51,392 research outputs found

    Reducing the complexity of virtual machine networking

    Get PDF
    Virtualization is an enabling technology that improves scalability, reliability, and flexibility. Virtualized networking is tackled by emulating or paravirtualizing network interface cards. This approach, however, leads to complexities (implementation and management) and has to conform to some limitations imposed by the Ethernet standard. RINA turns the current approach to virtualized networking on its head: instead of emulating networks to perform inter-process communication on a single processing system, it sees networking as an extension to local inter-process communication. In this article, we show how RINA can leverage a paravirtualization approach to achieve a more manageable solution for virtualized networking. We also present experimental results performed on IRATI, the reference open source implementation of RINA, which shows the potential performance that can be achieved by deploying our solution

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    An Algorithm for Network and Data-aware Placement of Multi-Tier Applications in Cloud Data Centers

    Full text link
    Today's Cloud applications are dominated by composite applications comprising multiple computing and data components with strong communication correlations among them. Although Cloud providers are deploying large number of computing and storage devices to address the ever increasing demand for computing and storage resources, network resource demands are emerging as one of the key areas of performance bottleneck. This paper addresses network-aware placement of virtual components (computing and data) of multi-tier applications in data centers and formally defines the placement as an optimization problem. The simultaneous placement of Virtual Machines and data blocks aims at reducing the network overhead of the data center network infrastructure. A greedy heuristic is proposed for the on-demand application components placement that localizes network traffic in the data center interconnect. Such optimization helps reducing communication overhead in upper layer network switches that will eventually reduce the overall traffic volume across the data center. This, in turn, will help reducing packet transmission delay, increasing network performance, and minimizing the energy consumption of network components. Experimental results demonstrate performance superiority of the proposed algorithm over other approaches where it outperforms the state-of-the-art network-aware application placement algorithm across all performance metrics by reducing the average network cost up to 67% and network usage at core switches up to 84%, as well as increasing the average number of application deployments up to 18%.Comment: Submitted for publication consideration for the Journal of Network and Computer Applications (JNCA). Total page: 28. Number of figures: 15 figure
    • …
    corecore