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Resumo

A compressao de imagem e video desempenha um papel importante no mundo de
hoje, permitindo o armazenamento e transmissao de grandes quantidade de contetdos
multimédia. No entanto, o processamento desta informagao exige elevados recursos
computacionais, pelo que a optimizacao do desempenho computacional dos algoritmos

de compressao tem um papel muito importante.

O Multidimensional Multiscale Parser (MMP) ¢ um algoritmo de compressao de
padroes que permite comprimir conteidos multimédia, nomeadamente imagens, al-
cancando uma boa taxa de compressao enquanto mantém boa qualidade de imagem
Rodrigues et al. [2008]. Porém, este algoritmo demora algum tempo para executar, em
comparacao com outros algoritmos existentes para o mesmo efeito. Assim sendo, duas
implementagoes paralelas para GPUs foram propostas por Ribeiro| [2016] e Silva; [2015]
em CUDA e OpenCL-GPU, respectivamente. Nesta dissertacao, em complemento aos
trabalhos referidos, sao propostas duas versoes paralelas que executam o algoritmo
MMP em CPU: uma recorrendo ao OpenMP e outra convertendo a implementagao
OpenCL-GPU existente para OpenCL-CPU. As solugoes propostas conseguem melho-

rar o desempenho computacional do MMP em 3x e 2.7x, respectivamente.

O High Efficiency Video Coding (HEVC/H.265) é a norma mais recente para cod-
ificacao de video 2D amplamente utilizado. Sendo por isso alvo de muitas adaptacoes,
nomeadamente para o processamento de imagem/video holoscopico (ou light field).
Algumas das modificagoes propostas para codificar os novos contetidos multimédia
baseiam-se em compensagoes de disparidade baseadas em geometria (SS), desenvolvidas
por Conti et al|[2014], e um mo6dulo de Transformagoes Geométricas (GT), proposto
por Monteiro et al|[2015]. Este algoritmo para compressao de imagens holoscopicas
baseado no HEVC, apresenta uma implementacao especifica para pesquisar micro-
imagens similares de uma maneira mais eficiente que a efetuada pelo HEVC mas a sua
execugao ¢é consideravelmente mais lenta que o HEVC. Com o objetivo de possibilitar
melhores tempos de execugao, escolhemos o uso da API OpenCL como linguagem de
programagcao para GPU de modo a aumentar o desempenho do médulo. Com a config-

ura¢ao mais onerosa, reduzimos o tempo de execugao do moédulo GT de 6.9 dias para



pouco menos de 4 horas, atingindo efetivamente um aumento de desempenho de 45x.

Palavras-chave: computacio de alto desempenho, Multi- Thread, Multi-CPU,
Multi-GPU, OpenCL, OpenMP
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Abstract

Image and video compression play a major role in the world today, allowing the
storage and transmission of large multimedia content volumes. However, the processing
of this information requires high computational resources, hence the improvement of

the computational performance of these compression algorithms is very important.

The Multidimensional Multiscale Parser (MMP) is a pattern-matching-based com-
pression algorithm for multimedia contents, namely images, achieving high compression
ratios, maintaining good image quality, Rodrigues et al. [2008|. However, in comparison
with other existing algorithms, this algorithm takes some time to execute. Therefore,
two parallel implementations for GPUs were proposed by Ribeiro [2016] and [Silva
[2015] in CUDA and OpenCL-GPU, respectively. In this dissertation, to complement
the referred work, we propose two parallel versions that run the MMP algorithm in
CPU: one resorting to OpenMP and another that converts the existing OpenCL-GPU
into OpenCL-CPU. The proposed solutions are able to improve the computational

performance of MMP by 3x and 2.7x, respectively.

The High Efficiency Video Coding (HEVC/H.265) is the most recent standard for
compression of image and video. Its impressive compression performance, makes it
a target for many adaptations, particularly for holoscopic image/video processing (or
light field). Some of the proposed modifications to encode this new multimedia content
are based on geometry-based disparity compensations (SS), developed by Conti et al.
[2014], and a Geometric Transformations (GT) module, proposed by Monteiro et al.
[2015]. These compression algorithms for holoscopic images based on HEVC present
an implementation of specific search for similar micro-images that is more efficient
than the one performed by HEVC, but its implementation is considerably slower than
HEVC. In order to enable better execution times, we choose to use the OpenCL API
as the GPU enabling language in order to increase the module performance. With its
most costly setting, we are able to reduce the GT module execution time from 6.9 days

to less then 4 hours, effectively attaining a speedup of 45x.

Keywords: high performance computing, manycore, multi-CPU, multi-GPU, OpenCL,
OpenMP
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Chapter 1

Introduction

The research presented in this dissertation relies on the optimization of an image
compression algorithm, Multidimensional Multiscale Parser (MMP) [0} [7], that was
recently parallelized to GPUs by Ribeiro [2] and Silva [3], resorting to both CUDA
and OpenCL languages for GPU programming. To complement their work we further
research and develop similar parallel implementations for multicore CPUs. One in
OpenCL based on the existing implementation [3] but for CPU, and another resorting
to OpenMP — a more CPU directed API — to provide result comparisons.

Afterwards, we decide to exploit our knowledge in the parallelization field to improve
a specific algorithm based on the High Efficiency Video Coding (HEVC). This task
consisted on the optimization of the recent HEVC-base implementation of Monteiro
et al. [] targeted to compress holoscopic image/video based on geometry-based dis-
parity compensation (SS) and geometric transformations (GT) — henceforth referred as
HEVC+SS+GT. This image compression algorithm has been chosen due to the emerging
usage of plenoptic (or light field) images in various fields of application. The plenoptic
function concept [§], represented by Equation , was introduced and developed by
Adelson and Bergen and describes everything that can be seen (from plenus, complete
or full, and optic). It embodies a way of thinking about light, not only as a series of
images formed from 3D space onto 2D planes (whether retinal or cameras), but rather
as a three-dimensional field of co-existing rays. This is a formalization of the concept of
light-field proposed and coined by |Gershun| [9], with roots back to concepts introduced
by [Faraday| [10] in the mid 19*" century. Later, McMillan and Bishop [1T] discuss the
representation of 5D light fields as a set of panoramic images at different 3D locations.
The plenoptic function represents the intensity or chromacity of the light observed
from every position and direction in 3-dimensional space. In image based modelling,
the aim is to reconstruct the plenoptic function from a set of examples images. Once

the plenoptic function has been reconstructed it is straightforward to generate images



by indexing the appropriate light rays. If the plenoptic function is only constructed for
a single point in space then its dimensionality is reduced from 5 to 2. In the function
Equation [I.T} the V,, V,, and V. variables are the possible viewing-points, and the z
and y variables parametrize the rays coordinates that are entering a given view-point
(i.e. spatial coordinates of an imaginary picture plane erected at a unit distance from

the eye pupil), for every wavelength \, at every time ¢.

P:P($7yu)‘7t7‘/zu‘/ya‘/z> (11>

Henceforth, this type of images presents much richer information than common 2D
images, as they include information from several view directions, allowing to extract 3D
information. However the computational complexity associated with its processing and
compression may increase significantly. Therefore, for most applications it is imperative
to reduce the algorithm execution time. To this end, we elected the use of the OpenCL
API as the GPU enabling language and we opted to initially use the OpenMP API
to ease the algorithms learning and provide early implementation comparisons and

forecasts.

1.1 Motivation

All market-leading processor vendors have already started to pursue multicore proces-
sors as an alternative to high-frequency single-core processors for better energy and
power efficiency [12]. With this widespread adoption, scalability is increasingly im-
portant. In addition to the rapid decrease in hardware costs, use of multicore CPUs
and high end GPUs in commodity machines, mobile phones, laptops, tablets and many

more other low cost devices has become a reality.

The transition to multicore processors no longer provides the free performance
gain enabled by increased clock frequency for programmers. Parallelization of existing
serial /sequential programs has become the most powerful approach to improve applica-
tion performance. Not surprisingly, parallel programming is still extremely difficult for
many programmers mainly because programmers are not taught to think in parallel so
far. Furthermore it is not an easy task because several issues like: race condition, data
hazards, control hazards and load imbalance between cores, due to highly non-uniform

data distribution, are some common issues that might crop up during refactoring or



implementation. This trend places a great responsibility on programmers and software
for program optimization. Thus in order to improve the performance, vectorization and
thread-level parallelism (TLP) will be increasingly relied upon in place of instruction-

level parallelism (ILP) and increased clock frequency.

Despite the existing body of parallelization knowledge in scientific computing,
databases and operating systems, we still have many application areas today that

are still not attractive for parallelization. Adapted from [13]:

(...) Many techniques exist that attempt to automatically parallelize loops,
although they are most effective on inner loops. In contrast, coarse-grain
parallelism is difficult to detect. High level loops may be nested across
function and file boundaries, and their significance may not be detectable.
Currently, manual techniques remain the predominant method of detecting

and introducing high level TLP into a program. (...)

Consequently, the software engineering of such applications also did not receive much
attention. However, we are now at an inflection point where this is changing, as
ordinary users possess multi-core computers and demand software that exploits the

full hardware potential.

In the quest for faster computing, it is also important to consider its energy demand.
This is an important topic since the dominant cost of ownership for computing is energy,
not only the directly consumed by the devices but also the needs for refrigeration
purposes [14]. Moreover, energy efficiency in computing has also become a marketing

and ethical trend linked to green computing [15].

1.2 Main Goals and Contributions

With this research we intend to prove that computer CPUs still have a lot of com-
putational power to offer that often goes unexplored. Through software frameworks
such as OpenMP and OpenCL, the computational power of multicore processors can

be tailored in an almost effortless way by programmers.

The main contributions of this work are: 1) assessing the gain achieved through

optimization for multicore CPU instead of GPU; 2) evaluation of both the easiness

3



and performance gain of using CPU-based vectorization instructions through OpenCL;
3) review and comparison of power consumption over different implementations and
hardware equipments; 4) proposal and implementation of CPU-driven MMP imple-
mentations that exploit the hardware parallelization possibilities and; 5) proposal and
implementation of a parallel HEVC+SS+GT version to support the ongoing research

on plenoptic image compression.

Knowing that the MMP algorithm is a computational demanding image encoder/
decoder, with sequential dependencies among individual input blocks, insures some
representativeness as an application for parallelization. Likewise, the HEVC+SS+GT
algorithm comes with an exponential data and computational growth with large data

dependencies between iterations which also insures its representativeness.

1.2.1 Publications

Additionally, this work resulted in the production and submission of tree scientific

articles, of which two were already accepted:

e (Accepted) “Optimized Fast Walsh-Hadamard Transform on OpenCL-
GPU and OpenCL-CPU?”, in the 6" International Conference on Image Pro-
cessing Theory, Tools and Applications (IPTA’16), by Pedro M. M. Pereira, Patri-
cio Domingues, Nuno M. M. Rodrigues, Sergio M. M. Faria and Gabriel Falcao.

e (Accepted) “Optimizing GPU code for CPU execution using OpenCL
and vectorization: a case study on image coding”, in the 16" International
Conference on Algorithms and Architectures for Parallel Processing (ICA3PP),
by Pedro M. M. Pereira, Patricio Domingues, Nuno M. M. Rodrigues, Gabriel
Falcao and Sergio M. M. Faria.

e (Submitted) “Assessing the Performance and Energy Usage of Multi-
CPUs, Multi-core and Many-core Systems: the MMP Image Encoder
Case Study”, in the International Journal of Distributed and Parallel Systems
(ILJDPS), by Pedro M. M. Pereira, Patricio Domingues, Nuno M. M. Rodrigues,
Gabriel Falcao and Sergio M. M. Faria.



1.3 Outline

The outline of this document follows the sequential order of events and implementa-
tions. This way, further “down” implementations or discussions may rely in previous
written sections. We start by reviewing the hardware in hand for this work in chapter
with respective configurations, presenting how we intend to collect results and energy
measurements along side with some initial definitions. Afterwards, Chapter [3| solely
focuses on the MMP work, while Chapter [4] investigates the HEVC related algorithm.
Both chapters include theoretical reviews over the algorithms alongside with existing
implementations and results, after which we propose several implementations showing
and discussing the achieved results. While the MMP chapter strives to be CPU-driven,
the HEVC chapter later changes to GPU and multi-GPU driven implementations. Both
chapters comprise a final conclusion section. Finally, the document body ends with

global conclusions and summary of the developed work.






Chapter 2

Computational Environment
and Methodology

This chapter exposes the hardware configurations and methodologies used for the
experimental result presented in this dissertation. Section describes the used equip-
ments while Sections [2.2] and define the way results are gathered and other details
regarding the presented experimental results of this dissertation. Finally, Section
provides a small comparison between the equipments based on memory speed and

computational performance.

2.1 Equipment and Configurations

The main CPU equipments and associated configurations used throughout this dis-
sertation are listed in Table 2.1 It is important to point out that all the OpenCL
enabled setups (servers and laptop) have the "Intel CPU — OpenCL Runtime 15.1 z6/
v5.0.0.57" software installed to provide OpenCL compute capabilities on the CPU. The
version 1.1 of OpenCL was selected so that all builds had the same OpenCL language

version. This means that all hardware and software support OpenCL version 1.1.

A quick comparison of the different equipments highlights that Server 1 is our best
hardware. Server 1 has at least twice as much RAM as the other systems. Moreover,
his RAM is also better distributed in 8 modules of 8 GiB. Even so, Server 2 actually
possesses a superior RAM data rate (of 1600 MHz). To better understand the RAM
influence on the application performance for 2-CPU computers, Server 2 and 3 have
different amounts of RAM modules, while still maintaining the same total amount of

RAM. While the servers physical setup provides insight about how small changes may

7



Server 1

Server 2

Server 3 Laptop

Jetson

Raspberry

Intel(R) Xeon(R)

Intel(R) Xeon(R)

Intel(R) Xeon(R) Intel(R) Core(TM)

NVIDIA "4-Plus-1"

ARM Cortex-A

CPU Name E5-2630 E5-2620 v2 E5-2620 v2 i7-2670QM ARM Cortex-A15 @ 7900MHz
@ 2.30GHz @ 2.10GHz @ 2.10GHz @ 2.20GHz @ 2.32GHz
CPUs 2 2 2 1 1 1
Cores per CPU 6 6 6 4 4 4
Threads per Core 2 2 2 2 1 1
0-5, 12-17 0-5, 12-17 0-5, 12-17
Cores 6-11, 18-23 6-11, 18-23 6-11, 18-23 0-7 0-4 0-4
(Dat:?IC:tenfcltion) 32K /32K 32K /32K 32K /32K 32K /32K 32K /32K 32K /32K
Cache L2 256K 256K 256K 256K 256K 512K (shared)
Cache L3 15360K 15360K 15360K 6144K (none) (none)
Architecture x86 64 x86 64 x86 64 x86 64 armv7l armv7l
Byte Order Little Endian Little Endian Little Endian Little Endian Little Endian Little Endian
RAM 64Gib 32Gib 32Gib 12Gib 2Gib 927MiB
RAM per Slot 8GiB 8GiB 16GiB 4Gib 2Gib —
RAM Slots 8 4 2 3 1 —
RAM Type DIMM DDR3 DIMM DDR3 DIMM DDR3 SODIMM DDR3 DDR3L EMC —
RAM Data Rate 1333 MHz 1600 MHz 1333 MHz 1333 MHz 933MHz —
RAM Cycle Time 0,8 ns 0,6 ns 0,8 ns 0,8 ns — —
Operating System Ubuntu 14.04 LTS Ubuntu 14.04 LTS Ubuntu 14.04 LTS Ubuntu 14.04 LTS LISEE?Z‘; éig; IgtTﬁl Raspbian
Kernel Name 3.13.0-36-generic  3.13.0-39-generic  3.13.0-39-generic 3.13.0-32-generic 3.10.40-g8c4516e 3.18.11-v7+
Kernel Version  #63-Ubuntu SMP #66-Ubuntu SMP #66-Ubuntu SMP  #57-Ubuntu SMP #1 SMP #781 SMP
! PREEMPT PREEMPT
Hardware Name EPIC Epic2 Epic3 EpicPortable tegra-ubuntu epicberry

GCC Version

4.8.2-19ubuntul

4.8.2-19ubuntul

4.8.2-19ubuntul 4.8.4-2ubuntul

4.8.2-19ubuntul

4.6.3-14+rpil

GCC Distribution Ubuntu Ubuntu Ubuntu Ubuntu Ubuntu/Linaro Debian

GCC Thread Model posix posix posix posix posix posix
GCC Target ?(86_64 ?(86_64 .)(86_64 ?(86_64 ) arm ) ) arm )

linux-gnu linux-gnu linux-gnu linux-gnu linux-gnueabihf linux-gnueabihf

NVCC Version 6.5.12 6.5.12 6.5.12 6.5.12 6.5.12 (none)

NVCC Driver 340.58 340.58 340.58 346.35 340.58 (none)

CUDA Runtime 6.5 6.5 6.5 6.5 6.5 (none)

CUDA Driver 6.5 6.5 6.5 6.5 6.5 (none)

Table 2.1: CPU related Hardware Equipment Details separated in five relevant aspects:
CPU, RAM, OS, GCC, NVCC.

or may not affect an algorithm performance, the software side of the setup is maintained
identical. In these experiments, only the OS kernel version slightly differs. The setup
changes from the servers to the laptop. While we try to maintain the software as close
to the same as possible, in this case, both the OS kernel version and the GCC version
differ.

servers by having a single 8-core CPU, while the servers focus on two 12-core CPUs. It

At the hardware level, the laptop provides a more common setup than the

is important to highlight that while the Servers 1 and 2-3 may reach turbo frequencies
of 2.8 GHz and 2.6 GHz, respectively, the laptop achieves 3.1 GHz.

To further investigate the effects of different hardware, the Jetson TK1 [16] and
Raspberry Pi 2 model B [17] are also included in this dissertation. In this case, the
setup changes radically to embedded systems. These are the so called System on a Chip
(SoC). Although they are quite dissimilar, with Raspberry Pi targeting pedagogical and
very low cost markets and Jetson TK1 bringing high performance computing, namely at
the GPU level [I§], to embedded systems at affordable prices, both systems provide for
energy efficient computing. This is an important topic since the dominant computing
ownership cost is related to energy, not only directly consumed by the devices but also
for the needs of refrigeration [I4]. Moreover, energy eficiency in computing has also

become a marketing and ethical trend linked to green computing [15].
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The Jetson CPU is classified by NVidia as a "4-PLUS-1" to reflect the ability of
the system to enable/disable cores as needed for the interest of power conservation
[19]. For this purpose, the CPU has 4 working cores and a low performance/low power
usage core. This low performance core, identified as the "PLUS-1", drives the system
when the computational demand is low. Whenever the computing load increases, the
other cores are activated as needed. Conversely, when the load diminishes, the system
scales back, shutting down cores as they are no longer required. Other features of the
system to balance the computing power versus the power consumption are the ability
to reduce/increase the memory operating frequency and to disable/enable support for
I/0O devices like USB and/or HDMI ports. In terms of hardware specifications, Jetson
TK1 development board has a single CUDA multiprocessor (SMX), as further detailed
in Table alongside with the lists of available GPUs and their main characteristics.
From the table, GPU GTX 570M refers to the laptop graphics card.

GTX GTX Jetson TK1 GTX GTX GTIX AMD AMD
750Ti Titan Black 680 570M 480  R9-290x HD7970
Clock (MHz) 1085 980 72-852 1058 1150 700 1000 925
Memory (GiB) 2 6 2 2 1.5 1.5 4 3
Memory Width (bits) 128 384 64 256 192 384 512 384
Memory Bandwidth (GB/s) 86.4 336.0 14.5 1922 720 1774 320 264
Power (watts) 60 250 14 195 - 250 290 250
Compute Units 5 15 1 8 7 15 44 32
Cores/Shaders 640 2880 192 1536 336 480 2816 2048

5.0 3.5 3.2 3.0 2.1 2.0

CUDA Compute Capability Maxwell Kepler Kepler Kepler Fermi Fermi (none) (none)

Table 2.2: GPU related Hardware Equipment Details.

The Raspberry is a low cost, low power, single board credit-sized computer, de-
veloped by Raspberry Pi Foundation [I7]. The Raspberry Pi has attracted a lot of
attention, with both models of the first version — model A and model B. A major con-
tributor for its popularity is the low price. Another contributing factor for the success
of the Raspberry Pi is its ability to run a specially tailored version of Linux and the
many applications it bears under the version 6 of the ARM architecture. The model B
of version 2 of the Raspberry Pi, which is the one used in this study, was released in
2015. Model B — the high end model of the Raspberry Pi 2 — has a quad-core 32-bit
ARM-Cortex A7 CPU operating at 900 MHz, a Broadcom VideoCore IV GPU and
1 GiB of RAM memory shared between the CPU and the GPU. Both the CPU and
the GPU, and some control logic, are hosted in the Broadcom BCM 2836 SoC. The
Raspberry Pi 2 maintains the low price base. Beside the doubling of the RAM memory,
an important upgrade from the original Raspberry version lies in the CPU which has
four cores and thus can be used for effective multithreading. Each CPU core has a 32
KiB instruction cache and a 32 KiB data cache, while a 512 KiB L2 cache is shared
with all cores. Additionally, the fact that the CPU implements the version 7 of the



ARM architecture means that Linux distributions available for the ARM v7 can be run
on the Raspberry Pi 2. The Raspberry Pi 2 maintains the same GPU of the original
Raspberry Pi. The GPU is praised for its capability in decoding video, namely the
ability to provide resolution of up to 1080 pixels (full HD) supporting the H.264 stan-
dard [20]. However, to the best of our knowledge, no standard parallel programming
interfaces like OpenCL is available for the GPU of the Raspberry Pi. Another (minor)
reported drawback is that the power consumption has increased from 3 watts for the
Raspberry Pi 1 (model B) to 4 watts [2I] in the Raspberry Pi 2 (model B).

As a final detail, for this dissertation, both Jetson and the Raspberry are referenced
with distinguishable modes. By default, both Jetson and the Rasperry boot with
their lowest (power saving) settings. We call these default "Jetson LowPower" and
"Raspberry Def". After booting, both platforms/systems provide means to alter these
settings. Only the high performance settings are used for comparison. Raspberry
possesses a turbo mode that we identified as "Raspberry Turbo" which boosts the CPU
from 700 MHz to 1000 Mhz and SDRAM from 400 MHz to 600 MHz, whereas the
Jetson lets us tweak several of its components one by one. Because of this, we came
up with 2 modes. One, "Jetson MazFrequency”, in which we only maximize the GPU
related features, like boosting its clock rate from 72 MHz to 852 Mhz. And another,
"Jetson MaxPerformance”, where we simply set the maximum allowed values for all
configurations plus: enable all four cores of the CPU; disable the CPU scaling by setting
the scaling governator to performance mode; disable I/O devices (e.g., HDMI output);
and inform the graphics card that no output is needed (by setting it to blank). None of
these tweaks/boosts are overclock related, they are all within the hardware capabilities

and no overheat was observed during this study.

2.2 Results Acquisition and Used Images

The next two chapters refer to two different algorithms that have different purposes.
All execution time results shown in Chapter [3] are calculated through several execu-
tions, i.e., they are the mean (Z) of some amount of executions. Typically, execution
time results related to Servers 1, 2 and 3 are calculated from the T of 30 executions.
Execution times from the laptop system are calculated from 10 executions, while Jetson
and Raspberry experiments used 5 and 3 execution, respectively. The lower number
of execution/runs is to accommodate the huge execution times. Moreover, there is
no need for very large mean calculations since all equipments provide results that are
always within certain expected ranges. Tests were performed and all execution time

results presented, on average, 0.8% standard deviation. Because these deviations are
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insignificant no other reference is made to them in this document. When larger de-
viation were encountered the results were discarded and the test/benchmark redone.
Also for Chapter [3] we used both Figures [2.1a] and [2.1h as reference images. But
since all the results had always the same properties — e.g. the second image achieved
always faster results and always by the same proportions — and no image provided
more interesting results over the other, results from Figure were discarded thus
not presented. Chapter {4 follows the same rules. Initially, we ran 5 executions per
experiment, but due to the large execution time — several days per run — we scaled
back to a simple execution per run. Here the standard deviations also do not have any
meaningful weight. Of course, because the executions are so time consuming, small
deviations may mean minutes, nevertheless, percentually, they never exceeded a 1.5%

deviation. The experiment results in Chapter [4] were performed on the holoscopic image
shown in Figure 2.2

Figure 2.1: ) 2
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Figure 2.2: HEVC test image, frame 1 of 3D holoscopic test sequence Plane and Toy,
size 1920x1088, captured using a 250pm pitch micro-lens array.

For the acquisition of sequential or non-GPU-driven implementation results, no
discrete GPU cards were present in the underlying system, except the laptop, the

Jetson and Raspberry equipments whose GPU is non-removable.
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2.2.1 SpeedUp

As a way to simplify the comparisons made between results of different equipments
and/or implementations the SpeedUp metric was applied. The SpeedUp metric shows
the performance gain over a predetermined task between two systems processing the
same problem or within the same system, but with different approaches to problem.
Here the SpeedUp is calculated through:

Base version time

SpeedUp = (2.1)

New version time

A speedup of 1 means that the two versions perform the computations in the same
amount of time. A speedup in the range |0; 1| means that the new version suffered per-
formance degradation. Finally, if the speedup is above 1 the new version is better /faster

than the base version.

2.2.2 PSNR and Bitrate

Maintaining the program output when optimizing an algorithm is of utmost impor-
tance. In image compression algorithms/software the output image is generally ac-
companied by a value that tries to describe the quality loss that the image may have
suffered. Peak signal-to-noise ratio, abbreviated PSNR, is an engineering term for the
ratio between the maximum possible power of a signal and the power of corrupting
noise that affects the fidelity of its representation. Because many signals have a very
wide dynamic range, PSNR is usually expressed in terms of the logarithmic decibel
scale. Basically, PSNR is an approximation to human perception of reconstruction
quality — hence a measure of quality. Typical values for the PSNR in lossy image and
video compression are between 30 and 50 dB, provided the bit depth is 8 bits, where
higher is better. For 16-bit data typical values for the PSNR are between 60 and 80 dB
— [22,23]. PSNR is most easily defined via the mean squared error function. In statis-
tics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator
measures the average of the squares of the errors or deviations, that is, the difference
between the estimator and what is estimated. In the absence of noise, two images are
identical if the MSE is zero. In this case the PSNR is infinite.

Bitrate is the number of bits that are conveyed or processed per unit of time. The

bit rate is quantified using the bits per second unit (symbol: “bit/s”). The non-standard

12



abbreviation “bps” is often alternatively used — like in the HEVC case.

2.3 Energy Measurements Methodology

Some of the results presented in this dissertation are related with energy consumption
measurements. All energy consumptions were recorded with a MCP39F501 Power
Monitor Demonstration Board [24] from Microchip. The board is a fully functional
single-phase power monitor that does not use any transformers. The MCP39F501
Power Monitor Utility software is used to calibrate and monitor the system, and can be
used to create custom calibration setups. The device calculates active power, reactive
power, RMS current, RMS voltage, power factor, line frequency and other typical power
quantities as defined in the MCP39F501 data sheet [25]. For any technical information,

we refer the interested readers to [20].

The record of any of the executions starts with the direct connection of the MCP39F501
board to the laboratory wall outlet and to an USB port of the recording computer.
From time to time (months), it is necessary to adjust the board software to correctly
provide results over the input current so that accurate values are obtained. As soon as
the board is powered and connected to the recording computer the recording loop is
started. The recording computer queries the MCP39F501 board at 20 second intervals.
The returned values include: current (Amps); voltage (Volts); active power (Watts);
reactive power; apparent power; power factor; frequency (Hz); board sensor temper-
ature (bits); and event flags. All the information is stored in a CSV format — plain
text tabular data, including the date and time details. For this dissertation, we only
considered the active power information. After starting the recording loop, the test
equipment is connected to the output end of the MCP39F501 board, booted, and the
target algorithm execution is started. In all tests, the equipments were linked to the
same keyboard and monitor (with the exception of Jetson in MaxPerformance mode,

which lacked the monitor output).

Because large numbers of records were expected, a separate log file was maintained
with some relevant events (along side the date/time details). These include the clock

time at which a given execution started or when the equipment being tested ended it

OS boot.

After the target execution ends, the resulting data files were manually parsed to

provide meaningful information. These include average watts consumed in the different
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recording stages (connection, boot, OS login and preparation, algorithm execution,
etc.). Between executions it was always included the bash “sleep 20s” command to

allow the system to return to a stable power consumption and to separate the results
in the CSV file.

For more accurate results, tests were performed to assess whether it would be better
to execute several times a given target algorithm and work with the mean recorded
power of several executions instead of just one. We concluded that it did not provide
any improvement, besides a better estimate of the overall energy consumption a given
algorithm may require for a given system. Therefore, presented energy results in this

dissertation refer to a single execution.

2.4 Base Bandwidth Speeds

In order to quickly understand how our different hardware performs, we initially run
several Phoronix benchmarks. The Phoronix Test Suite [27] is a testing and bench-
marking platform available for several systems. We targeted the equipments RAM and
CPU speeds in both bandwidth and instruction throughput. Table provides a first
performance comparison between the hardware/systems previously detailed in Table
2.1} Perceivable by the table greyscaled gradient, it is shown that Server 1 provides the
best performance throughout several CPU operations and RAM memory accesses. The
slightly different RAM architecture between Server 2 and Server 3 — 4x8GiB RAM per
CPU for Server 2 vs 2x16GiB for Server 3 — becomes relevant here. In this benchmark,
Server 3 has only mostly 3/5 of Server 2 capabilities, while the laptop only achieves
2/5 of Server 2 performance. As expected, SoC systems — Jetson and Raspeberry —

have even worse performance with 3/10 and 2/25, respectively.

To complement the memory bandwidth measurements we also included the widely
used Lempel-Ziv-Markov (LZMA) chain compression algorithm. The first idea of
LZMA implementation was found in [28]. It was first used in the 7z format of the
7-Zip archiver [29]. This compression algorithm has proved to be effective in any byte
stream compression for reliable lossless data compression. In order to benchmark our
systems we resorted to the p7zip 9.20.1 tool [30] which already provides the bench-
marking runtime. The LZMA benchmark shows a rating in MIPS (million instructions
per second). The compression speed strongly depends on memory (RAM) latency and
Data Cache size/speed. While the decompression speed strongly depends on CPU in-

teger operations. The most important performance factors for the test are: branch
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Jetson  Jetson Raspberry Raspberry
LP MP Def Turbo

Int Add 22193.26 18029.11 11316.82 7253.12 4893.18 4948.66 951.30 948.01
Int Copy @ 22636.24 19444.61 11912.15 7511.04 5689.25 5737.97  1640.12 1645.22
Int Scale | 22886.28 19505.67 11899.76 7619.96 6019.64 5987.21  1159.31 1202.76
Int Triad [ 21967.13 18080.05 11305.06 7279.44 4898.90 4897.00 942.98 989.95
Int Average  22675.05 18774.61 11610.94 7472.66 5395.36 5403.82  1154.93 1208.79

FP Add  19962.39 17773.46 13224.39 8426.04 5660.94 5659.40  1094.99 1157.55
FP Copy  15017.08 14784.75 11443.95 7587.33 6787.17 6780.84  1552.48 1651.85
FP Scale  15111.85 14766.78 11415.36 7510.22 6460.68 6449.32  1207.87 1259.45
FP Triad  19867.79 17710.24 13183.40 8425.50 5649.62 5653.54 892.80 931.77

FP Average 17569.45 16263.09 12310.63 8007.93 6140.20 6140.44  1236.67 1250.75

Benchmark Server 1  Server 2 Server 3 Laptop

Table 2.3: RamSpeed Test Results for Integer and Floating Point operations from the
Phoronix Test Suite 5.8.1 in MiB/s (more is better).

misprediction penalty (the length of pipeline) and the latencies of 32-bit instructions.
The decompression test has very high number of unpredictable branches. Hence, the

LZMA benchmark can accurately categorize our different systems.

Table shows the resulting MIPS values for each system over the compression
and algorithms. Analysis of the results yields similar conclusions to the one
found for the Phoronix Test Suite (Table . To assess the systems we run the p7zip
benchmark with a varying number of threads. With this information we can review
how each CPU core behaves initially — with 1 thread — and how adding threads affects
the results — in terms of MIPS. For the decompression algorithm, both Server 1 and

SoC devices seem to take a performance hit.

Additionally, to provide some understanding over the laptop system — that can
sometimes be more efficient than other hardware — we further reviewed its memory
scheme. The Parallel Memory Bandwidth Benchmark (PMBW) [31] is a suite that
measures bandwidth capabilities of a multi-core computer. This is an important test
because more cores result in the floating point performance increasing in a linear fash-
ion. However, if the memory bandwidth is not capable of transmitting the data fast
enough, processors will stall. Indeed, unlike floating point units, memory bandwidth
does not scale with the number of cores running in parallel. The PMBW code was
developed in directly assembler language meaning inherent compiler issues such as op-
timization flags will not occur. The code uses two general synthetic access patterns:
sequential scanning and pure random access. The benchmark outputs an enormous
amount of data, thus most of it was filtered out [32]. PMBW is already an accepted

tool that provides large insight over the expected hardware performance [33, [34].

Table [2.5]shows a summary of the measured values of the PMBW benchmark for the
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72ip Server 1 Server 2 Server 3 Laptop Jetson Jetson Raspberry

Threads Low Power Performance Default
1 3460 3433 3379 3737 1602 1611 270
4 10026 9644 9515 8901 4565 4579 744
6 13992 13966 13333 11501 5099 5145 883
12 24086 23713 22826 15706 5146 5157 997
24 38090 37631 33939 15513 5142 5139 985
48 45646 42255 36805 15770 5085 5094 949
(a) LZMA Compressing Rating (MIPS)
7zip Jetson Jetson Raspberry
Threads Server 1 Server 2 Server 3 Laptop Low Power Performance Default
1 2928 2797 2795 3206 2013 2030 401
4 11100 9916 9070 9849 7799 7926 1590
6 15561 13932 13427 12327 7282 7522 1553
12 26152 23510 23247 14614 7800 7814 1581
24 43734 39006 40761 14624 7761 7754 1578
48 42962 40337 40840 14518 v 7723 1560

(b) LZMA Decompressing Rating (MIPS)

Table 2.4: LZMA compressing and decompressing benchmark results from the p7zip
9.20.1 in MIPS (more is better) with default dictionary size. The best result for each
system is marked in bold.

laptop system and Server 1. The table is divided between Access Time and Bandwidth
results, in nanoseconds and Gib per second, respectively. In terms of bandwidth, the
laptop system presents a clear performance advantage in most of the scenarios, while
keeping up in the remaining ones — these scenarios can be reviewed in at [3I]. For a
single thread the access time results confirm that the laptop provides data faster on
average. The laptop has also higher reading performance, while Server 1 has higher
storing/writing performance. But these results focus only over the utilization of 1
thread. The addition of other working threads change the performances. Table [2.6]
shows the results for executions with different amounts of threads in a scenario where
the laptop previously had more performance over Server 1 (with only 1 thread). These
results show that while the laptop achieves better performance with 1 thread, Server 1
performs faster when multiple threads are used. While the laptop halts with average
speeds of 0.7, Server 1 hardware continues to decrease its memory latency down to
0.17ns with 9 threads. The complex mesh of hardware characteristics of each device
makes it challenging to accurately rate an equipment over the wide variety of appliances
it may be a part of. Because of this, the laptop system may sometimes provide better
results, since it sometimes performs better than other systems, making factors like
memory access time, block/data sizes, buffers access patterns, etc., very important

performance factors.
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Access Time Bandwidth

Benchmarl Server 1  Laptop Server 1  Laptop
ScanWrite256PtrSimpleLoop 4.1268 5.5326 41.18 32.31
ScanWrite256PtrUnrollLoop 4.7866 5.56329 41.18 33.12
ScanWritel128PtrSimpleLoop 2.0342 2.7651 39.50 43.40
ScanWritel128PtrUnrollLoop 2.3999 2.7591 41.31 45.64
ScanWrite64PtrSimpleLoop 1.1481 1.3962 20.44 16.49
ScanWrite64PtrUnrollLoop 1.0492 1.3810 20.73 16.47
ScanWrite32PtrSimpleLoop 0.5516 0.6898 10.31 11.38
ScanWrite32PtrUnrollLoop 0.5609 0.6892 10.38 11.47
ScanRead256PtrSimpleLoop 2.9367 2.9475 75.18 82.98
ScanRead256PtrUnrollLoop 2.9072 2.8877 82.47 89.26
ScanRead128PtrSimpleLoop 1.8558 1.5183 39.47 43.61
ScanRead128PtrUnrollLoop 1.6991 1.5020 80.98 89.40
ScanRead64PtrSimpleLoop 0.8346 0.8075 20.46 21.49
ScanRead64PtrUnrollLoop 0.9308 0.7898 41.13 44.99
ScanRead32PtrSimpleLoop 0.6071 0.4478 10.25 11.29
ScanRead32PtrUnrollLoop 0.5821 0.4434 20.67 22.79
ScanWrite64IndexSimpleLoop 0.9577 1.5099 20.45 22.54
ScanWrite64IndexUnrollLoop 1.1143 1.3824 20.70 22.86
ScanRead64IndexSimpleLoop 0.8700 0.8064 20.46 22.57
ScanRead64IndexUnrollLoop 1.0046 0.8102 41.04 43.70
PermRead64SimpleLoop 95.3199  73.9657 5.19 5.70
PermRead64UnrollLoop 94.2605  80.0693 5.19 4.11

Table 2.5: Access Time (in ns) and Bandwidth Results (in Gib/s) for all Benchmark
Modes filtered from PMBW 0.6.2 with 1 thread over Server 1 and the Laptop (more
Bandwidth is better and less Access Time is better, highlighted with grey).

Access Time

Threads Server 1  Laptop
1 0.9308  0.7898
2 0.4090  0.6891
3 0.3375  0.6859
4 0.2623  0.6854
5 0.2295  0.6915
6 0.2411 0.6881
7 0.1915  0.6944
8 0.1823  0.6971
9 0.1737  0.7375
10 0.1911 0.6934

Table 2.6: Access Time Results for ScanRead64PtrUnrollLoop Benchmark Mode fil-
tered from PMBW 0.6.2 with 1-10 threads over Server 1 and the Laptop in nanoseconds
(less is better, highlighted with grey).
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Chapter 3

MMP — Multi-CPU, Many-Core, Multi-
Thread

In this chapter we present a small review of the selected algorithm (Section and
existing implementations (Section . With these building blocks, we further propose
and implement a CPU multi-thread /multi-CPU version resorting to OpenMP (Section
and migrate an existing GPU implementation to CPU for further comparison

(Section [3.4)).

OpenMP was selected for this project due to its maturity and relatively high level
abstraction. Other strategies were also analysed (e.g. MPI, compared in detail in [35])
but discarded since OpenMP has a lower learning curve [30, 37, 38| and is highly suited
for multiprocessors multicore CPUs. A more low level approach, namely with POSIX
Threads (PThreads), was also considered. However, it soon became apparent that
many person-hours would be needed to achieve meaningful performance. Additionally,
OpenMP proved to be suited for generating correct and structural parallel code as
well as being capable of facilitating fine-grain improvements [39]. POSIX Threads

implementations were therefore cast aside.

The migrated GPU implementation is based in the OpenCL API. Because OpenCL
provides a vendor-neutral environment, i.e. enables implementations to be run in a
large variety of components, OpenCL can thus be regarded as a "write once, run
anywhere" (WORA) framework. However this does not implicitly mean that a source
code which is optimal in a GPU environment will also deliver optimal performance for

other components, namely CPUs. In this work, we demise the process of converting a

GPU OpenCL optimized code for CPUs.

Finally, Section [3.5] summarizes this chapter.
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3.1 Multidimensional Multiscale Parser

The Multidimensional Multiscale Parser (MMP) is a pattern-matching-based compres-
sion algorithm. Although it can compress any type of content [40, 41] [42], it is more
appropriate for multimedia images [43, [44], where it lossy compression mode can achieve
good compression ratio and maintain good image quality [I]. While compressing, MMP
dynamically builds a dictionary of patterns that it uses for approximating the content
of the input image [44]. Specifically, the input content is split in blocks, each having
16x16 pixels, and each input block is processed sequentially. For every input block,
MMP assesses the patterns that exist in its dictionary in order to find the one that is
the closest to the original one [44], that is, the one that yields the lowest overall dis-
tortion. For this purpose, MMP needs to compute the Lagrangian cost J between the
input block and all blocks existing in the dictionary. The Lagrangian cost is given by
the equation J = D+ A x R [45], where D measures the distortion between the original
block and the candidate block, R represents the number of bits needed to encode the
approximation and A is a numerical configuration parameter, which remains constant
along the execution of MMP. The A\ parameter steers the algorithm towards more com-
pression quality (low A, which emphasizes the importance of low distortion over bit
rate) or lower bit rate (high ). MMP also explores patterns that are not yet in the
dictionary, computing their Lagrangian cost J. This is done with the goal of finding
new patterns that might be more suited for the input being processed, i.e., yield lowest
Lagrangian cost. For these possible patterns to be, MMP uses a multiscale approach,
which enables the approximation of image blocks with different sizes. Specifically, while
the input image is processed in basic blocks of 16x16 pixels, all possible subscale blocks
(8x4, 16x2, 1x1, etc.) are tested to find the best possible matches. When the search
is exhausted, MMP selects the best block or set of sub-blocks, that is, the one(s) that
delivers the lowest overall Lagrangian cost J. This exhaustive search is the main cause

for the high computational complexity of MMP.

Having found a set of new blocks/sub-blocks, MMP proceeds to update the dictio-
nary of patterns. However, first it checks whether the newly generated patterns already
exist in the dictionary. To this extent, MMP lookups through the dictionary searching
for blocks that might be identical or approximate (within a given radius) to the newly
proposed blocks. If no close block to the new ones are found, MMP adds the new
blocks/sub-blocks to the dictionary. The computing processes — block and sub-blocks
search and dictionary update — is repeated for every single block of the input image.
To facilitated dictionary searches, the dictionary is composed of sub dictionaries, each

one for a subscale block size.
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3.2 Previous Versions

Previously to this work, they were already three existing implementations of MMP: a
sequential (CPU-driven) and two GPU-diven implementations. Although implemented
with different languages/APIs, the two GPU versions are very similar, only differing
on their API calls, i.e., their MMP logics are the same.

The denoted sequential implementation refer to the direct implementation of the
MMP logic/algorithm with one CPU thread. The MMP algorithm is composed of sev-
eral subparts/stages. The relevant stages for this dissertation are: (4) the initialization,
(77) the distortion calculation and tree segmentation, (iii) the dictionary actualization

and (iv) the intra prediction modes. All these stages are presented in detail in [3] 44].

The (7) initialization and (iv) prediction modes parts become relevant in the later
Section [3.3|and the (i) distortion calculation and (iii) dictionary update for the GPU-
driven implementations above and in Section [3.4]

The next subsections review the GPU-driven implementation (subsection [3.2.1])

and present initial performance results obtained by the three existing implementations

(subsection [3.2.2)).

3.2.1 MMP-CUDA and MMP-OpenCL-GPU

The OpenCL and CUDA based versions [3] 2] are already optimized for GPUs. They
consist on the migration of the sequential MMP algorithm in such way that it becomes
possible to partially process all the sub blocks of a given larger block at once and later
reduce the calculations in the same way that the original algorithm would had done
it. The OpenCL-GPU implementation is a migration from CUDA whose conversion
is described in [3]. Both versions use 4 kernels. Two major kernels to calculate the
Lagrangian cost for each element of the dictionary of each subscale block size of the
major block being processed (by the kernel named optimize block) and to reduce
the calculated values by selecting the less costing element of each subscale (by the
kernel named j reducter). After this process (in each image block), the natural order
of things is to compare the findings and update the dictionary but since the GPU
(CUDA /OpenCL targeted device) is doing part of the math around the dictionary,

there is also the need to maintain its awareness on new selected findings between each
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processed image block. As a solution, two minor kernels review the previous selected
findings by comparing them to the existing ones on the dictionary (with the kernel
compare_ blocks) to determine if they are to be copied to the dictionary as new needed
elements (with the kernel update dic, so that the new dictionary is not copied as a
whole from the host CPU after he also incorporates the new need elements). This last

kernel is the one to actually update the device internal /mirror dictionary.

As in any optimized GPU implementation, important details must be taken care
of in order to adieve the highest performance from the underlying hardware. In these
implementations, the authors [3], 2] had the need to correctly balance the work between
the different GPU workers/threads so that no group of workers ran out of work (since
the dictionary is actually divided in several different sized subscale dictionaries). Not
correctly balancing the work leads to branch diversion [46] which is a cause of execution
delays. This is due to the fact that in-warp threads only re-converge after all divergent
execution paths are completed [47]). Through the process of balancing the workload it
is often necessary to flatten the access pattern to the memory data [48, [49]. This was
also the case for MMP. Given the overall behaviour of the algorithm access patterns,
in order to maintain the data locality [50], the dictionary data was laid out in such
way that each individual worker did not need to access separated memory regions to
obtain all data needed, nor it would generate misaligned access patterns within its
group/warp. The goal is to provide a proper coalesced memory access, managing the
issues data stride relate to. All of this simplifies other memory related optimizations,
like the use of sequential addressing [51] for results reduction. As a last detail, the
optimize_ block kernel had the need for different local memory sizes between executions
which let to less appropriate occupancy levels. To overcome this obstacle, since this
particular local buffer directly depended on the number of possible prediction modes
available for the given major block being processed, the kernel code was replicated
10 times, in which only the line declaring the local buffer size differed, ranging from
numberO f KernelThreads to numberO f KernelThreads * 10.

More detail about the CUDA and OpenCL implementations can be found in [3]
and [2].
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3.2.2 Base Reference Results

As a reference to the rest of this chapter, Tables to show the execution times
registered for the pre-existing implementations on several hardware systems. For sim-
plicity, the results are focused and compared (through speedup) with Server 2. Table
indicates the executions times encountered for the sequential implementation. The
fastest execution times are recorded with the laptop system, followed by the servers.
Jetson and Raspberry are without any doubt slower, yielding 2x and 12x times less
performance, respectively. Regarding the CUDA implementation (Table , laptop
570M is still the fastest performer, unlike Jetson that only overtakes the sequential
version when exiting Low Power mode. At its maximum performance, Jetson still
only achieves around half the performance of the other systems. Table [3.3| shows the
OpenCL-GPU results for NVidia and AMD GPUs. It is easily noticeable that NVidia,
even when not using its primary language (CUDA), still performs better than AMD.
From CUDA to OpenCL-GPU the execution time performance is degraded by around
40%.

Time SpeedUp

Server 1 2097.0340 1.03
Server 2 2157.7957 1.00
Server 3 2139.1510 1.01
Laptop 1836.5860 1.17
Jetson LP 5622.4783 0.38
Jetson MP 5558.7413 0.39

Raspberry Def — 25734.4300 0.08
Raspberry Turbo  25415.6100 0.08

Table 3.1: Execution time results (in seconds) for the MMP-Sequential encoder for the
Lena image with A = 10 and dictionary size of 1024.

Time SpeedUp

Sequential ~ 2157.7957 1.00
GTX Titan  293.4368 7.35
GTX 680 299.5714 7.20
GTX 750Ti  298.7366 7.22
GTX 570M  287.5720 7.50
GTX 480 294.1414 7.34
Jetson LP  2638.3474 0.82
Jetson MF  1017.8993 2.12
Jetson MP  646.4966 3.34

Table 3.2: Execution time results (in seconds) for the MMP CUDA encoder for the
Lena image with A = 10 and dictionary size of 1024 for server 2.
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Time SpeedUp

Sequential ~ 2157.796 1.00
GTX Titan  512.511 4.21
GTX 680 504.957 4.27
R9-290X 991.304 2.18
HD 7970 918.561 2.35

Table 3.3: Execution time results (in seconds) for the MMP OpenCL-GPU encoder for
the Lena image with A\ = 10 and dictionary size of 1024 for the servers 1 and 2 with
NVidia and AMD GPUs — values from [3].

3.3 OpenMP

Open Multi-Processing is an Application Programming Interface (API) with a fork-join
model. At its core level, OpenMP is a set of directives and callable library routines
that are used to specify parallel computation in a shared memory style for C, C++,
and Fortran [37, 52, 53] that influence run-time behaviour with the addition of envi-
ronment variables [37]. The API is currently widely implemented by various vendors
and open source communities [54]. OpenMP programming model can be used in a
non-fragmented manner in contrast to other communication libraries and PGAS (Par-
titioned Global Address Space) languages [55].

Parallel Task | Parallel Task Il Parallel Task Ill

-

Master Thread
Parallel Task | Parallel Task Il Parallel Task Il
Master Thread - -
e .- el -

Figure 3.1: An illustration of the fork-join paradigm, in which three regions of the
program permit parallel execution of the variously colored blocks. Sequential execution
is displayed on the top, while its equivalent fork-join execution is at the bottom. —
adapted from [56]

24



OpenMP is typically used after locating instances of potential parallelism within a
sequential program. The section of code that is meant to run in parallel is marked with
preprocessor directives. After the identification of loops in which parallel computation
should occur, the OpenMP compiler and runtime implement its parallelism using a set
of cooperating threads. By default, each thread executes a given parallelized section of
code independently. The fork-join execution model (Figure makes it easy to get
loop-level parallelism out of a sequential program [52], with or without recursive forks,
until a certain task granularity is reached. Recursively nested fork-joins can result in a
parallel version of the divide and conquer paradigm [57, 58| (with e.g. quicksort [59])

that can reduce the overhead of task creation [60].

In contrast, querying the identity of a thread within a parallel region and taking
actions based on that identity is also possible. This enables OpenMP to also be used
in a fragmented manner, although it is more often used in a global-view manner, thus

letting the compiler and runtime manage the thread-level details [53].

The idea behind OpenMP is to provide a predominantly open method of converting
a sequential program into a multi-core, several-processor, application without any ma-
jor code changes to the original source. All that is needed is to insert a few directives
(or pragmas) into the pre-existing source code and enable the OpenMP compiler option
[54] (e.g., "-fopenmp" in the GCC compiler). This triggers the compiler into checking
for OpenMP directives and use the information they possess to transform the program
for multithread execution, making the OpenMP implementation job to implicitly cre-
ate the code necessary to run on different cores and/or processors. If OpenMP support
is not ensured at compilation time, then the directives are ignored and the original
single-threaded sequential code is generated. Only sections of code embraced by the
directives are potentially translated. This is, if a few rules are observed, e.g. no data

dependency between loop iterations. The rest of the program left untouched.

The ability to inject parallelism incrementally into a sequential program by the sim-
ple addition of directives is considered the OpenMP greatest strength and productivity

gain in addition to being a portable alternative to message passing.

With no explicit configuration, OpenMP generates a maximum number of threads
equal to the number of present CPU cores (including hyper-threading [61, [62]). Obvi-
ously, limitations to the number of threads generated also include code parallelization
limits (e.g. a for-loop with a maximum of 5 cycles will only have 5 threads) and
environment context, e.g., if some CPU cores are currently too busy with other com-

putations, there is no point on adding more threads into their schedule. OpenMP
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language extensions are divided in 5 constructs: thread creation, workload distribution
(or sharing), data-environment management, thread synchronization, and user-level
runtime routines and environment variables. Useful OpenMP technical and developer

driven information can be found in [53].

To summarize and conclude, OpenMP was designed to enable the creation of, or
transformation to, programs that are able to exploit the features of parallel computers
where memory is shared. It enables the construct of portable parallel programs by
supporting the developer at a high level with an approach that allows the incremental
insertion of its constructs. Additionally, it also allows a conceivable low-level program-

ming style, where the programmer explicitly assigns work to individual threads.

3.3.1 Profiling MMP-Sequential

Prior to the adaptation of MMP to multithread, the sequential version of MMP was
profiled. Besides the opportunity to better understanding the original code mechanics
and flow, profiling provides a means to rapidly spot more critically demanding sections.
These sections are generally the most rewording candidates to be rearranged in a paral-
lel fashion simply because they frequently point towards the code that is the more time
consuming, making simple optimizations more noticeable [63]. Some experimentation
was done with so called ‘Automatic Parallelization Tools’. However, none of the tested
tools (ROSHY, PLuTd| [64], CETUS?], iPat/OMPf] [65]) provided functional code, nor
any speedup.

The analysis of a sequential program performance often relies on profilers that
provide statistical information about how much time is spent in different regions of
code [66, 67]. Most active, or hot, regions are then given special attention. Tools
like the open source [68] or the commercial Intel VTune [69] analyze programs at the
function level. This may or may not directly include the creation of call-graph profiles
that show the structure of the application at the functional level, including parent-child
relationships and time spent in each function. To this extent, performance analysis
tools intended to analyze sequential code are very mature. But this focus does not
translate directly to tasks like extracting thread-level parallelism from applications.

Although Intel VTune does lean in that direction since it is able to access Intel special

'ROSE: http://rosecompiler.org/

2PLuTo: http://pluto-compiler.sourceforge.net/
3CETUS: http://cetus.ecn.purdue.edu/
4iPat/OMP: http://ipat.sourceforge.net/
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CPU registers/counters, it is a commercial product, thus out of the scope of this work.

A simplest way of profiling can be done by changing how every function in the
program is compiled. This is done in such way that when they are called, it is possible
to stash information about where the call came from. From here, is it possible to figure
out what function called, count how many times a call happen, etc. This is actually
one of the things achieved when the application is compiled with GCC with the "-pg"

option does.

When trying to parallelize code, an intuitive first step might be to find which loops
are doing most of the work. However, even deciding which loops to target (if any) can
be very time consuming. Again, many free tools do not adequately capture the context,
from a loop perspective, necessary to provide information about the consumed time.
Some however, like LoopProf (introduced in |70]), depend on special instrumentations
but then again do not leave guess work to the programmer like a call-graph profile
leaves when trying to identify loops that are good candidates for parallelization. A
somewhat extensive appreciation over several parallelization tools can be found in [71].
But since the ultimate goal is to use OpenMP, in the end, using this sort of tools does
not provide much insight when balanced with the time spent reviewing different tools.

Therefore, a more traditional /manual profiling was used for this work.

On a traditional side, it is common to see call-graph charts as a starting point for
manual detection and determination of possible optimization-deficient sections. Like
most applications, MMP spends a large portion of the execution time in small portions
of code, typically inner loops. Tools such as GProf [72], OProfile [73], Intel VTune
or DCPI [66] naturally identify such inner loops since they are the most frequently
executed regions of code, but they do not focus on identifying loops themselves, thus

failing to communicate information about the overall structure of loops in a program.

As stated and explained in [74], GProf quickly became, and still is, the tool of choice
for many developers. Being based on the usage of the operating system interrupts, it
is only necessary to compile the source code, in the case of GCC, with "-pg" option.
Other considerations might also be important for a more loyal output when directly
comparing with source code, e.g. not using inline function optimizations or even the "-
O" options family (again, in GCC). When executing the application, the sampled data
is saved (typically in a file named "gmon.out") just before the program exits. This is
the data which is analysed by GProf. Several data files from different execution runs
can be combined to a single file. Provided with this data and the source application,

a textual, human readable, output is then generated.
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Figure 3.2: Partial call-graph for the execution of the MMP-Sequential encoder on the
Lena image with A = 10 and dictionary size of 1024.

In conjunction with KProf [75], the reported information can be viewed in an in-
teractive manner. This instantaneously assists on several different visualizations of the
same report, including a call-tree representation which relies on Graphviz [76]. How-
ever, the direct usage of GraphViz enables more creative visualizations. Figure is a
visualization from [77] where nodes/functions that occupied less than 5% of the execu-
tion time were left out (meaning 98 nodes). The colour scheme is present to aid with
hot-spot localization (the gradient is based on the node execution time percentage).
Red nodes occupy almost all the execution time, green and later blue nodes gradually

consume less execution time percentage.

In parallel with GProf, mostly used as a source code documentation generator
tool, Doxygen [78, [79] also provided a substantial understanding over the MMP se-
quential algorithm through similar grounds. Doxygen configuration with the tags
"CALL_ GRAPH", "CALLER _GRAPH" and "DOT _MULTI TARGETS" was par-
ticularly relevant. The significant amount of header comments in most MMP functions
and pre-generated call-graphs for and from these same functions, all within a web-based
GUI, allowed for more efficient navigation and function flow /connectivity visualization

throughout the source code files.

From Figure|3.2]it is evident that further analysis over quad_ err function is manda-

tory since it consumes 56% of the whole execution time. But GProf textual report shows
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that in fact each individual call to quad_err only takes on average 645.5 nanoseconds.
This is actually a reasonable amount of time given the amount of calculus this function
does when calculating the quadratic error between a given block of the algorithm input
image and a block from the dictionary. This concludes that it makes more sense to op-
timize the way this function is used or the memory mappings in place, making the next

best candidate functions the optimize block or the optimize block and_pred_mode.

On the other side of the spectrum, the least sq function draws almost 15% of
the overall execution. This is a small fraction but still representing 612 seconds of the
overall execution time, 61.8 microseconds per call, which does not seem much for a least-
square solving function. Similarly to the quad_err function, the least sq performs a
tiny amount of work per call, over millions of calls. Further review of the node functions
called between least sq and optimize block and_pred mode shows that these nodes
do not present any relevance to the parallelization problem in terms of memory usage
(since they are very self-contained) or in time consumption. This function reimposes

the appropriateness of optimizing the optimize block and_pred_mode function.

The function optimize block and_pred_mode is where several independent predic-
tion modes are iterated given an image block provided by its caller, the main function.
Since computations over each major image block depend on the previously iterated
blocks, parallelization over several blocks from the main without major reductions and
overheads seems impossible. But not over optimize block and_pred mode, where
several prediction modes loop within each block, making it the perfect starting point

for the OpenMP implementation.

Probe sampling can be error prone, although very minimal since it measures sta-
tistical approximations. Even so, GProf cannot measure time spent in kernel mode
(system calls, CPU stalls, I/O interrupts), only user-space time. Other tools like Perf
[80] and OProfile were applied to compensate and look for prime evidence of memory
related stalls or instruction-level bottlenecks so that after the OpenMP implementation

comparison could be made. This verification actually exposed some unexpected stalls

referred in Section B3.3.31

29



3.3.2 Implementation

As previously observed, the optimize block and_pred_mode node from Figure [3.2
provides the best opportunity for a direct parallelization o the code with OpenMP
constructs. Some modifications and refactoring were made to the MMP source code in
order to make it more suited for OpenMP paralelization. Along the way, other variants
more OpenMP friendly were experimented, but failed to deliver the same results of the
sequential version and thus were discarded. At the end, the selected implementation

was both the simplest and the fastest.

Because each separate thread needs its own set of variables some existing code op-
timizations for the sequential version needed to be undone. OpenMP constructs allows
the programmer to tag which variables need to be 1) replicated and 2) which are to
be shared across the different threads. The main problem is that 1) the replication
process for large variables repeatedly consume precious execution time and 2) shared
variables cannot have memory allocated within the parallel region, since it would gener-
ate multiple allocations or imply parallelization /barrier stalls. For these reasons, some
variables were manually replicated or extended and others pre-created. For example,
case 1), node_ level variable is used in each one of the prediction modes. Because each
loop independently uses it, the variable is cleared of its contents between iterations.
This variable is used to avoid redundancy in the tree-like calculations throughout the
different block sized partitions. By simply informing OpenMP that this variable is to
be replicated (thus made private) to each thread, OpenMP would allocate its space
each time for each prediction mode. Going back to Figure [3.2] this would mean that
676.864 allocations (times the number of prediction modes) were additionally made
throughout the program execution. To overcome this issue, variables like this one had
their allocated space extended by a multiple of the number of prediction modes. By
doing so is possible to assign different pointers (to the pre-allocated memory region)
to different threads, eliminating OpenMP need to reallocate everything every time. As
for case 2), in the same conditions as node_ level, variables like block orig level and
pred_ orig level had their allocations replaced with previously created arrays with the
maximum expected sizes already allocated for each partition level. Like in case 1),

pointers to different memory regions of the arrays are passed to each individual thread.

After solving the memory related problems, OpenMP-based parallelization is straight
forward. Indeed, since the sequential algorithm was already separated into (almost)
modular functions, the typing of the source code with OpenMP directives was easy.

The directive conjunction "omp parallel for" is the most appropriate for this situation
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since the prediction modes are iterated with an actual for-loop. This directive is a
combination of two separate directives, "omp parallel" and "omp for". The first di-
rective informs OpenMP of the start of a parallel region. The second lets OpenMP
know that we want to parallelize each for-loop iteration. Because the parallelization
is over independent iterations which use separate variables / memory spaces, the task
scheduling scheme is not particularly relevant [8I]. Experimentations were performed

with no particular pattern yielding better results than the default behaviour.

3.3.3 Results

Although the parallelization targets the 10 prediction modes of MMP, and thus has
a potencial speed gain of 10x, the best achieved speedups are lower. Table sum-
marizes the best attained results for each experimental hardware setup. Due to the
laptop different hardware layout and environment, code parallelization does not reach
the same speedup levels as the remaining computer servers because the sequential ver-
sion already achieves a superior performance. Since the server computers have more
CPU cores than the number of threads actually needed in the implementation, no
immediate side effects were observed. Contrarily, the Jetson board only has 4 cores.
Figure exposes the Jetson performance for different thread numbers/arrangements.
OpenMP transparently makes the threads i) work over other iterations in the case of
thread shortage or i7) do nothing if all iterations are already assigned to threads (with
minor overheads). From the figure, case i correlates to numbers of threads smaller than

10 and case ¢ to numbers larger than 10.

Sequential ~ OpenMP SpeedUp

Server 1 2097.0340 701.3492 2.99
Server 2 2157.7957 719.2870 3.00
Server 3 2139.1510 801.3874 2.67
Laptop 1836.5860 922.2495 1.99
Jetson LP 5622.4783  2539.5830 2.21
Jetson MP 5558.7413 1888.2443 2.94

Raspberry Def ~ 25734.4300 11185.5310 2.30
Raspberry Turbo 25415.6100 11177.9740 2.27

Table 3.4: Execution time results (in seconds) for MMP-OpenMP encoder (Lena image,
A = 10 and dictionary size of 1024, and achieved speedups).

Findings showed that setting OpenMP with the expected number of actual threads/
iterations improves the performance even if the number of generated threads is larger
than the number of cores of the underlying system. Because the Low Power mode

of Jetson tries so much to save energy, running OpenMP with 3 threads generates
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Figure 3.3: OpenMP thread variation execution time results for Jetson (Lena image,
A = 10 and dictionary size of 1024).

overhead-concurrency within the one available core. Since the 10 prediction modes
are not divisible by 3 threads, one of the threads has to execute the last prediction
mode, most of the times, not in parallel. Over the hundreds of iterations that Lena
requires, performance is degraded. In between all the power related managements (to
try and consume as little as possible) the execution of the third thread is also stalled
several times for context switches and other computations. Executing with 4 threads
actually provides a better balance, because it eventually forces a second core to be
always on. When one thread becomes idle due to, for instance, memory related stalls,
another one can take its place and make use of the core pipeline. Since 2 threads can
interoperate in one given core, a natural balance is set making the core context switches
less frequent. This behaviour repeats itself towards the 8 thread. Because there are
only 10 prediction modes, this pattern stops at the 10*" thread. Further increasing the

number of threads only results in OpenMP thread management overheads.

When the number of threads to strictly use is omitted, OpenMP creates a number
of threads that is as close to the desired parallelization as possible but limited to a
maximum which is equal to the number of available CPU cores. This is not visible on
the server environments because they have more than 10 cores. But in the Jetson case,
OpenMP would only create 4 threads out of the needed 10 since there are only 4 cores.
Again with Figure [3.3] using 8 threads instead of 4 delivers far better performance.
More in one performance mode than in the other, building an application without the
desired number of threads hint to the compiler would be disadvantageous. Experimen-
tation is important. This is also visible in the laptop environment since the number
of available cores is also less than the number of prediction modes, but with different

effects. Figure [3.4] depicts the OpenMP performance for the laptop system. In contrast
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Figure 3.4: OpenMP thread variation execution time results (laptop, Lena image,
A = 10 and dictionary size of 1024).

with Jetson hardware, the laptop has more powerful components but does not have an
installed operating system as simple as the Jetson. Therefore, as the number of threads
is increased between executions, the system becomes more and more bottled up with
running processes. This means that other minor processes that try to attain CPU time
get put aside by the OS scheduler in favour of MMP. Above 5 threads, the execution
gets to a point where MMP starts to get halted so frequently that it actually degrades
its performance. This reaches a peak at 8 threads, that is, when the number of threads
is equal to the number of cores. Like for the Jetson results in Max Performance mode
(Figure asking OpenMP for a number of threads that exceeds the number of CPU
cores results in some OpenMP inner changes, like the threads scheduling constructs.
The threads stop being forced to operate in a given core through core-affinity, allowing

the other processes to operate more freely.

Time SpeedUp
Server 1 Server 2 Server 3 Server 1  Server 2 Server 3
Sequential 2097.0340  2157.7957 2139.1510 1.00 1.00 1.00
OpenMP with 711.1390  743.7252  810.4746 2.95 2.90 2.64
memory issues
OpenMP without 701.3492  719.2870  801.3874 2.99 3.00 2.67
memory 1Ssues
OpenMP 1.01 1.03 1.01

Performance Gain

Table 3.5: Execution time results (in seconds) for the MMP-OpenMP encoder (Lena
image, A = 10 and dictionary size of 1024, with and without memory related issues).

As stated in the previous section, some optimizations were performed in order to
maintain the parallelism results and permit better memory management. The effects

of these transformations vary depending on the hardware. Because OpenMP expects
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With OpenMP

Sequential Optimizations SpeedUp

Server 1 2097.0340 1889.4373 110.99%
Server 2 2157.7957 1964.5985 109.83%
Server 3 2139.1510 1967.8613 108.70%
Laptop 1836.5860 1703.9239 107.79%
Jetson LP 5622.4783 4297.0377 130.85%
Jetson MP 5558.7413 4290.3113 129.56%

Raspberry Def  25734.4300 24826.1950 103.66%
Raspberry Turbo  25415.6100 24442.2320 103.98%

Table 3.6: Execution time results (in seconds) for the MMP-Sequential and improved
sequential encoder (Lena image, A = 10 and dictionary size of 1024).

that the memory space follows a shared architecture, memory mappings that cross
other CPUs lead to unexpected stalls that are unaccounted for, since the implemen-
tation does not target a specific CPU/RAM for its routines. Table presents the
OpenMP execution times before and after the solved memory performance problems.
As explained earlier in Section [2.1], the different RAM setups between Server 2 and 3
lead to different performance gains. Server 1 RAM DIMMs work at a higher frequency.
The improvement of the MMP relation with the RAM bandwidth did not therefore
provide as much gain in Server 1 as with Server 2. These optimizations were only a
positive side effect of the need to correctly prepare the memory space for OpenMP.
To that extent, Table [3.6| provides an insight to the archived results of an improved

sequential version.

Sequential OpenMP

with improvements with only 1 thread SpeedUp
Server 3 1967.8613 1979.3682 99.42%
Laptop 1703.9239 1705.8587 99.89%
Jetson LP 4297.0377 4308.5267 99.73%
Jetson MP 4290.3113 4302.2790 99.72%
Raspberry Def 24826.1950 24698.1455 100.52%
Raspberry Turbo 24442.2320 24411.2610 100.13%

Table 3.7: Comparison between the improved MMP-Sequential encoder and the MMP-
OpenMP encoder (with only 1 thread) execution time results (in seconds) on the Lena
image with A = 10 and dictionary size of 1024.

The results include the usage of the "-fopenmp" compilation flag. Strangely enough,
this flag also provides some unexpected optimizations to the sequential version. The
reason for this performance improvement is unknown. Indeed the flag should only add
the OpenMP library in the linkage stage. Explicitly tying the execution to a given
CPU/core provided some performance increase. Indeed setting CPU affinity to a free
core allowed the algorithm to stay more time in the core frontline with less context

switching incidences/occurrences, and fewer or none CPU migrations.
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All these optimizations yield a 9.9% execution speed improvement to the original
base sequential implementation. Because the sequential code utilizes the pre-created
memory spaces sequentially, one at the time, the performance gains are larger than the
ones of the OpenMP version. In OpenMP multiple threads work in the CPU cores,
each accessing several distinct memory areas. Because the CPU cache memory is shared
between all of them, each time one thread requires a previously cached memory region,
the other 9 threads could have already replaced all the cache content with the one they
need. This increased concurrency caused a considerable increase in the reported cache-
misses. To avoid misleading results, the OpenMP version was also run with a single
thread. The reported cache misses were close to the ones for the sequential version. By
running with only 1 thread, it is also possible to sense the overhead due to OpenMP.

Table shows that OpenMP imposes no significant footprint in the execution times.

Lambda Effect over OpenMP
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Figure 3.5: Lambda variation effect on OpenMP thread execution times and the se-
quential MMP encoder (Lena image, A = {10; 75; 300} and dictionary size of 1024), on
Server 3.

Because the parallelization was made at a high level of the algorithm functions,
other input factors such as A and dictionary size variations also influence the algorithm
performance. When A value varies upwards (less encoded image quality) some of the
more intense computations terminate sooner, possibly yielding smaller dictionary sizes,
thus making the unfilled size look larger hence causing fewer dictionary revisions. The
effects on the execution are shown in Figure for Server 3. Note that A = 10,
A =75 and A = 300 are standard values for high, medium and low quality in MMP,
respectively. Since there is less time between memory operations and the intensive
computations, the sequential algorithm is able to decrease significantly its execution
time. Whereas the OpenMP version, which distributes the computations, already

achieves maximum bandwidth speeds, and does not exhibit similar significant gains.

Sometimes the best results are not obtained exactly with 10 threads but with one
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or two more threads. Processor pipelines are complex, and memory systems have a
significant impact on performance. Due to core thread scheduling or other artefacts,
sometimes a given thread sent to a CPU core has to wait for other external compu-
tations to finish. But other cores might be free (other freed first) and could assume
the stalled MMP-OpenMP computations. We believe that this is the reason for the
performance gain when using one extra thread. This is why using one extra thread on
the 12-core CPU servers sometimes performs better than just with 10 threads. Not all
11 would actually produce work, but if, e.g. thread 2 were to be immediately stalled
(before starting) for some external reason, a later thread 11 could pick up the unas-
signed work for iteration 2, thus partially covering the stalled time. Figure (3.5 clearly
exposes this peculiarity for the executions using A = 75 and A = 300 with 11 and 12

threads, respectively.

Regrading stall related problems, it turns out that cache misses, for both instruc-
tions and data, are the dominant source of overhead in both the sequential and OpenMP
implementations. As a standard metric, the Perf application reports that the sequential
version has on average 1.9 instructions per cycle (IPC) while OpenMP only has 0.55.
Generally, an IPC of 1.0 indicates that every instruction is processing in its due time
(the optimal processing of work). This means that although the OpenMP version is up
to 3x faster than the sequential version, it might still be far from its potential on av-
erage. The sequential version IPC is actually greater than 1.0 meaning that more than
one instruction is being completed (‘retired’) per CPU cycle. This is possible because
the CPU backend can process multiple micro-operations (pops) in parallel. Frontend
and backend metrics refer to CPU pipelines. The frontend processes CPU instruc-
tions (fetch, along with branch prediction, and decode). While the pops generated by
the frontend decoder are handled by the backend. Because of all the concurrency, the
OpenMP version generated almost 8 times more stores to the last level cache (LLC, the
largest and slowest), but roughly the same amount of loads as the sequential version.
This means that so much cache information was being pushed aside to the last level
that when it was needed again it was no longer there. To corroborate, the LLC caches

misses also increased by a 7x factor.

Intel processors have many hardware level performance counters [82]. The Perf
utility does not map must of them, but does allow their specification through a raw
format. Taking the ones referring to resource stall into consideration, it is possible to
know that OpenMP produced two times more idle cycles for when the pipeline is full
(instruction-level bottleneck) and waiting for instructions to be retired. This roughly
translates that around two times more level 2 cache misses are taking place. But since

these values are for the overall algorithm, and there are 10 threads running in parallel
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in the system, it means that OpenMP would actual be hitting at the very best 5 times

more level 2 cache information thus being 5 times faster.

Many parallelization opportunities were not exploited to their full extent or were
simply ignored. The original algorithm is greatly optimized for sequential single-core
performance. But some improvements are still possible like showed here. In the be-
ginning it seemed promising to profile the sequential code to determine the critical
execution path and parallelize along this path. Unfortunately, this approach had its
draw backs because the resulting parallelization is strongly bound to the original se-
quential code. This first approach did not cover some limitations imposed by the
sequential implementation, unlike the CUDA/OpenCL GPU implementation in [3],
where the algorithm was deeply reorganized to provide the most of modular critical
areas. This is particularly relevant when comparing the performance behind CPU-only
applications and CPU-GPU applications. No faithful comparison can be made if the
way the algorithm logic is implemented is almost completely different. In this case, al-
though the usage of a GPU consumes more energy, the CUDA implementation (Section
only takes about 300 seconds to process our reference case with NVidia GPUs.
This is around 40% of the time of OpenMP, i.e., 2.5x faster.

Power Consumption Results

Figure shows the ranges of the instantaneous power consumption as well as the
overall mean power usage verified over executions with different numbers of threads on
the Jetson hardware. From the plot, we can see that running OpenMP with one thread
in Low Power is actually slightly more energy demanding than running the sequential
version. But relating with Figure [3.3] it becomes evident that the OpenMP code is
far more efficient. The execution time speeds-up by 1.30 (23.37% less time) and the
overall mean energy needed per second only increased by 0.34 watts (5.63%). With
some exceptions, using more threads in the Low Power mode seems to further increased
the performance per watt. Unless configured to execute with 2, 4, 8 and 9, the energy
demanded per second actually decreases to values below 6 watts. This is particularly
relevant because it shows that due to the paralelization more work is performed in less
time but also with a decreasing consumption. The best recorded values, in comparison
with the sequential version, were archived with 10 threads. That is, an execution
time speedup of 1.80 (44.43% less time) with an mean energy demand per second
decreasing by 0.56 watts (9.30% less). Table summarizes these calculations for
all the thread executions, including the sequential version for comparison. From the
table, it is possible to see that the optimal number of threads reduces the overall energy

consumption to almost half of the originally needed by the sequential version.
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General Watts Oscillation per Num Threads

12

11 ==

10 S e e ol e ol s e L

: SELPFTEEOET
£ 81T I .]_ -I- ']' T .]_ — Min
L e ANERESRE ST ==L "

5 I _LJ_J_“"L_J_J.J.J_J.J_J. Mean

; T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1

LP:1 3 5 7 9 11 13 15 MP:1 3 5 7 9 11 13 15
Threads per execution (in LowPower and MaxPerformance modes)

Figure 3.6: Mean (3 executions) watt oscillation of the MMP-OpenMP encoder (Lena
image, A = 10 and dictionary size of 1024) with different number of threads, on Jetson.

Low Power Mode Max Performance Mode
Threads Time Overall Energy Time Overall Energy
SpeedUp  Needed (T Joules) SpeedUp  Needed (Z Joules)
Sequential 1.000 33834.18 1.00 33830.69
1 1.305 27386.12 1.29 29560.88
2 1.738 23015.46 2.08 22774.03
3 1.129 23364.13 2.45 21851.43
4 1.935 21370.48 2.70 21823.80
5 1.606 19311.83 2.62 19997.96
6 1.708 18665.94 2.72 19636.65
7 1.662 18361.67 2.73 19617.03
8 2.214 17770.63 2.79 19333.06
9 2.066 17617.55 2.73 19609.62
10 1.800 17054.08 2.94 18850.70
11 1.790 17253.65 2.93 18952.04
12 1.760 17142.95 2.93 18986.48
13 1.734 17311.21 2.92 19103.27
14 1.719 17332.50 2.92 19096.69
15 1.710 17159.50 2.91 19114.05
16 1.695 17579.40 2.90 19222.55

Table 3.8: Jetson energy consumption performance for the MMP-OpenMP encoder
(Lena image, A = 10 and dictionary size of 1024) with different number of threads for
the Low Power and Max Performance modes.

As mentioned earlier, OpenMP behaves differently when the number of requested
threads is bigger than the number of available cores. This is also evident in the energy
consumption readings. Figure show a stabilization of the mean consumptions after
the 4" thread in Max Performance. This is more visible in the servers hardware,
since they are equipped with more demanding components. Figure [3.7] shows the
watt oscillation ranges verified over executions with different numbers of threads on
the Server 2 hardware. Here, since the number of available cores is superior to the
number of prediction modes, requesting more threads than the ones actually needed
continuously generates overhead up to the point where the number of requested threads
is larger than the number of available cores (24). At this point, in conjunction with

the system, OpenMP changes the application to a less demanding scheme. There, it
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only consumes roughly the same amount of watts as the 2-thread executions but with
a run time between the run times achieved with 3 and 4 threads. But this does not
mean that it computes in the same time for less energy. Like in the Jetson case, Table
summarizes the energy consumption calculations for the Server 2 executions (only
up to 30 threads). Here it is possible to see that using 25 threads is faster than with
3 but consumes as much as with 4, henceforth not being better for the speed/energy
ratio. On the servers, using more threads than the number of available cores in one
CPU proved to be disadvantageous. Because there are no more cores available in
the first CPU, the second CPU starts receiving threads as well. This leads to some
additional memory managements since the second CPU does not have direct access
to the memory surrounding the first CPU. But because the parallelization is limited
to the 10 prediction modes, there is no actual way to say if MMP would benefit from
using 2 CPUs.
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Figure 3.7: Mean (3 executions) watt oscillation of the MMP-OpenMP encoder (Lena
image, A = 10 and dictionary size of 1024) with different number of threads, on Server2.

Time Overall Energy Time Overall Energy
Threads SpeedUp  Needed (Z Joules) Threads SpeedUp  Needed (Z Joules)
Sequential 1.000 302502.88 — — —
1 1.092 253171.48 16 2.409 148582.78
2 1.645 185148.24 17 2.247 156859.37
3 1.924 166411.94 18 2.330 156080.04
4 2.099 154557.41 19 2.235 162471.43
5 2.397 137450.47 20 2.231 163336.59
6 2.432 138361.06 21 2.238 164191.41
7 2.419 141053.04 22 2.212 167391.30
8 2.434 142405.91 23 2.169 170640.24
9 2.485 141919.70 24 2.022 184827.92
10 3.000 120700.40 25 2.026 149769.53
11 2.924 124592.23 26 2.022 150428.85
12 2.780 130571.83 27 2.025 150810.54
13 2.643 136799.13 28 2.022 151489.17
14 2.647 138952.63 29 2.025 150435.94
15 2.605 141087.91 30 2.017 150946.77

Table 3.9: Energy consumption performance for the MMP-OpenMP encoder (Lena
image, A = 10 and dictionary size of 1024) with different number of threads, on Server2.
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3.4 OpenCL-CPU

Open Computing Language is an open framework for writing programs that execute
across heterogeneous platforms. OpenCL views a computing system as consisting of a
number of compute devices (CD). CPUs, GPUs, digital signal processors (DSPs), field-
programmable gate arrays (FPGAs) are some examples of CDs that generally support,
or are supported by, OpenCL. The programming language itself is based on C99. It
specifies a language for programming devices and APIs to control the platform and
execute programs. The standard interface for parallel computing provided by OpenCL
uses task-based and data-based parallelism. Functions executed on an OpenCL device
are called kernels [83], which are marked as entry points. Each compute device typi-
cally consists of several compute units (CU), which in turn include multiple processing
elements (PE). A single kernel execution can run on all or several PEs of a CD in
parallel (here CD can also be simply referenced as ‘device’). These kernel functions are
intended to be compiled at run-time so that the source code becomes portable between
the implementations for various ‘host’ devices [84]. OpenCL C language is extended to
facilitate the use of parallelism with vector type operations [85]. Another key factor to
this language is its restrictions [85], which include: no function pointers; no bit-fields;

no variable length arrays; no recursion; and no standard headers.

How a CD is divided into CUs and PEs is vendor-dependent. A compute unit can
be thought of as a ‘core’ but this abstraction is hard to define transversely to all device
types (even between CPUs) [86]. Typically GPUs are roughly composed of several CUs
in which several PEs work in an instruction level lockstep. CPUs on the other hand
have only some cores/CUs which are their own single PEs. But the number of CUs
may not correspond to the number of cores claimed by marketing literature (e.g. it
may actually be the sum of the SIMD lanes) [87].

The OpenCL platform can be directly mapped to GPUs since they have hundreds
of PE cores. Since CPUs have far less number of cores, mapping the fine-grained
OpenCL processing elements can be unnatural. Additionally, applying fine-grained
parallelization would restrict CPU cache utilization since one work-item only processes
a small proportion of the memory/dataset. CPU cores, in comparison to GPU compute
units, are ‘overpowered’ cores, designed to perform more intense tasks with the support
of dedicated hardware, a mismatch for the OpenCL processing elements. Particularly
for CPUs, besides scalar types (e.g. float, double), OpenCL provides fixed-lengh vector
types (e.g. floatj — 4-vector single-precision floats). The available lenghts are: two,

three, four, eight and sixteen; for various base types [83]. Instructions using these
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vector types are mapped onto SIMD instructions sets (e.g. SSE or VMX) when running
OpenCL on CPUs [84].

Memory hierarchy in OpenCL is divided into four levels [84]: Global) largest and
with highest latency but shared across all PEs; Read-Only) smaller with low latency,
writable by the host but not by the device; Local) shared by a group of PE; and
Private) fastest, smallest and per-PE. Memory buffers reside in specific levels and
pointers are annotated with region qualifiers to address a specific level. But not every
device implements each level of this hierarchy in hardware. While GPUs have an on-
chip memory region designed to be shared by all workers in a given work group (local
memory), which is much faster than the off-chip global memory alternative, CPUs
on the other hand do not have it. As a result, all memory objects declared to use
such memory are mapped, with extra overhead, into sections of the global memory
(RAM). Consistency between the various levels in the hierarchy is relaxed. Because
it is implementation dependent, some compilers may choose to optimize local defined
memory by temporary copying the elements from the global memory (RAM) into the
registers, operate over them in a registers-to-register manner, and then store them back

instead of operating them directly over the global memory.

CPU/GPU Architecture Comparison

GPU

Multiprocessor 1 Multiprocessor 2 Multiprocessor 3
— EEE 5 EET |
2 EH3rcotes | ||Z-{32rcores 2fcorest
Of O
LLLITTlT]

Figure 3.8: Top-layer abstracted comparison between CPU and GPU Architecture.
The CPU abstract representation on the left consists of 4 cores/ALUs, a cache system
and controlling hardware. The GPU system (right) is composed of 15 microprocessors
that contain 32 ‘light’ cores each, forming a total of 480 cores, i.e., 15 workgroups with
32 lock-step workers.
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Figure |3.8| serves as an abstract comparison between CPU and GPU architectures.
Each design has its own strong points that need to be taken into consideration when
implementing for GPU or for CPU. GPUs have high compute density while CPUs
have low compute density. High computations per memory access can be made in

GPU whereas complex control logic and large caches are available in CPUs. GPUs
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are built for parallel operations thus having many execution units (ALUs) and CPUs
for serial operations (needing fewer ALUs) but with higher clock speeds. But CPU
shallow pipelines have less than half of the stages deep GPU pipelines have [88]. All
of this, plus memory architecture, makes CPUs low latency-tolerant in contrast with
GPUs which have higher tolerance.

Useful OpenCL beginner-developer driven information and concepts can be found
in [85] and [87].

3.4.1 Migrating from OpenCL-GPU to OpenCL-CPU

The first unexpected behaviour we encountered in porting the MMP-OpenCL-GPU
to OpenCL for CPUs was that the value for the work group size, obtained through
the clGetKernelWorkGroupInfo() API call, would be changed to one, thus nullifying
parallelism. This occurred whenever existing barriers were removed from a kernel. In
fact, the compiler was adding barriers to have cores/threads performing synchronously.
This forced communication among cores and thus negatively affected the performance.
Furthermore, in one of the kernels, the compiler also merged some work items together
in the same thread, swapping the executions to preserve the parallelized execution
order and the barriers. Merges also happened when the number of work-items was

larger than the number of CPU cores/possible threads.

To deal with the specificities of OpenCL over multicore CPUs, we simplified the
MMP kernels in order to have all work-group sized to one. The rationale lies in the
fact that i) a CPU can only efficiently run a few threads at any given moment and,
as stated earlier, 7i) the OpenCL compiler merges workers together. Moreover, on a
CPU, each worker benefits from dealing with a larger workload, promoting better cache

utilization.

Memory Mapping. Since we are mapping OpenCL on CPUs, the host and device
are the same, thus sharing the same memory space. Explicit host to device (H2D) and
device to host (D2H) data transfers may become completely unnecessary. OpenCL im-
poses some forms of explicit data transfers but does not impose restrictions on memory
access patterns. It is up to the device drivers and compiler to make their choices on
whether or not to actually replicate the data or just read it from already allocated
space. To overcome this irregularity, we then applied the zero copy technique. Specif-

ically, by changing the explicit data transfer functions to clEnqueueMapBuffer and
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clEnqueue UnmapMemObject, we get an OpenCL memory pointer to the same mapped
region. These functions perform like a token. By mapping a region, we inform that the
host now has the right to read and write. And by unmapping it, we return the control

to the device kernel.

Memory Access. As a result of another mismatch between GPU and CPU ar-
chitecture, due to their different purposes, GPU code with explicit memory coalescing
will suffer performance degradation when run on CPUs. This problem occurs when
each work-item accesses a column of data elements that are non-adjacent, thus affect-
ing data locality. This happens because memory coalescing for GPUs is orthogonal
with cache-beneficial access in CPUs. A GPU optimal code will have a column-major
access pattern to enable more effective transactions of global memory loads and stores,
in opposition to the required row-major order needed to preserve the cache locality
within each CPU thread. Indeed, on the CPU, the OpenCL-GPU coalesced memory
optimization was causing heavy cache misses. To this extent, we had to rewind the pre-
vious OpenCL-GPU coalesced memory optimizations, and return to a simpler access

pattern.

Metadata Access. GPU devices have special purpose registers to hold workers’
local and global IDs that speed up access to these metadata. CPUs lack these registers
and thus repeated calls such as get global_id(0), inside a loop, are costly. We also
prefetched values such as the number of work groups, local ID and local size to explicitly

private-defined variables.

Fostering Loop Unrolling. Originally replicated 10 times in the OpenCL-GPU
implementation and later put back together to become a simpler OpenCL-CPU im-
plementation, optimize block kernel had to be replicated once more. This time to
eliminate dependencies in some inner-loops, since they directly depended upon the
prediction mode at hands (which is known before launching the kernel). This way, the

compiler was able to unroll those inner loops.

3.4.2 SIMD-based Optimizations

Through CPU SIMD instructions and vector registers, data elements can be packed
into vector data to run simultaneously on SIMD hardware units, hence benefiting from
vectorization [89]. As stated earlier, OpenCL simplifies the use of SIMD instructions,

sparing developers from lower-level details (e.g., as opposed to Intel Intrinsics [90]).
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In fact, some OpenCL compilers perform implicit code vectorization, attempting to
transform scalar code into vectorized code. This is done by packing work items together
and running them in a SIMD fashion. The number of packed work items is dependent of
the width of the underlying SIMD engine. Figure serves as a visual representation of
the work-load distribution between workers and further inner-optimization with SIMD

instruction sets.

Work distribution with SIMD instruction sets
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Figure 3.9: Visual representation of the work-load distribution between works and
further optimization with SIMD instruction sets. A large information vector on the
top is split through several workers in the bottom left running in parallel that further
parallelize work by packing information operations with SIMD instruction sets.

Explicit Vectorization. Besides the implicit optimization attempted by compil-
ers, we can explicitly promote the use of vectorization by declaring variables as vector
datatypes such as int4 and float8 in the kernel code. The compiler attempts to employ
vector-based instructions, making use of the explicit knowledge conveyed by the vari-
ables declared as vector datatypes. Note that OpenCL specification specifically states
that usage of vector datatypes in arguments to a kernel function are assumed to be
“appropriately aligned” [83] to the matching data type. For example, a float4 variable
needs to be aligned to a 16-byte boundary.

Since the MMP-OpenCL-CPU implementation almost imposed that no barriers, no
memory coalesced transformations nor local managements were to be in place, work
item vectorization was fairly simple. The update dic kernel was vectorized by using
the int/ datatype and by padding the aligned data. The vectorization of the kernels
optimize_block and j_reducter required padding the data in an adaptive manner since
the MMP block being processed can have one of possible sizes (which impacts calcu-
lations). This was dealt with a switch-case to adapt whether the data could fit in 2, 4
or 8 bytes.
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Vectorization of Data Reduction. SIMD vectorization was further used to
optimize data reduction that forms the core of the j reducter. Specifically, after having
completed the usual iterative sum to obtain a vector with 8 elements, the 8-element
vector is further reduced to a scalar by performing a vector addition over its high and
low parts, that is, adding vector.hi + vector.lo into an int4 vector. The procedure
is repeated for the int/ vector, yielding an int2 vector, and then again for the int2
vector. This way the reduction sum over an 8-element vector is performed through

vectorization, using, in this case, half the instructions needed.

3.4.3 Results

Table shows the execution times for the various versions of MMP and the speedup
relatively to the corresponding sequential (non-multithreaded) version. The rows of the
table correspond, respectively, to the sequential version (Sequential), the OpenCL GPU
optimized version ran on GPU (OpenCL-GPU inGPU), the OpenCL GPU optimized
version ran on CPU (OpenCL-GPU inCPU), the OpenCL CPU optimized version
ran on CPU (OpenCL-CPU inCPU) and the OpenCL CPU optimized with explicit
SIMD instructions (OpenCL-CPU inCPU with SIMD). As referenced in Chapter [2] the
Server 2 and 3 correspond to server machines with different hardware RAM memory
modules. Here we assess the importance of memory system speed and bandwidth on

the execution times of MMP.

Time SpeedUp
Laptop Server 2 Server 3 Laptop Server 2 Server 3
Sequential 1836.5860 2157.7957 2139.1510 1.00 1.00 1.00
OpenCL-GPU inGPU 583.0056 496.0219 506.6877 3.15 4.35 4.22
OpenCL-GPU inCPU 976.3864  1029.9416 1035.9735 1.88 2.10 2.06
OpenCL-CPU inCPU 815.9278  967.7535  1023.3004 2.25 2.23 2.09
OpenCL-CPU mCPY 671.7362  901.7323  958.5457 2.73 2.39 2.23

with SIMD

Table 3.10: Execution time results evolution (in seconds) for different iterations over
the MMP-OpenCL encoder (Lena image, A = 10 and dictionary size of 1024). Server
2 and server 3 are equipped with the Titan GPU.

Surprisingly, the laptop executions (that do not use the GPU) perform around 15%
faster than the server ones. This is due to the faster system memory of the laptop.
In fact, the importance of the memory system is further highlighted by the execution
time differences between the two memory configurations of servers: Server 2 is roughly
5% faster than Server 3. This can be explained by the fact that i) the RAM modules
of Server 2 are clocked at an higher frequency than the ones of Server 3 configuration
(1600 MHz vs. 1333 MHz) and that i) having four memory modules better suits
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a four memory channel CPU such as the Xeon 6-Core E5-2620 V2, especially on a

multiprocessor setting [91].

Overall, the GPU optimized version of OpenCL yields the fastest execution times,
achieving a speedup over the sequential version of 2.93 times for the laptop plus GPU
and 3.45 times for Server 2 plus GPU. These results highlight the importance of the
GPU, with the more powerful Titan GPU yielding faster results than the 570M.

Comparing the execution times over CPUs of the CPU-optimized OpenCL (OpenCL-
CPU inCPU) version vs. the GPU-optimized one (OpenCL-GPU inCPU), reinforces
the importance of the memory system. Indeed, while a 19.7% performance gain is
achieved by the laptop, practically no performance is gained for the server with the
slowest memory configuration. When the SIMD-based optimization is considered, the
performance gain over the GPU-optimized version run on CPU is 1.454 for the laptop
and 1.081 for the fastest server configuration. For the laptop, the SIMD optimization
adds a 20% speedup over the non-SIMD OpenCL-CPU version, and around 1.07 for

the server.

Globally, the SIMD-enabled OpenCL version achieves a 2.54 speedup over the se-
quential version vs. 2.93 attained by the OpenCL-GPU version ran on the laptop GPU.
This means that substantial speedup can still be achieved with OpenCL when no GPU
is available. Additionally, enabling explicit usage of SIMD instructions in OpenCL can

provide some performance improvement.

Table shows the execution times broken down per kernels of each OpenCL
version of MMP ran on the laptop machine. For this table it is also included two
iterations between the OpenCL-GPU implementation and the OpenCL-CPU. The first
shows the effect of the groupsize downgrade to size one (with GroupSize 1), directly
yielding an 1.27 speedup. And a second one shows the gain with the removal of memory
coalescing and the usage of the zero copy technique (with CPU-like Memory Access and
Mapping), further yielding more 0.31 speedup.

The results confirm that the usage of SIMD vectorization instructions through
OpenCL meaningfully improve performance, cutting in half the cumulative execution
time for all kernels. Comparing the GPU-based version with the SIMD-based version
execution times, the GPU provides a much faster execution for the optimize block
kernel. However, explicit SIMD-based optimization of the reduction loop gives a sig-
nificant boost to the j reducter kernel, making it closer, in performance terms, to the
GPU-based execution. Finally, the SIMD-based version of the memory intense com-

pare_ blocks and update  dic kernel performs better than the GPU optimized version.
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Kernel-Time Execution Time

k1 k2 k3 kd SpeedUp SpeedUp

OpenCL-GPU inGPU  33.1733  23.0504 1.3554 0.0900 8.04 1.67
OpenCL-GPU inCPU  279.5924 174.8818 9.3456  0.0259 1.00 1.00

* with GroupSize 1 952.3004 110.1652 3.4965 0.0169 1.27 1.09
with CPU-like Memory —oq) cooe 607644 1.6812  0.0120 1.58 1.17
Access and Mapping
OpenCL-CPU inCPU  213.9147 56.6192 1.3336 0.0114 1.71 1.20
OpenCL-CPU inCPU 15 0510 304582 07279 0.0092 3.15 1.45

with SIMD

* Incremental modifications to the OpenCL-GPU inCPU implementation

Table 3.11: Kernel time results evolution (in seconds) for different iterations over the
MMP-OpenCL encoder (Lena image, A = 10 and dictionary size of 1024), on laptop.
Here k1-j respectively mean kernels optimize block, j reducer, compare blocks and
update dic.

Power Consumption Results

Figure [3.10] shows the ranges of the instantaneous power consumption as well as the
overall mean power usage verified over executions with different numbers of threads on
the Server 2 hardware. From the plot we can see that running OpenCL without explicit
SIMD instructions (on the left) is overall less energy consuming than with SIMD usage
(on the right). Even with only 1 thread, it is possible to see a 2 watts jump from
the execution without SIMD to the one using it. But after the number of threads has
passed the number of existing CPU cores (24) the instantaneous power consumption
without SIMD usage rapidly increases towards the same level as the one with SIMD
instructions. This happens, as stated before, because the OpenCL compiler merges
workers together (making use of the SIMD hardware) or, in this particular case, merges
work by swapping the executions to preserve the parallelized execution order. Even so,
this does not mean — execution wide — that it consumes less energy than with SIMD,
nor that it is preferable not to use SIMD instructions from an energy consumption
perspective. Table[3.12)summarizes the energy consumption calculations for the Server
2 executions (up to 30 threads) and, within parentheses, the resulting energy speedup
relatively to the corresponding sequential (non-multithreaded) version. Here, we can
clearly see that the SIMD version obtains higher speedups in both execution time
and energy consumption. Further comparison of these results (e.g. dividing the overall
energy column by the time speedup) indicates that the SIMD implementation consumes

a smaller energy ratio.
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Figure 3.10: Mean (3 executions) watt oscillation of the MMP-OpenCL encoder (Lena
image, A = 10 and dictionary size of 1024) with different number of threads, on Server
2, with and without explicit SIMD instruction usage.

OpenCL-CPU inCPU OpenCL-CPU inCPU with SIMD

Overall Energy Overall Energy

Threads Time SpeedUp Time SpeedUp

Needed (Z Joules) Needed (Z Joules)
1 1.152 253190.94 (1.19x) 1.490 198471.93 (1.52x)
2 1.352 220699.69 (1.37x) 1.884 159426.59 (1.90%)
3 1.493 201787.92 (1.50x) 2.041 148491.21 (2.04x%)
4 1.574 192086.16 (1.57x%) 2.123 143227.56 (2.11x%)
5 1.660 183237.30 (1.65x) 2.164 141400.59 (2.14x)
6 1.736 176171.62 (1.72x) 2.171 140854.88 (2.15)
7 1.798 170843.01 (1.77x) 2.215 141155.52 (2.14x)
8 1.852 166409.68 (1.82x) 2.220 143452.13 (2.11x)
9 1.903 161481.10 (1.87x) 2.245 140839.74 (2.15x%)
10 1.946 158728.37 (1.91x) 2.258 140722.29 (2.15x)
11 1.982 155854.70 (1.94x) 2.252 140844.18 (2.15x)
12 2.014 153781.79 (1.97x) 2.284 139818.06 (2.16x%)
13 2.052 150699.33 (2.01) 2.289 139436.83 (2.17x)
14 2.080 149069.94 (2.03x%) 2.301 138615.94 (2.18x)
15 2.107 147445.13 (2.05%) 2.328 136566.75 (2.22%)
16 2.128 145872.05 (2.07x) 2.362 134863.99 (2.24%)
17 2.149 144753.48 (2.09x) 2.337 136106.00 (2.22x)
18 2.169 143823.60 (2.10%) 2.332 136718.39 (2.21x%)
19 2.181 142973.26 (2.12x%) 2.332 136765.29 (2.21x%)
20 2.195 142058.61 (2.13x%) 2.333 135946.36 (2.23x%)
21 2.204 141659.35 (2.14x) 2.328 136269.38 (2.22x)
22 2.211 141221.47 (2.14x) 2.322 136445.19 (2.22x)
23 2.211 141197.99 (2.14x) 2.319 136525.46 (2.22x)
24 2.222 140742.63 (2.15x%) 2.272 137842.09 (2.19x%)
25 2.224 140499.68 (2.15x%) 2.317 136906.51 (2.21x%)
26 2.219 142556.33 (2.12x) 2.327 137069.27 (2.21x%)
27 2.218 144921.79 (2.09x) 2.322 138583.68 (2.18x)
28 2.215 146564.46 (2.06 %) 2.319 138933.01 (2.18x)
29 2.214 145672.62 (2.08%) 2.317 139126.07 (2.17x%)
30 2.213 145539.79 (2.08%) 2.317 138891.33 (2.18x)

Table 3.12: Server 2 energy consumption performance for the MMP-OpenCL encoder
(Lena image, A = 10 and dictionary size of 1024) with different number of threads.
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3.5 Conclusions

When talking about green-computing one may opt to embark on the optimizations
path. With this chapter we have showed that more optimized and parallel code is
actually more energy efficient. And that there is a hardware-OS dependent balance
between the number of threads and the attained performances. In this path we have
also unravel some OpenMP behaviours with the successful implementation of an MMP-
OpenMP version, which achieves speedups of up to 3x, and improved the original

sequential version by around 10%.

Within this chapter we also successfully documented an OpenCL-CPU case study
were we converted the existing OpenCL-GPU implementation to the CPU alternative
reviewing several important aspects that differ and ultimately define the implementa-
tion direction. We also took advantage of the CPU Single Instruction Multiple Data
instructions through the OpenCL API abstraction making the CPU-core parallelization
one step deeper. Overall, the OpenCL reimplementation for CPU only takes around
2x more time than in a GPU but with around 120 times less cores (24 in server CPU)
than a GPU (2880 in Titan Black).

To complete the presented work, since we never referenced the compression results
(only the performance speedups), we expose here the Rate-Distortion curves for the al-
gorithms in Figure These curves address the problem of determining the minimal
number of bits per symbol, as measured by the rate R, that should be communicated
over a channel, so that the input signal can be approximately reconstructed without
exceeding a given distortion D. That is, the curves present the PSNR and bits-per-
pixel relation that the algorithms achieve — image compression quality. Two completely

overlapping curves means that both algorithms produce the same output/quality.

Both Figures [3.11a] and [3.11b| provide the same information but in different visu-
alizations. While Figure provides the traditional visualization with lines (line-
graph) hence producing a curve, Figure only shows the information dots that
compose the information table without the connecting lines so that the results overlap
may be better observed if needed. Later Figure provides the shape/colour labels

for the plot figures. All implementations maintained their expected results ranges —

i.e. all results are overlapping.
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Figure 3.11: Rate-Distortion Curves for the existing MMP implementations in
the traditional line-graph and alternative dot-graph for better result-overlap vi-
sualization, on the Lena image for variable {)\, dictionary size} values of
{(200, {1000, 500, 300, 150, 75}); (100, {50, 25}); (50, {15, 10, 5})} — like in |7} 6, [3].
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Chapter 4

HEVC+SS+GT — Multi-GPU, Many-Core,
Multi-Thread

In this chapter, we focus on the parallelization of what we call HEVC+SS+GT.
First we present a small review of the HEVC — current video encoding standard —
algorithm, followed by an analysis on the main existing obstacles and impediments to
its proper parallelization (Section . To match with the algorithm theoretical review
another, more technical, description is made in Section [£.3] With that knowledge, we
further propose and analyse the implementation for a CPU multi-thread /multi-CPU
environment resorting to OpenMP (Section , and introduce a possible GPU imple-
mentation within the parallelization limits (Section and a multi-GPU extension
(in Section . Finally, Section summarizes this chapter.

This chapter relies on knowledge presented previously in this document. Apart
from Chapter [2] perusal of the subsections [3.3] [3.3.1] and [3.4]is advised.

4.1 High Efficiency Video Coding

The High Efficiency Video Coding (HEVC) is the video compression standard which
succedded to the widely used Advanced Video Coding (AVC). AVC is also know as
H.264 [92]. H.264 is a block-oriented motion-compensation-based video compression
standard that is currently one of the most commonly used formats. It has a very broad
application range that covers all forms of digital compressed video from low bit-rate
internet streaming applications to HDTV broadcast and Digital Cinema applications
with nearly lossless coding. Currently, HEVC is known as H.265 [93]. HEVC was de-
veloped by the Joint Collaborative Team on Video Coding (JCT-VC) — a collaboration
between two well known standardization groups ISO/IEC MPEG and ITU-T VCEG.
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In comparison to AVC, HEVC doubles the data compression ratio for the same level
of video quality, or substantially improves video quality for equivalent bit rate values.
The main differences from AVC to HEVC include: the expansion of the pattern com-
parison and difference-coding areas from 16x16 pixel to sizes up to 64x64, improved
variable-block-size segmentation, improved “intra” prediction within the same picture,
improved motion vector prediction and motion region merging, improved motion com-

pensation filtering, among others [94].

Complete information about HEVC/H.265 can be found in [95] and comparisons
between AVC/H.264 and HEVC/H.265 in |96 O7]. A more detailed review over the
HEVC standard can also be found in [93].

4.1.1 HEVC-based holoscopic coding using Self-Similarity com-
pensated prediction and Geometric Transformations for

efficient disparity compensation

In this chapter we will be working with an HEVC-based implementation that focuses
on holoscopic image/video processing, using geometry-based disparity compensation
developed by Conti et al. [98, 4, 99] and further complemented by Monteiro et al.
[5, 100] using Geometric Transformations (GT). The concepts behind holoscopic imag-
ing were firstly proposed by Lippmann [I0I] and referred to as integral photography
in 1908. In a nutshell, the holoscopic imaging system comprises a regularly spaced
array of small micro-lenses, comparable to a “fly’s eye” lens array [102]. Making this
holoscopic-HEVC-based algorithm implementation-toned to search and match similar
micro-images in a better way than the normal HEVC implementation would match
[99, [103].

As a contribution to the previous work, we were asked to optimize part of this
existing implementation since it builds up a lot of additional computation (6.9 days)
aside of the regular HEVC inner workings (16 minutes). When properly programmed,
multicore and manycore platforms such as CPUs and GPUs can yield fast execution,
achieving substantial speedups over pure single-threaded versions [I04]. The objective
of the work described in this chapter was to speedup the GT module, i.e., the part of
the code which searches for the GT that provides the best match between a reference
area and the block that is being encoded. The next section will briefly describe the

GT algorithm before we move on to the description of the parallel implementations.
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Geometric Transformations module

The Geometric Transformations search step/module mainly works as follows:

e An rectangular image block with size HxW (H rows by W columns) is given.
The block exists in larger memory buffer that contains the surrounding image
region or even the whole image. Being rectangular, there are 4 image corners:

top-left, top-right, bottom-right, bottom-left — c0, c1, 2, ¢3 respectively.

e Around each image corner there are 9 equally distributed spots/points (8 plus
the corner itself) which form the local search region. Figure helps to describe
the concept. The points around a corner occupy a square region of length L =

min(H,W)/2. Therefore, each point is vertically and horizontally distanced by

L/2.
Corner Square Search Region Lea
00 (0]
]
© ) ®
(0] ® ®
E Image Block central spot

or
corner spot

Figure 4.1: Visual representation of the 9 local, equally distributed, spots/points of
the top-right corner (c1) search region in the Geometric Transformations module.

e Considering 9 different points for each corner, there are 9 x 4 points. By select-
ing one point from each corner, there are 9% point combinations available. The
algorithm moves the image block corner definitions over each point combination
and, if the selected points are within the image buffer memory region, verifies the
distortion of the new quadrilateral shape after a projective transformation of its
geometry. Figure provides a visualization of the corner point combinations
cycles/iterations. Cycle 1, iteration 1, is the starting point of the algorithm. In
a first cycle, only the 9 points of corner ¢3 are evaluated. After all points in ¢3
are evaluated, a point in ¢2 is changed and all combinations with corner ¢3 are

re-evaluated (cycle 2). The process continues and passes e.g. by cycle 11 where

23



corner cl is already processing its second point. The process continues until all

possible point combinations are verified.

cycle 1

iteration 1 iteration 2 iteration 3 iteration 4
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Figure 4.2: Sort visualization of the corner point combinations cyclic behaviour in the
Geometric Transformations module.

Apart from the described behaviour, the algorithm also recalculates the L sized
regions after each 9 points of a region have been evaluated. It does it by moving the
region central point to the point were the best/lowest distortion was found and restarts

the local cycle process. This complements the already described behaviour as follows:

e At compilation time a constant integer N is defined within the range [1 : 5
(larger values are technically allowed). The number represented by N defines the
maximum number of times a region is verified, while N — 1 defines the maximum

number of translations (also referenced as a ‘zoom’) that any corner can do.

e After the 9 points of a corner local region have been evaluated, a ‘zoom’ may

occur.

e A ‘zoom’ can only occur if the count towards N allows it and if L > 1. If the
conditions allow it, the region central point is moved to the point which previously

provided the best /lowest distortion, then:

— The L size is halved for that corner and the surrounding 8 points are recal-

culated /moved accordingly.



— All the previous iterations are re-iterated since the corner local region has
changed, thus generating new — slightly different — quadrilateral shapes that

may provide even lower distortions.

— Depending on the value of N and the position of the block, new ‘zooms’

may occur again and all 9 points of a given corner are evaluated.

With the new described behaviour, the maximum number of possible combination
becomes (9 * N)* for each block if L allows it.

4.2 Parallelization Impediments

In complex applications and algorithms, there are commonly intrinsic, non-parallelizable
issues. These issues can be data and control dependences related or architecture-

related. Padua [105], p.1412| very concisely says that:

(...) the best approach is to rethink the algorithms and program, and
restructure the program or use entirely different algorithms. These steps
can be very difficult and nonintuitive, unless a developer is specifically

driven by the parallel languages (...)

In the HEVC+SS+GT implementation the original developer was driven by the
sequentiality of the code, making use of the iteratively produced data in following

iterations. This lead to both data and control dependencies.

Several meetings with the authors of the sequential prototype (Monteiro et al.)
took place to overcome these issues. The first problem lied in the corner iterations of
the GT module. As explained in the previous section, each corner cycle is actually
compromised of 9 inner iterations over a corner central point (Figure . Originally,
if one of these inner iterations found a better/smaller distortion value, it would update
the global best corners combination values. But this means that if we later find the
same distortion value again, but for a different corner combination, that the value will
not be saved (since it is not smaller than the current one). Non-extensive tests were
made and depending in the order in which the corners and the inner 9 iterations were
processed the final encoding results would differ. Differences of 4% in bitrate and 0.07
PSNR drops were registered. This means that in a parallel environment, the concurrent

executions must always follow some specific order of events or else, in other words, the
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execution results will become inconsistent, displaying different compression rates and

image qualities between executions.

In addition, globally, every 10" iteration is dependent on the previous 9 since after
every 9 iterations a best corner point can be locally updated — changing how future

iterations behave.

Apart from the corner sequential execution restriction, another issue was found

regarding the update of a corner central point, as discussed in the next section.

Sequential Code Modifications

In the already exposed GT module description it is referred that each corner will
readjust its central point to the previous best point found after its inner 9 iterations.
This was not actually happening like the theoretical review stated. Some changes were
made to the code in order to make both the theoretical and technical descriptions
implementation compliant. These corrections were firstly proposed and later accepted

by the original party. This was a two step amendment.

In a first step, we reviewed the implementation and found that between corner
iterations the corresponding central points were being reset to their original values.
This was only perceptible with a NV value bigger than 1, since the central corner points
change and later usage is only done for the upcoming iterations to use, hence only
when N : [2,5]. Le., all iterations were using the original central points every time and
only changing/halving the radius of the 8 surrounding points, thus never performing
the translation to the best found distortion region — unless the central point was co-
incidently the best distortion region. After a quick correction a second step/problem

surfaced.

In a second step, we found that the corners central /focus points only changed when
a new global best distortion was found. The problem here is that, while a global
best distortion is always applicable to the corner c0, it does not implicitly mean that
no other less optimal distortions were found and could had been therefore suitable
to other corners. For example, lets suppose the global distortion is 100 and that
after performing all of the NV = 1 iterations for corner ¢3, only worser distortions are
found, the best one of these was 101, then no corner central points were updated, thus
maintaining their location for the N = 2 iteration. This only focus the new/same

points (for N = 2) around the same region again, which makes no immediate sense.
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After some collaboration with Monteiro et al., the participating parties concluded that
the expected/wanted behaviour was that all of the 4 corners would record their best
local distortions (and corresponding central points) independently of the best global
distortion. In this way, even if the found distortion was of only 101, the algorithm
would reposition the central point and the new 9 generated points for the N = 2
iteration would have a higher chance of finding an even better distortion around the

101 region (possibly better than the best 100 in example, say 99).

As a last detail, the function in which the projective parameters are calculated was
also altered. Because of its mathematical behaviour, it could sometimes generate a
“Division by Zero” (DbZ) exception. As a quick fix, a simple condition was added
before the calculation to ensure that the divisor would not result in zero. A later
review by Monteiro et al. may be in order. This problem only arose when using the
same calculations in the GPU environment. In the CPU environment the calculation
results would be masked with a “Not a Number” (NaN) value, in which case further
calculations with this value are discarded by the implementation since it yield very
large distortions. However, in the GPU environment the kernel execution is actually

stopped and the error is generated, not allowing the correct execution flow.

4.3 Profiling HEVC+SS+GT

Using the same methods as in Section [3.3.1] we started by visualysing a call-tree
representation of the given sequential implementation to facilitate the absorption of the
underlying data and comprehension of the GT module role in the time consumption

plane.

Figure[4.3)is a visualization with [77] where nodes/functions that occupied less than
1% of the execution time were left out (almost 700 nodes). It has the same theme as
explained previously, based on the node execution time percentage. Red nodes occupy
almost all the execution time, orange, green and later blue nodes gradually consume
less execution time percentage. Figures and are given so that the impact of
a growing N may be seen in the functions call counter. The call-trees do not start
at their root nodes so that they better fit the page. Here, 7 root nodes were cropped
prior to the displayed one in each sub-image. In both cases, xPatternSearchFracDIF
function is called around 254 and 252 thousand times — note how it is called less times

for the N =5 case. This function is the entry point of the GT module.
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Figure 4.3: Partial call-graph for the execution of the HEVC+SS+GT-Sequential en-
coder on the PlaneAndToy image.
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As a part of the inter-prediction motion search algorithm, the GT module is called
from the zMotionEstimation function. Starting in function zPatternSearchFracDIF),
the GT module begins looping through all point combination and applying possible
zooms. To do this, 12 nested loops are defined, 3 loops are necessary per corner —
one loop verifies and applies possible zooms and two inner loops iterate the different x
and y point coordinates that exist in a given corner. Within this 12 loops — selecting
4 points, one per corner — the algorithm first calculates the projective transformation
parameters in sub function calcParamProjective — which is a simple math-function
routine — and later computes the transformation with function Projective Transform.
This consists in the actual transformation of a given block image by the computed
parameters — 2 nested loop iterate over the image pixels. After the transformation, the
generated /transformed image is compared with a reference block. This comparison is
computed by the xGetHADs function. Depending on the image block size divisibility,
this later function calls zCalcHADsS8x8 or xCalcHADs4xz4 or xCalcHADs2x2 func-
tions. For image blocks of sizes 8x8 or 16x8 or 16x16, etc., zGetHADs selects function
xCalcHA Ds8x8. Particularly, for the later image block size of 16x16 the xCalcHA Ds8x8
is called 4 times — since 4 8x8 matrices fit into a 16x16 block. But for a 8x4 block it
would now call the zCalcHA Dsjx4 function since the block is not divisible into 8x8 sub
matrices but rather into 4x4. Note that the zCalcHADs2x2 function is never called,
therefore it is not included in Figure call-graphs. These zCalcHADs* functions
are part of the HEVC implementation and simply called by the GT module. They
calculate the Walsh-Hadamard Transformation for each sub matrix and sum all their

elements thus resolving the final distortion value for that given image block.

For the N = 1 results, Figure[4.3a], the main GT module function — Projective Trans-
form — is called around 1.5 billion (1.5 * 10%) times which implies that the distortion
calculation function — xGetHADs — is also called around 1.5 billion times. Note how
in this scenario the ProjectiveTransform function consumes 84% of the root zPat-
ternSearchFracDIF function time — where the GT module begins — i.e. 71.86% of the

total execution time.

On the other hand, in the N = 5 results, Figure [£.3b] both Projective Transform
and zGetHADs functions are now each called around 4.1 billion times. In this case,
the xGetHADs function is now the most consuming function, occupying 72% of the
runtime execution time. For the lower N value the Projective Transform function is the
main time consuming function and for larger N value the inner xCalcHADs8xz8 gains

significance.
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4.3.1 Base Reference Results

As a reference to the rest of this chapter, Table [4.1shows the execution times registered
for the pre-existing implementation (after the modifications referred in the previous
section) with its variable N. For simplicity, because we already examined the available

hardware in the previous chapter, we choose to only use Server 2 in this case study.

The encoded frame (Figure of the HD PlaneAndToys sequence takes between
924 and 990 seconds to be processed by the base HEVC implementation. The mean
(T of 30 executions) value is situated at 988 seconds, thus it was selected as the base
result. This means that all the remaining time will be spent on average in the GT
module. Immediately, for the selected frame in Table [1.1] the utilization of the GT
module with N = 1 adds 6775 seconds to the algorithm execution time. And at its
maximum, N = 5 adds a total of 6.95 days (roughly 167 hours).

Base H.EVC N Execution Time GT Module Time
Version

without GT - 988 (0h16m) — (0hOOm)
with GT 1 7763 (2h09m) 6774 (1h52m)
with GT 2 79331 (22h02m) 78342 (21h45m)
with GT 3 275145 (76h25m) 274156 (76h09m)
with GT 4 490876 (136h21m) 489887 (136h04m)
with GT 5 601604 (167h06m) 600615 (166h50m)

Table 4.1: Execution time results for the HEVC+SS+GT-Sequential encoder on the
PlaneAndToy image without the GT module and with GT module with N : [1, 5].

4.4 OpenMP

As a starting approach, to further understand the sequential implementation and devise
parallelization approaches, we resorted to the previous explored API (Section as
a way to rapidly implement and test parallelization strategies before the GPU and
multiGPU stages (which take longer to formulate). Hence, in this section we explain

one parallelization that was relevant for the GPU stage.
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4.4.1 Implementation

The sequential implementation consists of 12 loops, nested one after the other in func-
tion zPatternSearchFracDIF, were the 4 corners iterate over their possible transforma-
tion points (x and y coordinates — 2 loops per corner) and eventually zoom to a better
region (1 verification loop per corner). Because the algorithm is highly iterative, with
12 nested loops, the parallelization could be implemented through almost any of them,
but the data reduction or merge implementation would depend on the case in question.
Several strategies were tested to evaluate the time used by parallelization mechanisms.
This is relevant because, although the algorithm consumes a large amount of time, the
inner-most loop may take almost no actual time but be called in fact a lot of times.
This is the case. The last corner ¢3 loops produce 9 x N iterations for each combina-
tion of the other corners. In an extreme case, for a large enough block, it produces a
maximum of (9 N)? iterations per block (4100625 for N = 5). If the necessary work
per cycle does not take more time on average than the necessary time to prepare and

initiate the parallel API, no speedup will be producible.

Like for the previous algorithm (Section [3.3.2), the OpenMP-based parallelization
is very straight forward. Since the sequential algorithm is already for-loop based, it was
only necessary to apply the OpenMP directives. Although the directive conjunction
“omp parallel for” would suffice for this situation, a division in “omp parallel” to prepare
the region and further “omp for” to divide the existing work is preferable to better

adjust allocated memory usage.

Having a basic parallel implementation, we further improved it by moving its critical
section out of the ‘for’ region. The contents of the critical section represent the update
of the calculated distortions (and salvage of the combining points that generated that
distortion). To maintain the same algorithm results between executions, and reproduce
the sequential implementation, the critical section is composed of a loop that iterates
in order by the number of existing threads. Therefore merging each result one at the
time, in the sequential order. This provided a small speedup because instead of having
a maximum of (9% N)* entries to the critical section in the inner-most loop of the ‘for’
region, there is now only 9 after its very end. In order to do this, we replicated several
variables so that each thread would save a local backup of the final results, enabling

their usage out of the ‘for’ region and copy/update over the global/main variables.

Since we are only using a maximum of 9 threads for the parallel region, some CPU

cores are still available on the Server 2 machine. Attempts were made to add more
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working threads but had no relevant success. Instead of working only over 1 corner,
coalescing to 2 corners did not provide further speedups since the implementation
complexity became too big. Further thread/work division on subfunctions GetHADs,
xCalcHADs8x8 and xCalcHA Dsjx/ could not improve the algorithm since they provide
too little calculation over the needed variable managements. Parallelization of the
Projective Transform function was left aside to keep up with the project schedule and

objectives, specifically the GPU implementation.

4.4.2 Results

Table presents results for two extreme cases: 1) a parallelization over the outer-most
loop where a lot of computation exists; and 2) a parallelization over the inner-most loop
where the smallest amount of computation per loop exists. Because the usage of an
N ranging from [2, 5] would only extend the amount of computation, the results only
present the resulting time and speedup achieved with N = 1. In these two extreme
cases, the parallelization is done over the 9 points of the c0 and ¢3 corners, respectively.
This makes the maximum number of allowed threads 9. Because each OpenMP thread
will start at different point combinations (independently of the case), after the 9 points
are evaluated in parallel, it is necessary to merge the different results and update the

global and local distortion variables.

OI)Ce;Sl\e/IP Threads EX,%(;E:;OH SpeedUp O%?SIZIP Threads EX,;(;EEOH SpeedUp
1 (outer) 1 7984 0.97 2 (inner) 1 8288 0.94

2 4921 1.58 2 5618 1.38

3 3569 2.18 3 4341 1.79

4 4069 1.91 4 4556 1.70

5 3588 2.16 5 4584 1.69

6 3433 2.26 6 4614 1.68

7 3609 2.15 7 4687 1.66

8 3462 2.24 8 4687 1.66

9 2999 2.59 9 4677 1.66

Table 4.2: Execution time results (in seconds) for two implementation cases of the
HEVC+SS+GT-OpenMP encoder on the PlaneAndToy image.

The presented table makes it evident that the OpenMP API has a significant over-
head. With 1 thread, case 2 takes more time then case 1, since there are a lot more
API calls produced for parallel computations. And since there is less work to do in
case 2 (per loop), the achieved speedup upper limit is lower than in the case 1 experi-

ment overall. With larger N values the speedups increases slightly. Alternative cases

62



between these 2 extreme implementations (in the outer-most and inner loops) only

produced results between the present ones.

After assessing that a parallelization over the external /outer loops is preferable, we
further improved the suggested case 1 by moving its critical section out of the ‘for’
region as referred earlier. Table shows the attained speedups, including variable
N :[1,5], with 9 threads, for the improved case 1. Both PSNR and bitrate values were

maintained equal to the sequential version results.

N  Execution Time SpeedUp

1 2228 (Oh37m) 3.48
2 11001 (3h03m) 7.21
3 34773 (9h39m) 7.91
4 61407 (17h03m)  7.99
5 74676 (20h44m)  8.06

Table 4.3: Execution time results for the final HEVC+SS+GT-OpenMP encoder on the
PlaneAndToy image and achieved speedups.

With an increase in the N value, each thread gains more and more workload. This
causes the speedups to continuously increase towards the number of existing threads
since the API overheads became gradually insignificant. But interestingly, since an
increase in N produces an exponential growth in the workload, a speedup jump from
3.48 to 7.21 was registered simply because of the workload increment achieved by
N = 2. Aiming for the more costly execution, this OpenMP implementation achieves
a speedup of 8.06 with N = 5.

4.5 OpenCL-GPU

In order to produce a GPU implementation it came to reason that we would resort to
the previously explored OpenCL API (Section . Previous to the acknowledgement
of this work attempts were made to resort to the CUDA API but had no success.

The Open Computing Language (OpenCL) is already well reviewed in Section [3.4,
Although the section aims for a OpenCL-CPU environment, both OpenCL-GPU and
CPU were equally described since ‘OpenCL’ itself is normally associated with GPUs
(thus made sense to base the CPU description on a correlated GPU analysis).

Because initial implementation took a considerable amount of time to run, bench-

marking and result acquisition were confined to the GTX Titan Black GPU since it

63



is the fastest one. Side executions were made in other GPUs for comparison but were
not fully benchmarked. Thus the results subsection will mostly revolve around
the GTX Titan Black GPU.

4.5.1 Implementation

In this subsection, we start by enumerating some relevant implementations prior to the
final proposal and fully implemented one, so that the reader can comprehend the path

and decisions that lead to the final implementation.

From the knowledge already obtained from the previous MMP implementations
and the latest HEVC+SS+GT-OpenMP implementation, we started to devise possible
algorithm expansions that would better suit a GPU environment, namely the warp
and memory mechanisms. As a first attempt, we idealised a direct expansion of the
OpenMP implementation, coalescing through all four corners. This would provide 9*
distributable iterations throughout the GPU threads, but this method was soon dis-
carded since no viable process of dividing the different iterations was found (and it did
not take into consideration other values of N apart from N = 1). In the process of im-
plementing it, we found out that the conditions which allow, or forbid, the calculation
of the geometric transformation produced by a group of points were not always ideal.
For a given block, 9 point combinations are always denied since they basically produced
a translation and not a transformation — i.e. the combination of the x point of every
corner, being z : [1,2" . 9] always produces the same original block image but
translated by a small offset. An example of this is present in Figure [4.2] cycle 1, iter-
ation 1. This would mean that 9 GPU threads would always have no actual workload.
In addition, further review of the remaining conditions — i.e. if the transformation is
within the image and HEVC-allocated memory buffer and if the projective parameters
calculation would not result in a division by zero — showed that they occurred more
often than it was expected. This made this group of conditions a potential hazard to
the GPU kernel execution since it would constantly produce branching problems. We
cropped part of the HD image to analyse the resulting blocks and branching decisions.
From over 296 different image blocks, 245 more marginal blocks could not have ge-
ometric calculations at all, and only 34 actually had all combinations (except the 9
translation ones) computed. The remaining blocks had intermediate results. In a nut-
shell, this is by far the ideal solution, but it could be resolved by vectoring all actually

possible point combinations prior to the actual geometric and distortion calculations.
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As a second iteration, we realized that we could maintain the previous attempt by,
instead of giving each thread an iteration, giving each warp an iteration. This way an
entire warp engages the workload or does not work at all and moves to the next point
combination. Now, each iteration would be composed, typically, by 32 threads. Since
the inner Projective Transform function is composed by 2 more loops, we could then
dissolve the existing 32 threads into these loops. However, this approach soon became
unimplementable since the complexity of implementing all these workload divisions and
rearrangements prior to actual kernel launch consumed a considerable amount of time
that limited the actual gain/speedup that one would expect to attain. Additionally,
there were a lot of memory related problems still unsolved mostly because the way the
threads would access the buffer was not aligned with the way the HEVC itself would,
thus buffer replications and rearrangements would also have to be added into factor in
the future. Still, this implementation would suffice if we had enough workload which is
not the case. Here we still have to launch the kernels numerous times with little work

and large overheads.

A new way had to be formulated. It is agreeable that the whole GT module should
be integrated into the GPU and only the final point combination that generated the
best distortion should be retrieved so that there would be no CPU-side reductions or
further calculations required (thus no need for large midway memory transfers). It
would also be deemed important to produce a solution that needed not to be pre-
prepared for a specific memory arrangement or structure in order to produce an, at
least, favourable memory access pattern. As a final relevant aspect, the solution should
be ideally capable of overcoming the small workload gaps that eventually emerge when
the conditions for the projective transformation are not met. All these prospects align
with a modular, self-contained, multi-kernel GPU implementation. We had to rethink

all the algorithm implementation like referred by Padua [105].

VO Implementation

As an initial implementation, we started by simply dividing the theoretical knowl-
edge of the GT module into modular parts (since the sequential implementation was
very tightly bound to the existing 12 loop-based code). We selected 4 steps: i) mark-
ing /listing of valid point combinations; 77) calculation of the projective parameters; i)
the actual calculation of the projective; and finally, iv) the distortion calculations. To
implement the marking/listing of valid point combinations we would need to create a
dynamic, thread-safe, listing in the GPU side (with all its overheads) or simply allocate

a buffer were we could write if a given combination is valid or not. Any of these would
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provide the means to initially vectorize the problem at hand. The second method was
selected due to its simplicity. By doing this it would also be preferable to introduce
a secondary step to reduce this allocated buffer, so that it would only refer the valid
point combinations. This way, future utilization of its information would not need to
take into consideration the possible existence of non-valid point combinations every
time. We then further developed and implemented this idea and realised that further
subdivision of the previous steps would be preferred so that each kernel would require
less registers and mechanics to correctly replicate the CPU sequential implementation
behaviour. For instance, with smaller kernels, we would also need less barriers and
be able to empower a more custom control over how certain parts of the algorithm
are divided into different warps and threads without adding more complexity inside a
given large kernel. In the end, the first compliant and functional implementation (for

N = 1) was created with the following kernels (steps):

kO Initiate/Clean buffers for the given block size. Some buffers needed to contain
standard block-size-dependent information at the beginning. To write the initial

data, a simple clEnqueue Write Buffer sufficed.

k1 Mark valid point combinations. Each thread checks one combination at the time,

and strides throughout the remaining possible combinations.

k2 Reduce/Compact results from previous kernel. The ‘compact’ keyword is used
here because the intent is to shift/compact the results in the buffer so that they
remain in order and the invalid ones disappear. To achieve this, only 1 thread

was applied here.

k3 For each combination in the step 1 buffer, verify if valid projection parameters
are generated (without the division by zero problem exposed earlier). If invalid
parameters are generated we mark the given combination as invalid, otherwise
save the generated matrix in a new buffer. Each thread verifies and calculates

one combination at the time, and strides throughout the remaining.

k4 Reduce/Compact results from previous kernel as performed in step 2 since we may
have found point combination that produce the division by zero exception. But
this time we divide this step into 2 sub-steps: one compacting the buffer from
step 1 again with only 1 thread; and a second step to compact the generated
matrices so that the offset in their own buffer is aligned with the reduction made
on the buffer from step 1. In this second compaction, we used 9 threads since

the matrices have 3x3 elements.

k5 For each produced matrix, apply the projective transform function and save the
generated transformation image block in a new buffer. To generate the transfor-

mation, we copy and adapt the ProjectiveTransform function to the GPU side.
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Each thread processes one Projective Transform loop at the time, and strides

throughout the remaining.

k6 With all the previous generated buffers, calculate the achieved distortions and
save the distortion-combination pairs. For the distortion calculation we simply
copy the GetHADs, xCalcHADs8z8 and xCalcHADsjx/ functions to the GPU
side. Each thread computes one distortion at the time, and strides throughout
the remaining. Note that zCalcHADs2z2 was also copied, although it is never

called at runtime.

k7 Finally, iterate over all the saved distortions and simulate the sequential im-
plementation behaviour, i.e. reduce and store the distortions that each corner
would attain thus yielding the distortion that produced the best combination.

To simulate the sequential corner local results only 1 thread was used.

In addition to the described kernels/steps, it is relevant to note that:

e When kernel marks a point combination as valid, it is actually saving its
points in the buffer, otherwise it stores the value zero (a NODATA flag). For
example, in practice, by indexing a corner point from 0 to 8 (since there are 9 per
corner), we can calculate an unique number X that describes the points selected
over the 4 corners. This unique number is both used as the index were to save
if the combination is valid or not and as the value to store at that index if the
combination is valid. We applied the calculus function Equation to obtain

the unique number, were each 7 is a point index of a given corner c.
X =c0; % 9° + cly 9% + 2w x 9" + 3 + 9° (4.1)

Given the function complexity and the knowledge about the problem we can then
revert the generated unique number and retrieve the corner index variables that

originated it originally by computing:

temp = X

c0; = floor(temp/(9%))

temp —= c0;%9°

cly = floor(temp/(9?)) (4.2)
temp — = cly*9?

2 = floor(temp/(9'))

temp — = 2 *9'

3m = floor(temp/(9°))
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e By applying the just explained math, a thread from a future kernel, like [k3] can
retrieve the point combination from a single int data type even after a reduction,
from e.g. [k2], since the buffer is not index but value dependent — contrary to all
other buffers, which are index dependent, since they need to match the values

from this one.

e Because of the array/list like buffer produced by , all subsequent kernels iter-
ate over it without any complex mechanisms to divide the workload. The same
methodology was adopted in kernels [£3] and [£5] so that their buffered result in-
dexes would pair with the |[k1| buffer values.

e As stated in the previous description listing, [k0| was later rewritten to be a ker-
nel instead of the clEnqueue WriteBuffer function call. We verified, at least for
the available hardware, that the clEnqueue Write Buffer function executions were
taking more time to run than kernel [k1| (which was unexpectable because of the
buffer sizes — listed further on). We noticed that custom created kernels could
produce the same effect in almost half of the time. Tables [£.4] and show the
cumulative times attained when running an clEnqueue Write Buffer and when us-
ing kernels over the same buffers. These buffers are used to store the calculated
distortions and x and y offsets to the points that generated those distortions.
Kernel [k6] saves its results to corner buffer ¢3Dist, which is then propagated by
[£7 to the other corner buffers and the best attained result is saved in buffer res.
Corner ¢3 buffers do not include a ¢3Coords because the buffer generated by
(and further maintained by the remaining kernels) already provides the necessary

information.

e From Table[.4] buffers with the “Dist” suffix are cleaned with a MAX INT value
by kernel [k0| because we are later storing distortions, were the lowest is better.
And buffers with “Coords” suffix are initiated with the central points x and y
coordinates of each corner. These later buffers allow kernels and to
compute where the actual point is located in the image block since [k 1| will only be
storing the indexes of valid points. Later kernel [k7]updates the suffixed “Coords”

buffers so that the central points are moved to the best found distortion points.

For this implementation to fully work we still have to consider the exponential
computations growth caused when increasing N. With the current description, we can
only reproduce the GT module output when N =1 (after executing all kernels once).
But this is why we already included into [£7] the ability to propagate the results from
buffer ¢3Dist to the remaining corner related ones (listed in Table . Since every
kernel receives its own parameters and the execution of all kernels only produces one

full-sequential-iteration for N = 1, we can then simulate the correct order of events,
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Corner Buffer Accumulative Time Execution Times Copy Size

g resCoords 2

&!q:; resDist 0.003237 592 9

m c0Coords 9

? ODist 0.003251 592 9%9

&} c¢1Coords 9*9

% 1Dist 0.003248 592 9%9%9

=

= c¢2Coords 9%9%*9

E oDt 0.003212 592 G¥0rg*o

© c3Dist 0.002000 296 9*9*9*9
Total 0.014948 2664

Table 4.4: Execution time results (in seconds) for the initialisation of several corner
related buffer by resorting to the clEnqueueCopyBuffer function that copies the data
from other already existing buffers that contain standard data for a given block size.

Kernel Accumulative Time Execution Times Kernel Geometry — Writes/Thread

2 kOres 0.001300 296 <1.1> 1

£ k0cO 0.001373 296 <9.9> 1

% kOcl 0.001447 296 <81.81> 1

2 k0c2 0.001447 296 <32.736> 2

S kOc3 0.001528 296 <32.1696> 4
Total 0.007125 1480

Table 4.5: Execution time results (in seconds) for the initialisation of several corner
related buffers by resorting to custom implemented kernels that copy the data from
other already existing buffers that contain standard data for a given block size.

i.e. which buffers provide information and which store results, by swapping the buffers
around in order to achieve the superior N results. Let us consider that ‘1 iteration’
represents the execution of all 74 1 kernels (in order), being the initial execution of
the ‘4+1’. To achieve N = 1, we only need 1 iteration, thus the CPU will have to launch
the 7+ 1 kernels. To achieve N = 2 we would have to simulate the zooms that the
sequential version produces and recompute the results. Because we compute all N =1
distortions in a first iteration, we can then rerun the kernels zooming only over corner
¢3, then again for corner ¢2, then ¢2 and ¢3 combined, then only c1, etc. to simulate the
behaviour. This produces a total of 16 iterations, meaning 7+ 16 + 1 kernel executions.
This is possible because kernel is responsible for the reduction/propagation of the
results in the same way the sequential implementation would. Table [4.6] provides a
complete view of the buffer swapping, cleaning/reset and reiteration needed to fulfil a
N = 2 execution. Note that for the objective N = 5, a maximum of 762541 iterations
per given image block is needed. With the table, we can observe the usage of the corner
buffers referred in Table To produce the simulation, we sometimes need to reset
some of these buffers to their standard/original values (marked in column Pre-Reset

Buffers?) to comply with the theoretical algorithm. To simplify /optimize the necessary
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computations, we replicated all corner buffers so that one of the 2 groups would always
retain the original values prepared initially by (the “+17). To differentiate, the group
of buffers that retain the original values is named ‘orig’ and the buffers that cumulate

values from each iteration are named ‘accu’.

Corner T Sizes Info about corners Where to save new corner info Pre-Reset Buffers?
(Input) (Output)

c0 cl c2 c3 c0 cl c2 c3 c0 cl c2 c3 accu0 accul accu2 accu3
32 32 32 32 ori0 origl orig2 orig3 accul accul accu2 accu3
16 ori0 origl  orig2 [accud accul accul accu2 TRASH

16 32 ori0 origl 'accu2 orig3 accul accul TRASH accu3 X
16 orig0 origl | accu2 accu3 accul accul TRASH TRASH

16 32 32 orig) accul orig2 orig3 accul TRASH accu2 accu3 X X
16 orig0 | accul orig2 | accu3 accul TRASH accu2 TRASH

16 32 orig0 ~accul accu2 orig3 accul TRASH TRASH accu3 X
16 orig0 accul accu2 accu3 accul TRASH TRASH TRASH

16 32 32 32 accu0 origl orig2 orig3 TRASH accul accu2 accud X X X
16 accul origl orig2 |accu3 TRASH accul accu?2 TRASH

16 32 accul origl accu2 orig3 TRASH accul TRASH accu3 X
16 accu0 origl accu2 accu3 TRASH accul TRASH TRASH

16 32 32 accu0 accul orig2 orig3 TRASH TRASH accu2 accud X X
16 accu0 accul orig2 accu3 TRASH TRASH accu2 TRASH

16 32 accu0 accul accu2 orig3 TRASH TRASH TRASH accu3 X

16 accu0 accul accu2 accu3 TRASH TRASH TRASH TRASH

Table 4.6: Visual representation of the buffer swapping iterations needed to achieve
N = 2, including the indication of the corner L sized point boxes size and if a given
cumulative buffer needs to be reset before the row /iteration happens.

In the Table , each line represents 1 iteration, all 16 fulfil the N = 2 compu-
tations. This table was produced for a block image of size 64x64, hence in the first
Corner L sizes columns row all corner L sizes are 32. As a first iteration, we can read
in the first table row that the kernels will receive information from the buffers that
retain the original generated values (‘orig’) and that they will be saving their output
(an update over the first set of buffers) to the cumulative buffers (‘accu’). To simulate
the previous described swapping behaviour, in the second iteration we place the accu3
buffer of corner ¢3 as an input information buffer so that a zoom is simulated over that
corner (thus halving the ¢3 L size). And we can also discard/trash the output, since we
will not be zooming again (because we are aiming of the N = 2). In the third iteration,
we are now zooming over the ¢2 corner. To do so, we need to set the ¢2 corner buffer
accu? as an input information buffer. Like before, we can trash the output for corner
c2 since we will not zoom a third time. Note that in this particular iteration, we have
to reset the cumulative values for corner c3 back to their original values because we
zoomed into the ¢3 region in the previous iteration. To point these kind of events,
column Pre-Reset Buffers? marks them as needed. Sequentially, in the fourth row, we
are now zooming over both ¢2 and ¢3 corners, i.e. after previously zooming 2, we now
need to recompute a combined zoom over ¢3 with the resulting ¢2 zoom of the previous
iteration 3. This happens with the halving of both corner ¢2 and ¢3. Like before, we
will not need the generated outputs. The remaining table rows behave in the already

described ways, producing all swapping combinations in an optimal sequence.
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Because of the previous explanations, k0| kernel is now divided into 5 reset/cleaning

sub kernels: 1 to initiate the buffer with all standard values before the actual compu-

tations (the ‘+1’ kernel referenced earlier); and 4 to reset each corner buffers (‘Dist’
and ‘Coords’) individually — usage marked in Table , column Pre-Reset Buffers?.

At this point, and for the remaining implementation updates, the memory buffers

utilized and their respective sizes are describe in Table [1.7] It presents the need for
52.228MiB of global allocated memory space where 0.235MiB retain the standard cor-
ner values used by kernels [0, and where 98% of the space is used to store the trans-
formed images produce by kernel and read by [k6] Note that the Pel data type
is implementation /hardware dependent, while in the HEVC+SS+GT it is defined as a

short, in the OpenCL kernel — at execution time — it may be used as an int by the

hardware thus doubling its size.

Name Math # Elements Typlzata Bits Bsfcasce USEEB
resCoords_ Orig 2 2 INT 32 8 0,000
c0Coords_ Orig 9%2 18 INT 32 72 0,000
c1Coords Orig 9%9*2 162 INT 32 648 0,001
c2Coords_ Orig 9*9*9*2 1458 INT 32 5832 0,006
c3Coords_ Orig 9*0*Q*Q*2*4 52488 INT 32 209952 0,200
resCoords 2 2 INT 32 8 0,000
c0Coords (Accu0) 9*2 18 INT 32 72 0,000
c1Coords (Accul) 9*9*2 162 INT 32 648 0,001
c2Coords (Accu2) 9*9*9*2 1458 INT 32 5832 0,006
c3Coords (Accu3) 9*0*Q*Q*2*4 52488 INT 32 209952 0,200
resDist_ Orig 2 2 UINT 32 8 0,000
c0Dist_ Orig 9 9 UINT 32 36 0,000
c1Dist Orig 9*9 81 UINT 32 324 0,000
¢2Dist_ Orig 9*9*9 729 UINT 32 2916 0,003
c3Dist_ Orig 9*9*9*9 6561 UINT 32 26244 0,025
resDist 2 2 UINT 32 8 0,000
c0Dist 9 9 UINT 32 36 0,000
c1Dist 9*9 81 UINT 32 324 0,000
c2Dist 9*9*9 729 UINT 32 2916 0,003
c3Dist 9*9*9*9 6561 UINT 32 26244 0,025
k1OutBuffer 9*0*9*9+1 6562 INT 32 26248 0,025
k3OutBuffer 9*0*9*9+1 6562 INT 32 26248 0,025
k3ProjectParamBuffer ~ 9*9%*9*9*3*3 59049 DOUBLE 64 472392 0,451
k50utBuffer (PiAux) 9*9*9*9*G4*64 26873856 Pel 16 53747712 51,258
Cvalues 18%6+2+15%6+2 202 INT 32 808 0,001

Total 27069251 54765488 52,228

Table 4.7: Listing of buffers created in GPU environment with size and data type

descriptions.

For future reference, we label the until now discussed implementation as the “v0”

GPU implementation.
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V1-MultiThreadReduction and Simplification Implementation

As previously described, kernel and both |k4] sub-steps only operate with 1 thread,
and thus are very inefficient. As a first improvement to the proposed [V(] implementa-

tion, we altered these kernels to take advantage of the GPU environment.

Instead of having only 1 thread going through the entire global buffer, we promoted
parallelism by dividing the buffer in equal sized sub buffers and by making each thread
to operate over only one sub buffer. To overcome the memory lag — the threads will
have non-optimal memory access patterns — and provide some speedup, it would be
ideal if the threads could place their sub buffer data immediately as in the expected
output — avoiding a final reduction of the data from the different threads. In order
to make all threads immediately copy/place their elements into the right final index —
i.e. already in the final compacted order — each thread first counts the number of valid
elements in their sub buffer and saves that information into a local memory buffer of
size equal to the number of threads+1. This way, we can now calculate the offsets each
thread must use to store their valid elements. This calculation also provides the exact
number of valid elements contained in the end buffer, an information forwarded to the
remaining kernels. As a final step, each thread copies the valid data to the calculated

local buffer index/ranges over the existing data in the global buffer.

Because the global buffer size is well known (9%), we only need a number of threads
that enables an equally balanced workload. The possible divisors are: 1, 3, 9, 27, 81,
243, 729, 2187 and 6561. Selecting divisor 3 or 9 did not provide enough parallelism
to compensate the new needed mechanisms and selecting 81 or bigger removes the
possibility to fully take advantage of the local memory mechanisms. Thus, we selected
27 threads because it only uses 1 warp, making each thread have 243 buffer elements

to process.

This logic was applied directly to[k2]and [k4}stepl. Because in[k4}step2 each element
is actually composed of 3x3 matrices, we further parallelized the previously described
logic to accommodate data strides inside the elements thus allowing to launch the
kernel with 27 % (3 % 3) threads instead of only 27. The kernel still has a work group

size of 27, but it is launched with 9 groups, one per each matrix element.

During the reimplementation of the referred kernels, as stated before, we came to
understand that, because of the |k2| calculations, the followed kernel launches to

could know the exact amount of existing data. By knowing this, they no longer strictly
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need the reductions provided by Therefore, the [k2] calculus is saved and kernel
is removed. Additionally, by acquiring this information in the host/CPU side, we can

also know if there was any valid data generated and only launch the kernels if needed.

Figure [4.4] provides a visualisation over the just described implementation with 3
threads and a buffer of size 15. As a final note, it is important to remember that the
existing data must remain in the same order so that it can be later worked like in the
Sequential implementation (by kernel . In the figure, buffer b is equally divided
into 3 sub buffers of size 5. Then each thread counts how may valid elements exist,
thread 2 verifies that there is no valid data in its sub buffer (coloured in red). After
this, we calculate the offset each thread must apply in the final output buffer. Note
that because thread 2 has no data to write, thread 3 also starts at thread 2 offset.
Finally, each thread writes their valid data in the buffer. The remaining, untouched,
buffer positions (coloured in grey) are no longer zeroed out (with the NODATA flag)
since the next kernels will know how many valid elements exist and thus know when

to stop processing the buffer.

MultiThread k2 with 3 threads and 15 buffer elements

1. Division of global buffer b into 3 sub buffers {b1,b2,b3} (invalid data is marked with a minus symbol)
bla T -T371 -1 -T-T-T-T-T-T11T12T13T714a]15]

2. “Offsets” local memory buffer
Loffsets L2701 5 T 1]

3. Offset calculation results

Loffets. [0 [ 2 ] 2 ] 7 | Total number of valid valid written
Thread 3 starts writting af
Thread 2 starts writting at offset
Thread 1 starts writting at offset 0 (o

4. Reduction/Compaction (old non-relevant data is painted in grey)

b1 13111271314 T35] -] - [ -T31712]13T14T135]

7 elements

Figure 4.4: Tllustration of the improved multi-thread [k2| kernel working with 3 threads
over a buffer of 15 elements.

V2-HAD Implementation

As a second improvement, we reimplemented kernel k6] since it was almost just a simple
copy from the CPU HEVC+SS+GT Sequential implementation. The importance for a
highly optimized Hadamard implementation is well acknowledged in several published
works [106, 107, 108 109, 110} I1T], with authors reporting that the transform con-
sumes most of the computing time. In the GT module, the HEVC+SS+GT Sequential

implementation only computes Hadamard Transformations for matrices of 2x2, 4x4
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and 8x8 elements. If larger matrices appear they are cut into smaller, equally sized,
matrices and their distortion results are summed. Referring back to Table [4.6] note
that all image block matrices in an iteration have the same size thus they will be all
divided into the same equally sized matrices of size 8x8 or 4x4 or 2x2. For example, a

image block matrix of size 32x32 would be divided into 16 smaller 8x8 matrices.

Along side with other transforms, the Walsh-Hadamard Transform (WHT) is widely
used to perform some operations in computer vision related algorithms. For instance,
the WHT has been used for feature selection in character recognition tasks [106]. Due
to its complexity over existing resources, Carl and Swartwood [I12] designed a hybrid
special purpose computer, based on a recursive algorithm, to tackle the discrete WHT
computation. The device used feedback to reduce the required summation junctions
from Nlogy, N to N. Later Huang and Chung [107] used the Walsh functions for
separating similar complex Chinese characters. Each character is imaged 8 times by
changing its size, position, and binary threshold value. More recently, with the advent
of digital communications, the Hadamard transform has been used for other applica-
tions like data encryption [I13], and image and video compression, as JPEG XR [92]
and MPEG-4 AVC [114].

In the initial [£6] kernel version, we gathered the information from the previous ker-
nels, called the HEVC+SS+GT Sequential HAD implementation, and saved the results
in a proper way so that could easily use them. Because we used the Sequential
implementation code, a lot of registers were needed since that code is optimized for a
more powerful CPU core. Hence this first implementation of the kernel was very slow

because of the register spilling and other inherent problems.

To correctly use the GPU manycore paradigm, we looked on how to improve the
parallelism of the implementation and reduce the extreme amount of registers in use.
For this purpose, we devised an implementation where kernel is divided into 4
separate kernels: one to calculate the HAD distortion of matrices divisible into 8x8
sub matrices, another to calculate HAD distortions of matrices divisible into 4x4 but
not by 8x8, a third to calculate HAD distortions of matrices divisible into 2x2 but not
by 8x8 or 4x4, and a final fourth kernel to save the results in the proper alignment
needed by . At runtime, we only call one of the new HAD kernels (depending on the
image block size) and then call the fourth kernel to properly store everything.

At its core, the HEVC Sequential HAD distortion calculation functions are just

extended implementations of the Fast Walsh-Hadamard Transformation (FWHT) [115].
The HEVC Sequential HAD distortion calculation functions first compute the difference
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between the original image block and a projective transformed block (from , and
only later apply the actual Walsh-Hadamard transformation to the computed difference
so that the distortion sum can be calculate afterwards — a form of sum of absolute
transform differences. Our new kernels needed to reproduce the same effects in parallel.
Depending on the kernel/matrix size, a number of threads is selected to process an
entire matrix. The number of used threads is implementation dependent. We first
apply a stride over the matrix data to simulate the matrix division into 8x8 or 4x4 or
2x2 sub matrices depending on the case/kernel. Then, the group of threads responsible
for that matrix computes the difference between the original image and the projection
and calculates the HAD transformation — one sub matrix at the time. At the same
time, these threads also sum all matrix elements to attain the sub matrix distortions.
This way, the final associated distortion value is saved and the threads move on to the
next matrix. Several matrices are processed at the time using multiple GPU thread

groups.

To implement our parallel OpenCL-HAD kernels, we started by understanding the
FWHT. Figure provides an example visualization of the transformation of an 8
element vector. The Fast WHT is a divide and conquer algorithm that recursively
breaks down a WHT of size N into two smaller WHTS of size N/2. Like in the figure,
half of the computations are additions and the other half subtractions. Relevant to the

FWHT understanding is the definition of butterflies, also present in the figure.

1 > 1+0= 1 —> 1+2= 3 —> 3+1= 4

0\ /: 0+1= 1 1+0= 1 >—§ -1+3= 2

1 1+1= 2 -2+1=—1 >—§ -1+1= ()
O 0+0 = 0 —> -0+1= 1 > -1+(-1)==2
0 -0+1= 1 ——> 1+0= 1 —> 1+-1)= (
1 / \; ‘1+0-—1 -1+0=—1 > -(-1)+1= 2
e 0t1= 1 o D= 0

/ \-0+0‘ 0 —— -0+(-1)=-1 Zg ~(-1)+1= 9

Figure 4.5: An illustration of the Fast Walsh-Hadamard Transform application over an
input vector (1,0,1,0,0,1,1,0) of size 8. — adapted from [116]

In the original context of Fast Fourier Transform (FFT) algorithms [117, 11§|, a
“butterfly” is a portion of the computation that combines the results of smaller Discrete
Fourier Transforms (DFTs) [119] into a larger DFT. The name “butterfly” comes from
the shape of the data-flow diagram in the radix-2 case, as described in [120]. One of the
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earliest occurrences of the term can be found a 1969 MIT technical report [121, [122].
More commonly, the term “butterfly” appears in the context of the Cooley-Tukey FFT
algorithm [123], which recursively breaks down a DFT of composite size n = rm into
r smaller transforms of size m where r is the ‘radix” of the transform. These smaller
DFTs are then combined via size-r butterflies, which themselves are DFTs of size r
(performed m times on corresponding outputs of the sub-transforms) pre-multiplied
by roots of unity (known as twiddle factors). These notions are important so that we

can further explain our implementation.

After the described understanding of the FWHT, we reviewed a sequential FWHT
implementation in order to convert it to a parallel FWHT-GPU implementation so we
can later tailor it to fit the 8x8, 4x4, and 2x2 kernel demands. That said, note Algo-
rithm [I} a sequential single-core single-thread FWHT-CPU implementation definition.
There, the sequential FWHT implementation iterates though strided butterfly stages
that cycle through sub vectors of 2kstride size elements. In turn, these stages iterate a
butterfly within the sub vector and calculate the correlated addition and subtraction.
This defines the radix-2 FWHT algorithm. In addition, we have included a sum re-
duction so that we attain what is known as the image block distortion in HEVC. This
routine only calculates one transformation per call. Note that the transformations are

saved in place, directly in the input buffer.

For the parallel FWHT-GPU general implementation, we devised a procedure/kernel
similar to the one provided by the NVidia code samples of the CUDA SDK [124]. The
GPU side of the code receives a buffer filled with matrices of a known size that are to
be transformed. To provide some Instruction Level Parallelism (ILP), we spread the
workload throughout GPU threads by using radix-4 calculations instead of the radix-2
used in Algorithm [1}and do a final radix-2 calculation if necessary. To further promote
performance, we first copy a given matrix to the local memory in parallel and com-
pute over it, instead of looping over the slower global memory input buffer. Because
we use local memory, there is a limit to the matrix size that the kernel can compute.
For large matrices, we can simply remove the local data copy and temporarily work
directly over the input buffer (just like in the sequential version). Similarly to the se-
quential implementation, we apply a parallel reduction of the given matrix at the end
and save the sum to an output buffer. In the parallel part of the execution, the two
first loops of Algorithm [I] are coalesced, and the workload from the third is distributed
throughout the threads of the GPU. Because of the way the workload is distributed,
the number of threads needed per matrix is given by: (A % B)/4. Inevitably, because
large matrices may require more threads than a GPU warp as to offer (typically, a

warp has 32 threads), we added local memory barriers so that the reads and concur-
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Algorithm 1 Calculate Fast Walsh-Hadamard Transform, radix-2

Input: matrix D™*", of data type T', with m x n = N matrix elements, being m and
n multiples of 2
Output: data type 1" value
1: stride = (IV)/2

2: while stride > 1 do > butterfly stride statges
3: base =0

4: while base < N do > subvectors
5: f=0

6: while f < stride do > butterfly index
7 Dy = D]base + £ + 0]

8: D, = D|base + f + stride]

9: Dbase + £ + 0] = Dy + D,

10: D|base + f + stride] = Dy — D,

11: f4+=1

12: end while

13: base += 2 x stride

14: end while

15: stride /=2

16: end while

17: sum =0

18: for each element D; € D do > Sum reduction
19: sum +=ABS(D;)

20: end for

21: return sum

rent stores are maintained in the right order. This is necessary because a GPU only
ensures instruction level lockstep within each warp independently. In summary, in
each transformation-loop each thread is computing the equivalent to 4 sequential loops
(radix-4) from Algorithm 1] at the time. For example for a 32x32 matrix, only 5 loops
per thread are needed to complete the transform, instead of the 5120 loops required
by the sequential version. Note that the described loop-proportion changes slightly for
odd sized matrices such as 32x16. Here, each GPU thread loops 4 radix-4 iterations
and then 2 extra radix-2 loops are needed, while the sequential version only needs 2304
(half) iterations.

Once the described general FWHT-GPU implementation of radix-4 was done, we
tailored it to fit our needs in the [£6] 3 sub step kernels. We applied it almost directly
to the 8x8 and 4x4 kernels and reverted back to a radix-2 implementation for the
2x2 kernel. A special radix-8 implementation for the 8x8 sub kernel was thought but
rejected since it made each thread compute more work and enable the possibility of
not using all GPU available threads — thus being slower in certain cases, and rarely

faster than the radix-4 implementation.
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In summary, in the [V2implementation we changed the [k6| kernel into 4 sub kernels,
with 3 sub kernels operating in the same way as the HEVC HAD functions but in
parallel, and a later fourth behaving as the original [k6| without having to do the HAD
calculations. These 3 sub kernels for the Walsh-Hadamard Transform are very alike
and differ only in the matrix sizes they may compute. They start by computing the
difference between a reference image block matrix and a projective matrix from [k5|into
a diff matriz matrix and then apply the Walsh-Hadamard Transform to every sub
matrices that the diff matriz may be divided into on the given kernel, that is, 8x8 or

4x4 or 2x2 sub matrices, respectively and in this order of preferred.

V3-MultiThread K7 Implementation

Our last major improvement is the reimplementation of kernel [k7] Initially, in order to
quickly simulate the Sequential implementation, we implemented a kernel that would
go through a buffer with all the results and reduce them to corner buffers that simulate
the Sequential implementation run. This however, only worked with 1 thread. Up to
kernel |k6| buffers ¢3Dist and c3Coords (from Table are built with all resulting in-
formation of an iteration of the GT module, i.e. all distortion values and corresponding
point coordinates. In order to simulate the zooms (Table , like in the Sequential
implementation, kernel [£7) has the important task of reviewing all these results and
store them in the remaining buffers — c2Dist and c¢2Coords, c1Dist and c1Coords, and
c0Dist and c0Coords — so that we know which point will be the central point were
the zoom is applied in the next iteration. Instead of going through all ¢3 information
only once with only 1 thread that stored the information in the right places all that
once, we formulated an implementation which would go through the ¢3 information 4
times — one for each corner reduction — but with as many threads as possible. For this

purpose, we proceed as follows:

1. Go through c¢3 results, 9 points at the time, and select the index of the best /lowest
distortion value. Since the buffers are ordered, 9 sequential buffer values corre-

spond to the results of each 9 points a corner has — Figure [£.1]

2. Save each best distortion index of the previous step in a local buffer and update
the next corner buffers — ¢2 — with the selected best distortions. By doing this,
we reduce the data by 1/4.

3. Revisit each 9 saved indexes of the previous local buffer, and select the index with
the best/lowest distortion value associated. This simulates the same behaviour

as in step [I] but for corner c2.

4. Repeat step [2| but store/update over ¢! corner buffers instead.
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5. Repeat step [3] This time the local buffer contents will simulate the reduction for

corner cl.
6. Repeat step [2| but store/update over c0 corner buffers instead.

7. Repeat step [3] This time the local buffer contents will simulate the reduction for

corner c(.

With the just described steps, the kernel is now prepared to use multiple threads

at once. We selected the maximum allowed sizes (but smaller values are also possible):

e Steps|l]and |2/ use 9 x 9 % 9 threads to process 9 * (9 % 9 x 9) distortions.
e Steps 3| and 4| use 9 x 9 threads to process 9 * (9 * 9) distortions.
e Steps [p and [6 use 9 threads to process 9 * (9) distortions.

e Finally, step 7| uses only 1 thread to process 9*(1) distortions.

Other optimizations took place during the implementation process — like dynamic
occupancy calculation, and pre-prepared data structures — but are not as essential as

the ones described in this document.

4.5.2 Results

Table presents the implementation evolution since the first fully functional ex-
periment — [VO| — to the final optimized version — [V3] Note in the table that some
information is coloured grey to facilitate the visualization of the more relevant infor-
mation in black. In addition to the 4 incremental implementations referred in this
section, we also included 2 steps between the [V0 and implementations. A first step
(pre K4 removal) to show the impact of the [k2| and k4] transformations. And a second
step (using K2 count) to display the small improvement the k2| calculations provided in
kernels [E3], [£5] and [£7] We selected executions with N = 5 for this table to enlarge the
impact each implemented version produces. GPU results for N = 1 could be confined

to as little as 4 minutes thus making implementation differences unnoticeable.

From the table, we can see that implementation [V0] already provides a significant
improvement over the Sequential implementation (Section with only 15 hours
and 30 minutes (55822.55) of GPU time instead of the +150 hours presented in Table
M1 Note that the GPU time in the [V0] implementation is not representative of the
whole GT module time. Only later was the CPU /host simplified. In this first complete

79



implementation, several kernels remained non-optimized since we were first aimed for
a functional implementation. With the parallelization of kernels and [k4] version
immediately halves the runtime to 6 hours and 28 minutes (23301.19). In a first
step, we significantly improve and kernel performances with a speedup of 6.5,
and 10.5 and 8.8 respectively. Later, we completely remove the need for a |k4] reduction
kernel since in the process of the parallel calculations we attain information that
compensates the need for a second reduction. This whole step shrunk 551.5 minutes
of GPU computations (6904.70+11688.35+14500.80 seconds) to only 17.3 minutes
(1036.15 seconds). At this point, the most costing kernels are k5[ — which is already
optimized from the beginning — and kernels k6 and [£7] which remain non-GPU-efficient.
In our implementation, we finally produce our own GPU distortion calculation
functions instead of using the HEVC mono-thread implementations. In doing this, we
further increased the algorithm performance by dividing the [ kernel into sub kernels
that yield a runtime reduction from around 60.9 minutes (3654.54 seconds) to 29.7
minutes (1702.28430.50+0.00449.84 seconds). Finally, in implementation we
effectively reconstruct kernel [£7]into 4 parallel reductions that boosted its performance
by 58.8 times from version [V2] to [V3]

. V1-K2 V1-K2
Implementation VO (pre K4 removal)  (using K2 count) V1-K2 V2-K6 V3-K7
Ko 5.07
K1 56.54
K2 6904.70 1052.96 1036.15
K3 293.23 95.25
K4pl 11688.35 1106.84 -
K4p2 14500.80 1640.40 -
K5 11909.52 10808.84
K6pln8 1702.28
K6pln4 30.50
Ké6pln2 3660.70 0.00
Ké6p2 49.84
K7 6803.63 5676.44 101.66
Total ‘ 55822.55 25900.41 24082.51 23301.19 18280.48 13330.88

Table 4.8: Execution time results (in seconds) for the HEVC+SS+GT-OpenCL encoder
kernels k0] to [k7] over the significant implementation iterations with the PlaneAndToy
image and N = 5.

Contrarily to the HEVC+SS+GT-OpenMP implementation, where computations
remained in the CPU, in this GPU implementation some floating-point operations
slightly changed the final results thus producing a slightly different (nevertheless neg-
ligible) PSNR value. With Table we complement the previous displayed results by
adding execution times for N = 1. As stated previously, with NV = 1 the final imple-
mentation only needs around 4 minutes to outturn all computations. In Table [4.9] we

included both the overall execution time as well as the proportion of the time that the
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GPU kernels utilize. Aiming for the more costly execution, our final OpenCL-GPU
implementation outruns the Sequential code by 162.9 hours when N = 5. This is, we
successfully achieved more practical runtimes with speedups of 39.94 when running the
GT module to its fullest (N = 5). But since we only optimized for the GT module
itself, part of the execution time — the HEVC original part — remains the same. Com-
paring back to Table [{.I, we can calculate that the GT module actually suffered a
speedup of 45.05 (when N = 5), that is, a reduction of 163.1 hours.

. Execution Time SpeedUp

Tmplementation N Overall GPU Overall GPU
Vo0 1 4356 (1h12m) 2906 (0h48m) 1.78  2.33
V1-K2 1 1842 (0h30m) 737 (0h12m) 4.21  9.19
V2-K6 1 1800 (0h29m) 677 (Ohllm) 4.31 10.01
V3-K7 1 1360 (0h22m) 250 (0h04m) 5.71 27.15

VO 5 134838 (37h27m) 55823 (15h30m) 4.46 10.76
V1-K2 5 47827 (13h17m) 23301 (6h28m) 12.58 25.78
V2-K6 5 20023 (5h33m) 18280 (5h04m)  30.05 32.86
V3-K7 5 15064 (4h1lm) 13331 (3h42m) 39.94 45.05

Table 4.9: Execution time results (in seconds) for the HEVC+SS+GT-OpenCL encoder
on the PlaneAndToy image and achieved speedups when N = {1,5} over the significant
implementations.

4.6 OpenCL-Multi-GPU

Throughout the previous single-GPU implementation (Section , we devised sev-
eral modular and self-contained kernels that operate in a specific order. Additionally,
by swapping around the kernel data buffers, we successfully simulated the original

sequential permutations need — refer to as “swapping iterations” (Table [4.6]).

In this section we propose a parallelization extension over the previous HEVC+SS+GT-
OpenCL implementation (Section 4.5.1]) on multiple GPUs.

4.6.1 Implementation

Each time the GT module is called a specific order of events needs to follow. Namely,
the simulated iterations order that cannot be rearranged or parallelized since they
are entirely dependant on one another. Likewise, internally, the GPU kernels that

(mainly) compose each iteration also need to operate on their given order. But the
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data within these kernels is totally independent from element to element inside each
buffer. Therefore, as a multi-GPU implementation proposal, we decided to divide the
buffer data across as many GPUs as possible and replicate the implementation call

stack across each one, but for only part of the data.

Depending on the number of detected GPUs, the algorithm first defines the stride
size that is to be applied so that each GPU receives an equal amount of data to process.
Each ‘data’ element is a point combination — where 9* exist per iteration. In the single-
GPU implementation, kernel [k1] calculates all point combinations that may occur and
that are to be processed by the remaining kernels — [k2] 5] [k6] and [E7 To put
it into practice, only kernel needs to be accommodated with the data stride. At
this point, it is only necessary to replicate the kernel buffers (Table and launch
logics so that all detected GPUs are used. Additionally, the original buffer sizes may
be altered since each GPU only processes part of the data, hence only needing part
of the buffers — but not the final buffers for kernel [E7l Because the data is divided
across multiple GPU memories, it is necessary to regroup them back into one GPU
before calling [E7] so that it is possible to process the final results for that iteration. No
later kernel adaptations or further alterations need to occur in the GT module core

algorithm.

As a last detail, in multi-GPU environments, there are two ways in which a given
host binding can support multiple devices: with a single context across all devices and
one command queue per device; or one context and command queue per device. The
process of utilising multiple devices for our computations is not done automatically
by the binding when new devices are detected. Nor is it possible for it do so. Doing
this requires active thought from the host programmer. When using a single device
one sends all kernel invocations to the command queue associated with that device.
In order to use multiple devices we must have one command queue per device either
sharing a context or each queue having its own context. Then, we must decide how
to distribute our kernel calls across all available queues — which in this case is fairly
simple. We want to replicate all invocations but with different data. We initially opted
to use a single context because of it simplicity but later changed it to one context per

GPU to perform multithread experiments on the hardware.
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4.6.2 Results

These experimentations were needed because, although we replicated all buffers and
there are no dependencies between different GPUs (except the data synchronization
before [k7)), the algorithm ran sequentially, one GPU at the time, never truly in parallel.
Overall, the results produced by the multi-GPU implementation were very similar to
the single-GPU results — only increasing the total execution time by 1 or 2 minutes
and producing the same PSNR and bitrate results. With the exception of kernel [k7]
when using 2 GPUs, all kernel times were reduced to around 53% of the initial single-
GPU runtime. Because there is the need to merge the results, kernel |k7]is ran by only
1 GPU. Additionally, since the multi-GPU execution was not running in parallel, we
subdivided each GPU workload into two streams (two command queues) in order to
make the GT module perceive that there were 4 GPUs available. With this simulation,
we aimed to verify the behaviour of the algorithm with a less common amount of GPUs
— because our desktop servers could only take up to 2 GPUs at the time. The output
results stayed the same and each stream took only 26.3% of the original single-GPU
time. This means that the algorithm would also behave correctly with a larger number
of GPUs — namely 4.

We tried expanding the implementation with multiple threads in the host CPU —
resorting firstly to OpenMP and then to PThreads — but the execution order stayed se-
quential. Single thread testing showed, even if we set all kernel parameters beforehand
and later called function clEnqueueNDRangeKernel, that the kernel launch function
only returned after the kernel computations terminated — thus incapacitating the par-
alellization. Just as a precaution we also duplicated the host side buffers in the event
that they were being locked to a GPU.

We also executed both OpenCL and CUDA SDK multi-GPU samples to validate
if the servers hardware enabled code paralelization over multiple GPUs. But the ob-
servations stayed the same, the host execution launches the kernels sequentially and
only after the previous launch terminates its computations. Additionally, using the
OpenCL profiling flag, we verified that execution from different GPUs were effectively

not overlapping.

In summary, we created a working multi-GPU implementation, maintaining the
desired output, but did not actually utilize multiple GPUs in parallel — with overlapping

kernel executions — in the available hardware.
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4.7 Conclusions

Although very challenging at first, after some modifications to the sequential code, we
successfully formulated and implemented a parallel version of the Geometric Trans-
formations module — in both OpenMP and OpenCL. For the targeted extreme case
of N =5, initial execution measurements pointed to almost a 7 days execution time,
and more gentle times of only 2 hours for N = 1. With the non-intrusive OpenMP for
CPU we accelerated the module calculations by 8 for the N = 5 case, which gradually
slowed to around 7.2x when reaching the N = 2, and by 3.5 in the N = 1 case. This
direct parallelization of the existing GT module loop yield an upgrade from 7 days to

below 21 hours on the extreme target case.

Within this chapter, we also successfully presented a possible reimplementation of
the GT module so that more parallelization is achievable. We separated the complex-
12-loop-dependent cycles into self-contained sequential iterations that could be inner
parallelized by several steps we implemented through kernels for the GPU environment.
After several optimizations, such as the Walsh-Hadamard Transform parallelization
that now consumes less than half of its initial runtime, we obtained an OpenCL-GPU
implementation that speeds up the original GT module by 45 fold. This is almost a
40x speedup for the whole HEVC algorithm, taking down the original 7 days to about

4 hours, while maintaining the same expected results.

To complement the presented work we also promoted an additional increment by
utilizing multiple GPUs. The implementation effectively divided the workload but the
hardware/OS did not seem to be able to take advantage of the multi GPU environment.
We expect a 2/5 time reduction when using 2 GPUs, but were unable to confirm. It is

noted here that we may require future work in this field.
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Chapter 5

Conclusions

In this work we reviewed and proposed several implementations for both the MMP
and the HEVC+SS+GT performance challenges. As intended, we were able to develop
both OpenMP and OpenCL CPU-driven implementations for the MMP case study.
We have also restructured the Geometric Transformations module with OpenCL for
GPUs, in such way that the algorithm execution takes only a few hours instead of a
week. In addition to the proposed case studies we also reviewed the associated energetic
consumption of each MMP implementation achieved by the previously discussed hard-
ware. Based on these observations we concluded that not only the decrease in execution
time linearly decreases the energetic consumption, but also verified that multicore code

yields a more energetic execution efficiency.

We were able to demonstrate that computer CPUs have a lot of computational
resources to offer that are usually unexplored and that can be easily tailored by pro-
grammers through software frameworks such as OpenMP and OpenCL. In both case

studies, the direct usage of the OpenMP API resulted in relevant speedups.

For the current hardware technology the future is multicore, and all GPU im-
plementations showed how they handle it better. Apart from the nuances in both
memory schemes and differences between CPU and GPU programming, OpenCL mod-
ular /kernel implementations always tend to be more optimal since they utilize multiple
cores at ease. However, ot demands for a more careful implementation, requiring a bet-

ter algorithmic planning.
As future work we suggest reviewing both the possibility of a HEVC+SS+GT multi-

platform implementation, using both GPU and CPU instead of multiple GPUs since
it is a more common setup, and a MMP-CUDA multi-GPU implementation.
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