274 research outputs found

    Energy reduction in 3D NoCs through communication optimization

    Get PDF
    Cataloged from PDF version of article.Network-on-Chip (NoC) architectures and three-dimensional (3D) integrated circuits have been introduced as attractive options for overcoming the barriers in interconnect scaling while increasing the number of cores. Combining these two approaches is expected to yield better performance and higher scalability. This paper explores the possibility of combining these two techniques in a heterogeneity aware fashion. Specifically, on a heterogeneous 3D NoC architecture, we explore how different types of processors can be optimally placed to minimize data access costs. Moreover, we select the optimal set of links with optimal voltage levels. The experimental results indicate significant savings in energy consumption across a wide range of values of our major simulation parameters

    Compiler-directed energy reduction using dynamic voltage scaling and voltage Islands for embedded systems

    Get PDF
    Cataloged from PDF version of article.Addressing power and energy consumption related issues early in the system design flow ensures good design and minimizes iterations for faster turnaround time. In particular, optimizations at software level, e.g., those supported by compilers, are very important for minimizing energy consumption of embedded applications. Recent research demonstrates that voltage islands provide the flexibility to reduce power by selectively shutting down the different regions of the chip and/or running the select parts of the chip at different voltage/frequency levels. As against most of the prior work on voltage islands that mainly focused on the architecture design and IP placement related issues, this paper studies the necessary software compiler support for voltage islands. Specifically, we focus on an embedded multiprocessor architecture that supports both voltage islands and control domains within these islands, and determine how an optimizing compiler can automatically map an embedded application onto this architecture. Such an automated support is critical since it is unrealistic to expect an application programmer to reach a good mapping correlating multiple factors such as performance and energy at the same time. Our experiments with the proposed compiler support show that our approach is very effective in reducing energy consumption. The experiments also show that the energy savings we achieve are consistent across a wide range of values of our major simulation parameters

    Energy reduction in 3D NoCs through communication optimization

    Get PDF
    Network-on-Chip (NoC) architectures and three-dimensional (3D) integrated circuits have been introduced as attractive options for overcoming the barriers in interconnect scaling while increasing the number of cores. Combining these two approaches is expected to yield better performance and higher scalability. This paper explores the possibility of combining these two techniques in a heterogeneity aware fashion. Specifically, on a heterogeneous 3D NoC architecture, we explore how different types of processors can be optimally placed to minimize data access costs. Moreover, we select the optimal set of links with optimal voltage levels. The experimental results indicate significant savings in energy consumption across a wide range of values of our major simulation parameters. © 2013, Springer-Verlag Wien

    Design Space Exploration and Resource Management of Multi/Many-Core Systems

    Get PDF
    The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends

    Toward Reliable, Secure, and Energy-Efficient Multi-Core System Design

    Get PDF
    Computer hardware researchers have perennially focussed on improving the performance of computers while stipulating the energy consumption under a strict budget. While several innovations over the years have led to high performance and energy efficient computers, more challenges have also emerged as a fallout. For example, smaller transistor devices in modern multi-core systems are afflicted with several reliability and security concerns, which were inconceivable even a decade ago. Tackling these bottlenecks happens to negatively impact the power and performance of the computers. This dissertation explores novel techniques to gracefully solve some of the pressing challenges of the modern computer design. Specifically, the proposed techniques improve the reliability of on-chip communication fabric under a high power supply noise, increase the energy-efficiency of low-power graphics processing units, and demonstrate an unprecedented security loophole of the low-power computing paradigm through rigorous hardware-based experiments

    MPSoCBench : um framework para avaliação de ferramentas e metodologias para sistemas multiprocessados em chip

    Get PDF
    Orientador: Rodolfo Jardim de AzevedoTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Recentes metodologias e ferramentas de projetos de sistemas multiprocessados em chip (MPSoC) aumentam a produtividade por meio da utilização de plataformas baseadas em simuladores, antes de definir os últimos detalhes da arquitetura. No entanto, a simulação só é eficiente quando utiliza ferramentas de modelagem que suportem a descrição do comportamento do sistema em um elevado nível de abstração. A escassez de plataformas virtuais de MPSoCs que integrem hardware e software escaláveis nos motivou a desenvolver o MPSoCBench, que consiste de um conjunto escalável de MPSoCs incluindo quatro modelos de processadores (PowerPC, MIPS, SPARC e ARM), organizado em plataformas com 1, 2, 4, 8, 16, 32 e 64 núcleos, cross-compiladores, IPs, interconexões, 17 aplicações paralelas e estimativa de consumo de energia para os principais componentes (processadores, roteadores, memória principal e caches). Uma importante demanda em projetos MPSoC é atender às restrições de consumo de energia o mais cedo possível. Considerando que o desempenho do processador está diretamente relacionado ao consumo, há um crescente interesse em explorar o trade-off entre consumo de energia e desempenho, tendo em conta o domínio da aplicação alvo. Técnicas de escalabilidade dinâmica de freqüência e voltagem fundamentam-se em gerenciar o nível de tensão e frequência da CPU, permitindo que o sistema alcance apenas o desempenho suficiente para processar a carga de trabalho, reduzindo, consequentemente, o consumo de energia. Para explorar a eficiência energética e desempenho, foram adicionados recursos ao MPSoCBench, visando explorar escalabilidade dinâmica de voltaegem e frequência (DVFS) e foram validados três mecanismos com base na estimativa dinâmica de energia e taxa de uso de CPUAbstract: Recent design methodologies and tools aim at enhancing the design productivity by providing a software development platform before the definition of the final Multiprocessor System on Chip (MPSoC) architecture details. However, simulation can only be efficiently performed when using a modeling and simulation engine that supports system behavior description at a high abstraction level. The lack of MPSoC virtual platform prototyping integrating both scalable hardware and software in order to create and evaluate new methodologies and tools motivated us to develop the MPSoCBench, a scalable set of MPSoCs including four different ISAs (PowerPC, MIPS, SPARC, and ARM) organized in platforms with 1, 2, 4, 8, 16, 32, and 64 cores, cross-compilers, IPs, interconnections, 17 parallel version of software from well-known benchmarks, and power consumption estimation for main components (processors, routers, memory, and caches). An important demand in MPSoC designs is the addressing of energy consumption constraints as early as possible. Whereas processor performance comes with a high power cost, there is an increasing interest in exploring the trade-off between power and performance, taking into account the target application domain. Dynamic Voltage and Frequency Scaling techniques adaptively scale the voltage and frequency levels of the CPU allowing it to reach just enough performance to process the system workload while meeting throughput constraints, and thereby, reducing the energy consumption. To explore this wide design space for energy efficiency and performance, both for hardware and software components, we provided MPSoCBench features to explore dynamic voltage and frequency scalability (DVFS) and evaluated three mechanisms based on energy estimation and CPU usage rateDoutoradoCiência da ComputaçãoDoutora em Ciência da Computaçã

    Energy-aware synthesis for networks on chip architectures

    Full text link
    The Network on Chip (NoC) paradigm was introduced as a scalable communication infrastructure for future System-on-Chip applications. Designing application specific customized communication architectures is critical for obtaining low power, high performance solutions. Two significant design automation problems are the creation of an optimized configuration, given application requirement the implementation of this on-chip network. Automating the design of on-chip networks requires models for estimating area and energy, algorithms to effectively explore the design space and network component libraries and tools to generate the hardware description. Chip architects are faced with managing a wide range of customization options for individual components, routers and topology. As energy is of paramount importance, the effectiveness of any custom NoC generation approach lies in the availability of good energy models to effectively explore the design space. This thesis describes a complete NoC synthesis flow, called NoCGEN, for creating energy-efficient custom NoC architectures. Three major automation problems are addressed: custom topology generation, energy modeling and generation. An iterative algorithm is proposed to generate application specific point-to-point and packet-switched networks. The algorithm explores the design space for efficient topologies using characterized models and a system-level floorplanner for evaluating placement and wire-energy. Prior to our contribution, building an energy model required careful analysis of transistor or gate implementations. To alleviate the burden, an automated linear regression-based methodology is proposed to rapidly extract energy models for many router designs. The resulting models are cycle accurate with low-complexity and found to be within 10% of gate-level energy simulations, and execute several orders of magnitude faster than gate-level simulations. A hardware description of the custom topology is generated using a parameterizable library and custom HDL generator. Fully reusable and scalable network components (switches, crossbars, arbiters, routing algorithms) are described using a template approach and are used to compose arbitrary topologies. A methodology for building and composing routers and topologies using a template engine is described. The entire flow is implemented as several demonstrable extensible tools with powerful visualization functionality. Several experiments are performed to demonstrate the design space exploration capabilities and compare it against a competing min-cut topology generation algorithm

    A survey on scheduling and mapping techniques in 3D Network-on-chip

    Full text link
    Network-on-Chips (NoCs) have been widely employed in the design of multiprocessor system-on-chips (MPSoCs) as a scalable communication solution. NoCs enable communications between on-chip Intellectual Property (IP) cores and allow those cores to achieve higher performance by outsourcing their communication tasks. Mapping and Scheduling methodologies are key elements in assigning application tasks, allocating the tasks to the IPs, and organising communication among them to achieve some specified objectives. The goal of this paper is to present a detailed state-of-the-art of research in the field of mapping and scheduling of applications on 3D NoC, classifying the works based on several dimensions and giving some potential research directions
    corecore