161 research outputs found

    Reducing Clocks in Timed Automata while Preserving Bisimulation

    Full text link
    Model checking timed automata becomes increasingly complex with the increase in the number of clocks. Hence it is desirable that one constructs an automaton with the minimum number of clocks possible. The problem of checking whether there exists a timed automaton with a smaller number of clocks such that the timed language accepted by the original automaton is preserved is known to be undecidable. In this paper, we give a construction, which for any given timed automaton produces a timed bisimilar automaton with the least number of clocks. Further, we show that such an automaton with the minimum possible number of clocks can be constructed in time that is doubly exponential in the number of clocks of the original automaton.Comment: 28 pages including reference, 8 figures, full version of paper accepted in CONCUR 201

    時間プッシュダウンオートマトンの表現力と到達可能性問題

    Get PDF
    筑波大学 (University of Tsukuba)201

    Towards a Unified Theory of Timed Automata

    Get PDF
    Timed automata are finite-state machines augmented with special clock variables that reflect the advancement of time. Able to both capture real-time behavior and be verified algorithmically (model-checked), timed automata are used to model real-time systems. These observations have led to the development of several timed-automata verification tools that have been successfully applied to the analysis of a number of different systems; however, the practical utility of timed automata is undermined by the theories underlying different tools differing in subtle but important ways. Since algorithmic results that hold for the variant used by one tool may not apply to another variant, this complicates the application of different tools to different models. The thesis of this dissertation is this: the theory of timed automata can be unified, and a practical unified approach to timed-automata model checking can be built around the paradigm of proof search. First, this dissertation establishes the mutual expressivity of timed automata variants, thereby providing precise characterizations of when theoretical results of one variant apply to other variants. Second, it proves powerful expressive properties about different logics for timed behavior, and as a result, enlarges the set of verifiable properties. Third, it discusses an implementation of a verification tool for an expressive fixpoint-based logic, demonstrating an application of this newly developed theory. The tool is based on a proof-search paradigm; verifying timed automata involves constructing proofs using proof rules that enable verification problems to be translated into subproblems that must be solved. The tool's performance is optimized by using derived proof rules, thereby providing a theoretically sound basis for faster model checking. Last, this dissertation utilizes the proofs generated during verification to gain additional information about the vacuous satisfaction of certain formulae: whether the automaton satisfied a formula by never satisfying certain premises of that specification. This extra information is often obtained without significantly decreasing the verifier's performance

    Modeling and checking Real-Time system designs

    Get PDF
    Real-time systems are found in an increasing variety of application fields. Usually, they are embedded systems controlling devices that may risk lives or damage properties: they are safety critical systems. Hard Real-Time requirements (late means wrong) make the development of such kind of systems a formidable and daunting task. The need to predict temporal behavior of critical real-time systems has encouraged the development of an useful collection of models, results and tools for analyzing schedulability of applications (e.g., [log]). However, there is no general analytical support for verifying other kind of high level timing requirements on complex software architectures. On the other hand, the verification of specifications and designs of real-time systems has been considered an interesting application field for automatic analysis techniques such as model-checking. Unfortunately, there is a natural trade-off between sophistication of supported features and the practicality of formal analysis. To cope with the challenges of formal analysis real-time system designs we focus on three aspects that, we believe, are fundamental to get practical tools: model-generation, modelreduction and model-checking. Then, firstly, we extend our ideas presented in [30] and develop an automatic approach to model and verify designs of real-time systems for complex timing requirements based on scheduling theory and timed automata theory [7] (a wellknown and studied formalism to model and verify timed systems). That is, to enhance practicality of formal analysis, we focus our analysis on designs adhering to Fixed-Priority scheduling. In essence, we exploit known scheduling theory to automatically derive simple and compositional formal models. To the best of our knowledge, this is the first proposal to integrate scheduling theory into the framework of automatic formal verification. To model such systems, we present I/O Timed Components, a notion and discipline to build non-blocking live timed systems. I/O Timed Components, which are build on top of Timed Automata, provide other important methodological advantages like influence detection or compositional reasoning. Secondly, we provide a battery of automatic and rather generic abstraction techniques that, given a requirement to be analyzed, reduces the model while preserving the relevant behaviors to check it. Thus, we do not feed the verification tools with the whole model as previous formal approaches. To provide arguments about the correctness of those abstractions, we present a notion of Continuous Observational Bismulation that is weaker than strong timed bisimulation yet preserving many well-known logics for timed systems like TCTL [3]. Finally, since we choose timed automata as formal kernel, we adapt and apply their deeply studied and developed analysis theory, as well as their practical tools. Moreover, we also describe from scratch an algorithm to model-check duration properties, a feature that is not addressed by available tools. That algorithm extends the one presented in [28].Fil:Braberman, Víctor Adrián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
    corecore