27 research outputs found

    Adaptation-Aware Architecture Modeling and Analysis of Energy Efficiency for Software Systems

    Get PDF
    This thesis presents an approach for the design time analysis of energy efficiency for static and self-adaptive software systems. The quality characteristics of a software system, such as performance and operating costs, strongly depend upon its architecture. Software architecture is a high-level view on software artifacts that reflects essential quality characteristics of a system under design. Design decisions made on an architectural level have a decisive impact on the quality of a system. Revising architectural design decisions late into development requires significant effort. Architectural analyses allow software architects to reason about the impact of design decisions on quality, based on an architectural description of the system. An essential quality goal is the reduction of cost while maintaining other quality goals. Power consumption accounts for a significant part of the Total Cost of Ownership (TCO) of data centers. In 2010, data centers contributed 1.3% of the world-wide power consumption. However, reasoning on the energy efficiency of software systems is excluded from the systematic analysis of software architectures at design time. Energy efficiency can only be evaluated once the system is deployed and operational. One approach to reduce power consumption or cost is the introduction of self-adaptivity to a software system. Self-adaptive software systems execute adaptations to provision costly resources dependent on user load. The execution of reconfigurations can increase energy efficiency and reduce cost. If performed improperly, however, the additional resources required to execute a reconfiguration may exceed their positive effect. Existing architecture-level energy analysis approaches offer limited accuracy or only consider a limited set of system features, e.g., the used communication style. Predictive approaches from the embedded systems and Cloud Computing domain operate on an abstraction that is not suited for architectural analysis. The execution of adaptations can consume additional resources. The additional consumption can reduce performance and energy efficiency. Design time quality analyses for self-adaptive software systems ignore this transient effect of adaptations. This thesis makes the following contributions to enable the systematic consideration of energy efficiency in the architectural design of self-adaptive software systems: First, it presents a modeling language that captures power consumption characteristics on an architectural abstraction level. Second, it introduces an energy efficiency analysis approach that uses instances of our power consumption modeling language in combination with existing performance analyses for architecture models. The developed analysis supports reasoning on energy efficiency for static and self-adaptive software systems. Third, to ease the specification of power consumption characteristics, we provide a method for extracting power models for server environments. The method encompasses an automated profiling of servers based on a set of restrictions defined by the user. A model training framework extracts a set of power models specified in our modeling language from the resulting profile. The method ranks the trained power models based on their predicted accuracy. Lastly, this thesis introduces a systematic modeling and analysis approach for considering transient effects in design time quality analyses. The approach explicitly models inter-dependencies between reconfigurations, performance and power consumption. We provide a formalization of the execution semantics of the model. Additionally, we discuss how our approach can be integrated with existing quality analyses of self-adaptive software systems. We validated the accuracy, applicability, and appropriateness of our approach in a variety of case studies. The first two case studies investigated the accuracy and appropriateness of our modeling and analysis approach. The first study evaluated the impact of design decisions on the energy efficiency of a media hosting application. The energy consumption predictions achieved an absolute error lower than 5.5% across different user loads. Our approach predicted the relative impact of the design decision on energy efficiency with an error of less than 18.94%. The second case study used two variants of the Spring-based community case study system PetClinic. The case study complements the accuracy and appropriateness evaluation of our modeling and analysis approach. We were able to predict the energy consumption of both variants with an absolute error of no more than 2.38%. In contrast to the first case study, we derived all models automatically, using our power model extraction framework, as well as an extraction framework for performance models. The third case study applied our model-based prediction to evaluate the effect of different self-adaptation algorithms on energy efficiency. It involved scientific workloads executed in a virtualized environment. Our approach predicted the energy consumption with an error below 7.1%, even though we used coarse grained measurement data of low accuracy to train the input models. The fourth case study evaluated the appropriateness and accuracy of the automated model extraction method using a set of Big Data and enterprise workloads. Our method produced power models with prediction errors below 5.9%. A secondary study evaluated the accuracy of extracted power models for different Virtual Machine (VM) migration scenarios. The results of the fifth case study showed that our approach for modeling transient effects improved the prediction accuracy for a horizontally scaling application. Leveraging the improved accuracy, we were able to identify design deficiencies of the application that otherwise would have remained unnoticed

    Security and trust in cloud computing and IoT through applying obfuscation, diversification, and trusted computing technologies

    Get PDF
    Cloud computing and Internet of Things (IoT) are very widely spread and commonly used technologies nowadays. The advanced services offered by cloud computing have made it a highly demanded technology. Enterprises and businesses are more and more relying on the cloud to deliver services to their customers. The prevalent use of cloud means that more data is stored outside the organization’s premises, which raises concerns about the security and privacy of the stored and processed data. This highlights the significance of effective security practices to secure the cloud infrastructure. The number of IoT devices is growing rapidly and the technology is being employed in a wide range of sectors including smart healthcare, industry automation, and smart environments. These devices collect and exchange a great deal of information, some of which may contain critical and personal data of the users of the device. Hence, it is highly significant to protect the collected and shared data over the network; notwithstanding, the studies signify that attacks on these devices are increasing, while a high percentage of IoT devices lack proper security measures to protect the devices, the data, and the privacy of the users. In this dissertation, we study the security of cloud computing and IoT and propose software-based security approaches supported by the hardware-based technologies to provide robust measures for enhancing the security of these environments. To achieve this goal, we use obfuscation and diversification as the potential software security techniques. Code obfuscation protects the software from malicious reverse engineering and diversification mitigates the risk of large-scale exploits. We study trusted computing and Trusted Execution Environments (TEE) as the hardware-based security solutions. Trusted Platform Module (TPM) provides security and trust through a hardware root of trust, and assures the integrity of a platform. We also study Intel SGX which is a TEE solution that guarantees the integrity and confidentiality of the code and data loaded onto its protected container, enclave. More precisely, through obfuscation and diversification of the operating systems and APIs of the IoT devices, we secure them at the application level, and by obfuscation and diversification of the communication protocols, we protect the communication of data between them at the network level. For securing the cloud computing, we employ obfuscation and diversification techniques for securing the cloud computing software at the client-side. For an enhanced level of security, we employ hardware-based security solutions, TPM and SGX. These solutions, in addition to security, ensure layered trust in various layers from hardware to the application. As the result of this PhD research, this dissertation addresses a number of security risks targeting IoT and cloud computing through the delivered publications and presents a brief outlook on the future research directions.Pilvilaskenta ja esineiden internet ovat nykyään hyvin tavallisia ja laajasti sovellettuja tekniikkoja. Pilvilaskennan pitkälle kehittyneet palvelut ovat tehneet siitä hyvin kysytyn teknologian. Yritykset enenevässä määrin nojaavat pilviteknologiaan toteuttaessaan palveluita asiakkailleen. Vallitsevassa pilviteknologian soveltamistilanteessa yritykset ulkoistavat tietojensa käsittelyä yrityksen ulkopuolelle, minkä voidaan nähdä nostavan esiin huolia taltioitavan ja käsiteltävän tiedon turvallisuudesta ja yksityisyydestä. Tämä korostaa tehokkaiden turvallisuusratkaisujen merkitystä osana pilvi-infrastruktuurin turvaamista. Esineiden internet -laitteiden lukumäärä on nopeasti kasvanut. Teknologiana sitä sovelletaan laajasti monilla sektoreilla, kuten älykkäässä terveydenhuollossa, teollisuusautomaatiossa ja älytiloissa. Sellaiset laitteet keräävät ja välittävät suuria määriä informaatiota, joka voi sisältää laitteiden käyttäjien kannalta kriittistä ja yksityistä tietoa. Tästä syystä johtuen on erittäin merkityksellistä suojata verkon yli kerättävää ja jaettavaa tietoa. Monet tutkimukset osoittavat esineiden internet -laitteisiin kohdistuvien tietoturvahyökkäysten määrän olevan nousussa, ja samaan aikaan suuri osuus näistä laitteista ei omaa kunnollisia teknisiä ominaisuuksia itse laitteiden tai niiden käyttäjien yksityisen tiedon suojaamiseksi. Tässä väitöskirjassa tutkitaan pilvilaskennan sekä esineiden internetin tietoturvaa ja esitetään ohjelmistopohjaisia tietoturvalähestymistapoja turvautumalla osittain laitteistopohjaisiin teknologioihin. Esitetyt lähestymistavat tarjoavat vankkoja keinoja tietoturvallisuuden kohentamiseksi näissä konteksteissa. Tämän saavuttamiseksi työssä sovelletaan obfuskaatiota ja diversifiointia potentiaalisiana ohjelmistopohjaisina tietoturvatekniikkoina. Suoritettavan koodin obfuskointi suojaa pahantahtoiselta ohjelmiston takaisinmallinnukselta ja diversifiointi torjuu tietoturva-aukkojen laaja-alaisen hyödyntämisen riskiä. Väitöskirjatyössä tutkitaan luotettua laskentaa ja luotettavan laskennan suoritusalustoja laitteistopohjaisina tietoturvaratkaisuina. TPM (Trusted Platform Module) tarjoaa turvallisuutta ja luottamuksellisuutta rakentuen laitteistopohjaiseen luottamukseen. Pyrkimyksenä on taata suoritusalustan eheys. Työssä tutkitaan myös Intel SGX:ää yhtenä luotettavan suorituksen suoritusalustana, joka takaa suoritettavan koodin ja datan eheyden sekä luottamuksellisuuden pohjautuen suojatun säiliön, saarekkeen, tekniseen toteutukseen. Tarkemmin ilmaistuna työssä turvataan käyttöjärjestelmä- ja sovellusrajapintatasojen obfuskaation ja diversifioinnin kautta esineiden internet -laitteiden ohjelmistokerrosta. Soveltamalla samoja tekniikoita protokollakerrokseen, työssä suojataan laitteiden välistä tiedonvaihtoa verkkotasolla. Pilvilaskennan turvaamiseksi työssä sovelletaan obfuskaatio ja diversifiointitekniikoita asiakaspuolen ohjelmistoratkaisuihin. Vankemman tietoturvallisuuden saavuttamiseksi työssä hyödynnetään laitteistopohjaisia TPM- ja SGX-ratkaisuja. Tietoturvallisuuden lisäksi nämä ratkaisut tarjoavat monikerroksisen luottamuksen rakentuen laitteistotasolta ohjelmistokerrokseen asti. Tämän väitöskirjatutkimustyön tuloksena, osajulkaisuiden kautta, vastataan moniin esineiden internet -laitteisiin ja pilvilaskentaan kohdistuviin tietoturvauhkiin. Työssä esitetään myös näkemyksiä jatkotutkimusaiheista

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security

    Европейский и национальный контексты в научных исследованиях

    Get PDF
    В настоящем электронном сборнике «Европейский и национальный контексты в научных исследованиях. Технология» представлены работы молодых ученых по геодезии и картографии, химической технологии и машиностроению, информационным технологиям, строительству и радиотехнике. Предназначены для работников образования, науки и производства. Будут полезны студентам, магистрантам и аспирантам университетов.=In this Electronic collected materials “National and European dimension in research. Technology” works in the fields of geodesy, chemical technology, mechanical engineering, information technology, civil engineering, and radio-engineering are presented. It is intended for trainers, researchers and professionals. It can be useful for university graduate and post-graduate students

    Optimization of Pattern Matching Algorithms for Multi- and Many-Core Platforms

    Get PDF
    Image and video compression play a major role in the world today, allowing the storage and transmission of large multimedia content volumes. However, the processing of this information requires high computational resources, hence the improvement of the computational performance of these compression algorithms is very important. The Multidimensional Multiscale Parser (MMP) is a pattern-matching-based compression algorithm for multimedia contents, namely images, achieving high compression ratios, maintaining good image quality, Rodrigues et al. [2008]. However, in comparison with other existing algorithms, this algorithm takes some time to execute. Therefore, two parallel implementations for GPUs were proposed by Ribeiro [2016] and Silva [2015] in CUDA and OpenCL-GPU, respectively. In this dissertation, to complement the referred work, we propose two parallel versions that run the MMP algorithm in CPU: one resorting to OpenMP and another that converts the existing OpenCL-GPU into OpenCL-CPU. The proposed solutions are able to improve the computational performance of MMP by 3 and 2:7 , respectively. The High Efficiency Video Coding (HEVC/H.265) is the most recent standard for compression of image and video. Its impressive compression performance, makes it a target for many adaptations, particularly for holoscopic image/video processing (or light field). Some of the proposed modifications to encode this new multimedia content are based on geometry-based disparity compensations (SS), developed by Conti et al. [2014], and a Geometric Transformations (GT) module, proposed by Monteiro et al. [2015]. These compression algorithms for holoscopic images based on HEVC present an implementation of specific search for similar micro-images that is more efficient than the one performed by HEVC, but its implementation is considerably slower than HEVC. In order to enable better execution times, we choose to use the OpenCL API as the GPU enabling language in order to increase the module performance. With its most costly setting, we are able to reduce the GT module execution time from 6.9 days to less then 4 hours, effectively attaining a speedup of 45

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words

    Adaptation-Aware Architecture Modeling and Analysis of Energy Efficiency for Software Systems

    Get PDF
    This work presents an approach for the architecture analysis of energy efficiency for static and self-adaptive software systems. It introduces a modeling language that captures consumption characteristics on an architectural level. The outlined analysis predicts the energy efficiency of systems described with this language. Lastly, this work introduces an approach for considering transient effects in design time architecture analyses

    XSEDE: eXtreme Science and Engineering Discovery Environment Third Quarter 2012 Report

    Get PDF
    The Extreme Science and Engineering Discovery Environment (XSEDE) is the most advanced, powerful, and robust collection of integrated digital resources and services in the world. It is an integrated cyberinfrastructure ecosystem with singular interfaces for allocations, support, and other key services that researchers can use to interactively share computing resources, data, and expertise.This a report of project activities and highlights from the third quarter of 2012.National Science Foundation, OCI-105357

    Second Screen Applications: A Multi-Platform Software Development Kit and Optimization of Human-Computer Interaction in Distributed Systems

    Get PDF
    This dissertation addresses various aspects of the term second screen and the challenges involved in the development of this type of application. The term and its characteristics have been clearly delineate by the means of a structured review of literature of 65 publications and an analysis of 19 currently available commercial applications. Furthermore, a content and technical classification were created to facilitate communication and the positing of future research activity in this area. The development of second screen applications is currently associated with a high effort, caused by the redundant implementation of multiple software platforms on both first and second screen side. In order to counteract this double multi-platform problem, an SDK was developed that facilitates the connection and communication process between the different application parts. The functionality of this 2ndS SDK was evaluated as reliable and performant and proven in several functional prototypes, which also served the purpose to examine existing and new forms of second screen interaction. In addition to addressing the technical challenges involved in the development of second screen applications, this work presents several results regarding the optimization of human-computer interaction in this type of application. These include a collection of 55 application components raised and validated in a mixed-method approach and insights into the attention behavior in such scenarios with corresponding recommendations derived from two eye-tracking studies. Furthermore, were concrete design guidelines from existing sources abstracted and evaluated with the help of a user study, and heuristics derived for the domain second screen and extended to a checklist for the efficient identification of problems. The results presented in this work are intended to be used in a usercentered design process and aim to ease the development of second screen applications with optimized interaction, and thereby contribute to their awareness and further distribution
    corecore