1,964 research outputs found

    Automatic Environmental Sound Recognition: Performance versus Computational Cost

    Get PDF
    In the context of the Internet of Things (IoT), sound sensing applications are required to run on embedded platforms where notions of product pricing and form factor impose hard constraints on the available computing power. Whereas Automatic Environmental Sound Recognition (AESR) algorithms are most often developed with limited consideration for computational cost, this article seeks which AESR algorithm can make the most of a limited amount of computing power by comparing the sound classification performance em as a function of its computational cost. Results suggest that Deep Neural Networks yield the best ratio of sound classification accuracy across a range of computational costs, while Gaussian Mixture Models offer a reasonable accuracy at a consistently small cost, and Support Vector Machines stand between both in terms of compromise between accuracy and computational cost

    Flame Detection for Video-based Early Fire Warning Systems and 3D Visualization of Fire Propagation

    Get PDF
    Early and accurate detection and localization of flame is an essential requirement of modern early fire warning systems. Video-based systems can be used for this purpose; however, flame detection remains a challenging issue due to the fact that many natural objects have similar characteristics with fire. In this paper, we present a new algorithm for video based flame detection, which employs various spatio-temporal features such as colour probability, contour irregularity, spatial energy, flickering and spatio-temporal energy. Various background subtraction algorithms are tested and comparative results in terms of computational efficiency and accuracy are presented. Experimental results with two classification methods show that the proposed methodology provides high fire detection rates with a reasonable false alarm ratio. Finally, a 3D visualization tool for the estimation of the fire propagation is outlined and simulation results are presented and discussed.The original article was published by ACTAPRESS and is available here: http://www.actapress.com/Content_of_Proceeding.aspx?proceedingid=73

    Video Based Flame Detection Using Spatio-Temporal Features and SVM Classification

    Get PDF
    Video-based surveillance systems can be used for early fire detection and localization in order to minimize the damage and casualties caused by wildfires. However, reliability of these systems is an important issue and therefore early detection versus false alarm rate has to be considered. In this paper, we present a new algorithm for video based flame detection, which identifies spatio-temporal features of fire such as colour probability, contour irregularity, spatial energy, flickering and spatio-temporal energy. For each candidate region of an image a feature vector is generated and used as input to an SVM classifier, which discriminates between fire and fire-coloured regions. Experimental results show that the proposed methodology provides high fire detection rates with a reasonable false alarm ratio

    Effective Smoke Detection Using Spatial-Temporal Energy and Weber Local Descriptors in Three Orthogonal Planes (WLD-TOP)

    Get PDF
    Video-based fire detection (VFD) technologies have received significant attention from both academic and industrial communities recently. However, existing VFD approaches are still susceptible to false alarms due to changes in illumination, camera noise, variability of shape, motion, colour, irregular patterns of smoke and flames, modelling and training inaccuracies. Hence, this work aimed at developing a VSD system that will have a high detection rate, low false-alarm rate and short response time. Moving blocks in video frames were segmented and analysed in HSI colour space, and wavelet energy analysis of the smoke candidate blocks was performed. In addition, Dynamic texture descriptors were obtained using Weber Local Descriptor in Three Orthogonal Planes (WLD-TOP). These features were combined and used as inputs to Support Vector Classifier with radial based kernel function, while post-processing stage employs temporal image filtering to reduce false alarm. The algorithm was implemented in MATLAB 8.1.0.604 (R2013a). Accuracy of 99.30%, detection rate of 99.28% and false alarm rate of 0.65% were obtained when tested with some online videos. The output of this work would find applications in early fire detection systems and other applications such as robot vision and automated inspection.Facultad de Informátic

    Effective Smoke Detection Using Spatial-Temporal Energy and Weber Local Descriptors in Three Orthogonal Planes (WLD-TOP)

    Get PDF
    Video-based fire detection (VFD) technologies have received significant attention from both academic and industrial communities recently. However, existing VFD approaches are still susceptible to false alarms due to changes in illumination, camera noise, variability of shape, motion, colour, irregular patterns of smoke and flames, modelling and training inaccuracies. Hence, this work aimed at developing a VSD system that will have a high detection rate, low false-alarm rate and short response time. Moving blocks in video frames were segmented and analysed in HSI colour space, and wavelet energy analysis of the smoke candidate blocks was performed. In addition, Dynamic texture descriptors were obtained using Weber Local Descriptor in Three Orthogonal Planes (WLD-TOP). These features were combined and used as inputs to Support Vector Classifier with radial based kernel function, while post-processing stage employs temporal image filtering to reduce false alarm. The algorithm was implemented in MATLAB 8.1.0.604 (R2013a). Accuracy of 99.30%, detection rate of 99.28% and false alarm rate of 0.65% were obtained when tested with some online videos. The output of this work would find applications in early fire detection systems and other applications such as robot vision and automated inspection.Facultad de Informátic

    Effective Smoke Detection Using Spatial-Temporal Energy and Weber Local Descriptors in Three Orthogonal Planes (WLD-TOP)

    Get PDF
    Video-based fire detection (VFD) technologies have received significant attention from both academic and industrial communities recently. However, existing VFD approaches are still susceptible to false alarms due to changes in illumination, camera noise, variability of shape, motion, colour, irregular patterns of smoke and flames, modelling and training inaccuracies. Hence, this work aimed at developing a VSD system that will have a high detection rate, low false-alarm rate and short response time. Moving blocks in video frames were segmented and analysed in HSI colour space, and wavelet energy analysis of the smoke candidate blocks was performed. In addition, Dynamic texture descriptors were obtained using Weber Local Descriptor in Three Orthogonal Planes (WLD-TOP). These features were combined and used as inputs to Support Vector Classifier with radial based kernel function, while post-processing stage employs temporal image filtering to reduce false alarm. The algorithm was implemented in MATLAB 8.1.0.604 (R2013a). Accuracy of 99.30%, detection rate of 99.28% and false alarm rate of 0.65% were obtained when tested with some online videos. The output of this work would find applications in early fire detection systems and other applications such as robot vision and automated inspection.Facultad de Informátic

    Video-based Smoke Detection Algorithms: A Chronological Survey

    Get PDF
    Over the past decade, several vision-based algorithms proposed in literature have resulted into development of a large number of techniques for detection of smoke and fire from video images. Video-based smoke detection approaches are becoming practical alternatives to the conventional fire detection methods due to their numerous advantages such as early fire detection, fast response, non-contact, absence of spatial limits, ability to provide live video that conveys fire progress information, and capability to provide forensic evidence for fire investigations. This paper provides a chronological survey of different video-based smoke detection methods that are available in literatures from 1998 to 2014.Though the paper is not aimed at performing comparative analysis of the surveyed methods, perceived strengths and weakness of the different methods are identified as this will be useful for future research in video-based smoke or fire detection. Keywords: Early fire detection, video-based smoke detection, algorithms, computer vision, image processing

    Video fire detection - Review

    Get PDF
    Cataloged from PDF version of article.This is a review article describing the recent developments in Video based Fire Detection (VFD). Video surveillance cameras and computer vision methods are widely used in many security applications. It is also possible to use security cameras and special purpose infrared surveillance cameras for fire detection. This requires intelligent video processing techniques for detection and analysis of uncontrolled fire behavior. VFD may help reduce the detection time compared to the currently available sensors in both indoors and outdoors because cameras can monitor “volumes” and do not have transport delay that the traditional “point” sensors suffer from. It is possible to cover an area of 100 km2 using a single pan-tiltzoom camera placed on a hilltop for wildfire detection. Another benefit of the VFD systems is that they can provide crucial information about the size and growth of the fire, direction of smoke propagation. © 2013 Elsevier Inc. All rights reserve

    A framework based on Gaussian mixture models and Kalman filters for the segmentation and tracking of anomalous events in shipboard video

    Get PDF
    Anomalous indications in monitoring equipment on board U.S. Navy vessels must be handled in a timely manner to prevent catastrophic system failure. The development of sensor data analysis techniques to assist a ship\u27s crew in monitoring machinery and summon required ship-to-shore assistance is of considerable benefit to the Navy. In addition, the Navy has a large interest in the development of distance support technology in its ongoing efforts to reduce manning on ships. In this thesis, algorithms have been developed for the detection of anomalous events that can be identified from the analysis of monochromatic stationary ship surveillance video streams. The specific anomalies that we have focused on are the presence and growth of smoke and fire events inside the frames of the video stream. The algorithm consists of the following steps. First, a foreground segmentation algorithm based on adaptive Gaussian mixture models is employed to detect the presence of motion in a scene. The algorithm is adapted to emphasize gray-level characteristics related to smoke and fire events in the frame. Next, shape discriminant features in the foreground are enhanced using morphological operations. Following this step, the anomalous indication is tracked between frames using Kalman filtering. Finally, gray level shape and motion features corresponding to the anomaly are subjected to principal component analysis and classified using a multilayer perceptron neural network. The algorithm is exercised on 68 video streams that include the presence of anomalous events (such as fire and smoke) and benign/nuisance events (such as humans walking the field of view). Initial results show that the algorithm is successful in detecting anomalies in video streams, and is suitable for application in shipboard environments
    • …
    corecore