood damage in their neighborhood after a storm,

the server might already know of some of the damage (from

earlier uploads) and hence may not need some of the pictures.

The second lies in the existence of noise and outliers that are

not representative, since the participants may not always be

entirely reliable. For example, not all returned pictures will be

related to the task at hand. To conserve resources, one would

like to minimize redundancy while eliminating the outliers.

Note that, the objectives of reducing redundancy and reducing

outliers are at odds. Outliers, by definition, are different from
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other pictures and hence, not redundant. We show that algo-

rithms that minimize redundancy alone, such as those proposed

in previous literature [1], favor outliers as opposed to more

representative content. The main contribution of this paper

therefore lies in combining redundancy minimization with

outlier elimination in participatory camera sensing networks.

Towards that end, we propose a technique to identify outliers,

propose a new metric for content diversity, and develop a new

rule for content prioritization, where outliers receive lower

priority, while diversity is maintained.

It is worth noting, at this point, that outlier elimination is

not always a goal in a participatory camera network. In some

applications, such as anomaly detection, outliers are in fact

what carries the relevant information. For example, an in-store

security camera might report the same view all night, except

when an intruder breaks in. A frame with the intruder in view

might be the outlier, but it is also the frame that contains the

most interesting information. This paper considers a different

type of applications, where a community of users document

relatively static conditions in the environment, such as damage

or points of interest. In such cases, one is not looking for

anomalies in reporting, but rather for representative depiction.

To provide context for our service, we shall use a rescue

mission in a post disaster scenario as a running example.

Rescue workers, volunteers and survivors scout a distressed

area, capture pictures of damage and report them to a com-

mand station. The regular communication infrastructure is not

available in the aftermath of our disaster, due to infrastructure

damage or power outage. Instead, a DTN is formed among

the mobile devices used by the participants themselves. This

DTN is used for ultimate picture delivery to the command

station. Note, however, that our prioritization schemes are

more general, and apply to other network contexts as well.

The rest of this paper is organized as follows. Section II

describes our theoretical construct of outlier-resilient diversity-

aware collection service, ORPNet (Outlier Resilient Picture

Network). The prioritization scheme for synchronizing content

across nodes is described in Section III. Section IV presents

performance results and comparison with earlier work, fol-

lowed by Section V that reviews related literature. Section VI

concludes the paper and presents closing remarks.

II. DIVERSITY IN PICTURE COLLECTION

In order to select a representative subset of pictures that

maximizes coverage using the fewest pictures, we focus on

increasing diversity among the selected pictures to minimize

overlap. One might be tempted to also favor large panoramic

pictures, since they presumably offer more coverage. We do

not take that route since often information is contained in the

detail (e.g., a close-up of a crack in the wall might indicate

a damaged building, but the crack may not show in a wide

panoramic view). Since we do not know what the participants’

regard at the important information in the picture, we take the

more conservative approach of simply removing redundancy

as a safer way to offer coverage with fewer pictures. To reduce

unrepresentative outliers, we further refrain from selecting

pictures that are not corroborated by others.

To implement the above selection mechanisms, we define a

distance function that measures the level of similarity between

pictures based on the degree of match in their visual features

and in metadata between them. An important piece of metadata

is location. For example, two buildings may appear visually

similar, but if they happen to be in different locations, they

must be different. Given an appropriate logical distance func-

tion to measure redundancy with, the diversity of a picture

collection depends on distances between individual pictures

in the collection. We attempt to maximize diversity while

removing outliers. Some outliers can be detected at the source.

For example, a picture that is blurry or otherwise of poor

quality may not be useful, and hence can be discarded. Such

quality problems can be handled easily by the user or by

existing vision techniques applied in an automated fashion at

the source, and are not the topic of this paper.

Instead, we attempt to infer relevance based on similarity

of the picture to others, considering both geographic attributes

and visual image features. The idea is that (versions of) more

relevant scenes to the participatory sensing application will

generally be photographed by more sources. By “scene”, here,

we mean a visual observation, such as the observation of a

damaged bridge, a collapsed building, a blocked road, a fire, a

car accident, a traffic jam, or an interesting person. An explicit

goal is to estimate relevance without having to understand

the semantics of what is in a picture, since this would be

very complex, application-specific, and beyond the purview

of a general service. Note that, short of truly understanding

each picture, and short of understanding the application’s

mission, there is no error-proof way of assessing relevance

of a picture to the mission. Hence, by necessity, we have to

settle for an imperfect scheme in exchange for a higher degree

of application-independence. A contribution of the paper,

therefore, lies in proposing and assessing the performance

of one such scheme empirically based on actual photographs

and a representative application scenario. Evaluation shows

that, despite its limitations, our scheme offers a significant

improvement over entirely content-agnostic networks.

Our scheme explicitly ranks (i.e., prioritizes) stored pictures

by their contribution to diversity and relevance, estimated in

an application-independent manner from the inferred degree

of participant interest. Hence, if for some reason there is no

opportunity to send all pictures, a greedy algorithm can simply

send the best ones by following our priority order. In the

following, we detail various aspects of our scheme. In the

discussion, we use the term picture and object interchangeably.

A. Picture Representation and Similarity Distance

A hallmark of our scheme lies in its separation between

application-specific notions of “similarity” between objects,

and the generic diversity-maximizing and outlier-eliminating

prioritization scheme. The core of that separation lies in

the definition of a distance metric, d(x, y), between content

objects x and y to denote their degree of similarity. Our

scheme does not assume any specific distance metric. In other

words, it is general in that it does not care how d(x, y) is

computed. The definition of the distance metric is, in fact, the
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primary way our scheme can be customized for the needs of

a particular mission or application scenario. Given a distance

metric, the scheme can perform better or worse, depending on

how representative this metric is of the amount of information

overlap between content objects. The metric should yield a

lower distance when there is more overlap.

For the application at hand, we argue that location plays

an important role in defining logical distance. When the

geographic distance between two pictures is beyond some

threshold, say 200m, they are physically far enough apart that

they are likely to be of different scenes, regardless of their

visual similarity (e.g., if they are both pictures of burning cars,

they are likely to involve different cars, even if the cars looked

similar). Conversely, for pictures taken from almost the same

location, it is the visual features of the respective images that

give the best clue on whether they are of the same scene or

not. Let us define T as the distance threshold beyond which

we can safely assume that the pictures taken are of different

scenes. Conversely, when pictures are taken less than distance

T apart, we consider them to be originating from (roughly)

the same location. As a means of normalization, when pictures

are geographically distant, we set their logical distance to a

value greater than 1; otherwise, we make it smaller than 1, in
which case the logical distance should be dominated by visual

difference.

Let dl(x, y) be the geographic distance between locations

of picture x and y, and let dv(x, y) be their visual distance

based on image features. We normalize the visual distance so

that 0 < dv(x, y) ≤ 1. We then combine visual similarity and

location into a single uniform logical distance metric using the

following expression:

d(x, y) =

{

1 + dl(x,y)
T

if dl(x, y) > T

dv(x, y) otherwise
(1)

A pair of pictures are said to be geographically collocated, if

the geographic distance between them is less than T , that is,
d(x, y) ≤ 1. Obviously, T depends on the application. For

example, in a city, pictures taken more than a few blocks

apart will likely be different so T is of the order of city

blocks. For an indoor deployment inside a building, T might

correspond to the size of a single room. In an exhibition setup,

say in a museum, T can be even smaller (e.g., of the order

of the neighborhood of a single exhibit in a room), because

users’ interest naturally clusters around different objects of the

granularity of single exhibits.

B. Measuring Diversity of Picture Collection

The distance metric d(x, y) allows for objects to be repre-

sented as points in a multidimensional logical space, where

the proximity of points designates the similarity between

the corresponding objects. If two points lie very close to

each other, they have information overlap, which makes them

partially redundant. The purpose of diversity maximization is

to reduce overlap among selected objects, subject to resource

constraints (e.g., limited storage size). This in turn implies

choosing points that are distant in logical space.

We further assume that there exists a certain distance

threshold beyond which there is no information overlap. Let

this constant be τ . A good estimate of τ in the case of pictures,

for example, would be τ = T . Hence, it is useful to imagine

that each object logically covers a hyper-sphere with radius τ
2

so that the spheres of two objects overlap when their distance

is smaller than τ . Overlapping spheres indicate existence of

shared information between the corresponding objects. The

volume of a sphere is called the coverage of a given object. For

an n-dimensional feature space, this volume is proportional to

τn.
Note that, due to overlap, the total coverage of a set of

objects is generally less than the sum of the coverages of the

individual objects. The total coverage of all objects in a set can

thus be treated as a quantitative estimation of the diversity of

the set. The diversity maximization problem is then to chose

a subset of objects whose total coverage is maximum, subject

to some aggregate resource constraint (e.g., storage capacity)

that limits the number of objects chosen. Figure 1 illustrates

an example case for a 2-dimensional space.

τ

π(τ/2)2

π(τ/2)2

π(τ/2)2

π(τ/2)2

(a)

τ

π(τ/2)2

(b)

Fig. 1. The object collection at (a) is more diverse than the collection at (b),
because of greater coverage. In (b), similar objects are overlapped.

In practice, pictures taken by participants would typically

fall into groups (each group representing pictures of the same

scene at the same place), such that logical distances between

pictures within the same group (or cluster) are much smaller

than those among different groups. This naturally leads to

partitioning objects into a set of clusters, so that similar objects

are grouped into the same cluster.

Coverage of a cluster follows two simple properties. First,

the coverage is non-decreasing, in the sense that as objects

are added to a cluster, coverage can only increase (or stay the

same). Second, it has a declining marginal gain in that the

expected additional coverage from adding another object to

the cluster declines as the size of the cluster grows (because

spheres become more and more overlapped). Since the cluster

is ultimately bounded in size, the infinite sum of all such

increments is bounded. It is therefore useful to approximate

this total cluster coverage, CCk , for a cluster of k objects, by

a geometric series of the form:

CCk = CC1(1 + λ+ λ2 + · · ·+ λk−1) (2)

where λ < 1. To compute a suitable value for λ in the above

equation, it is useful to consider the infinite sum of the series.

That is to say, it is useful to compute the coverage achieved

in the limit, when the cluster size is very large.
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Towards that end, consider a clustering algorithm that en-

sures that no two objects in the cluster are more than β distance

apart. Since all individual object coverage spheres are of radius
τ
2 and all objects in a cluster are within distance β, the total

volume covered by all objects inside a cluster can never exceed

the volume of a sphere of diameter τ+β, no matter how many

objects we put into the cluster. Figure 2 depicts that in a two

dimensional space with τ = β. Since coverage grows with

volume, which grows with sphere diameter, raised to the power

of the number of dimensions, in an n-dimensional space, the

cluster can cover a volume that is at most
(

τ+β
τ

)n

the volume

covered by a single object. In other words:

CC∞

CC1
=

(

τ + β

τ

)n

(3)

From Equation (2) and Equation (3), we get:
(

τ + β

τ

)n

= 1 + λ+ λ2 + · · ·∞ (4)

=
1

1− λ
From which:

λ = 1−
(

τ

τ + β

)n

(5)

2τ

τ

Fig. 2. Maximum possible coverage by a cluster.

Now, we can easily extend the notion of coverage to the

entire object collection. Let collection X contain l clusters.
Assuming clusters themselves are far enough apart from one

another, the total coverage of all clusters is simply the sum of

coverage of individual clusters. Let s(c) be the size of cluster

c. Therefore, the total coverage, that is, diversity, Ψ(X) of

collection X , is estimated by:

Ψ(X) =

l
∑

c=1

s(c)−1
∑

i=0

λi =

l
∑

c=1

1− λs(c)

1− λ
(6)

What remains is to show how the value of τ and β are

chosen. First, since objects more than distance τ apart are

considered independent, it is useful to use the same threshold

for clustering as well. In other words, we set β = τ . Ar-
guably, we want clusters to be formed among similar looking

pictures originated from the same geographic area. Pictures

from different locations, even if they look similar, should fall

into different clusters. According to our definition of distance

between pictures (Equation 1), we need to set τ < 1. Now

the question is what visual distance makes two pictures look

alike. This calls for experiments on our picture dataset. In

evaluation, we show that distance less than 0.35 happen to be

a good threshold. We therefore choose τ = 0.35.
Each node tries to maximize Ψ(X) as it maintains its

picture collection in order to hold as many diverse pictures

as possible subject storage constraints. But, not all pictures

are equally relevant to the end collection. Some are less

representative, hence outliers, which need to be eliminated.

Below, we describe how outliers are identified and handled.

C. Outlier Resilient Diversity Maximization

It turns out that clustering offers an elegant way of sep-

arating the concern of outlier detection from the concern of

diversity maximization. Intuitively, by assigning appropriate

relevance weights to clusters, we can first get rid of low-ranked

clusters (the outliers) to address relevance, then collect objects

from the remaining clusters, thereby maximizing diversity, as

per Equation (6), for only non-outlier clusters. In that sense,

relevance weights are binary; a cluster is either an outlier or

not. In the following, we explore the notion of outliers and

relevance weights more closely.

1) Outliers versus Rare Items: It is good to remind the

reader at this point that an explicit design decision we make

(for the sake of efficiency) is to refrain from techniques that

rely on understanding picture semantics in order to determine

relevance. Short of having such an understanding, we can

only approximately estimate relevance, which we do from

the behavior of data collection agents themselves. Presumably,

they are motivated to collect relevant information. Hence, if

more sources report an observation, it is more likely that the

observation is relevant. With that in mind, outlier detection

may seem very easy. For example, singleton clusters (i.e.,

those that have only one member) can be treated as outliers.

This approach, however, is not always appropriate. Sometimes

items may be isolated not because they are irrelevant and do

not generate interest, but rather because they are in the vicinity

of only very few observers. If there were more people in their

vicinity, more pictures may have been taken of them. Hence,

some consideration to the level of isolation of the location of

pictures needs to be made in outlier determination. Intuitively,

a scene should be considered an outlier not only because it

is different but because others who are present at the scene

are not taking pictures of it. This motivates our definition of

relevance weights.

To define outliers, we borrow a terminology from the data

mining community, called spatial outliers. Due to Shenkhar

et al. [2], a spatial outlier is a spatially referenced object

whose non-spatial attribute values are significantly different

from those of other spatially referenced objects in its spatial

neighborhood. Correspondingly in our context, a picture is

treated as an outlier, if it is geographically collocated with

a popular picture set, but is visually significantly different

from the group. For example, many users took a picture of

a damaged house in a certain area, but one of them took a

picture of something else which is different than the damaged

building, while remaining geographically nearby. This picture
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would then be treated as an outlier, since it somehow did not

trigger the curiosity of the other individuals in the same area.

In contrast, if an isolated picture is reported from a location

and no other pictures are taken at the same location, then it

is not treated as an outlier because we do not have enough

evidence to say it is irrelevant. Instead, we regard it as a rare

item that simply has not been found by many observers. With

that in mind, we introduce our relevance score that measures

the relevance of an item consistently with the above definition.

2) Relevance Weights of Clusters: Relevance weight of

a cluster is computed as the fraction of pictures that the

cluster represents compared to the total number of pictures

that are originated in the same geographic area. A cluster

represents all similar pictures (known to the node) from the

same location. The number of all these pictures is called

the estimated size of the cluster. If the size of a cluster is

significantly smaller than the same sizes of other clusters in

the same geographic area, then the cluster is likely to be

an outlier. It indicates that not many sources were interested

in recording that observation compared to others happening

in the same location. Consideration of all objects known to

the node, rather than only locally stored objects is important,

because it allows different nodes, particularly between two

communicating nodes, to agree on what they treat as outliers.

This information is easy to collect via gossip among nodes. We

revisit this issue when we describe our object transfer protocol

in the subsequent section.

We use the standard z-statistic to determine outliers. We

compute z-score of a cluster, denoted as z(c), as follows:

z(c) =
es(c)− es

S/
√
m

(7)

where es(c) is the estimated size of cluster c, es is the average
estimated size of m geo-collocated clusters around c and S is

the standard deviation of those sizes. A cluster is treated as an

outlier if its estimated size, es(c), is very small and z(c) < ǫ,
for some threshold ǫ < 0. The value of ǫ affects the accuracy of
detecting outliers. Smaller ǫ values can lead to false positives

(outliers are not detected) and larger ǫ leads to false negatives

(others are detected as outliers), and both are detrimental to

the end collection. In evaluation, we show the sensitivity of ǫ
on outlier detection.

III. OUTLIER RESILIENT DIVERSITY-AWARE RANKING OF

PICTURES

The main contribution of our scheme lies in implementing

diversity maximization and outlier elimination as a content

prioritization scheme that decides (i) the order in which objects

need to be dropped on a node when storage is exceeded, and

(ii) the order in which two nodes exchange content, when a

connection between them is established. Objects need to be

clustered as they arrive at a node. We describe the clustering

process followed by the two prioritization schemes.

A. Online Clustering of Pictures

We use an online agglomerative clustering technique, pro-

posed in [3], which incrementally adds new objects to existing

clusters (as well as creates new clusters and splits earlier

ones). We know that within a cluster all objects are within

distance τ from one another. In that, the distance from the

new object to all earlier objects need to be computed, which

is somewhat costly to perform per arriving object. Instead,

each cluster designates a representative object, called centroid

object, and the distance to the centroid object is computed. If

this distance is smaller than τ/2, the newly object is put to

the corresponding cluster. If there are multiple such clusters,

it is assigned to the nearest one. If there is none, the object

itself becomes a new cluster.

For a cluster c, the centroid object is denoted by µ(c).
For each object x in the cluster, we define δ(x) as its

average distance from other objects in the cluster (i.e., δ(x) =
1

s(c)

∑

y∈c d(x, y)). The object with the smallest δ is chosen

as the centroid object. We also sort objects inside a cluster

in the ascending order of their δ’s so that the centroid object

becomes the highest ranked one followed by others (ties are

broken arbitrarily). Let r(x) denote the rank of object x in

its cluster. Obviously, r(µ(c)) = 0 and 0 ≤ r(x) < s(c).
Ranking is used when objects from a cluster are chosen one

after another.

As objects are added and deleted from clusters, some objects

may violate the clustering rule (distance becomes greater than

τ ). This requires some reshuffling among clusters once in a

while. This re-clustering operation is, however, costly in terms

of computations. In ORPNet, this operation is executed offline

when nodes are not in communication with another node.

B. Prioritized Dropping of Pictures

When the storage of a node becomes full, some earlier

stored objects need to be dropped. While dropping objects, the

dropping policy tries to preserve the diversity of the collection

as much as possible, while also being resilient to outliers.

All clusters are divided into outlier and non-outlier clusters.

As argued earlier, clusters with smaller z(c) are most likely

to be outliers and hence are treated as such. The order for

picture dropping is computed as follows. First, the lowest

ranked outlier cluster is found and the lowest ranked object

is dropped from it. This continues until no outlier clusters

remain. After outliers are eliminated, the algorithm switches

to improving diversity, which requires maximizing ψ(X) for

non-outlier objects. From Equation (6), we have:

Ψ(X) =

l
∑

c=1

s(c)−1
∑

i=0

λi

=

l
∑

c=1

∑

x∈c

λr(x)

=
∑

x∈X

λr(x) (8)

That means, the object with the least λr(x) value, i.e, the

largest r(x), should be dropped first, because it causes the

least amount of decrement to Ψ(X). In other words, the lowest
ranked object from the largest cluster is dropped. Algorithm 1

gives the pseudo-code of computing the drop order. The worst
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case running time is in the order of the number of clusters

(finding the largest cluster).

More appropriately, a sorted list of objects can be main-

tained in the ascending order of their r(x)’s, and objects

are dropped from the tail of this list whenever required.

When nodes drop objects, they drop their object content only

(data payload), but store their metadata (feature vectors) for

further use, such as outlier detection. Assuming feature vectors

are very small compared to actual content, it does not add

significant storage overload at each node.

Algorithm 1 get-next-picture-to-drop()

Let C be the set of clusters at the node

Let x be the object that would be dropped next

Find cluster c+ with the smallest z(c)
if z(c+) < 0 then

/* c+ is an outlier */

x = argminx∈c+ λ
r(x)

else

Find the largest non-outlier cluster, c+, in C
x = argminx∈c+ λ

r(x)

end if

return x

C. Prioritized Transfer of Pictures

When two nodes establish a connection, they “sync” their

content. In a flooding protocol, this would be achieved by

exchanging all pictures that one node has but the other does

not, such that both end up with the same set of pictures after

the exchange. This, however, would be wasteful in resource

consumption. Instead, we aim to exchange only representative

content, suppressing both redundancy and outliers.

Each node maintains a list of meta information of all

pictures, it ever encountered or stored. At the beginning

of a connection, nodes exchange this list and update the

estimated sizes and z-scores of their respective clusters, as

described earlier. Based on z-scores, only non-outlier objects

are considered first for transferring onto the peer node. Each

one of the two nodes then determines the order at which it

should be transferring objects so that the diversity at the other

end is maximized.

Let node A meet B and A be the one who is taking the

transfer decision. The same happens at B. At first, the centroid

objects from those clusters of A are sent that would create new

clusters at B. This is because this would cause the highest

increment in B’s diversity. After that, B now has all clusters

that A has. Next, for each cluster c at A, a corresponding

cluster at B, denoted by g(c), is identified to which objects

from c will be joining (i.e., distance< τ ). If an object from c is
sent to B, it would increase B’s diversity by ∆(c) = λs(g(c)).
But the next successive objects from the same cluster would

have declining gain, each time multiplied by λ with the earlier

sent object (ordered by their ranks). So, the diversity increment

at B due to the transfer of an individual object, x, from A is:

∆(x) = λs(g(c))+r(x). Once ∆’s for all objects are computed,

A transfers objects in the descending order of their ∆(x)’s. If
pictures have large variation is their sizes, for best utilization of

transfer opportunity, the value can be normalized by the size

of the picture. Once all non-outlier clusters are considered,

outlier clusters are considered, if transfer opportunity still

allows sending more.

Algorithm 2 shows the transfer routine. Finding g(c) for

each cluster requires O(lB) computations (B has lB clusters),

so a total of O(lAlB) computations. Computing ∆(x) per

object then takes an iteration over the entire collection. So, the

total running time of Algorithm 2 is O(nA+lAlB) ≈ O(n+l2)
for a collection of n pictures with l clusters.
One last concern is the storage of metadata. Recall that

each node attempts to store metadata of all pictures that it

comes to know from other nodes, even though it may not

store them all (it stores only a representative subset). When

the number of pictures generated in the network becomes high,

the volume of these metadata also rises. This may lead to an

extra overhead of exchanging them. In order to reduce the

metadata volume, we partition all these metadata into smaller

clusters based on their distances, just like stored objects. While

exchanging metadata, nodes then send only one representative

item per cluster, called pivot, with the associated object IDs in

that cluster. Pivots efficiently summarize the metadata of all

objects known to a node. When pivots are exchanged between

two nodes, both of the nodes check whether they have the

same set of pivots (by measuring distances between them).

If not, they update their current metadata clusters and pivots

accordingly. Recent results, such as [4] that used bloom filters,

can also be investigated in this regard.

Algorithm 2 compute-transfer-order(Contact c)

Let c be a meeting between node A and B
Let A and B be the set of clusters at A and B

for all c ∈ A and c is not an outlier do

Compute g(c) = argminb∈B d(c, b), where d(c, b) < τ
Set s(g(c)) = 0, if g(c) does not exist
for all x ∈ c do
∆(x) = λs(g(c))+r(x)

end for

end for

Transfer objects in the descending order of ∆(x)

IV. EVALUATION

We simulate ORPNet in the ONE [5] simulator for a post-

disaster rescue mission. In this setting, the underlying network

is DTN, where the simulated nodes (mainly rescue workers

and volunteers) carry cameras, visit places, shoot pictures

of interest, and exchange these pictures, when they meet,

ultimately to pass them to a central command station. Most of

the simulation setting is inspired from PhotoNet [1]. PhotoNet

uses a scheme that tries to minimize redundant delivery of

pictures by choosing pictures that are most diverse. This leads

to serious vulnerabilities to outliers. We compare our major

results with PhotoNet to demonstrate that the elimination of

outliers is important for any diversity-aware content delivery

service. We also implemented ORPNet on Android phones.

Since we cannot produce a large scale physical instance of
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a network envisioned by our rescue mission, we limit our

experiments with phones only to show various timing results

performed on devices. We defer building a fully deployed

service and conducting experiments involving real humans as

future work.

Fig. 3. The city map used in the ONE simulator.

A. Simulation Environment

We use the Post-Disaster Mobility (PDM) model [6] to

simulate a participatory sensing mission in a hypothetical town

(Figure 3). PDM uses a map file to generate streets in the

simulated area, such that mobile agents use streets for moving

between destination points. PDM randomly locates a couple of

neighborhoods with houses and puts service stations, such as

rescue centers, relief camps, and police stations (specified in a

configuration file) in the map. It also places a central command

station located far away from the neighborhoods. Four types

of mobile agents are deployed: (i) vehicles that move back

and forth between service stations, (ii) rescue workers and

volunteers (mainly responsible for taking pictures) who roam

around inside a given neighborhood and occasionally report

to the nearby service stations, (iii) regular police patrols that

visit neighborhoods, and (iv) a few data mules that commute

between the command station and the different service stations

in distant neighborhoods. We create 5 neighborhoods, 10-15

service stations, nearly 100 volunteers and 5 data mules.

1) Generating Scenes and Pictures: We generate 25-50

scenes or events and associate each with a pool of pre-taken

similar-looking real pictures, a total of nearly 1000 pictures.

These pictures are actually of different landmarks/scenes in

our campus taken at different angles and zoom levels. Differ-

ent scenes have different observation popularity resulting in

varying number of similar pictures per event (following a Zipf

law distribution). In simulation, nodes visit event locations and

take one of the of pictures at random from the pre-assigned

pool. The picture is then tagged with the location of the node.

Each node is equipped with a limited storage of 5-10 MB. This

storage is obviously smaller than what a device could really

have (in GBs). As argued in [1], this is to match the scaled-

down size of our network, compared to the real size of tens of

thousands of nodes (participants in a large city) and hundred

of neighborhoods. Furthermore, we consider a network setting

with a very poor delivery ratio (only 20-30% pictures are

delivered) so that the diversity of picture collection really

matters. We use a popular DTN routing protocol, Prophet [7],

as the base packet forwarding protocol for the network and

override Prophet’s default dropping and transfer ordering as

suggested in our scheme to implement ORPNet on top of

Prophet.

2) Injecting Outliers: In our simulation, outliers are gen-

erated that are pictures of random scenes other than those

mentioned above. They are geographically collocated with

other pictures, but visually different from the rest of the

pool. In each event pool, we artificially inject some non-

relevant pictures. Figure 4 demonstrates the scene “shrubs”

with an outlier. The total number of outliers is controlled by

a parameter, called outlier ratio, which specifies what fraction

of pictures could be outliers. Unless otherwise stated, we use

15-20% outliers.

Fig. 4. Pictures pertaining to a scene “shrubs”; the rightmost one is an outlier
in this pool.

3) Similarity Distance between Pictures: For computing

distances between pictures based on visual similarity, we

used existing CBIR (Content Based Image Retrieval) tech-

niques. We used an open source lightweight library LIRe [8]

(http://www.semanticmetadata.net/) with four visual features,

namely CEDD [9] (Color and Edge Directivity Descriptor) ,

FCTH [10] (Fuzzy Color and Texture Histogram), Auto Color

Correlogram [11], JCD [12] (Joint Composite Descriptor). In

all cases, the feature is represented as global image descriptor

vectors, which are mainly histograms of one or more particular

interest in a very compact representation (CEDD and FCTH

vectors are of 54 and 72 bytes per image respectively).

Given two vectors, the distance is computed as Tanimoto

coefficient [13] defined as xT y

xTx+yT y−xT y
. Figure 5 shows

the probability density of similarity distance values computed

between pairs of similar-looking and pairs of dissimilar pic-

tures. We see that the distribution is multi-modal that enables

us to separate similar pictures from dissimilar ones. We use

JCD features for our experiments and choose the clustering

threshold, τ=0.35. Due to the Java based implementation, we

easily ported the library to Android phones.

B. Simulation Results

As a performance metric, we are interested in measuring

what fraction of relevant scenes got delivered to the command

station. We refer to this metric as scene coverage or simply

coverage in this section. We treat a scene as delivered or

covered, if at least one non-outlier picture of that scene is

reported to the command station. Delivery of outliers does not

contribute to valid coverage. ORPNet aims at preventing out-

liers from being propagated through the network and attempts

to drop them before they reach the command station.

To appreciate the significance of diversity in picture col-

lection, we begin with showing results for content-agnostic
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Fig. 5. Probability density of visual distances for between pictures.
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Fig. 6. (a) Delivery ratio and coverage of Prophet and ORPNet, (b) Delivery
across neighborhoods.

forwarding scheme (Prophet) versus our diversity-aware for-

warding scheme (ORPNet). Figure 6(a) shows the delivery

ratio of pictures (fraction of total pictures delivered irrespective

of scenes/outliers) as well as coverage of scenes in both

protocols. We see that both schemes produce nearly the same

delivery ratio (below 40%), but the coverage is very poor for

Prophet. The reason is obvious. Prophet being unaware of

similarity among pictures stores different pictures merely by

chance, whereas diversity-aware ORPNet suppresses similar

stuffs and results in higher coverage even at very scarce

resources. Figure 6(b) shows the delivery of pictures (each

point is a picture) from different neighborhoods against time.

We observe that ORPNet does a better job of distributing

pictures across neighborhoods than Prophet. The standard

deviation of the number of pictures per neighborhood is around

30 and 65 for ORPNet and Prophet respectively.

Figure 7 shows the coverage of ORPNet and PhotoNet

when transfer bandwidth and storage capacity at each node are

varied. We use separate coverage for valid scenes and outliers.

Outlier coverage means the fraction of delivered outliers out of

what generated. We see that ORPNet covers almost all scenes,

while delivering only a smaller fraction (around 20%) of out-

liers. On the contrary, PhotoNet results in almost the opposite:

it delivers almost all outliers leaving legitimate scenes behind

(valid coverage falls below 70%). This is because PhotoNet

favors different pictures which weighs outliers highly. This

deprives a whole bunch of legitimate valid scenes from being

reported to the base. Figure 7(c) shows the delivery of outliers

as outlier ratio increases. The delivery of a few outliers in

ORPNet is mainly due to the error in identifying outlier

clusters and the inclusion of outliers in valid clusters.

It would be interesting to see how robust ORPNet is in

detecting outliers. We trace all transfers of pictures across
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the nodes in the simulation and find the fraction of transfers

attributed to outliers. We term this as the ratio of outlier traffic.

ORPNet intends to suppress outliers while transferring pictures

across nodes. Figure 8(a) shows the ratio of outlier traffic

for ORPNet and PhotoNet. In PhotoNet, outlier traffic is very

high, even dominates valid traffic at some point (beyond 20%
outlier ratio). On the contrary, ORPNet is robust to outliers and

keeps outlier traffic low. This robustness, however, depends

on the accuracy of detecting outliers. Recall that outliers are

detected based on estimated sizes and z-scores of clusters,

namely z(c) < ǫ implies an outlier. We run experiments

on several values of ǫ and observe that outlier detection is

sensitive to ǫ. We also show results for an “oracle” run that

allow nodes to know truly which objects are outliers. We see

that ǫ = 0 produces the lowest outlier traffic. Figure 8(b)

shows outlier traffic at varying values of ǫ. It depicts that

as ǫ deviates around 0, outlier detection becomes weak and

both outlier traffic and outlier coverage rise. This is because

smaller ǫ leads to false positives and larger ǫ leads to false

negatives. Again, when outliers are misclassified, they are

given higher priority than others at the time of exchanging

pictures (generally, because of their smaller cluster size).

That’s why false positives lead to higher outlier coverage than

false negatives. In all of our experiments, we use ǫ = 0.

C. Phone-based Implementation

We implemented ORPNet on Android phones (Google

Nexus S) and evaluated results that are crucial for running

the service on phones. These are mostly timing values for

various computations invoked by ORPNet. We also compare

the results with PhotoNet.

We generate timing results for several computational cases.

The first timing value we measure is the clustering time, the

time taken by a new picture when it is inserted into one of

the clusters of the collection. Recall that in our scheme the

clustering operation is online, that is, the insertion is executed

immediately upon the arrival of the picture. Also, clusters are

reorganized once in a while that requires another computation.

Moreover, recall that, in our scheme, when an object is added

to an existing cluster, the distance is measured only to the

centroid object of the cluster. We refer to this as the centroid

scheme. In ideal approach, distances to all objects in a cluster

need to be measured (all-pair scheme). We produce the timing

results for these two cases. In all cases, we produce the median

values over 100 runs.

Figure 9(a) shows delays for clustering and re-clustering.

We see that for inserting an item, centroid scheme results

in smaller delay (less than 2ms per 100 pictures), whereas
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Fig. 9. Time for (a) adding a new item and re-clustering, (b) computing transfer order, (c) determining the next picture to drop.

all-pair scheme produces larger delay (nearly 20ms). On the

contrary, re-clustering time is longer for centroid scheme

compared to the all-pair scheme. This is because centroid

distance introduces more distortions into clusters, which in

turn requires more shuffles during re-clustering. In all-pair

scheme, however, clusters are more accurate and they need

less shuffle afterward, but the cost for each insertion is high

to begin with. Since ORPNet applies online clustering, it uses

centroid scheme and defers the costly reshuffle operation to

offline, when nodes are not in communication with others

(DTN-style communication allows that).

Next, we observe delays for computing transfer order and

dropping order of pictures. Unlike OPRNet, which effec-

tively ranks clusters (O(n+ l2) computations), PhotoNet does

the same for each picture by measuring pair-wise distances

(O(n2)), where l and n is the number of pictures and clusters

respectively. It turns out that checking all pictures one by

one is very expensive. Figure 9(b) shows delays of computing

transfer order of pictures. We see that the time for computing

transfer order in ORPNet does not change much as the number

of pictures grows, whereas for PhotoNet it grows constantly.

This is because the number of clusters changes far slowly

than the number of objects. Figure 9(c) presents the same

results for dropping pictures. ORPNet takes magnitude order

of smaller time to determine the next picture to drop compared

to PhotoNet, again due to clustering.

V. RELATED WORK

Camera sensor networks have received great attention over

recent years. This is due to rapid advances in camera technolo-

gies enabling camera embedded sensor platforms, and, more

specifically, due to the inevitable availability of cameras in

almost all mobile phones these days. Camera based sensor

platforms focused image recognition and activity recognition

([14]) that have applications to surveillance [15], habitat mon-

itoring [16], security systems [17], and assisted living [18].

As cameras are becoming more ubiquitous in recent years, a

set of participatory applications, in the form of “urban image

sensing”, are also emerged, such as microblogging ([19])

and telemedicine (e.g. documenting diets [20]). Soro et al.

[21] make a comprehensive survey of recent camera sensor

networks and their applications.

There have been works on mobile phone-based data collec-

tion and retrieval system. Works proposed in [22] and [23]

use 3G networks on mobile phones, vehicle based DTNs, and

available nearby WiFi access points to transfer HTML pages

against user queries. Cartel project [24] develops a mobile

sensing system, in the form of a Web portal service, where

vehicles sense, record and submit data to a central database.

A distributed image retrieval service on a sensor platform is

proposed in [25].

Information retrieval (IR) community has worked at length

on information retrieval system that considers redundancy and

novelty of retrieved information ([26], [27], [28], [29]). In

most cases, these works are for text documents. Content-

based image retrieval systems ([30], [31]) work for querying

images from a set of given pool of images. These services

mainly index an initial collection of pictures at the server and

then return images that are visually very close to the queried

image. Although we borrow techniques from literature for

computing image similarity, our contribution lies in in-network

implementation of the service. In that, most challenges arise

due to redundancy injected by similar pictures residing in

different nodes and the existence of outliers scattered over

the network.

For evaluation purpose, we run the service over a DTN.

DTN routing protocols usually replicate messages onto other

nodes to increase message delivery. A few notable routing

protocols are, Prophet [7], MaxProp [32], Delegation rout-

ing [33], RAPID [34], Spray and Wait [35], EBR [36] and

IC-Routing [37]. Our scheme of content synchronization is,

however, routing protocol agnostic, in that, it can be used in
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association with any routing protocol underneath.

VI. CONCLUSION AND FUTURE WORK

In this paper, we developed a scheme for delivering a

representative subset of pictures from a larger pool in a

participatory camera sensor network, where many pictures

may be redundant and some may not be relevant. Heuristics

were developed that balance outlier elimination and diversity

maximization to achieve better coverage with the lowest

number of pictures. The service was shown to offer a much

higher coverage compared to previous work that focused

on diversity maximization alone without outlier elimination.

This is because outliers, by their very nature, are diverse,

and hence (incorrectly) favored by diversity-maximizing algo-

rithms. Future work on this topic will consider integration of

our mechanisms with network caching in applications where

content is requested by multiple sinks. Another direction is to

extend the scheme with an estimation of source reliability, such

that content prioritization is affected by reliability estimates.

For example, pictures sent from unique locations by unreliable

sources need not be considered. An experimental evaluation of

the service deployed on Android phones is another direction

of future work.
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