34 research outputs found

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Mismatched Processing for Radar Interference Cancellation

    Get PDF
    Matched processing is a fundamental filtering operation within radar signal processing to estimate scattering in the radar scene based on the transmit signal. Although matched processing maximizes the signal-to-noise ratio (SNR), the filtering operation is ineffective when interference is captured in the receive measurement. Adaptive interference mitigation combined with matched processing has proven to mitigate interference and estimate the radar scene. A known caveat of matched processing is the resulting sidelobes that may mask other scatterers. The sidelobes can be efficiently addressed by windowing but this approach also comes with limited suppression capabilities, loss in resolution, and loss in SNR. The recent emergence of mismatch processing has shown to optimally reduce sidelobes while maintaining nominal resolution and signal estimation performance. Throughout this work, re-iterative minimum-mean square error (RMMSE) adaptive and least-squares (LS) optimal mismatch processing are proposed for enhanced signal estimation in unison with adaptive interference mitigation for various radar applications including random pulse repetition interval (PRI) staggering pulse-Doppler radar, airborne ground moving target indication, and radar & communication spectrum sharing. Mismatch processing and adaptive interference cancellation each can be computationally complex for practical implementation. Sub-optimal RMMSE and LS approaches are also introduced to address computational limitations. The efficacy of these algorithms is presented using various high-fidelity Monte Carlo simulations and open-air experimental datasets

    Advanced Techniques for Ground Penetrating Radar Imaging

    Get PDF
    Ground penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in non-destructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR for NDT has been successfully introduced in a wide range of sectors, such as mining and geology, glaciology, civil engineering and civil works, archaeology, and security and defense. In recent decades, improvements in georeferencing and positioning systems have enabled the introduction of synthetic aperture radar (SAR) techniques in GPR systems, yielding GPR–SAR systems capable of providing high-resolution microwave images. In parallel, the radiofrequency front-end of GPR systems has been optimized in terms of compactness (e.g., smaller Tx/Rx antennas) and cost. These advances, combined with improvements in autonomous platforms, such as unmanned terrestrial and aerial vehicles, have fostered new fields of application for GPR, where fast and reliable detection capabilities are demanded. In addition, processing techniques have been improved, taking advantage of the research conducted in related fields like inverse scattering and imaging. As a result, novel and robust algorithms have been developed for clutter reduction, automatic target recognition, and efficient processing of large sets of measurements to enable real-time imaging, among others. This Special Issue provides an overview of the state of the art in GPR imaging, focusing on the latest advances from both hardware and software perspectives

    IoT Applications Computing

    Get PDF
    The evolution of emerging and innovative technologies based on Industry 4.0 concepts are transforming society and industry into a fully digitized and networked globe. Sensing, communications, and computing embedded with ambient intelligence are at the heart of the Internet of Things (IoT), the Industrial Internet of Things (IIoT), and Industry 4.0 technologies with expanding applications in manufacturing, transportation, health, building automation, agriculture, and the environment. It is expected that the emerging technology clusters of ambient intelligence computing will not only transform modern industry but also advance societal health and wellness, as well as and make the environment more sustainable. This book uses an interdisciplinary approach to explain the complex issue of scientific and technological innovations largely based on intelligent computing

    one6G white paper, 6G technology overview:Second Edition, November 2022

    Get PDF
    6G is supposed to address the demands for consumption of mobile networking services in 2030 and beyond. These are characterized by a variety of diverse, often conflicting requirements, from technical ones such as extremely high data rates, unprecedented scale of communicating devices, high coverage, low communicating latency, flexibility of extension, etc., to non-technical ones such as enabling sustainable growth of the society as a whole, e.g., through energy efficiency of deployed networks. On the one hand, 6G is expected to fulfil all these individual requirements, extending thus the limits set by the previous generations of mobile networks (e.g., ten times lower latencies, or hundred times higher data rates than in 5G). On the other hand, 6G should also enable use cases characterized by combinations of these requirements never seen before, e.g., both extremely high data rates and extremely low communication latency). In this white paper, we give an overview of the key enabling technologies that constitute the pillars for the evolution towards 6G. They include: terahertz frequencies (Section 1), 6G radio access (Section 2), next generation MIMO (Section 3), integrated sensing and communication (Section 4), distributed and federated artificial intelligence (Section 5), intelligent user plane (Section 6) and flexible programmable infrastructures (Section 7). For each enabling technology, we first give the background on how and why the technology is relevant to 6G, backed up by a number of relevant use cases. After that, we describe the technology in detail, outline the key problems and difficulties, and give a comprehensive overview of the state of the art in that technology. 6G is, however, not limited to these seven technologies. They merely present our current understanding of the technological environment in which 6G is being born. Future versions of this white paper may include other relevant technologies too, as well as discuss how these technologies can be glued together in a coherent system

    Smart Sensor Technologies for IoT

    Get PDF
    The recent development in wireless networks and devices has led to novel services that will utilize wireless communication on a new level. Much effort and resources have been dedicated to establishing new communication networks that will support machine-to-machine communication and the Internet of Things (IoT). In these systems, various smart and sensory devices are deployed and connected, enabling large amounts of data to be streamed. Smart services represent new trends in mobile services, i.e., a completely new spectrum of context-aware, personalized, and intelligent services and applications. A variety of existing services utilize information about the position of the user or mobile device. The position of mobile devices is often achieved using the Global Navigation Satellite System (GNSS) chips that are integrated into all modern mobile devices (smartphones). However, GNSS is not always a reliable source of position estimates due to multipath propagation and signal blockage. Moreover, integrating GNSS chips into all devices might have a negative impact on the battery life of future IoT applications. Therefore, alternative solutions to position estimation should be investigated and implemented in IoT applications. This Special Issue, “Smart Sensor Technologies for IoT” aims to report on some of the recent research efforts on this increasingly important topic. The twelve accepted papers in this issue cover various aspects of Smart Sensor Technologies for IoT

    Microwave Sensing and Imaging

    Get PDF
    In recent years, microwave sensing and imaging have acquired an ever-growing importance in several applicative fields, such as non-destructive evaluations in industry and civil engineering, subsurface prospection, security, and biomedical imaging. Indeed, microwave techniques allow, in principle, for information to be obtained directly regarding the physical parameters of the inspected targets (dielectric properties, shape, etc.) by using safe electromagnetic radiations and cost-effective systems. Consequently, a great deal of research activity has recently been devoted to the development of efficient/reliable measurement systems, which are effective data processing algorithms that can be used to solve the underlying electromagnetic inverse scattering problem, and efficient forward solvers to model electromagnetic interactions. Within this framework, this Special Issue aims to provide some insights into recent microwave sensing and imaging systems and techniques

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin
    corecore