7,499 research outputs found

    Accuracy, Scalability, and Efficiency of Mixed-Element USM3D for Benchmark Three-Dimensional Flows

    Get PDF
    The unstructured, mixed-element, cell-centered, finite-volume flow solver USM3D is enhanced with new capabilities including parallelization, line generation for general unstructured grids, improved discretization scheme, and optimized iterative solver. The paper reports on the new developments to the flow solver and assesses the accuracy, scalability, and efficiency. The USM3D assessments are conducted using a baseline method and the recent hierarchical adaptive nonlinear iteration method framework. Two benchmark turbulent flows, namely, a subsonic separated flow around a three-dimensional hemisphere-cylinder configuration and a transonic flow around the ONERA M6 wing are considered

    Some recent applications of Navier-Stokes codes to rotorcraft

    Get PDF
    Many operational limitations of helicopters and other rotary-wing aircraft are due to nonlinear aerodynamic phenomena incuding unsteady, three-dimensional transonic and separated flow near the surfaces and highly vortical flow in the wakes of rotating blades. Modern computational fluid dynamics (CFD) technology offers new tools to study and simulate these complex flows. However, existing Euler and Navier-Stokes codes have to be modified significantly for rotorcraft applications, and the enormous computational requirements presently limit their use in routine design applications. Nevertheless, the Euler/Navier-Stokes technology is progressing in anticipation of future supercomputers that will enable meaningful calculations to be made for complete rotorcraft configurations

    Recent Advances in Graph Partitioning

    Full text link
    We survey recent trends in practical algorithms for balanced graph partitioning together with applications and future research directions

    Heat and moisture insulation by means of air curtains: application to refrigerated chambers

    Get PDF
    The present study is devoted to the determination of the efficiency of air curtain units (ACUs) applied to heat and moisture insulation of refrigerated chambers. A detailed study of the fluid dynamics and heat and mass transfer of the ACU in the refrigerated space and the external ambient is carried out by means of large eddy simulations (LES). The heat and moisture entrainment through the doorway and their transport inside the inner space are fully described. Three different configurations are studied: non-recirculating, recirculating and twin-jet air curtains. The condensation produced in the cool walls of the refrigerated space is evaluated considering the warm humid air from the ambient which penetrates inside the chamber through the doorway. The influence of both the discharge velocities and the discharge angles on the sealing capabilities of the three different tested ACU configurations is determined.Peer ReviewedPostprint (author's final draft

    Numerical analysis of conservative unstructured discretisations for low Mach flows

    Get PDF
    This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. https://authorservices.wiley.com/author-resources/Journal-Authors/licensing-and-open-access/open-access/self-archiving.htmlUnstructured meshes allow easily representing complex geometries and to refine in regions of interest without adding control volumes in unnecessary regions. However, numerical schemes used on unstructured grids have to be properly defined in order to minimise numerical errors. An assessment of a low-Mach algorithm for laminar and turbulent flows on unstructured meshes using collocated and staggered formulations is presented. For staggered formulations using cell centred velocity reconstructions the standard first-order method is shown to be inaccurate in low Mach flows on unstructured grids. A recently proposed least squares procedure for incompressible flows is extended to the low Mach regime and shown to significantly improve the behaviour of the algorithm. Regarding collocated discretisations, the odd-even pressure decoupling is handled through a kinetic energy conserving flux interpolation scheme. This approach is shown to efficiently handle variable-density flows. Besides, different face interpolations schemes for unstructured meshes are analysed. A kinetic energy preserving scheme is applied to the momentum equations, namely the Symmetry-Preserving (SP) scheme. Furthermore, a new approach to define the far-neighbouring nodes of the QUICK scheme is presented and analysed. The method is suitable for both structured and unstructured grids, either uniform or not. The proposed algorithm and the spatial schemes are assessed against a function reconstruction, a differentially heated cavity and a turbulent self-igniting diffusion flame. It is shown that the proposed algorithm accurately represents unsteady variable-density flows. Furthermore, the QUICK schemes shows close to second order behaviour on unstructured meshes and the SP is reliably used in all computations.Peer ReviewedPostprint (author's final draft

    Optimal, scalable forward models for computing gravity anomalies

    Full text link
    We describe three approaches for computing a gravity signal from a density anomaly. The first approach consists of the classical "summation" technique, whilst the remaining two methods solve the Poisson problem for the gravitational potential using either a Finite Element (FE) discretization employing a multilevel preconditioner, or a Green's function evaluated with the Fast Multipole Method (FMM). The methods utilizing the PDE formulation described here differ from previously published approaches used in gravity modeling in that they are optimal, implying that both the memory and computational time required scale linearly with respect to the number of unknowns in the potential field. Additionally, all of the implementations presented here are developed such that the computations can be performed in a massively parallel, distributed memory computing environment. Through numerical experiments, we compare the methods on the basis of their discretization error, CPU time and parallel scalability. We demonstrate the parallel scalability of all these techniques by running forward models with up to 10810^8 voxels on 1000's of cores.Comment: 38 pages, 13 figures; accepted by Geophysical Journal Internationa
    • …
    corecore