
Timed Pushdown Automata: Expressiveness and
Reachability　

著者 Uezato Yuya
year 2018
その他のタイトル 時間プッシュダウンオートマトンの表現力と到達可

能性問題
学位授与大学 筑波大学 (University of Tsukuba)
学位授与年度 2017
報告番号 12102甲第8516号
URL http://doi.org/10.15068/00152389

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tsukuba Repository

https://core.ac.uk/display/159405169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Timed Pushdown Automata:
Expressiveness and Reachability

March 2018

Yuya Uezato

Timed Pushdown Automata:
Expressiveness and Reachability

Graduate School of Systems and Information Engineering

University of Tsukuba

March 2018

Yuya Uezato

Abstract

Timed automata were introduced by Alur et al. in the early 1990’s as finite automata
augmented with finitely many (global) clocks. Adding clocks to finite automata enables
us to model continuous time behaviors of real-time systems. The reachability problem of
timed automata is decidable (PSPACE-complete) and it is key to automatically verifying
temporal properties of real-time systems.

Several classes of pushdown extensions of timed automata have been introduced and
studied. Bouajjani et al. introduced pushdown timed automata (PTA) as timed automata
augmented with a single stack (alternatively, pushdown automata augmented with finitely
many global clocks). Abdulla et al. introduced dense-timed pushdown automata (DTPDA)
as timed automata with a timed stack whose stack element is a pair of a stack symbol and
a single local clock. A DTPDA has unboundedly many local clocks during a computation;
thus DTPDA clearly extend PTA. On the other hand, Clemente and Lasota showed PTA
and DTPDA are equally expressive.

In this thesis, we introduce two new classes of timed pushdown automata: timed push-
down automata with multiple local clocks (MTPDA) and synchronized recursive timed
automata (SRTA). MTPDA and SRTA can be seen as extensions of DTPDA with mul-
tipe local clocks and several new operations. We study the expressiveness and show the
decidability of the reachability problem of the two classes.

About the expressiveness, on MTPDA, we show that MTPDA are as expressive as
PTA in spite of having multiple local clocks and new operations. We show that SRTA
are strictly more expressive than MTPDA owing to the presence of new constraints called
fractional constraints that inspect the fractional parts of local clocks.

About the decidability of the reachability problem, we show that the reachability prob-
lems of MTPDA and SRTA are EXPTIME-complete. We also show that the reachability
problem of PTA is already EXPTIME-complete even though PTA are the simplest form
of timed pushdown automata.

Acknowledgments

I would like to sincerely thank my thesis advisor Yasuhiko Minamide who guided me to
the world of the theory of automata. This dissertation could not be completed with-
out his thoughful guidance. I am indebted to my supervisor Yukiyoshi Kameyama who
supported my research by providing a great work environment. I am also indebted
to Prof. Kazuhiko Kato, Prof. Kazuo Misue, Prof. Mitsuharu Yamamoto, and Dr. Hi-
roshi Unno who have offered me many comments about this work. I thank my colleagues
and researchers who discussed me about my research and papers. They gave me many
sophisticated lectures in various field of theoretical computer science.

1

Contents

1 Introduction 4

2 Timed Automata 12
2.1 Basic Notation . 12
2.2 Formalization of Timed Automata . 13

2.2.1 Language of Timed Automata . 14
2.3 Reachability Problem and Digital Automata 17

2.3.1 Digital Valuations . 17
2.3.2 Digital Automata and Decidability of Reachability Problem 22

2.4 Backward Simulation and
Decidability of Configuration Reachability Problem 26
2.4.1 Redefine the Constant M . 27
2.4.2 Forward Simulation is not Enough 28
2.4.3 Collapsed Valuations . 29
2.4.4 Decidability of the Configuration Reachability Problem 33

2.5 Extensions of Timed Automata . 34
2.5.1 Timed Automata with Diagonal Constraints 34
2.5.2 Updatable Timed Automata . 36

3 Timed Pushdown Automata 41
3.1 Pushdown Automata . 41
3.2 Nonstandard Formulation of Pushdown Automata 42
3.3 Pushdown Timed Automata . 44
3.4 Hierarchy Theorem of Pushdown Timed Automata 47

3.4.1 Preliminaries for Theorem 3.4 . 47
3.4.2 1-clock language . 49
3.4.3 2-clock language . 50
3.4.4 n-clock language . 51

3.5 Dense-Timed Pushdown Automata . 53
3.6 Timed Pushdown Automata and Untiming Theorem 54

4 Timed Pushdown Automata with Multiple Local Clocks 57
4.1 Formalization of Timed Pushdown Automata with

Multiple Local Clocks . 58
4.1.1 Compared to Timed Pushdown Automata 60
4.1.2 Extending MTPDA by Useful Transition Rules 60
4.1.3 Example of 1-TPDA . 62
4.1.4 Example of 2-TPDA . 62
4.1.5 Important Property of MTPDA: Monotonicity in Stack 63

4.2 Proof Outline of Untiming Theorem of MTPDA 64

2

4.3 Removing Transition Rules with
Actions x− x′ ∈? I, z − z′ ∈? I, z ∈? I, or x− z ∈? I 64

4.4 Predicting MTPDA: Preliminary to Remove z − x ∈? I 66
4.4.1 Predicting MTPDA . 67
4.4.2 Stack Structure of Predicting MTPDA without reset(z) 68
4.4.3 Example: Removing z − x ∈? I based on Predicting MTPDA 69

4.5 Removing Transition Rules with z − x ∈? I from MTPDA without reset(z) . 71
4.5.1 Predicting MTPDA C not having z − x ∈? I 71
4.5.2 Properties of Predicting MTPDA C 73
4.5.3 Equivalence of the predicting MTPDA B and C 75

4.6 Removing Transition Rules with z − x ∈? I from MTPDA 79
4.6.1 Properties of Predicting MTPDA D 81
4.6.2 Language Equivalence between Predicting MTPDA B and D 84

4.7 Untiming Theorem of MTPDA . 84

5 Synchronized Recursive Timed Automata 87
5.1 Synchronized Recursive Timed Automata 88
5.2 Expressiveness of SRTA . 91

5.2.1 SRTA is More Expressive than PTA: PTA ⊊ SRTA 91
5.2.2 Alternative View of SRTA . 92

5.3 Overview of Decidability Proof of
Configuration Reachability Problem . 96
5.3.1 Idea of Each Semantics . 96
5.3.2 Backward Simulation in Configuration Reachability Problem 100
5.3.3 Comparing Proof of Abdulla et al. and Ours 101

5.4 Lazy Semantics: Removing Entire Stack Modification 102
5.4.1 Lazy Semantics Lazy . 103

5.5 Collapsed Semantics . 107
5.5.1 Removing the Unboundedness . 107
5.5.2 Why Do We Need Reference Clock 108
5.5.3 Collapsed Semantics Coll . 110
5.5.4 Upper Bound for Configuration Reachability Problem 112

5.6 Digital Valuations and Finite-PDS Semantics 114
5.6.1 Digital Valuations . 114
5.6.2 Forward and Backward Simulation of Time Elapsing 115
5.6.3 Nondeterministic Composition . 116
5.6.4 Digitized Semantics . 117
5.6.5 Backward Simulation . 118
5.6.6 Decidability of Reachability Problem 121

5.7 Regions vs Digital Valuations . 122
5.7.1 Key Lemma fails on Region of Alur and Dill 123

5.8 Related Work . 124
5.9 Proof of Lemma 5.11 . 124

6 Conclusion 127

Bibliography 129

3

Chapter 1

Introduction

The most important application of the theory of automata is model checking of systems
and programs. We use automata to formally represent behaviors of systems and programs
and verify their properties by results of the theory of automata. There is no perfect class of
automata for all situations due to an unavoidable trade-off between expressiveness and de-
cidability. The higher expressiveness a class of automata has, the more programs the class
can precisely represent but the less properties on the class can be solved algorithmically.
Therefore, we should use or develop an adequate class of automata for each situation.
To this end, on each class of automata, it is important to clarify its expressiveness and
decidability of typical decision problems.

Expressiveness. We compare the expressiveness of a model with those of existing similar
models to understand the model. For this direction, the Chomsky hierarchy, REG ⊊
CFL ⊊ CSL ⊊ REC [Cho59], plays a central role where REG is the language class of
finite automata (regular languages), CFL is the language class of pushdown automata
(context-free languages), CSL is the language class of linear bounded automata (context-
sensitive languages), and REC is the language class of Turing machines (recursively
enumerable languages). Since Chomsky proposed these four classes, many important
classes have been introduced (indexed languages [Aho68, Aho69], higher-order indexed lan-
guages [Mas74, Mas76, Dam82, Eng91], multiple context-free languages [SMFK91, Den16],
tree-adjoining languages [JLT75, Vij87], etc). Chomsky’s four classes, however, are still
invaluable due to the simple formalization of the corresponding automata and are bases
to develop a new class of automata.

Decidability. As the Chomsky hierarchy, the expressiveness is a good measure to study
automata; however, studying solvability of typical decision problems is also a good mea-
sure. Customary decision problems studied in the theory of automata are the membership,
emptiness, and equivalence problems. Let A be an automaton of some class.

Membership The membership problem decides whether the automaton accepts a given
word w, w ∈? L(A).

Emptiness The emptiness problem decides whether the language of the automaton is
empty, L(A) =? ∅.

Equivalence The equivalence problem decides whether the languages are the same for a
given automaton B of the considered class, L(A) =? L(B).

Though these problems seem to be theoretical, we can use these problems for formal
verification of systems and programs. Especially, the emptiness problem is important
on formal verification. On many classes of automata (at least, Chomsky’s four classes),
the emptiness problem equals to a decision problem called reachability problem. This

4

problem decides whether there is a valid computation from a given configuration cstart to
another one cgoal (cstart ⇒∗? cgoal). On formal verification, we can use this problem for
safety analysis, which decides whether there is a computation that reaches an unexpected
(or unsafe) configuration from the entry point of a program. The emptiness problem is
decidable for the classes REG and CFL, and not for CSL and REC [HU79].

The languages that are conventionally considered in the theory of formal languages are
sets of words of finite alphabet. Formally, a language is a subset of Σ∗ where Σ is a finite
set of symbols. Towards formal verification of real-time systems, Alur et al. introduced
timed automata by adding the notion of time to finite automata [AD90, ACD93, AD94].
On timed automata, words w ∈ Σ∗ and languages L ⊆ Σ∗ are extended to timed words
wt ∈ (Σ×R≥0)∗ and timed languages Lt ⊆ (Σ×R≥0)∗ where R≥0 = {r ∈ R : r ≥ 0} is the
set of non-negative real numbers. Timed automata are finite automata augmented with
finitely many clocks (variables over R≥0) and the formalization of timed automata is not
so different from that of finite automata. However, from the viewpoint of decidability, the
two models are different; the language equivalence problem of finite automata is decid-
able but that of timed automata is undecidable. Fortunately, the emptiness problem of
timed automata remains decidable and thus we can use timed automata for formal verifi-
cation of real-time systems; for example, timed automata has been used to verify temporal
properties of communication and security protocols [BGK+02, AJKO97, DKN04, NP05].

It is expected that adding clocks to an existing non-timed model of computation makes
a new interesting model of computation as timed automata. Especially towards formal
verification, we would like to design a model that is more expressive than timed automata
and whose reachability problem remains decidable (the language equivalence problem is al-
ready undecidable for timed automata). We consider pushdown automata are an adequate
candidate to be extended with clocks. The first reason is that it is located next to the
class of finite automata in Chomsky’s hierarchy and its reachability problem is decidable.
The second reason is that pushdown automata have already been extended for many direc-
tions and the reachability problems of some interesting extensions of them are decidable
(higher-order pushdown automata [HO08, HMOS08, HMOS17], pushdown vector addition
automata [LST15], restricted classes of multi-stack pushdown automata [LMP07, MP11],
etc.): therefore, we expect the reachability problems of timed-extensions of pushdown
automata also remain decidable. Bouajjani, Echahed, and Robbana introduced a timed-
extension of pushdown automata called pushdown timed automata (PTA) [BER94]. This
model is a simple combination of timed automata and pushdown automata and its reach-
ability problem is decidable. Abdulla, Atig, and Stenman extended pushdown timed au-
tomata and introduced dense-timed pushdown automata (DTPDA) [AAS12a]. Although
the latter model is more complex and seems strictly more powerful than the former model,
PTA and DTPDA are equally expressive [CL15a].

In this thesis, we extend existing timed-extensions of pushdown automata to enlarge
their expressiveness while preserving the decidability of the reachability problem. We
introduce two new timed-extensions of pushdown automata called timed pushdown au-
tomata with multiple local clocks (MTPDA) and synchronized recursive timed automata
(SRTA). Our result on expressiveness is the following:

• MTPDA and PTA are equally expressive: MTPDA = PTA [Uez18].

• SRTA is more expressive than PTA: PTA ⊊ SRTA [UM18, UM15].

Our result on decidability is the following:

• both the reachability problems of MTPDA and SRTA are decidable and ExpTime-
complete [Uez18, UM18, UM15].

Hereafter we briefly review pushdown automata, timed automata, and DTPDA. Then,
we see our two classes of timed pushdown automata and the differences from DTPDA.

5

Pushdown automata Pushdown automata (PDA) are finite automata augmented with
a single stack [Eve63, Sch63, HU79]; therefore, a PDA is a 6-tuple A = (Q, qinit, F,Σ,Γ,∆)
where Q is a finite set of locations, qinit ∈ Q is the initial location, F ⊆ Q is a set of
accepting locations, Σ is a finite input alphabet, Γ is a finite stack alphabet, and ∆ is a
finite set of transition rules. A configuration of pushdown automata ⟨q, w⟩ consists of a
control location q and a stack w ∈ Γ∗. Each transition rule is of the form p

τ−→α q ∈ ∆

where p, q ∈ Q, α ∈ Σ ∪ {ϵ}, τ ∈ {nop} ∪ {push(γ), pop(γ) : γ ∈ Γ}. 1

The operational semantics of a PDA is given by a labeled transition system (Q×Γ∗,→)
where Q×Γ∗ is the set of states and → is the set of labeled transitions defined as follows:

p
push(γ)−−−−→α q ∈ ∆

⟨p, w⟩ α−→ ⟨q, wγ⟩,

p
pop(γ)−−−−→α q ∈ ∆

⟨p, wγ⟩ α−→ ⟨q, w⟩,

p
nop−−→α q ∈ ∆

⟨p, w⟩ α−→ ⟨q, w⟩.

The following is an example of PDA where Σ = {a, b} and Γ = {A,B,Z} :

q0 q1 q2 q3
push(Z)

ϵ

push(A)

a

push(B)

b

nop

#

pop(A)

a

pop(B)

b

pop(Z)

ϵ

where q0 is the initial location and q3 is an accepting location. This PDA accepts the
following language (here we omit the definition of the language of PDA):

L1 =
{
w#wR : w ∈ {a, b}∗ , wR is the reverse word of w

}
.

Pushdown automata play an important role in program verification. Since we can
use a stack to implement the call-and-return mechanism of recursive programs, we can
use pushdown automata as an abstract model of recursive programs. Furthermore, the
reachability problem of pushdown automata is decidable and in PTIME [BEM97]. For
verification of recursive programs, we use this decidability to solve the safety analysis
which decides whether or not a given recursive program enters an undesirable state or
exceptional state.

Timed automata Timed automata are finite automata augmented with finite clocks,
which are used to measure the time elapsed between events [AD90, ACD93, AD94]. For-
mally, a timed automaton A is a 6-tuple A = (Q, qinit, F,Σ,X ,∆) where Q, qinit, F , Σ,
and ∆ are the same as pushdown automata. The component X is a finite set of clocks. A
configuration of timed automata ⟨q, ν⟩ consists of a control location q and a valuation over
finite clocks ν : X → R≥0. On timed automata, we consider a timed word which belongs to
the set (Σ×R≥0)∗ instead of a normal word on Σ∗. A timed word (σ1, r1)(σ2, r2) . . . (σn, rn)
means that a symbol σ1 occurs in r1 seconds after a computation started and also σ2 oc-
curs in r2 seconds after the computation started (alternatively, σ2 occurs in r2−r1 seconds
after the symbol σ1 appeared), and so on. On timed automata, there are three types of

transition rules: p
nop−−→α q, p

reset(x)−−−−→α q, and p
x∈?I−−−→α q where x is a clock and I is an interval.

These types of transition rules are called discrete transition rules. The operational seman-
tics of a timed automaton is given by a labeled transition system (Q× (X → R≥0),→,⇝)

1For the sake of simplicity, we use a formalization of PDA that differs from the most standard one [HU79]
but is equivalent to that.

6

where Q× (X → R≥0) is the set of states and → is the set of labeled transitions over the
set of states defined as follows:

p
nop−−→α q ∈ ∆

⟨p, ν⟩ nop−−→α ⟨q, ν⟩,

p
reset(x)−−−−→α q ∈ ∆

⟨p, ν⟩ reset(x)−−−−→α ⟨q, ν[x B 0]⟩,

p
x∈?I−−−→α q ∈ ∆ ν(x) ∈ I

⟨p, ν⟩ x∈?I−−−→α ⟨q, ν⟩,

where ν[x B 0] is the reset valuation of ν for x by the real 0.0 defined as follows:

(ν[x := 0])(y) ≜
{
0.0 if x = y,

ν(y) otherwise.

We also have another type of transition called timed transitions:

δ ∈ R≥0

⟨p, ν⟩ δ⇝ ⟨p, ν + δ⟩

where ν + δ is the evolved valuation of ν by δ defined as (ν + δ)(x) ≜ ν(x) + δ.
The following is an example of a timed automaton where X = {x} and Σ = {a, b, c, d}:

q0 q1 q2

a

nop

b

reset(x)

c

nop

d

x ∈? [2 : 2]

This timed automaton represents the following timed language (here we omit the definition
of the language of a timed automaton):

L2 = { (a, r1) . . . (a, rn)(b, rn+1)(c, rn+2) . . . (c, rn+m)(d, rn+m+1) : rn+m+1 − rn+1 = 2} .

The timed language is the set of timed words of the form aa . . . abcc . . . cd where d appears
in two seconds after b appears.

Alur et al. introduced timed automata and proved that the reachability problem of
timed automata is decidable and PSPACE-complete with respect to the size of a timed
automaton. In order to show the decidability of the reachability problem of timed au-
tomata, they developed a notion called region abstraction; today, it is an important and
fundamental tool to study timed automata.

Timed pushdown automata It is natural to consider a hybrid model of pushdown au-
tomata and timed automata since both the reachability problems of these models are decid-
able. Bouajjani, Echahed, and Robbana considered the simplest combination of those two
models, pushdown timed automata [BER94, Dan03]. Pushdown timed automata (PTA)
are finite automata augmented with finitely many clocks and a single stack. Formally, a
PTA is a 7-tuple A = (Q, qinit, F,Σ,Γ,X ,∆) where each component has the same meaning
as that of pushdown automata and timed automata. A configuration of PTA is a triple
⟨q, ν, w⟩ of a location q, valuation ν : X → R≥0, and stack w ∈ Γ∗. Each transition rule is

of the form p
τ−→α q ∈ ∆ where p, q ∈ Q, α ∈ Σ ∪ {ϵ}, and

τ ∈ {nop} ∪ {reset(x), x ∈? I : x ∈ X , I is an interval} ∪ {push(γ), pop(γ) : γ ∈ Γ} .

The operational semantics of a PTA is given by a labeled transition system (Q × (X →
R≥0)× Γ∗,→,⇝) where Q× (X → R≥0)× Γ∗ is the set of states, → is the set of labeled

7

transitions for discrete transitions, and ⇝ is the set of labeled transitions for timed tran-
sitions. The sets→ and⇝ are defined in the same way as pushdown automata and timed
automata.

Although this model is a simple combination of pushdown automata and timed au-
tomata, it strictly enlarges the language class of timed automata. The following is an
example of PTA where X = {x, y}, Σ =

{
a, b, c, a, b, c

}
, and Γ = {⋆}:

q0 q1 q2 q3 q4

push(⋆)

b

reset(y)

c

y ∈? (2 : 3)

c

pop(⋆)

b
nop

a

x ∈? (2 : 3)

a

The above PTA accepts the following timed language by its accepting location q4 and the
empty stack:

L3 = {
(a, r1)(b, r2) . . . (b, rn)(c, rn+1)(c, r

′
n+1)(b, r

′
n) . . . (b, r

′
2)(a, r

′
1) :

2 < r′n+1 − rn+1 < 3, 2 < r′1 − r1 < 3
}.

On the other hand, this language cannot be accepted by any timed automaton. In order
to accept this language (more precisely, to check whether or not the number of b is the
same as that of b), we need a stack rather than clocks.

The reachability problem of PTA is decidable. This decidability was easily shown:

1. We translate a given PTA to the corresponding PDA that preserves the reachability
by the technique of the region abstraction of timed automata;

2. We use the reachability analysis of pushdown automata.

Therefore, we can solve the reachability problem of PTA by using existing model check-
ers for pushdown automata. Applying the region abstraction technique to a given PTA
yields the corresponding PDA where the number of control locations of the PDA is ex-
ponential with respect to the number of clocks of the PTA. Since the reachability prob-
lem of pushdown automata is in polynomial-time, we obtain an exponential-time algo-
rithm of the reachability problem of PTA [BER94]. In this thesis, we newly show the
exponential blowup is unavoidable, i.e., the reachability problem of PTA is EXPTime-
complete (Corollary 3.1). On timed automata, the reachability problem is PSPACE-
complete although there is a similar exponential blowup caused by applying the region
abstraction [AD94]. If the complexity class PSPACE is strictly included in the class EX-
PTime (PSPACE ⊊ EXPTime), the coexistence of clocks and a stack makes that PTA
essentially differ from timed automata and pushdown automata.

Abdulla, Atig, and Stenman introduced another timed-extension of pushdown au-
tomata, dense-timed pushdown automata (DTPDA) [AAS12a, AAS14b, AAS14a]. For-
mally, a DTPDA is a 7-tuple A = (Q, qinit, F,Σ,Γ,X ,∆) as with PTA. A configuration
of DTPDA ⟨q, ν, ξ⟩ is a triple of a location q, valuation ν : X → R≥0, and timed stack
ξ ∈ (Γ × R≥0)∗. A timed stack ⟨γ1, k1⟩⟨γ2, k2⟩ . . . ⟨γn, kn⟩ is a stack whose each element
⟨γi, ki⟩ is a pair of a stack symbol γi and value ki of an accompanying clock. We call a clock
of X global clock and an accompanying clock in a stack local clock. Hence, unboundedly
many clocks appear in a timed stack as a timed stack unboundedly grows. Each transition
rule is of the form p

τ−→α q ∈ ∆ where p, q ∈ Q, α ∈ Σ ∪ {ϵ}, and

τ ∈ {nop} ∪ {reset(x), x ∈? I : x ∈ X , I is an interval}
∪ {push(γ), pop(γ, I) : γ ∈ Γ, I is an interval} .

8

The operational semantics of a DTPDA is given by a labeled transition system (Q ×
(X → R≥0)× (Γ×R≥0)∗,→,⇝) where Q× (X → R≥0)× (Γ×R≥0)∗ is the set of states,
→ is the set of labeled transitions for discrete transitions, and ⇝ is the set of labeled

transitions for timed transitions. The transitions for
nop−−→α ,

reset(x)−−−−→α , and
x∈?I−−−→α are defined

in the same way as PTA. We define the cases of
push(γ)−−−−→α ,

pop(γ,I)−−−−−→α , and
δ⇝:

p
push(γ)−−−−→α q ∈ ∆

⟨p, ν, w⟩ push(γ)−−−−→α ⟨q, ν, w ⟨γ, 0.0⟩⟩,

p
pop(γ,I)−−−−−→α q ∈ ∆ k ∈ I

⟨p, ν, w ⟨γ, k⟩⟩ pop(γ,I)−−−−−→α ⟨q, ν, w⟩,

δ ∈ R≥0

⟨p, ν, ⟨γ1, k1⟩ . . . ⟨γn, kn⟩⟩
δ⇝ ⟨p, ν + δ, ⟨γ1, k1 + δ⟩ . . . ⟨γn, kn + δ⟩⟩.

Although PDA only modify the top part of a stack by the push and pop operations,
DTPDA simultaneously evolve all the local clocks in their stack to reflect time-elapsing.
It should also be noted that we can check the value of a local clock only when we pop the
stack frame that the local clock belongs to. This means that we cannot check local clocks
more than once and reset local clocks.

The following is an example of DTPDA where X = {x, y}, Σ =
{
a, b, c, a, b, c

}
, and

Γ = {⋆}:

q0 q1 q2 q3 q4

push(⋆)

b

reset(y)

c

y ∈? (2 : 3)

c

pop(⋆, (2 : 3))

b
nop

a

x ∈? (2 : 3)

a

This DTPDA represents the following timed language by the accepting loction q4 and the
empty stack:

L4 =
{
(a, r1)(b, r2) . . . (b, rn)(c, rn+1)(c, r

′
n+1)(b, r

′
n) . . . (b, r

′
2)(a, r

′
1) : 2 < r′i − ri < 3

}
.

In spite of the unboundedness of the number of local clocks in a timed stack of DTPDA,
its reachability problem remains decidable (and ExpTime-complete) [AAS12a]. Due to the
presence of local clocks, we cannot use the same construction of the reachability problem
of PTA for DTPDA. Indeed, Abdulla et al. adapted the classical region abstraction of
timed automata for DTPDA and the decidability proof of the reachability problem for
DTPDA significantly differs from that for PTA.

On the viewpoint from the theory of formal languages, Clemente and Lasota showed
the untiming theorem of timed pushdown automata [CL15a]. The theorem says that we
can translate a DTPDA to the corresponding PTA while preserving its language. This
implies that PTA and DPTDA are equally expressive. Indeed, the above timed language
L4 can be accepted by a PTA with two clocks because the two languages L3 and L4 are
the same. Following the untiming theorem of Clemente and Lasota, we obtain another
proof of the decidability of the reachability problem of DTPDA.

Contribution

In this thesis, we introduce two classes of timed pushdown automata: timed pushdown
automata with multiple local clocks (MTPDA) [Uez18] and synchronized recursive timed
automata (SRTA) [UM18, UM15].

9

Timed pushdown automata with multiple local clocks (MTPDA). The class of
MTPDA is an extension of timed pushdown automata of Clemente and Lasota with mul-
tiple local clocks. Formally, MTPDA (K-MTPDA) is an 8-tuple A = (Q, qinit, F,Σ,Γ,X ,
{z1, z2, . . . , zK} ,∆) as with DTPDA except a set of K-local clocks {z1, z2, . . . , zK}. A
configuration of MTPDA is a triple ⟨q, ν,Υ⟩ of a control location q, clock valuation ν, and
timed stack Υ ∈

(
Γ × ({z1, z2, . . . , zK} → R≥0)

)∗
. Although DTPDA cannot reset and

check local clocks of a timed stack, MTPDA allow those operations by transition rules of

the form p
reset(zi)−−−−−→α q and p

zi∈?I−−−→α q where zi is a local clock rather than a global clock

and I is an interval.
Our result on MTPDA is the following:

Expressiveness MTPDA and PTA are equally expressive.

Decidability The reachability problem of MTPDA is ExpTime-complete.

In order to show these results, we prove the untiming theorem of MTPDA that general-
izes the untiming theorem of Clemente and Lasota. The untiming theorem of MTPDA
translates a given MTPDA to the corresponding PTA while preserving its language.

Synchronized Recursive Timed Automata (SRTA). The class of SRTA can be
seen as an extension of MTPDA with a new kind of clock constraints called fractional
constraints. Each fractional constraint {x} =? 0.0 checks whether or not the fractional
part of the value of a (global or local) clock x is 0.0. In other words, it checks whether or
not the value of a clock is a natural number.

Our result on SRTA is the following:

Expressiveness SRTA is more expressive than PTA; therefore, PTA = DTPDA =
MTPDA ⊊ SRTA.

Decidability The reachability problem of MTPDA is ExpTime-complete.

Although we can easily simulate a PTA while preserving its language by an SRTA,
the following timed language LSRTA cannot be accepted by any PTA because it requires
unboundedly many clocks in a stack:

LSRTA =
{

(a, r1)(a, r2) . . . (a, rn)(b, r
′
n) . . . (b, r

′
2)(b, r

′
1) : r

′
i − ri ∈ N

}
.

This unrecognizability result means that we cannot untime stacks of SRTA and use the
same argument as MTPDA to show the decidability of the reachability problem of SRTA.
Alternatively, we use the region abstraction designed by Abdulla et al. that was introduced
to show the decidability of the reachability problem of their DTPDA. Although our proof
is based on the region abstraction of Abdulla et al., we clarify key structures of their
elaborated proof and give a simpler decidability proof. Technically, our proof simplification
comes from backward-simulation of SRTA by pushdown automata obtained by region
abstraction. This does not only simplify our proof but also generalizes the decidability
result of timed pushdown automata. On the previous work, the decidability of the location
reachability problem of timed pushdown automata has been studied [BER94, AAS12a].
We generalize this to the decidability of the configuration reachability problem and show
both the reachability problems of SRTA remain ExpTime-complete [UM18, UM15].

Overview of the Thesis

In Chapter 2, we will introduce basic notation and formalize timed automata. We review
the classical decidability result of timed automata, the decidability of the location reach-
ability problem of timed automata. In addition, through introducing collapsed valuations

10

and the semantics of timed automata based on such valuations, we show the PSPACE-
completeness of the configuration reachability problem of timed automata. As far as we
know, this decidabiliy result is new.

In Chapter 3, as a preliminary to our new extensions of timed pushdown automata,
we will review pushdown timed automata (PTA) of Bouajjani et al. [BER94], dense-timed
pushdown automata (DTPDA) of Abdulla et al. [AAS12a], and timed pushdown automata
(TPDA) of Clemente and Lasota [CL15a]. We also review the known result that PTA,
DTPDA, and TPDA are equally expressive. As a new result for PTA, we show that
the reachability problem of PTA is already PSPACE-complete. This PSPACE-hardness
refines the PSPACE-hardness of DTPDA shown by Abdulla et al.

In Chapter 4, we will introduce a new extension of timed pushdown automata, timed
pushdown automata with multiple local clocks (MTPDA). For this class, we show the
untiming theorem which implies that MTPDA and PTA are equally expressive and that
the reachability problem of MTPDA is EXPTIME-complete.

In Chapter 5, we will introduce a new extension of timed pushdown automata, syn-
chronized recursive timed automata (SRTA). We will show that SRTA is more expressive
than PTA and the reachability problem of SRTA remains EXPTIME-complete. Finally,
we will conclude in Chapter 6.

11

Chapter 2

Timed Automata

In this chapter, we revisit timed automata introduced by Alur et al [AD94]. We define
basic notation and then formalize timed automata. We also show the decidability of the
important decision problem of timed automata called the location reachability problem
along with introducing digital valuations that are useful tool to analyze timed automata.
Our digital valuations and the region of timed automata introduced by Alur et al. are
similar but slightly different. Although we can also use the region of timed automata to
show the decidability of the location reachability problem, we will use digital valuations
instead of the classical region in Chapter 5; therefore, we introduce them in this chapter as
a preparation for that chapter. Furthermore, we show the decidability of the configuration
reachability problem of timed automata through the technique called a backward simula-
tion. As far as the author know, our decidability proof of the configuration reachability
problem differs from existing approaches.

2.1 Basic Notation

We define basic notation to define timed automata.
The set of natural numbers and real numbers are written by N and R, respectively.

We use R≥0 to denote the set of non-negative real numbers: R≥0 ≜ {r ∈ R : r ≥ 0}. For
a real number r ∈ R, we write ⌊r⌋ and frac(r) to denote the integral part and fractional
part of r, respectively. For example, ⌊3.14⌋ = 3 and frac(3.14) = 0.14.

We use intervals of the following form to denote a set of real numbers:

(a : b) ≜ {r ∈ R : a < r < b} , (a : b] ≜ {r ∈ R : a < r ≤ b} ,
[a : b) ≜ {r ∈ R : a ≤ r < b} , [a : b] ≜ {r ∈ R : a ≤ r ≤ b} ,
(a : ω) ≜ {r ∈ R : a < r} , [a : ω) ≜ {r ∈ R : a ≤ r} .

where a, b ∈ N.
We will use X to denote a set of clocks of a timed automaton and call a function

ν : X → R≥0 from X to R≥0 concrete valuation or simply valuation on X . The special
valuation that assigns 0.0 to any clock of X is written as 0X : 0X (x) = 0.0 for any x ∈ X .
If X is clear from the context, we omit it and simply write 0.

Let ν : X → R≥0 be a valuation. We write ν[x B r] to denote the valuation obtained
by updating the value of x by r:

(ν[x B r])(y) ≜
{
r if x = y,

ν(y) otherwise.

Let ν ′ : X → R≥0 be another valuation and Y ⊆ X be a subset of X . We write ν[Y B ν ′]

12

to denote the updated valuation of ν defined as follows:

ν[Y B ν ′](x) ≜
{
ν(x) if x /∈ Y ,
ν ′(x) otherwise.

For a subset Y ⊆ X , we write ν ↾ Y : Y → R≥0 to denote the restriction of ν to Y .
We write ν |= x ∈ I if, on the valuation ν, the value of x belongs to the interval I:

ν |= x ∈ I def⇐⇒ ν(x) ∈ I.

For two valuations ν1 : X → R≥0 and ν2 : Y → R≥0 where their domains are disjoint,
X ∩ Y = ∅, we write ν1 ∪ ν2 to denote the valuation on X ∪ Y that is defined as follows:

(ν1 ∪ ν2)(z) ≜
{
ν1(z) if z ∈ X,
ν2(z) otherwise.

For two valuations ν1, ν2 : X → R≥0, we write ν1 ≤ ν2 if ν1(x) ≤ ν2(x) for any x ∈ X .
It is clear that this relation ≤ forms an ordering.

2.2 Formalization of Timed Automata

A timed automaton A is a 6-tuple A = (Q, qinit, F,Σ,X ,∆) where

• Q is a finite set of control locations, qinit ∈ Q is the initial location, F ⊆ Q is a finite
set of accepting locations,

• Σ is a finite input alphabet,

• X is a finite set of clocks, and

• ∆ ⊆ Q× Σϵ ×Act ×Q is a finite set of transition rules.

– We write Σϵ to denote the set Σ ∪ {ϵ}.
– Act is the set of actions of timed automata defined as the following grammar:

Act ::= reset(x) | x ∈? I

where x ∈ X and I is an interval.

In the present chapter, we fix a timed automaton A = (Q, qinit, F,Σ,X ,∆) to define some
notation.

A configuration of the timed automaton A is a pair ⟨q, ν⟩ of a location q ∈ Q and clock
valuation ν : X → R≥0. Especially, we call the configuration ⟨qinit,0⟩ initial configuration.
We write p

τ−→α q to denote a transition rule ⟨p, α, τ, q⟩ ∈ ∆.

The operational semantics of the timed automaton A is defined as an infinite labeled
transition system TA = (Q × (X → R≥0),→,⇝). First, we define discrete transitions →
as follows:

p
reset(x)−−−−→α q ∈ ∆

⟨p, ν⟩ reset(x)−−−−→α ⟨q, ν[x B 0]⟩,

p
x∈?I−−−→α q ∈ ∆ ν |= x ∈ I

⟨p, ν⟩ x∈?I−−−→α ⟨q, ν⟩.

The transition rule p
reset(x)−−−−→α q resets the designated clock x by assigning 0.0 to x in a

valuation. The transition rule p
x∈?I−−−→α q checks whether or not the designated clock x is

in the interval I in a valuation.

13

Next, we define timed transitions ⇝ that reflects time-elapsing as follows:

δ ∈ R≥0

⟨p, ν⟩ δ⇝ ⟨p, ν + δ⟩.

The timed transition c1
δ⇝ c2 denotes the time-elapsing of δ time units. It is worth noting

that timed transitions only affect valuations and do not change locations.
On timed automata, we consider timed words and timed languages over (Σ × R≥0)∗

instead of (untimed) words and language over Σ∗ of ordinary finite automata. A timed
word w ∈ (Σ×R≥0)∗ is a finite sequence of pairs of Σ and R≥0. Intuitively, a timed word
w = (σ1, r1)(σ2, r2) . . . (σn, rn) means that

• a symbol σ1 appears in r1 seconds after the computation started

• a symbol σ2 appears in r2 seconds after the computation started, and so on:

start σ1 σ2 σ3 σn

r2 r3 rn
r1

More formally, timed words are weakly monotonic sequences on (Σ×R≥0)∗; therefore, the
set of timed words TW(Σ) is defined as follows:

TW(Σ) ≜ {(σ1, r1)(σ2, r2) . . . (σn, rn) : σi ∈ Σ, ri ∈ R≥0, ri ≤ ri+1} .

A timed language L ⊆ TW(Σ) is a set of timed words.

2.2.1 Language of Timed Automata

In order to define the timed language of a timed automaton, we need some notation. A
computation π of a timed automaton is a finite alternating sequence of timed and discrete
transitions that starts from the initial configuration ⟨qinit,0⟩ as follows:

π ≡ ⟨qinit,0⟩
δ1⇝ c1

τ1−→α1
c′1

δ2⇝ c2
τ2−→α2

c′2
δ3⇝ · · · τn−1−−−→αn−1

c′n−1
δn⇝ cn

τn−−→αn
c′n.

Let π = ⟨qinit,0⟩
δ1⇝ τ1−→α1

c′1
δ2⇝ τ2−→α2

· · · δn⇝ τn−−→αn
c′n be a computation. Intuitively, this compu-

tation means that

• a symbol α1 (maybe α1 = ϵ) appears in r1 seconds after the computation started

• a symbol α2 (maybe α2 = ϵ) appears in r2 seconds after α1 appeared, and so on.

start α1 α2 α3 αn−1 αn

r2 r3 rnr1

Following this intuition, we define the timed trace tt(π) ∈ (Σϵ×R≥0)∗ for the computation
π as follows:

tt(π) ≡ ⟨α1, δ1⟩⟨α2, δ1 + δ2⟩ . . . ⟨αn,
n∑
i=1

δi⟩.

14

Excluding silent transitions from timed traces, we define the timed word tw(π) ∈ (Σ ×
R≥0)∗ for the computation: tw(π) ≜ Ψ(tt(π)) where Ψ is the homomorphism from (Σϵ ×
R≥0)∗ → (Σ× R≥0)∗ defined as follows:

Ψ(⟨α, r⟩) =

{
⟨α, r⟩ if α ∈ Σ,

ϵ otherwise.

We define the language of a timed automaton as the set of timed words obtained from
the computations that reach a configuration whose location is an accepting location:

L(A) ≜
{
tw(π) : π = ⟨qinit,0⟩

δ1⇝ τ1−→α1
· · · δn⇝ τn−−→αn

⟨qF , ν⟩, qF ∈ F
}
.

Normalizing Intervals. We can normalize intervals that appears in a given timed
automaton while preserving its language.

Proposition 2.1. Let A be a timed automaton. There is a timed automaton B such that

L(A) = L(B) and if a rule p
x∈?I−−−→α q ∈ B, then I = (a : a+ 1), I = [a : a], or I = (a : ω).

Proof. This is immediately shown by the following simple equation:

(a : a+ k) = (a : a+ 1) ∪ [a+ 1 : a+ 1] ∪ (a+ 1 : a+ 2) ∪ · · · ∪ (a+ (k − 1) : a+ k),
(a : a+ k] = (a : a+ k) ∪ [a+ k : a+ k],
[a : a+ k) = [a : a] ∪ (a : a+ k),
[a : a+ k] = [a : a] ∪ (a : a+ k],
[a : ω) = [a : a] ∪ (a : ω).

If we have a transition p
reset(x)−−−−→α q in A, then we add it to B.

If we have a transition p
x∈?I−−−→α q in A, then we add transitions obtained by decomposing

I to B. For example, if p
x∈?(1:3]−−−−−→α q in A, then add the following transitions:

p
x∈?(1:2)−−−−−→α q, p

x∈?[2:2]−−−−−→α q, p
x∈?(2:3)−−−−−→α q, p

x∈?[3:3]−−−−−→α q.

Atomic Operations. We consider a new action τ1 # τ2 that performs two actions τ1 and
τ2 sequentially at a single transition without time-elapsings. Therefore, the semantics of

a transition rule p
τ1# τ2−−−→α q is defined as follows:

⟨p, ν⟩ τ1−→ϵ ⟨p
′, ν ′⟩ ⟨p′, ν ′⟩ τ2−→ϵ ⟨q, ν

′′⟩

⟨p, ν⟩ τ1# τ2−−−→α ⟨q, ν ′′⟩

We call this transition rule atomic transition rule. Adding atomic transition rules does
not enlarge the expressiveness of timed automata.

Proposition 2.2. Let A be a timed automaton with atomic transition rules. There is a
timed automaton B such that L(A) = L(B).

Proof. Let A = (Q, qinit, F,Σ,X ,∆) and p
τ1# τ2−−−→α q be an atomic transition rule of A. We

remove this transition rule by constructing the following timed automaton:

B1 = (Q ∪ {p0, p1, p2} , qinit, F,Σ,X ∪
{
∁
}
,∆′)

15

where p0, p1, p2 are fresh locations, ∁ is a fresh clock, and ∆′ is defined as follows:

∆ = ∆′ \
{
p

τ1# τ2−−−→α q
}

∪
{
p

reset(∁)−−−−→α p0, p0
τ1−→ϵ p1, p1

τ2−→ϵ p2, p2
∁∈[0:0]−−−−→ϵ q

}
.

We use the fresh clock ∁ to ensure that there are no time-elapsings among moving p
to q through p1, p2, and p3. It can be easily verified L(A) = L(B1). Furthermore,
we can remove all the atomic transition rules of B1 by repeatedly applying the same
construction. Finally, we obtain a timed automaton B without atomic transition rules
such that L(A) = L(B).

We also use a more general form p
τ1# τ2# ···# τn−−−−−−−−→α q. Adding such atomic transition rules

also does not enlarge the expressiveness of timed automata; indeed, on the basis of the
same argument of Proposition 2.2, we can remove such atomic transition rules.

Example of Timed Automaton As an example of timed automata, we model a time-
dependent light-switch that behaves as follows:

• As the initial status of the light-switch, the light is off.

• If we push the switch, the light becomes on.

• Furthermore, if we again push the switch within 3 seconds after the light becomes
on, then the light becomes bright.

• Otherwise, the light becomes off when we push the switch.

The following timed automaton A = (Q = {off,on,bright} ,off, Q, {press} , {x} ,∆)
models the above behavior:

off on bright
press

reset(x)

press

x ∈? [0 : 3]

press

x ∈? (3 : ω)

press

x ∈? [0 : ω)

Let us consider the following two computations:

π1 = ⟨off, {x 7→ 0.0}⟩ 0.4⇝ ⟨off, {x 7→ 0.4}⟩ reset(x)−−−−→press

⟨on, {x 7→ 0.0}⟩ 6.3⇝ ⟨on, {x 7→ 6.3}⟩ x∈?(3:ω)−−−−−→press ⟨off, {x 7→ 6.3}⟩.

π2 = ⟨off, {x 7→ 0.0}⟩ 0.4⇝ ⟨off, {x 7→ 0.4}⟩ reset(x)−−−−→press

⟨on, {x 7→ 0.0}⟩ 2.1⇝ ⟨on, {x 7→ 2.1}⟩ x∈?[0:3]−−−−−→press

⟨bright, {x 7→ 2.1}⟩ 1.9⇝ ⟨bright, {x 7→ 4.0}⟩ x∈?[0:ω)−−−−−→press ⟨off, {x 7→ 4.0}⟩.

From each computation, we obtain the following timed words:

tw(π1) = ⟨press, 0.4⟩⟨press, 6.7⟩, tw(π2) = ⟨press, 0.4⟩⟨press, 2.5⟩⟨press, 4.4⟩.

16

2.3 Reachability Problem and Digital Automata

In the present section, we show the classical decidability problem of timed automata
called the location reachability problem or simply the reachability problem. For a given
location q of a timed automaton, the location reachability problem of timed automata
⟨qinit,0⟩ ⇒∗? ⟨q, ∃ν⟩ decides whether or not there is a computation that starts from the
initial configuration reaches a configuration ⟨q, ν⟩ where q is the designated location and
ν is some valuation.

The decidability (and PSPACE-completeness) of this problem was shown using the
important technique of timed automata called region abstraction [AD94]. They used the
region abstraction to remove two infiniteness in timed automata: 1) the unboundedness of
real numbers and 2) the denseness of real numbers. We introduce digital valuations instead
of the classical regions of [AD94] and construct digital automata from timed automata to
show the decidability of the reachability problem of timed automata. Although the classi-
cal region suffices to show the decidability of the reachability problem of timed automata,
we introduce digital valuations in advance as a preliminary for Chapter 5 where we need
digital valuations rathar than the classical regions to establish an important lemma.

To define digital valuations and digital automata, we fix a timed automaton A =
(Q, qinit, F,Σ,X ,∆) whose intervals are normalized by following Proposition 2.1.

2.3.1 Digital Valuations

We write MA to denote a sufficiently large natural number with respect to the constants
appearing in ∆. Formally, we define MA as follows:

MA ≜ max{ i, j ∈ N : (i : j), [i : j], or (i : ω) appears in ∆}+ 1.

We simply write M by omitting A from MA when a timed automaton A is clear from the
context. We cannot distinguish large real numbers r1 and r2 such that r1, r2 ≥ M with

any transition rule p
x∈?I−−−→α q ∈ ∆.

Proposition 2.3. Let r1 and r2 be real numbers such that r1, r2 ≥ M.

If p
x∈?I−−−→α q is a transition rule of the timed automaton A, then the following holds:

{x 7→ r1} |= x ∈ I ⇐⇒ {x 7→ r2} |= x ∈ I.

Proof. This is trivial from the definition of M.

On the basis of this proposition, we can forget values of a clock valuation that are
beyond M. This is useful to deal with the first infiniteness of timed automata, the un-
boundedness of real numbers.

To deal with the second infiniteness of timed automata (the denseness of real numbers),
we forget the fractional parts of a clock valuation but keep the ordering of the fractional
parts of the clock valuation. Indeed, we cannot check whether or not the value of a clock
x is a real constant with any clock constraint x ∈? I. (However, by some constraint such
as x ∈ [n : n], we can check if the fractional part of a clock x is 0.0.)

Following these intuitions, we define digital valuations.

Definition 2.1 (Digital Valuation). A sequence of sets d = d0 d1 . . . dn, where di ⊆
X ×{0, 1, . . . ,M− 1,∞}, is a digital valuation on X if d satisfies the following conditions:

• Every clock in X appears in d exactly once.

• Except d0, all the sets di are not empty: di ̸= ∅ for all i ∈ {1, 2, . . . , n}.

17

We write (x, k) ∈ d if (x, k) ∈ di for some i ∈ {0, 1, . . . , n}.
We use D(X ,M) to denote the set of digital valuations on a finite clock set X and

constant M. We simply write D if X and M are clear from the context. ■
We define a realization relation between concrete valuations and digital valuations.

Definition 2.2 (Realization). Let ν be a valuation on X , and d = d0d1 . . . dn be a digital
valuation on X . We write ν |= d if the following hold:

• For all x ∈ X , ν(x) ≥ M iff (x,∞) ∈ d.

• If ν(x) < M, then (x, ⌊ν(x)⌋) ∈ d.

• If (x, k) ∈ d with some k ∈ {0, 1, . . . ,M− 1}, then ⌊ν(x)⌋ = k.

• For all x ∈ X , frac(ν(x)) = 0.0 iff x ∈ d0.

• frac(ν(x)) < frac(ν(y)) iff x ∈ di and y ∈ dj for some i < j.

■
Example. Let M = 4.

{x 7→ 2.0; y 7→ 4.3} |= {(x, 2)}0 {(y,∞)} ,
{x 7→ 0.8; y 7→ 1.5; z 7→ 3.8} |= {}0 {(y, 1)} {(x, 0), (z, 3)} ,
{x 7→ 4.0; y 7→ 2.5; z 7→ 5.5} |= {(x,∞)}0 {(y, 1), (z,∞)} .

Remark: For the special sets d0 that contain clocks whose fractional parts are 0.0, we
use the notation {. . .}0 as above.

We can easily construct a digital valuation from a valuation by collapsing the integral
parts of the valuation to {0, 1, . . . ,M− 1,∞} and sorting fractional parts of the valuation.
Therefore, the following simple property holds.

Proposition 2.4. The realization relation |= is functional, i.e., for a valuation ν, there
exists the unique digital valuation D(ν) such that ν |= D(ν).

On the other hand, the realization relation |= is not injective: for example, {x 7→ 0.3} |=
{}0 {(x, 0)} and {x 7→ 0.9} |= {}0 {(x, 0)}.

We define operations, clock checking d |= x ∈ I and clock resetting d[x B 0], for digital
valuations. To this end, we need the following properties.

Proposition 2.5. Let ν1 and ν2 be valuations on X . If D(ν1) = D(ν2),

Checking. ν1 |= x ∈? I iff ν2 |= x ∈? I for any clock constraint x ∈? I in ∆ of the timed
automaton A.

Resetting. D(ν1[x B 0]) = D(ν2[x B 0]) for any clock x ∈ X .

On the basis of this proposition, we define d |= x ∈ I and d[x B 0] for digital
valuations.

Definition 2.3. Let d be a digital valuation and ν be a valuation such that ν |= d.

• For a constraint x ∈? I, d |= x ∈ I if ν |= x ∈ I.

• For a clock x ∈ X , d[x B 0] ≜ D(ν[x B 0]).

■

18

Remark: The definition for a digital valuation d uses a valuation ν that satisfies ν |= d.
But the definition is well-defined and does not depend on the choice of such a valuation
because of Proposition 2.5.

The definition immediately leads to the following proposition.

Proposition 2.6. Let ν be a valuation and d be a digital valuation. If we have ν |= d,

• ν |= x ∈ I ⇐⇒ d |= x ∈ I for any clock constraint in ∆.

• ν[x B 0] |= d[x B 0] for any clock x ∈ X .

We define the successor relation d ⊢ d′ that corresponds to time elapsing on valuations.

Definition 2.4 (Successor). Let d and d′ be digital valuations. The valuation d′ is the
unique successor of d (d ⊢ d′) if one of the following holds:

Case d = d0d1 . . . dn and d0 ̸= ∅:

d0 d1 . . . dn ⊢ ∅ d0 d1 . . . dn.

Case d = ∅ d1 . . . dn−1dn:
∅ d1 . . . dn−1 dn ⊢ d′n d1 . . . dn−1,

where d′n satisfies the following: if (x, k) ∈ dn,{
(x, k + 1) ∈ d′n if k < M− 1,

(x,∞) ∈ d′n if k = M− 1 or k =∞.

We use ⊢∗ to denote the reflexive transitive closure of ⊢. ■
Example. The following is an example of the successor relation ⊢ with M = 2.

{x 7→ 0.0; y 7→ 1.3} ≤ {x 7→ 0.5; y 7→ 1.8} ≤ {x 7→ 0.7; y 7→ 2.0} ≤ {x 7→ 0.9; y 7→ 2.2}|= |= |= |=

{(x, 0)}0 {(y, 1)} ⊢ {}0 {(x, 0)} {(y, 1)} ⊢ {(y,∞)}0 {(x, 0)} ⊢ {}0 {(y,∞)} {(x, 0)}

We show the following diagrams that state the relation ⊢∗ reflects time-elapsings on
concrete valuations:

ν ≤ ν ′

|=

d
=⇒

ν ≤ ν ′

|= |=

d ⊢∗ ∃d′,

ν

|=

d ⊢∗ d′
=⇒

ν ≤ ∃ν ′

|= |=

d ⊢∗ d′.

To this end, we define the three auxiliary time elapsing relation <1, <2, and <3 on clock
valuations. We need the notation max fract(ν) defined as follows to denote the maximal
fractional part of a valuation ν:

max fract(ν) ≜ max {frac(ν(x)) : x ∈ X} .

Let ν and ν ′ be clock valuations.

ν <1 ν
′ def⇐⇒

{
there is no clock x such that frac(ν(x)) = 0.0 and

ν ′ = ν + (1.0−max fract(ν)).

ν <2 ν
′ def⇐⇒

{
there is no clock x such that frac(ν(x)) = 0.0 and

ν ′ < ν + (1.0−max fract(ν)).

ν <3 ν
′ def⇐⇒

{
there is a clock x such that frac(ν(x)) = 0.0 and

ν ′ < ν + (1.0−max fract(ν)).

19

For example,

{x 7→ 0.2; y 7→ 1.6; z 7→ 2.9} <1 {x 7→ 0.3; y 7→ 1.7; z 7→ 3.0} ,
{x 7→ 0.2; y 7→ 1.6; z 7→ 2.9} <2 {x 7→ 0.28; y 7→ 1.68; z 7→ 2.98} ,
{x 7→ 0.3; y 7→ 1.7; z 7→ 3.0} <3 {x 7→ 0.4; y 7→ 1.8; z 7→ 3.1} .

Proposition 2.7. Let ν and ν ′ be valuations and d be a digital valuation. The following
diagram holds for i = {1, 2, 3}:

ν <i ν ′

|=

d
=⇒

ν <i ν ′

|= |=
d ⊢∗ d′.

Proof. All the cases are trivial from the definition of <i and ⊢.

Let ν and ν ′ be valuations such that ν < ν ′. We can decompose ν < ν ′ by using the
relations <1, <2, and <3. Let us consider the following example:

(ν =) {x 7→ 0.2; y 7→ 1.6; z 7→ 2.9} < {x 7→ 1.0; y 7→ 2.4; z 7→ 3.7} (= ν ′).

We have the following decomposition:

ν = {x 7→ 0.2; y 7→ 1.6; z 7→ 2.9} <1

ν1 = {x 7→ 0.3; y 7→ 1.7; z 7→ 3.0} <3

ν2 = {x 7→ 0.4; y 7→ 1.8; z 7→ 3.1} <1

ν3 = {x 7→ 0.6; y 7→ 2.0; z 7→ 3.3} <3

ν4 = {x 7→ 0.9; y 7→ 2.3; z 7→ 3.6} <1

ν ′ = {x 7→ 1.0; y 7→ 2.4; z 7→ 3.7} .

Formally, the following property holds.

Proposition 2.8. Let ν and ν ′ be valuations such that ν < ν ′. We can decompose ν < ν ′

as follows:
ν <i1 ν1 <i2 ν2 <i3 · · · <in ν ′

where i1, i2, . . . , in ∈ {1, 2, 3}.

Proof. It suffices to consider the case ν ′ = ν + δ where 0 < δ < 1.
We use the following function.

Measure(ν, δ) ≜ | {x ∈ X : ⌊ν(x)⌋ ̸= ⌊ν(x) + δ⌋} |.

The following properties for Measure can be easily verified:

• ν <1 ν + δ or ν <1
∃ν ′ < ν + δ if and only if Measure(ν, δ) > 0.

• ν <2 ν + δ or ν <3 ν + δ if and only if Measure(ν, δ) = 0.

• If 0 ≤ δ1 + δ2 < 1, then Measure(ν, δ1 + δ2) = Measure(ν, δ1) +Measure(ν + δ1, δ2).

We proceed by induction on Measure(ν, ν ′ − ν).

Base Case. We consider the case Measure(ν, ν ′ − ν) = 0. Since there are two subcases
ν <2 ν

′ or ν <3 ν
′, this case is finished.

20

Induction Case. We consider the case Measure(ν, ν ′ − ν) > 0. For this case, we have
the following two subcases:

ν <1 ν
′, ∃ν ′′. ν <1 ν

′′ < ν ′.

Now we consider the latter case. Since

• Measure(ν, ν ′ − ν) = Measure(ν, ν ′′ − ν) +Measure(ν ′′, ν ′ − ν ′′); and

• Measure(ν, ν ′′ − ν) > 0,

we have Measure(ν ′, ν ′ − ν ′′) < Measure(ν, ν ′ − ν). By the induction hypothesis, we have
the following:

ν ′′ <j1 ν1 <j2< ν2 <j3 · · · <jm ν ′.

Therefore, ν <1 ν
′′ <j1 ν1 <j2< ν2 <j3 · · · <jm ν ′ and it finishes the proof.

We can easily show the following proposition from Proposition 2.7 and 2.8.

Proposition 2.9. Let ν be a valuation and d be a digital valuation.

ν ≤ ν ′

|=

d
=⇒

ν ≤ ν ′

|= |=

d ⊢∗ ∃d′.

Proof. If ν = ν ′, then it suffices to take d′ = d. Otherwise, we decompose ν < ν ′ by
Proposition 2.8 and then repeatedly apply Proposition 2.7.

The following similar propositions also hold.

Proposition 2.10. Let ν be a valuation and d be a digital valuation.

ν

|=

d ⊢∗ d′
=⇒

ν ≤ ∃ν ′

|= |=

d ⊢∗ d′.

Proof. It suffices to show the following 1-step diagram holds:

ν

|=

d ⊢ d′
=⇒

ν ≤ ∃ν ′

|= |=

d ⊢ d′.

In order to show this diagram, we do case analysis on d ⊢ d′.

If d = {· · · }0 d1 . . . dn ⊢ d′ = {}0 d0 d1 . . . dn:
Since this corresponds to <1, there is a valuation ν ′ such that ν <1 ν

′. It is clear
that ν ′ |= d′.

If d = {}0 d1 . . . dn−1dn ⊢ d′ = {· · · }0 d1 . . . dn−1: Since this corresponds to <3, we take ν
′

such that ν <3 ν
′. It is clear that ν ′ |= d′.

Proposition 2.6, 2.9, and 2.10 mean that we can use digital valuations to simulate clock
valuations. In the following subsection, we will define digital automata to simulate timed
automata and show the reachability problem of timed automata is decidable due to the
finiteness of digital automata.

21

2.3.2 Digital Automata and Decidability of Reachability Problem

We define digital automata DA from timed automata A and show the decidability of the
location reachability problem of timed automata.

A digital automaton DA defined from the timed automaton A is a 5-tuple:

DA = (Q× D, ⟨qinit,D(0)⟩, F × D,Σ, ∂).

where

• Q × D is the set of states (each state ⟨q,d⟩ is a pair of location q ∈ Q and digital
valuation d corresponding a clock valuation of A),

• ⟨qinit,D(0)⟩ is the initial state that corresponds to the initial configuration ⟨qinit,0⟩
of A,

• F ×D is accepting states that correspond to configuration of A whose location is in
qF ,

• Σ is the input alphabet, and

• ∂ ⊆ (Q×D)×Σϵ ×Actdigi × (Q×D) is a finite set of transitions where the actions
Actdigi is defined as follows:

τ ∈ Actdigi ::= reset(x) | x ∈? I | evolve

The set of transitions ∂ is defined as follows from ∆:

p
reset(x)−−−−→α q ∈ ∆

⟨p,d⟩ reset(x)−−−−→α ⟨q,d[x B 0]⟩ ∈ ∂,

p
x∈?I−−−→α q ∈ ∆ d |= x ∈ I

⟨p,d⟩ x∈?I−−−→α ⟨q,d⟩ ∈ ∂,

q ∈ Q d ∈ D d ⊢∗ d′

⟨q,d⟩ evolve−−−→ϵ ⟨q,d′⟩ ∈ ∂.

Since digital automata are finite automata, we can define the language L(DA) ⊆ Σ∗

for the digital automaton DA as follows:

L(DA) ≜
{
α1α2 · · ·αn : ⟨qinit,D(0)⟩

τ1−→α1
s1

τ2−→α2
· · · τn−−→αn

⟨qF ,d⟩ ∈ F × D
}
.

In order to show that the digital automaton DA simulates the timed automaton and
vice versa, we define a correspondence relation between timed and digital automata.

Definition 2.5. Let A be a timed automaton and DA be the corresponding digital au-
tomaton. For a configuration ⟨q, ν⟩ of A and ⟨p,d⟩ of DA, we write ⟨q, ν⟩ ∼ ⟨p,d⟩ if the
following holds:

q = p and ν |= d.

■
We show the digital automaton DA simulates the timed automaton A. First, we

consider the case of discrete transitions.

Lemma 2.1. Let ⟨p, ν⟩ and ⟨p,d⟩ be configurations such that ⟨p, ν⟩ ∼ ⟨p,d⟩:

⟨p, ν⟩ τ−→α ⟨q, ν
′⟩

∼

⟨p,d⟩
=⇒

⟨p, ν⟩ τ−→α ⟨q, ν ′⟩

∼ ∼

⟨p,d⟩ τ ′−→α ∃⟨q,d
′⟩.

Proof. We proceed by case analysis on ⟨p, ν⟩ τ−→α ⟨q, ν
′⟩.

22

Case ⟨p, ν⟩ reset(x)−−−−−→α ⟨q, ν[x B 0]⟩: This means that there is a rule p
reset(x)−−−−→α q ∈ ∆

and therefore we have a rule ⟨p,d⟩ reset(x)−−−−→α ⟨q,d[x B 0]⟩ ∈ ∂. Proposition 2.6 implies

ν[x B 0] |= d[x B 0] because ν |= d.

Case ⟨p, ν⟩ x∈?I−−−→α ⟨q, ν⟩: This means that there is a rule p
x∈?I−−−→α q ∈ ∆. Since ν |= d and

Proposition 2.6 implies d |= x ∈ I, we have a rule ⟨p,d⟩ x∈?I−−−→α ⟨q,d⟩.

Next, we consider the case of timed transitions.

Lemma 2.2. Let ⟨p, ν⟩ and ⟨p,d⟩ be configurations such that ⟨p, ν⟩ ∼ ⟨p,d⟩:

⟨p, ν⟩ δ⇝ ⟨p, ν ′⟩

∼

⟨p,d⟩
=⇒

⟨p, ν⟩ δ⇝ ⟨p, ν ′⟩

∼ ∼

⟨p,d⟩ evolve−−−→ϵ ⟨p, ∃d′⟩.

Proof. Since ν |= d, Proposition 2.10 implies that there is a digital valuation d′ such that

d ⊢∗ d′ and ν + δ |= d′. By the definition of digital automata, we have ⟨p,d⟩ evolve−−−→ϵ
⟨p,d′⟩ ∈ ∂.

Conversely, we show the timed automaton A simulates the digital automaton DA.

Lemma 2.3. Let ⟨q, ν ′⟩ and ⟨q,d′⟩ be configurations such that ⟨q, ν ′⟩ ∼ ⟨q,d′⟩.

(1) :

⟨q, ν⟩

∼

⟨p,d⟩ τ−→α ⟨q,d
′⟩

=⇒
⟨p, ν⟩ τ−→α ⟨q,

∃ν ′⟩

∼ ∼

⟨p,d⟩ τ−→α ⟨q,d
′⟩.

(2) :

⟨p, ν⟩

∼

⟨p,d⟩ evolve−−−→ϵ ⟨p,d′⟩
=⇒

⟨p, ν⟩ δ⇝ ⟨p, ∃ν ′⟩

∼ ∼

⟨p,d⟩ evolve−−−→ϵ ⟨p,d′⟩.

Proof. This lemma is shown by the same argument of Lemma 2.1 and 2.2.

Combining these lemmas, we can reduce the location reachability problem of a timed
automaton to the reachability problem of the corresponding digital automaton.

Theorem 2.1. Let A be a timed automaton and q be a location of A. The following loca-
tion reachability of the timed automaton A and the digital automaton DA are equivalent:

• ⟨qinit,0⟩ ⇒∗ ⟨q, ∃ν⟩ where ⇒ is a discrete transition or timed transition.

• ⟨qinit,D(0)⟩ →∗ ⟨q, ∃d⟩ where → is some transition.

Proof. First we show the direction (⇒) by induction on the length of the transition
⟨qinit,0⟩ ⇒∗ ⟨q, ν⟩.
If ⟨qinit,0⟩ = ⟨q, ν⟩, then the transition ⟨qinit,D(0)⟩ →∗ ⟨qinit,D(0)⟩ suffices.
If ⟨qinit,0⟩ ⇒∗ ⟨p, ν ′⟩ ⇒ ⟨q, ν⟩, then we have ⟨qinit,D(0)⟩ ⇒∗ ⟨p,d′⟩ by the induction
hypothesis.

The diagram
⟨p, ν ′⟩ → ⟨q, ν⟩

∼

⟨p,d′⟩
, Lemma 2.1, and Lemma 2.2 imply the following one

23

⟨qinit,0⟩ ⇒∗ ⟨p, ν ′⟩ ⇒ ⟨q, ν⟩

∼ ∼ ∼

⟨qinit,D(0)⟩ →∗ ⟨p,d′⟩ ⇒ ⟨q, ∃d⟩.

The direction (⇐) is also shown by induction on the length of ⟨qinit,D(0)⟩ →∗ ⟨q,d⟩
with Lemma 2.3.

This theorem states that the location reachability problem of timed automata can be
reduced to the state reachability problem of finite automata.

Corollary 2.1. Let A be a timed automaton and q be a location of A.
The location reachability problem ⟨qinit,0⟩ ⇒∗? ⟨q, ∃ν⟩ is PSPACE-complete.

Proof. Although this result was well-known in the theory of timed automata [AD94], we
show this because we will use the construction of this proof in Corollary 3.1 of Chapter 3.

The location reachability problem is in PSPACE. We focus on the size of the
digital automaton DA obtained from the timed automaton A. Since the size of digital
valuations D(X ,M) of DA is exponential with respect to the size of X and M, the size
of DA is exponential with respect to the size of A. The reachability problem of finite
automata (or finite graphs) can be solved in log-space for the number of states (or nodes):
hence, we can solve the corresponding reachability problem of DA is in PSPACE for the
size of A.

The location reachability problem is PSPACE-hard. We use the followingPSPACE-
complete problem [Koz77]:

Let M1, . . . ,Mk be k deterministic finite automata (DFA) with a common
input alphabet Σ, and let L(Mi) be the language of the DFA Mi.

The emptiness problem of the intersection language
∩k
i=1 L(Mi) =? ∅ isPSPACE-

complete.

We can translate each DFA Mi to a DFA Ni that satisfies the following conditions in
polynomial time for the size of Mi.

• The numbers of states of N1, N2, . . . , Nk are the same.

Therefore, there is some K such that |Qi| = K for any 1 ≤ i ≤ k.

We denote Ni by Ni = (Qi, q
i
init, F

i, δi) where Qi is a finite set of states, siinit is the
initial state, F i is the set of accepting states, and δi : Qi × Σ → Qi is the transition
function. We assume Qi =

{
qi1, q

i
2, . . . , q

i
K

}
.

To simplify our explanation, we assume k = 3. However, the following argument can
be easily generalized to any k. First, we consider the following (untimed) word:

σ1 s1 ♯ t1 ♯
′ u1 σ2 s2 ♯ t2 ♯

′ u2 · · · σn sn ♯ tn ♯
′ un σn+1 sn+1 ♯ tn+1 ♯

′ un+1

where it satisfies the following condition:

• si ∈ Q1, ti ∈ Q2, and ui ∈ Q3 for 1 ≤ i ≤ n+ 1;

• δ1(q1init, σ1) = s1, δ1(si, σi+1) = si+1 for i ∈ {1, . . . , n}, and sn+1 ∈ F 1.

• δ2(q2init, σ1) = t1, δ2(ti, σi+1) = ti+1 for i ∈ {1, . . . , n}, and tn+1 ∈ F 2.

• δ3(q3init, σ1) = u1, δ3(ui, σi+1) = ui+1 for i ∈ {1, . . . , n}, and un+1 ∈ F 3.

24

Let L be the set of words that satisfy the above condition. It is clear that L = ∅ ⇐⇒
L(N1)∩L(N2)∩L(N3) = ∅ and L is a regular language. We can construct a DFA M that
accepts L by product construction in exponential time for the size of N1, N2, and N3.

We construct a timed automaton A such that Untime(L(A)) = L in polynomial time
for the size of N1, N2, N3 by avoiding product construction where the homomorphism
Untime : (Σ× R≥0)∗ → Σ∗ is defined as follows:

Untime(⟨σ1, r1⟩⟨σ2, r2⟩ . . . ⟨σn, rn⟩) ≜ σ1σ2 . . . σn.

We require the following condition for each timed word τ ∈ L(A):

(1) Untime(τ) = σ1 s1 ♯1 t1 ♯
′
1 u1 · · · σn sn ♯n tn ♯

′
n un ∈ (Σ ·Q1 · ♯ ·Q2 · ♯′ ·Q3)∗.

• We do not require Untime(τ) ∈ L.

We write τ(α) to denote the time r in the timed word τ = · · · ⟨r, α⟩ · · · .

(2) τ(♯i)− τ(σi) = K, τ(♯′i)− τ(♯i) = K, and τ(σi+1)− τ(♯′i) = K.

(3a) τ(si)− τ(σi) = j if Q1 =
{
q11, q

1
2, . . . , q

1
K

}
and si = q1j .

(3b) δ1(q1init, σ1) = s1, δ1(si, σi+1) = si+1 for i ∈ {1, . . . , n}, and sn+1 ∈ F 1.

(4a) τ(ti)− τ(♯i) = j if Q2 =
{
q21, q

2
2, . . . , q

2
K

}
and ti = q2j .

(4b) δ2(q2init, σ1) = t1, δ2(ti, σi+1) = ti+1 for i ∈ {1, . . . , n}, and tn+1 ∈ F 2.

(5a) τ(ui)− τ(♯′i) = j if Q2 =
{
q31, q

3
2, . . . , q

3
K

}
and ui = q3j .

(5b) δ3(q3init, σ1) = u1, δ3(ui, σi+1) = ui+1 for i ∈ {1, . . . , n}, and un+1 ∈ F 3.

To check condition (1), for the general case k (k is the number of DFA), we need no
clocks but O(k)-states and O(poly(k, |Σ|,K))-edges.

To check the condition (2), we use three clocks x1, x2, and x3.

• When we read a symbol σi, we reset the clock x1. After that, when we read the
corresponding symbol ♯i, we check x1 ∈ [K : K].

• Similary, we use the clock x2 for the pair ♯i and ♯
′
i, and use the clock x3 for the pair

♯′i and σi+1.

Therefore, for the general case k, we need k clocks.
To see how we check the condition (3a) and (3b), let us consider the following timed

word:
τ = · · · σi si ♯i ti ♯

′
i ui σi+1 si+1 ♯i+1 ti+1 ♯

′
i ui+1 · · ·

where τ(♯i)− τ(σi) = K, τ(♯′i)− τ(♯i) = K, and τ(σi+1)− τ(♯′i) = K. We use a clock y to
ensure τ(si)− τ(σi) = j where q1j = si and clock y′ to restore si when we read the symbol
σi+1. To this end, we carry out the following steps:

1. When we read the symbol σi, we reset a clock y.

2. When we read the symbol si,

• we check whether or not τ(si)− τ(σi) = j by y ∈? [j : j]; and
• we reset the clock y′.

3. When we read the symbol σi+1, we restore the state si based on the following prop-
erties:

25

• The condition (2) implies the value of y′ is in {2K, 2K + 1, . . . , 3K − 1}.
• Furthermore, if y′ = 3K − ℓ, then si = q1ℓ holds.

Therefore, we can check whether or not si+1 = δ1(si, σi+1).
For the general case k (k is the number of DFA), the construction to check the con-

ditions corresponding to (3a)–(5b) is accomplished with O(k)-clocks, O(poly(k, |Σ|,K))-
states, and O(poly(k, |Σ|,K))-edges.

Following the above argument to avoid an exponential blowup, we obtain a timed
automaton A in polynomial time for the size of N1, N2, . . . , Nk. Therefore, the location
reachability problem of timed automata is PSPACE-complete.

Recently, Fearnley and Jurdziński showed the location reachability problem of two-
clocks timed automata is already PSPACE-complete [FJ15]. Laroussinie, Markey, and
Schnoebelen showed that location reachability problem of one-clock timed automata is
NLOGSPACE-complete [LMS04].

Regularity of Timed Automata Since the digital automaton DA obtained from a
timed automaton A faithfully simulates computations of A, we can show the regularity of
timed automata. The regularity of timed automata is that if we forget the time-stamps
from the language L(A) of a timed automaton A, then the untimed language is regular. To
state this formally, we consider the projection Untime : (Σ×R≥0)∗ → Σ∗ from timed words
to (untimed) words. This function was already used in the proof of Corollary 2.1. The
regularity of timed automata can be stated as: for any timed automaton A, Untime(L(A))
is regular. This is shown by the following theorem.

Theorem 2.2. Let A be a timed automaton and DA be the digital automaton cor-
responding to A. The untimed language Untime(L(A)) equals to the language of DA:
Untime(L(A)) = L(DA).

Proof. This is shown by Lemma 2.1, 2.2, and 2.3 because we preserve labels in these
lemmas.

First, we show that if wt ∈ L(A) then Untime(wt) ∈ L(DA). We assume the following:

wt = tw

(
⟨qinit,0⟩

δ1⇝ c1
τ1−→α1

c′1
δ2⇝ c2

τ2−→α2
c′2

δ3⇝ · · · τn−−→αn
⟨qf , ν⟩

)
.

It suffices to show Untime(wt) = α1α2 · · ·αn ∈ L(DA). Applying Lemma 2.1 and 2.2, we
have the following computation in DA:

⟨qinit,D(0)⟩
evolve−−−→ϵ s1

τ1−→α1
s′1

evolve−−−→ϵ s2
τ2−→α2

s′2
evolve−−−→ϵ · · · · · · τn−−→αn

⟨qF ,d⟩

where ci |= si and c′i |= s′i. Since qF ∈ F , we have α1α2 · · ·αn ∈ L(DA).
Next, we show that if w ∈ L(DA) then there is a timed word wt such that wt ∈ L(A)

and Untime(wt) = w. This is shown by the similar argument by using Lemma 2.3.

2.4 Backward Simulation and
Decidability of Configuration Reachability Problem

We consider the configuration reachability problem that decides whether or not a timed
automaton A can reach a designated configuration ⟨q, ν⟩ rather than a location:

⟨qinit,0⟩ ⇒∗? ⟨q, ν⟩.

26

As with the decidability proof of the location reachability problem, we reduce the
configuration reachability problem on timed automata to the configuration reachability
problem on digital automata.

We can show the following property based on the previous section.

Lemma 2.4.
⟨qinit,0⟩ ⇒∗ ⟨q, ν⟩ =⇒ ⟨qinit,D(0)⟩ →∗ ⟨q,D(ν)⟩.

Proof. This can be shown in the same way as the (=⇒)-part of Theorem 2.1.

However, we cannot show the following directly:

⟨qinit,D(0)⟩ →∗ ⟨q,D(ν)⟩ =⇒ ⟨qinit,0⟩ ⇒∗ ⟨q, ν⟩.

We will see why this does not hold in the following two subsections.

2.4.1 Redefine the Constant M

For the configuration reachability problem ⟨qinit,0⟩ ⇒∗ ⟨q, ν⟩, we need to redefine M
by involving constants in the target configuration ⟨q, ν⟩. Let us explain why we should
redefine M by considering the following timed automata:

q0 q1 q2 q3
x ∈? [2 : 2]

a

reset(x)

b

y ∈? (5 : ω)

c

We have M = 6 by the current definition:

M ≜ max{ i, j ∈ N : (i : j), [i : j], or (i : ω) appears in ∆}+ 1.

Let us consider the following instance of the configuration reachability problem:

⟨q0, {x 7→ 0.0; y 7→ 0.0}⟩ ⇒∗? ⟨q3, {x 7→ 10.0; y 7→ 11.0}⟩.

This does not hold because, for any configuration ⟨q3, ν⟩ that is reachable from ⟨q0, {x 7→ 0; y 7→ 0}⟩,
ν(y)− ν(x) ≥ 2 holds.

We translate the query to the following one of the digital automaton DA:

⟨q0, {(x, 0), (y, 0)}0⟩ →
∗
? ⟨q3, {(x,∞), (y,∞)}0⟩.

Although we cannot reach ⟨q3, {x 7→ 10.0; y 7→ 11.0}⟩, we can reach ⟨q3, {(x,M), (y,M)}0⟩
with the following witness:

⟨q0, {(x, 0), (y, 0)}0⟩
evolve−−−→ϵ ⟨q0, {(x, 2), (y, 2)}0⟩

x∈?[2:2]−−−−−→a

⟨q1, {(x, 2), (y, 2)}0⟩
evolve−−−→ϵ ⟨q1, {(x, 2), (y, 2)}0⟩

reset(y)−−−−→b
⟨q2, {(x, 0), (y, 2)}0⟩

evolve−−−→ϵ ⟨q2, {(x,∞), (y,∞)}0⟩
y∈?(5:ω)−−−−−→c ⟨q3, {(x,∞), (y,∞)}0⟩.

To overcome this problem, it suffices to take a sufficiently large M with respect to a
given instance of the configuration reachability problem. To formalize this, let us fix one
instance ⟨qinit,0⟩ ⇒∗? ⟨q, ν⟩. We use max(ν) to denote the maximum value of the real
numbers in a valuation ν defined as follows:

max(ν) ≜ max {ν(x) : x ∈ X} .

We take an upper-bound constant M ∈ N so that it satisfies the following:

M > max{ i, j : (i : j), [i : j], or (i : ω) appears in ∆} and M > max(ν).

Now we have the following query and it does not hold on the digital automaton DA:

⟨q0, {(x, 0), (y, 0)}0⟩ →
∗
? ⟨q3, {(x, 10), (y, 11)}0⟩.

27

2.4.2 Forward Simulation is not Enough

Again let us consider the following timed automaton:

q0 q1 q2 q3
x ∈? [2 : 2]

a

reset(x)

b

y ∈? (5 : ω)

c

and we consider the following reachability query:

⟨q0, {x 7→ 0.0; y 7→ 0.0}⟩ ⇒∗? ⟨q3, {x 7→ 5.0; y 7→ 7.5}⟩.

This holds due to the following witness:

⟨q0, {x 7→ 0.0; y 7→ 0.0}⟩ 2.0⇝ ⟨q0, {x 7→ 2.0; y 7→ 2.0}⟩ x∈?[2:2]−−−−−→a

⟨q1, {x 7→ 2.0; y 7→ 2.0}⟩ 0.5⇝ ⟨q1, {x 7→ 2.5; y 7→ 2.5}⟩ reset(x)−−−−→b
⟨q2, {x 7→ 0.0; y 7→ 2.5}⟩ 5.0⇝ ⟨q2, {x 7→ 5.0; y 7→ 7.5}⟩ y∈?(5:ω)−−−−−→c

⟨q3, {x 7→ 5.0; y 7→ 7.5}⟩.
We take M = 8 to satisfy the following:

M > max(A) = 5, M > max({x 7→ 5.0; y 7→ 7.5}) = 7.5.

We consider the corresponding query on the digital automaton:

⟨q0, {(x, 0), (y, 0)}0⟩ →
∗
? ⟨q3, {(x, 5)}0 {(y, 7)}⟩.

It can be easily checked that the query holds. Therefore, applying Theorem 2.1, we have
⟨qinit,0⟩ ⇒∗ ⟨q3, ν⟩ with ν |= {(x, 5)}0 {(y, 7)} on the timed automaton. Unfortunately,
this does not ensure ν = {x 7→ 5.0; y 7→ 7.5} and we cannot say the original query holds
on the timed automaton.

To deal with this problem, we show the following backward simulation property in this
section (Lemma 2.6):

⟨q, ν ′⟩

∼

⟨qinit,D(0)⟩ →∗ ⟨q,d′⟩
=⇒

⟨qinit,0⟩ ⇒∗ ⟨q, ν ′⟩

∼ ∼

⟨qinit,D(0)⟩ →∗ ⟨q,d′⟩.
It should be noted that there exists a unique valuation ν such that ν |= D(0), i.e., ν = 0.
We would like to show the following diagram to prove this theorem:

ν ′

|=

d ⊢∗ d′
=⇒

∃ν ≤ ν ′

|= |=

d ⊢∗ d′.
(#)

Unfortunately again, this diagram does not hold. Let us consider the following example:

{x 7→ 3.0; y 7→ 1.7}

|=

{}0 {(y, 1)} {(x, 1)} ⊢ {(x,∞)}0 {(y, 1)}
where M = 2. There is no valuation ν that satisfies the conditions because

• if ν |= {}0 {(y, 1)} {(x, 1)}, then 0 < ν(x)− ν(y) < 1;

• However, since ν ≤ ν ′, ν(x)− ν(y) = 1.3.

To avoid this problem and show Lemma 2.6, we introduce collapsed valuations that
are another abstraction of clock valuations. On collapsed valuations, we only abstract
(or collapse) the integral parts of clock valuations. Recall that, on digital valuations, we
abstract both the integral and fractional parts of clock valuations. We will show that the
above diagram (#) holds (Proposition 2.12) between collapsed and digital valuations and
show the backward simulation property (Lemma 2.6) based on the proposition.

28

2.4.3 Collapsed Valuations

Let A = (Q, qinit, F,Σ,X ,∆) be a timed automaton, ⟨qinit,0⟩ ⇒∗ ⟨q, ν⟩ be a configuration
reachability query, and M is the constant defined from A and ν.

Definition 2.6 (Collapsed domain). The set of collapsed real numbers C is defined as
follows:

C ≜
(
{0, 1, . . . ,M− 1} ∪ {∞}

)
× [0 : 1).

The collapsing function C : R≥0 → C is defined as follows:

C(r) ≜
{
(∞ , frac(r)) if r ≥ M,

(⌊r⌋, frac(r)) if r < M.

For a concrete valuation ν : X → R≥0, we define the collapsed valuation of ν, C(ν) as
follows:

C(ν)(x) ≜ C(ν(x)).

■
We write v.r to denote (v, r). For example, we write 2.6 and ∞.3 to denote the

collapsed values (2, 0.6) and (∞, 0.3), respectively. Moreover, ⌊v.r⌋ and frac(v.r) denote
v and r, respectively. We use Greek letters λ, . . . to denote a collapsed valuation.

The following basic properties are immediately shown by the above definition.

Proposition 2.11. Let ν1, ν2 : X → R≥0 be valuations. If C(ν1) = C(ν2),

Checking. ν1 |= x ∈ I iff ν2 |= x ∈ I for any interval I of the timed automaton A.

Assigning. C(ν1[x B r]) = C(ν2[x B r]) for any x ∈ X and r ∈ R≥0.

Evolving. C(ν1 + δ) = C(ν2 + δ) for any δ ∈ R≥0.

On the basis of Proposition 5.5, we define operations for collapsed valuations as follows.

Definition 2.7. Let ν and λ be concrete and collapsed valuations on X such that C(ν) = λ.

• For a constraint x ∈? I, we write λ |= x ∈ I if ν |= x ∈ I.

• For a real number r ∈ R≥0, λ[x B r] ≜ C(ν[x B r]).

• For a real number δ ∈ R≥0, λ+ δ ≜ C(ν + δ).

■
The above definition is well-defined because Proposition 5.5 ensures that the result does
not depend on the choice of a witness ν for λ.

We define a (quasi) ordering λ ≼ λ′ for collapsed valuations that corresponds to the
ordering ≤ on concrete valuations.

Definition 2.8. Let λ and λ′ be collapsed valuations. We write λ ≼ λ′ if there are two
concrete valuations ν and ν ′ such that ν ≤ ν ′, C(ν) = λ, and C(ν ′) = λ′. ■
This quasi-ordering is not antisymmetric because {x 7→ ∞.0} ≼ {x 7→ ∞.5} and {x 7→ ∞.5} ≼
{x 7→ ∞.0} but these are different valuations.

29

Collapsed Semantics. For our fixed timed automaton A = (Q, qinit, F,Σ,X ,∆), we
define the collapsed semantics of A as an infinite labeled transition system (Q × (X →
C),→,⇝) where

p
reset(x)−−−−→α q ∈ ∆

⟨p, λ⟩ reset(x)−−−−→α ⟨q, λ[x B 0]⟩,

p
x∈?I−−−→α q ∈ ∆ λ |= x ∈ I

⟨p, λ⟩ x∈?I−−−→α ⟨q, λ⟩,

δ ∈ R≥0

⟨q, λ⟩ δ⇝ ⟨q, λ+ δ⟩.

Relating the standard semantics and the collapsed semantics, we define a relation
between configurations of them as follows:

⟨q, ν⟩ ∼ ⟨p, λ⟩ def⇐⇒ q = p and C(ν) = λ.

The definitions of the collapsed semantics and the relation∼ leads to the following property
that states the operational semantics of timed automata is simulated by the collapsed
semantics, and vice versa:

Lemma 2.5.

(1) :
⟨p, ν⟩ δ⇝ ⟨p, ν ′⟩

∼

⟨p, λ⟩
=⇒

⟨p, ν⟩ δ⇝ ⟨p, ν ′⟩

∼ ∼

⟨p, λ⟩ δ⇝ ⟨p, ∃λ′⟩,

⟨p, ν⟩ τ−→α ⟨q, ν
′⟩

∼

⟨p, λ⟩
=⇒

⟨p, ν⟩ τ−→α ⟨q, ν ′⟩

∼ ∼

⟨p, λ⟩ τ−→α ⟨q,
∃λ′⟩.

(2) :

⟨p, ν⟩

∼

⟨p, λ⟩ δ⇝ ⟨p, λ′⟩
=⇒

⟨p, ν⟩ δ⇝ ⟨p, ∃ν ′⟩

∼ ∼

⟨p, λ⟩ δ⇝ ⟨p, λ′⟩,

⟨p, ν⟩

∼

⟨p, λ⟩ τ−→α ⟨q, λ
′⟩

=⇒
⟨p, ν⟩ τ−→α ⟨q,

∃ν ′⟩

∼ ∼

⟨p, λ⟩ τ−→α ⟨q, λ
′⟩.

Proof. This is immediate from the definition of the collapsed semantics.

We use the property between the collapsed semantics and digital automata that cor-
responds to the diagram (#) in Section 2.4.2. First, we define the realization relation
between collapsed and digital valuations.

Definition 2.9. Let λ : X → C be a collapsed valuation on X , and d = d0d1 . . . dn be a
digital valuation on X . We write λ |= d if the following hold:

• For all x ∈ X , (x, ⌊λ(x)⌋) ∈ d.

• For all x ∈ X , frac(λ(x)) = 0.0 iff x ∈ d0.

• frac(λ(x)) < frac(λ(y)) iff x ∈ di and y ∈ dj for some i < j.

■
Proposition 2.12. Let λ be a collapsed valuation and d be a digital valuation.

λ′

|=

d ⊢∗ d′
=⇒

∃λ ≤ λ′

|= |=

d ⊢∗ d′.

Proof. It suffices to show the following 1-step diagram holds:

λ′

|=

d ⊢ d′
=⇒

∃λ ≤ λ′

|= |=

d ⊢ d′.

30

To prove this, we reuse the ordering <1 and <3 which were defined as follows:

ν <1 ν
′ def⇐⇒

{
there is no clock x such that frac(ν(x)) = 0.0 and

ν ′ = ν + (1.0−max fract(ν)),

ν <3 ν
′ def⇐⇒

{
there is a clock x such that frac(ν(x)) = 0.0 and

ν ′ < ν + (1.0−max fract(ν))

where max fract(ν) denotes the maximal fractional part of a valuation ν:

max fract(ν) ≜ max {frac(ν(x)) : x ∈ X} .

In order to show this diagram, we proceed by analysis on d ⊢ d′.

Case d = {· · · }0 d1 . . . dn ⊢ d′ = {}0 d0 d1 . . . dn:
There is a valuation ν ′ such that ν ′ |= λ′ |= d′. Furthermore, there is a valuation ν

such that ν <3 ν
′. It suffices to show ν |= d and it is shown as follows:

• The following two condition is easily verified from ν ′ |= d′ and ν <3 ν
′:

– For a clock x ∈ X , frac(ν(x)) = 0.0 iff x ∈ d0.
– frac(ν(x)) < frac(ν(y)) iff x ∈ di and y ∈ dj for some i < j.

• Since ⌊ν ′(x)⌋ = ⌊ν(x)⌋ for any x ∈ X and ν ′ |= d′, the following conditions are easily
verified:

– ν(x) ≥ M iff (x,∞) ∈ d.

– If ν(x) < M, then (x, ⌊ν(x)⌋) ∈ d.

– If (x, k) ∈ d with k < M, then ⌊ν(x)⌋ = n.

Case d = {}0 d1 . . . dn−1dn ⊢ d′ = {· · · }0 d1 . . . dn−1:
There is a valuation ν ′ such that ν ′ |= λ′ |= d′. On the basis of ν ′, we define a valuation

θ′ as follows:

θ′(x) ≜

M if (x,M− 1) ∈ dn,
M+ 1 if (x,∞) ∈ dn,
ν ′(x) otherwise.

It can be easily verified that θ′ |= λ′ |= d′ and there is a valuation θ such that θ <1 θ
′.

It suffices to show θ |= d.
The following condition is easily verified from θ′ |= d and θ <1 θ

′:

• frac(θ(x)) < frac(θ(y)) iff x ∈ di and y ∈ dj for some i < j.

• frac(θ(x)) = 0.0 iff x ∈ {}0.

To show the other conditions, we proceed by case analysis for a clock x ∈ X .

Case x /∈ {· · · }0 of d′: For this case, θ′ |= d′ and θ <1 θ
′ imply ⌊θ(x)⌋ = ⌊θ′(x)⌋. There-

fore, the following condition hold from θ′ |= d′:

• θ(x) ≥ M iff (x,∞) ∈ d.

• If θ(x) < M, then (x, ⌊θ(x)⌋) ∈ d.

• If (x, k) ∈ d with k < M, then ⌊θ(x)⌋ = k.

31

Case x ∈ {· · · }0 of d′ (equivalently, x ∈ dn for d): For this case, d ⊢ d′ implies
k < M− 1 ∧ (x, k) ∈ d =⇒ (x, k + 1) ∈ d′,

(x,M− 1) ∈ d =⇒ (x,∞) ∈ d′,

(x,∞) ∈ d =⇒ (x,∞) ∈ d′.

Furthermore, by θ′ |= d′ and d ⊢ d′, the definition of θ′ leads to the following:

θ′(x) =

k + 1 if (x, k) ∈ dn with k < M− 1,

M if (x,M− 1) ∈ dn,
M+ 1 if (x,∞) ∈ dn.

We show that if (x, k) ∈ d with k ∈ {0, 1, . . . ,M− 1}, then ⌊θ(x)⌋ = k.

• If (x, k) ∈ d with k < M− 1, then θ′(x) = k+1 and θ <1 θ
′ implies ⌊θ(x)⌋ = k.

• If (x,M− 1) ∈ d, then θ′(x) = M. We have ⌊θ(x)⌋ = M− 1 from θ <1 θ
′.

We show that if (x,∞) ∈ d, then ⌊θ(x)⌋ ≥ M.

• Since θ′(x) = M+ 1, θ <1 θ
′ implies ⌊θ(x)⌋ = M.

We show that if θ(x) ≥ M, then (x,∞) ∈ d.

• θ <1 θ
′ implies θ′ ≥ M+ 1; thus the definition of θ′ implies (x,∞) ∈ d.

We show that if θ(x) < M, then (x, ⌊θ(x)⌋) ∈ d.

SubCase ⌊θ(x)⌋ = M− 1: θ <1 θ
′ implies θ′(x) = M and thus (x,M− 1) ∈ d.

SubCase ⌊θ(x)⌋ = k <M− 1: θ <1 θ
′ implies θ′(x) = k + 1 and thus (x, k) ∈ d.

Relating the collapsed semantics and the digital automaton, we define the following
relation:

⟨q, λ⟩ ∼ ⟨p,d⟩ def⇐⇒ q = p and λ |= d.

Lemma 2.6.

⟨q, λ′⟩

∼

⟨p,d⟩ τ−→α ⟨q,d
′⟩

=⇒
∃⟨p, λ⟩ τ−→α ⟨q, λ

′⟩

∼ ∼

⟨p,d⟩ τ−→α ⟨q,d
′⟩

or

∃⟨p, λ⟩ δ⇝ ⟨q, λ′⟩

∼ ∼

⟨p,d⟩ τ−→α ⟨q,d
′⟩.

Proof. We proceed by case analysis on ⟨p,d⟩ τ−→α ⟨q,d
′⟩.

Case ⟨p,d⟩ reset(x)−−−−−→α ⟨q,d[x B 0]⟩: This means that there is a rule p
reset(x)−−−−→α q ∈ ∆.

It is not difficult to find r ∈ R≥0 such that λ′[x B r] |= d from λ′ |= d[x B 0].
Therefore, we have the following:

⟨p, λ′[x B r]⟩ reset(x)−−−−→α ⟨q, λ′⟩

∼ ∼

⟨p,d⟩ reset(x)−−−−→α ⟨q,d[x B 0]⟩.

32

Case ⟨p,d⟩ x∈?I−−−→α ⟨q,d⟩: This means that there is a rule p
x∈?I−−−→α q ∈ ∆. Since λ′ |= d

and d |= x ∈? I, Proposition 2.6 implies λ′ |= x ∈? I and we have a transition ⟨p, λ′⟩ x∈?I−−−→α
⟨q, λ′⟩.

Case ⟨p,d⟩ evolve−−−→ϵ ⟨p,d′⟩ where d ⊢∗ d′:

The diagram
λ′

|=

d ⊢∗ d′
and Proposition 2.12 imply

∃λ ≤ λ′

|= |=

d ⊢∗ d′.

Therefore, we have a transition ⟨p, λ⟩ δ⇝ ⟨p, λ′⟩ where λ′ = λ+ δ.

2.4.4 Decidability of the Configuration Reachability Problem

Lemma 2.4, Lemma 2.5, and Lemma 2.6 immediately lead to the decidability of the con-
figuration reachability problem.

Theorem 2.3. The following two reachability queries are equivalent:

• On the timed automaton, ⟨qinit,0⟩ ⇒∗ ⟨q, ν⟩.

• On the digital automaton, ⟨qinit,D(0)⟩ →∗ ⟨q,D(ν)⟩.

This leads to the PSPACE-completenss of the configuration reachability problem of
timed automata.

Corollary 2.2. The configuration reachability problem of timed automata is PSPACE-
complete.

Proof. It can be easily shown that the configuration reachability problem of timed au-
tomata is in PSPACE because we can reduce the configuration reachability problem of a
timed automaton to the reachability problem of the corresponding digital automaton by
Theorem 2.3.

To show that the configuration reachability problem is PSPACE-hard, we show a linear-
time reduction from the location reachability problem into the configuration reachability
problem. Let A = (Q, qinit, F,Σ,X ,∆) be a timed automaton and ⟨qinit,0⟩ ⇒∗? ⟨q, ∃ν⟩ be a
query of the location reachability problem. We assume X = {x1, x2, . . . , xn} and construct
the following timed automaton:

B = (Q ∪ {s1, s2, . . . , sn} , qinit, F,Σ,X ,∆′)

where

∆′ = ∆ ∪
{
q

reset(x1)−−−−−→ϵ s1, s1
reset(x2)−−−−−→ϵ s2, . . . , sn−1

reset(xn)−−−−−→ϵ sn

}
.

Now it is easily verified that:

(∃ν. ⟨qinit,0⟩ ⇒∗ ⟨q, ν⟩) ⇐⇒ ⟨qinit,0⟩ ⇒∗ ⟨sn,0⟩.

Therefore, the configuration reachability problem of timed automata is PSPACE-hard.

33

It has been shown that the decidability of the configuration reachability problem in
general form [CJ99, Dim02, QSW17]. They showed that the binary reachability relation
of two locations q and q′, {(ν, ν ′) : (q, ν)→∗ (q′, ν ′)}, is effectively definable in the additive
theory of real numbers [CJ99, QSW17] or representable by a class of automata called 2n-
automata [Dim02]. On the basis of those characterizations, they showed the decidability
of the general configuration reachability problem of timed automata: we can decide if
⟨q, ν⟩ →∗ ⟨q′, ν ′⟩ for given configurations ⟨q, ν⟩ and ⟨q′, ν ′⟩. The known time-complexity
of the binary configuration reachability problem is EXPTIME-hard.

With respect to their result, our result states that the configuration reachability prob-
lem is a tractable case of the binary configuration reachability problem; indeed, the con-
figuration reachability problem is PSPACE-complete with respect to the size of an input
timed automaton and query. Especially, the backward simulation on timed automata is
important to show that the configuration reachability problem is in PSPACE.

2.5 Extensions of Timed Automata

In this section, we review two extensions of timed automata, timed automata with diago-
nal constraints [BPDG98, BLR05] and updatable timed automata [BDFP00a, BDFP00b,
BDFP04]. Each class is an extension of timed automata with new constraints and oper-
ations; however, these extensions are as expressive as timed automata. Furthermore, the
location and configuration reachability problems of them are decidable. We also see an
extension, updatable timed automata with diagonal constraints. Unlike the two exten-
sions, this class is more expressive than timed automata and unfortunately its location
and configuration reachability problems are undecidable.

2.5.1 Timed Automata with Diagonal Constraints

We extend timed automata by diagonal constraints that are constraints of the following
form:

x− y ∈? I

where x and y are clocks and I is an interval. By the constraint x− y ∈? I, we can check
whether or not the difference of the values of x and y is in I.

Let ν : X → R≥0 be a valuation, x and y are clocks, and I be an interval. We write
ν |= x− y ∈ I if ν(x)− ν(y) ∈ I.

A timed automaton with diagonal constraints A is a 6-tuple A = (Q, qinit, F,Σ,X ,∆)
where all component except ∆ is the same as timed automata and ∆ ⊆ Q×Σϵ×Actdiag×Q.
Actdiag is the set of actions of timed automata defined as the following grammar:

Actdiag ::= reset(x) | x ∈? I | x− y ∈? I.

The operational semantics of timed automata with diagonal constraints is defined in

the same way as timed automata except the transition rule p
x−y∈?I−−−−−→α q. The meaning of

the rule p
x−y∈?I−−−−−→α q is defined as follows:

p
x−y∈?I−−−−−→α q ∈ ∆ ν |= x− y ∈ I

⟨p, ν⟩ x−y∈?I−−−−−→α ⟨q, ν⟩.

It is the well-known result that adding diagonal constraints to timed automata does
not enlarge the language class.

34

Theorem 2.4 ([BPDG98]). Let A be a timed automaton with diagonal constraints. There
is a timed automaton B without diagonal constraints that recognizes the same language
as A: i.e., L(A) = L(B).

Proof. Let A = (Q, qinit, F,Σ,X ,∆) and ∁1 − ∁2 ∈? J be a diagonal constraint in A. By
removing transition rules with the diagonal constraint ∁1 − ∁2 ∈? J , we construct a timed
automaton B = (Q× {tt,ff} , ⟨qinit, tinit⟩, F × {tt,ff} ,Σ,X ,∆′) where

• tinit = tt if 0.0 ∈ J and tinit = ff if 0.0 /∈ J ,

• L(A) = L(B),

• The rules with a diagonal constraint in B is a proper subset of those in A: formally,{
q1

x−y∈?I−−−−−→α q2 ∈ ∆′
}
⊊

{
q1

x−y∈?I−−−−−→α q2 ∈ ∆
}
.

We define a relation ∼ between configurations of A and B as follows

⟨p, ν⟩ ∼ ⟨⟨q, t⟩, µ⟩ def⇐⇒ p = q and ν = µ and ν(∁1)− ν(∁2) ∈ J ⇐⇒ t = tt.

Therefore, ⟨q, ν⟩ ∼ ⟨⟨q, t⟩, ν⟩ holds if the tag t reflects whether ν(∁1)− ν(∁2) ∈ J or not.
For timed transition, the following holds:

⟨q, ν⟩ ∼ ⟨⟨q, t⟩, ν⟩ =⇒ ∀δ ∈ R≥0.⟨q, ν + δ⟩ ∼ ⟨⟨q, t⟩, ν + δ⟩.

This states that the relation ∼ is compatible with timed transitions.
For discrete transitions, on the basis of the relation ∼, we define the set of transition

rules ∆′ of B as follows:

• If q1
x∈?I−−−→α q2 ∈ ∆, then ⟨q1, t⟩

x∈?I−−−→α ⟨q2, t⟩ ∈ ∆′.

• If q1
x−y∈?I−−−−−→α q2 ∈ ∆,

x− y ∈? I ̸≡ ∁1 − ∁2 ∈? J
⟨q1, t⟩

x−y∈?I−−−−−→α ⟨q2, t⟩ ∈ ∆′,

x− y ∈? I ≡ ∁1 − ∁2 ∈? J

⟨q1, tt⟩
∁1∈?[0:ω)−−−−−−→α ⟨q2, tt⟩ ∈ ∆′.

(Note that the checking ∁1 ∈? [0 : ω) always holds.)

• If q1
reset(∁1)−−−−−→α q2 ∈ ∆, then

J = [0 : 0]

⟨q1, t⟩
reset(∁1)−−−−−→α ⟨q2, tt⟩ ∈ ∆′,

J ̸= [0 : 0]

⟨q1, t⟩
reset(∁1)−−−−−→α ⟨q2,ff⟩ ∈ ∆′.

• If q1
reset(∁2)−−−−−→α q2 ∈ ∆, then

⟨q1, t⟩
reset(∁2) # ∁1 ̸∈? J−−−−−−−−−−−→α ⟨q2,ff⟩, ⟨q1, t⟩

reset(∁2) # ∁1 ∈? J−−−−−−−−−−−→α ⟨q2, tt⟩ ∈ ∆′.

• If q1
reset(x)−−−−→α q2 ∈ ∆ and x /∈

{
∁1, ∁2

}
, then ⟨q1, t⟩

reset(x)−−−−→α ⟨q2, t⟩ ∈ ∆′.

35

On the definition, we have the following diagram:

(1)

⟨q, ν⟩ τ−→α ⟨q′, ν ′⟩

∼

⟨⟨q, t⟩, ν⟩
=⇒

⟨q, ν⟩ τ−→α ⟨q′, ν ′⟩

∼ ∼

⟨⟨q, t⟩, ν⟩ τ ′−→α ⟨⟨q′, t′⟩, ν ′⟩,

(2)

⟨q, ν⟩

∼

⟨⟨q, t⟩, ν⟩ τ−→α ⟨⟨q′, t′⟩, ν ′⟩
=⇒

⟨q, ν⟩ τ ′−→α ⟨q′, ν ′⟩

∼ ∼

⟨⟨q, t⟩, ν⟩ τ−→α ⟨⟨q′, t′⟩, ν ′⟩.

Therefore, we have L(A) = L(B). By repeatedly applying this construction to the timed
automaton A, we finally obtain a timed automaton C without diagonal constraints such
that L(A) = L(C).

2.5.2 Updatable Timed Automata

Updatable timed automata (UTA) are an extension of timed automata that allow to
update clocks by using intervals [BDFP00a, BDFP00b, BDFP04].

An UTA A is a 6-tuple A = (Q, qinit, F,Σ,X ,∆) where all component except ∆ is the
same as timed automata and ∆ ⊆ Q × Σϵ × Actupd × Q. Actupd is the set of actions of
updatable timed automata defined as the following grammar:

Actupd ::= reset(x) | x ∈? I | x← I.

The operational semantics of UTA is defined in the same way as that of timed automata

except the transition rule p
x←I−−−→α q. The meaning of the rule p

x←I−−−→α q is defined as follows:

p
x←I−−−→α q ∈ ∆ r ∈ I

⟨p, ν⟩ x←I−−−→α ⟨q, ν[x B r]⟩.

It is the well-known result that adding update operations to timed automata does not
enlarge the language class.

Theorem 2.5 ([BDFP00b, BDFP04]). Let A be an UTA. There is a timed automaton B
without update operations that recognizes the same language as A: i.e., L(A) = L(B).

Proof. Let A = (Q, qinit, F,Σ,X ,∆) and we assume A is normalized by Proposition 2.1.

Step1. By the same argument of Proposition 2.1, we can assume the following on A:

• If p
x←I−−−→α q ∈ ∆, we have one of I = (k : k + 1), I = [k : k], or I = (k : ω).

Furthermore, we can remove transition rules of the form p
x←(k:ω)−−−−−→α q as follows:

• Let H be a natural number that is larger than any constant appearing in a constraint
of A:

H >

{
k : p

x∈?(k:k+1)−−−−−−−→α q ∈ ∆

}
∪
{
k : p

x∈?[k:k]−−−−−→α q ∈ ∆

}
∪
{
k : p

x∈?(k:ω)−−−−−→α q ∈ ∆

}
.

36

• We replace any transition rule of the form p
x←(k:ω)−−−−−→α q by the following rules:

p
x←(k:k+1)−−−−−−−→α q, p

x←[k+1:k+1]−−−−−−−−→α q, p
x←(k+1:k+2)−−−−−−−−−→α q, . . . , p

x←(H−1:H)−−−−−−−−→α q, p
x←[H:H]−−−−−−→α q.

Clearly, this modification does not change the language of A.

Now we call p
x←[k:k]−−−−−→α q a transition with deterministic update and p

x←(k:k+1)−−−−−−−→α q a

transition with nondeterministic update.

Step2. First, we remove all deterministic update from the UTA A and construct the
following UTA:

B = (Q× (X → {0, 1, . . . ,K}), (qinit,0), F × (X → {0, 1, . . . ,K}),Σ,X ,∆′)

where K = max

{
k : p

x←[k:k]−−−−−→α q ∈ ∆

}
.

We define the following relation ∼ to relate configurations of A and B:

⟨q, ν⟩ ∼ ⟨(q, f), µ⟩ def⇐⇒ ∀x ∈ X . ν(x) = µ(x) + f(x).

On the basis of this relation, we define ∆′ as follows:

• If p
x←[k:k]−−−−−→α q ∈ ∆, then (p, f)

reset(x)−−−−→α (q, f [x B k]) ∈ ∆′.

• If p
x←(k:k+1)−−−−−−−→α q ∈ ∆, then (p, f)

x←(0:1)−−−−−→α (q, f [x B k]) ∈ ∆′.

• If p
reset(x)−−−−→α q ∈ ∆, then (p, f)

reset(x)−−−−→α (q, f [x B 0]) ∈ ∆′.

• If p
x∈? I−−−→α q ∈ ∆, then (p, f)

x∈? I⊖f(x)−−−−−−−→α (q, f) ∈ ∆′ where

(i : j)⊖ k ≜ (i− k : j − k), [i : j]⊖ k ≜ [i− k : j − k], (i : ω)⊖ k ≜ (i− k : ω).

It should be noted that r + k ∈ I ⇐⇒ r ∈ I ⊖ k for an interval I, r ∈ R≥0, and
k ∈ N.

Clearly, the following diagram hold; therefore, L(A) = L(B):

⟨p, ν⟩ τ−→α ⟨q, ν ′⟩

∼ ∼

⟨(p, f), µ⟩ τ ′−→α ∃⟨(q, f ′), µ′⟩,

⟨p, ν⟩ τ−→α ∃⟨q, ν ′⟩

∼ ∼

⟨(p, f), µ⟩ τ ′−→α ⟨(q, f ′), µ′⟩,

⟨p, ν⟩ δ⇝ ⟨p, ν ′⟩

∼ ∼

⟨(p, f), µ⟩ δ⇝ ∃⟨(p, f), µ′⟩,

⟨p, ν⟩ δ⇝ ∃⟨p, ν ′⟩

∼ ∼

⟨(p, f), µ⟩ δ⇝ ⟨(p, f), µ′⟩.

Note that the above construction also removes nondeterministic updates except tran-

sitions of the form p
x←(0:1)−−−−−→α q.

37

Step3. Next, we remove a transition rule with nondeterministic update. We fix an
update ∁ ← (0 : 1) and construct the following UTA to remove transition rules with the
update ∁← (0 : 1):

B = (Q ∪
{
q(0:1), q(0:1) : q ∈ Q

}
, qinit, F ∪

{
q(0:1) : q ∈ F

}
, Σ, X ,∆′).

We define the following relation ∼ to relate configurations of A and B:

⟨q, ν⟩ ∼ ⟨q, µ⟩ ⇐⇒ ν = µ,
⟨q, ν⟩ ∼ ⟨q(0:1), µ⟩ ⇐⇒ ν ↾ (X \

{
∁
}
) = µ ↾ (X \

{
∁
}
) ∧ 0 ≤ µ(∁) < ν(∁) < 1,

⟨q, ν⟩ ∼ ⟨q(0:1), µ⟩ ⇐⇒ ν ↾ (X \
{
∁
}
) = µ ↾ (X \

{
∁
}
) ∧ 0 ≤ µ(∁) < ν(∁) < 1.

For each location of the form q(0:1), we have the following two transition rules:

q(0:1)
∁∈?[0:1)−−−−−→ϵ q(0:1), q(0:1)

∁∈?(0:1) # ∁←[1:1]−−−−−−−−−−−→ϵ q ∈ ∆′.

A location q(0:1) is used to nondeterministically update the clock ∁ by ∁← [1 : 1].
We define the set of transition rules ∆′ as follows:

• If p
∁←(0:1)−−−−−→α q ∈ ∆, then p

reset(∁)−−−−→α q(0:1), p(0:1)
reset(∁)−−−−→α q(0:1) ∈ ∆′.

• If p
x←(0:1)−−−−−→α q ∈ ∆ with x ̸= ∁, then p x←(0:1)−−−−−→α q, p(0:1)

∁∈?[0:1) # x←(0:1)−−−−−−−−−−−→α q(0:1) ∈ ∆′.

• If p
reset(∁)−−−−→α q ∈ ∆, then p

reset(∁)−−−−→α q, p(0:1)
reset(∁)−−−−→α q ∈ ∆′.

• If p
reset(x)−−−−→α q ∈ ∆ with x ̸= ∁, then

p
reset(x)−−−−→α q, p(0:1)

∁∈?[0:1) # reset(x)−−−−−−−−−−−→α q(0:1) ∈ ∆′.

• If p
∁∈? I−−−→α q ∈ ∆, then

p
∁∈?I−−−→α q, I = (0 : 1) =⇒ p(0:1)

∁∈?[0:1)−−−−−→α q(0:1) ∈ ∆′.

• If p
x∈? I−−−→α q ∈ ∆ with x ̸= ∁, then

p
x∈?I−−−→α q, p(0:1)

∁∈?[0:1)# x∈?I−−−−−−−−−→α q(0:1) ∈ ∆′.

We show L(A) ⊆ L(B). Each discrete transition ⟨p, ν⟩ τ−→α ⟨p
′, ν ′⟩ of UTA A can be

simulated by a discrete transition of the UTA B as follows:

⟨p, ν⟩ τ−→α ⟨p′, ν ′⟩

∼

⟨s, µ⟩
=⇒

⟨p, ν⟩ τ−→α ⟨p′, ν ′⟩

∼ ∼

⟨s, µ⟩ τ ′−→α ⟨s′, µ′⟩

where s ∈
{
q, q(0:1) : q ∈ Q

}
and s′ ∈

{
q, q(0:1) : q ∈ Q

}
.

38

To state the similar property for timed transitions, we use the following notation:

⟨p(0:1), ν⟩
δ7→ ⟨p(0:1), ν + δ⟩

def⇐⇒ ∃δ1, δ2. δ = δ1 + δ2 ∧ ⟨p(0:1), ν⟩
δ1⇝ ⟨p(0:1), ν + δ1⟩

∁∈?[0:1)−−−−−→ϵ ⟨p(0:1), ν + δ1⟩
δ2⇝ ⟨p(0:1), ν + δ⟩,

⟨p(0:1), ν⟩
δ7→ ⟨p, µ⟩

def⇐⇒ ∃δ1, δ2. δ = δ1 + δ2 ∧ ⟨p(0:1), ν⟩
δ1⇝ ⟨p(0:1), ν + δ1⟩

∁∈?(0:1) # ∁←[1:1]−−−−−−−−−−−→ϵ ⟨p, ν ′⟩ δ2⇝ ⟨p, µ⟩.

Each timed transition of A can be simulated by a compound transition of B as follows:

(1) :
⟨p, ν⟩ δ⇝ ⟨p, ν ′⟩

∼

⟨p, µ⟩
=⇒

⟨p, ν⟩ δ⇝ ⟨p, ν ′⟩

∼ ∼

⟨p, µ⟩ δ⇝ ⟨p, µ′⟩.

(2) : ν(∁) + δ < 1 ∧
⟨p, ν⟩ δ⇝ ⟨p, ν ′⟩

∼

⟨p(0:1), µ⟩
=⇒

⟨p, ν⟩ δ⇝ ⟨p, ν ′⟩

∼ ∼

⟨p(0:1), µ⟩
δ7→ ⟨p(0:1), µ′⟩.

(3) : ν(∁) + δ ≥ 1 ∧
⟨p, ν⟩ δ⇝ ⟨p, ν ′⟩

∼
⟨p(0:1), µ⟩

=⇒
⟨p, ν⟩ δ⇝ ⟨p, ν ′⟩

∼ ∼

⟨p(0:1), µ⟩
δ7→ ⟨p, µ′⟩.

Therefore, L(A) ⊆ L(B).
Conversely, we show L(B) ⊆ L(A). It should be noted that for a timed word wt ∈ L(B)

there is an acceptable run π of B of the following form:

π = ⟨qinit,0⟩
δ1Z⇒ ⟨s1, µ1⟩ τ1−→α1

⟨s′1, µ′1⟩
δ2Z⇒ ⟨s2, µ2⟩ τ2−→α2

⟨s′2, µ′2⟩
δ3Z⇒ · · · δnZ⇒ ⟨sn, νn⟩ τn−−→αn

⟨s′n, ν ′n⟩

where tw(π) = wt,
δiZ⇒ =

δi⇝ or
δiZ⇒ =

δi7→, si ∈
{
q, q(0:1) : q ∈ Q

}
, and s′i ∈

{
q, q(0:1) : q ∈ Q

}
.

The UTA B can simulate UTA A by the following diagrams:

⟨p′, ν ′⟩

∼

⟨s, µ⟩ τ−→α ⟨s′, µ′⟩
=⇒

⟨p, ν⟩ τ ′−→α ⟨p′, ν ′⟩

∼ ∼

⟨s, µ⟩ τ−→α ⟨s′, µ′⟩,

⟨p, ν ′⟩

∼

⟨p, µ⟩ δ⇝ ⟨p, µ′⟩
=⇒

⟨p, ν⟩ δ⇝ ⟨p, ν ′⟩

∼ ∼

⟨p, µ⟩ δ⇝ ⟨p, µ′⟩,

⟨p, ν ′⟩

∼

⟨p(0:1), µ⟩
δ7→ ⟨p(0:1), µ′⟩

=⇒
⟨p, ν⟩ δ⇝ ⟨p, ν ′⟩

∼ ∼

⟨p(0:1), µ⟩
δ7→ ⟨p(0:1), µ′⟩,

⟨p, ν ′⟩

∼

⟨p(0:1), µ⟩
δ7→ ⟨p, µ′⟩.

=⇒
⟨p, ν⟩ δ⇝ ⟨p, ν ′⟩

∼ ∼

⟨p(0:1), µ⟩
δ7→ ⟨p, µ′⟩.

Combining these diagrams, we have L(B) ⊆ L(A); thus L(A) = L(B).

39

Step 4. After Step 3, we obtain an updatable timed automaton where if it has a tran-

sition p
x←I−−−→α q, then I = [1 : 1]. By taking Step 2 again, we can remove such transition

without introducing transitions of the form p′
x←(0:1)−−−−−→α q′. Therefore, we finally obtain

a timed automaton without any updatable operations that is equivalent to the original
updatable timed automaton A.

Undecidability of Updatable Timed Automata with Diagonal Constraints.
As we have seen, adding diagonal constraints or update operations does not enlarge the

language class of timed automata. We consider updatable timed automata with diagonal
constraints (UTA with diagonal constraints).

An UTA with diagonal constraints A is a 6-tuple A = (Q, qinit, F,Σ,X ,∆) where
∆ ⊆ Q × Σϵ × Actupd&diag × Q. Actupd&diag is the set of actions of updatable timed
automata defined as the following grammar:

Actupd&diag ::= reset(x) | x ∈? I | x← I | x− y ∈? I.

The operational semantics of UTA with diagonal constraints is defined in the same
way as updatable timed automata and timed automata with diagonal constraints. Unlike
updatable timed automata and timed automata with diagonal constraints, the class is
more expressive than timed automata. It is formalized by the following result.

Theorem 2.6 ([BDFP00a, BDFP04]). The location (and configuration) reachability prob-
lem of updatable timed automata with diagonal constraints is undecidable.

Proof. This theorem was shown by encoding Minsky’s two counter machines into the
class of timed automata. Since two counter machines are Turing-complete [Min61, Min67,
HU79], we can reduce the undecidable decision problem, the halting problem of Turing
machines, into the location reachability problem.

40

Chapter 3

Timed Pushdown Automata

In this chapter, as a preliminary to Chapter 4 and 5, we review the models of computation,
pushdown automata, pushdown timed automata (PTA) of Bouajjani et al. [BER94], dense-
timed pushdown automata (DTPDA) of Abdulla et al [AAS12a], and timed pushdown
automata (TPDA) of Clemente and Lasota [CL15a]. Although this chapter will review
existing results of classes of timed pushdown automata, we show a new result that the
reachability problem of PTA is already EXPTIME-hard. This EXPTIME-hardness refines
the known result of Abdulla et al. that the reachability problem of DTPDA is EXPTIME-
complete since DTPDA can easily simulate PTA but not vice versa.

The contents of this section (the relationship of three classes of timed pushdown au-
tomata, PTA, DTPDA, and TPDA) is summarized as follows:

Structure: Roughly speaking, we can see the three classes as follows:

PTA = timed automata + stack,
DTPDA = timed automata + timed stack,
TPDA = DTPDA+ diagonal constraints for global and local clocks.

Expressiveness: The three classes are equally expressive: PTA = DTPDA = TPDA.

Decidability: The reachability problem of the three classes are EXPTIME-complete.

3.1 Pushdown Automata

Pushdown automata are an extension of finite automata with a single stack. Formally, a
pushdown automaton A is a 7-tuple A = (Q, qinit, F,Σ,Γ, Z,∆) where

• Q is a finite set of control locations, qinit is the initial location, and F ⊆ Q is a set
of accepting locations;

• Σ is a finite input alphabet;

• Γ is a finite stack alphabet and Z ∈ Γ is the initial stack symbol;

• ∆ ⊆ Q× Σϵ × Γ× Γ∗ ×Q is a finite set of transition rules.

– To denote a transition rule ⟨p, α, γ, w, q⟩ ∈ ∆, we write p
γ/w
↪−−→α q.

The operational semantics of the pushdown automaton A is defined as an infinite
labeled transition system TA = (Q × Γ∗,⇒) where the set of transitions ⇒ is defined as
follows:

p
γ/w
↪−−→α q ∈ ∆ w′ ∈ Γ∗

⟨p, w′γ⟩ α
=⇒ ⟨q, w′w⟩.

41

A state of the infinite transition system TA (or a configuration of the pushdown automaton
A) is a pair ⟨q, w⟩ of a location q ∈ Q and stack w ∈ Γ∗. A transition ⟨p, w′γ⟩ ⇒ ⟨q, w′w⟩
means that we pop the stack top symbol γ and then push a sequence of symbols w.

We define the language L(A) of the pushdown automaton A as follows:

L(A) ≜
{
α1α2 · · ·αn : ⟨qinit, Z⟩

α1=⇒ c1
α2=⇒ · · · αn=⇒ ⟨qF , w⟩, qF ∈ F

}
.

We consider the following three decision problems on pushdown automata:

Emptiness Problem. The emptiness problem of pushdown automata decides whether
or not L(A) = ∅.

Location Reachability Problem. For a given location q, the location reachability prob-
lem of pushdown automata ⟨qinit, Z⟩ ⇒∗? ⟨q, ∃w⟩ decides whether or not we can reach
a configuration ⟨q, w⟩ with some stack w from the initial configuration ⟨qinit, Z⟩.

Configuration Reachability Problem. For a given configuration ⟨q, w⟩, the configura-
tion reachability problem of pushdown automata ⟨qinit, Z⟩ ⇒∗? ⟨q, w⟩ decides whether
or not we can reach the configuration ⟨q, w⟩ from the initial configuration ⟨qinit, Z⟩.

It is a well-known result that these three decision problems can be solved in polynomial
time for the size of a given input pushdown automaton (and a given configuration).

Theorem 3.1 ([BEM97, FWW97]). The emptiness and location reachability problems
can be solved in polynomial time with respect to the size of an input pushdown automaton.

Theorem 3.2 ([BEM97, FWW97]). The configuration reachability problem ⟨qinit, Z⟩ ⇒∗?
⟨q, w⟩ can be solved in polynomial time with respect to the size of an input pushdown
automaton and the length of w.

3.2 Nonstandard Formulation of Pushdown Automata

We give a nonstandard formulation of pushdown automata. On this formulation, a push-
down automaton B is a 6-tuple B = (Q, qinit, F,Σ,Γ,∆) without the initial stack symbol
where each component is the same as that of the standard formulation except ∆:

• ∆ ⊆ Q × Σϵ × ActPDA × Q is a finite set of transition rules. ActPDA is the set of
actions for pushdown automata that is defined by the following grammar:

ActPDA ::= push(γ) | pop(γ) | nop

where γ ∈ Γ. To denote a transition rule ⟨p, α, τ, q⟩ ∈ ∆, we write p
τ−→α q.

We call pushdown automata of the nonstandard formulation nonstandard pushdown
automata. The operational semantics of a nonstandard pushdown automaton is defined
as an infinite labeled transition system TB = (Q× Γ∗,→). The set of labeled transitions
→ is defined as follows:

p
push(γ)−−−−→α q ∈ ∆

⟨p, w⟩ push(γ)−−−−→α ⟨q, wγ⟩,

p
pop(γ)−−−−→α q ∈ ∆

⟨p, wγ⟩ pop(γ)−−−−→α ⟨q, w⟩,

p
nop−−→α q ∈ ∆

⟨p, w⟩ nop−−→α ⟨q, w⟩.

We also define the language L(B) of a nonstandard pushdown automaton:

L(B) ≜
{
α1α2 · · ·αn : ⟨qinit, ϵ⟩

τ1−→α1
c1

τ2−→α2
· · · τn−−→αn

⟨qF , w⟩, qF ∈ F
}
.

The initial configuration is the pair of the initial location qinit and the empty stack.
The standard and nonstandard pushdown automata are equally expressive.

42

Lemma 3.1. Let A be a pushdown automaton. There is a nonstandard pushdown au-
tomaton B such that L(A) = L(B).

Conversely, for a nonstandard pushdown automaton B′, there is a pushdown automa-
ton A′ such that L(A′) = L(B′).

Proof. We extend nonstandard pushdown automata by the following transition rule:

p
τ1 # τ2−−−−→α q.

This rule is intended to perform two actions at a single transition; therefore, the semantics
of this rule is defined as follows:

⟨p, w⟩ τ1−→α ⟨p
′, w′′⟩ ⟨p′, w′′⟩ τ2−→ϵ ⟨q, w

′⟩ (p′ is a fresh location)

⟨p, w⟩ τ1 # τ2−−−−→α ⟨q, w′⟩

We also use more general forms like p
τ1 # τ2 # ··· # τn−−−−−−−−→α q. It is clear that adding this transition

rules does not enlarge the language class of nonstandard pushdown automata.
Let A = (Q, qinit, F,Σ,Γ, Z,∆). From the pushdown automaton A, we construct the

following nonstandard pushdown automaton B:

B = (Q ∪
{
q′init

}
, q′init, F,Σ,Γ,∆

′)

where ∆′ is defined as follows:

q′init
push(Z)−−−−−→ϵ qinit ∈ ∆′,

p
γ/ϵ
↪−−→α q ∈ ∆

p
pop(γ)−−−−→α q ∈ ∆′,

p
γ/γ1γ2...γn
↪−−−−−−−→α q ∈ ∆ n ≥ 1 γi ∈ Γ

p
pop(γ) # push(γ1) # push(γ2) # ··· # push(γn)−−−−−−−−−−−−−−−−−−−−−−−−−−→α q ∈ ∆′,

It is easily verified that L(A) = L(B) from this construction.

From nonstandard formulation to standard formulation LetB′ = (Q, qinit, F,Σ,Γ,∆).
We construct the following pushdown automaton A′:

A′ = (Q, qinit, F,Σ,Γ ∪ {Z} , Z,∆′)

where ∆′ is defined as follows:

p
push(γ)−−−−→α q ∈ ∆ γ′ ∈ Γ ∪ {Z}

p
γ′/γ′γ
↪−−−−→α q ∈ ∆′,

p
pop(γ)−−−−→α q ∈ ∆

p
γ/ϵ
↪−−→α q ∈ ∆′,

p
nop−−→α q ∈ ∆ γ ∈ Γ

p
γ/γ
↪−−→α q ∈ ∆′,

To show L(A′) = L(B′), we define a relation ∼ between configurations of A′ and B′:

⟨q, Zw⟩ ∼ ⟨q, w⟩.

It can be easily verified that this relation forms a bisimulation betweenA′ andB′; therefore,
L(A′) = L(B′).

43

3.3 Pushdown Timed Automata

Bouajjani, Echahed, and Robbana introduced pushdown timed automata (PTA) by extend-
ing timed automata with a single stack [BER94]. Formally, a pushdown timed automaton
A is a 7-tuple A = (Q, qinit, F,Σ,Γ,X ,∆) where

• Q is a finite set of control locations, qinit ∈ Q is the initial location, F ⊆ Q is a set
of accepting locations;

• Σ is a finite input alphabet; Γ is a finite stack alphabet;

• X is a finite set of clocks;

• ∆ ⊆ Q× Σϵ ×ActPTA ×Q is a finite set of transition rules.

– To denote a transition rule ⟨p, α, τ, q⟩ ∈ ∆, we write p
τ−→α q.

ActPTA is the set of actions of pushdown timed automata defined by the following gram-
mar:

ActPTA ::= x ∈? I | reset(x) | push(γ) | pop(γ) | nop.

The transition rules x ∈? I and reset(x) come from timed automata and push(γ), pop(γ),
and nop come from pushdown automata (of the nonstandard formulation).

The operational semantics of the PTA A is defined as an infinite labeled transition
system TA = (Q × (X → R≥0) × Γ∗,→,⇝) where the set of discrete transitions → is
defined as follows:

p
x∈?I−−−→α q ∈ ∆ ν |= x ∈ I

⟨p, ν, w⟩ x∈?I−−−→α ⟨q, ν, w⟩,

p
reset(x)−−−−→α q ∈ ∆

⟨p, ν, w⟩ reset(x)−−−−→α ⟨q, ν[x B 0], w⟩,

p
push(γ)−−−−→α q ∈ ∆

⟨p, ν, w⟩ push(γ)−−−−→α ⟨q, ν, wγ⟩,

p
pop(γ)−−−−→α q ∈ ∆

⟨p, ν, wγ⟩ pop(γ)−−−−→α ⟨q, ν, w⟩,

p
nop−−→α q ∈ ∆

⟨p, ν, w⟩ nop−−→α ⟨q, ν, w⟩,

and the set of timed transitions ⇝ is defined as follows:

δ ∈ R≥0

⟨p, ν, w⟩ δ⇝ ⟨p, ν + δ, w⟩.

We define the language of the PTA A in the same way as timed automata:

L(A) ≜
{
tw(π) : π = ⟨qinit,0, ϵ⟩

δ1⇝ τ1−→α1
· · · δn⇝ τn−−→αn

⟨qF , ν, w⟩, qF ∈ F
}
.

Location Reachability Problem of PTA and Pushdown Digital Automata. We
consider the location reachability problem of PTA. For a given location q, the location
reachability problem ⟨qinit,0, ϵ⟩ ⇒∗? ⟨q, ∃ν, ∃w⟩ decides whether or not we can reach a
configuration ⟨q, ν, w⟩ with some valuation ν and stack w from the initial configuration
⟨qinit,0, ϵ⟩.

As we showed the decidability of the location reachability problem of timed automata,
we can also show the decidability of the location reachability problem of PTA by consid-
ering pushdown digital automata.

Let A = (Q, qinit, F,Σ,Γ,X ,∆) be a pushdown timed automaton. The pushdown
digital automaton of A is the following pushdown automaton D(A):

D(A) = (Q× D, ⟨qinit,D(0)⟩, F × D,Σ,Γ,∆′)

44

where the set of transition rules ∆′ is defined as follows: first, we define transition rules
that correspond to discrete transitions of A

p
x∈?I−−−→α q ∈ ∆ d |= x ∈ I

⟨p,d⟩ x∈?I−−−→α ⟨q,d⟩ ∈ ∆′,

p
reset(x)−−−−→α q ∈ ∆

⟨p,d⟩ reset(x)−−−−→α ⟨q,d[x B 0]⟩ ∈ ∆′,

p
push(γ)−−−−→α q ∈ ∆

⟨p,d⟩ push(γ)−−−−→α ⟨q,d⟩ ∈ ∆′,

p
pop(γ)−−−−→α q ∈ ∆

⟨p,d⟩ pop(γ)−−−−→α ⟨q,d⟩ ∈ ∆′,

p
nop−−→α q ∈ ∆

⟨p,d⟩ nop−−→α ⟨q,d⟩ ∈ ∆′,

next, we define transition rules that correspond to timed transitions of A

d ⊢∗ d′

⟨p,d⟩ nop−−→ϵ ⟨p,d′⟩ ∈ ∆′.

(We also write ⟨p,d⟩ time−−−→ϵ ⟨p,d′⟩ if d ⊢∗ d′ instead of ⟨p,d⟩ nop−−→ϵ ⟨p,d′⟩.)
To relate the pushdown timed automaton A and the pushdown digital automaton

D(A), we define the following relation on their configurations:

⟨q, ν, w⟩ ∼ ⟨(q,d), w⟩ def⇐⇒ ν |= d.

As we have shown the similar relation between a timed automaton and the digital
automaton forms a bisimulation, we can show the above relation ∼ forms a bisimulation
between A and D(A) and the following holds.

Lemma 3.2. The pushdown digital automaton D(A) can the pushdown timed automaton
A based on the relation ∼.

⟨p, ν, w⟩ τ−→α ⟨q, ν
′, w′⟩

∼

⟨(p,d), w⟩
=⇒

⟨p, ν, w⟩ τ−→α ⟨q, ν ′, w′⟩

∼ ∼

⟨(p,d), w⟩ τ−→α ∃⟨(q,d
′), w′⟩.

⟨p, ν, w⟩ δ⇝ ⟨p, ν ′, w⟩

∼

⟨(p,d), w⟩
=⇒

⟨p, ν, w⟩ δ⇝ ⟨p, ν ′, w⟩

∼ ∼

⟨(p,d), w⟩ time−−−→ϵ ∃⟨(p,d′), w⟩.

Lemma 3.3. The pushdown timed automaton A can forwardly simulate the pushdown
digital automaton D(A) based on the relation ∼.

⟨p, ν, w⟩

∼

⟨(p,d), w⟩ τ−→α ⟨(q,d
′), w′⟩

=⇒
⟨p, ν, w⟩ τ−→α ∃⟨q, ν

′, w′⟩

∼ ∼

⟨(p,d), w⟩ τ−→α ⟨(q,d
′), w′⟩

⟨p, ν, w⟩

∼

⟨(p,d), w⟩ time−−−→α ⟨(p,d′), w⟩
=⇒

⟨p, ν, w⟩ δ⇝ ∃⟨p, ν ′, w⟩

∼ ∼

⟨(p,d), w⟩ time−−−→α ⟨(p,d′), w⟩

These two lemmas lead to the following theorem.

45

Theorem 3.3. Let A be a pushdown timed automaton and D(A) be the corresponding
pushdown digital automaton. The following location reachability of the timed automaton
A and the digital automaton DA are equivalent:

⟨qinit,0, ϵ⟩ ⇒∗ ⟨q, ∃ν, ∃w⟩ ⇐⇒ ⟨qinit,D(0), ϵ⟩ →∗ ⟨(q, ∃d), ∃w⟩.

This theorem and the decidability of the location reachability problem of pushdown
automata imply the decidability of the location reachability problem of timed pushdown
automata.

Corollary 3.1. The location reachability problem ⟨qinit,0, ϵ⟩ ⇒∗ ⟨q, ∃ν, ∃w⟩ of pushdown
timed automata is EXPTime-complete.

Proof. First, we show the problem is in EXPTime. For a given pushdown timed automa-
ton A, the size of the corresponding pushdown digital automaton is exponential in the
size of A. Since we can solve the location reachability problem of pushdown automata in
polynomial time, the corresponding location reachability problem of the pushdown digital
automaton can be solved in exponential time with respect to the size of A.

Next, to show the problem is EXPTime-hard, we use the followingEXPTime-complete
problem [HLMS12]:

Let P be a pushdown automaton and M1,M2, . . . ,Mk be k finite automata.
The language emptiness problem L(P) ∩

∩k
i=1 L(Mi) =? ∅ is EXPTime-

complete for the size of P and Mi.

We also use the following PSPACE-complete problem [Koz77]:

Let M1,M2, . . . ,Mk be k finite automata. The language emptiness problem of∩k
i=1 L(Mi) =? ∅ is PSPACE-complete for the size of Mi.

As we have seen in the proof of Theorem 2.1 of Chapter 1, we can construct a timed
automaton B in polynomial time for the size of the automata Mi such that

∩k
i=1 L(Mi) =

∅ ⇐⇒ L(B) = ∅.
Here we assume the alphabet of B is Σ and k = 3 to explain our construction. The

following holds from the construction of Theorem 2.1:

σ1 s1 ♯ t1 ♯
′ u1 σ2 s2 ♯ t2 ♯

′ u2 · · · σn sn ♯ tn ♯
′ un ∈ Untime(L(B))

⇐⇒ σ1σ2 . . . σn ∈
∩k
i=1 L(Mi)

We can construct a pushdown timed automaton C in polynomial time with respect to
the size of P such that

• If σ1σ2 . . . σn ∈ L(P), then there is a timed word τ ∈ L(C) such that

Untime(τ) = σ1 s1 ♯ t1 ♯
′ u1 σ2 s2 ♯ t2 ♯

′ u2 · · · σn sn ♯ tn ♯
′ un.

• L(C) = Untime−1(Untime(L(C))) ∩TW(Σ).

From the construction, L(P) ∩
∩k
i=1 L(Mi) = ∅ ⇐⇒ L(C) ∩ L(B) = ∅ holds.

Finally, we can construct a pushdown timed automaton D by product construction for
B and C in polynomial time for the size of B and C where L(D) = L(B) ∩ L(C).

We also have the EXPTIME-completeness of the emptiness problem of pushdown timed
automata.

Corollary 3.2. The emptiness problem of PTA, which decides whether or not L(A) = ∅
for a given PTA, is EXPTIME-complete.

46

Proof. First, we show that the emptiness problem of PTA is in EXPTIME. Let A =
(Q, qinit, F,Σ,Γ,X ,∆) be a PTA. We can construct the following PTA B in linear time
with respect to the size of A:

B = (Q ∪ {qgoal} , qinit, F,Σ,Γ,X ,∆′),
∆′ = ∆ ∪

{
qF

nop−−→ϵ qgoal : qF ∈ F
}
.

It is clear that L(A) ̸= ∅ holds for A iff ⟨qinit,0⟩ ⇒∗ ⟨qgoal, ∃ν⟩ holds on B. Since the
location reachability problem of PTA is in EXPTIME, the emptiness problem of PTA is
also in EXPTIME.

Next, we show that the emptiness problem of PTA is EXPTIME-hard. For a query
⟨qinit,0⟩ ⇒∗ ⟨qgoal, ∃ν⟩ of the location reachability problem, we can construct the following
PTA B in linear time with respect to the size of A:

B = (Q, qinit, {qgoal} ,Σ,Γ,X ,∆).

It is clear that ⟨qinit,0⟩ ⇒∗ ⟨qgoal, ∃ν⟩ holds iff L(B) ̸= ∅. Since the location reachability
problem of PTA is EXPTIME-hard, the emptiness problem of PTA is EXPTIME-hard.

3.4 Hierarchy Theorem of Pushdown Timed Automata

In the present section, we show the intuitive property for pushdown timed automata that
pushdown timed automata with (n+ 1)-clocks are more expressive than pushdown timed
automata with n-clocks.

To state formally this, we write PTAn for the language class of pushdown timed
automata with n-clocks. Furthermore, we use the following timed language Ln:

Ln ≜
{
(an, tn)(an−1, tn−1) . . . (a1, t1)(b1, t

′
1) . . . (bn−1, t

′
n−1)(bn, t

′
n) : t

′
i − ti = i

}
.

On the basis of these notions, our result is the following (Theorem 3.4):

∀n ≥ 1, Ln+1 ∈ PTAn+1 ∧ Ln+1 /∈ PTAn.

Since PTAn ⊆ PTAn+1 is clear, this result shows that the strict expressiveness hier-
archy PTA0 ⊊ PTA1 ⊊ PTA2 ⊊ · · · ⊊ PTAi ⊊ · · · .

3.4.1 Preliminaries for Theorem 3.4

We need some notions and propositions to show this theorem.
Only in the present section, we use the following notation temporarily

• P ≜ N \ {0} denotes the set of positive natural numbers.

• c⇒ c′ denotes either a discrete or timed transition.

• c =⇒
r

∗ c′ denotes a sequence of transitions ⇒ where r ∈ R≥0 is the elapsed time

between c and c′.

• For a transition
τ−→α , if the action label τ is not important, then we omit it and write

simply −→α .

Definition 3.1 (Indistinguishable configurations). Let A be a PTA and ⟨p1, ν1, w1⟩ and
⟨p2, ν2, w2⟩ be configurations of A. These two configurations cannot be distinguished if
⟨p1, ν1, w1⟩ ∼= ⟨p2, ν2, w2⟩ where ∼= is defined as follows:

p1 = p2, D(ν1) = D(ν2), w1 = w2.

■

47

Proposition 3.1. Let ⟨q, ν, w⟩ be a configuration where there are no clocks x such that
frac(ν(x)) = 0.0. There exists a real number 0 < δ < 1 such that ⟨q, ν, w⟩ ∼= ⟨q, ν + δ, w⟩.

Proof. Recall the definition of <2 in the chapter of timed automata:

ν <2 ν
′ def⇐⇒

{
there is no clock x such that frac(ν(x)) = 0.0 and

ν ′ < ν + (1.0−max fract(ν)).

where
max fract(ν) ≜ max {frac(ν(x)) : x ∈ X} .

From the assumption, there exists δ such that ν <2 ν + δ. Since there exists a digital
valuation d such that ν |= d and ν + δ |= d, we have ⟨q, ν, w⟩ ∼= ⟨q, ν + δ, w⟩.

Proposition 3.2. Let A be a PTA, and c1 and c2 are indistinguishable configurations.

c1
δ⇝ c′1∼=

c2

=⇒
c1

δ⇝ c′1∼= ∼=

c2
∃δ′⇝ ∃c′2.

Proof. Let c1 = ⟨p1, ν1, w1⟩ and c2 = ⟨p2, ν2, w2⟩. We have the following diagram for some
digital valuations d and d′:

ν1 ≤ ν1 + δ

|= |=

d ⊢∗ d′.

Since ν1 |= d and ν2 |= d′, Proposition 2.10 of Chapter 2 implies there is δ′ ∈ R≥0 that
satisfies the following and it concludes the proof:

ν2 ≤ ν2 + δ′

|= |=

d ⊢∗ d′.

The same property also holds for discrete transitions.

Proposition 3.3. Let A be a PTA and c1 and c2 are indistinguishable configurations.

c1
τ−→α c′1

∼=

c2

=⇒
c1

τ−→α c′1

∼= ∼=

c2
τ−→α ∃c′2.

These two propositions lead to the following lemma.

Lemma 3.4. Let A be a PTA of which the set of accepting locations is F , and c1, c2 be
indistinguishable configurations of A.

If c1 ⇒∗ ⟨qF , , ⟩ where qF ∈ F , then also c2 ⇒∗ ⟨qF , , ⟩.
Remark: hereafter if a component is irrelevant to a discussion, we omit the component
and simply write as ⟨qF , , ⟩.

We need the following technical proposition.

Proposition 3.4. We assume the following part of a computation of a PTA:

⟨q1, ν1, ⟩
δ1⇝−→α1

δ2⇝−→α2

δ3⇝ · · · δn⇝ ⟨q2, ν2, ⟩. (n ≥ 1)

If
n∑
i=1

δi < ν2(x), then ν1(x) = ν2(x)−
n∑
i=1

δi.

48

Proof. We proceed by induction on n. First, as the base case of the induction, we consider
the following one:

⟨q1, ν1, ⟩
δ1⇝ ⟨q2, ν2, ⟩.

For this case, ν1(x) = ν2(x)− δ1 holds trivially.
Next, as the induction step, we consider the following one:

⟨q1, ν1, ⟩
δ1⇝−→α1

δ2⇝ · · · δn−1⇝ ⟨p, ν, ⟩ −−→αn
⟨p′, ν ′, ⟩ δn⇝ ⟨q2, ν2, ⟩.

Since we cannot reset x on the transition −−→αn
,
∑n−1

i=1 δi < ν(x). Indeed, if we reset, then

ν2(x) = δn and it contradicts to
∑n

i=1 δi < ν2(x). Therefore, by the induction hypothesis,

we have ν1(x) = ν(x) −
n−1∑
i=1

δi. It suffices to show ν(x) = ν2(x) − δn and it is verified by

the following:

1. ν ′(x) = ν2(x)− δn > 0 since ν2(x) >
n∑
i=1

δi ≥ δn.

2. Among ⟨p, ν, ⟩ −−→αn
⟨p′, ν ′, ⟩, we cannot reset x and thus ν(x) = ν ′(x). Indeed, if

ν ′(x) = 0.0, it contradicts to ν ′(x) > 0.

We will use the following special case of Proposition 3.4.

Proposition 3.5. We assume the following part of a computation of a PTA:

⟨q1, ν1, ⟩
δ1⇝−→α1

δ2⇝−→α2

δ3⇝ · · · δn⇝ ⟨q2, ν2, ⟩.

If 0 <
n∑
i=1

δi < 1 and ν2(x) ∈ P, then frac(ν1(x)) = 1.0−
n∑
i=1

δi.

3.4.2 1-clock language

It is clear that the following 1-clock language can be recognized by a 1-clock pushdown
timed automaton:

L1 =
{
(a1, t1)(b1, t

′
1) : t

′
1 − t1 = 1

}
.

We prove that the language L1 cannot be recognized by any 0-clock pushdown timed
automaton. To this end, we assume a 0-clock PTA A0 where L(A0) = L1 and a computa-
tion π of A0 such that

π = ⟨qinit, ν, ϵ⟩ ⇒∗−→a1 ⟨qa1 , νa1 , ⟩ ⇒
∗−→b1 ⟨qb1 , νb1 , ⟩ ⇒

∗ ⟨qF , νF , ⟩

and tw(π) = (a1, t1)(b1, t
′
1) ∈ L1.

Claim: When A0 reads b1, there is a clock whose value is in P.
We decompose π as follows:

π = ⟨qinit, ν, ϵ⟩ ⇒∗
δ⇝ ⟨q′′b1 , ν

′′
b1 , ⟩ −→ϵ

0.0⇝−→ϵ
0.0⇝−→ϵ · · ·

0.0⇝ ⟨q′b1 , ν
′
b1 , ⟩ −→b1 ⟨qb1 , νb1 , ⟩ ⇒

∗ ⟨qF , νF , ⟩

where δ > 0.0. Our claim is rewritten as there is a clock x such that ν ′′b1(x) ∈ P. We show
it by contradiction; assume there are no clocks x such that ν ′′b1(x) ∈ P.

49

• Since δ > 0.0, we have ν ′′b1(x) ̸= 0. This and the assumption imply that there are no
clocks x such that ν ′′b1(x) ∈ N. Thus, Proposition 3.1 implies that there is a positive
real 0 < δ′ < 1 such that

⟨qinit, ν, ϵ⟩ ⇒∗
δ+δ′⇝ ⟨q′′b1 , ν

′′
b1 + δ′, ⟩

where ⟨q′′b1 , ν
′′
b1
, ⟩ ∼= ⟨q′′b1 , ν

′′
b1
+ δ′, ⟩.

• Since ⟨q′′b1 , ν
′′
b1
, ⟩ ∼= ⟨q′′b1 , ν

′′
b1
+ δ′, ⟩, there is a computation

π′ = ⟨qinit,0, ϵ⟩ ⇒∗ ⟨q′′b1 , ν
′′
b1 + δ′, ⟩ −→ϵ

0.0⇝−→ϵ
0.0⇝−→ϵ · · ·

0.0⇝−→b1 c⇒∗ ⟨qF , ν ′F , ⟩.

Therefore, tw(π′) = (a1, t1)(b1, t
′
1 + δ′) ∈ L(A1).

• However, since t′1 − t1 = 1 and 0 < δ′ < 1, tw(π′) /∈ L1.

The above argument states that, to recognize the language L1, we need clocks at least
one. Since there are no clocks on A0, L(A0) ̸= L1 and thus L1 /∈ PTA0. More formally,
we can show the following based on the above argument:

If (a1, t1)(b1, t
′
1) ∈ L(A0) and t

′
1 − t1 = 1,

then (a1, u1)(b1, u
′
1) ∈ L(A0) with 1 < u′1 − u1 < 2.

3.4.3 2-clock language

On the basis of the previous argument, we show that L2 ∈ PTA2 but L2 /∈ PTA1 where
L2 is defined as follows

L2 =
{
(a2, t2)(a1, t1)(b1, t

′
1)(b2, t

′
2) : t

′
1 − t1 = 1, t′2 − t2 = 2

}
.

It is clear that a 2-clock PTA can recognizes the timed language L2.
To prove L2 /∈ PTA1, we consider the following proposition.

Proposition 3.6. If a 1-clock PTA A1 accepts a timed word of L2

(a2, t2)(a1, t1)(b1, t
′
1)(b2, t

′
2) ∈ L2

that satisfies 0 < t′2 − t′1 < 1, then there is another timed word

(a2, u2)(a1, u1)(b1, u
′
1)(b2, u

′
2) ∈ L(A1)

with 1 < u′1 − u1 < 2.

This immediately leads to L2 /∈ PTA1 because there is a timed word that satisfies the
assumption of this proposition; for example (a2, 0.0)(a1, 0.4)(b1, 1.4)(b2, 2.0).

Proof. We assume the following computation:

π =
⟨qinit, ν, ϵ⟩ ⇒∗−→a2 ⟨qa2 , νa2 , ⟩ ⇒

∗−→a1
⟨qa1 , νa1 , ⟩ ⇒∗−→b1 ⟨qb1 , νb1 , ⟩ ⇒

∗−→b2 ⟨qb2 , νb2 , ⟩ ⇒
∗ ⟨qF , νF , ⟩

where qF is an accepting location of A1 and tw(π) = (a2, t2)(a1, t1)(b1, t
′
1)(b2, t

′
2) ∈ L2 with

0 < t′2 − t′1 < 1.

50

Claim: When A1 reads b1, there is a clock whose fractional part is t′2 − t′1.
We decompose π as follows:

⟨qinit, ν, ϵ⟩ ⇒∗ ⟨q′b1 , ν
′
b1 , ⟩ −→b1 ⟨qb1 , νb1 , ⟩ =⇒θ

∗ ⟨q′b2 , ν
′
b2 , ⟩ −→b2 ⟨qb2 , νb2 , ⟩ ⇒

∗ ⟨qF , νF , ⟩

where θ = t′2 − t′1.
We show frac(ν ′b1(y)) = 1.0− θ for some clock y. On the basis of the argument for the

1-clock language and Claim 1, there is a clock y such that ν ′b2(y) ∈ P. We have 0 < θ < 1
from the assumption for π. Proposition 3.5 implies frac(νb1(y)) = 1 − θ and 1 − θ > 0
implies frac(νb′1(y)) = frac(νb1(y)).

Now we decompose π as follows:

π = ⟨qinit, ν, ϵ⟩ ⇒∗
δ⇝ ⟨q′b1 , ν

′
b1 , ⟩ −→b1 ⟨qb1 , νb1 , ⟩ ⇒

∗ ⟨qF , νF , ⟩.

There are no clocks y such that ν ′b1(y) ∈ P because the 1-clock pushdown automaton has
only a single clock x and ν ′b1(x) /∈ P on the basis of the above argument. Therefore, by
the same argument for the 1-clock language L1, there is δ

′ and a computation π′ such that
0 < δ′ < 1 and

π′ = ⟨qinit, ν, ϵ⟩ ⇒∗
δ+δ′⇝ ⟨q′b1 , ν

′
b1 + δ′, ⟩ ⇒∗ ⟨qF , , ⟩.

Since tw(π′) = (a2, t2)(a1, t1)(b1, t
′
1 + δ′)(b2, u2) and 0 < δ′ < 1, it finishes the proof.

3.4.4 n-clock language

We can easily generalize the above argument for any n-clock language with n > 2.
We use the following timed language:

Ln =
{
(an, tn)(an−1, tn−1) . . . (a1, t1)(b1, t

′
1) . . . (bn−1, t

′
n−1)(bn, t

′
n) : t

′
i − ti = i

}
.

It is clear that an n-clock PTA can recognizes the timed language Ln. On the basis of the
above argument, we show the following.

Proposition 3.7. Let m be a natural number with m < n, and Am be an m-clock
pushdown timed automaton. If Am accepts a timed word of Ln

(an, tn)(an−1, tn−1) . . . (a1, t1)(b1, t
′
1) . . . (bn−1, t

′
n−1)(bn, t

′
n) ∈ Ln

that satisfies the following

• ∀1 ≤ i < n. 0 < t′i − t′n < 1 and

• ∀1 ≤ i, j ≤ n. i ̸= j =⇒ t′i − t′n ̸= t′j − t′n,

then there is another timed word

(an, un)(an−1, un−1) . . . (a1, u1)(b1, u
′
1) . . . (bn−1, u

′
n−1)(bn, u

′
n) ∈ L(Am)

such that 1 < u′1 − u1 < 2.

Proof. We assume an accepting computation π that satisfies the assumption:

tw(π) = (an, tn)(an−1, tn−1) . . . (a1, t1)(b1, t
′
1) . . . (bn−1, t

′
n−1)(bn, t

′
n) ∈ Ln

51

When Am reads bi (1 < i ≤ n), there is a clock whose fractional part is t′i − t′1.
We decompose π as follows:

⟨qinit, ν, ϵ⟩ ⇒∗ ⟨q′b1 , ν
′
b1 , ⟩ −→b1 ⟨qb1 , νb1 , ⟩ ===⇒t′i−t′1

∗ ⟨q′bi , ν
′
bi
, ⟩ −→bi ⟨qbi , νbi , ⟩ ⇒

∗ ⟨qF , νF , ⟩.

On the basis of the argument for the language L2, we can show that there is a clock
xi such that ν ′bi(xi) ∈ P. By Proposition 3.5, frac(νbn(xi)) = 1.0 − (t′i − t′1) > 0 (here we
use the assumption 0 < t′i − t′1 < 1) and therefore frac(ν ′bn(xi)) = 1.0− (t′i − t′1).

Let {y1, y2, . . . , ym} be clocks of the m-clocks pushdown timed automaton Am. We
decompose π as follows:

⟨qinit, ν, ϵ⟩ ⇒∗
δ⇝ ⟨q′b1 , ν

′
b1 , ⟩ −→b1 ⟨qb1 , νb1 , ⟩ ⇒

∗ ⟨qF , νF , ⟩.

The above argument requires 0 < ν ′b1(yi) < 1 (thus ν ′b1(yi) /∈ P) for 1 ≤ i ≤ m. Therefore,
by the same argument for the languages L1 and L2, there is δ′ and a computation π′ such
that 0 < δ′ < 1 and

π′ = ⟨qinit, ν, ϵ⟩ ⇒∗
δ+δ′⇝ ⟨q′b1 , ν

′
b1 + δ′, ⟩ ⇒∗ ⟨qF , , ⟩.

Since tw(π′) = (an, tn)(an−1, tn−1) . . . (a1, t1)(b1, t
′
1 + δ′) . . . (bn−1, un−1)(bn, un) and 0 <

δ′ < 1, it finishes the proof.

This proposition immediately implies that Ln cannot be recognized by any m-clock
PTA with m < n.

Theorem 3.4. For any positive natural number n, Ln ∈ PTAn but Ln /∈ PTAn−1.

Proof. We show that there is a timed word that satisfies the assumption of Proposition 3.7.
It suffices to take the following timed word:

an an−1 an−2 a2 a1 b1 b2 bn−2 bn−1 bn

1− 1
2n

1− 1
2n−1

1− 1
2

1

1
2

1
2n−1

1
2n

By Proposition 3.7, Am accepts a timed word (an,)(an−1,) . . . (a1, u)(b1, u
′) . . . (bn−1,)(bn,)

where 1 < u′ − u < 2. Since this word does not belong to Ln, L(Am) ̸= Ln holds.

This theorem and the trivial property PTAn ⊆ PTAn+1 lead to the expressiveness
hierarchy of pushdown timed automata.

Corollary 3.3.
PTA0 ⊊ PTA1 ⊊ PTA2 ⊊ · · · ⊊ PTAn ⊊ · · ·

Our proof does not depend on the existence of the stack, we can also show the same
result for timed automata.

Corollary 3.4 ([PS12, HKW95]). Let TAi be the language class of timed automata with
i-clocks.

TA0 ⊊ TA1 ⊊ TA2 ⊊ · · · ⊊ TAn ⊊ · · ·

52

The same result was already known in the theory of timed automata [PS12, HKW95].
However, there is a little difference between their result and ours because they do not allow
ϵ-transitions in their formulation of timed automata. Timed automata with ϵ-transitions
are more expressive than timed automata without ϵ-transitions [BPDG98, BHR09].

3.5 Dense-Timed Pushdown Automata

We review the model of computation called dense-timed pushdown automata [AAS12a,
CL15a]. Abdulla, Atig, and Stenman introduced dense-timed pushdown automata (DT-
PDA) by extending (updatable) timed automata with a timed stack. Formally, a dense-
timed pushdown automaton A is a 7-tuple A = (Q, qinit, F,Σ,Γ,X ,∆) where

• Q is a finite set of control locations, qinit ∈ Q is the initial location, F ⊆ Q is a set
of accepting locations;

• Σ is a finite input alphabet; Γ is a finite stack alphabet;

• X is a finite set of clocks;

• ∆ ⊆ Q× Σϵ ×ActDTPDA ×Q is a finite set of transition rules.

– To denote a transition rule ⟨p, α, τ, q⟩ ∈ ∆, we write p
τ−→α q.

ActDTPDA is the set of actions of dense-timed pushdown automata defined by the following
grammar:

ActDTPDA ::= x ∈? I | x← I | push(γ, I) | pop(γ, I) | nop.

A configuration of DTPDA ⟨q, ν, ξ⟩ is a triple of a location q, valuation ν : X → R≥0,
and timed stack ξ ∈ (Γ × R≥0)∗. Since a configuration of PTA is a triple of a location
q, valuation ν, and (untimed) stack w ∈ Γ∗, the timed stack is peculiar to DTPDA. The
operational semantics of the DTPDA A is defined as an infinite labeled transition system
TA = (Q × (X → R≥0) × (Γ × R≥0)∗,→,⇝) where the set of discrete transitions → is
defined as follows:

p
x∈?I−−−→α q ∈ ∆ ν |= x ∈ I

⟨p, ν, ξ⟩ x∈?I−−−→α ⟨q, ν, ξ⟩,

p
x←I−−−→α q ∈ ∆ r ∈ I

⟨p, ν, ξ⟩ x←I−−−→α ⟨q, ν[x B r], ξ⟩,

p
push(γ,I)−−−−−→α q ∈ ∆ r ∈ I

⟨p, ν, ξ⟩ push(γ,I)−−−−−→α ⟨q, ν, ξ⟨γ, r⟩⟩,

p
pop(γ,I)−−−−−→α q ∈ ∆ r ∈ I

⟨p, ν, ξ⟨γ, r⟩⟩ pop(γ,I)−−−−−→α ⟨q, ν, ξ⟩,

p
nop−−→α q ∈ ∆

⟨p, ν, ξ⟩ nop−−→α ⟨q, ν, ξ⟩,

and the set of timed transitions ⇝ is defined as follows:

δ ∈ R≥0

⟨p, ν, ξ⟩ δ⇝ ⟨p, ν + δ, ξ + δ⟩

where ξ + δ is defined as follows:

⟨γ1, r1⟩⟨γ2, r2⟩ . . . ⟨γn, rn⟩+ δ ≜ ⟨γ1, r1 + δ⟩⟨γ2, r2 + δ⟩ . . . ⟨γn, rn + δ⟩.

It should be noted that timed transitions modify all the values of a stack.
We define the language of the DTPDA A in the same way as PTA:

L(A) ≜
{
tw(π) : π = ⟨qinit,0, ϵ⟩

δ1⇝ τ1−→α1
· · · δn⇝ τn−−→αn

⟨qF , ν, ξ⟩, qF ∈ F
}
.

53

Normalizing DTPDA. As we translated an updatable timed automaton to a timed
automaton while preserving its language, we can also translate a DTPDA to a DTPDA
without update operations while preserving its language.

Lemma 3.5. Let A be a DTPDA. There is a DTPDA B such that L(A) = L(B) and

I = [0 : 0] if p
x←I−−−→α q ∈ ∆B where ∆B is the finite set of transition rules of B.

Proof. This proposition is shown in the same way as Theorem 2.5 of Chapter 1 that
removes updatable operations from updatable timed automata.

Location Reachability Problem of DTPDA. We consider the location reachability
problem of DTPDA. For a given location q, the location reachability problem ⟨qinit,0, ϵ⟩ ⇒∗?
⟨q, ∃ν, ∃ξ⟩ decides whether or not we can reach a configuration ⟨q, ν, w⟩ with some valuation
ν and timed stack ξ from the initial configuration ⟨qinit,0, ϵ⟩. Abdulla et al. showed that
the location reachability problem of DTPDA is EXPTime-complete [AAS12a].

In comparison with pushdown timed automata, the decidability proof of the location
reachability problem of DTPDA is difficult due to the presence of timed stack. For ex-
ample, let us suppose to apply the region abstraction technique to DTPDA and obtained
the corresponding pushdown automata. We cannot naively reflect timed transitions in the
obtained pushdown automata because we only modify the stack top element on ordinary
pushdown automata. Since there are many other reasons why the classical region abstrac-
tion technique does not work well in DTPDA, in the next section, we will see another
decidability proof of the location reachability problem of DTPDA based on the untiming
theorem shown by Clemente and Lasota [CL15a]. In Chapter 5, we will show the de-
cidability of the location reachability problem of DTPDA through the region abstraction
technique.

3.6 Timed Pushdown Automata and Untiming Theorem

We define a model of computation called timed pushdown automata to accurately state
the result of Clemente and Lasota in their paper [CL15a]. A timed pushdown automaton
(TPDA) A is a 7-tuple A = (Q, qinit, F,Σ,Γ,X ,∆) where the finite set of transition rules
∆ only differs from that of DTPDA:

• ∆ ⊆ Q× Σϵ ×ActTPDA ×Q is a finite set of transition rules.

To define the set of action of TPDA ActTPDA, we introduce some notation. For a clock
set X, we define a constraint formula φ generated from atomic propositions x ∈? I and
x− y ∈? I:

φ ::= x ∈? I | x− y ∈? I | φ ∧ φ

where x, y ∈ X. We write Φ(X) to denote the set of constraint formulae on the clock set
X. For a valuation ν : X → R≥0 and constraint formula φ ∈ Φ(X), we define ν |= φ
inductively: ν |= φ1 ∧ φ2 if ν |= φ1 and ν |= φ2.

ActTPDA is the set of actions of pushdown timed automata defined by the following
grammar:

ActTPDA ::= check(φ) | reset(x) | push(γ, I) | pop(γ, ψ) | nop

where φ ∈ Φ(X) and ψ ∈ Φ(X ∪ {z}).
A configuration of TPDA ⟨q, ν, ξ⟩ is a triple of a location q, valuation ν : X → R≥0,

and timed stack ξ ∈ (Γ × ({z} → R≥0))∗. The set of configurations Q × (X → R≥0) ×
(Γ × ({z} → R≥0))∗ is isomorphic to that of DTPDA; therefore, to denote a config-
uration ⟨q, ν, ⟨γ1, {z 7→ r1}⟩ . . . ⟨γn, {z 7→ rn}⟩⟩, we simply write ⟨q, ν, ⟨γ1, r1⟩ . . . ⟨γn, rn⟩⟩.

54

Clemente and Lasota considered that a timed stack ⟨γ1, {z 7→ r1}⟩ . . . ⟨γn, {z 7→ rn}⟩ is
a sequence of pairs of stack symbol γi and local clock called z. The formulation of
TPDA does not allow update operations but allows diagonal constraints. The oper-
ational semantics of the TPDA A is defined as an infinite labeled transition system
TA = (Q × (X → R≥0) × (Γ × R≥0)∗,→,⇝) where the set of discrete transitions →
is defined as follows:

p
check(φ)−−−−−→α q ∈ ∆ ν |= φ

⟨p, ν, ξ⟩ check(φ)−−−−−→α ⟨q, ν, ξ⟩,

p
reset(x)−−−−→α q ∈ ∆

⟨p, ν, ξ⟩ reset(x)−−−−→α ⟨q, ν[x B 0], ξ⟩,

p
nop−−→α q ∈ ∆

⟨p, ν, ξ⟩ nop−−→α ⟨q, ν, ξ⟩,

p
push(γ,I)−−−−−→α q ∈ ∆ r ∈ I

⟨p, ν, ξ⟩ push(γ,I)−−−−−→α ⟨q, ν, ξ⟨γ, r⟩⟩,

p
pop(γ,ψ)−−−−−→α q ∈ ∆ ν ∪ {z 7→ r} |= ψ

⟨p, ν, ξ⟨γ, r⟩⟩ pop(γ,ψ)−−−−−→α ⟨q, ν, ξ⟩,

and the set of timed transitions ⇝ is defined as the same as DTPDA. We can also define
the language L(A) of a TPDA A as the same as DTPDA.

Clemente and Lasota showed the following normalization lemma [CL15a, CL15b].

Lemma 3.6. Let A be a TPDA. There is a TPDA B such that L(A) = L(B) and

I = [0 : 0] for p
push(γ,I)−−−−−→α q ∈ ∆B where ∆B is the set of transition rules of the TPDA B.

This lemma enables the following important properties of normalized TPDA.

Proposition 3.8. Let ⟨q, ν, ⟨γ1, r1⟩⟨γ2, r2⟩ . . . ⟨γn, rn⟩⟩ be a reachable configuration on a
normalized TPDA:

⟨qinit, ν, ϵ⟩ ⇒∗ ⟨q, ν, ⟨γ1, r1⟩⟨γ2, r2⟩ . . . ⟨γn, rn⟩⟩.

For each i ∈ {1, 2, . . . , n− 1}, ri+1 ≥ ri.

On the basis of this proposition, Clemente and Lasota showed the untiming theorem
of TPDA. It means we can remove all the local clocks in the timed stack of a TPDA while
preserving its language.

Theorem 3.5 ([CL15a]). Let A be a TPDA. There is a PTA B such that

• L(A) = L(B).

• The number of states and stack symbols of B is exponential in the size of A.

• The number of clocks of B is linear in the size of A.

Since the emptiness problem and location reachability problem of PTA is decidable,
this theorem leads to the decidability of the emptiness problem and location reachability
problem of TPDA.

Corollary 3.5. The emptiness problem and the location reachability problem of TPDA
are EXPTIME-complete.

Proof. As with Corollary 3.2, since we can reduce the emptiness problem to location
reachability problem in linear time and vice versa, it suffices to show the EXPTIME-
completeness of the emptiness problem.

The EXPTIME-hardness of the emptiness problem of TPDA is immediately shown by
Corollary 3.2 because any PTA is also TPDA.

We show the emptiness problem of TPDA is in EXPTIME. Let A be a TPDA and B
be the corresponding PTA obtained by applying the above untiming theorem. On PTA,

55

by the proof of Corollary 3.1, the emptiness problem can be solved in time linear in the
number of states and stack symbols and exponential in the number of clocks. Therefore,
the emptiness problem of B is solved in exponential time with respect to the size of A.

We also have the following result.

Corollary 3.6. PTA and DTPDA are equally expressive.

Proof. It is clear that the language class of DTPDA subsumes that of PTA: PTA ⊆
DTPDA. Now we assume a DTPDA A and construct a PTA such that L(A) = L(B).
By Lemma 3.5, we can normalize A into a DTPDA A′ and then, A′ can be seen as a
TPDA. Therefore, there is a PTA corresponding to A′ and we have L(A) = L(B). This
means that PTA ⊇ DTPDA.

56

Chapter 4

Timed Pushdown Automata with
Multiple Local Clocks

We extend TPDA by the following features:

• Multiple local clocks; therefore, a configuration of MTPDA is of the form ⟨q, ν, ⟨γ1, µ1⟩
. . . ⟨γn, µn⟩⟩ where µi : Z → R≥0 is a clock valuation on the local clocks Z (Z is
a finite set of local clocks). On the other hand, a configuration of TPDA is of the
form ⟨q, ν, ⟨γ1, r1⟩ . . . ⟨γn, rn⟩⟩ where ri ∈ R≥0.

• Resetting and checking local clocks by actions reset(z), z ∈? I and z − x ∈? I where
z is a local clock. On DTPDA of Abdulla et al. and TPDA of Clemente and Lasota,
such actions are not allowed.

We show the untiming theorem of MTPDA that removes local clocks from a given
MTPDA. Alternatively, for a given MTPDA A, we can construct a PTA B such that
L(A) = L(B). These results will be shown as Theorem 4.3 and Corollary 4.1.

This chapter is based on the paper [Uez18].

Some Notation on Intervals In the present chapter, we consider intervals generated
by integers as follows:

(a : b) ≜ {r ∈ R : a < r < b} , (a : b] ≜ {r ∈ R : a < r ≤ b} ,
[a : b) ≜ {r ∈ R : a ≤ r < b} , [a : b] ≜ {r ∈ R : a ≤ r ≤ b} ,
(a : ω) ≜ {r ∈ R : a < r} , [a : ω) ≜ {r ∈ R : a ≤ r} ,
(−ω : a) ≜ {r ∈ R : r < a} , (−ω : a] ≜ {r ∈ R : r ≤ a}

where a, b ∈ Z.
It is clear that, for any interval I, there exists the unique interval J such that a ∈

I ⇐⇒ −a ∈ J . For an interval I, we write −I to denote the unique interval that satisfies
a ∈ I ⇐⇒ −a ∈ −I.

Let I and J be intervals. We write I ⊏ J if a < b for any a ∈ I and b ∈ J . For
example, (−ω : 2) ⊏ [2 : 3] but (−ω : 2] ̸⊏ [2 : 3]. We write I ⊑ J to denote I = J or
I ⊏ J .

Let I be a non-empty interval (I ̸= ∅). We define I↓ and I↑ as follows:

I↓ ≜
∪
J⊏I

J, I↑ ≜
∪
I⊏J

J.

57

For any non-empty interval I, I↓ and I↑ are intervals since the following holds for these
operators:

(−ω :)↓ = (−ω :]↓ = ∅, (: ω)↑ = [: ω)↑ = ∅,
[a :]↓ = [a :)↓ = (−ω : a), [: a]↑ = (: a]↑ = (a : ω),
(a :]↓ = (a :)↓ = (−ω : a], [: a)↑ = (: a)↑ = [a : ω).

We also use the following simple properties on intervals.

Proposition 4.1.

• Let I be an interval and r1 ≤ r2 ≤ r3 be real numbers. If r1 ∈ I and r3 ∈ I, then
r2 ∈ I.

• Let I be a non-empty interval. For any real number r ∈ R, one of the following
holds:

r ∈ I↓ or r ∈ I or r ∈ I↑.

• For a non-empty interval I, we have I↓ ⊏ I ⊏ I↑.

4.1 Formalization of Timed Pushdown Automata with
Multiple Local Clocks

We define timed pushdown automata with multiple local clocks (MTPDA).
An MTPDA A is a 8-tuple A = (Q, qinit, F,Σ,Γ,X ,Z,∆) where

• Q is a finite set of locations, qinit ∈ Q is the initial location, F ⊆ Q is a set of
accepting locations;

• Σ is a finite input alphabet, Γ is a finite stack alphabet;

• X is a finite set of global clocks, Z is a finite set of local clocks;

– X and Z are disjoint, i.e., X ∩ Z = ∅.

• ∆ ⊆ Q×Σϵ×ActMTPDA×Q is a finite set of transition rules. To denote a transition
rule ⟨p, α, τ, q⟩ ∈ ∆, we write p

τ−→α q.

– ActMTPDA is the set of actions of MTPDA and it is defined by the following
grammar:

τ ∈ ActMTPDA ::= push(γ) | pop(γ) | nop | reset(c)
| c ∈? I | c− c′ ∈? I

where γ ∈ Γ, c, c′ ∈ X ∪ Z, and I is an interval.

We call an MTPDA A K-TPDA if A has K-local clocks {z1, z2, . . . , zK}. Let A =
(Q, qinit, F,Σ,Γ,X ,Z,∆) be a K-TPDA. A configuration of A, ⟨q, ν, w⟩, is a triple of a
location q ∈ Q, valuation ν : X → R≥0, and timed stack w ∈ (Γ× (Z → R≥0))∗. We call
a stack element ⟨γ, µ⟩ stack frame. The initial configuration of A, ⟨qinit,0, ϵ⟩, is the triple
of the initial location, 0-valued valuation, and empty stack.

We define the operational semantics of the K-TPDA A as an infinite labeled transition
system TA = (Q × (X → R≥0) × (Γ × (Z → R≥0))∗,→,⇝). First, we define the set of
(discrete) transitions → as follows:

p
push(γ)−−−−→α q ∈ ∆

⟨p, ν, w⟩ push(γ)−−−−→α ⟨q, ν, w ⟨γ,0⟩⟩,

p
pop(γ)−−−−→α q ∈ ∆

⟨p, ν, w ⟨γ, µ⟩⟩ pop(γ)−−−−→α ⟨q, ν, w⟩,

p
nop−−→α q ∈ ∆

⟨p, ν, w⟩ nop−−→α ⟨q, ν, w⟩,

58

p
reset(x)−−−−→α q ∈ ∆ x ∈ X

⟨p, ν, w⟩ reset(x)−−−−→α ⟨q, ν[x B 0], w⟩,

p
reset(z)−−−−→α q ∈ ∆ z ∈ Z

⟨p, ν, w⟨γ, µ⟩⟩ reset(z)−−−−→α ⟨q, ν, w⟨γ, µ[z B 0]⟩⟩,

p
x∈?I−−−→α q ∈ ∆ x ∈ X ν |= x ∈ I

⟨p, ν, w⟩ x∈?I−−−→α ⟨q, ν, w⟩,

p
z∈?I−−−→α q ∈ ∆ z ∈ Z µ |= z ∈ I

⟨p, ν, w⟨γ, µ⟩⟩ x∈?I−−−→α ⟨q, ν, w⟨γ, µ⟩⟩,

p
c1−c2∈?I−−−−−−→α q ∈ ∆ {c1, c2} ⊆ X ν |= c1 − c2 ∈ I

⟨p, ν, w⟩ c1−c2∈?I−−−−−−→α ⟨q, ν, w⟩,

p
c1−c2∈?I−−−−−−→α q ∈ ∆ {c1, c2} ̸⊆ X ν ∪ µ |= c1 − c2 ∈ I

⟨p, ν, w ⟨γ, µ⟩⟩ c1−c2∈?I−−−−−−→α ⟨q, ν, w ⟨γ, µ⟩⟩.

Next, we define the set of (timed) transitions ⇝ as follows:

δ ∈ R≥0

⟨p, ν, w⟩ δ⇝ ⟨p, ν + δ, w + δ⟩

where (⟨γ1, µ1⟩⟨γ2, µ2⟩ . . . ⟨γn, µn⟩) + δ is defined as follows:

(⟨γ1, µ1⟩⟨γ2, µ2⟩ . . . ⟨γn, µn⟩) + δ ≜ ⟨γ1, µ1 + δ⟩⟨γ2, µ2 + δ⟩ . . . ⟨γn, µn + δ⟩.

As with timed automata and timed pushdown automata, we define the language of the
K-TPDA A as follows:

L(A) ≜
{
tw(π) : π = ⟨qinit,0, ϵ⟩

δ1⇝ τ1−→α1
· · · δn⇝ τn−−→αn

⟨qF , ν, w⟩, qF ∈ F
}
.

We also define the set of timed words, Lϵ(A), that is accepted by a configuration whose
location is an accepting location and stack is empty as follows:

Lϵ(A) ≜
{
tw(π) : π = ⟨qinit,0, ϵ⟩

δ1⇝ τ1−→α1
· · · δn⇝ τn−−→αn

⟨qF , ν, ϵ⟩, qF ∈ F
}
.

Proposition 4.2. Let A be an MTPDA. There is an MTPDA B such that L(A) = Lϵ(B).

Proof. Let A = (Q, qinit, F,Σ,Γ,X ,Z,∆). We construct the following MTPDA B:

B = (Q ∪ {qB} , qinit, {qB} ,Σ,Γ,X ,Z,∆′)

where qB is a fresh location and ∆′ is defined as follows:

∆′ = ∆ ∪
{
qF

nop−−→ϵ qB : qF ∈ F
}
∪
{
qB

pop(γ)−−−−→ϵ qB : γ ∈ Γ

}
.

By this construction, if there is a computation of A ⟨qinit,0, ϵ⟩
δ1⇝ τ1−→α1

· · · δn⇝ τn−−→αn
⟨qF , ν, w⟩

where qF ∈ F , then we also have the following computation of B:

⟨qinit,0, ϵ⟩
δ1⇝ τ1−→α1

· · · δn⇝ τn−−→αn
⟨qF , ν, w⟩

δ′0⇝ nop−−→ϵ ⟨qB, ν ′, w⟩
δ′1⇝ pop(γ1)−−−−→ϵ · · · δ

′
m⇝ pop(γm)−−−−−→ϵ ⟨qB, ν ′′, ϵ⟩.

This implies L(A) ⊆ Lϵ(B). A similar property also implies Lϵ(B) ⊆ L(A).

On the basis of this proposition, hereafter we mainly consider the timed language accepted
by accepting locations and the empty stack.

59

4.1.1 Compared to Timed Pushdown Automata

We recall the set of actions ActPTA allowed on pushdown timed automata of Bouaj-
jani et al.:

ActPTA ::= x ∈? I | reset(x) | push(γ) | pop(γ) | nop.

Since all the kinds of transition rules on PTA are allowed on MTPDA, the language class of
MTPDA is greater than or equal to that of PTA. Furthermore, since the language classes
of dense-timed pushdown automata DTPDA and TPDA equal to the language class of
PTA PTA, we have the following.

Proposition 4.3.
PTA = DTPDA = TPDA ⊆MTPDA.

We have a question whether or not MTPDA is strictly larger than PTA. Our main
result of MTPDA, the untiming theorem of MTPDA (Theorem 4.3 and Corollary 4.1 of
Section 4.7), states PTA = MTPDA.

4.1.2 Extending MTPDA by Useful Transition Rules

We consider useful extra actions on MTPDA and show that adding these rules to MTPDA
does not enlarge the expressiveness of MTPDA.

c ̸∈? I: A new action c ̸∈? I that checks whether or not the clock c does not belong to

the interval I. The semantics of a transition rule p
c ̸∈?I−−−→α q is defined as follows:

c ∈ X ν ̸|= c ∈ I

⟨p, ν, w⟩ c̸∈?I−−−→α ⟨q, ν, w⟩,

c ∈ Z µ ̸|= c ∈ I

⟨p, ν, w⟨γ, µ⟩⟩ c ̸∈?I−−−→α ⟨q, ν, w⟨γ, µ⟩⟩.

τ1 # τ2: A new action τ1 # τ2 that performs two actions τ1 and τ2 sequentially at a single

transition without time-elapsings. The semantics of a transition rule p
τ1# τ2−−−→α q is

defined as follows:

⟨p, ν, w⟩ τ1−→α ⟨p
′, ν ′, w′⟩ ⟨p′, ν ′, w′⟩ τ2−→ϵ ⟨p

′′, ν ′′, w′′⟩

⟨p, ν, w⟩ τ1# τ2−−−→α ⟨p′′, ν ′′, w′′⟩

We also use the more general forms such as p
τ1# τ2# ···# τn−−−−−−−−→α q.

check(γ): A new action check(γ) that checks whether or not a stack is not empty and its

top symbol is γ. The semantics of a transition rule p
check(γ)−−−−−→α q is defined as follows:

⟨p, ν, w⟨γ, µ⟩⟩ check(γ)−−−−−→α ⟨q, ν, w⟨γ, µ⟩⟩

check(ϵ): A new action check(γ) that checks whether or not a stack is empty. The

semantics of a transition rule p
check(ϵ)−−−−−→α q is defined as follows:

⟨p, ν, ϵ⟩ check(ϵ)−−−−−→α ⟨q, ν, ϵ⟩

60

rew(γ): A new action rew(γ) that rewrites the stack top symbol to γ. The semantics of

a transition rule p
rew(γ)−−−−→α q is defined as follows:

⟨p, ν, w⟨γ′, µ⟩⟩ rew(γ)−−−−→α ⟨q, ν, w⟨γ, µ⟩⟩

Lemma 4.1. The above five types of transition rules c ̸∈? I, τ1 # τ2, check(γ), check(ϵ),
and rew(γ) do not enlarge the expressiveness of MTPDA.

Proof. First, we remove transition rules of the form p
c ̸∈?I−−−→α q. It is easily verified that, for

any interval I, there are intervals I1, I2, . . . , In such that R≥0 \ I =
∪n
i=1 Ii; for example,

R≥0\(3 : 5] = [0 : 3]∪(5 : ω). Following this property, we can replace a transition p
c ̸∈?I−−−→α q

by transitions p
c∈?Ii−−−→α q for each i = 1, . . . , n such that R≥0 \ I =

∪n
i=1 Ii while preserving

its language.

Next, we remove transition rules of the form p
τ1# τ2−−−→α q. This can be removed in the

same way as Proposition 2.2.
Finally, we remove check(γ), check(ϵ), and rew(γ) simultaneously. Let A = (Q, qinit, F,

Σ,Γ,X ,Z,∆) be an MTPDA where ∆ may contains the above three types of actions. We
construct the following MTPDA B:

B = (QΓ⊥ , q⊥init, F
Γ⊥ ,Σ,Γ⊥,X ,Z,∆′)

where Γ⊥ = {⊥} ∪ Γ, QΓ⊥ = {qχ : q ∈ Q,χ ∈ Γ⊥}, and FΓ⊥ =
{
qχF : qF ∈ F, χ ∈ Γ⊥

}
.

We use a marked location q⊥ to denote that the stack of a configuration is empty and
qγ to denote the stack top symbol is γ. Formally, we define a correspondence relation ∼
between configurations of A and B as follows:

⟨q, ν, ϵ⟩ ∼ ⟨q⊥, ν, ϵ⟩,
⟨q, ν, ⟨γ, µ⟩⟩ ∼ ⟨qγ , ν, ⟨⊥, µ⟩⟩,
⟨q, ν, ⟨γ1, µ1⟩⟨γ2, µ2⟩ . . . ⟨γn, µn⟩⟨γn+1, µn+1⟩⟩ ∼ ⟨qγn+1 , ν, ⟨⊥, µ1⟩⟨γ1, µ2⟩ . . . ⟨γn−1, µn⟩⟨γn, µn+1⟩⟩.

We define ∆′ as follows to have the relation ∼ form a bisimulation between A and B:

If p
push(γ)−−−−→α q ∈ ∆, then we add pχ

push(χ)−−−−→α qγ to ∆′ for each χ ∈ Γ⊥.

If p
pop(γ)−−−−→α q ∈ ∆, then we add pγ

pop(χ)−−−−→α qχ to ∆′ for each χ ∈ Γ⊥.

If p
nop−−→α q ∈ ∆, then we add pχ

nop−−→α qχ to ∆′ for each χ ∈ Γ⊥.

If p
reset(c)−−−−→α q ∈ ∆, then we add pχ

reset(c)−−−−→α qχ to ∆′ for each χ ∈ Γ⊥.

If p
c∈?I−−−→α q ∈ ∆, then we add pχ

c∈?I−−−→α qχ to ∆′ for each χ ∈ Γ⊥.

If p
c1−c2∈?I−−−−−−→α q ∈ ∆, then we add pχ

c1−c2∈?I−−−−−−→α qχ to ∆′ for each χ ∈ Γ⊥.

If p
check(γ)−−−−−→α q ∈ ∆, then we add pγ

nop−−→α qγ to ∆′.

If p
check(ϵ)−−−−−→α q ∈ ∆, then we add p⊥

nop−−→α q⊥ to ∆′.

If p
rew(γ)−−−−→α q ∈ ∆, then we add pγ

′ nop−−→α qγ to ∆′ for each γ′ ∈ Γ.

Since we can easily check the relation forms a bisimulation between A and B, we have
L(A) = L(B).

61

4.1.3 Example of 1-TPDA

Let I be a finite set of intervals. Let us consider the following context-free language where
each letter is indexed by an interval of I:

L = {aI1aI2 . . . aInaIn . . . aI2aI1 : Ii ∈ I} .

We can pair aIi and aIi for each i as follows:

aI1 aI2 . . . aIn aIn . . . aI2 aI1

By imposing a timing condition for each pair of aIi and aIi , we consider the following
timed language:

Lex1 ≜
{
(aI1 , r1) . . . (aIn , rn)(aIn , r

′
n) . . . (aI1 , r

′
1) : Ii ∈ I, r′i − ri ∈ Ii

}
.

This timed language requires that the elapsed timed between the corresponding symbols
aIi and aIi belongs to Ii. It is depicted as follows:

(aI1 , r1) (aI2 , r2) . . . (aIn , rn)(aIn , r
′
n) . . . (aI2 , r

′
2) (aI1 , r

′
1)

r′1 − r1 ∈ I1
r′2 − r2 ∈ I2

r′n − rn ∈ In

For example, the following timed word belongs to Lex1 :

(a[2:3], 0.3)(a(0:1), 0.8)(a(0:1), 1.7)(a[2:3], 2.4) ∈ Lex1

because 2.4− 0.3 ∈ [2 : 3] and 1.7− 0.8 ∈ (0 : 1).
The timed language Lex1 is recognized by the following 1-TPDA where its stack al-

phabet is {Z} ∪ I and a single local clock is z:

q0 q1 q2 q3
push(Z)

ϵ

nop

ϵ

pop(Z)

ϵ

push(I)

aI

z ∈? I # pop(I)

aI

(On this diagram, for the sake of simplicity, we write transition rules q1
push(I)−−−−→aI

q1 and

q2
z∈?I # pop(aI)−−−−−−−−−→aI

q2 parameterized by an interval I. Precisely speaking, we should write

q1
push(I1)−−−−−→aI1

q1, q1
push(I2)−−−−−→aI2

q1 and so on for the finite set of intervals I = {I1, I2, . . .}.)

4.1.4 Example of 2-TPDA

We extend the above 1-TPDA language Lex1 as follows:

Lex2 ≜

(aI1 , r1)(bJ1 , r

′
1) . . . (aIn , rn)(bJn , r

′
n)

(aIn , rn)(bJn , r
′
n) . . . (aI1 , r1)(bJ1 , r

′
1)

: Ii ∈ I, Ji ∈ I, ri − ri ∈ Ii, r′i − r′i ∈ Ji

 .

62

aI1 bJ1 aI2 bJ2 . . .aInbJn aInbJn
. . . aI2 bJ2 aI1 bJ1

To accept this language, we consider 2-TPDA that includes two local clocks z1 and z2. We
use z1 and z2 to represent the elapsed times after symbol aIi and bJi appear, respectively.
When we read aIi , we push a new stack frame. After that, when we read bJi , we reset the
clock z2. Following this idea, we define 2-TPDA whose stack alphabet is {Z} ∪ (I × I) as
follows:

q0 q1 q2 q3
push(Z)

ϵ

nop

ϵ

pop(Z)

ϵ

qI1

push(I, I)aI
bJrew(I, J) # reset(z2)

qI2

check(I,) # z1 ∈? I aI

bJ z2 ∈? J # pop(I, J)

A stack symbol (I, J) is pushed on to the stack after we read aI and bJ . To achieve
this, we take the following steps: (i) when we read aI , we push (I, I) and then (ii) when
we read bJ , we rewrite the second component by J . On this diagram, for the sake of
simplicity, we write parameterized transition rules such as push(I, I); therefore, in practice,
we instantiate these transition rules by concrete intervals.

4.1.5 Important Property of MTPDA: Monotonicity in Stack

We define an important notion and property of MTPDA.

Definition 4.1 (Monotonically Decreasing Stack). Let ⟨q, ν, w⟩ be a configuration of an
MTPDA.

The stack w is a monotonically decreasing stack if one of the following holds:

• w is a non-empty stack, w = ⟨γ1, µ1⟩ . . . ⟨γn, µn⟩, and µ1 ≥ µ2 ≥ · · · ≥ µn.

• w is the empty stack.

■
Discrete and timed transitions preserve the monotonicity of monotonically decreasing

stacks.

Proposition 4.4. Let ⟨q, ν, w⟩ be a configuration where w is monotonically decreasing
stack.

• If ⟨q, ν, w⟩ τ−→α ⟨q
′, ν ′, w′⟩, then w′ is also a monotonically decreasing stack.

• If ⟨q, ν, w⟩ δ⇝ ⟨q, ν ′, w′⟩, then w′ is also a monotonically decreasing stack.

Proof. First, we consider timed transitions: ⟨q, ν, ⟨γ1, µ1⟩ . . . ⟨γn, µn⟩⟩
δ⇝ ⟨q, ν+δ, ⟨γ1, µ1+

δ⟩ . . . ⟨γn, µn + δ⟩⟩. We need to show µi + δ ≥ µi+1 + δ. It is clear from µi ≥ µi+1.
Next, we consider the following two types of discrete transitions because our claim is

trivial for the other types of discrete transitions:

(1) : ⟨q, ν, ⟨γ1, µ1⟩ . . . ⟨γn, µn⟩⟩
push(γ)−−−−→α ⟨q, ν, ⟨γ1, µ1⟩ . . . ⟨γn, µn⟩⟨γ,0⟩⟩,

(2) : ⟨q, ν, ⟨γ1, µ1⟩ . . . ⟨γn−1, µn−1⟩⟨γn, µn⟩⟩
reset(z)−−−−→α ⟨q, ν, ⟨γ1, µ1⟩ . . . ⟨γn−1, µn−1⟩⟨γn, µn[z B 0]⟩⟩.

63

For the case (1), it suffices to show µn ≥ 0 and it is clear.
For the case (2), it suffices to show µn−1(z) ≥ µn[z B 0](z) and it is clear.

By this proposition, a stack of a configuration that is reachable from the initial con-
figuration is monotonically decreasing.

Proposition 4.5. Let ⟨q, ν, w⟩ be a configuration.
If ⟨qinit,0, ϵ⟩ ⇒∗ ⟨q, ν, w⟩, then the stack w is a monotonically decreasing stack.

We will use this proposition to show an important lemmas, Lemma 4.8 and 4.10, in
Section 4.4.2.

4.2 Proof Outline of Untiming Theorem of MTPDA

The main result of this chapter is the following (Corollary 4.1 in Section 4.7):

Untiming Theorem of MTPDA.

Let A be an MTPDA. There is a PTA B such that L(A) = L(B).

We prove this by the following step:

Section 4.3 For a given MTPDA, while preserving its language, we remove transition

rules of the form p
x−x′∈?I−−−−−→α q, p

z−z′∈?I−−−−−→α q, p
z∈?I−−−→α q, and p

x−z∈?I−−−−−→α where z, z′ ∈ Z
are local clocks and x, x′ ∈ X are global clocks.

Section 4.4–4.6 For a given MTPDA, while preserving its language, we remove transi-

tion rules of the form p
z−x∈?I−−−−−→α q where z ∈ Z is a local clock and x ∈ X is a global

clock.

Section 4.7 Through Section 4.4–4.6, we can remove transition rules that inspect clocks

except rules of the form p
x∈?I−−−→α q while preserving the language of a given MTPDA.

Alternatively, we can only inspect global clocks by constraints of the form x ∈? I;
therefore, the presence of local clocks does not affect computations of the given
MTPDA. Following this argument, we prove our main result, Corollary 4.1.

4.3 Removing Transition Rules with
Actions x− x′ ∈? I, z − z′ ∈? I, z ∈? I, or x− z ∈? I

Lemma 4.2. Let A be an MTPDA. There is an MTPDA B that satisfies the following:

• L(A) = L(B).

• There are no transition rules of the form p
z∈?I−−−→α q where z is a local clock.

Proof. We assume A = (Q, qinit, F,Σ,Γ,X ,Z,∆) and construct the following MTPDA B:

B = (Q, qinit, F,Σ,Γ,X ∪ {y} ,Z,∆′)

where y is a fresh global clock and ∆′ is defined as follows:

p
z∈?I−−−→α q ∈ ∆

p
reset(y)# z−y∈?I−−−−−−−−−−→α q ∈ ∆′,

p
τ−→α q ∈ ∆ τ ̸≡ z ∈? I

p
τ−→α q ∈ ∆′.

It is clear that L(A) = L(B).

64

It should be noted that the proof of this lemma inserts some transition rules using z−y ∈? I
where z is a local clock and y is a global clock.

Lemma 4.3. Let A be an MTPDA. There is an MTPDA B that satisfies the following:

• L(A) = L(B).

• There are no transition rules of the form p
x−z∈?I−−−−−→α q where x and z are global and

local clocks, respectively.

Proof. We assume A = (Q, qinit, F,Σ,Γ,X ,Z,∆) and construct the following MTPDA B:

B = (Q, qinit, F,Σ,Γ,X ,Z,∆′)

where y is a fresh global clock and ∆′ is defined as follows:

p
x−z∈?I−−−−−→α q ∈ ∆

p
z−x∈?−I−−−−−−→α q ∈ ∆′,

p
τ−→α q ∈ ∆ τ ̸≡ x− z ∈? I

p
τ−→α q ∈ ∆′.

It is clear that L(A) = L(B).

Again, it should be noted that the proof of this lemma inserts transition rules using
z − x ∈? I where z is a local clock and x is a global clock.

Lemma 4.4. Let A be an MTPDA. There is an MTPDA B that satisfies the following:

• L(A) = L(B).

• There are no transition rules of the form p
x1−x2∈?I−−−−−−→α q.

Proof. We can construct an MTPDA B that satisfies the condition in the same construc-
tion as Theorem 2.4 of Chapter 2. Recall that Theorem 2.4 removes diagonal constraints
from a timed automaton while preserving its language.

Lemma 4.5. Let A be an MTPDA. There is an MTPDA B that satisfies the following:

• L(A) = L(B).

• There are no transition rules of the form p
z1−z2∈?I−−−−−−→α q where z1 and z2 are local

clocks.

Proof. Although we can show this in the same way as Theorem 2.4 of Chapter 2, we
construct an MTPDA B that satisfies the condition just for the sake of completeness.

We assume A = (Q, qinit, F,Σ,Γ,X ,Z,∆) and fix an action z1 − z2 ∈ I. We remove
transition rules with the action z1 − z2 ∈ I by constructing the following MTPDA B:

B = (Q, qinit, F,Σ,Γ× {tt,ff} ,X ,Z,∆′).

Before defining ∆′, we define a relation between configurations of A and B:

⟨q, ν, ⟨γ1, µ1⟩ . . . ⟨γn, µn⟩⟩ ∼ ⟨q, ν, ⟨(γ1, b1), µ1⟩ . . . ⟨(γn, bn), µn⟩⟩
def⇐⇒ bi = tt ⇐⇒ µi |= z1 − z2 ∈ I.

We define ∆′ to have the above relation form a bisimulation between A and B:

p
z1−z2∈?I−−−−−−→α q ∈ ∆

p
check(⟨γ,tt⟩)−−−−−−−→α q ∈ ∆′,

p
c1−c2∈?J−−−−−−→α q ∈ ∆ c1 − c2 ∈? J ̸≡ z1 − z2 ∈? I

p
c1−c2∈?J−−−−−−→α q ∈ ∆′,

65

p
c∈?I−−−→α q ∈ ∆

p
c∈?I−−−→α q ∈ ∆′,

p
pop(γ)−−−−→α q ∈ ∆ b ∈ {tt,ff}

p
pop(⟨γ,b⟩)−−−−−−→α q ∈ ∆′,

p
nop−−→α q ∈ ∆

p
nop−−→α q ∈ ∆′,

p
push(γ)−−−−→α q ∈ ∆ 0.0 ∈ I

p
push(⟨γ,tt⟩)−−−−−−−→α q ∈ ∆′,

p
push(γ)−−−−→α q ∈ ∆ 0.0 /∈ I

p
push(⟨γ,ff⟩)−−−−−−−→α q ∈ ∆′,

p
reset(c)−−−−→α q ∈ ∆ c ̸= z1 c ̸= z2

p
reset(c)−−−−→α q ∈ ∆′,

p
reset(z1)−−−−−→α q ∈ ∆ b ∈ {tt,ff}

p
reset(z1)# z2∈?−I# check(⟨γ,b⟩)# rew(⟨γ,tt⟩)−−−−−−−−−−−−−−−−−−−−−−−−−−−→α q ∈ ∆′,

p
reset(z1)−−−−−→α q ∈ ∆ b ∈ {tt,ff}

p
reset(z1)# z2 ̸∈?−I# check(⟨γ,b⟩)# rew(⟨γ,ff⟩)−−−−−−−−−−−−−−−−−−−−−−−−−−→α q ∈ ∆′,

p
reset(z2)−−−−−→α q ∈ ∆ b ∈ {tt,ff}

p
reset(z2)# z1∈?I# check(⟨γ,b⟩)# rew(⟨γ,tt⟩)−−−−−−−−−−−−−−−−−−−−−−−−−→α q ∈ ∆′,

p
reset(z2)−−−−−→α q ∈ ∆ b ∈ {tt,ff}

p
reset(z2)# z1 ̸∈?I# check(⟨γ,b⟩)# rew(⟨γ,ff⟩)−−−−−−−−−−−−−−−−−−−−−−−−−→α q ∈ ∆′.

It can be easily verified that the relation ∼ forms a bisimulation between A and B in
the same argument as the proof of Theorem 2.4.

We summarize the above lemmas as the following lemma.

Lemma 4.6. Let A be an MTPDA. There is an MTPDA B that satisfies the following:

• L(A) = L(B).

• There are no transition rules with actions of the form z ∈? I, x−z ∈? I, x1−x2 ∈? I,
and z1 − z2 ∈? I.

4.4 Predicting MTPDA: Preliminary to Remove z − x ∈? I
We construct a type of MTPDA called predicting MTPDA from an MTPDA.

On predicting MTPDA, instead of pushing a new stack frame onto a stack by push(γ),
we push a frame with a predicting interval J that is either one of I↓, I, or I↑ by push((γ, J)).
Furthermore, instead of popping a stack frame together with a predicting interval J , we
pop a frame by an action x − z ∈? J # pop((γ, J)) while checking whether or not our
prediction J is correct. This is depicted as follows:

⟨p1, ν, w ⟩
push(γ)−−−−→α ⟨p2, ν,

⟨(γ, J),0⟩
w ⟩ →∗ ⟨p3, ν ′,

⟨(γ, J), µ⟩
w′ ⟩ z−x∈?J# pop((γ,J))−−−−−−−−−−−−→ ⟨p4, ν ′, w′ ⟩.

We nondeterministically push push((γ, I↓)), push((γ, I)), and push((γ, I↑)); therefore, the
constructed predicting MTPDA accepts the language of the original MTPDA (Lemma 4.7).

Predicting MTPDA is useful to analyze the structure of stack and we obtain an im-
portant property Lemma 4.8. On the basis of the construction of predicting MTPDA and
this lemma, in the following two sections, we will remove transitions with z − x ∈? I.

66

4.4.1 Predicting MTPDA

Let A = (Q, qinit, F,Σ,Γ,X ,Z,∆) be an MTPDA. From the MTPDA, we construct the
following predicting MTPDA B:

B = (Q, qinit, F,Σ,Γ× {I↓, I, I↑} ,X ,Z,∆′).

The set of transition rules ∆′ is defined as follows:

p
push(γ)−−−−→α q ∈ ∆ J ∈ {I↓, I, I↑}

p
push(γ,J)−−−−−−→α q ∈ ∆′,

p
pop(γ)−−−−→α q ∈ ∆

p
check(γ,J)# z−x∈?J# pop(γ,J)−−−−−−−−−−−−−−−−−−−→α q ∈ ∆′,

p
τ−→α q ∈ ∆ τ ̸= push(γ) τ ̸= pop(γ)

p
τ−→α q ∈ ∆′.

Remark: For the sake of simplicity, we simply write push(γ, J), pop(γ, J), check(γ, J),
and rew(γ, J) instead of push((γ, J)), pop((γ, J)), check((γ, J)), and rew((γ, J)), respec-
tively.

We can show the obtained MTPDA B is equivalent to the original MTPDA A.

Lemma 4.7. L(A) = L(B) and Lϵ(A) = Lϵ(B).

Proof. We show the following relation ∼ on the configurations of A and B forms a bisim-
ulation between A and B:

⟨q, ν, ⟨γ1, µ1⟩⟨γ2, µ2⟩ . . . ⟨γn, µn⟩⟩ ∼ ⟨q, ν, ⟨(γ1, J1), µ1⟩⟨(γ2, J2), µ2⟩ . . . ⟨(γn, Jn), µn⟩⟩.

First, to show L(A) ⊆ L(B) and Lϵ(A) ⊆ Lϵ(B), we consider the following diagram:

⟨p, ν, wA⟩
τ−→α ⟨q, ν

′, w′A⟩

∼

⟨q, ν ′, w′B⟩
=⇒

⟨p, ν, wA⟩
τ−→α ⟨q, ν ′, w′A⟩

∼ ∼

⟨p, ν, wB⟩
τ ′−→α ⟨q, ν

′, w′B⟩.

Although we also need the same diagram for timed transitions, we omit it because the
diagram immediately holds.

We proceed by case analysis on τ . Here we only consider the case τ = pop(γ). The
other cases are trivial from the definition. Let us consider the following diagram:

⟨p, ν, w⟨γ, µ⟩⟩ pop(γ)−−−−→α ⟨q, ν, w⟩

∼

⟨q, ν, wB⟩.

By Proposition 4.1, there is an interval J ∈ {I↓, I, I↑} such that µ(z)−ν(x) ∈ J ; therefore,
we have the following and we can show L(A) ⊆ L(B) and Lϵ(A) ⊆ Lϵ(B).

⟨p, ν, w⟨γ, µ⟩⟩ pop(γ)−−−−→α ⟨q, ν, w⟩

∼ ∼

⟨p, ν, w⟨(γ, J), µ⟩⟩ check(γ,J)# z−x∈?J# pop(γ,J)−−−−−−−−−−−−−−−−−−−→α ⟨q, ν, wB⟩.

Next, to show L(B) ⊆ L(A) and Lϵ(B) ⊆ Lϵ(A), we consider the following diagram:

⟨p, ν, wA⟩∼

⟨p, ν, wB⟩
τ−→α ⟨q, ν

′, w′B⟩
=⇒

⟨p, ν, wA⟩
τ ′−→α ⟨q, ν ′, w′A⟩

∼ ∼

⟨p, ν, wB⟩
τ−→α ⟨q, ν

′, w′B⟩.

67

We also need the same diagram for timed transitions ⇝. Since we can easily show these
diagrams easily by case analysis on τ , we omit the proof.

4.4.2 Stack Structure of Predicting MTPDA without reset(z)

Let A be an MTPDA such that it does not have a transition rule including an action
reset(z). Here we show the following important properties of the predicting MTPDA
obtained from A.

Lemma 4.8. Let B be the predicting MTPDA obtained from A and π be an accepting
computation π = ⟨qinit,0, ϵ⟩ ⇒∗ ⟨qF , ν ′, ϵ⟩.

For the computation π, we consider a predicting stack w that appears in π, i.e.,

π = ⟨qinit,0, ϵ⟩ ⇒∗ ⟨q, ν, w⟩ ⇒∗ ⟨qF , ν ′, ϵ⟩.

We have w ∈ Υ(I↑)
∗ ·Υ(I)∗ ·Υ(I↓)

∗ where Υ is defined as follows:

Υ(J) ≜ (Γ× {J})× (Z → R≥0).

To show this lemma, first we show the following.

Lemma 4.9. Let C be an MTPDA. We consider a computation from the initial configu-
ration

⟨qinit,0, ϵ⟩ ⇒∗ ⟨p, ν, . . . ⟨γm, µm⟩ . . . ⟨γn, µn⟩⟩ =⇒
⋆

∗ ⟨p′, ν ′, . . . ⟨γm, µ′m⟩⟩

that satisfies the following conditions

• among =⇒
⋆

∗, there are no configurations whose stack height is less than m;

(alternatively, among =⇒
⋆

∗, the frame including γm have not been popped.)

• Furthermore, there are no transitions that include reset(z) in =⇒
⋆

∗.

For such a computation, we have µn(z)− ν(x) ≤ µ′m(z)− ν ′(x).

Proof. By Proposition 4.5, we have µn ≤ µm. Let δ be the elapsed time among =⇒
⋆

∗. Since

our assumption that there are no transition rules with reset(z), µ′m(z) = µm(z) + δ holds.
For the global clock x, we have ν ′(x) ≤ ν(x)+ δ. Combining them, we have the following:

µn(z)− ν(z) ≤ µm(z)− ν(z)
= (µm(z) + δ)− (ν(x) + δ)
≤ µ′m(z)− ν ′(x).

Now we prove Lemma 4.8 based on the above lemma.

Proof of Lemma 4.8. We decompose π as follows:

⟨qinit,0, ϵ⟩ ⇒∗
⟨q, ν, w = ⟨(γ1, J1), µ1⟩ . . . ⟨(γi, Ji), µi⟩⟨(γj , Jj), µj⟩ . . . ⟨(γk, Jk), µk⟩⟩ ⇒∗

⟨q1, ν1, ⟨(γ1, J1), µ′1⟩ . . . ⟨(γi, Ji), µ′i⟩⟨(γj , Jj), µ′j⟩⟩
pop(γj)−−−−→α

⟨q2, ν2, ⟨(γ1, J1), µ′1⟩ . . . ⟨(γi, Ji), µ′i⟩⟩ =⇒⋆
∗

⟨q3, ν3, ⟨(γ1, J1), µ′′1⟩ . . . ⟨(γi, Ji), µ′′i ⟩⟩
pop(γi)−−−−→α′ ⟨q4, ν4, ⟨(γ1, J1), µ′′1⟩ . . .⟩ ⇒∗ ⟨qF , ν ′, ϵ⟩.

Since there are no transition rules with reset(z) in the MTPDA A, we can apply Lemma 4.9

and have µ′j(z)−ν1(x) ≤ µ′′i (z)−ν3(x). Furthermore, the presence of the transitions
pop(γj)−−−−→α

68

and
pop(γi)−−−−→α implies µ′j(z)− ν1(x) ∈ Jj and µ′′i (z)− ν3(x) ∈ Ji, respectively. Therefore, we

have Jj ⊑ Ji.
This argument states J1 ⊒ J2 ⊒ · · · ⊒ Ji ⊒ Jj ⊒ · · · ⊒ Jk and therefore w ∈

Υ(I↑)
∗ ·Υ(I)∗ ·Υ(I↓)

∗.

Lemma 4.9 also leads to the following useful property.

Lemma 4.10. Let us consider the following computation of the MTPDA A:

⟨qinit,0, ϵ⟩ ⇒∗

⟨q1, ν, . . . ⟨γh, µh⟩ . . . ⟨γi, µi⟩ . . . ⟨γj , µj⟩⟩
pop(γj)−−−−→α

⟨q2, ν, . . . ⟨γh, µh⟩ . . . ⟨γi, µi⟩ . . .⟩ =⇒
⋆

∗

⟨q3, ν ′, . . . , ⟨γh, µ′h⟩ . . . ⟨γi, µ′i⟩⟩ =⇒⋆
∗ ⟨q4, ν ′′, . . . ⟨γh, µ′′h⟩⟩

pop(γh)−−−−−→α′ ⟨q5, ν ′′, . . .⟩.

If µj(z)− ν(x) ∈ J and µ′′h(z)− ν ′′(x) ∈ J , then µ′i(z)− ν ′(x) ∈ J .

Proof. By Lemma 4.9, we have µj(z)−ν(x) ≤ µ′i(z)−ν ′(x) ≤ µ′′h(z)−ν ′′(x). The presence

of
pop(γj)−−−−→α and

pop(γh)−−−−−→α′ implies µj(z)−ν(x) ∈ J and µ′′h(z)−ν ′′(x) ∈ J , respectively. Now,
Proposition 4.1 implies µ′i(z)− ν ′(x) ∈ J .

4.4.3 Example: Removing z − x ∈? I based on Predicting MTPDA

Lemma 4.8 and 4.10 imply an important idea to remove z − x ∈? I. By Lemma 4.8, any
stack w appearing in a computation of the MTPDA A, which does not contain reset(z),
takes the following form:

w = ⟨(γ1, I↑), µ1⟩ . . . ⟨(γ, I↑), µ⟩ . . . ⟨(γℓ, I↑), µℓ⟩
⟨(γℓ+1, I), µℓ+1⟩ . . . ⟨(γn, I), µn⟩
⟨(γn+1, I↓), µn+1⟩ . . . ⟨(γm, I↓), µm⟩.

By Lemma 4.10, we only need the exact values of the local clock z of the above underlined
six frames. Indeed, for example, we do not need the exact value of z in the frame ⟨(γ, I↑), µ⟩
because the frame automatically satisfies z − x ∈? I if we can safely pop the frames
⟨(γ1, I↑), µ1⟩ and ⟨(γℓ, I↑), µℓ⟩ by Lemma 4.10. On the basis of this intuition, we prepare
extra six global clocks that reflect the values of the above six underlined frames and replace
z − x ∈? I with a diagonal constraint between global clocks.

Let us consider the following timed language:

L =
{
⟨a, t1⟩ . . . ⟨a, tn⟩⟨♯, t⟩⟨a, t′n⟩ . . . ⟨a, t′1⟩ : t′i − ti ∈ (1 : 2)

}
.

The following 1-TPDA A recognizes this language by the empty stack (Lϵ(A) = L):

q0 q1

push(⋆)

a
nop

♯

z ∈? (1 : 2) # pop(⋆)

a

For the sake of simplicity, we do not remove the action z ∈? (1 : 2) by Lemma 4.2
and directly treat it. By Lemma 4.8, a stack of the predicting MTPDA obtained from the
1-TPDA forms the following:⟨(
γ1, [2 : ω)

)
, µ1

⟩ ⟨(
γ2, [2 : ω)

)
, µ2

⟩
. . .

⟨(
γℓ−1, [2 : ω)

)
, µℓ−1

⟩ ⟨(
γℓ, [2 : ω)

)
, µℓ

⟩⟨(
γℓ+1, (1 : 2)

)
, µℓ+1

⟩ ⟨(
γℓ+2, (1 : 2)

)
, µℓ+2

⟩
. . .

⟨(
γm−1, (1 : 2)

)
, µm−1

⟩ ⟨(
γm, (1 : 2)

)
, µm

⟩⟨(
γm+1, (-ω : 1]

)
, µm+1

⟩ ⟨(
γm+2, (-ω : 1]

)
, µm+2

⟩
. . .

⟨(
γn−1, (-ω : 1]

)
, µn−1

⟩ ⟨(
γn, (-ω : 1]

)
, µn

⟩
.

69

Furthermore, by Lemma 4.10, we need six clocks x▲[2:ω), x
▼
[2:ω), x

▲
(1:2), x

▼
(1:2), x

▲
(-ω:1], and

x▼(-ω:1] where x
▲
[2:ω) is the clock for the frame

⟨(
γ1, [2 : ω)

)
, µ1

⟩
and x▼[2:ω) is the clock for the

frame
⟨(
γℓ, [2 : ω)

)
, µℓ

⟩
and so on. To distinguish the frame ⟨(γ1, [2 : ω)), µ1⟩ associated

with the clock x▲[2:ω) from the other frames, we add a mark ·▲ as ⟨(γ1, [2 : ω)▲), µ1⟩.
Following this idea, the above stack is modified as follows:⟨(

γ1, [2 : ω)▲
)
, µ1

⟩ ⟨(
γ2, [2 : ω)

)
, µ2

⟩
. . .

⟨(
γℓ−1, [2 : ω)

)
, µℓ−1

⟩ ⟨(
γℓ, [2 : ω)▼

)
, µℓ

⟩⟨(
γℓ+1, (1 : 2)▲

)
, µℓ+1

⟩ ⟨(
γℓ+2, (1 : 2)

)
, µℓ+2

⟩
. . .

⟨(
γm−1, (1 : 2)

)
, µm−1

⟩ ⟨(
γm, (1 : 2)▼

)
, µm

⟩⟨(
γm+1, (-ω : 1]▲

)
, µm+1

⟩ ⟨(
γm+2, (-ω : 1]

)
, µm+2

⟩
. . .

⟨(
γn−1, (-ω : 1]

)
, µn−1

⟩ ⟨(
γn, (-ω : 1]▼

)
, µn

⟩
.

Now we define a predicting MTPDA that recognizes L by the empty stack:

q0 q1 q2 q3 q4
push▲([2 : ω))

a

push▲((1 : 2))

a
push▲((-ω : 1])

a

push▲((1 : 2))

a

push▲((-ω : 1])

a

push▲((-ω : 1])

a

nop

♯
nop

♯

nop

♯

τ

a

push▼([2 : ω))

a

push▼((1 : 2))

a

push▼((-ω : 1])

a

where

push▲(J) ≜ push(J) # reset(x▲J),

push▼(J) ≜ check(J▲) # push(J▼) # reset(x▼J) + check(J▼) # rew(J) # push(J▼) # reset(x▼J),
pop▲(J) ≜ check(J▲) # x▲J ∈? J # pop(J▲),

pop▼(J) ≜ check(J▼) # x▼J ∈? J # pop(J▼),

τ = pop▲([2 : ω)) + pop▲((1 : 2)) + pop▲((-ω : 1])
+ pop▼([2 : ω)) + pop▼((1 : 2)) + pop▼((-ω : 1])
+ pop([2 : ω)) + pop((1 : 2)) + pop((-ω : 1]).

It should be noted that there are no transition rules with z ∈? (1 : 2); therefore, we do
not inspect any local clocks.

Let us consider an acceptable computation of the predicting MTPDA (in the following,
we only write clocks that are assigned to some frame):

⟨q0, ∅, ϵ⟩
0.0⇝ push▲([2:ω))−−−−−−−−→a

⟨q1,
{
x▲[2:ω) 7→ 0.0

}
, ⟨[2 : ω)▲, 0.0⟩⟩ 0.3⇝ push▲((1:2))−−−−−−−→a

⟨q2,
{
x▲[2:ω) 7→ 0.3, x▲(1:2) 7→ 0.0

}
, ⟨[2 : ω)▲, 0.3⟩⟨(1 : 2)▲, 0.0⟩⟩ 0.1⇝ push▼((1:2))−−−−−−−→a

⟨q2,
{
x▲[2:ω) 7→ 0.4, x▲(1:2) 7→ 0.1, x▼(1:2) 7→ 0.0

}
, ⟨[2 : ω)▲, 0.4⟩⟨(1 : 2)▲, 0.1⟩⟨(1 : 2)▼, 0.0⟩⟩ 0.2⇝ push▼((1:2))−−−−−−−→a

⟨q2,
{
x▲[2:ω) 7→ 0.6, x▲(1:2) 7→ 0.3, x▼(1:2) 7→ 0.0

}
, ⟨[2 : ω)▲, 0.6⟩⟨(1 : 2)▲, 0.3⟩⟨(1 : 2), 0.2⟩⟨(1 : 2)▼, 0.0⟩⟩ 0.0⇝ nop−−→#

⟨q4,
{
x▲[2:ω) 7→ 0.6, x▲(1:2) 7→ 0.3, x▼(1:2) 7→ 0.0

}
, ⟨[2 : ω)▲, 0.6⟩⟨(1 : 2)▲, 0.3⟩⟨(1 : 2), 0.2⟩⟨(1 : 2)▼, 0.0⟩⟩ 1.1⇝ τ−→a

⟨q4,
{
x▲[2:ω) 7→ 1.7, x▲(1:2) 7→ 1.4

}
, ⟨[2 : ω)▲, 1.7⟩⟨(1 : 2)▲, 1.4⟩⟨(1 : 2), 1.3⟩⟩ 0.1⇝ τ−→a

⟨q4,
{
x▲[2:ω) 7→ 1.8, x▲(1:2) 7→ 1.5

}
, ⟨[2 : ω)▲, 1.8⟩⟨(1 : 2)▲, 1.5⟩⟩ 0.1⇝ τ−→a

⟨q4,
{
x▲[2:ω) 7→ 1.9

}
, ⟨[2 : ω)▲, 1.9⟩⟩ 0.05⇝ τ−→a ⟨q4, ∅, ϵ⟩.

70

It is important that we only require three global clocks x▲[2:ω), x
▲
(1:2), and x

▼
(1:2) and do not

need the value of the local clock in the frame ⟨(1 : 2), ⟩ when we pop the frame.
Next, let us consider an unacceptable computation:

⟨q0, ∅, ϵ⟩
0.0⇝ push▲((1:2))−−−−−−−→a

⟨q2,
{
x▲(1:2) 7→ 0.0

}
, ⟨(1 : 2)▲, 0.0⟩⟩ 1.0⇝ push▲((1:2))−−−−−−−→a

⟨q2,
{
x▲(1:2) 7→ 1.0, x▼(1:2) 7→ 0.0

}
, ⟨(1 : 2)▲, 1.0⟩⟨(1 : 2)▼, 0.0⟩⟩ 0.1⇝ push▲((1:2))−−−−−−−→a

⟨q2,
{
x▲(1:2) 7→ 1.1, x▼(1:2) 7→ 0.0

}
, ⟨(1 : 2)▲, 1.1⟩⟨(1 : 2), 0.1⟩⟨(1 : 2)▼, 0.0⟩⟩ 1.6⇝ nop−−→♯

⟨q4,
{
x▲(1:2) 7→ 2.7, x▼(1:2) 7→ 1.6

}
, ⟨(1 : 2)▲, 2.7⟩⟨(1 : 2), 1.7⟩⟨(1 : 2)▼, 1.6⟩⟩ 0.1⇝ τ−→a

⟨q4,
{
x▲(1:2) 7→ 2.8

}
, ⟨(1 : 2)▲, 2.8⟩⟨(1 : 2), 1.8⟩⟩ 1.1⇝

⟨q4,
{
x▲(1:2) 7→ 3.9

}
, ⟨(1 : 2)▲, 3.9⟩⟨(1 : 2), 2.9⟩⟩ τ−→a

⟨q4,
{
x▲(1:2) 7→ 3.9

}
, ⟨(1 : 2)▲, 3.9⟩⟩ 1.5⇝ τ−→a STUCK.

The following last part is important:

⟨q2,
{
x▲(1:2) 7→ 3.9

}
, ⟨(1 : 2)▲, 3.9⟩⟨(1 : 2), 2.9⟩⟩ τ−→a

⟨q2,
{
x▲(1:2) 7→ 3.9

}
, ⟨(1 : 2)▲, 3.9⟩⟩ 1.5⇝ τ−→a STUCK.

Since we do not record the value of the local clock of the frame ⟨(1 : 2), ⟩, we cannot check
z ∈? (1 : 2) and pop the frame wrongly. However, it is not critical; because we can safely
reject this computation when we try to pop the frame ⟨(1 : 2)▲, ⟩.

On the basis of this construction, in the next section, we will remove a transition
rule with z − x ∈ I from an MTPDA without reset(z). Furthermore, we generalize the
construction for MTPDA that allows reset(z).

4.5 Removing Transition Rules with z−x ∈? I from MTPDA
without reset(z)

Let A be an MTPDA and z − x ∈? I be an action of A. Furthermore, we assume that A
does not have a transition rule with reset(z). In the present section, by the technique of
predicting MTPDA, we will construct an MTPDA C such that L(A) = L(C) and C does
not have transition rules with z − x ∈? I.

We denote the MTPDA A as A = (Q, qinit, F,Σ,Γ,X ,Z,∆) and construct the following
predicting MTPDA B obtained from the MTPDA A and interval I:

B = (Q, qinit, F,Σ,Γ× {I↓, I, I↑} ,X ,Z,∆B).

4.5.1 Predicting MTPDA C not having z − x ∈? I

We construct the following MTPDA C that has no transitions with z − x ∈ I:

C = (Q, qinit, F,Σ,ΓC ,XC ,Z,∆C)

where

• ΓC ≜ Γ× {J▲, J, J▼ : J ∈ {I↓, I, I↑}},

• XC ≜ X ∪ {x▲J , x▼J : J ∈ {I↓, I, I↑}}.

71

On the basis of Lemma 4.8 and the explanation of Section 4.4.3, we consider stacks of the
following form:

⟨(γ1, I▲↑), µ1⟩ ⟨(γ2, I↑), µ2⟩ . . . ⟨(γℓ−1, I↑), µℓ−1⟩ ⟨(γℓ, I▼↑), µℓ⟩
⟨(γℓ+1, I

▲), µℓ+1⟩ ⟨(γℓ+2, I), µℓ+2⟩ . . . ⟨(γn−1, I), µn−1⟩ ⟨(γn, I▼), µn⟩
⟨(γn+1, I

▲
↓), µn+1⟩ ⟨(γn+2, I↓), µn+2⟩ . . . ⟨(γm−1, I↓), µm−1⟩ ⟨(γm, I▼↓), µm⟩

We prepare six clocks x▲J , x
▼
J for J ∈ {I↓, I, I↑} to remember the value of the local clock z

in the frame with J▲ or J▼, respectively. Following these ideas, we now define the set of
transition rules ∆C as follows.

Case p
push(γ,J)−−−−−−→α q ∈ ∆B: We add transition rules to ∆C as follows:

• The following rule corresponds to pushing a frame onto the empty stack:

p
check(ϵ)# push(γ,J▲)# reset(x▲J)−−−−−−−−−−−−−−−−−−−→α q.

• The following rules correspond to pushing a frame onto the stack whose top symbol
has J :

p
check(γ′,J▲)# τ−−−−−−−−−→α q, p

check(γ′,J)# τ−−−−−−−−→α q, p
check(γ′,J▼)# rew(J)# τ−−−−−−−−−−−−−−→α q

where τ = push(γ, J▼) # reset(x▼J). The first rule induces a transition of the form
wJ▲ → wJ▲J▼, the second rule induces a transition of the form wJ▲J → wJ▲JJ▼,
and the third rule induces a transition of the form wJ▲JJ▼ → wJ▲JJJ▼.

• The following rules correspond to pushing a frame onto the stack whose top symbol
has K and J ⊏ K:

p
check(γ′,K▲)# τ−−−−−−−−−−→α q, p

check(γ′,K)# τ−−−−−−−−−→α q, p
check(γ′,K▼)# τ−−−−−−−−−−→α q

where τ = push(γ, J▲) # reset(x▲J).

Case p
check(γ,J)# z−x∈?J# pop(γ,J)−−−−−−−−−−−−−−−−−−−→α q ∈ ∆B: We add transition rules to ∆C as follows:

p
check(γ,J▲)# x▲J−x∈?J# pop(γ,J▲)
−−−−−−−−−−−−−−−−−−−−−→α q, p

check(γ,J▼)# x▼J−x∈?J# pop(γ,J▼)
−−−−−−−−−−−−−−−−−−−−−→α q, p

check(γ,J)# pop(γ,J)−−−−−−−−−−−−−→α q.

Compared to the original rule, the last rule does not check the value of the local clock z.
This, however, does not cause any trouble by Lemma 4.10.

Case p
z−x∈?I−−−−−→α q ∈ ∆B: For the action to be removed, if some global clock is assigned

to the stack top frame, then we use it to check z − x ∈? I. Otherwise, if the stack top
frame has the prediction I, then we permit a transition. Therefore, we add the following
transition rules:

p
check(γ,J▲)# x▲J−x∈?I−−−−−−−−−−−−−−→α q, p

check(γ,J▼)# x▼J−x∈?I−−−−−−−−−−−−−−→α q, p
check(γ,I)−−−−−−→α q.

Other Rules p
τ−→α q ∈ ∆B: For the rules other than those above, we add the same rules.

72

4.5.2 Properties of Predicting MTPDA C

In order to show the predicting MTPDA C can simulate the predicting MTPDA B, we
prove some important properties of C. The following lemma states that a global clock
associated with a marked frame correctly records the value of the local clock z of the
marked frame.

Lemma 4.11. Let us consider the following computations:

⟨qinit,0, ϵ⟩ ⇒∗ ⟨q1, ν1, w1 ⟨(γ1, J▲), µ1⟩⟩,
⟨qinit,0, ϵ⟩ ⇒∗ ⟨q2, ν2, w2 ⟨(γ2, J▼), µ2⟩⟩.

For these computations, we have µ1(z) = ν1(x
▲
J) and µ2(z) = ν2(x

▼
J).

Proof. To show this, we introduce a predicate for a configuration. A configuration ⟨q, ν, w⟩
is correctly storing local clocks, CS(⟨q, ν, w⟩), if the following conditions are satisfied:

• if there is a stack frame of the form ⟨(γ, J▲), µ⟩ in the stack w, then ν(x▲J) = µ(z);

• if there is a stack frame of the form ⟨(γ, J▼), µ⟩ in the stack w, then ν(x▼J) = µ(z).

We can easily verify that the predicate CS is an invariant for the transitions → and
δ⇝.

Since the initial configuration ⟨qinit,0, ϵ⟩ satisfies the predicate, the statement is derived
because of CS (⟨q1, ν1, w1 ⟨(γ1, J▲), µ1⟩⟩) and CS (⟨q2, ν2, w2 ⟨(γ2, J▼), µ2⟩⟩).

The following lemma states that the value of the local clock z of a non-marked frame
⟨(γ, J), µ⟩ belongs to J while the frame is located top on a stack.

Lemma 4.12. Let us consider the following computation:

⟨qinit,0, ϵ⟩ ⇒∗ ⟨q, ν, w ⟨(γ, J), µ⟩⟩ ⇒∗ ⟨qF , νF , ϵ⟩.

For this computation, we have µ(z)− ν(x) ∈ J .

To prove this lemma, we need some additional lemmas. First, we show a lemma similar
to Lemma 4.8. A stack w of the predicting MTPDA C is well-formed if it satisfies the
following:

w ∈ F(I↑) · F(I) · F(I↓)
where F is defined as follows:

F(J) ≜ {ϵ} ∪ Υ(J▲) ·Υ(J)∗ ∪ Υ(J▲) ·Υ(J)∗ ·Υ(J▼).

Recall that Υ(J) is defined as Υ(J) ≜ (Γ× {J})× (Z → R≥0).

Proposition 4.6. Let us consider a transition ⟨q, ν, w⟩ ⇒ ⟨q′, ν ′, w′⟩. If w is well-formed,
then w′ is also well-formed.

Proof. We proceed by case analysis on the transition. Here we consider transitions with
push and pop because all the other transition rules do not change the symbols of a stack
and the statement clearly holds.

First, we consider the case of a transition with push; there are the following types of
transitions (for the sake of simplicity, we only write stack symbols):

ϵ → (γ, J▲),
w(γ, J▲) → w(γ, J▲)(γ′, J▼),
w(γ, J) → w(γ, J)(γ′, J▼),
w(γ, J▼) → w(γ, J)(γ′, J▼),
w(γ,K▲) → w(γ,K▲)(γ′, J▲), (J ⊏ K)
w(γ,K) → w(γ,K)(γ′, J▲), (J ⊏ K)
w(γ,K▼) → w(γ,K▼)(γ′, J▲). (J ⊏ K)

73

It is clear that the well-formedness is preserved for each case.
Next, we consider the case of a transition with pop; there are the following types of

transitions:
w(γ, J▲)→ w, w(γ, J▼)→ w, w(γ, J)→ w.

Again, it is clear that the well-formedness is preserved for each case.

This proposition immediately derives that any reachable configuration, which can be
reached from the initial configuration, is well-formed.

Lemma 4.13. Let us consider the following reachable configuration:

⟨qinit,0, ϵ⟩ ⇒∗ ⟨q, ν, w⟩.

The stack w is well-formed.

Proof. From the definition, the empty stack ϵ is well-formed; therefore, by repeatedly
applying Proposition 4.6, we know w is well-formed.

Furthermore, this lemma leads to the following technical property.

Lemma 4.14. Let us consider the following computation:

π = ⟨qinit,0, ϵ⟩ ⇒∗ ⟨q′, ν ′, w⟨(γ, J), µ′⟩⟩.

We can decompose the above computation π as follows:

⟨qinit,0, ϵ⟩ ⇒∗

⟨p, ν, . . . ⟨(γi, J▲), µi⟩ . . . ⟨(γ, J), µ⟩ . . . ⟨(γj , J▼), µj⟩⟩
check(γj ,J▼)# x▼J−x∈?J# pop(γj ,J▼)
−−−−−−−−−−−−−−−−−−−−−−→α

⟨q, ν, . . . ⟨(γi, J▲), µi⟩ . . . ⟨(γ, J), µ⟩ . . .⟩ ⇒∗
⟨q′, ν ′, . . . ⟨(γi, J▲), µ′i⟩ . . . ⟨(γ, J), µ′⟩⟩ = ⟨q′, ν ′, w⟨(γ, J), µ′⟩⟩.

Proof. For the sake of simplicity, we omit valuations on the local clocks of a stack in this
proof. By Lemma 4.13, the computation π must take the following form:

π = ⟨qinit,0, ϵ⟩ ⇒∗ ⟨q′, ν ′, . . . (γi, J▲) . . . (γ, J)⟩.

The following transition rule can only make the frame ⟨(γ, J), µ′⟩ by our construction of
the predicting MTPDA C:

p
check(γ,J▼)# rew(γ,J)# push(γ,J▼)# reset(x▼J)−−−−−−−−−−−−−−−−−−−−−−−−−−−−→α q.

Therefore, we can again refine the computation π as follows:

π =

⟨qinit,0, ϵ⟩ ⇒∗

⟨q′′, ν ′′, . . . (γi, J▲) . . . (γ, J▼)⟩
check(γ,J▼)# rew(γ,J)# push(γ,J▼)# reset(x▼J)−−−−−−−−−−−−−−−−−−−−−−−−−−−−→α

⟨q′′′, ν ′′′, . . . (γi, J▲) . . . (γ, J)(γ′, J▼)⟩ =⇒
♯

∗

⟨q′, ν ′, . . . (γi, J▲) . . . (γ, J)⟩.

Let us focus on the sequence of transitions =⇒
♯

∗. To reach ⟨q′, ν ′, . . . (γi, J▲) . . . (γ, J)⟩ from

⟨q′′′, ν ′′′, . . . (γi, J▲) . . . (γ, J)(γ′, J▼)⟩, we must eventually pop a stack frame associated
with J▼. Therefore, we can refine =⇒

♯

∗ as follows:

⟨q′′′, ν ′′′, . . . (γi, J▲) . . . (γ, J)(γ′, J▼)⟩ ⇒∗

⟨p, ν, . . . (γi, J▲) . . . (γ, J) . . . (γj , J▼)⟩
check(γj ,J▼)# x▼J−x∈?J# pop(γj ,J▼)
−−−−−−−−−−−−−−−−−−−−−−→α′

⟨p, ν, . . . (γi, J▲) . . . (γ, J) . . .⟩ ⇒∗ ⟨q′, ν ′, . . . (γi, J▲) . . . (γ, J)⟩.

74

Combining these transitions, we finally have the adequate decomposition:

⟨qinit,0, ϵ⟩ ⇒∗

⟨p, ν, . . . (γi, J▲) . . . (γ, J) . . . (γj , J▼)⟩
check(γj ,J▼)# x▼J−x∈?J# pop(γj ,J▼)
−−−−−−−−−−−−−−−−−−−−−−→α′

⟨p, ν, . . . (γi, J▲) . . . (γ, J) . . .⟩ ⇒∗ ⟨q′, ν ′, . . . (γi, J▲) . . . (γ, J)⟩.

Now we go back to and prove Lemma 4.12 based on Lemma 4.14.

Lemma 4.12. Let us consider the following computation:

⟨qinit,0, ϵ⟩ ⇒∗ ⟨q, ν, w ⟨(γ, J), µ⟩⟩ ⇒∗ ⟨qF , νF , ϵ⟩.

For this computation, we have µ(z)− ν(x) ∈ J .

Proof. Applying Lemma 4.14 to the computation, we have the following decomposition:

⟨qinit,0, ϵ⟩ ⇒∗

⟨p, ν, . . . ⟨(γi, J▲), µi⟩ . . . ⟨(γ, J), µ⟩ . . . ⟨(γj , J▼), µj⟩⟩
check(γj ,J▼)# x▼J−x∈?J# pop(γj ,J▼)
−−−−−−−−−−−−−−−−−−−−−−→α

⟨p′, ν, . . . ⟨(γi, J▲), µi⟩ . . . ⟨(γ, J), µ⟩ . . .⟩ ⇒∗

⟨q′, ν ′′, . . . ⟨(γi, J▲), µ′′i ⟩⟩
check(γi,J▲)# x▲J−x∈?J# pop(γi,J▲)
−−−−−−−−−−−−−−−−−−−−−−→α′

⟨q′, ν ′′, . . .⟩ ⇒∗ ⟨qF , νF , ϵ⟩.

From the decomposition, we know ν(x▼J)− ν(x) ∈ J and ν ′′(x▲J)− ν ′′(x) ∈ J . These and
Lemma 4.11 lead to µj(z) − ν(x) ∈ J and µ′′i (z) − ν ′′(x) ∈ J . Finally, from the same
argument as Lemma 4.10, we have µ(z)− ν(x) ∈ J .

4.5.3 Equivalence of the predicting MTPDA B and C

In order to show L(B) = L(C), we define the following relation between configurations of
B and C:

⟨qB, ν, wB⟩ ≈ ⟨qC , η, wC⟩
def⇐⇒ qB = qC ∧ ν = η ↾ X ∧ wB = ψ(wC)

where ψ : Γ∗C → (Γ× {I↓, I, I↑})∗ is a projection defined as follows:

ψ((γ, J)) = (γ, J), ψ((γ, J▲)) = (γ, J), ψ((γ, J▼)) = (γ, J).

To show Lϵ(B) = Lϵ(C), we first show Lϵ(C) ⊆ Lϵ(B) and then show Lϵ(B) ⊆ Lϵ(C).

Lemma 4.15. Lϵ(C) ⊆ Lϵ(B).

Proof. Let d be a configuration of C such that:

⟨qinit,0, ϵ⟩ ⇒∗C d⇒∗C ⟨qF , ηF , ϵ⟩.

By induction on the length of the sequence of transitions ⟨qinit,0, ϵ⟩ ⇒∗C d, we show the
following:

⟨qinit,0, ϵ⟩
δ1⇝ ∃c1

τ1−→α1

∃c′1
δ2⇝ · · · δn⇝ ∃cn

τn−−→αn

∃c′n

≈ ≈ ≈ ≈ ≈

⟨qinit,0, ϵ⟩
δ1⇝ d1

τ ′1−→α1
d′
1

δ2⇝ · · · δn⇝ dn
τ ′n−−→αn

d′
n = d⇒∗ ⟨qF , ηF , ϵ⟩.

Since this is clear about the base case ⟨qinit,0, ϵ⟩ ⇒0
C ⟨qinit,0, ϵ⟩, we consider the induction

step by case analysis.

75

Case timed transition
δ⇝. We consider the following case:

⟨qinit,0, ϵ⟩ ⇒∗B ⟨p, ν, w⟩

≈ ≈

⟨qinit,0, ϵ⟩ ⇒∗C ⟨q, η, w′⟩ δ⇝ ⟨q, η + δ, w′ + δ⟩

By the definition of ≈, it is clear that ⟨q, ν + δ, w + δ⟩ ≈ ⟨q, η + δ, w′ + δ⟩.
Hereafter, we consider several non-trivial cases of discrete transitions. For all the other

cases, the above diagram is easily shown.

Case pop. First, we consider the following subcase:

⟨qinit,0, ϵ⟩ ⇒∗C ⟨p, η, w′⟨(γ, J▲), µ⟩⟩
check(γ,J▲)# x▲J−x∈?J# pop(γ,J▲)
−−−−−−−−−−−−−−−−−−−−−→α C ⟨q, η, w′⟩.

By the induction hypothesis, we have the following:

⟨qinit,0, ϵ⟩ ⇒∗B ⟨p, ν, w⟨(γ, J), µ⟩⟩

≈ ≈

⟨qinit,0, ϵ⟩ ⇒∗C ⟨p, η, w′⟨(γ, J▲), µ⟩⟩

Since η(x▲J) − ν(x) ∈ J and Lemma 4.11 leads to µ(z) = η(x▲J), µ(z) − ν(x) ∈ J holds.
Therefore, the following holds:

⟨p, ν, w⟨(γ, J), µ⟩⟩ check(γ,J)# z−x∈?J# pop(γ,J)−−−−−−−−−−−−−−−−−−−→α B ⟨p, ν, w⟩
≈ ≈

⟨p, η, w′⟨(γ, J▲), µ⟩⟩
check(γ,J▲)# x▲J−x∈?J# pop(γ,J▲)
−−−−−−−−−−−−−−−−−−−−−→α C ⟨q, η, w′⟩.

Next, we consider the following subcase:

⟨qinit,0, ϵ⟩ ⇒∗C ⟨p, η, w′⟨(γ, J▼), µ⟩⟩
check(γ,J▼)# x▼J−x∈?J# pop(γ,J▼)
−−−−−−−−−−−−−−−−−−−−−→α C ⟨q, η, w′⟩.

This case is shown in the same way as above; therefore, we omit the proof.
Finally, we consider the following subcase:

⟨qinit,0, ϵ⟩ ⇒∗C ⟨p, η, w′⟨(γ, J), µ⟩⟩
check(γ,J)# pop(γ,J)−−−−−−−−−−−−−→α C ⟨q, η, w′⟩.

By the induction hypothesis, we have the following:

⟨qinit,0, ϵ⟩ ⇒∗B ⟨p, ν, w⟨(γ, J), µ⟩⟩

≈ ≈

⟨qinit,0, ϵ⟩ ⇒∗C ⟨p, η, w′⟨(γ, J), µ⟩⟩

Applying Lemma 4.12 to the sequence of transitions ⟨qinit,0, ϵ⟩ ⇒∗C ⟨p, η, w′⟨(γ, J), µ⟩⟩ ⇒∗C
⟨qF , ηF , ϵ⟩, we have µ(z) − η(x) ∈ J . Since η(x) = ν(x), µ(z) − ν(x) ∈ J holds and thus
we have the following:

⟨p, ν, w⟨(γ, J), µ⟩⟩ check(γ,J)# z−x∈?J# pop(γ,J)−−−−−−−−−−−−−−−−−−−→α B ⟨p, ν, w⟩

≈ ≈

⟨p, η, w′⟨(γ, J), µ⟩⟩ check(γ,J)# pop(γ,J)−−−−−−−−−−−−−→α C ⟨q, η, w′⟩.

76

Case for transition rules derived from p
z−x∈?I−−−−−→α q ∈ ∆B: First, we consider the

following subcase:

⟨qinit,0, ϵ⟩ ⇒∗C ⟨p, η, w′⟨(γ, J▲), µ⟩⟩
check(γ,J▲)# x▲J−x∈?I−−−−−−−−−−−−−−→α C ⟨q, η, w′⟨(γ, J▲), µ⟩⟩.

The induction hypothesis leads to the following:

⟨qinit,0, ϵ⟩ ⇒∗B ⟨p, ν, w⟨(γ, J), µ⟩⟩

≈ ≈

⟨qinit,0, ϵ⟩ ⇒∗C ⟨p, η, w′⟨(γ, J▲), µ⟩⟩

By η(x▲J)−η(x) ∈ I and Lemma 4.11, we have µ(z)−ν(x) ∈ I and the following transition
holds:

⟨p, ν, w⟨(γ, J), µ⟩⟩ z−x∈?I−−−−−→α B ⟨p, ν, w⟨(γ, J), µ⟩⟩

≈ ≈

⟨p, η, w′⟨(γ, J▲), µ⟩⟩
check(γ,J▲)# x▲J−x∈?I−−−−−−−−−−−−−−→α C ⟨q, η, w′⟨(γ, J▲), µ⟩⟩.

Next, we consider the following subcase:

⟨qinit,0, ϵ⟩ ⇒∗C ⟨p, η, w′⟨(γ, J▼), µ⟩⟩
check(γ,J▼)# x▼J−x∈?I−−−−−−−−−−−−−−→α C ⟨q, η, w′⟨(γ, J▼), µ⟩⟩.

This case is shown in the same way as above; therefore, we omit the proof.
Finally, we consider the following subcase:

⟨qinit,0, ϵ⟩ ⇒∗C ⟨p, η, w′⟨(γ, I), µ⟩⟩
check(γ,I)−−−−−−→α C ⟨q, η, w′⟨(γ, I), µ⟩⟩.

The induction hypothesis leads to the following:

⟨qinit,0, ϵ⟩ ⇒∗B ⟨p, ν, w⟨(γ, I), µ⟩⟩

≈ ≈

⟨qinit,0, ϵ⟩ ⇒∗C ⟨p, η, w′⟨(γ, I), µ⟩⟩.

Applying Lemma 4.12 to the sequence of transitions ⟨qinit,0, ϵ⟩ ⇒∗C ⟨p, η, w′⟨(γ, I), µ⟩⟩ ⇒∗C
⟨qF , ηF , ϵ⟩, we have µ(z)− η(x) ∈ I. This also implies µ(z)− ν(x) ∈ I; therefore we have
the following:

⟨p, ν, w⟨(γ, I), µ⟩⟩ z−x∈?I−−−−−→α B ⟨p, ν, w⟨(γ, I), µ⟩⟩

≈ ≈

⟨p, η, w′⟨(γ, I), µ⟩⟩ check(γ,I)−−−−−−→α C ⟨q, η, w′⟨(γ, I), µ⟩⟩.

Lemma 4.16. Lϵ(B) ⊆ Lϵ(C).

Proof. Let c be a configuration of B such that:

⟨qinit,0, ϵ⟩ ⇒∗B c⇒∗B ⟨qF , νF , ϵ⟩.

By induction on the length of the sequence of transitions ⟨qinit,0, ϵ⟩ ⇒∗B c, we show the
following:

⟨qinit,0, ϵ⟩
δ1⇝ c1

τ1−→α1
c′1

δ2⇝ · · · δn⇝ cn
τn−−→αn

c′n = c⇒∗B ⟨qF , νF , ϵ⟩

≈ ≈ ≈ ≈ ≈

⟨qinit,0, ϵ⟩
δ1⇝ ∃d1

τ ′1−→α1

∃d′
1

δ2⇝ · · · δn⇝ ∃dn
τ ′n−−→αn

∃d′
n

Since the base case ⟨qinit,0, ϵ⟩ ⇒0
B ⟨qinit,0, ϵ⟩ is clear, we consider the induction step by

case analysis.

77

Case timed transition
δ⇝. We consider the following case:

⟨qinit,0, ϵ⟩ ⇒∗B ⟨p, ν, w⟩ δ⇝ ⟨q, ν + δ, w + δ⟩

≈ ≈

⟨qinit,0, ϵ⟩ ⇒∗C ⟨q, η, w′⟩

By the definition of ≈, it is clear that ⟨q, ν + δ, w + δ⟩ ≈ ⟨q, η + δ, w′ + δ⟩.

Case push. We consider the following case:

⟨qinit,0, ϵ⟩ ⇒∗B ⟨p, ν, w⟨(γ, J), µ⟩⟩
push(γ′,J ′)−−−−−−−→α B ⟨q, ν, w⟨(γ, J), µ⟩⟨(γ′, J ′),0⟩⟩.

By Lemma 4.8, we have J ′ ⊏ J or J ′ = J . First, we consider the case J ′ ⊏ J .
Subcase ⟨p, ν, w⟨(γ, J), µ⟩⟩ ≈ ⟨p, η, w′⟨(γ, J▲), µ⟩⟩: By the induction hypothesis and the

construction of C, we have the following:

⟨qinit,0, ϵ⟩ ⇒∗C ⟨p, η, w′⟨(γ, J▲), µ⟩⟩
check(γ,J▲)# push(γ′,J ′▲)# reset(x▲

J′)−−−−−−−−−−−−−−−−−−−−−−−→α C ⟨q, η′, w′⟨(γ, J▲), µ⟩⟨(γ′, J ′▲),0⟩⟩.

Now ν = η′ ↾ X holds from ν = η ↾ X and η ↾ X = η′ ↾ X , and it leads to the
following:

⟨q, ν, w⟨(γ, J), µ⟩⟨(γ′, J ′),0⟩⟩ ≈ ⟨q, η′, w′⟨(γ, J▲), µ⟩⟨(γ′, J ′▲),0⟩⟩.

Subcases

{
⟨p, ν, w⟨(γ, J), µ⟩⟩ ≈ ⟨p, η, w′⟨(γ, J), µ⟩⟩,
⟨p, ν, w⟨(γ, J), µ⟩⟩ ≈ ⟨p, η, w′⟨(γ, J▼), µ⟩⟩

: Since we can show these cases

in the same way as the above case, we omit the proof.

Next, we consider the case J ′ = J .

Subcase ⟨p, ν, w⟨(γ, J), µ⟩⟩ ≈ ⟨p, η, w′⟨(γ, J▲), µ⟩⟩: By the induction hypothesis and the
construction of C, we have the following:

⟨qinit,0, ϵ⟩ ⇒∗C ⟨p, η, w′⟨(γ, J▲), µ⟩⟩
check(γ,J▲)# push(γ′,J▼)# reset(x▼J)−−−−−−−−−−−−−−−−−−−−−−→α C ⟨q, η′, w′⟨(γ, J▲), µ⟩⟨(γ′, J▼),0⟩⟩.

Now ν = η′ ↾ X holds from ν = η ↾ X and η ↾ X = η′ ↾ X , and it leads to the
following:

⟨q, ν, w⟨(γ, J), µ⟩⟨(γ′, J),0⟩⟩ ≈ ⟨q, η′, w′⟨(γ, J▲), µ⟩⟨(γ′, J▼),0⟩⟩.

Subcases

{
⟨p, ν, w⟨(γ, J), µ⟩⟩ ≈ ⟨p, η, w′⟨(γ, J), µ⟩⟩ or
⟨p, ν, w⟨(γ, J), µ⟩⟩ ≈ ⟨p, η, w′⟨(γ, J▼), µ⟩⟩

: These cases can be shown in

the same way as the above case; therefore, we omit the proof.

Case pop. We consider the following case:

⟨qinit,0, ϵ⟩ ⇒∗B ⟨p, ν, w⟨(γ, J), µ⟩⟩
check(γ,J)# z−x∈?J# pop(γ,J)−−−−−−−−−−−−−−−−−−−→α B ⟨q, ν, w⟩.

This implies µ(z)− ν(x) ∈ J .
Subcase ⟨p, ν, w⟨(γ, J), µ⟩⟩ ≈ ⟨p, η, w′⟨(γ, J▲), µ⟩⟩: For this subcase, we know η(x▲J) −

η(x) ∈ J because ν(x) = η(x) and Lemma 4.11 implies µ(z) = η(x▲J). Therefore, we
have the following transition

⟨qinit,0, ϵ⟩ ⇒∗C ⟨p, η, w′⟨(γ, J▲), µ⟩⟩
check(γ,J▲)# x▲J−x∈?J# pop(γ,J▲)
−−−−−−−−−−−−−−−−−−−−−→α C ⟨q, η, w′⟩.

Subcase

{
⟨p, ν, w⟨(γ, J), µ⟩⟩ ≈ ⟨p, η, w′⟨(γ, J), µ⟩⟩ or
⟨p, ν, w⟨(γ, J), µ⟩⟩ ≈ ⟨p, η, w′⟨(γ, J▼), µ⟩⟩

: These cases can be shown in

the same way as the above case; therefore, we omit the proof.

78

Case z − x ∈? I. We consider the following case:

⟨qinit,0, ϵ⟩ ⇒∗B ⟨p, ν, w⟨(γ, J), µ⟩⟩
z−x∈?I−−−−−→α B ⟨q, ν, w⟨(γ, J), µ⟩⟩.

This means µ(z)− ν(x) ∈ I.

Subcase ⟨p, ν, w⟨(γ, J), µ⟩⟩ ≈ ⟨p, η, w′⟨(γ, J▲), µ⟩⟩: Since µ(z) = η(x▲J) by Lemma 4.11
and ν(x) = η(x), the predicting MTPDA C has the following transition:

⟨qinit,0, ϵ⟩ ⇒∗C ⟨p, η, w′⟨(γ, J▲), µ⟩⟩
check(γ,J▲)# x▲J−x∈?I−−−−−−−−−−−−−−→α C ⟨q, η, w′⟨(γ, J▲), µ⟩⟩.

Subcase ⟨p, ν, w⟨(γ, J), µ⟩⟩ ≈ ⟨p, η, w′⟨(γ, J▼), µ⟩⟩: This case is shown by the same argu-
ment as the above.

Subcase ⟨p, ν, w⟨(γ, J), µ⟩⟩ ≈ ⟨p, η, w′⟨(γ, J), µ⟩⟩: By the induction hypothesis and Lemma 4.13,
we have the following:

⟨qinit,0, ϵ⟩⇒∗B ⟨q′, ν ′, . . . ⟨(, J), ⟩ . . . ⟨(γ, J), ⟩ . . . ⟨(, J), ⟩ . . .⟩ ⇒∗B ⟨p, ν, w⟨(γ, J), µ⟩⟩≈ ≈

⟨qinit,0, ϵ⟩⇒∗C⟨q′, η′, . . . ⟨(, J▲), ⟩ . . . ⟨(γ, J), µ′⟩ . . . ⟨(, J▼), ⟩ . . .⟩⇒∗C⟨p, η, w′⟨(γ, J), µ⟩⟩.

We have µ(z)− ν(x) ∈ J by applying Lemma 4.10 to the following computation:

⟨q′, ν ′, . . . ⟨(, J), ⟩ . . . ⟨(γ, J), ⟩ . . . ⟨(, J), ⟩ . . .⟩ ⇒∗C ⟨p, ν, w⟨(γ, J), µ⟩⟩ ⇒∗C ⟨qF , νF , ϵ⟩.

Since µ(z)− ν(x) ∈ I and J ∈ {I↑, I, I↓}, J = I must hold.

Finally, we have the following transition from the definition of the predicting MT-
PDA C:

⟨p, η, w′⟨(γ, I), µ⟩⟩ check(γ,I)−−−−−−→α C ⟨q, η, w′⟨(γ, I), µ⟩⟩.

Combining these lemmas, we have the following result.

Theorem 4.1. Let A be an MTPDA that does not have transitions with reset(z) and
z − x ∈? I be an action that compares the local clock z and global clock x. There is an
MTPDA C that satisfies the following conditions:

• Lϵ(A) = Lϵ(C).

• There are no transition rules that contain an action z − x ∈? I.

4.6 Removing Transition Rules with z−x ∈? I from MTPDA

Extending the construction of the previous section, we will show the following theorem in
the present section.

Theorem 4.2. Let A be an MTPDA and z−x ∈? I be an action that compares the local
clock z and global clock x. There is an MTPDA D that satisfies the following conditions:

• Lϵ(A) = Lϵ(D).

• There are no transition rules that contain an action z − x ∈? I.

79

In the previous section, we impose the restriction that there are no transitions with
the action reset(z) with respect to a fixed action z− x ∈? I. We needed this restriction to
prove the important lemmas about a stack of predicting MTPDA, Lemma 4.9 and 4.10;
indeed, if we permit transitions with the action reset(z), then Lemma 4.9 does not hold.

In the present section, we use new auxiliary global clocks
{
∁I↓ , ∁I , ∁I↑

}
to deal with the

action reset(z). Our strategy is simple: if the action reset(z) is taken when the stack top
has a prediction J , then we assign the auxiliary global clock ∁J (if we already assign ∁J
to some frame, then we dissolve the assignment and then we assign the clock to the top
frame).

Let A be an MTPDA and B be the predicting MTPDA obtained by A:

A = (Q, qinit, F,Σ,Γ,X ,Z,∆),
B = (Q, qinit, F,Σ,Γ× {I↓, I, I↑} ,X ,Z,∆B).

We construct the following MTPDA D that does not have transition rules with z−x ∈? I:

D = (Q, qinit, F,Σ,ΓD,XD,Z,∆D)

where ΓD and ∁D is defined as follows:

ΓD ≜ Γ× {J▲, J, J▼, J▲,◦, J◦, J▼,◦ : J ∈ {I↓, I, I↑}} ,
XD ≜ X ∪ {x▲J , x▼J : J ∈ {I↓, I, I↑}} ∪

{
∁I↓ , ∁I , ∁I↑

}
.

• The stack symbol J▲ means that we store the elapsed time in the global clock x▲J
after a frame that has J▲ pushed. So does the stack symbol J▼. (However, as we
will see later, we do not use the symbol J▼.)

• The stack symbol J◦ means that we store the value of the local clock z in the global
clock ∁J .

• The stack symbol J▲,◦ means that we store (1) the elapsed time in the global clock
x▲J after a frame that has J▲ pushed and (2) the value of the local clock z in the
global clock ∁▲J . So does the stack symbol J▼,◦.

On the basis of the construction of the previous section, we define the set of transition
rules ∆D as follows.

Case p
reset(z)−−−−→α q ∈ ∆B: On the predicting MTPDA D, when we reset the local clock z,

we mark a frame by adding ·◦ and reset the global clock ∁ to reflect the value of
the local clock z of the current stack top frame. We carry out this by adding the
following transition rules to ∆D:

p
check(γ,J)# rew(γ,J◦)# τ−−−−−−−−−−−−−−−→α q, p

check(γ,J◦)# τ−−−−−−−−−→α q,

p
check(γ,J▲)# rew(γ,J▲,◦)# τ−−−−−−−−−−−−−−−−−→α q, p

check(γ,J▲,◦)# τ−−−−−−−−−−→α q, p
check(γ,J▼,◦)# τ−−−−−−−−−−→α q

where τ ≜ reset(z) # reset(∁J).

Case p
push(γ,J)−−−−−−→α q ∈ ∆B: We add transition rules to ∆D as follows:

• The following one corresponds to pushing a frame onto the empty stack:

p
check(ϵ)# push(γ,J▲,◦)# reset(x▲J)# reset(∁J)−−−−−−−−−−−−−−−−−−−−−−−−−−→α q.

80

• The following rules correspond to pushing a frame onto the stack whose top
symbol has J :

p
check(γ,J▲)# τ−−−−−−−−−→α q, p

check(γ,J▲,◦)# rew(γ,J▲)# τ−−−−−−−−−−−−−−−−−→α q,

p
check(γ,J)# τ−−−−−−−−→α q, p

check(γ,J◦)# rew(γ,J)# τ−−−−−−−−−−−−−−−→α q,

p
check(γ,J▼,◦)# rew(γ,J)# τ−−−−−−−−−−−−−−−−→α q

where τ = push(γ, J▼,◦) # reset(x▼J) # reset(∁J).
• The following rules correspond to pushing a frame onto the stack whose top
symbol has K and J ⊏ K:

p
check(γ,K▲)# τ−−−−−−−−−→α q, p

check(γ,K▲,◦)# τ−−−−−−−−−−→α q,

p
check(γ,K)# τ−−−−−−−−→α q, p

check(γ,K◦)# τ−−−−−−−−−→α q,

p
check(γ,K▼,◦)# τ−−−−−−−−−−→α q

where τ = push(γ, J▲,◦) # reset(x▲J) # reset(∁J).

Case p
check(γ,J)# z−x∈?J# pop(γ,J)−−−−−−−−−−−−−−−−−−−→α q ∈ ∆B: We add transition rules to ∆D as follows:

p
check(γ,J▲)# x▲J−x∈?J# pop(γ,J▲)
−−−−−−−−−−−−−−−−−−−−−→α q, p

check(γ,J▲,◦)# x▲J−x∈?J# pop(γ,J▲,◦)
−−−−−−−−−−−−−−−−−−−−−−−→α q,

p
check(γ,J)# pop(γ,J)−−−−−−−−−−−−−→α q, p

check(γ,J◦)# pop(γ,J◦)−−−−−−−−−−−−−−→α q,

p
check(γ,J▼,◦)# x▼J−x∈?J# pop(γ,J▼,◦)
−−−−−−−−−−−−−−−−−−−−−−−→α q.

Case p
z−x∈?I−−−−−→α q ∈ ∆B: We add the following transition rules:

p
check(γ,J▲,◦)# ∁J−x∈?I−−−−−−−−−−−−−−−→α q, p

check(γ,J▼,◦)# ∁J−x∈?I−−−−−−−−−−−−−−−→α q, p
check(γ,J◦)# ∁J−x∈?I−−−−−−−−−−−−−−→α q,

p
check(γ,I▲)−−−−−−−→α q, p

check(γ,I)−−−−−−→α q.

Other Rules p
τ−→α q ∈ ∆B: For the rules other than those above, we add the same rules

to ∆D.

4.6.1 Properties of Predicting MTPDA D

We define the well-formedness of a stack of the predicting MTPDA D and show the
property corresponding to Lemma 4.13. A stack w of D is well-formed if it satisfies the
following condition:

w ∈ F(I↑) · F(I) · F(I↓)

where F(J) is defined as follows:

F(J) = {ϵ} ∪ Υ(J▲,◦) ∪ Υ(J▲) ·Υ(J)∗ ∪ Υ(J▲) ·Υ(J)∗ · (Υ(J◦) ∪Υ(J▼,◦)).

Recall that Υ(J) is defined as Υ(J) ≜ (Γ× {J})× (Z → R≥0).

Lemma 4.17. If a configuration ⟨q, η, w⟩ of D is reachable from the initial configuration
(i.e., ⟨qinit,0, ϵ⟩ ⇒∗D ⟨q, η, w⟩), then w is a well-formed stack.

81

Proof. This lemma can be shown in the same way as Lemma 4.13.

If the top frame of a stack is one of ⟨(γ, J▲,◦), µ⟩, ⟨(γ, J▼,◦), µ⟩, or ⟨(γ, J◦), µ⟩, then
the value of the local clock z is recorded in the corresponding auxiliary clock.

Lemma 4.18. Let us consider the following computations of D:

⟨qinit,0, ϵ⟩ ⇒∗D ⟨q1, η1, . . . ⟨(γ1, J▲,◦), µ1⟩⟩,
⟨qinit,0, ϵ⟩ ⇒∗D ⟨q2, η2, . . . ⟨(γ2, J▼,◦), µ2⟩⟩,
⟨qinit,0, ϵ⟩ ⇒∗D ⟨q3, η3, . . . ⟨(γ3, J◦), µ3⟩⟩.

For these computations, we have µ1(z) = η1(∁J), µ2(z) = η2(∁J), and µ3(z) = η3(∁J).

Proof. Each case can be easily shown by induction on the length of the computation.

Next, we consider the case that the top frame a stack is of the form ⟨(γ, J), µ⟩. For
this case, we have a property that are similar to Lemma 4.12. To show the property, we
prove the technical lemma corresponding to Lemma 4.14.

Lemma 4.19. Let us consider the following computation π for a configuration c′:

π = ⟨qinit,0, ϵ⟩ ⇒∗D ⟨q′, η′, . . . ⟨(γi, J▲), µ′i⟩ . . . ⟨(γ, J), µ′⟩⟩ = c′.

We can decompose π as follows:

⟨qinit,0, ϵ⟩ ⇒∗

⟨p, η, . . . ⟨(γi, J▲), µi⟩ . . . ⟨(γ, J), µ⟩ . . . ⟨(γj , J▼,◦), µj⟩⟩
check(γj ,J▼,◦)# x▼J−x∈?J# pop(γj ,J▼,◦)
−−−−−−−−−−−−−−−−−−−−−−−−→α

⟨q, η, . . . ⟨(γi, J▲), µi⟩ . . . ⟨(γ, J), µ⟩ . . .⟩ =⇒
♯

∗

⟨q′, η′, . . . ⟨(γi, J▲), µ′i⟩ . . . ⟨(γ, J), µ′⟩⟩.

Especially, among the part of the computation =⇒
♯

∗, we do not reset reset(z) against the

frame that contains the stack symbol (γ, J).

Proof. We can decompose π as follows in the same argument as Lemma 4.14:

⟨qinit,0, ϵ⟩ ⇒∗

⟨ℓ, η, . . . ⟨(γi, J▲), µi⟩ . . . ⟨(γ, J), µ⟩ . . . ⟨(γJ , J▼,◦), ⟩⟩
check(γJ ,J

▼,◦)# x▼J−x∈?J# pop(γJ ,J
▼,◦)

−−−−−−−−−−−−−−−−−−−−−−−−−→α

⟨q, η, . . . ⟨(γi, J▲), µi⟩ . . . ⟨(γ, J), µ⟩ . . .⟩ =⇒
♢
∗ ⟨q′, η′, . . . ⟨(γi, J▲), µ′i⟩ . . . ⟨(γ, J), µ′⟩⟩.

However, this does not ensure that there are no transitions with reset(z) in =⇒
♢
∗. If there

are no such transitions in =⇒
♢
∗, then the proof is finished. Therefore, now we assume that

=⇒
♢
∗ has such a transition and focus on the transition:

⟨q, η, . . . ⟨(γi, J▲), µi⟩ . . . ⟨(γ, J), µ⟩ . . .⟩ ⇒∗

⟨ℓ, ν, . . . ⟨(γi, J▲), ⟩ . . . ⟨(γ, J), ⟩⟩
check(γ,J)# rew(γ,J◦)# reset(z)# reset(∁J)−−−−−−−−−−−−−−−−−−−−−−−−−→α

⟨p′, ν ′, . . . ⟨(γi, J▲), ⟩ . . . ⟨(γ, J◦), ⟩⟩ =⇒
♣
∗ ⟨q′, η′, . . . ⟨(γi, J▲), µ′i⟩ . . . ⟨(γ, J), µ′⟩⟩.

It should be noted that there are no transitions with reset(z) in =⇒
♣
∗. To rewrite J◦ to J ,

the sequence of transitions =⇒
♣
∗ must be decomposed as follows:

⟨p′, ν ′, . . . ⟨(γi, J▲), ⟩ . . . ⟨(γ, J◦), ⟩⟩ ⇒∗
check(γ,J◦)# rew(γ,J)# push(γ′,J▼,◦)# reset(x▼J)# reset(∁J)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→⇒∗

⟨p, η, . . . ⟨(γi, J▲), µi⟩ . . . ⟨(γ, J), µ⟩ . . . ⟨(γj , J▼,◦), µj⟩⟩
check(γj ,J▼,◦)# x▼J−x∈?J# pop(γj ,J▼,◦)
−−−−−−−−−−−−−−−−−−−−−−−−→

⟨q, η, . . . ⟨(γi, J▲), µi⟩ . . . ⟨(γ, J), µ⟩ . . .⟩ =⇒
♯

∗ ⟨q′, η′, . . . ⟨(γi, J▲), µ′i⟩ . . . ⟨(γ, J), µ′⟩⟩.

82

Combining these transitions, we have the following desired decomposition:

⟨qinit,0, ϵ⟩ ⇒∗

⟨p, η, . . . ⟨(γi, J▲), µi⟩ . . . ⟨(γ, J), µ⟩ . . . ⟨(γj , J▼,◦), µj⟩⟩
check(γj ,J▼,◦)# x▼J−x∈?J# pop(γj ,J▼,◦)
−−−−−−−−−−−−−−−−−−−−−−−−→

⟨q, η, . . . ⟨(γi, J▲), µi⟩ . . . ⟨(γ, J), µ⟩ . . .⟩ =⇒
♯

∗ ⟨q′, η′, . . . ⟨(γi, J▲), µ′i⟩ . . . ⟨(γ, J), µ′⟩⟩

where there are no transition with reset(z) in =⇒
♯

∗.

Lemma 4.20. Let us consider the following computation:

π = ⟨qinit,0, ϵ⟩ ⇒∗D ⟨q′, η′, . . . ⟨(γ, J), µ′⟩⟩ ⇒∗D ⟨qF , ηF , ϵ⟩.

For this computation, we have µ′(z)− η′(x) ∈ J .

Proof. Applying Lemma 4.19 to π, we have the following decomposition:

⟨qinit,0, ϵ⟩ ⇒∗

⟨p, η, . . . ⟨(γi, J▲), µi⟩ . . . ⟨(γ, J), µ⟩ . . . ⟨(γj , J▼,◦), µj⟩⟩
check(γj ,J▼,◦)# x▼J−x∈?J# pop(γj ,J▼,◦)
−−−−−−−−−−−−−−−−−−−−−−−−→α

⟨q, η, . . . ⟨(γi, J▲), µi⟩ . . . ⟨(γ, J), µ⟩ . . .⟩ =⇒
♯

∗

⟨q′, η′, . . . ⟨(γi, J▲), µ′i⟩ . . . ⟨(γ, J), µ′⟩⟩ ⇒∗

⟨q′′, η′′, . . . ⟨(γi, J▲), µ′′i ⟩⟩
check(γi,J▲)# x▲J−x∈?J# pop(γi,J▲)
−−−−−−−−−−−−−−−−−−−−−−→⇒∗ ⟨qF , ηF , ϵ⟩.

By the definition of pop, we have η(x▼J)−η(x) ∈ J and η′′(x▲J)−η′′(x) ∈ J . Therefore,
we prove the following to show µ′(z)− η′(x) ∈ J :

η(x▼J)− η(x) ≤ µ′(z)− η′(x) ≤ η′′(x▲J)− η′′(x).

We assume that δ is the elapsed time among ⟨q, η, . . . ⟨(γi, J▲), µi⟩ . . . ⟨(γ, J), µ⟩ . . .⟩ =⇒
♯

∗

⟨q′, η′, . . . ⟨(γi, J▲), µ′i⟩ . . . ⟨(γ, J), µ′⟩⟩.

η(x▼J)− η(x) = (η + δ)(x▼J)− (η + δ)(x)
≤ (η + δ)(x▼J)− η′(x)
≤ (µ(z) + δ)− η′(x) [∵ η(x▼J) ≤ µ(z)]

= µ′(z)− η′(x).
[
∵ we do not perform reset(z)

against the frame containing ⟨γ, J⟩

]
We assume that δ′ is the elapsed time among ⟨q′, η′, . . . ⟨(γi, J▲), µ′i⟩ . . . ⟨(γ, J), µ′⟩⟩ =⇒∗

⟨q′′, η′′, . . . ⟨(γi, J▲), µ′′i ⟩⟩.

µ′(z)− η′(x) = (µ′ + δ′)(z)− (η′ + δ′)(x)
≤ (µ′ + δ′)(z)− η′′(x)
≤ (µ′i + δ′)(z)− η′′(x)
≤ (η′ + δ′)(x▲J)− η′′(x) [∵ µ′i(z) ≤ η′(x▲J)]
= η′′(x▲J)− η′′(x).

Finally, we consider the case that the top frame a stack is of the form ⟨(γ, J▲), µ⟩. The
lemmas corresponding to Lemma 4.21 and 4.22 hold. Since both lemmas can be shown by
the same argument as the corresponding lemmas, we omit the proof.

83

Lemma 4.21. Let us consider the following computation π for a configuration c′:

π = ⟨qinit,0, ϵ⟩ ⇒∗D ⟨q′, η′, . . . ⟨(γi, J▲), µ′i⟩⟩ = c′.

We can decompose π as follows:

⟨qinit,0, ϵ⟩ ⇒∗

⟨p, η, . . . ⟨(γi, J▲), µi⟩ . . . ⟨(γj , J▼,◦), µj⟩⟩
check(γj ,J▼,◦)# x▼J−x∈?J# pop(γj ,J▼,◦)
−−−−−−−−−−−−−−−−−−−−−−−−→α

⟨q, η, . . . ⟨(γi, J▲), µi⟩ . . .⟩ =⇒
♯

∗

⟨q′, η′, . . . ⟨(γi, J▲), µ′i⟩⟩.

Especially, among the part of the computation =⇒
♯

∗, we do not reset reset(z) against the

frame that contains the stack symbol (γ, J).

Lemma 4.22. Let us consider the following computation:

π = ⟨qinit,0, ϵ⟩ ⇒∗D ⟨p, η′, . . . ⟨(γ, J▲), µ′⟩⟩ ⇒∗D ⟨qF , ηF , ϵ⟩.

For this computation, we have µ′(z)− η′(x) ∈ J .

4.6.2 Language Equivalence between Predicting MTPDA B and D

In order to show Lϵ(B) = Lϵ(D), we define the following relation between configurations
of B and D:

⟨qB, νB, wB⟩ ≈ ⟨qD, νD, wD⟩
def⇐⇒ qB = qD ∧ νB = νD ↾ X ∧ wB = ψ(wD)

where ψ : Γ∗D → (Γ× {I↓, I, I↑})∗ is a projection defined as follows:

ψ((γ, J)) = (γ, J), ψ((γ, J▲)) = (γ, J), ψ((γ, J▼)) = (γ, J),
ψ((γ, J◦)) = (γ, J), ψ((γ, J▲,◦)) = (γ, J), ψ((γ, J▼,◦)) = (γ, J).

On the basis of this relation, we can show Lϵ(B) ⊆ Lϵ(D) and Lϵ(B) ⊇ Lϵ(D) in the similar
way to the proofs of Lemma 4.16 and 4.15 because we already showed Lemma 4.17, 4.18, 4.20,
and 4.22 that correspond to Lemma 4.13, 4.11, and 4.12.

Therefore, we obtain the following result that states, for a given MTPDA A, we can
remove a diagonal constraint of the form z − x ∈? I of A while preserving its language.

Theorem 4.2. Let A be an MTPDA and z−x ∈? I be an action that compares the local
clock z and global clock x. There is an MTPDA D that satisfies the following conditions:

• Lϵ(A) = Lϵ(D).

• There are no transition rules that contain an action z − x ∈? I.

4.7 Untiming Theorem of MTPDA

Summarizing all the above discussion, we prove the untiming theorem of MTPDA.

Theorem 4.3. Let A be an MTPDA.
There is a pushdown timed automaton E such that Lϵ(A) = Lϵ(E).

Proof. Applying Lemma 4.6 to the MTPDA A, we have an MTPDA B such that

• Lϵ(A) = Lϵ(B) and

84

• There are no transitions that have an action x − z ∈? I or z − z′ ∈? I where x is a
global clock and z, z′ are local clocks.

Applying Theorem 4.2 to B until there are no transition rules with an action of the
form z − x ∈? I, we have a predicting MTPDA C such that

• Lϵ(B) = Lϵ(C) and

• There are no transitions that have an action z − x ∈? I, x − z ∈? I, or z − z′ ∈? I
where x is a global clock and z, z′ are local clocks.

From the MTPDA C = (Q, qinit, F,Σ,Γ,X ,Z,∆C), we construct the following 0-
MTPDA D:

D = (Q, qinit, F,Σ,Γ,X , ∅,∆D)

where ∆D is defined by removing local clock resetting from ∆C :

∆D ≜
{
p

τ−→α q ∈ ∆C : τ ̸= reset(z), z ∈ Z
}
.

It is clear that Lϵ(C) = Lϵ(D).
Since pushdown timed automata do not allow diagonal constraints of the form x1 −

x2 ∈? I, we should remove such actions from D. To this end, we can use the same
construction to remove diagonal constraints from timed automata; therefore, we obtain a
pushdown timed automaton E such that Lϵ(A) = Lϵ(E).

Combining the above theorem and Proposition 4.2, we have the following form of the
untiming theorem of MTPDA.

Corollary 4.1. Let A be an MTPDA. There is a pushdown timed automaton E such
that L(A) = L(E).

The untiming theorem also implies the following time complexity result for MTPDA.

Corollary 4.2. The emptiness problem and location reachability problem of MTPDA are
EXPTIME-complete.

Proof. Since we can reduce the emptiness problem to the location reachability problem
in a linear time and vice versa, it suffices to show the EXPTIME-completeness of the
emptiness problem.

First, we show the EXPTIME-hardness. This is immediately shown by Corollary 3.1
of Chapter 3 because any PTA is an MTPDA.

Next, we show the emptiness problem is in EXPTIME. LetA = (Q, qinit, F,Σ,Γ,X ,Z,∆)

be an MTPDA. Let K be the numbers of transition rules of the form p
z−x∈?I−−−−−→α q where

z ∈ Z and x ∈ X . Applying Lemma 4.6 and 4.1, we can construct an MTPDA A0 such
that:

• if A0 has a transition rule with c1− c2 ∈? I, then c1 is a local clock and c2 is a global
clock;

• the numbers of states and stack symbols of A0 are exponential in the size of A;

• the numbers of global clocks and local clocks of A0 are linear in the size of A.

In order to remove transition rules with actions of the form z−x ∈? I, we apply Theo-
rem 4.2 about O(K)-times. Each applying the theorem to an MTPDA causes exponential
increases in the numbers of states and stack symbols and a linear increase in the number
of global clocks. Therefore, after we remove all the transition rules with actions of the

85

form z − x ∈? I, then the numbers of states and stack symbols of the obtained PTA is
exponential in the size of the original MTPDA A and the number of global clocks is linear
in the size of A.

Since the emptiness problem of a PTA is solved time linar in the numbers of its states
and stack symbols and exponential in the numbers of clocks, the language emptiness
problem of the untimed PTA can be solved in exponential time with respect to the size of
the input MTPDA A.

86

Chapter 5

Synchronized Recursive Timed Automata

This chapter presents a class of timed pushdown automata, synchronized recursive timed
automata (SRTA), and we study its expressiveness and decidability. This chapter is based
on our previous work [UM15, UM18].

Expressiveness. In comparison with existing classes of timed pushdown automata—
PTA, DTPDA, and MTPDA—, SRTA have novel constraints, fractional constraints—
formulae of the form frac(x) = 0 and frac(x) < frac(y) (frac(x) is the fractional part of a
clock x)—for checking the fractional parts of clocks. Owing to fractional constraints, the
class of SRTA is more expressive than the existing classes of PTA, DTPDA, and MTPDA.
Indeed, an SRTA accepts the following timed language LSRTA which cannot be recognized
by any PTA:

LSRTA ≜
{
(a, t1)(a, t2) . . . (a, tn)(b, t

′
n) . . . (b, t

′
2)(b, t

′
1) : t

′
i − ti ∈ N

}
.

We will formally show that the above language can be accepted by an SRTA and not by
any PTA.

Decidability of Reachability Problem. Even though SRTA extend MTPDA due to
the presence of fractional constraints, the location reachability problem of SRTA is decid-
able and EXPTIME-complete. Furthermore, we show the decidability of the configuration
reachability problem of SRTA. For a given SRTA and configuration ⟨q, w⟩, the configura-
tion reachability problem cinit →∗? ⟨q, w⟩ decides whether we can reach the configuration
⟨q, w⟩ from the initial configuration cinit. Although the configuration reachability problem
of pushdown automata is straightforwardly reduced to the location reachability problem
of them, such a reduction does not hold on SRTA due to the unboundedness and dense-
ness of real numbers. Indeed, the configuration reachability problem of TPDA was not
considered by Abdulla et al. in [AAS12a].

Our decidability proof of the configuration reachability problem is organized as fol-
lows. The reader will find the detailed overview of our proof in Section 5.3. In Section 5.1,
we introduce SRTA and give the standard semantics of SRTA. In order to reduce the
configuration reachability problem of the standard semantics to that of a semantics de-
fined as a pushdown system, we need to remove the entire stack modification of timed
transitions ⟨q, ⟨γ1, ν1⟩ . . . ⟨γn, νn⟩⟩ δ⇝ ⟨q, ⟨γ1, ν1+ δ⟩ . . . ⟨γn, νn+ δ⟩⟩ and the unboundedness
and denseness of real numbers. In Section 5.4, to remove the entire stack modification of
timed transitions, we use the technique called lazy time elapsing that was introduced by
Abdulla et al. to show the decidability of the location reachability problem of DTPDA
in [AAS12a]. In Section 5.5, we remove the unboundedness of real numbers by introducing
collapsed real numbers. In Section 5.6, we remove the denseness of real numbers with the
formalization of the region of Abdulla et al. Through Section 5.4 to 5.6, we can give a

87

semantics defined as a pushdown system that corresponds to the standard semantics and
it leads to the decidability of the configuration reachability problem of SRTA.

We compare the conventional region of timed automata given by Alur and Dill in [AD94]
and the region designed by Abdulla et al. for DTPDA in Section 5.7. Through this com-
parison, we find out that a key technical lemma fails on the region of Alur and Dill.

Basic Notation

Bounded Intervals. In this chapter, unlike the previous chapters, we consider bounded
intervals I defined as follows:

I ::= [a : b] | (a : b)

where a, b ∈ N. Therefore, if we call I interval, then the (bounded) interval I is not an
unbounded intervals such as (a : ω), (−ω : b], etc.

We use I to denote the set of bounded intervals and Iω to denote the set of intervals
including unbounded intervals:

I = {(a : b), [a : b] : a, b ∈ N} , Iω = {(a : b), [a : b], (−ω : a), (a : ω) : a, b ∈ N} .

Pushdown Systems.
A pushdown system (PDS) is a triple (Q,Γ, ↪→) where Q is a finite set of control

locations, Γ is a (possibly infinite) stack alphabet, and ↪→ ⊆ (Q × Γ∗) × (Q × Γ∗) is a
set of transition rules. A configuration is a pair ⟨q, w⟩ of a location q ∈ Q and a stack
w ∈ Γ∗. A one-step transition ⟨q, w v⟩ → ⟨q′, w v′⟩ is defined if ⟨q, v⟩ ↪→ ⟨q′, v′⟩. We also
write w → w′ by omitting locations if the locations are irrelevant. A PDS is called a finite
PDS if its set of transition rules is finite. Otherwise, it is called an infinite PDS. Note
that our formalization allows multiple popping rather than single element popping at each
single move. A PDS is called a normalized PDS if the set of transition rules ↪→ is a subset
of (Q× Γ)× (Q× Γ∗).

For given configurations c1 and c2, the configuration reachability problem asks if
c1 →∗ c2 holds. The configuration reachability problem of finite normalized PDS is
in PTime [BEM97, FWW97]. Since we can translate a finite PDS to the corresponding
finite normalized PDS while preserving the configuration reachability, the configuration
reachability problem of finite PDS is also decidable.

5.1 Synchronized Recursive Timed Automata

We introduce synchronized recursive timed automata (SRTA) and define the standard
semantics of SRTA called Stnd.

Clock Constraints. Let C be a finite set of clocks. The set ΦC of clock constraints is
given by:

φ ::= c ∈? I | frac(x) = 0 | frac(c) ▷◁ frac(c′) | φ ∧ φ | ¬φ

where c, c′ ∈ C, I ∈ I is a bounded interval, and ▷◁ ∈ {<,=, >}.
For a constraint φ ∈ ΦC and valuation ν : C → R≥0, we write ν |= φ if φ holds when

clocks are replaced by the values of ν: e.g., ν |= c ∈? I if ν(x) ∈ I, ν |= frac(c) = 0 if
frac(ν(c)) = 0. The fractional constraints frac(c) = 0 and frac(c) ▷◁ frac(c′) are a novel
feature against previous pushdown-extensions of timed automata.

Definition 5.1 (Synchronized Recursive Timed Automata). A synchronized recursive
timed automaton (SRTA) is a 7-tuple A = (Q, qinit, F,Σ,Γ,X ,∆) where

88

• Q is a finite set of control locations, qinit is the initial location, F ⊆ Q is a set of
accepting locations,

• Σ is a finite input alphabet, Γ is a finite set of stack symbols,

• X is a finite set of clocks, and

• ∆ ⊆ Q× (Σ ∪ {ϵ})×ActSRTA ×Q is a finite set of discrete transition rules.

– To denote a transition rule ⟨p, α, τ, q⟩ ∈ ∆, we also write p
τ−→α q.

ActSRTA is the set of actions of SRTA defined as follows:

τ ∈ ActSRTA ::= push(γ) | pop(γ) | dig(x, y) | x← I | check(φ)

where γ ∈ Γ, x, y ∈ X , I ∈ I, and φ ∈ ΦX . ■
We define the standard semantics Stnd of SRTA as an infinite transition system.

Definition 5.2 (Semantics Stnd). A configuration is a pair ⟨q, w⟩ of a location q and a
stack w in which each frame ⟨γ, ν⟩ consists of a stack symbol γ and a concrete valuation
ν : X → R≥0. The set of configurations of Stnd is Q× (Γ× (X → R≥0))∗.

For an action τ ∈ ActSRTA, we define a discrete transition w
τ−→ w′ for w,w′ ∈ (Γ×(X →

R≥0))∗ by case analysis on τ as follows:

w ⟨γ1, ν1⟩
push(γ2)−−−−−→ w ⟨γ1, ν1⟩ ⟨γ2,0⟩, w ⟨γ1, ν1⟩ ⟨γ2, ν2⟩

pop(γ2)−−−−−→ w ⟨γ1, ν2⟩,

ν ′2 = ν2[x B ν1(y)]

w ⟨γ1, ν1⟩ ⟨γ2, ν2⟩
dig(x,y)−−−−−→ w ⟨γ1, ν1⟩ ⟨γ2, ν ′2⟩ ,

r ∈ I ν ′ = ν[x B r]

w ⟨γ, ν⟩ x←I−−−→ w ⟨γ, ν ′⟩ ,

ν |= φ

w ⟨γ, ν⟩ check(φ)−−−−−→ w ⟨γ, ν⟩ .

We note that the pop-rule removes the top frame and puts ν2 to the next frame as follows:

w⟨γ1, ν1⟩⟨γ2, ν2⟩ → w⟨γ1, ν2⟩.

In addition to discrete transitions, we allow timed transitions:

|w| ≥ 1 δ ∈ R≥0

w
δ⇝ w + δ

time

where w + δ is defined as follows:

(⟨γ1, ν1⟩⟨γ2, ν2⟩ . . . ⟨γn, νn⟩) + δ ≜ ⟨γ1, ν1 + δ⟩⟨γ2, ν2 + δ⟩ . . . ⟨γn, νn + δ⟩.

The operational semantics Stnd of the SRTA A is defined as a labeled infinite transi-
tion system TA = (Q× (Γ× (X → R≥0))∗,→,⇝) where the set of discrete transitions →
and the set of timed transitions ⇝ are defined as follows:

p
τ−→α q ∈ ∆ w

τ−→ w′

⟨p, w⟩ τ−→α ⟨q, w
′⟩,

δ ∈ R≥0

⟨q, w⟩ δ⇝ ⟨q, w + δ⟩.

■

89

By exploiting the dig rule, we can implement useful transition rules, which naturally
appeared in the existing models: timed recursive state machines and recursive timed
automata [BMP10, TW10]. We call an SRTA equipped with the following extended push
and pop rules extended SRTA:

ν2 = 0X [X B ν1]

w ⟨γ1, ν1⟩ → w ⟨γ1, ν1⟩ ⟨γ2, ν2⟩
push(γ2, X)

ν ′2 = ν2[X B ν1]

w ⟨γ1, ν1⟩ ⟨γ2, ν2⟩ → w ⟨γ1, ν ′2⟩
pop(γ2, X)

where X is a subset of X and ν[{x1, . . . , xn} B ν ′] is defined as follows:

ν[{x1, x2, . . . , xn} B ν ′] ≜ ν[x1 B ν ′(x1)][x2 B ν ′(x2)] · · · [xn B ν ′(xn)].

For any extended SRTA, we can construct the corresponding normal SRTA by replacing
each extended transition rule with appropriate dig rules.

Timed Languages of SRTA. We define the timed language of an SRTA in the same
way as timed automata.

For an SRTA A, its timed language, L(A), is defined as follows:

L(A) ≜ {tw(π) : π = ⟨qinit, ⟨⊥,0⟩⟩⇝ · · · → ⟨q, w⟩, q ∈ F} .

Remark: For the initial configuration ⟨qinit, ⟨⊥,0⟩⟩, we use the special stack symbol ⊥.
We consider the following timed language:

LSRTA ≜
{
(a, t1)(a, t2) . . . (a, tn)(b, t

′
n) . . . (b, t

′
2)(b, t

′
1) : t

′
i − ti ∈ N, n ≥ 1

}
.

It should be noted that if we forget the time stamps from LSRTA then the language
{anbn : n ≥ 1} is a typical context-free language.

To accept the above timed language, let us consider an extended SRTA ASRTA =
({q0, . . . , q4} , q0, {q4} , {a, b} , {⊥, ⋆} , {x} ,∆) where ∆ is defined as follows:

q0 q1 q2 q3

q4

push(⊥)
a

check(frac(x)=0)

b

pop(⋆, {x})
ϵ

pop(⊥)ϵ

check(frac(x)=0)

b

push(⋆)

a

SRTA ASRTA accepts LSRTA and the following acceptable computation represents the
timed word (a, 0.1)(a, 1.2)(b, 2.2)(b, 3.1) ∈ LSRTA:

⟨q0, ⟨⊥, 0⟩⟩
0.1⇝⟨q0, ⟨⊥, 0.1⟩⟩ a−→ ⟨q1, ⟨⊥, 0.1⟩⟨⊥, 0⟩⟩

1.1⇝⟨q1, ⟨⊥, 1.2⟩⟨⊥, 1.1⟩⟩ a−→

⟨q1, ⟨⊥, 1.2⟩⟨⊥, 1.1⟩⟨⋆, 0⟩⟩
1.0⇝⟨q1, ⟨⊥, 2.2⟩⟨⊥, 2.1⟩⟨⋆, 1⟩⟩ b−→ ⟨q2, ⟨⊥, 2.2⟩⟨⊥, 2.1⟩⟨⋆, 1⟩⟩

0.5⇝

⟨q2, ⟨⊥, 2.7⟩⟨⊥, 2.6⟩⟨⋆, 1.5⟩⟩
ϵ−→ ⟨q3, ⟨⊥, 2.7⟩⟨⊥, 2.6⟩⟩

0.4⇝ ⟨q3, ⟨⊥, 3.1⟩⟨⊥, 3⟩⟩ b−→

⟨q2, ⟨⊥, 3.1⟩⟨⊥, 3⟩⟩
0⇝ ⟨q2, ⟨⊥, 3.1⟩⟨⊥, 3⟩⟩ ϵ−→ ⟨q4, ⟨⊥, 3.1⟩⟩

90

The fractional constraint check(frac(x) = 0) checks if the fractional part of t′i − ti is
zero (i.e., t′i − ti ∈? N) and is key to excluding runs τ such that tw(τ) /∈ LSRTA. For
example,

τ = ⟨q0, ⟨⊥, 0⟩⟩
0.1⇝⟨q0, ⟨⊥, 0.1⟩⟩ a−→

⟨q1, ⟨⊥, 0.1⟩⟨⊥, 0⟩⟩
0.2⇝⟨q1, ⟨⊥, 0.3⟩⟨⊥, 0.2⟩⟩ ̸ b−→

⟨q2, ⟨⊥, 0.3⟩⟨⊥, 0.2⟩⟩

and tw(τ) = (a, 0.1)(b, 0.3) /∈ LSRTA.

5.2 Expressiveness of SRTA

In this section, we study the expressivenss of SRTA by comparing it with PTA and MT-
PDA. First, we show that SRTA are more expressive than PTA; and then, we show that
SRTA can be seen as an extension of MTPDA.

5.2.1 SRTA is More Expressive than PTA: PTA ⊊ SRTA

We show PTA ⊆ SRTA and then show the above timed language LSRTA can not be
recognized by any PTA.

Theorem 5.1. Let A be a PTA. There is an SRTA B such that L(A) = L(B).

Proof. Since there are no global clocks in SRTA, let us see how we can encode them in
SRTA by extended rules push(γ,X) and pop(γ,X).

Without loss of generality, we can assume that if p
x∈?I−−−→α q in A, then I = (a : b),

I = [a : b], or I = (a : ω). We denote the PTA A as A = (Q, qinit, F,Σ,Γ,X ,∆) and
construct the following SRTA B:

B = (Q, qinit, F,Σ,Γ ∪ {⊥} ,X ,∆′).

Our idea to simulate A by B is to represent the values of the global clocks X of A in the
stack top frame of B. To formally state this, we define a correspondence relation between
configurations of A and B as follows:

⟨q, ν, ϵ⟩ ∼ ⟨q, ⟨⊥, ν⟩⟩,
⟨q, ν, γ1γ2 . . . γn⟩ ∼ ⟨q, ⟨γ1, ⟩⟨γ2, ⟩ . . . ⟨γn, ν⟩⟩.

Now we define ∆′ as follows so that the above relation forms a bisimulation between A
and B:

p
nop−−→α q ∈ ∆

p
frac(x)=frac(x)−−−−−−−−−→α q ∈ ∆′,

p
push(γ)−−−−→α q ∈ ∆

p
push(γ,X)−−−−−−→α q ∈ ∆′,

p
pop(γ)−−−−→α q ∈ ∆

p
pop(γ,∅)−−−−−→α q ∈ ∆′,

p
reset(x)−−−−→α q ∈ ∆

p
x←[0:0]−−−−−→α q ∈ ∆′,

p
x∈?(a:b)−−−−−→α q ∈ ∆

p
x∈?(a:b)−−−−−→α q ∈ ∆′,

p
x∈?[a:b]−−−−−→α q ∈ ∆

p
x∈?[a:b]−−−−−→α q ∈ ∆′,

p
x∈?(a:ω)−−−−−→α q ∈ ∆

p
x ̸∈?[0:a]−−−−−→α q ∈ ∆′.

(Here we assume that X = {x, . . .} is not empty).

It should be noted that a transition rule p
push(γ,X)−−−−−−→α q induces transitions of the

following form:

⟨p, ⟨γ1, ν1⟩⟨γ2, ν2⟩ . . . ⟨γn, νn⟩⟩
push(γ,X)−−−−−−→α ⟨q, ⟨γ1, ν1⟩⟨γ2, ν2⟩ . . . ⟨γn, νn⟩⟨γ, νn⟩⟩

91

and a transition rule p
pop(γ,∅)−−−−−→α q induces transitions of the following form:

⟨p, ⟨γ1, ν1⟩⟨γ2, ν2⟩ . . . ⟨γn, νn⟩⟨γ, νn+1⟩⟩
pop(γ,∅)−−−−−→α ⟨q, ⟨γ1, ν1⟩⟨γ2, ν2⟩ . . . ⟨γn, νn+1⟩⟩.

It can be easily verified that the above relation ∼ form a bisimulation between A and B
for the set of transition rules ∆′; therefore, we have L(A) = L(B).

Theorem 5.2. The following SRTA language cannot be accepted by any PTA.

LSRTA =
{
(a1, t1)(a2, t2) . . . (an, tn)(bn, t

′
n) . . . (b2, t

′
2)(b1, t

′
1) : n ≥ 1, t′i − ti ∈ N

}
.

Proof. To prove this, we use the notations introduced in Section 3.4 of Chapter 3. We
prove this by contradiction; we assume there is an m-PTA Am such that LSRTA = L(Am).
Since LSRTA = L(Am), there is a timed word such that

(am+1, tm+1) . . . (a1, t1)(b1, t
′
1) . . . (bm+1, t

′
m+1) ∈ L(An)

where t′i − ti = i for any 1 ≤ i ≤ m+ 1. This and Proposition 3.7 of Chapter 3 shows the
presence of a timed word

(am+1, um+1) . . . (a1, u1)(b1, u
′
1) . . . (bn+1, u

′
m+1) ∈ L(An)

such that 1 < u′1 − u1 < 2. By the definition of LSRTA, this timed word does not belong
to LSRTA. Therefore, L(Am) ̸= LSRTA.

Combining these results, we obtain the main result about the expressiveness of timed
pushdown automata.

Corollary 5.1.
PTA = DTPDA = MTPDA ⊊ SRTA.

5.2.2 Alternative View of SRTA

We show that SRTA can be seen as an extension of MTPDA.

Clock Constraints with Diagonal Constraints. Let C be a finite set of clocks. We
extend the set of clock constraints ΦC with diagonal constraints.

The set Φdiag
C of clock constraints with diagonal constraints is given by:

φ ∈ Φdiag
C ::= c ∈? I | frac(c) = 0 | frac(c) ▷◁ frac(c′) | c− c′ ▷◁ k | φ ∧ φ | ¬φ

where c, c′ ∈ C, I is an bounded interval, and ▷◁ ∈ {<,=, >}, and k ∈ Z. A constraint
c − c′ ▷◁ k correspond to a diagonal constraint of timed automata in Section 2.5.1 of
Chapter 2.

Let φ ∈ Φdiag
C be a constraint and ν : C → R≥0 be a valuation. We write ν |= φ if φ

holds when clocks are replaced by values of ν. We write Var(φ) for the set of clocks of φ: for
example, if φ ≡ c1 ∈? (3 : 5)∧ c2− c3 < 3∧¬(frac(c4) = 0), then Var(φ) = {c1, c2, c3, c4}.

92

Extended MTPDA Here we consider an extension of MTPDA, extended MTPDA
(EMTPDA). An EMTPDA A is a 8-tuple A = (Q, qinit, qF ,Σ,Γ,X ,Z,∆) where each
component except ∆ is the same as that of MTPDA and ∆ ⊆ Q× Σϵ × ActEMTPDA ×Q
is the set of transition rules. The set of actions of EMTPDA is defined by the following
grammar:

ActEMTPDA ::= push(γ) | pop(γ) | c←[c′ | c← I | check(φ)

where γ ∈ Γ, c, c′ ∈ X ∪Z, I is an bounded interval, and φ ∈ Φdiag
X∪Z . As with MTPDA, A

configuration of the EMTPDA A is a triple ⟨q, ν, ⟨γ1, µ1⟩ . . . ⟨γn, µn⟩⟩ where q is a control
location, ν : X → R≥0 is a valuation on global clocks, and ⟨γi, µi⟩ ∈ Γ × (Z → R≥0) is
a stack frame with a stack symbol and valuation on local clocks. The semantics of the

transition rules of the form p
push(γ)−−−−→α q and p

pop(γ)−−−−→α q is defined in the same way as

MTPDA. We define the semantics of the other transition rules as follows:

Bounded Update c← I:

p
x←I−−−→α q ∈ ∆ x ∈ X r ∈ I

⟨p, ν, w⟩ x←I−−−→α ⟨q, ν[x B r], w⟩.

p
z←I−−−→α q ∈ ∆ z ∈ Z r ∈ I

⟨p, ν, w⟨γ, µ⟩⟩ z←I−−−→α ⟨q, ν, w⟨γ, µ[z B r]⟩⟩,

Checking Clocks check(φ):

p
check(φ)−−−−−→α q ∈ ∆ Var(φ) ∩ Z = ∅ ν |= φ.

⟨p, ν, w⟩ check(φ)−−−−−→α ⟨q, ν, w⟩,

p
check(φ)−−−−−→α q ∈ ∆ Var(φ) ∩ Z ̸= ∅ ν ∪ µ |= φ

⟨p, ν, w⟨γ, µ⟩⟩ check(φ)−−−−−→α ⟨q, ν, w⟨γ, µ⟩⟩

Copying Clocks c1 ←[c2:
p

x ←[x′−−−−→α q ∈ ∆ x ∈ X x′ ∈ X

⟨p, ν, w⟩ x ← [x′−−−−→α ⟨q, ν[x B ν(x′)], w⟩,

p
x ←[z−−−−→α q ∈ ∆ x ∈ X z ∈ Z

⟨p, ν, w⟨γ, µ⟩⟩ x ←[z−−−−→α ⟨q, ν[x B µ(z)], w⟨γ, µ⟩⟩,

p
z ← [x−−−−→α q ∈ ∆ z ∈ Z x ∈ X

⟨p, ν, w⟨γ, µ⟩⟩ z ←[x−−−−→α ⟨q, ν, w⟨γ, µ[z B ν(x)]⟩⟩,

p
z ← [z′−−−−→α q ∈ ∆ z ∈ Z z′ ∈ Z

⟨p, ν, w⟨γ, µ⟩⟩ z ←[z′−−−−→α ⟨q, ν, w⟨γ, µ[z B µ(z′)]⟩⟩.

We define the language L(A) of an EMTPDA A in the same way as MTPDA. Extended
MTPDA can be seen as follows:

Extended MTPDA = MTPDA+ fractional constraints frac(c) = 0 & frac(c) ▷◁ frac(c′)
+ bounded update c← I + value copying c←[c′

Since we can simulate the dig actions of SRTA by the value copying mechanism of extended
MTPDA, we have the following lemma.

Lemma 5.1. Let A be an SRTA. There is an extended MTPDA B such that L(A) = L(B).

Proof. We denote the SRTA A by A = (Q, qinit, F,Σ,Γ,X ,∆) where X = {x1, x2, . . . , xk}.
We define the EMTPDA B = (Q, qinit, F,Σ,Γ, GX , LX ,∆

′) where GX = {gx : x ∈ X}
and LX = {ℓx : x ∈ X}. Before we give the definition of ∆′, we define a correspondence
relation between configurations of A and B as follows:

⟨q, ⟨γ1, ν1⟩⟩ ∼ ⟨q, ν1, ⟨γ1, ⟩⟩,
⟨q, ⟨γ1, ν1⟩⟨γ2, ν2⟩⟩ ∼ ⟨q, ν2, ⟨γ1, ⟩⟨γ2, ν1⟩⟩,
⟨q, ⟨γ1, ν1⟩⟨γ2, ν2⟩ . . . ⟨γn−1, νn−1⟩⟨γn, νn⟩⟩ ∼ ⟨q, νn, ⟨γ1, ⟩⟨γ2, ν1⟩ . . . ⟨γn, νn−1⟩⟩.

93

Basically, we remember the clock valuation νn of the top frame of A in the global clock
valuation of B and the clock valuation νn−1 of the frame next to the top of A in the local
clock valuation of the top frame of B, and so on. To have the above relation ∼ form a
bisimulation, we define ∆′ as follows:

p
push(γ)−−−−→α q ∈ ∆

p
push(γ)# ℓx1←gx1 # ···# ℓxk←gxk # reset(x1)# ···# reset(xk)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→α q ∈ ∆′,

p
dig(x,y)−−−−−→α q ∈ ∆

p
gx ← ℓy−−−−−→α q ∈ ∆′,

p
pop(γ)−−−−→α q ∈ ∆

p
pop(γ)−−−−→α q ∈ ∆′

p
x←I−−−→α q ∈ ∆

p
gx←I−−−→α q ∈ ∆′,

p
check(φ)−−−−−→α q ∈ ∆

p
check(rename(φ))−−−−−−−−−−−→α q ∈ ∆′

where the function rename : Ψdiag
X → Ψdiag

GX
renames each clock x of an input constraint

to the corresponding clock gx. To simplify the construction, we used atomic transition

rules of the form p
τ1# τ2# ··· τn−−−−−−−−→α q; however, we can remove this by adding a sequence of

transition rules and a fresh clock to ensure the atomicity of the sequence of transitions
(see Lemma 4.1 of Chapter 4).

Conversely, we show the language class of EMTPDA is subsumed by that of SRTA. To
this end, we consider an extension of SRTA, full SRTA, which are as expressive as SRTA.
Act fullSRTA is the set of actions of a full SRTA defined as follows:

τ ∈ Act fullSRTA ::= push(γ) | pop(γ) | dig(x, y) | x← I | check(φ)
| τ # τ | top(γ) | x⇐\ x′

where γ ∈ Γ, x, x′ ∈ X , I is an interval, and φ ∈ Φdiag
X . On full SRTA, we newly allow the

following types of transition rules:

Atomic transition An atomic transition rule p
τ1# τ2−−−→α q induces the following transition:

w
τ1−→ w′′ w′′

τ2−→ w′

⟨p, w⟩ τ1# τ2−−−→α ⟨q, w′⟩.

Adding this type of transition rules does not enlarge the expressiveness of SRTA
because we can easily remove atomic transitions in the same way as Lemma 4.1 of
Chapter 4.

Checking a stack symbol A transition rule p
top(γ)−−−−→α q checks whether or not the stack

symbol of the stack top frame is γ; therefore, the rule induces the following transition:

γ′ = γ

⟨p, w⟨γ′, µ⟩⟩ top(γ)−−−−→α ⟨q, w⟨γ′, µ⟩⟩.

Adding this type of transition rules does not enlarge the expressivenes of SRTA
because we can remove such transition rules in the same way as Lemma 4.1 of
Chapter 4.

Copying clocks in a single frame A transition rule p
x1⇐ \x2−−−−−→α q, unlike the action dig,

copies the value of the clock x2 to the clock x1 in the stack top frame; therefore, the
rule induces the following transition:

⟨p, w⟨γ, µ⟩⟩ x1⇐\x2−−−−−→α ⟨q, w⟨γ, µ[x1 B µ(x2)]⟩⟩.

94

Adding this type of transition rules does not enlarge the expressivenes of SRTA

because we can replace p
x1⇐\x2−−−−→α q by p

push(γ,X)# dig(x1,x2)# pop(γ,∅)−−−−−−−−−−−−−−−−−−−−→α q.

Diagonal constraints On full SRTA, we allow diagonal constraints x − y ▷◁ k. This
does not enlarge the expressiveness of SRTA; we showed this result in our pre-
liminary work [UM15]. The similar result was already shown on timed automata
in [BDFP04]. This is in constast to the result of timed automata that the combi-
nation of unbounded updates and diagonal constraints enlarge the expressiveness of
timed automata and leads to the undecidability of the reachability problem of timed
automata [BDFP04].

Therefore, SRTA and full SRTA are equally expressive.

Lemma 5.2. Let A be an extended MTPDA. There is a full SRTA B such that L(A) =
L(B).

Proof. We denote the extended MTPDA by A = (Q, qinit, F,Σ,Γ,X ,Z,∆). We define the
following full SRTA B:

B = (Q, qinit, F,Σ,Γ ∪ {⊥} ,X ∪ Z,∆′).

Before giving the definition of ∆′, we define a correspondence relation between configura-
tions of A and B:

⟨q, ν, ϵ⟩ ∼ ⟨q, ⟨⊥, θ⟩⟩ ⇐⇒ ν = θ ↾ X ,
⟨q, ν, ⟨γ1, µ1⟩⟩ ∼ ⟨q, ⟨⊥, ⟩⟨γ1, ν ∪ µ1⟩⟩,
⟨q, ν, ⟨γ1, µ1⟩⟨γ2, µ2⟩ . . . ⟨γn, µn⟩⟩ ∼ ⟨q, ⟨⊥, ⟩⟨γ1, θ1⟩⟨γ2, θ2⟩ . . . ⟨γn, ν ∪ µn⟩⟩ ⇐⇒ µi = (θi ↾ X).

To have this relation ∼ form a bisimulation between A and B, we define the set of
transition rules of B as follows:

p
push(γ)−−−−→α q ∈ ∆

p
push(γ,X)−−−−−−→α q ∈ ∆′,

p
pop(γ)−−−−→α q ∈ ∆

p
pop(γ,X)−−−−−→α q ∈ ∆′,

p
c← [c′−−−→α q ∈ ∆ {c, c′} ∩ Z ̸= ∅ γ ∈ Γ

p
top(γ)# c⇐\ c′−−−−−−−−→α q ∈ ∆′,

p
c←[c′−−−→α q ∈ ∆ {c, c′} ∩ Z = ∅

p
c⇐\ c′−−−→α q ∈ ∆′,

p
c← I−−−→α q ∈ ∆ c ∈ Z γ ∈ Γ

p
top(γ)# c← I−−−−−−−−→α q ∈ ∆′,

p
c← I−−−→α q ∈ ∆ c ∈ X

p
c← I−−−→α q ∈ ∆′,

p
check(φ)−−−−−→α q ∈ ∆ Var(φ) ∩ Z ̸= ∅ γ ∈ Γ

p
top(γ)# check(φ)−−−−−−−−−−→α q ∈ ∆′,

p
check(φ)−−−−−→α q ∈ ∆ Var(φ) ∩ Z = ∅

p
check(φ)−−−−−→α q ∈ ∆′.

It can be easily verified that ∼ forms a bisimulation between the extended MTPDA A
and the extended SRTA B; therefore, we have L(A) = L(B).

Combining these lemmas, we have the following.

Theorem 5.3. Extended MTPDA and (full) SRTA are equally expressive.

95

5.3 Overview of Decidability Proof of
Configuration Reachability Problem

As an overview of the rest of the present paper, we outline our proof of the decidability
of the configuration reachability problem of SRTA.

Configuration Reachability Problem.
For a configuration ⟨q, w⟩, the configuration reachability problem ⟨qinit, ⟨⊥,0⟩⟩ →∗?

⟨q, w⟩ decides if there is a run from the initial configuration ⟨qinit, ⟨⊥,0⟩⟩ to ⟨q, w⟩.
The following is our main result:

Main Result (Corollary 5.2)

The configuration reachability problem of SRTA is decidable.

To show this, we build a semantics called the digitized semantics Digi that can be defined
as a finite PDS through Section 5.4 and Section 5.6:

Stnd Sec.5.4 Lazy Semantics Lazy
Sec.5.5 Collapsed Semantics Coll
Sec.5.6 Digitized Semantics Digi.

These translations allow reducing the configuration reachability problem of the standard
semantics to the configuration reachability problem of the digitized semantics. Since the
configuration reachability problem of finite PDS is decidable, we obtain the decidability of
the configuration reachability problem of SRTA. We note that our construction is based
on the construction of Abdulla et al. in [AAS12a] and the finally obtained finite PDS is
basically equivalent to their symbolic pushdown automaton.

Let us see the idea of each translation and explain the reason why our approach works
well for the configuration reachability problem.

5.3.1 Idea of Each Semantics

Our aim is to reduce the reachability problem of the standard semantics Stnd to the
corresponding reachability problem of the digitized semanticsDigi. To this end, we remove
the following three problems at each step:

1. The entire stack modification of timed transitions:

⟨γ1, ν1⟩⟨γ2, ν2⟩ . . . ⟨γn, νn⟩
δ⇝ ⟨γ1, ν1 + δ⟩⟨γ2, ν2 + δ⟩ . . . ⟨γn, νn + δ⟩.

2. The unboundedness of real numbers.

3. The denseness of real numbers.

Removing Entire Stack Modification: Lazy Semantics
To simulate the entire stack modification of timed transitions by pushdown systems

that only allow to modify finitely (boundedly) many elements of a stack, we use the
technique called lazy time elapsing that was developed by Abdulla et al. in [AAS12a,
AAS12b].

To show the idea of the technique, let us consider the following transitions:

ν1 ν2 ν3
2.0⇝ ν ′1 ν

′
2 ν
′
3

dig(x,x)−−−−−→ ν ′1 ν
′
2 ν
′′
3

pop−−→ ν ′1 ν
′′
3

where
ν1 = {x 7→ 0.5}, ν2 = {x 7→ 2.0}, ν3 = {x 7→ 1.5},
ν ′i = νi + 2.0, ν ′′3 = {x 7→ 4.0}.

Our simulation idea is to

96

• keep the correct top and next to the top frames rather than the entire stack for the
check and dig rules; and

• reconstruct a new frame that reflects the correct information when performing pop
transitions.

We introduce the notion of clock marking and valuation pairing to describe this idea. We
pair two valuations νi and νi+1 and make the paired valuation µi+1 as follows:

1. Mark νi+1 and obtain the marked valuation •νi+1 :
•
X → R≥0 as •νi+1(

•x) ≜ νi+1(x).

2. In the same way, we mark and obtain the marked valuation •νi : •X → R≥0.

3. Finally, we obtain µ : •X ∪
•
X → R≥0 by gluing them µi+1 ≜ •νi ∪

•νi+1.

We relate the 1-height stack ν1 to a 1-height stack µ1 of a paired valuation such that
ν1(x) = µ1(

•x) as follows:

ν1 = {x 7→ 0.5} |=
{
•x 7→ r; •x 7→ 0.5

}
,

where the value of •x is irrelevant. We also relate the 3-height stack ν1ν2ν3 to the following
3-height stack µ1µ2µ3:

ν3 = {x 7→ 1.5}
ν2 = {x 7→ 2.0}
ν1 = {x 7→ 0.5}

|=
µ3 =

{
•x 7→ 2.0; •x 7→ 1.5

}
µ2 =

{
•x 7→ 0.5; •x 7→ 2.0

}
µ1 =

{
•x 7→ r; •x 7→ 0.5

}
,

where the top frame µ3 has the correct information of the top frame ν3 and next to the top
frame ν2, the frame µ2 corresponds to the frames ν2 and ν1, and the frame µ1 corresponds
to the frame ν1.

On the basis of valuation pairing, we simulate the entire stack modification ν1ν2ν3
2.0⇝

ν ′1ν
′
2ν
′
3 by only evolving the top frame as follows (µ1µ2µ3

2.0⇝ µ1µ2µ
′
3):{

•x 7→ 2.0; •x 7→ 1.5
}{

•x 7→ 0.5; •x 7→ 2.0
}{

•x 7→ r; •x 7→ 0.5
} 2.0⇝

{
•x 7→ 4.0; •x 7→ 3.5

}{
•x 7→ 0.5; •x 7→ 2.0

}{
•x 7→ r; •x 7→ 0.5

}
.

Although the obtained stack does not match the stack ν ′1ν
′
2ν
′
3, the top frame µ′3 matches

the top frame ν ′3 and the next to the top frame ν ′2. Therefore, we can safely simulate the

dig transition ν ′1ν
′
2ν
′
3

dig(x,x)−−−−−→ ν ′1ν
′
2ν
′′
3 as follows (µ1µ2µ

′
3

•
xB•x−−−→ µ1µ2µ

′′
3):{

•x 7→ 4.0; •x 7→ 3.5
}{

•x 7→ 0.5; •x 7→ 2.0
}{

•x 7→ r; •x 7→ 0.5
} •

xB•x−−−→

{
•x 7→ 4.0; •x 7→ 4.0

}{
•x 7→ 0.5; •x 7→ 2.0

}{
•x 7→ r; •x 7→ 0.5

}
.

In order to simulate ν ′1ν
′
2ν
′′
3

pop−−→ ν ′1ν
′′
3 , we evolve the next to the top frame µ2 until

µ2 + δ matches µ3 or formally (µ2 + δ)(•x) = µ3(•x) holds:{
•x 7→ 4.0; •x 7→ 4.0

}{
•x 7→ 0.5; •x 7→ 2.0

}{
•x 7→ r; •x 7→ 0.5

} →

{
•x 7→ 4.0; •x 7→ 4.0

}{
•x 7→ 2.5; •x 7→ 4.0

}{
•x 7→ r; •x 7→ 0.5

}
.

This operation reconstructs the frame { •x 7→ 2.5; •x 7→ 4.0} that has the correct information
of ν ′1 and ν ′2. We compose the frames µ′′3 and µ2 + 2.0 as follows:{

•x 7→ 4.0; •x 7→ 4.0
}{

•x 7→ 2.5; •x 7→ 4.0
}{

•x 7→ r; •x 7→ 0.5
}
.

→
{
•x 7→ 2.5; •x 7→ 4.0

}{
•x 7→ r; •x 7→ 0.5

}
.

97

After simulating the pop transition, the top frame
{
•x 7→ 2.5; •x 7→ 4.0

}
matches ν ′1ν

′′
3 .

It is worth noting that, to simulate pop transitions, we need to operate the top and the
next to the top frames at once. For this purpose, multiple pop transition rules ⟨q, α⟩ ↪→
⟨q, β⟩ where α ∈ Γ+ are allowed in our formalization of pushdown systems.

Considering stacks of paired valuations is enough to simulate the standard semantics
by an infinite pushdown system. However, for technical reasons, we introduce reference
clocks along with the lazy elapsing technique. We use a fresh clock called a reference clock
∁. Such a clock is accessed and reset to 0.0 only when we push a new frame as follows:{

•∁ 7→ r1; •x 7→ 0.5;
•
∁ 7→ r2;

•x 7→ 2.0
} push−−−→{

•∁ 7→ 0.0; •x 7→ 2.0;
•
∁ 7→ 0.0; •x 7→ 0.0

}{
•∁ 7→ r1; •x 7→ 0.5;

•
∁ 7→ 0.0; •x 7→ 2.0

}
.

The introduction of reference clocks does not interfere with the above idea of the lazy
elapsing technique. The reader can find the reason why we need reference clocks in Sec-
tion 5.5.2, the remark after Lemma 5.7, and Section 5.6.5.

In Section 5.4, we show the simulation between the standard semantics and the lazy
semantics in the both directions:

Lemma 5.3 :

s −−−→
Stnd

s′
|=

l

=⇒
s −−−→

Stnd
s′

|= |=

l −−−→
Lazy

∃l′,

Lemma 5.4 :

s

|=

l −−−→
Lazy

l′
=⇒

s −−−→
Stnd

∃s′

|= |=

l −−−→
Lazy

l′.

Removing the Unboundedness of Real Numbers: Collapsed Semantics Coll
To remove the unboundedness of real numbers, as with Section 2.4.3 of Chapter 2, we

consider the collapsed valuations. For an SRTA A, we introduce an upper-bound constant
M:

M ≜ max{ i, j : (i : j) or [i : j] appears in an interval constraint of A }+ 1.

We also define the collapsed real numbers C as follows:

C ≜
(
[0..(M− 1)] ∪ {∞}

)
× [0, 1)

and define the collapsing function C : R≥0 → C as follows:

C(r) ≜
{
(∞ , frac(r)) if r ≥ M

(⌊r⌋, frac(r)) if r < M

In Section 5.5, we will show the simulation between the lazy and collapsed semantics
in the both directions:

Lemma 5.6 :

l −−−→
Lazy

l′

|=

c

=⇒
l −−−→

Lazy
l′

|= |=

c −−−→
Coll

∃c′,

Lemma 5.7 :

l

|=

c −−−→
Coll

c′
=⇒

l −−−→
Lazy

∃l′

|= |=

c −−−→
Coll

c′.

98

Removing the Denseness of Real Numbers: Digitized Semantics Digi.
Finally, we remove the denseness of real numbers from the collapsed domain C by in-

troducing digital valuations as with Section 2.3.1 of Chapter 2. Recall a digital valuation
is obtained from a collapsed valuation by abstracting the fractional parts of the valua-
tion into the corresponding ordering. For example, we abstract the following collapsed
valuation

µ = {a 7→ 1.0; b 7→ 2.3; c 7→ 3.7; d 7→ ∞.3}

into the digital valuation

d = {(a, 1)}0 {(b, 2), (d,∞)} {(c, 3)} (µ |= d)

and d means the following:

• The term {(a, 1)}0 means that the integral part of a is 1 and the fractional part of
a is 0.0 (i.e., the value of a is 1.0).

• The term {(b, 2), (d,∞)} means that the fractional parts of b and d are the same.
Furthermore, the fractional parts of b and d are strictly larger than 0.0 because they
do not belong to {. . .}0.

• The order {(b, 2), (d,∞)} {(c, 3)} means that the fractional part of b and d is strictly
smaller than that of c.

In the theory of timed automata (without the stack), the region is an appropriate
abstraction of the collapsed valuations. Indeed, when considering timed automata rather
than SRTA, we have the forward simulation between the collapsed and digitized semantics
in the both directions as follows:

For TA:

c

|=
d −−−→

Digi
d′

=⇒
c −−−→

Coll
∃c′

|= |=

d −−−→
Digi

d′.
Lemma 5.9:

c −−−→
Coll

c′

|=

d

=⇒
c −−−→

Coll
c′

|= |=

d −−−→
Digi

∃d′.

However, on SRTA, the former diagram does not hold for the unavoidable nondeterminacy
of pop transitions. For example, let us consider the following pop-transition:{

•x 7→ 1.0; •x 7→ 2.2
}{ •x 7→ 1.0; •x 7→ 0.4
} pop−−−→

Coll

{
•x 7→ 0.4; •x 7→ 2.2

}

|=

d2 =
{
(•x, 1)

}
0
{(•x, 2)}

d1 = {(•x, 1)}0
{
(•x, 0)

} pop−−−→
Digi

{d,d′,d′′} .

We need to decide the order of •x ∈ d1 and •x ∈ d2 when composing d1 and d2. However,
since there is no information about their fractional parts, we generate all the possibilities
as follows:

d = {}0
{
(•x, 0), (

•x, 2)
}
,

d′ = {}0
{
(•x, 0)

}
{(•x, 2)} ,

d′′ = {}0 {(
•x, 2)}

{
(•x, 0)

}
.

On the other hand, the pop transition of the collapsed semantics behaves deterministically;
therefore, the collapsed semantics cannot capture the nondeterministic behavior of the pop
transition of the digitized semantics.

Although we give up the forward simulation, the following backward simulation holds:

Lemma 5.10 :

c′

|=

d −−−→
Digi

d′
=⇒

∃c −−−→
Coll

c′

|= |=

d −−−→
Digi

d′.

99

The backward simulation naturally solves the above determinacy vs. nondeterminacy prob-
lem. Furthermore, as we will see below, the backward simulation is key to establishing
the decidability of the configuration reachability problem.

5.3.2 Backward Simulation in Configuration Reachability Problem

We see how to use the backward simulation lemma (Lemma 5.10) in the configuration
reachability problem. Let us consider the following configuration reachability problem:

⟨qinit, ⟨⊥, {x 7→ 0.0; y 7→ 0.0}⟩⟩ −−−→
Stnd

∗ ⟨q, ⟨⊥, {x 7→ 2.71; y 7→ 3.14}⟩⟩. (⋆)

Hereafter we confirm that the above problem is equivalent to find a digital valuation d
that satisfies {x 7→ 2.71; y 7→ 3.14} |= d and the following:

⟨qinit, ⟨⊥, {(•x, 0), (•y, 0), (
•x, 0), (•y, 0)}0⟩⟩ −−−→

Digi

∗ ⟨q, ⟨⊥,d⟩⟩. (♯)

For simplicity, we do not consider reference clocks in this example and assume M ≥ 4.
Let us assume the following digital valuation d satisfies (♯):

d = {}0 {(
•y, 3)} {(•x, 2)} {(•x,∞), (

•
y,∞)}.

We consider the following collapsed valuation µ such that µ |= d:

µ =

{
•x 7→ 2.71; •y 7→ 3.14;

•x 7→ ∞.9; •
y 7→ ∞.9

}
|= d.

The backward simulation lemma, Lemma 5.10, ensures the following run:

⟨qinit, ⟨⊥,

{
•x 7→ 0.0; •y 7→ 0.0;

•x 7→ 0.0;
•
y 7→ 0.0

}
⟩⟩−−−→

Coll

∗ ⟨q, ⟨⊥, µ⟩⟩.

Sequentially applying the forward simulation lemmas, Lemma 5.7 and 5.4, to this run, we
obtain the above run (⋆). Therefore, to solve (⋆), it suffices to find a digital valuation d
such that {x 7→ 2.71; y 7→ 3.14} |= d and solve (♯). Indeed, we will use the same argument
in the proof of our main theorem (Theorem 5.4).

In the above argument, using the backward simulation is key and we cannot replace
it by the forward simulation of the digitized semantics by the collapsed semantics. (As
we have seen above, we cannot forwardly simulate the semantics Digi by the semantics
Coll due to the nondeterminacy of pop-transitions.) Even if we could apply the forward
simulation to the run (♯), then we may obtain the following run:

⟨qinit, ⟨⊥,

{
•x 7→ 0.0; •y 7→ 0.0;

•x 7→ 0.0;
•
y 7→ 0.0

}
⟩⟩ −−−→

Coll

∗ ⟨q, ⟨⊥, µ′ =

{
•x 7→ 2.34; •y 7→ 3.09;

•x 7→ ∞.9; •
y 7→ ∞.9

}
⟩⟩

where µ′ |= d. Since the forward simulation only ensures a run to ⟨q, ⟨⊥, µ′⟩⟩ where µ′ |= d,
we cannot show the existence of a run to ⟨q, ⟨⊥, µ⟩⟩ where µ(•x) = 2.71 and µ(•y) = 3.14.
If we apply Lemma 5.7 and 5.8 to this run. then we only obtain the following run that
differs from (⋆):

⟨qinit, ⟨⊥, {x 7→ 0.0; y 7→ 0.0}⟩⟩ −−−→
Stnd

∗ ⟨q, ⟨⊥, {x 7→ 2.34; y 7→ 3.09}⟩⟩.

100

5.3.3 Comparing Proof of Abdulla et al. and Ours

We review the proof of Lemma 4 of Abdulla et al. in [AAS12a], which enables us to reduce
the location reachability problem of the standard semantics to the location reachability
problem of the digitized semantics. The proof structure of their lemma can be summarized
schematically as the following diagram by using our notation:

W W ′Digi

C C ′∃ ∀

∀ ∃

≈ ≈

w w′Stnd

∼= ∼=

.

This diagram says that if W −−−→
Digi

∗ W ′ and C ′ ≈ W ′, then there is C such that for all

stack w ∼= C there exists w′ ∼= C ′ such that w −−−→
Stnd

∗ w′. Let us explain the definition

of the relation ≈ and ∼=. Informally, C ≈ W means that a valuation C is obtained by
flattening a stack W . Let us consider the following stack:

W =

d3 = {(y, 1)}0 {(x, 2)}
d2 = {}0 {(x, 3)(y, 4)}

d1 = {}0 {(x, 1)} {(y, 5)} .
The following is one of the valuations obtained by flattening W :

C =

{
y(3) 7→ 1.0; x(1) 7→ 1.1; x(3) 7→ 2.4;

x(2) 7→ 3.6; y(2) 7→ 4.6; y(1) 7→ 5.9

}
.

The tag of each clock x(i) or y(j) points to the frame where the clock comes from: for
example, the clock y(3) and x(1) comes from the digital valuation d3 and d1 of W , respec-
tively. Informally, w ∼= C means that a stack w matches a valuation C or w is isomorphic
to C. For the above flatten valuation C, there exists the unique stack w that matches C:

w =

ν3 = {y 7→ 1.0; x 7→ 2.4}
ν2 = {x 7→ 3.6; y 7→ 4.6}
ν1 = {x 7→ 1.1; y 7→ 5.9}

because we can reconstruct the stack w from the tag information of C.
They directly bridged the two semantics, the standard semantics and digitized se-

mantics. As a result, their simulation requires an elaborated form; we find out that
their elaborate simulation is called a backward-forward simulation in Lynch and Vaan-
drager [LV95, LV96]. It is a source of complications in their proof to simultaneously
handle the backward direction (choosing C from C ′) and the forward direction (finding w′

from w ∈ C). In addition, the relation ≈ is not defined by a componentwise manner and
it is another source of their elaborated proof.

In contrast, we clearly solve these problems as Lemmas 5.4, 5.7, and 5.10 by considering
the intermediate semantics Lazy and Coll.

W W ′Digi

w w′Coll
∃ ∀

ω ω′Lazy
∀ ∃

|= |=

|= |=

Lem5.10

Lem5.7

Lem5.4

w w′Stnd

|= |=

∀ ∃

This allows us to separate the above mixed simulation into three simple simulations and
define correspondences |= in a componentwise manner. Finally, these make the entire
proof structure easy to understand.

101

5.4 Lazy Semantics: Removing Entire Stack Modification

We define notations to formalize the lazy time elapsing technique.

Definition 5.3 (Clock Marking). Let X = {x1, x2, . . . , xn} be a finite clock set. We use
•
X

to denote the marked set { •x1, •x2, . . . , •xn} and •X to denote the marked set
{
•x1, •x2, . . . , •xn

}
.

Let ν : X → R≥0 be a valuation on X . We write •ν to denote the marked valuation
•ν :

•
X → R≥0 defined by •ν(•x) ≜ ν(x). We also write •ν for the marked valuation on •X .
For a constraint φ on X , we use •φ to denote the corresponding marked constraint on

•
X .

For example, if φ =
(
frac(x) = 0 ∧ frac(x) < frac(y)

)
, then •φ =

(
frac(•x) = 0 ∧ frac(•x) <

frac(•y)
)
. ■

Definition 5.4 (Compatibility and Composition). Let µ1 and µ2 be valuations on •X ∪
•
X .

The valuation µ1 is compatible with the valuation µ2 if µ1(
•x) = µ2(•x) for all x ∈ X

and we write µ1 // µ2.
If a valuation µ1 is compatible with a valuation µ2, the composed valuation µ1⊙ µ2 is

defined as follows:

(µ1 ⊙ µ2)(•x) = µ1(•x), (µ1 ⊙ µ2)(•x) = µ2(
•x).

■
As we have explained in the previous section, we need a reference clock to justify a

simulation between the collapsed and digitized semantics.

Definition 5.5. Let X be a finite clock set. We write X∁ to denote the clock set X ∪ {∁}
extended by a reference clock ∁.

Let ν1 and ν2 be valuations on X and µ be a valuation on •X∁ ∪
•
X∁. If

(
•ν1 ∪

•ν2
)
= µ ↾

(•X ∪
•
X), then we write ⟨ν1, ν2⟩ |= µ. ■

For example, let us simulate the following transitions with our notations:

ν1
push−−−→ ν1ν2

2.0⇝ ν ′1ν
′
2

pop−−→ ν ′2

where
ν1 = {x 7→ 1.5}, ν2 = {x 7→ 0.0}, ν ′i = νi + 2.

We start from the following paired valuation µ1:

µ1 =

{ •x 7→ 1.5;
•
∁ 7→ r2

•x 7→ rx; •∁ 7→ r1

}
.

A 1-height stack µ corresponds to a 1-height stack ν if •ν = µ ↾
•
X holds. Therefore, the

above 1-height stack µ1 corresponds to the 1-height stack ν1.

We simulate the first transition ν1
push−−−→ ν1ν2 as follows (µ1 → µ′1µ2):

{ •x 7→ 1.5;
•
∁ 7→ r2

•x 7→ rx; •∁ 7→ r1

}
→

{ •x 7→ 0.0;
•
∁ 7→ 0.0

•x 7→ 1.5; •∁ 7→ 0.0

}
{ •x 7→ 1.5;

•
∁ 7→ 0.0

•x 7→ rx; •∁ 7→ r1

}
.

When pushing a new frame, we reset the clock
•
∁ of the current top frame to 0.0. This

resetting is important to establish the backward simulation lemma, Lemma 5.10, in Sec-
tion 5.6.5. We assign the values of the marked clocks •y of the current top frame to the
corresponding marked clocks

•
y of the new frame to be pushed. As the result, the new

top frame µ2 reflects the information of the top ν2 and next to the top ν1 frames in the
standard semantics.

102

µ′1 = µ1[
•
∁ B 0] µ′1 // µ2 µ2(

•x) = 0 (∀x ∈ X∁)

⟨γ1, µ1⟩
push(γ2)
↪−−−−−→ ⟨γ1, µ′1⟩⟨γ2, µ2⟩

push(γ2)

µ1 ≤ µ′1 µ′1 // µ2

⟨γ1, µ1⟩ ⟨γ2, µ2⟩
pop(γ2)
↪−−−−→ ⟨γ1, µ′1 ⊙ µ2⟩

pop(γ2)
µ |= •φ

⟨γ, µ⟩
check(φ)
↪−−−−−→ ⟨γ, µ⟩

check(φ)

µ′2 = µ2[
•x B

•
y]

⟨γ1, µ1⟩⟨γ2, µ2⟩
dig(x,y)
↪−−−−→ ⟨γ1, µ1⟩⟨γ2, µ′2⟩

dig(x, y)
r ∈ I µ′ = µ[•x B r]

⟨γ, µ⟩ x←I
↪−−→ ⟨γ, µ′⟩

x← I

Figure 5.1: Definition of actions on Lazy semantics

We simulate the second transition ν1ν2
2.0⇝ ν ′1ν

′
2 as follows (µ′1µ2 → µ′1µ

′
2):{ •x 7→ 0.0;

•
∁ 7→ 0.0

•x 7→ 1.5; •∁ 7→ 0.0

}
{ •x 7→ 1.5;

•
∁ 7→ 0.0

•x 7→ rx; •∁ 7→ r1

} →
{ •x 7→ 2.0;

•
∁ 7→ 2.0

•x 7→ 3.5; •∁ 7→ 2.0

}
{ •x 7→ 1.5;

•
∁ 7→ 0.0

•x 7→ rx; •∁ 7→ r1

}
.

When performing timed transitions, we only modify the top frame in a stack as above.

We simulate the last transition ν ′1ν
′
2

pop−−→ ν ′2. First, we adjust µ′1 to be matched with
the real frame ν ′1, and it is formalized by evolving µ′1 until µ′1 + δ // µ′2. For this case,
δ = 2.0 and this corresponds to adding the time (2.0) elapsed after µ′1 was covered by the
new top frame µ2. Next, we compose the two valuations µ′1 + 2.0 and µ′2 as follows:{ •x 7→ 2.0;

•
∁ 7→ 2.0;

•x 7→ 3.5; •∁ 7→ 2.0

}
{ •x 7→ 3.5;

•
∁ 7→ 2.0;

•x 7→ rx + 2.0; •∁ 7→ r1 + 2.0

} ⊙
=⇒

{ •x 7→ 2.0;
•
∁ 7→ 2.0;

•x 7→ rx + 2.0; •∁ 7→ r1 + 2.0

}
.

Since ((µ′1 + 2.0) ⊙ µ′2)(
•x) = 2.0 = ν ′2(x), the composed valuation reflects the real top

frame ν ′2.

5.4.1 Lazy Semantics Lazy

On the basis of the above description, we formalize the lazy semantics Lazy of SRTA.

Definition 5.6 (Lazy Semantics Lazy). Let A = (Q, qinit, F,Σ,Γ,X ,∆) be an SRTA.
We define the infinite-PDS (Q,Γ× (•X∁ ∪

•
X∁ → R≥0), ↪→d ∪ ↪→t) where discrete tran-

sition rules ↪→d and time elapsing transition rules ↪→t are defined as follows:

• A discrete transition rule ⟨q,ω⟩ ↪→d ⟨q′,ω′⟩ is defined if there is q
τ−→α q′ ∈ ∆ and

ω
τ
↪−→ ω′ is defined by following Fig. 5.1.

• Time elapsing transition rules ⟨q, ⟨γ, µ⟩⟩ ↪→t ⟨q, ⟨γ, µ′⟩⟩ are defined for all q ∈ Q and
γ ∈ Γ if µ ≤ µ′ holds.

■
Note that, on the lazy semantics, we cannot always perform pop-transitionsωµ1µ2

pop−−→
ωµ because it requires the existence of a valuation µ′1 such that µ1 ≤ µ′1 and µ′1 // µ2.
However, this is not an obstacle to simulating the standard semantics because the well-
formedness of the stack defined below ensures to perform pop-transitions.

103

Definition 5.7. Let µ1 and µ2 be valuations on •X ∪
•
X . If there is a valuation µ′1 such

that µ1 ≤ µ′1 and µ′1 // µ2, then we write µ1 ≾ µ2.
For two valuations µ1 and µ2 such that µ1 ≾ µ2, we define µ2⊖µ1 ∈ R≥0 by µ2⊖µ1 ≜

µ2(•x) − µ1(
•x) where x is a clock of X . It is well-defined because µ2(•x) − µ1(

•x) does not
depend on the choice of a clock x ∈ X . ■
Definition 5.8 (Well-formed Stack). A stack ω = ⟨γ1, µ1⟩⟨γ2, µ2⟩ . . . ⟨γn, µn⟩ ∈

(
Γ×(•X∁∪

•
X∁ → R≥0)

)+
is well-formed WF(ω) if, for all i ∈ [1..(n− 1)], the following holds:

• The marked clock
•
∁ satisfies µi(

•
∁) = 0;

• µi ≾ µi+1.

■
The following two basic properties are easily shown by definitions.

Proposition 5.1. Let µ1 and µ2 be valuations such that µ1 ≾ µ2. There exists the unique
valuation µ′1 such that µ1 ≤ µ′1 and µ′1 // µ2.

Proof. It suffices to take µ′1 as µ′1 = µ1 + (µ2 ⊖ µ1). For any other δ (δ ̸= µ2 ⊖ µ1), it is
clear that µ1 + δ is not compatible with µ2.

Below, for µ1 ≾ µ2, we write µ1 ◁ µ2 to denote the valuation µ′1 uniquely determined by
the above proposition.

Proposition 5.2 (WF is an invariant). Let ω be a well-formed stack WF(ω).
If ⟨q,ω⟩ → ⟨q′,ω′⟩, then ω′ is also a well-formed stack WF(ω′).

Proof. We consider the following nontrivial case induced by a pop transition:

⟨q,ωµ1µ2µ3⟩ → ⟨q′,ωµ1((µ2 ◁ µ3)⊙ µ3)⟩.

Since WF(ωµ1µ2µ3), we have µ1 ≾ µ2. This and µ2 ≤ (µ2 ◁ µ3) imply µ1 ≾ (µ2 ◁ µ3).
It is clear that (µ2 ◁ µ3)(x) = ((µ2 ◁ µ3) ⊙ µ3)(x) for any x ∈ •X∁. Therefore, we obtain
µ1 ≾ ((µ2 ◁ µ3)⊙ µ3).

We define the notations of stack correspondence and configuration correspondence
between the standard and lazy semantics.

Definition 5.9 (Stack and Configuration Correspondence). Let w ∈
(
Γ× (X → R≥0)

)+
be a stack of the semantics Stnd and ω ∈

(
Γ × (•X∁ ∪

•
X∁ → R≥0)

)+
be a well-formed

stack WF(ω) of the semantics Lazy.
The stack correspondence relation is inductively defined as follows:

• ⟨γ, ν⟩ |= ⟨γ, µ⟩ if •ν = µ ↾
•
X .

• w⟨γ1, ν1⟩⟨γ2, ν2⟩ |= ω⟨γ1, µ1⟩⟨γ2, µ2⟩ if

– ⟨ν1, ν2⟩ |= µ2;

– w⟨γ1, ν1⟩ |= ω⟨γ1, µ1 ◁ µ2⟩.

Let ⟨q, w⟩ and ⟨q′,ω⟩ be configurations of the semantics Stnd and Lazy, respectively.
If q = q′ and w |= ω, two configurations correspond and we write ⟨q, w⟩ ∼ ⟨q′,ω⟩. ■

For a given well-formed stack ω of paired valuations, there exists the unique stack w
such that w |= ω. This is shown by the following property.

104

Proposition 5.3 (Recover the concrete stack from a lazy one). Letω = ⟨γ1, µ1⟩⟨γ2, µ2⟩ . . . ⟨γn, µn⟩
be a well-formed stack WF(ω).

The stack w = ⟨γ1, ν1⟩⟨γ2, ν2⟩ . . . ⟨γn, νn⟩ defined as follows is the unique stack that
satisfies w |= ω:

• •νn = µn ↾
•
X .

• For all i ∈ [1..(n− 1)], •νi = µi ↾
•
X +

n−1∑
j=i

(µj+1 ⊖ µj).

Proof. We proceed by induction on n.

Case ω = ⟨γ1, µ1⟩: The valuation ν1 that satisfies •ν1 = µ1 ↾
•
X is the unique valuation

such that ⟨γ1, ν1⟩ |= ⟨γ1, µ1⟩.

Case ω = ⟨γ1, µ1⟩ . . . ⟨γn, µn⟩⟨γn+1, µn+1⟩:
Since ω is a well-formed stack, a stack ωn = ⟨γ1, µ1⟩ . . . ⟨γn, µn + (µn+1 ⊖ µn)⟩
is also well formed and the induction hypothesis leads to the unique stack wn =
⟨γ1, ν1⟩ . . . ⟨γ1, νn⟩ that satisfies wn |= ωn and the following:

•νn=µn ↾
•
X + (µn+1 ⊖ µn)

=µn ↾
•
X +

n∑
j=n

(µj+1 ⊖ µj),

•νi=µi ↾
•
X + (µn+1 ⊖ µn) +

n−1∑
j=i

(µj+1 ⊖ µj)

=µi ↾
•
X +

n∑
j=i

(µj+1 ⊖ µj).

Let νn+1 be the unique valuation such that •νn+1 = µn+1 ↾
•
X . It is clear that

wn⟨γn+1, νn+1⟩ |= ω. The uniqueness of the wn⟨γn+1, νn+1⟩ comes from the unique-
ness of νn+1 and wn.

The above proposition immediately implies the following property that is key to con-
necting the two semantics Stnd and Lazy.

Proposition 5.4. Let w⟨γ, ν⟩ and ω⟨γ, µ⟩ be stacks such that w⟨γ, ν⟩ |= ω⟨γ, µ⟩. For
any δ ∈ R≥0, (w⟨γ, ν⟩) + δ |= ω⟨γ, µ+ δ⟩.

We show the correspondence ∼ forms a bisimulation between Stnd and Lazy.

Lemma 5.3. Let ⟨q, w⟩ and ⟨q,ω⟩ be configurations such that w |= ω.

• If there is a timed transition ⟨q, w⟩ δ⇝ ⟨q, w′⟩ for some δ ∈ R≥0, then there exists ω′

such that ⟨q,ω⟩ → ⟨q,ω′⟩ and w′ |= ω′.

• If there is a discrete transition ⟨q, w⟩ α−→ ⟨q′, w′⟩ for some α ∈ Σ ∪ {ϵ}, then there
exists ω′ such that ⟨q,ω⟩ → ⟨q′,ω′⟩ and w′ |= ω′.

⟨q, w⟩ −−−→
Stnd

⟨q′, w′⟩

∼

⟨q,ω⟩
=⇒

⟨q, w⟩ −−−→
Stnd

⟨q′, w′⟩

∼ ∼

⟨q,ω⟩ −−−→
Lazy

∃⟨q′,ω′⟩.

105

Proof. We only consider the case of timed transitions. The other cases push, dig, x← I,
and check(φ) are trivial and the nontrivial case pop is shown in the same way as that of
timed transitions.

Let us assume ⟨q, w⟨γ, ν⟩⟩ δ⇝⟨q, (w⟨γ, ν⟩)+δ⟩. From the assumption, we have ⟨q, w⟨γ, ν⟩⟩ ∼
⟨q,ω⟨γ, µ⟩⟩ for some valuation µ.

It suffices to show (w⟨γ, ν⟩) + δ |= ω⟨γ, µ+ δ⟩. This is clear from Proposition 5.4.

Lemma 5.4. Let ⟨q, w⟩ and ⟨q,ω⟩ be configurations such that w |= ω. We have the
following:

⟨q, w⟩

∼

⟨q,ω⟩ −−−→
Lazy

⟨q′,ω′⟩
=⇒

⟨q, w⟩ −−−→
Stnd

∃⟨q′, w′⟩

∼ ∼

⟨q,ω⟩ −−−→
Lazy

⟨q′,ω′⟩.

Proof. We only consider the case of pop transitions. The other cases push, dig, x ← I,
and check(φ) are trivial and the nontrivial case, timed transitions, is shown in the same
way as the pop transitions.

We consider the following transition:

⟨q,ω⟨γ1, µ1⟩⟨γ2, µ2⟩⟨γ3, µ3⟩⟩
pop−−−→
Lazy

⟨q′,ω⟨γ1, µ1⟩⟨γ2, (µ2 ◁ µ3)⊙ µ3⟩⟩.

(The following easy case

⟨q, ⟨γ1, µ1⟩⟨γ2, µ2⟩⟩
pop−−−→
Lazy

⟨q′, ⟨γ1, (µ1 ◁ µ2)⊙ µ2⟩⟩

is shown in the same argument for the above case.)
From the assumption, for some valuations ν1, ν2, and ν3, we have following:

(⋆) : ⟨q, w⟨γ1, ν1⟩⟨γ2, ν2⟩⟨γ3, ν3⟩⟩ ∼ ⟨q,ω⟨γ1, µ1⟩⟨γ2, µ2⟩⟨γ3, µ3⟩⟩.

This implies the following:

♯1 ⟨ν2, ν3⟩ |= µ3.

♯2 w⟨γ1, ν1⟩⟨γ2, ν2⟩ ∼ ω⟨γ1, µ1⟩⟨γ2, µ2 ◁ µ3⟩.

Our aim is to show the following:

⟨q′, w⟨γ1, ν1⟩⟨γ2, ν3⟩⟩ ∼ ⟨q′,ω⟨γ1, µ1⟩⟨γ2, (µ2 ◁ µ3)⊙ µ3⟩⟩.

First, we show ⟨ν1, ν3⟩ |= (µ2 ◁ µ3)⊙ µ3.

• Since ((µ2 ◁ µ3)⊙ µ3)(•x) = µ3(
•x) and µ3(

•x) = ν3(x) (this comes from ♯1), we have
((µ2 ◁ µ3)⊙ µ3)(•x) = ν3(x).

• Since ((µ2 ◁ µ3)⊙ µ3)(•x) = (µ2 ◁ µ3)(•x) and (µ2 ◁ µ3)(•x) = ν1(x) (this comes from
♯2), we have ((µ2 ◁ µ3)⊙ µ3)(•x) = ν1(x).

Next, we show the following:

w⟨γ1, ν1⟩ |= ω⟨γ1, µ1 ◁ ((µ2 ◁ µ3)⊙ µ3)⟩.

Since µ1 ◁ ((µ2 ◁ µ3) ⊙ µ3) = µ1 ◁ (µ2 ◁ µ3) is clear from the definition of ◁, it suffices
to show w⟨γ1, ν1⟩ |= ω⟨γ1, µ1 ◁ (µ2 ◁ µ3)⟩ and it is immediately shown by ♯2.

106

5.5 Collapsed Semantics

We cannot formalize the lazy semantics as finite PDS for the unboundedness and denseness
of real numbers. In this section, we remove the unboundedness of real numbers. We will
remove the denseness of real numbers in the next section and give a finite PDS semantics.

5.5.1 Removing the Unboundedness

In order to remove the unboundedness of real numbers, we translate a sufficiently large
real number into the corresponding collapsed real number.

Although we have already defined the notion of collapsed valuations in Chapter 2, for
the sake of completeness, we again define them.

Definition 5.10 (Upper-bound constant and Collapsed domain). Let A be an SRTA and
I be the set of intervals that appear in A. The upper-bound constant M for A is defined
as follows:

M ≜ max { i, j : [i : j] ∈ I, (i : j) ∈ I}+ 1.

The set of collapsed real numbers C is defined as follows:

C ≜
(
[0..(M− 1)] ∪ {∞}

)
× [0, 1).

The collapsing function C : R≥0 → C is defined as follows:

C(r) ≜
{
(∞ , frac(r)) if r ≥ M,

(⌊r⌋, frac(r)) if r < M.

For a concrete valuation ν : X → R≥0, we define the collapsed valuation of ν by C(ν)(x) ≜
C(ν(x)). ■

We write v.r to denote (v, r). Moreover, ⌊v.r⌋ and frac(v.r) denote v and r, respec-
tively. We use Greek letters λ, . . . to denote a collapsed valuation. Especially, we use Λ, . . .
to denote a collapsed valuation on a marked clock set •X∁ ∪

•
X∁.

The following basic properties are immediately shown by the above definition.

Proposition 5.5. Let ν1 and ν2 be valuations on a finite clock set X . If C(ν1) = C(ν2),
Validity. ν1 |= φ iff ν2 |= φ for any constraint φ.

Copying. C(ν1[x B y]) = C(ν2[x B y]) for any x, y ∈ X .

Updating. C(ν1[x B r]) = C(ν2[x B r]) for any x ∈ X and r ∈ R≥0.

Evolving. C(ν1 + δ) = C(ν2 + δ) for any δ ∈ R≥0.

On the basis of Proposition 5.5, we define operations for collapsed valuations as follows.

Definition 5.11. Let X be a finite clock set, ν and Λ be concrete and collapsed valuations
on X such that C(ν) = Λ.

• For a constraint φ, we write Λ |= φ if ν |= φ.

• For a real number r ∈ R≥0, Λ[x B r] ≜ C(ν[x B r]).

• For clocks x, y ∈ X , Λ[x B y] ≜ C(ν[x B y]).

• For a real number δ ∈ R≥0, Λ + δ ≜ C(ν + δ).

■

107

The above definition is well-defined because Proposition 5.5 ensures that the result does
not depend on the choice of a witness ν for Λ.

We define a (quasi) ordering λ ≼ λ′ for collapsed valuations that corresponds to the
ordering ≤ on concrete valuations.

Definition 5.12. Let λ and λ′ be collapsed valuations. We write λ ≼ λ′ if there are two
concrete valuations ν and ν ′ such that ν ≤ ν ′, C(ν) = λ, and C(ν ′) = λ′. ■

We define the compatibility and composition in the same way as the lazy semantics.

Definition 5.13. Let Λ1 and Λ2 be collapsed valuations on a finite set of clocks •X∁ ∪
•
X∁.

• If Λ1(
•x) = Λ2(•x) for any x ∈ X∁, then Λ1 is compatible with Λ2 and we write Λ1 // Λ2.

• If Λ1 // Λ2, then the composed collapsed valuation Λ1 ⊙ Λ2 : •X∁ ∪
•
X∁ → C is defined as

follows:

– (Λ1 ⊙ Λ2)(•x) ≜ Λ1(•x) for all x ∈ X∁.
– (Λ1 ⊙ Λ2)(

•x) ≜ Λ2(
•x) for all x ∈ X∁.

■

5.5.2 Why Do We Need Reference Clock

Let us consider the following pop transition of the lazy semantics:

µ2 =

{ •x 7→ 3.5;
•
∁ 7→ 2.0;

•x 7→ 4.0; •∁ 7→ 2.0

}
µ1 =

{ •x 7→ 2.0;
•
∁ 7→ 0.0;

•x 7→ 0.5; •∁ 7→ 0.0

} pop−−→ µ

where

µ =

{ •x 7→ 3.5;
•
∁ 7→ 2.0;

•x 7→ 2.5; •∁ 7→ 2.0

}
.

The above run is simulated as follows under M = 3 in the collapsed semantics:

Λ2 =

{ •x 7→ ∞.5;
•
∁ 7→ 2.0;

•x 7→ ∞.0; •∁ 7→ 2.0

}
Λ1 =

{ •x 7→ 2.0;
•
∁ 7→ 0.0;

•x 7→ 0.5; •∁ 7→ 0.0

} ⇒ Λ

where

Λ =

{ •x 7→ ∞.5;
•
∁ 7→ 2.0;

•x 7→ 2.5; •∁ 7→ 2.0

}
.

In order to compute Λ from Λ1 and Λ2, we evolve Λ1 to Λ′1 (Λ1 ≼ Λ′1) until Λ
′
1 // Λ2 and

compose them as Λ = Λ′1 ⊙Λ2. For this case, Λ
′
1 is uniquely determined as Λ′1 = Λ1 + 2.0

by the reference clocks
•
∁ of Λ1 and •∁ of Λ2. In general, the presence of reference clocks

ensures the uniqueness of such Λ′1 (see Proposition 5.6 and Lemma 5.5).
On the other hand, if we drop reference clocks, then the above pop transition behaves

nondeterministically. Let us consider the following stack that is obtained by removing the
reference clocks from the above transition:

λ2 =
{
•x 7→ ∞.0;

•x 7→ ∞.5
}

λ1 =
{
•x 7→ 0.5; •x 7→ 2.0

}
.

Due to the absence of reference clocks, there are the following three possibilities about λ′1
such that λ1 ≼ λ′1 and λ′1 // λ2:

108

• λ1 + 1.0 =
{
•x 7→ 1.5; •x 7→ ∞.0

}
// λ2.

• λ1 + 2.0 =
{
•x 7→ 2.5; •x 7→ ∞.0

}
// λ2.

• λ1 + 3.0 =
{
•x 7→ ∞.5;

•x 7→ ∞.0
}
// λ2.

Thus, we have the following nondeterministic transition:

λ1λ2
pop−−→ {λ1 + 1⊙ λ2, λ1 + 2⊙ λ2, λ1 + 3⊙ λ2}.

Since the valuation µ only justifies (λ1 + 2.0) ⊙ λ2 for C(µ)(•x) = 2.5, the lazy semantics
without reference clocks cannot simulate the collapsed semantics.

We show a key property to ensure the uniqueness of pop transitions.

Proposition 5.6. Let λ, λ′, λ′′ be collapsed valuations such that λ ≼ λ′ and λ ≼ λ′′.
If the following conditions hold, then λ′ = λ′′: there is a clock ∁ such that

(♯1) λ(∁) = 0.0; and

(♯2) λ
′(∁) = λ′′(∁).

Proof. We proceed by case analysis on ⌊λ′(∁)⌋:

Case ⌊λ′(∁)⌋ ̸=∞: The condition (♯2) implies λ′(∁) = λ′′(∁) = (i, r) for some i ̸= ∞ and
r ∈ [0, 1). This means that λ′ = λ+ (i, r) and λ′′ = λ+ (i, r). Hence λ′ = λ′′.

Case ⌊λ′(∁)⌋ =∞: The condition (♯2) implies λ′(∁) = λ′′(∁) = (∞, r) for some r ∈ [0, 1).
In contrast to the above case, in general, there may exist two distinct real numbers
δ1 and δ2 such that λ′ = λ+ δ1 and λ′′ = λ+ δ2. Here, we assume δ1 > δ2.

It suffices to show frac(λ′(x)) = frac(λ′′(x)) and ⌊λ′(x)⌋ = ⌊λ′′(x)⌋ for any clock x.

frac(λ′(x)) = frac(λ′′(x)): We have δ1−δ2 ∈ N because frac(λ′(∁)) = frac(λ′′(∁)).
This implies frac(λ′(x)) = frac(λ′′(x)) for any clock x.

⌊λ′(x)⌋ = ⌊λ′′(x)⌋: The condition (♯1) implies that any clocks are collapsed: ⌊λ′(x)⌋
= ⌊λ′′(x)⌋ =∞ for any clock x.

Remark: We cannot replace the two conditions of Proposition 5.6 by the following single
condition:

(♯3) There is a clock ∁ such that λ′(∁) = λ′′(∁).

For example, let us consider the following valuations under M = 4:

λ = {x 7→ 0.5; ∁ 7→ 3.0} ,
λ′ = λ+ 1 = {x 7→ 1.5; ∁ 7→ ∞.0} ,
λ′′ = λ+ 2 = {x 7→ 2.5; ∁ 7→ ∞.0} .

We have λ′(∁) = λ′′(∁); however, λ′ ̸= λ′′.

109

Λ′1 = Λ1[
•
∁ B 0] Λ′1 // Λ2 Λ2(

•x) = 0 (∀x ∈ X∁)

⟨γ1,Λ1⟩
push(γ2)
↪−−−−−→ ⟨γ1,Λ′1⟩⟨γ2,Λ2⟩

push(γ2)

Λ1 ≼ Λ′1 Λ′1 // Λ2

⟨γ1,Λ1⟩ ⟨γ2,Λ2⟩
pop(γ2)
↪−−−−→ ⟨γ1,Λ′1 ⊙ Λ2⟩

pop(γ2)
Λ |= •φ

⟨γ,Λ⟩
check(φ)
↪−−−−−→ ⟨γ,Λ⟩

check(φ)

Λ′2 = Λ2[
•x B

•
y]

⟨γ1,Λ1⟩⟨γ2,Λ2⟩
dig(x,y)
↪−−−−→ ⟨γ1,Λ1⟩⟨γ2,Λ′2⟩

dig(x, y)
r ∈ I Λ′ = Λ[•x B r]

⟨γ,Λ⟩ x←I
↪−−→ ⟨γ,Λ′⟩

x← I

Figure 5.2: Definition of actions on Coll semantics

5.5.3 Collapsed Semantics Coll

Collapsed valuations lead to the collapsed semantics Coll, which removes the unbound-
edness of real numbers from the lazy semantics Lazy.

Definition 5.14 (Collapsed Semantics). Let A = (Q, qinit, F,Σ,Γ,X ,∆) be an SRTA.
We define the infinite-PDS (Q,Γ× (•X∁∪

•
X∁ → C), ↪→d ∪ ↪→t) where discrete transition

rules ↪→d and time elapsing transition rules ↪→t are defined as follows:

• A discrete transition rule ⟨q,w⟩ ↪→d ⟨q′,w′⟩ is defined if there is q
τ−→α q′ ∈ ∆ and

w
τ
↪−→ w′ is defined by following Fig. 5.2.

• Time elapsing transition rules ⟨q, ⟨γ,Λ⟩⟩ ↪→t ⟨q, ⟨γ,Λ′⟩⟩ are defined for all q ∈ Q and
γ ∈ Γ if Λ ≼ Λ′ holds.

■
In the same way as the lazy semantics Lazy, we define the notion of the well-formed

stack and prove some properties of well-formed stacks.

Definition 5.15. Let Λ1 and Λ2 be collapsed valuations on •X∁∪
•
X∁. If there is a collapsed

valuation Λ′1 such that Λ1 ≼ Λ′1 and Λ′1 // Λ2, then we write Λ1 ≾ Λ2. ■
Definition 5.16 (Well-formed Stack). A stack w = ⟨γ1,Λ1⟩⟨γ2,Λ2⟩ . . . ⟨γn,Λn⟩ is well-
formed WF(w) if for all i ∈ [1..(n− 1)]

• The marked clock
•
∁ satisfies Λi(

•
∁) = 0; and

• Λi ≾ Λi+1.

■
As the lazy semantics, the well-formedness WF forms an invariant.

Proposition 5.7. Let ⟨q,w⟩ be a configuration where w is a well-formed stack WF(w).
If ⟨q,w⟩ → ⟨q,w′⟩, then w′ is also a well-formed stack WF(w′).

Proof. This is shown by the same argument of the proof in Proposition 5.2.

As we mentioned above, the presence of reference clocks is key to the following property
and the determinacy of pop transitions. The following property, which corresponds to
Proposition 5.1, is immediate from Proposition 5.6.

Lemma 5.5. If WF(w⟨γ1,Λ1⟩⟨γ2,Λ2⟩), then there exists the unique Λ′1 such that Λ ≼ Λ′1
and Λ′1 // Λ2. We use Λ1 ◁ Λ2 for such the unique valuation.

110

We define the stack and configuration correspondence between Lazy and Coll.

Definition 5.17. Letω = µ1 . . . µn andw = Λ1 . . .Λn be well-formed stacksWF(ω),WF(w)
of the lazy and collapsed semantics, respectively.

The stack correspondence ω |= w is defined if C(µi) = Λi for all i ∈ [1..n].
It is naturally extended to configurations: we write ⟨q,ω⟩ ∼ ⟨q′,w⟩ if q = q′ and

ω |= w. ■
We show the correspondence ∼ forms a bisimulation between Lazy and Coll.

Lemma 5.6. Let ⟨q,ω⟩ and ⟨q,w⟩ be configurations such that ω |= w.

⟨q,ω⟩ −−−→
Lazy

⟨q′,ω′⟩

∼

⟨q,w⟩
=⇒

⟨q,ω⟩ −−−→
Lazy

⟨q′,ω′⟩

∼ ∼

⟨q,w⟩ −−−→
Coll

∃⟨q′,w′⟩.

Proof. Since the stack correspondence relation ω |= w is defined in a componentwise way,
the forward simulation is immediately shown for all the transition rules.

Lemma 5.7. Let ⟨q,ω⟩ and ⟨q,w⟩ be configurations such that ω |= w.

⟨q,ω⟩

∼

⟨q,w⟩ −−−→
Coll

⟨q′,w′⟩
=⇒

⟨q,ω⟩ −−−→
Lazy

∃⟨q′,ω′⟩

∼ ∼

⟨q,w⟩ −−−→
Coll

⟨q′,w′⟩

Proof. We consider the case of pop-transitions:

⟨q,w⟨γ1,Λ1⟩⟨γ2,Λ2⟩⟩
pop−−→ ⟨q′,w⟨γ1,Λ′1 ⊙ Λ2⟩⟩

for some Λ′1 such that Λ1 ≼ Λ′1 and Λ′1 // Λ2. All the other cases are not difficult.
Using Lemma 5.5, Λ′1 is uniquely determined as Λ1 ◁ Λ2. From the assumption, for some
valuations, we have the following:

(⋆) ⟨q,ω⟨γ1, µ1⟩⟨γ2, µ2⟩⟩ ∼ ⟨q,w⟨γ1,Λ1⟩⟨γ2,Λ2⟩⟩.

We show the following correspondence:

ω ⟨γ1, (µ1 ◁ µ2)⊙ µ2⟩ |= w⟨γ1, (Λ1 ◁ Λ2)⊙ Λ2⟩.

It suffices to confirm C(µ2) = Λ2 and C(µ1 ◁ µ2) = Λ1 ◁ Λ2. The former is trivial from
(⋆). To show the latter equation, we use the following simple property:

if µa // µb, then C(µa) // C(µb).

We use a real number δ such that µ1+ δ = µ1◁µ2. Since C(µ1+ δ) = Λ1+ δ, which comes
from C(µ1) = Λ1, and C(µ2) = Λ2, we have Λ1 + δ // Λ2 from the above property. This
compatibility and Lemma 5.5 imply Λ1 + δ = Λ1◁Λ2. Therefore, our goal is rewritten as
C(µ1 + δ) = Λ1 + δ and it is already shown.

Remark: As we have seen in Section 5.5.2, we need reference clocks to ensure the unique-
ness of pop-transitions on the collapsed semantics. However, this does not answer the
question why we need to introduce reference clocks at the lazy semantics rather than col-
lapsed semantics. The answer of that question is that the forward simulation does not

111

hold between the lazy semantics without reference clocks and the collapsed semantics. Let
us consider the following pop-transition under M = 2:

Λ2 =

{ •
∁ 7→ 1.5; •x 7→ ∞.5;
•∁ 7→ 1.5; •x 7→ ∞.5

}
Λ1 =

{ •
∁ 7→ 0.0; •x 7→ ∞.0;
•∁ 7→ 0.0; •x 7→ 0.0

} pop−−→ Λ

where Λ = (Λ1 + 1.5)⊙ Λ2 and thus it forms the following valuation:

Λ =
{
•∁ 7→ 1.5; •x 7→ 1.5;

•
∁ 7→ 1.5; •x 7→ ∞.5

}
.

If we do not introduce reference clocks at the lazy semantics, the following stack realizes
the above stack Λ1Λ2:

µ2 =
{
•x 7→ 2.5; •x 7→ 2.5

}
µ1 =

{ •x 7→ 2.0; •x 7→ 0.0
} |= Λ2

Λ1.

On the lazy semantics without reference clocks, we have the following pop-transition:

µ1µ2
pop−−→ (µ1 + 0.5)⊙ µ2 =

{
•x 7→ 0.5; •x 7→ 2.5

}
.

For the obtained valuations, (µ1 + 0.5)⊙ µ2 ̸|= Λ because ((µ1 + 0.5)⊙ µ2)(•x) = 0.5 and
Λ(•x) = 1.5. To prevent this problem, we need reference clocks at the lazy semantics rather
than at the collapsed semantics.

5.5.4 Upper Bound for Configuration Reachability Problem

To show lemmas for the configuration reachability problem of SRTA, as with Section 2.4
and 2.4.1, we redefine the upper bound constant M obtained from an SRTA.

Let A be an SRTA and ⟨q0, ⟨⊥,0⟩⟩ −−−→
Stnd

∗
?⟨q, w⟩ be a query of the configuration reach-

ability problem of SRTA. For a stack w = ⟨γ1, ν1⟩⟨γ2, ν2⟩ . . . ⟨γn, νn⟩ ∈ (Γ× (X → R≥0))∗
on the standard semantics, we define the maximum value max(w) of the real numbers in
w as follows:

max(w) ≜ max {νi(x) : i ∈ [1..n], x ∈ X} .

We again take an upper-bound constant M ∈ N so that it could satisfy the following:

M ≥ max{ j : (i, j) or [i, j] appears in A}+ 1,
M ≥ max(w) + 1.

Under the new definition of upper-bound constant, we have the following adequate simula-
tion properties for the configuration reachability problem. To formalize the statement, we
define a stack correspondence between the standard and collapsed semantics in a natural
way.

Definition 5.18. Let w and w be a stack of the standard and collapsed semantics,
respectively. If there is a stack ω of the lazy semantics such that w |= ω and ω |= w, we
write w |= w. ■
Lemma 5.8. Let ⟨q, w⟩ be a configuration of the standard semantics. The following are
equivalent:

(1) ⟨qinit, ⟨⊥,0X ⟩⟩ −−−→
Stnd

∗ ⟨q, w⟩.

(2) ⟨qinit, ⟨⊥,0
•X∁∪

•
X∁
⟩⟩ −−−→

Coll

∗ ⟨q,w⟩ for some stack w such that WF(w) and w |= w.

112

Proof. The direction (1)⇒ (2) is shown by using the forward simulation Lemmas 5.3 and 5.6
sequentially.

We consider the other direction (2) ⇒ (1). The assumption w |= w implies the
existence of a stack ω such that w |= ω |= w.

First, the forward simulation of Coll by Lazy (Lemma 5.7) implies the following
transition:

⟨qinit, ⟨⊥,0
•X∁∪

•
X∁
⟩⟩ −−−→

Lazy

∗ ⟨q,ω′⟩

where ω′ is a well-formed stack such that ω′ |= w.
Next, the forward simulation of Lazy by Stnd (Lemma 5.4) implies the following

transition:
⟨qinit, ⟨⊥,0⟩⟩ −−−→

Stnd

∗ ⟨q, w′⟩

where w′ is a stack such that w′ |= ω′.
We need to show w = w′ from w |= ω |= w and w′ |= ω′ |= w. However, since ω ̸= ω′

in general, showing w = w′ is not trivial. Let us consider the following two stacks under
M = 4:

ω =

µ2 =

{ •x 7→ 2.0;
•
∁ 7→ 4.5

•x 7→ 3.5; •∁ 7→ 2.5

}
µ1 =

{ •x 7→ 1.0;
•
∁ 7→ 0.0

•x 7→ 8.0; •∁ 7→ 4.0

}
,

ω′ =

µ′2 =

{ •x 7→ 2.0;
•
∁ 7→ 6.5

•x 7→ 3.5; •∁ 7→ 2.5

}
µ′1 =

{ •x 7→ 1.0;
•
∁ 7→ 0.0

•x 7→ 6.0; •∁ 7→ 5.0

}
where ω and ω′ are different and realize the same stack C(µ1)C(µ2) because C(µ1) = C(µ′1)
and C(µ2) = C(µ′2). Although ω ̸= ω′, by the definition of M, µ1(

•x) = µ′1(
•x) and

µ2(•x) = µ′2(•x) and it implies µ2 ⊖ µ1 = µ′2 ⊖ µ′1 = 2.5. Therefore, Proposition 5.3 implies
w = w′ for the unique stacks w and w′ such that w |= ω and w′ |= ω:

w = w′ =
{x 7→ 2.0}
{x 7→ 3.5} .

We formalize the above argument in the general case to show w = w′:

1. If ω = ⟨γ1, µ1⟩ . . . ⟨γn, µn⟩⟨γn+1, µn+1⟩, then we can show the following from w |= ω

and Proposition 5.3:

• µ1(•x) < M for all x ∈ X .
• µi(x) < M for all i ∈ [2..(n+ 1)] and x ∈ •X ∪

•
X .

2. If ω′ = ⟨γ1, µ′1⟩ . . . ⟨γn, µ′n⟩⟨γn+1, µ
′
n+1⟩, then we can show the following from ω |= w

and ω′ |= w:

• µ1(•x) = µ′1(
•x) < M for all x ∈ X .

• µi(x) = µ′i(x) < M for all i ∈ [2..(n+ 1)] and x ∈ •X ∪
•
X .

These imply µi+1 ⊖ µi = µ′i+1 ⊖ µ′i for i ∈ [1..n].

3. Assume w = ⟨γ1, ν1⟩ . . . ⟨γn+1, νn+1⟩ and w′ = ⟨γ1, ν ′1⟩ . . . ⟨γn+1, ν
′
n+1⟩. Proposi-

tion 5.3 and µi+1 ⊖ µi = µ′i+1 ⊖ µ′i for all i ∈ [1..n] imply νi = ν ′i for all i ∈ [1..n].
Thus, w = w′.

The fact w = w′ implies the following transition:

⟨qinit, ⟨⊥,0⟩⟩ −−−→
Stnd

∗ ⟨q, w⟩.

113

5.6 Digital Valuations and Finite-PDS Semantics

The collapsed semantics cannot be formalized as a finite PDS for the denseness of real
numbers. We define digital valuations to remove the denseness and the digitized semantics
Digi as a finite PDS.

Although we have already defined the notion of digital valuations in Chapter 2, for the
sake of completeness, we again define them and state their properties without proofs.

5.6.1 Digital Valuations

Our definition of digital valuations equals to that of regions given by Abdulla et al. in [AAS12a].

Definition 5.19 (Digital Valuations). Let X be a finite clock set. A sequence of sets
d = d0 d1 . . . dn, where di ⊆ X × {0, 1, . . . ,M − 1,∞}, is a digital valuation on X if d
satisfies the following conditions:

• Every clock in X appears in d exactly once.

• Except d0, all the sets di are not empty: di ̸= ∅ for all i ∈ [1..n].

For a clock x ∈ X and set di of d, we write x ∈ di if (x, v) ∈ di for some v ∈
{0, 1, . . . ,M− 1,∞}. ■

Intuitively, each digital valuation is obtained by forgetting the fractional parts of a
collapsed valuation and only keeping the order of the fractional parts of it. On the basis
of this intuition, we define a realization relation between collapsed and digital valuations.

Definition 5.20 (Realization). Let X be a finite clock set, λ be a collapsed valuation on
X , and d = d0d1 . . . dn be a digital valuation on X . We write λ |= d if the following hold:

• For all x ∈ X , (x, ⌊λ(x)⌋) ∈ di for some i.

• For all x ∈ X , frac(λ(x)) = 0.0 iff x ∈ d0.

• frac(λ(x)) < frac(λ(y)) iff x ∈ di and y ∈ dj for some i < j.

■
Proposition 5.8. The realization relation |= is functional : for a collapsed valuation Λ,
there exists the unique digital valuation D(Λ) such that Λ |= D(Λ).

For the special set d0 that contains clocks whose fractional parts are 0.0, we use the
notation {. . .}0 as above.

We define the successor relation d ⊢ d′ that corresponds to time elapsing on collapsed
valuations.

Definition 5.21 (Successor). Let d and d′ be digital valuations. The valuation d′ is the
unique successor of d (d ⊢ d′) if one of the following holds:

Case d = d0d1 . . . dn and d0 ̸= ∅:

d0 d1 . . . dn ⊢ ∅ d0 d1 . . . dn.

Case d = ∅ d1 . . . dn−1dn:
∅ d1 . . . dn−1 dn ⊢ d′n d1 . . . dn−1,

where d′n satisfies the following: if (x, k) ∈ dn,{
(x, k + 1) ∈ d′n if k < M− 1,

(x,∞) ∈ d′n if k = M− 1 or k =∞.

114

We use ⊢∗ to denote the reflexive transitive closure of ⊢. ■
On the realization relation between collapsed and digital valuations, the similar prop-

erties to Proposition 5.5 hold.

Proposition 5.9. Let Λ1 and Λ2 be collapsed valuations on X . If D(Λ1) = D(Λ2),

Validity. Λ1 |= φ iff Λ2 |= φ for any constraint φ.

Copying. D(Λ1[x := y]) = D(Λ2[x := y]) for any x, y ∈ X .

Integer Updating. D(Λ1[x B n]) = D(Λ2[x B n]) for any x ∈ X and n ∈ {0, 1, . . . ,M− 1}.

Evolving. If Λ1 ≼ Λ′1, then there exists Λ′2 such that Λ2 ≼ Λ′2 and D(Λ′1) = D(Λ′2).

On the basis of Proposition 5.9, we define basic operations on the digital valuations in
the same way as those of the collapsed valuations.

Definition 5.22. Let d be a digital valuation and λ be a collapsed valuation that satisfies
D(λ) = d.

• For a constraint φ, d |= φ if λ |= φ.

• For two clocks x, y, d[x B y] ≜ D(λ[x B y]).

• For a natural number n such that 0 ≤ n < M, d[x B n] ≜ D(λ[x B n]).

■
In order to treat updating x ← I for a clock x and interval I, we need to define

nondeterministic updating d[x← I] for a digital valuation d.

Definition 5.23 (Nondeterministic Update). Let d be a digital valuation. We define the
update d[x← I] for a clock x and an interval I as follows:

d[x← I] ≜ {D(Λ[x B r]) : r ∈ I,Λ |= d } .

■
Example. Let d = {(x, 0)}0 {(y, 1)} be a digital valuation. The updating d[x ← (2, 3)]
generates the following three digital valuations:

d[x← (2, 3)] = {d1,d2,d3} ,
d1 = {}0 {(x, 2)} {(y, 1)} ,
d2 = {}0 {(x, 2), (y, 1)} ,
d3 = {}0 {(y, 1)} {(x, 2)} .

5.6.2 Forward and Backward Simulation of Time Elapsing

For time elapsing, we have two forward simulations and one backward simulation below.

Proposition 5.10. Let λ be a collapsed valuation and d be a digital valuation.

λ ≼ λ′

|=

d
=⇒

λ ≼ λ′

|= |=

d ⊢∗ ∃d′.

Proposition 5.11. Let λ be a collapsed valuation and d be a digital valuation.

λ

|=

d ⊢∗ d′
=⇒

λ ≼ ∃λ′

|= |=

d ⊢∗ d′.

115

Proposition 5.12. Let λ′ be a collapsed valuation and d be a digital valuation.

λ′

|=

d ⊢∗ d′
=⇒

∃λ ≼ λ′

|= |=

d ⊢∗ d′.

Remark. Proposition 5.12 is crucial to the backward simulation lemma (Lemma 5.10)
and peculiar to collapsed valuations. Indeed, this fails on the realization relation ν |= d
of concrete and digital valuations. Let us consider the following under M = 2:

{x 7→ 2.0}

|=

{}0 {x 7→ ∞} −−−→
Digi

{x 7→ ∞}0.

For the backward simulation, we need to find a valuation ν such that ν < {x 7→ 2.0} and
ν |= {}0 {x 7→ ∞}. However, since ν < {x 7→ 2.0} requires ν(x) < 2.0, ν |= {}0 {x 7→ ∞}
never holds.

5.6.3 Nondeterministic Composition

As the collapsed semantics Coll, we define the compatibility and composition.

Definition 5.24 (Compatibility and Composition). Let D1 and D2 be digital valuations
on a finite marked clock set •X∁ ∪

•
X∁.

• The valuation D1 is compatible with the valuation D2 (D1 //D2) if there are collapsed
valuations Λ1 and Λ2 such that Λ1 |= D1, Λ2 |= D2, and Λ1 // Λ2.

• The composed valuations are defined by:

D1 ⊙D2 ≜
{
D(Λ) : Λ1 |= D1, Λ2 |= D2,

Λ1 // Λ2, Λ = Λ1 ⊙ Λ2

}
.

■
Nondeterminacy of pop transitions. Let us consider the following pop transition under
M = 3:

D2 =
{
(
•
∁, 2), (•∁, 2), (•x,∞)

}
0
{(•x,∞)}

D1 =
{
(•∁, 0), (

•
∁, 0), (•x, 2)

}
0

{
(•x, 0)

} pop−−→ · · · .

When performing the pop transition, first we compute D′1 such that D1 ⊢∗ D′1 and
D′1 //D2. For this case, D

′
1 is uniquely determined as follows:

D′1 = {(•∁, 2), (
•
∁, 2), (•x,∞)}0{(•x, 2)}.

Next we compute the new top frame by composing the two digital valuations D′1 and D2

as D′1 ⊙D2:
D2 =

{
(
•
∁, 2), (•∁, 2), (•x,∞)

}
0
{(•x,∞)}

D′1 = {(•∁, 2), (
•
∁, 2), (•x,∞)}0{(•x, 2)}

⊙−→ {D3,D
′
3,D

′′
3}

where
D3 =

{
(•∁, 2), (

•
∁, 2)

}
0
{(•x, 2)}{(

•x,∞)},
D′3 =

{
(•∁, 2), (

•
∁, 2)

}
0
{(•x, 2), (

•x,∞)},
D′′3 =

{
(•∁, 2), (

•
∁, 2)

}
0
{(•x,∞)}{(•x, 2)}.

When composing the two digital valuations, we need to decide the order between •x of D′1
and •x of D2. However, since we dismiss the fractional values in digital valuations, there
are no clues to decide the ordering, and so we generate all the possible orderings as above.

116

D1[
•
∁ B 0] //D2 D2 |= •x ∈ [0, 0] (∀x ∈ X∁)

⟨γ1,D1⟩
push(γ2)
↪−−−−−→ ⟨γ1,D1[

•
∁ B 0]⟩ ⟨γ2,D2⟩

D1 ⊢∗ D′1 D′1 //D2 D ∈D′1 ⊙D2

⟨γ1,D1⟩ ⟨γ2,D2⟩
pop(γ2)
↪−−−−→ ⟨γ1,D⟩

D |= •φ

⟨γ,D⟩
check(φ)
↪−−−−−→ ⟨γ,D⟩

D′
2 = D2[

•x B
•
y]

⟨γ1,D1⟩⟨γ2,D2⟩
dig(x,y)
↪−−−−→ ⟨γ1,D1⟩⟨γ2,D′

2⟩

D′ ∈D[•x← I]

⟨γ,D⟩ x←I
↪−−→ ⟨γ,D′⟩

Figure 5.3: Definition of actions on Digi Semantics

As we have seen in the previous section, pop transitions for well-formed stacks be-
have deterministically on the collapsed semantics. Hence, the collapsed semantics cannot
capture the nondeterminacy of pop transitions of the digitized semantics.

5.6.4 Digitized Semantics

Digital valuations lead to the digitized semantics Digi, which is defined as a finite PDS.

Definition 5.25 (Digitized SemanticsDigi). LetA = (Q, qinit, F,Σ,Γ,X ,∆) be an SRTA.
We use D for the finite set of digital valuations on •X∁ ∪

•
X∁.

We define the finite PDS (Q,Γ×D, ↪→d ∪ ↪→t) where discrete transition rules ↪→d and
time elapsing transition rules ↪→t are defined as follows:

• A discrete transition rule ⟨q,W ⟩ ↪→d ⟨q′,W ′⟩ is defined if there is q
τ−→α q′ ∈ ∆ and

W
τ
↪−→W ′ is defined by following Fig. 5.3.

• Time elapsing transition rules ⟨q, ⟨γ,D⟩⟩ ↪→t ⟨q, ⟨γ,D′⟩⟩ are defined for all q ∈ Q
and γ ∈ Γ if D ⊢∗ D′ holds.

■
In the same way as the lazy and collapsed semantics, we define the stack well-formedness

for the digitized semantics.

Definition 5.26. LetD1 andD2 be digital valuations on a finite marked clock set •X∁∪
•
X∁.

If there is a digital valuation D′
1 such that D1 ⊢∗ D′

1 and D′
1 // D2, then we write

D1 ≾ D2. ■
Definition 5.27 (Well-formed Stack). A stack W = ⟨γ1,D1⟩⟨γ2,D2⟩ . . . ⟨γn,Dn⟩ is well-
formed WF(W) if for all i ∈ [1..(n− 1)]

• Di |=
•
∁ ∈ [0, 0] holds for the clock

•
∁; and

• Di ≾ Di+1.

■
The well-formedness of the digitized semantics forms an invariant.

Proposition 5.13. Let W be a well-formed stack WF(W). If ⟨q,W ⟩ → ⟨q′,W ′⟩, then
WF(W ′).

Proof. This is shown in the same argument of the proof in Proposition 5.2.

117

In order to show the forward and backward simulation properties between the collapsed
and digitized semantics, we define stack and configuration correspondences.

Definition 5.28. Letw = Λ1, . . . ,Λn andW = D1, . . . ,Dn be well-formed stacksWF(w)
and WF(W) of the collapsed and digitized semantics, respectively.

The stack correspondence w |= W holds if Λi |= Di for all i ∈ [1..n].
It is naturally extended to configurations: we write ⟨q,w⟩ ∼ ⟨q′,W ⟩ if q = q′ and

w |= W . ■
The following forward simulation of Coll by Digi can be shown easily.

Lemma 5.9. Let ⟨q,w⟩ and ⟨q,W ⟩ be configurations such that w |= W .

⟨q,w⟩ −−−→
Coll

⟨q′,w′⟩

∼

⟨q,W ⟩
=⇒

⟨q,w⟩ −−−→
Coll

⟨q′,w′⟩

∼ ∼

⟨q,W ⟩−−−→
Digi

∃⟨q′,W ′⟩.

Proof. We consider the following nontrivial case:

⟨q ,w⟨γ1,Λ1⟩⟨γ2,Λ2⟩⟨γ3,Λ3⟩⟩
pop(γ3)−−−−−→ ⟨q′,w⟨γ1,Λ1⟩⟨γ2, (Λ2 ◁ Λ3)⊙ Λ3⟩⟩.

Our assumption can be rewritten as follows:

⟨q ,w⟨γ1,Λ1⟩⟨γ2,Λ2⟩⟨γ3,Λ3⟩⟩∼

⟨q ,W ⟨γ1,D1⟩⟨γ2,D2⟩⟨γ3,D3⟩⟩.

Since Λ2 ≼ (Λ2 ◁ Λ3), we apply Proposition 5.10 to Λ2 |= D2 and obtain D′
2 such that

D2 ⊢∗ D′
2 and (Λ2 ◁ Λ3) |= D′

2. It is clear that D
′
2 //D3 from the definition of //.

Since Λ2 ◁ Λ3 |= D′
2 and Λ3 |= D3, the definition of ⊙ implies that there is a digital

valuation D such that D ∈D′
2⊙D3 and (Λ2◁Λ3)⊙Λ3 |= D. This leads to the following

transition:
⟨q ,W ⟨γ1,D1⟩⟨γ2,D2⟩⟨γ3,D3⟩⟩

pop(γ3)−−−−−→ ⟨q′,W ⟨γ1,D1⟩⟨γ2,D⟩⟩.

Now (Λ2 ◁ Λ3)⊙ Λ3 |= D concludes the proof.

5.6.5 Backward Simulation

Compared to the forward simulation of Coll by Digi, the counterpart does not hold for
the nondeterminacy of pop rules in Digi as we have stated in Section 5.6.3. However, we
can show the backward simulation by Proposition 5.12.

Lemma 5.10. Let ⟨q′,w′⟩ and ⟨q′,W ′⟩ be configurations such that w′ |= W ′.

⟨q′,w′⟩

∼

⟨q,W ⟩−−−→
Digi
⟨q′,W ′⟩

=⇒
∃⟨q,w⟩−−−→

Coll
⟨q′,w′⟩

∼ ∼

⟨q,W ⟩ −−−→
Digi

⟨q′,W ′⟩.

Proof. We consider the two cases push and time (Here we write c1
time−−→ c2 to denote a

transition caused by a time elapsing transition rule ⟨q, ⟨γ,D⟩⟩ ↪→t ⟨q, ⟨γ,D′⟩⟩). The cases
dig, x← I, and check(φ) are trivial and the case pop is shown in the same argument of
the proof of the case time.

118

Proof of Case push We consider the following push transition:

⟨q ,W ⟨γ1,D1⟩⟩
push(γ2)−−−−−→ ⟨q′,W ⟨γ1,D1[

•
∁ B 0]⟩⟨γ2,D2⟩⟩.

Our assumption is rewritten as follows:

⟨q′,w⟨γ1,Λ′1⟩⟨γ2,Λ2⟩⟩∼

⟨q′,W ⟨γ1,D1[
•
∁ B 0]⟩⟨γ2,D2⟩⟩

for some collapsed valuations Λ′1 and Λ2.
We define Λ1 : (

•
X∁ ∪ •X∁)→ C so that it satisfies both the following conditions:

1. Λ1(x) = Λ′1(x) for all x ∈
•
X ∪ •X∁.

2. Λ1(
•
∁) = r where r ∈ R≥0 is a non-negative real number that satisfies Λ1 |= D1.

We show the following:

(A) w⟨γ1,Λ1⟩ |= W ⟨γ1,D1⟩.

(B) WF(w⟨γ1,Λ1⟩).

(C) ⟨q,w⟨γ1,Λ1⟩⟩
push(γ2)−−−−−→ ⟨q′,w⟨γ1,Λ′1⟩⟨γ2,Λ2⟩⟩.

(A) is immediate from the definition of Λ1. (B) is shown by the assumptionWF(w⟨γ1,Λ′1⟩⟨γ2,Λ2⟩)
and the fact that Λ1 ↾ •X∁ = Λ′1 ↾ •X∁.

For (C), we show the following:

• Λ′1(
•x) = Λ2(•x) for any x ∈ X∁.

We split this into the two parts: showing ⌊Λ′1(
•x)⌋ = ⌊Λ2(•x)⌋ and frac(Λ′1(

•x)) = frac(Λ2(•x)).
The former ⌊Λ′1(

•x)⌋ = ⌊Λ2(•x)⌋ comes from Λ′1 |= D1[
•
∁ B 0], Λ2 |= D2, and D1[

•
∁ B

0] //D2.
The latter frac(Λ′1(

•x)) = frac(Λ2(•x)) is somewhat involved and shown by the following
steps:

1. Λ′1 ≾ Λ2 holds from WF(w⟨γ1,Λ′1⟩⟨γ2,Λ2⟩).

2. frac(Λ′1(
•
∁)) = 0.0 holds from Λ′1 |= D1[

•
∁ B 0].

3. frac(Λ2(•∁)) = 0.0 holds from D1[
•
∁ B 0] //D2 and Λ2 |= D2.

Finally, combining Λ′1 ≾ Λ2 and frac(Λ′1(
•
∁)) = frac(Λ′2(•∁)) = 0.0, we have frac(Λ′1(

•x)) =
frac(Λ2(•x)) for all clock x ∈ •X∁ ∪

•
X∁.

We remark that the above proof needs reference clocks; indeed, without reference
clocks, the case push fails. Let us consider the following diagram:{ •x 7→ 0; •x 7→ 0.5

}{
•x 7→ 0; •x 7→ 0.4

}

|={
(•x, 0)

}
0
{(•x, 0)} push−−−→

Digi

{(•x, 0)}0
{
(•x, 0)

}{
(•x, 0)

}
0
{(•x, 0)}

Although the above diagram satisfies all the conditions of Lemma 5.10, the following
transition is not allowed on the collapsed semantics without reference clocks:{

•x 7→ 0; •x 7→ 0.4
}
̸push−−−→

Coll

{ •x 7→ 0; •x 7→ 0.5
}{

•x 7→ 0; •x 7→ 0.4
}

Compared to this, the following stack is not a well-formed stack and we do not need to
consider it: {

. . . ; •∁ 7→ 0.0; •x 7→ 0.5
}

{. . . ;
•
∁ 7→ 0.0; •x 7→ 0.4}

119

Proof of Case time Before giving the proof for the case time, we state a technical
lemma that is key to the case time.

Lemma 5.11 (Key Lemma for Backward Simulation). Let λ1, λ2, and λ3 be collapsed
valuations on a finite clock set X . Also, let d1, d2, and d3 be digital valuations on the set
X .

If
λ1 λ2 λ3|= |= |=

d1 ⊢∗ d2 ⊢∗ d3

∧

λ1 ≼ λ3,
λ2 ≼ λ3,
∃x.x ∈0 d1

 ,

then λ1 ≼ λ2.
For d = d0d1 . . . dn, we write x ∈0 d if x ∈ d0, i.e., a clock x belongs to d0 of d.

We put the proof of this lemma on Section 5.9 for the readability and continue to give
a proof for the case time. First, we consider the following case:

⟨q, ⟨γ,D⟩⟩ → ⟨q, ⟨γ,D′⟩⟩

where D ⊢∗ D′. This case is immediate from Proposition 5.12.
Next, we consider the following general case:

⟨q,W ⟨γ1,D1⟩⟨γ2,D2⟩⟩ → ⟨q,W ⟨γ1,D1⟩⟨γ2,D′
2⟩⟩

where D2 ⊢∗ D′
2. The assumption can be rewritten as follows for some valuations:

wΛ1 Λ
′
2 |= WD1D

′
2.

Since D2 ⊢∗ D′
2, by Proposition 5.12, there is a collapsed valuation Λ2 such that

Λ2 ≼ Λ′2|= |=

D2 ⊢∗ D′
2.

For this, wΛ1Λ2 |= WD1D2 is clear.
Next, we show thatwΛ1 Λ2 is a well-formed stack. From the well-formednessWF(wΛ1Λ

′
2),

it is clear that Λ1(
•
∁) = 0.0 and WF(wΛ1). Hence, it suffices to show Λ1 ≾ Λ2. To show

this, we use the above technical lemma (Lemma 5.11).
We extract some valuations from Λ1, Λ2, and Λ′2 as follows:

•
•
λ1 :

•
X∁ → C is the restricted function of Λ1 to

•
X∁. Furthermore, we unmark the

clocks of
•
λ1 and obtain the valuation λ1 : X∁ → C.

• •λ2 : •X∁ → C is the restricted function of Λ2 to •X∁. We also unmark the clocks of •λ2
and obtain the valuation λ2 : X∁ → C. •λ

′
2 : •X∁ → C and λ′2 : X∁ → C are defined in

the same way from Λ′2.

We also extract some valuations from D1, D2, and D′2 as follows:

• d1 is defined by restricting D1 to
•
X∁ and unmarking the clocks.

• d2 is defined by restricting D2 to •X∁ and unmarking the clocks. d′
2 is defined in the

same manner from D′
2.

We show λ1 ≼ λ2 since it immediately implies Λ1 ≾ Λ2. The above definition leads to
the following diagram:

λ1 λ2 λ′2|= |= |=

d1 ⊢∗ d2 ⊢∗ d′
2

where λ1 |= d1, λ2 |= d2, and λ
′
2 |= d′

2 are derived from Λ1 |= D1, Λ2 |= D2, and Λ′2 |= D′
2,

respectively. The relation Λ1 ≾ Λ′2 implies λ1 ≼ λ2 and Λ2 ≼ Λ′2 implies λ2 ≼ λ′2. The
well-formedness WF(WD1D2) implies

•
∁ ∈0 D1 and ∁ ∈0 d1.

Now we can use Lemma 5.11 and obtain λ1 ≼ λ2 and it implies Λ1 ≾ Λ2.

120

5.6.6 Decidability of Reachability Problem

Combining the forward simulation between the standard and collapsed semantics (Lemma 5.8)
and the forward/backward simulation between the collapsed and digitized semantics (Lemma 5.9
and 5.10), we can show our main theorem, Theorem 5.4. We introduce a notation for the
stack correspondence between the standard and digitized semantics w |= W to formalize
our main theorem.

Definition 5.29. Let w and W be stacks of the standard and digitized semantics, re-
spectively. If there is a stack w of the collapsed semantics such that w |= w and w |= W ,
we write w |= W . ■
Theorem 5.4. Let ⟨q, w⟩ be a configuration of the standard semantics. The following are
equivalent:

(1) ⟨qinit, ⟨⊥,0X ⟩⟩ −−−→
Stnd

∗ ⟨q, w⟩.

(2) ⟨qinit, ⟨⊥,D0⟩⟩ −−−→
Digi

∗ ⟨q,W ⟩ for some stack W such that WF(W) and w |= W

where
D0 = {(•x1, 0), (

•x1, 0), . . . , (•xn, 0), (
•xn, 0), (•∁, 0), (

•
∁, 0)}0.

Proof. The direction (1)⇒ (2) is shown by using Lemma 5.8 and 5.9 sequentially.
We consider the other direction (2) ⇒ (1). From the assumption w |= W , there is

a stack w of the collapsed semantics such that w |= w |= W . The backward simulation
lemma (Lemma 5.10) implies the following:

∃(λ0 : collapsed valuation).
λ0 |= D0 ∧ ⟨qinit, ⟨⊥, λ0⟩⟩ −−−→

Coll

∗ ⟨q,w⟩.

Since 0
•X∁∪

•
X∁

is the only collapsed valuation that satisfies 0
•X∁∪

•
X∁
|= D0, we also have the

following:
⟨qinit, ⟨⊥,0

•X∁∪
•
X∁
⟩⟩ −−−→

Coll

∗ ⟨q,w⟩.

The forward simulation of the collapsed semantics by the standard semantics (Lemma 5.8)
implies the following transition:

⟨qinit, ⟨⊥,0X ⟩⟩ −−−→
Stnd

∗ ⟨q, w⟩.

The above theorem allows to reduce the configuration reachability problem of the
standard semantics to that of the digitized semantics. For a given configuration ⟨q, w⟩,
there are finitely many well-formed stack W such that w |= W and we can enumerate all
such stacks W . This computability and the decidability of the configuration reachability
problem of pushdown systems imply the decidability of the configuration reachability
problem of SRTA.

Corollary 5.2. The configuration reachability problem of SRTA is decidable.

We also consider the location reachability problem and emptiness problem of SRTA:

• The location reachability problem decides, for a given location q, whether or not
⟨qinit, ⟨⊥,0⟩⟩ −−−→

Stnd

∗ ⟨q, ∃w⟩ for some stack w.

• The emptiness problem decides, for a given SRTA A, whether or not L(A) = ∅.

These two decision problems are EXPTime-complete.

121

Corollary 5.3. The location reachability problem and emptiness problem of SRTA are
EXPTime-complete.

Proof. It is clear that the location reachability problem is polynomial-timed reducible to
the emptiness problem and vice versa. Therefore, it suffices to show that the location
reachability problem is in EXPTime and the emptiness problem is EXPTime-hard.

The location reachability problem is in EXPTime.

Let A = (Q, qinit, F,Σ,Γ,X ,∆) be an SRTA and ⟨qinit, ⟨⊥,0⟩⟩ −−−→
Stnd

∗ ⟨q, ∃w⟩ be an

instance of the location reachability problem. On the basis of A, we build another SRTA
B = (Q ∪ {q′} , qinit, F,Σ,Γ,X ,∆′) where q′ is a fresh location and

∆′ ≜ ∆ ∪
{
q

nop−−→ϵ q′ : q ∈ Q, γ ∈ Γ
}
∪
{
q′

pop(γ)−−−−→ϵ q′ : γ ∈ Γ

}
.

(nop is a tautology like frac(x) = frac(x) for some clock x ∈ X)

From the construction of the SRTA B, the following holds:

A : ⟨qinit, ⟨⊥,0⟩⟩ −−−→
Stnd

∗ ⟨q, ∃w⟩
⇐⇒ B : ⟨qinit, ⟨⊥,0⟩⟩ −−−→

Stnd

∗ ⟨q, ∃w⟩ −−−→
Stnd

∗ ⟨q′, ⟨⊥, ∃ν⟩⟩

⇐⇒ B : ⟨qinit, ⟨⊥,D0⟩⟩ −−−→
Digi

∗ ⟨q′, ⟨⊥, ∃D⟩⟩.

Let P = (Q∪{q′} ,Γ×D,∆′Digi) be the PDS that corresponds to the digitized semantics
of the SRTA B. We build another PDS C = (Q ∪ {q′, q′′} ,Γ× D,∆′′) where q′′ is a fresh
location and

∆′′ ≜ ∆′Digi ∪
{
⟨q′, ⟨⊥,D⟩⟩ ↪→ ⟨q′′, ϵ⟩ : D ∈ D

}
.

From the construction of the PDS C, the following holds:

B : ⟨qinit, ⟨⊥,D0⟩⟩ −−−→
Digi

∗ ⟨q′, ⟨⊥, ∃D⟩⟩ ⇐⇒ C : ⟨qinit, ⟨⊥,D0⟩⟩ ⇒∗ ⟨q′′, ϵ⟩.

Therefore, it suffices to solve the configuration reachability problem for the PDS C. Since
the configuration reachability problem of pushdown system is in polynomial-time [BEM97,
FWW97] and the size of the PDS C is exponential with respect to the size of the SRTA A,
we can solve the location reachability problem of SRTA in exponential-time with respect
to the size of an input SRTA.

The emptiness problem is EXPTime-hard.

This is immediately shown by the following two results:

• The emptiness problem of PTA is EXPTime-hard (Corollary 3.2 and [AAS12a]).

• For a given PTA A, we can build an SRTA B such that L(A) = L(B) in polynomial-
time with respect to the size of A (Theorem 5.1).

5.7 Regions vs Digital Valuations

We compare the two kinds of regions:

• the conventional region given by Alur and Dill in [AD94], which does not keep the
fractional parts of the clocks that exceed a given upper bound M.

122

• the region given by Abdulla et al. in [AAS12a], which keeps the fractional parts of
clocks even if their values are beyond M. To the authors’ best knowledge, such a non-
standard region first appeared at the work of Ouaknine and Worrell [OW04] to show
the decidability of the language inclusion problem on one-clock timed automata.

The difference between keeping and not keeping the fractional parts of the clocks that
exceed M is significant: on the region of Alur and Dill, the key lemma for the backward
simulation of Digi by Coll (Lemma 5.11) does not hold.

For the ease of comparison, we consider a slightly modified version of the definition
given by Alur and Dill. The region of Alur and Dill can be understood through introducing
the following collapsed domain:

C′ ≜
(
[0..(M− 1)]× [0, 1)

)
∪ {∞} .

For this collapsed domain, the new collapsing function C′ : R≥0 → C′ is defined as follows:

C′(r) =

{
(⌊r⌋, frac(r)) if r < M

∞ if r ≥ M

We forget the fractional parts of the clocks that are equal to or greater than M.
Instead of giving the precise definition of the region for C′, let us consider the following

example under M = 1:

1. The region R = ({}0 {(x, 0), (y, 0)} , ∅) means that the values of the two clocks x
and y are the same. For example, the collapsed valuation ρ = {x 7→ 0.4; y 7→ 0.4}
realizes this region (ρ |= R).

2. The successor region R′ of the region R (R ⊢ R′) is R′ = ({}0 , {x, y}) and R′ means
that the values of the two clocks x and y exceed the upper bound M = 1. On the
region R′, there is no information that the fractional parts of two clocks are the
same. The collapsed valuation ρ′ = {x 7→ ∞; y 7→ ∞} of the collapsed domain C′
realizes this region (ρ′ |= R′).

5.7.1 Key Lemma fails on Region of Alur and Dill

As we have seen in the previous section, the following property (Lemma 5.11) is key to
establishing the backward simulation of Digi by Coll:

λ1 λ2 λ3|= |= |=

d1 ⊢∗ d2 ⊢∗ d3

∧

λ1 ≼ λ3,
λ2 ≼ λ3,
∃x.x ∈0 d1

 =⇒ λ1 ≼ λ2.

This property does not hold on the region of Alur and Dill. Let us consider the
following collapsed valuations and regions on C′ under M = 1:

(1) :
ρ1 = {x 7→ 0.0; y 7→ 0.5}

|=

R1 =
(
{(x, 0)}0 {(y, 0)} , ∅

)
,

(2) :
ρ2 = {x 7→ 0.5; y 7→ 0.9}

|=

R2 =
(
{(x, 0)}0 {(y, 0)} , ∅

)
,

(3) :
ρ3 = {x 7→ ∞; y 7→ ∞}

|=

R3 =
(
{}0 , {x, y}

)
.

123

Although these valuations and regions satisfy the assumption of the above property, ρ1 ≼
ρ2 does not hold. Since we forget the fractional parts of the clocks that exceed an upper-
bound constant, the assumptions ρ1 ≼ ρ3 and ρ2 ≼ ρ3 do not help to relate the fractional
parts of ρ1 and ρ2.

On the other hand, on the collapsed domain C =
((

[0..(M−1)]∪{∞}
)
× [0, 1)

)
consid-

ered by Abdulla et al, there is no collapsed valuation λ3 that satisfies both {x 7→ 0.0; y 7→ 0.5} ≼
λ3 and {x 7→ 0.5; y 7→ 0.9} ≼ λ3. This enables us to avoid the above problem and establish
the key lemma for the backward simulation.

5.8 Related Work

Trivedi and Wojtczak introduced recursive timed automata (RTA) [TW10] and Benere-
cetti, Minopoli, and Peron introduced timed recursive state machines [BMP10, BP16]
independently. The two models are essentially equivalent. Compared to SRTA, timed
transitions of RTA increase only the top frame of a stack as follows:

⟨q, ⟨γ1, ν1⟩ . . . ⟨γn, νn⟩⟩
δ⇝ ⟨q, ⟨γ1, ν1⟩ . . . ⟨γn, νn + δ⟩⟩

where δ ∈ R≥0. The difference of timed transitions between SRTA and RTA is crucial
because RTA can simulate two-counter machines by using the timed transitions effectively
and thus the reachability problem of RTA is undecidable [TW10, BMP10].

Li, Cai, Ogawa, and Yuen introduced nested timed automata (NeTA) in [LCOY13].
A configuration of NeTA is a stack of timed automata that are synchronously evolved by
timed transitions. NeTA can be seen as SRTA without fractional constraints and value
passing mechanisms between frames like the rule dig. Due to the absence of value passing
mechanisms, we cannot keep values of clocks in the top frame when removing the top
frame; indeed, the following transition that mixes the top and next to the top frames is
not allowed:

⟨γ1, {x 7→ 1.0; y 7→ 2.0}⟩⟨γ2, {x 7→ 3.5; y 7→ 4.5}⟩ pop(γ2,{x})−−−−−−−→ ⟨γ1, {x 7→ 1.0; y 7→ 4.5}⟩.

NeTA only removes the top frame as follows:

⟨γ1, {x 7→ 1.0; y 7→ 2.0}⟩⟨γ2, {x 7→ 3.5; y 7→ 4.5}⟩ pop′(γ2)−−−−−→ ⟨γ1, {x 7→ 1.0; y 7→ 2.0}⟩.

Krishna, Manasa, and Trivedi introduced the subset of RTA called RTARN (RTA only
with pass-by-reference and non-passing) in [KMT15] and showed that the location reach-
ability problem of RTARN is decidable. RTARN can be seen as SRTA without fractional
constraints. Although their proof closely followed that of Abdulla et al. [AAS12a] and
depended on the details of the construction of Abdulla et al., we adapt the construction
of Abdulla et al. to simplify our proof.

5.9 Proof of Lemma 5.11

We show the following technical lemma:

λ1 λ2 λ3|= |= |=

d1 ⊢∗ d2 ⊢∗ d3

∧

λ1 ≼ λ3,
λ2 ≼ λ3,
∃x.x ∈0 d1

 =⇒ λ1 ≼ λ2.

Before giving a proof, let us see that we cannot drop any condition.

124

If we drop the condition λ1 ≼ λ3 ...? Let us consider the following diagram:{
x 7→ 0.0
y 7→ 0.5

} {
x 7→ 0.2
y 7→ 0.3

} {
x 7→ 0.4
y 7→ 0.5

}

|= |= |=

{(x, 0)}0 {(y, 0)} ⊢∗ d2 ⊢∗ d3

where d2 = d3 = {}0 {(x, 0)} {(y, 0)}. Although this case satisfies the assumptions except
λ1 ≼ λ3, λ1 ≼ λ2 does not hold. For the same reason, we cannot remove the condition
λ2 ≼ λ3.

If we drop the condition ∃x.x ∈0 d1 ...? Let us consider the following diagram:

{x 7→ 0.5} {x 7→ 0.3} {x 7→ 0.5}

|= |= |=

{}0 {(x, 0)} ⊢∗ {}0 {(x, 0)} ⊢∗ {}0 {(x, 0)}

Although this case satisfies the assumptions except ∃x.x ∈0 d1, λ1 ≼ λ2 does not hold.
Therefore, we cannot drop the condition ∃x.x ∈0 d1.

Proof of Lemma 5.11 We prepare several notations to prove this lemma. Let λ and
λ′ be collapsed valuations on a finite clock set X .

frac(λ)(x) ≜ frac(λ(x)),

⌊λ⌋(x) ≜ ⌊λ(x)⌋,
λ ≑ λ′ ⇐⇒ ∃δ ∈ R≥0. frac(λ+ δ) = frac(λ′).

It is clear that the relation ≑ is an equivalence relation.

Proposition 5.14. Let λ and λ′ be collapsed valuations on a finite clock set X .
If λ ≑ λ′ and ∃x ∈ X . frac(λ)(x) = frac(λ′)(x), then frac(λ) = frac(λ′).

We show that related valuations λ and λ′ with λ ≑ λ′ imply λ = λ′ under some
constraints.

Proposition 5.15.
λ ≑ λ′

|= |=

d = d
∧ (∃x.x ∈0 d) =⇒ λ = λ′.

Proof. It is clear that ⌊λ⌋ = ⌊λ′⌋ from λ |= d and λ′ |= d. Since there exists a clock x
such that x ∈0 d, we have frac(λ(x)) = frac(λ′(x)) = 0.0 from the assumption λ ≑ λ′.
Proposition 5.14 implies frac(λ) = frac(λ′). This and ⌊λ⌋ = ⌊λ′⌋ imply λ = λ′.

Furthermore, since λ ≼ λ′ implies λ ≑ λ′, we have the following property.

Proposition 5.16.
λ ≼ λ′

|= |=

d = d
∧ ∃x.x ∈0 d =⇒ λ = λ′.

Although λ ≑ λ′ does not imply λ ≼ λ′ in general, if there are digital valuations d and
d′ such that λ |= d, λ′ |= d′, and d ⊢ d′, then λ ≑ λ′ implies λ ≼ λ′.
Proposition 5.17.

λ ≑ λ′

|= |=

d ⊢ d′
=⇒ λ ≼ λ′.

125

Proof. We proceed by case analysis on d ⊢ d′.

Case ∅ d1 · · · dn−1 dn ⊢ d′n d1 · · · dn−1: Note there exists a clock x that belongs to d′n and
thus x ∈0 d′. By the forward simulation of digital valuations by collapsed valuations
(Proposition 5.11), we can find a collapsed valuation λ′′ that satisfies the following
diagram:

λ ≼ λ′′

|= |=

d ⊢ d′

Since λ ≼ λ′′ implies λ ≑ λ′′, we have λ′ ≑ λ′′. Using Proposition 5.15 along with
λ′ |= d′, λ′′ |= d′, and x ∈0 d′, we have λ′ = λ′′ and thus λ ≼ λ′.

Case d0 d1 · · · dn ⊢ ∅ d′0 d1 · · · dn: We can use the same argument as above. There exists
a clock x that belongs to d0 and thus x ∈0 d. By the backward simulation of
digital valuations by collapsed valuations (Proposition 5.12), we can find a collapsed
valuation λ′′ that satisfies the following diagram:

λ′′ ≼ λ′
|= |=

d ⊢ d′

Since λ′′ ≼ λ′ implies λ′ ≑ λ′′, we have λ ≑ λ′′. Using Proposition 5.15 along with
λ |= d, λ′′ |= d, and x ∈0 d, we have λ = λ′′ and thus λ ≼ λ′.

We can easily generalize the above proposition to the following one.

Proposition 5.18.
λ ≑ λ′

|= |=

d ⊢+ d′
=⇒ λ ≼ λ′.

Finally, Proposition 5.16 and 5.18 imply our key technical lemma.

Lemma 5.11.

λ1 λ2 λ3|= |= |=

d1 ⊢∗ d2 ⊢∗ d3

∧

λ1 ≼ λ3,
λ2 ≼ λ3,
∃x.x ∈0 d1

 =⇒ λ1 ≼ λ2.

Proof. From the assumption λ1 ≼ λ3 and λ2 ≼ λ3, λ1 ≑ λ2 ≑ λ3 holds.
First, we consider the case d1 = d2. Since λ1 ≑ λ2, this case is immediate from

Proposition 5.16.
Next, we consider the other case d1 ̸= d2 (i.e., d1 ⊢+ d2). This case is immediate from

Proposition 5.18.

126

Chapter 6

Conclusion

Summary

In the present thesis, we have introduced the two classes of pushdown extensions of timed
automata—timed pushdown automata with multiple local clocks (MTPDA) and synchro-
nized recursive timed automata (SRTA)—by extending existing models of computation.
We have not only introduced new classes but also shown new results on existing models,
timed automata and pushdown timed automata:

1. On timed automata, we have shown that the configuration reachability problem,
⟨qinit,0⟩ ⇒∗? ⟨q, ν⟩, is PSPACE-complete. Our decidability proof is based on the
backward simulation between collapsed timed automata and digital automata. The
decidability of the more general problem called the binary configuration reachability
problem had been shown [CJ99, Dim02, Dan03, QSW17]. The binary configuration
reachability problem decides, for a timed automaton and given two configurations
cstart and cgoal, whether or not there is a computation from cstart ⇒∗? cgoal. The
known result about the complexity is that the binary configuration reachability prob-
lem is EXPTIME-hard. Our proof differs from the existing proofs and we show that
the configuration reachability problem is a tractable case of the binary configuration
reachability problem and PSPACE-complete.

2. On pushdown timed automata (PTA) of Bouajjani et al. [BER94], we have shown
that the location reachability problem is EXPTIME-complete. The EXPTIME-
hardness of the reachability problem of PTA refines the known complexity result
that the reachability problem of dense-timed pushdown automata (DTPDA) of Ab-
dulla et al. is EXPTIME-complete [AAS12a]; indeed, DTPDA are obtained by ex-
tending PTA.

For our two new models of computation, we have presented the following results:

1. The language classes of MTPDA and timed pushdown automata are the same even
though MTPDA can be obtained by augmenting timed pushdown automata with
multiple local clocks, the reset operation for local clocks reset(z), and diagonal con-
straints between a local clock and global clock z − x ∈? I.

2. The language classes of SRTA and timed pushdown automata are different due to
the presence fractional constraints of SRTA.

3. The location and configuration reachability problems of SRTA are decidable and
in EXPTIME-complete. Since the class of SRTA subsumes the class of MTPDA,
this result means that the language class and the complexity class of the location
reachability problem are the same between MTPDA and pushdown timed automata.

127

We have clarified that considering digital valuation is key to showing the decidability of
the reachability problems of SRTA; indeed, the classical regions which are used to show
the decidability of the location reachability problems of timed automata are insufficient
to establish the important technical lemma (Lemma 5.11 of Chapter 5). We also have
presented a simple and modular decidability proof of the reachability problems of SRTA.
The most important technique is using a backward simulation rather than a forward simu-
lation. This enables us to decompose the original decidability proof of Abdulla et al. based
on an intricate hybrid simulation, forward-backward simulation, into a sequence of simple
simulations along with a few intermediate semantics.

Further Directions

SRTA can be seen as MTPDA augmented with the following features (Theorem 5.3 of
Chapter 5):

• fractional constraints;

• the ability to copy the value of a local clock z to a global clock x, x ← z, and the
value of a global clock to a local clock, z ← x;

• bounded update of clocks: x← I where I = (a : b) or I = [a : b].

To show that SRTA are more expressive than pushdown timed automata, we use only
fractional constraints to recognize the timed language LSRTA of Chapter 5. Although that
language cannot be recognized by any pushdown timed automaton, it can be accepted by
1-MTPDA with fractional constraints. Therefore, the following questions are natural:

• Is the class of MTPDA with the ability to copy a local clock to a global clock and
vice versa more expressive than the class of MTPDA?

• Is the class of MTPDA with bounded update of local clocks more expressive than the
class of MTPDA? Similarly, is the class of dense-timed pushdown automata, which
does not allow diagonal constraints, with (unbounded) update of local clocks more
expressive than the class of MTPDA?

On those classes, we can easily confirm that the monotonicity of a stack that is a key
property to the untiming theorem of MTPDA does not hold. For the latter question, it
seems difficult to apply the technique that removes updates from a given updatable timed
automata while preserving its language. At the present moment, we have no clues to
determine the expressiveness power of such new extensions; therefore, to solve the above
question, we need to develop new techniques. We believe such techniques will further
deepen and widen the theory of pushdown extensions of timed automata.

128

Bibliography

[AAS12a] Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jari Stenman. Dense-timed
pushdown automata. In LICS ’12: Proceedings of the 27th Annual IEEE Sym-
posium on Logic in Computer Science, pages 35–44. IEEE Computer Society,
2012.

[AAS12b] Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jari Stenman. The minimal
cost reachability problem in priced timed pushdown systems. In LATA ’12:
Proceedings of the 6th International Conference on Language and Automata
Theory and Applications, volume 7183 of Lecture Notes in Computer Science,
pages 58–69. Springer, 2012.

[AAS14a] Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jari Stenman. Comput-
ing optimal reachability costs in priced dense-timed pushdown automata. In
LATA ’14: Proceedings of the 8th International Conference on Language and
Automata Theory and Applications, volume 8370 of Lecture Notes in Com-
puter Science, pages 62–75. Springer, 2014.

[AAS14b] Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jari Stenman. Zenoness
for timed pushdown automata. In INFINITY ’13: Proceedings of the 15th
International Workshop on Verification of Infinite-State Systems, volume 140
of EPTCS, pages 35–47, 2014.

[ACD93] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking in
dense real-time. Information and Computation, 104(1):2–34, 1993.

[AD90] Rajeev Alur and David L. Dill. Automata for modeling real-time systems. In
ICALP ’90: Proceedings of the 17th International Colloquium on Automata,
Languages and Programming, volume 443 of Lecture Notes in Computer Sci-
ence, pages 322–335. Springer, 1990.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[Aho68] Alfred V. Aho. Indexed grammars—an extension of context-free grammars.
Journal of the ACM, 15(4):647–671, 1968.

[Aho69] Alfred V. Aho. Nested stack automata. Journal of the ACM, 16(3):383–406,
1969.

[AJKO97] Rajeev Alur, Lalita Jategaonkar Jagadeesan, Joseph J. Kott, and James Von
Olnhausen. Model-checking of real-time systems: A Telecommunications Ap-
plication (experience report). In Pulling Together, Proceedings of the 19th In-
ternational Conference on Software Engineering, pages 514–524. ACM, 1997.

129

[BDFP00a] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit.
Are timed automata updatable? In CAV ’00: Proceedings of the 12th Inter-
national Conference on Computer Aided Verification, volume 1855 of Lecture
Notes in Computer Science, pages 464–479. Springer, 2000.

[BDFP00b] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit.
Expressiveness of updatable timed automata. In MFCS ’00: Proceedings of
the 25th International Symposium on Mathematical Foundations of Computer
Science, volume 1893 of Lecture Notes in Computer Science, pages 232–242.
Springer, 2000.

[BDFP04] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit.
Updatable timed automata. Theoretical Computer Science, 321(2-3):291–345,
2004.

[BEM97] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability analysis of
pushdown automata: Application to model-checking. In CONCUR ’97: Pro-
ceedings of the 8th International Conference on Concurrency Theory, volume
1243 of Lecture Notes in Computer Science, pages 135–150. Springer, 1997.

[BER94] Ahmed Bouajjani, Rachid Echahed, and Riadh Robbana. On the automatic
verification of systems with continuous variables and unbounded discrete data
structures. In Hybrid Systems II: Proceedings of the Third International Work-
shop on Hybrid Systems, volume 999 of Lecture Notes in Computer Science,
pages 64–85. Springer, 1994.

[BGK+02] Johan Bengtsson, W. O. David Griffioen, K̊are J. Kristoffersen, Kim Guld-
strand Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Automated
verification of an audio-control protocol using UPPAAL. The Journal of Logic
and Algebraic Programming, 52-53:163–181, 2002.

[BHR09] Patricia Bouyer, Serge Haddad, and Pierre-Alain Reynier. Undecidability
results for timed automata with silent transitions. Fundamenta Informaticae,
92(1-2):1–25, 2009.

[BLR05] Patricia Bouyer, François Laroussinie, and Pierre-Alain Reynier. Diagonal
constraints in timed automata: Forward analysis of timed systems. In FOR-
MATS ’05: Proceedings of the Third International Conference on Formal
Modeling and Analysis of Timed Systems, volume 3829 of Lecture Notes in
Computer Science, pages 112–126. Springer, 2005.

[BMP10] Massimo Benerecetti, Stefano Minopoli, and Adriano Peron. Analysis of timed
recursive state machines. In TIME ’10: Proceedings of the 17th International
Symposium on Temporal Representation and Reasoning, pages 61–68. IEEE
Computer Society, 2010.

[BP16] Massimo Benerecetti and Adriano Peron. Timed recursive state machines:
Expressiveness and complexity. Theoretical Computer Science, 625:85–124,
2016.

[BPDG98] Béatrice Bérard, Antoine Petit, Volker Diekert, and Paul Gastin. Charac-
terization of the expressive power of silent transitions in timed automata.
Fundamenta Informaticae, 36(2-3):145–182, 1998.

[Cho59] Noam Chomsky. On certain formal properties of grammars. Information and
Control, 2(2):137–167, 1959.

130

[CJ99] Hubert Comon and Yan Jurski. Timed automata and the theory of real
numbers. In CONCUR ’99: Proceedings of the 10th International Conference
on Concurrency Theory, volume 1664 of Lecture Notes in Computer Science,
pages 242–257. Springer, 1999.

[CL15a] Lorenzo Clemente and Slawomir Lasota. Timed pushdown automata revisited.
In LICS’ 15: Proceedings of the 30th Annual ACM/IEEE Symposium on Logic
in Computer Science, pages 738–749. IEEE Computer Society, 2015.

[CL15b] Lorenzo Clemente and Slawomir Lasota. Timed pushdown automata revisited.
arXiv:abs/1503.02422 (http://arxiv.org/abs/1503.02422), 2015.

[Dam82] Werner Damm. The IO- and OI-hierarchies. Theoretical Computer Science,
20(2):95–207, 1982.

[Dan03] Zhe Dang. Pushdown timed automata: a binary reachability characterization
and safety verification. Theoretical Computer Science, 302(1-3):93–121, 2003.

[Den16] Tobias Denkinger. An automata characterisation for multiple context-free
languages. In DLT ’16: Proceedings of the 20th International Conference on
Developments in Language Theory, volume 9840 of Lecture Notes in Computer
Science, pages 138–150. Springer, 2016.

[Dim02] Catalin Dima. Computing reachability relations in timed automata. In LICS
’02: Proceedings of the 17th IEEE Symposium on Logic in Computer Science,
page 177. IEEE Computer Society, 2002.

[DKN04] Conrado Daws, Marta Z. Kwiatkowska, and Gethin Norman. Automatic
verification of the IEEE 1394 root contention protocol with KRONOS and
PRISM. International Journal on Software Tools for Technology Transfer,
5(2-3):221–236, 2004.

[Eng91] Joost Engelfriet. Iterated stack automata and complexity classes. Information
and Computation, 95(1):21–75, 1991.

[Eve63] R. James Evey. Application of pushdown-store machines. In AFIPS ’63: Pro-
ceedings of the 1963 Fall Joint Computer Conference, pages 215–227. ACM,
1963.

[FJ15] John Fearnley and Marcin Jurdziński. Reachability in two-clock timed au-
tomata is PSPACE-complete. Information and Computation, 243:26–36, 2015.

[FWW97] Alain Finkel, Bernard Willems, and Pierre Wolper. A direct symbolic ap-
proach to model checking pushdown systems. ENTCS, 9:27–37, 1997.

[HKW95] Thomas A. Henzinger, Peter W. Kopke, and Howard Wong-Toi. The expres-
sive power of clocks. In ICALP ’95: Proceedings of the 22nd International
Colloquium on Automata, Languages and Programming, volume 944 of Lec-
ture Notes in Computer Science, pages 417–428. Springer, 1995.

[HLMS12] Alexander Heußner, Jérôme Leroux, Anca Muscholl, and Grégoire Sutre.
Reachability analysis of communicating pushdown systems. Logical Methods
in Computer Science, 8(3), 2012.

[HMOS08] Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier Serre.
Collapsible pushdown automata and recursion schemes. In LICS ’08: Pro-
ceedings of the Twenty-Third Annual IEEE Symposium on Logic in Computer
Science, pages 452–461. IEEE Computer Society, 2008.

131

http://arxiv.org/abs/1503.02422

[HMOS17] Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier Serre.
Collapsible pushdown automata and recursion schemes. ACM Transactions
on Computational Logic, 18(3):25:1–25:42, 2017.

[HO08] Matthew Hague and C.-H. Luke Ong. Symbolic backwards-reachability analy-
sis for higher-order pushdown systems. Logical Methods in Computer Science,
4(4), 2008.

[HU79] John Hopcroft and Jeffrey Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

[JLT75] Aravind K. Joshi, Leon S. Levy, and Masako Takahashi. Tree adjunct gram-
mars. Journal of Computer and System Sciences, 10(1):136–163, 1975.

[KMT15] Shankara Narayanan Krishna, Lakshmi Manasa, and Ashutosh Trivedi.
What’s decidable about recursive hybrid automata? In HSCC ’15: Proceed-
ings of the 18th International Conference on Hybrid Systems, pages 31–40.
ACM, 2015.

[Koz77] Dexter Kozen. Lower bounds for natural proof systems. In FoCS ’77: Pro-
ceedings of the 18th Annual Symposium on Foundations of Computer Science,
pages 254–266. IEEE Computer Society, 1977.

[LCOY13] Guoqiang Li, Xiaojuan Cai, Mizuhito Ogawa, and Shoji Yuen. Nested timed
automata. In FORMATS ’13: Proceedings of the 11th International Confer-
ence on Formal Modeling and Analysis of Timed Systems, volume 8053 of
Lecture Notes in Computer Science, pages 168–182. Springer, 2013.

[LMP07] Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato. A
robust class of context-sensitive languages. In LICS ’07: Proceedings of the
22nd IEEE Symposium on Logic in Computer Science, pages 161–170. IEEE
Computer Society, 2007.

[LMS04] François Laroussinie, Nicolas Markey, and Philippe Schnoebelen. Model
checking timed automata with one or two clocks. In CONCUR ’04: Proceed-
ings of the 15th International Conference on Concurrency Theory, volume
3170 of Lecture Notes in Computer Science, pages 387–401. Springer, 2004.

[LST15] Jérôme Leroux, Grégoire Sutre, and Patrick Totzke. On the coverability prob-
lem for pushdown vector addition systems in one dimension. In ICALP ’15:
Proceedings of the 42nd International Colloquium on Automata, Languages,
and Programming, volume 9135 of Lecture Notes in Computer Science, pages
324–336. Springer, 2015.

[LV95] Nancy A. Lynch and Frits W. Vaandrager. Forward and backward simulations:
I: untimed systems. Information and Computation, 121(2):214–233, 1995.

[LV96] Nancy A. Lynch and Frits W. Vaandrager. Forward and backward simulations,
II: timing-based systems. Information and Computation, 128(1):1–25, 1996.

[Mas74] A. N. Maslov. The hierarchy of indexed languages of an arbitrary level. Soviet
Math. Dokl., 15:1170–1174, 1974.

[Mas76] A. N. Maslov. Multilevel stack automata. Problems of Information Trans-
mission, 12:38–43, 1976.

132

[Min61] Marvin L. Minsky. Recursive unsolvability of post’s problem of ”tag” and
other topics in theory of turing machines. Annals of Mathematics, 74(3):437–
455, 1961.

[Min67] Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall,
Inc., 1967.

[MP11] P. Madhusudan and Gennaro Parlato. The tree width of auxiliary storage. In
POPL ’11: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 283–294. ACM, 2011.

[NP05] V. Krishna Nandivada and Jens Palsberg. Timing analysis of TCP servers
for surviving denial-of-service attacks. In RTAS ’05: Proceedings of the
11th IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, pages 541–549. IEEE Computer Society, 2005.

[OW04] Joël Ouaknine and James Worrell. On the language inclusion problem for
timed automata: Closing a decidability gap. In LICS ’04: Proceedings of
the 19th IEEE Symposium on Logic in Computer Science, pages 54–63. IEEE
Computer Society, 2004.

[PS12] Paritosh K. Pandya and P. Vijay Suman. An introduction to timed automata.
In Modern Applications of Automata Theory, pages 111–146. World Scientific,
2012.

[QSW17] Karin Quaas, Mahsa Shirmohammadi, and James Worrell. Revisiting reach-
ability in timed automata. In LICS ’17: Proceedings of the 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, pages 1–12. IEEE
Computer Society, 2017.

[Sch63] M.P. Schützenberger. On context-free languages and push-down automata.
Information and Control, 6(3):246–264, 1963.

[SMFK91] Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. On
multiple context-free grammars. Theoretical Computer Science, 88(2):191–
229, 1991.

[TW10] Ashutosh Trivedi and Dominik Wojtczak. Recursive timed automata. In
ATVA ’10: Proceedings of the 8th International Symposium on Automated
Technology for Verification and Analysis, volume 6252 of Lecture Notes in
Computer Science, pages 306–324. Springer, 2010.

[Uez18] Yuya Uezato. Dense-timed pushdown automata with multiple-local clocks (in
Japanese, 複数の局所クロックを持つ時間プッシュダウン・オートマトン). IPSJ
Transactions on Programming, To appear in 2018.

[UM15] Yuya Uezato and Yasuhiko Minamide. Synchronized recursive timed au-
tomata. In LPAR-20: Proceedings of the 20th International Conference on
Logic for Programming, Artificial Intelligence, and Reasoning, volume 9450
of Lecture Notes in Computer Science, pages 249–265. Springer, 2015.

[UM18] Yuya Uezato and Yasuhiko Minamide. Configuration reachability analysis of
synchronized recursive timed automata. Computer Software, To appear in
2018.

[Vij87] K. Vijayashanker. A Study of Tree Adjoining Grammars. PhD thesis, Uni-
versity of Pennsylvania, Philadelphia, PA, USA, 1987.

133

	Introduction
	Timed Automata
	Basic Notation
	Formalization of Timed Automata
	Language of Timed Automata

	Reachability Problem and Digital Automata
	Digital Valuations
	Digital Automata and Decidability of Reachability Problem

	Backward Simulation and Decidability of Configuration Reachability Problem
	Redefine the Constant M
	Forward Simulation is not Enough
	Collapsed Valuations
	Decidability of the Configuration Reachability Problem

	Extensions of Timed Automata
	Timed Automata with Diagonal Constraints
	Updatable Timed Automata

	Timed Pushdown Automata
	Pushdown Automata
	Nonstandard Formulation of Pushdown Automata
	Pushdown Timed Automata
	Hierarchy Theorem of Pushdown Timed Automata
	Preliminaries for Theorem 3.4
	1-clock language
	2-clock language
	n-clock language

	Dense-Timed Pushdown Automata
	Timed Pushdown Automata and Untiming Theorem

	Timed Pushdown Automata with Multiple Local Clocks
	Formalization of Timed Pushdown Automata with Multiple Local Clocks
	Compared to Timed Pushdown Automata
	Extending MTPDA by Useful Transition Rules
	Example of 1-TPDA
	Example of 2-TPDA
	Important Property of MTPDA: Monotonicity in Stack

	Proof Outline of Untiming Theorem of MTPDA
	Removing Transition Rules with Actions x - x' ?I, z - z' ?I, z ?I, or x - z ?I
	Predicting MTPDA: Preliminary to Remove z - x ?I
	Predicting MTPDA
	Stack Structure of Predicting MTPDA without reset(z)
	Example: Removing z - x ?I based on Predicting MTPDA

	Removing Transition Rules with z - x ?I from MTPDA without reset(z)
	Predicting MTPDA C not having z - x ?I
	Properties of Predicting MTPDA C
	Equivalence of the predicting MTPDA B and C

	Removing Transition Rules with z - x ?I from MTPDA
	Properties of Predicting MTPDA D
	Language Equivalence between Predicting MTPDA B and D

	Untiming Theorem of MTPDA

	Synchronized Recursive Timed Automata
	Synchronized Recursive Timed Automata
	Expressiveness of SRTA
	SRTA is More Expressive than PTA: PTA SRTA
	Alternative View of SRTA

	Overview of Decidability Proof of Configuration Reachability Problem
	Idea of Each Semantics
	Backward Simulation in Configuration Reachability Problem
	Comparing Proof of Abdulla et al. and Ours

	Lazy Semantics: Removing Entire Stack Modification
	Lazy Semantics Lazy

	Collapsed Semantics
	Removing the Unboundedness
	Why Do We Need Reference Clock
	Collapsed Semantics Coll
	Upper Bound for Configuration Reachability Problem

	Digital Valuations and Finite-PDS Semantics
	Digital Valuations
	Forward and Backward Simulation of Time Elapsing
	Nondeterministic Composition
	Digitized Semantics
	Backward Simulation
	Decidability of Reachability Problem

	Regions vs Digital Valuations
	Key Lemma fails on Region of Alur and Dill

	Related Work
	Proof of Lemma 5.11

	Conclusion
	Bibliography

