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Foreword

Traditionally, models and methods for the analysis of the functional correctness
of reactive systems, and those for the analysis of their performance (and de-
pendability) aspects, have been studied by different research communities. This
has resulted in the development of successful, but distinct and largely unrelated
modeling and analysis techniques for both domains. In many modern systems,
however, the difference between their functional features and their performance
properties has become blurred, as relevant functionalities become inextricably
linked to performance aspects, e.g. isochronous data transfer for live video trans-
mission.

During the last decade, this trend has motivated an increased interest in com-
bining insights and results from the field of formal methods – traditionally fo-
cused on functionality – with techniques for performance modeling and analysis.
Prominent examples of this cross-fertilization are extensions of process algebra
and Petri nets that allow for the automatic generation of performance models,
the use of formal proof techniques to assess the correctness of randomized al-
gorithms, and extensions of model checking techniques to analyze performance
requirements automatically. We believe that these developments mark the be-
ginning of a new paradigm for the modeling and analysis of systems in which
qualitative and quantitative aspects are studied from an integrated perspective.
We are convinced that the further work towards the realization of this goal will
be a growing source of inspiration and progress for both communities.

The aim of the EEF summerschool on Formal Methods and Performance
Analysis (FMPA) was to report on the state-of-the-art research and tool devel-
opment for the integrated modeling and analysis of functional and performance
aspects of reactive systems. To provide the necessary background it also in-
cluded lectures on basic models and techniques of both performance evaluation
and formal methods for reactive systems. The lectures were given by interna-
tionally recognized experts from the formal methods and performance analysis
communities. These invited lecturers were: Christel Baier (Model checking prob-
abilistic and Markovian models), Gianfranco Balbo (Petri nets and stochastic
Petri nets), Ed Brinksma (Process algebra), Christos Cassandras (Discrete event
simulation), Gianfranco Ciardo (Structured and distributed analysis), Reinhard
German (Non-Markovian analysis), Boudewijn Haverkort (Markov chain mod-
els and analysis), Holger Hermanns (Markovian process algebra), Ulrich Herzog
(Formal methods for performance analysis), Jane Hillston (Compositional and
decompositional analysis), Joost-Pieter Katoen (Non-Markovian process alge-
bra), William Sanders (Stochastic activity networks and their analysis), Roberto
Segala (Verification of probabilistic distributed algorithms) and Pierre Wolper
(Model checking).

This LNCS volume contains a series of articles by lecturers at the summer-
school, which survey most of the topics covered at the school, as well as some
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additional, related material. We believe that this volume will be of considerable
interest to researchers from both the formal methods and performance analysis
communities, and that it should prove an excellent starting point for those who
wish to get acquainted with the research at the crossroads of these fields.

FMPA was organized as the first school on Trends in Computer Science by
the European Educational Forum (established in 1996), a European research
training initiative focusing on basic research in Computer Science and its appli-
cations. EEF has partner organizations from 7 countries (Denmark, The Nether-
lands, Finland, United Kingdom, Italy, Germany, France) which together involve
34 universities. The primary aim of the EEF is the training of Ph.D. students
and young researchers. The training activities include workshops, schools, highly
focused conferences, as well as conferences that provide a forum for a vari-
ety of topics of current interest. For more information, see the EEF web page:
http://www.tucs.abo.fi/EEF/.

FMPA was held at Hotel Val Monte in Berg en Dal, a beautiful village close
to Nijmegen. The school was very well attended with 80 participants from all
over the world, with 36 attendees who were sponsored through the High-Level
Scientific Conference Programme of the European Commission. Other sponsors
were the Dutch National Graduate School IPA (Institute for Programming re-
search and Algorithmics), the Netherlands Organization for Scientific Research
(NWO), the Royal Dutch Academy of Sciences (KNAW), and the Center for
Tele-Informatics and Information Technology (CTIT).

We would like to thank all lecturers for their excellent lectures and their high-
level contributions to these lecture notes. We thank Jos Baeten, Tijn Borghuis,
and Grzegorz Rozenberg for inviting us to organize FMPA as part of the EEF
summerschool series and for their assistance in maintaining the proper contacts
with the EC and Springer-Verlag. On the local level, we thank Pedro D’Argenio
and in particular Joke Lammerink for their assistance with the organization of
the school.

May 2001 Ed Brinksma, Holger Hermanns, Joost-Pieter Katoen
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Formal Methods for Performance Evaluation

Ulrich Herzog

Universität Erlangen-Nürnberg, Institut für Informatik 7, Rechnernetze und
Kommunikationssysteme, Martensstr. 3,

D-91058 Erlangen, Germany
herzog@informatik.uni-erlangen.de

Abstract. The main goal of this contribution is to advocate the in-
creased use of formal methods (FM) in the field of performance evalua-
tion (PE). Moreover, we try to reduce the mutual reservations between
both areas, formal specification techniques and performance evaluation
since both can profit from such an integration: FMs may find their way
into a new and very attractive area of applications and some fundamental
problems of PE may be overcome.
The first part summarizes the evolution of PE, its methodology and
the basic concepts of performance modeling and analysis, elaborated in
specific contributions of this book.
Classical modeling and analysis techniques have a high standard and have
been quite successful. However, there are important problem classes still
open, and there are some fundamental deficiencies: Task interdependen-
cies and synchronization, interfacing in modeling hierarchies, methods
and tools for automating the performance engineering process are typi-
cal examples.
We therefore advocate the integration of FMs and PE and survey three
advanced approaches, again, treated in detail in specific contributions:
Stochastic Petri-Nets, Stochastic Activity Networks and Stochastic Pro-
cess Algebras.
We try to summarize our own experience with these techniques and con-
clude with a list of challenging topics and current research directions.

1 Introduction

Performance Evaluation (PE) means to investigate and optimize the dynamic
time-varying behavior within and between the individual components of trans-
portation and processing systems. This includes the measurement and modeling
of real system behavior, the definition and determination of characteristic per-
formance measures, and the development of design rules which guarantee an
adequate quality of service.

PE has a long tradition when designing, dimensioning and operating telecom-
munication systems. Traffic engineering teams are vital for all large companies
in telecom-industry: They ensure the economic use of transmission and switch-
ing facilities, they are needed to assure the desired quality of service. Table 1
shows in the upper part some pioneers of this field (however, this list is incom-
plete and should contain a hundred or more names). During World War II, a

E. Brinksma, H. Hermanns, and J.-P. Katoen (Eds.): FMPA2000, LNCS 2090, pp. 1–37, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



2 Ulrich Herzog

second field of activities, operations research, emerged: The allocation of scarce
resources to the various military operations was extremely important and teams
of researchers were appointed to investigate these problems, many of them re-
lated to PE - cf. middle part of table 1. The results were greatly appreciated
and are today standard in business management and production. In the sixties,
people from industry and universities, cf. also table 1 bottom, tried to establish
PE techniques in the world of computers and computer communication systems.
Many fundamental results and methods were found. Unfortunately, however,
they are not common knowledge: Computer scientists are completely focused on
the functional behavior of computers, system software and application programs,
the “insularity of PE” [17] is still the normal situation. “Computer scientists do
not have a feeling for time” is a common saying getting to the heart of the
problem. And we have to work hard to change this.

Table 1. Some Pioneers in PE.

Erlang 1908/18 telephone traffic fundamental delay- and loss formulas

Palm 1943 telephone traffic long-term variations

Jacobaeus 1950 switching networks congestion in link systems

Clos 1953 switching networks nonblocking system

Wilkinson 1955 toll traffic engineering alternate routing systems

Cobham 1954 operations research priority assignment

Jackson 1957 operations research queuing in networks

Conway 1958/67 operations research scheduling

Scherr 1965 time-sharing systems measurement and modeling

Kleinrock 1964/74 ARPA (-> Internet) performance and reliability

Buzen 1971 computers central server model

Bux 1981 token ring network performance simulation

Bellcore mid 80ies internet traffic long-range dependency

There are many success stories of PE documented or informally reported
coming from all three areas mentioned above [67,42,35,36]:

1. The economic dimensioning of national and international telecommunication
networks,

2. the control and optimization of the Polaris missile development program, or
3. the efficient design of processor architectures and memory hierarchies in both

industry and academia.

However, since systems consist of hardware and software, it is also common to
fully design, implement and functionally test them before an attempt is made to
determine their performance characteristics. The redesign of both software and
hardware is costly and may cause late system delivery. Dramatic examples with
enormous financial consequences are known. Figure 1 illustrates the impact of
such design faults on the system life cycle: Steadily, the functional properties will
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be detailed and added to the design until the implementation is operational (solid
curve). Often, however, the first test shows that - although functionality has been
checked - the overall behavior is completely unsatisfactory and a major redesign
is necessary; the figure also shows a second loop back until the ideal line (dotted)
is approached. Main cause is obviously and mostly that the system dynamics
were neglected: Temporal analysis and assurance were performed but not until
things had gone wrong! Figure 1 makes clear that the early and systematic
integration of PE into the design process should be obligatory.
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Installation, Test
and Operation

Fig. 1. System Life Cycle and Quality Assurance.

The first Euro Summer School On Trends In Computer Science was dedicated
to this goal. This contribution tries to survey the basic concepts and techniques
leading to the various contributions of this volume.

2 Methodological Steps

As we have seen in section 1, the objectives of PE are the modeling, the analysis
and the synthesis of optimal system structures and dynamics. We measure and
model the temporal behavior of real systems, define and determine characteristic
performance measures, and develop design rules, which guarantee an adequate
quality of service. A general scenario is shown in Figure 2: The environment
generates requests, the so called workload, to the system:

1. The workload represents the sum of all needed and desired activities and
services.

2. The system consists of one or more components trying to satisfy these re-
quests.
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System

Environment

Workload Actual

QoS

Constraints

Required QoS

Workload:
Sum of all needed or desired activities
and services
– Type of activities
– Sequential ordering
– Time of requests
– Frequency, . . .

Quality of Service (QoS):
Fitness for use. Achieved correspondence
with user-requirements concerning
– Qualitative parameters: logical se-
quencing, liveness, priorities, . . .

– Quantitative parameters: through-
put, response time, . . .

Constraints: Economic, functional, HW/SW-Technology, geographical,
morphological, . . .

Fig. 2. The System with its Environment, Requirements and Constraints.

3. An optimal system structure and operating mode is reached if the system
fulfills all requirements concerning QoS as well as all technical and economic
constraints.

To assure an appropriate performance today’s PE-methodology includes the
following steps, cf. Figure 3: Workload characterization and system parameter
specification are the first sensitive steps. Determining these values needs care and
knowledge about both the application and the technical system components.
Next, the design methodology distinguishes between two totally different but
complementary approaches: experiments on the real system (measurements) and
modeling.

Both are followed by analysis steps using methods of statistics, stochastic
processes and simulation. The validation of experimental and modeling results
follows next and is very important 1. Finally, system structures and operating
modes are synthesized; systematic parameter variation (in case of experimenta-
tion and simulation) and mathematical optimization techniques (in combination
with stochastic models) guarantee good or even optimal system design consid-
ering costs and/or performance and a variety of optimization constraints.

1 We crosscheck measurements by modeling results and vice versa. Plausibility con-
siderations and the study of limits are also very helpful
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Problem -Idendification and
Requirements Analysis

Experiments
(Monitoring of Real Systems)

Modeling

Analysis of
Measured Values

Validation

(Workload/System Behavior)

Synthesis of Optimized Structures
Sensitivity Analysis

Validation

Analysis by Mathematical
Methods or Simulation

(Workload/System Parameters)
Characterisation

Fig. 3. Overview of Performance Evaluation Methodology.

By following all steps of the PE-methodology, considerable success in improv-
ing real system behavior, is possible. Some highlights from our own experience
are

1. We fully generated a TCP/IP protocol stack from a high-level specification
written in SDL. This resulted in a extremely slow communication between
two SUN-WS. Carefully performed measurements in several refinement steps
showed the SDL-specification to be incomplete, and the timers not optimally
tuned; but the main bottleneck came from the runtime-system. Removing all
three problems was time consuming but allowed to increase the throughput
by more than two orders of magnitude [49].

2. The dynamic timing behavior of an industrial pick-and-place robot with
parallel work and computer control was measured, modeled and carefully
analyzed and optimized. Considering the load profile, correlation between
tasks and function schedule, the throughput could be improved by about
25% [71,70], cf. also [30].

3. The efficiency of an industrial broadband-ISDN prototype station could be
more than doubled [66].

4. The data granularity of landscape contour lines processed by a multiproces-
sor could be varied leading to an optimal speed-up [47].

These are just four impressive examples reflecting our own experiences. Many
more examples can be found in original papers and books.

Performance measurements and experiments on real systems are vital for
both industry and academia. They show what a system really does, evaluate its
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overall usefulness and give insight into its detailed behavior; measurements also
stimulate PE-modeling directions and allow to assess our own theoretical doing.
In this article we focus on modeling and analysis due to the goal of the summer
school; note, however, that the picture is complete only if one considers both
sides of the PE-methodology [20,43,45]. We also have to skip the synthesis part,
i.e. the combination of analysis and optimization, since this would be, again,
beyond our scope.

3 Resource-Sharing Systems vs. Real Time Systems

The manifold of transportation and processing systems may be split into two
categories, real-time and resource-sharing systems. Examples, their main pur-
pose, properties and process models are summarized in table 2. However, note
that depending on the level of abstraction, the same technical system may be
viewed in one case as a real-time system, in another as a resource sharing sys-
tem. This is particularly true for communication networks. They have to solve
real-time problems but they share most resources due to economic reasons. Of
major importance for us is -depending on the considered features- the completely
different timing model of both classes:

1. Real-time systems need deterministic timing models because actions take
place at distinct time instants or within fixed time intervals. Typical models
are (time) extended finite state machines, timed automata, timed Petri nets,
timed process algebras, and the like.

2. Resource-sharing systems need stochastic timing models due to contention,
faults, mass phenomena, random service strategies etc. Randomly varying
time instants and time intervals are captured by queuing models and stochas-
tic versions of Petri nets, automata, graphs or process algebras.

We focus on resource-sharing systems and their modeling due to the goal of
the summer school, being aware, however, that real-time system models include
quite some potential also for the modeling of resource-sharing systems.

4 Classical Modeling of Workload and Systems

4.1 Why Stochastic Modeling?

Due to economic and technical reasons many systems are resource-sharing sys-
tems: Ticket counters, taxi services, telephone networks, mainframe computers
etc. However, sharing of resources often leads to conflicts because customers try
to access them simultaneously or with some overlap. Moreover, varying service
times, error situations, background work, etc. add to such congestion processes.

The complexity of the situations, influences and conditions makes it impossi-
ble to describe such phenomena by deterministic models. Complicated interrela-
tions, the lack of detailed information and some basic indeterminacy in the phys-
ical world make such processes to appear random. Nevertheless, measurements
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Table 2. Characterization of Different Transportation and Processing Systems

Transportation and Processing System

︷ ︸︸ ︷
Real-Time System Resource-Sharing System

Examples
– Process Control
– Manufacturing Systems
– Robots
– Avionic Computer Systems,...

– Time Sharing Computers, Main-
frames

– Client-Server Architectures
– Telephone-/Data Comm/Systems
– Production Lines with Work-Over,...

Main objectives
– Correctness of Process-Interaction
– Fault Tolerance

– Economic Use of Resources
– Fault Tolerance

Properties of Interest
– Safety
– Liveness

– Throughput, Utilization
– Loss-Probability, Delay

Deterministic Timing Probabilistic Timing
– Actions take place at distinct time in-
stants or within fixed time intervals

– Contention, Faults and Mass-
Phenomenon lead to randomly
varying time instants and intervals

Process Models
– Extended Finite State Machine
(EFSM), Timed Petri Net, Real-
Time Process Algebra, Timed
Automata

– Queuing-Networks, Stochastic Petri-
Net (SPN), Stochastic Process Alge-
bra (SPA)

show that, although individual behaviors and different events are unpredictable,
many statistical regularities can be observed and modeled by means of stochastic
processes. Theoretical considerations of limiting behavior support these obser-
vations. Figure 4 summarizes some typical examples of values which vary un-
predictably. Figure 5 shows some famous early experiments and performance
predictions using stochastic models and assuring their results by measurements.

4.2 Basic Concepts

The dynamic behavior of resource sharing systems can be modeled by some
fundamental concepts of statistics and probability theory. We briefly define and
interprete the most important terms: random variables, distribution functions
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Time-Sharing Systems: Communication Networks:
 
 
 
 

TS- 
System 

 
 
Server SC 

SC 

SC 

SC 

– Execution times are data dependent – Transfer times are data dependent,
depend also on the selected route

– Think times of experimenter depend
on system response

– Retransmission because of transmis-
sion faults or buffer overflow

– Communication delay varies depen-
dent on the actual traffic

– Varying delays because of packet-
buffering and control overload in
switching centers (SC)

– Time and storage allocation depend
on other users

– Response variation due to server con-
tention

Fig. 4. Typical Examples for Randomness in Time-Sharing Systems and Com-
munication Networks.

and stochastic processes. The uncertain outcome of an experiment or observa-
tion is captured by a random variable. Random variables are characterized and
distinguished by their distribution function. Furthermore, a stochastic process
allows one to describe a sequence of related experiments. The class of Markov
processes is of special interest to us. All these concepts are summarized next, for
more details cf. e.g. [46].

Definition 1. (Random Variable)
A random variable is a variable whose value depends upon the outcome of a ran-
dom experiment. The axiomatic definition assumes a probability space [S,A, P ],
that is, a sample space S, a σ-algebra A of subsets of S, and a probability as-
signment P to the events of the sample space. Then a function X : S → IR is
called a random variable because it assigns to each sample point s ∈ S a real
number X(s). 2

We distinguish discrete and continuous random variables dependent on their
range, which may be countable or non-denumerable. Some examples are shown
in table 3, cf. also Figure 4. The set of possible values (or states) that the random
variable may take is called its state space E.

Definition 2. (Distribution Function)
The distribution function (or more precisely the probability distribution func-
tion, d.f. for short) FX of a random variable X is defined to be the function

FX(x) = P (X ≤ x). (1)
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Fig. 5. Comparison of Measured and Predicted Performance Values. Early Re-
sults for Telephone Networks [16] (B probability of Loss, Y traffic) and Time-
Sharing Systems [62].
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Table 3. Some Examples for Random Variables (RV)

Continuous RV Discrete RV
- Interarrival times of jobs - Number of buffered jobs
- Activity times - Idle/busy/overflow-states
- Waiting times - Arrivals in a fixed interval

exponential

Erlang-2

Erlang-80

discrete

M/M/1-waiting time

0

0.2

0.4

0.6

0.8

1

FT(t)

1 2 3 4 5 6 7 8 t

fT(t)
pT(t)

exponential

Erlang-2

Erlang-80

discrete

M/M/1-waiting time

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 t

Fig. 6. Typical Examples for Distribution Functions FT (t) and their Related
Density Functions fT (t) or Discrete State Probabilities pT (t): Exponential d.f.,
Erlangian d.f. of low or high order, discrete time d.f. and a typical d.f. for waiting
times (here from a M/M/1-queuing station).

In case of a discrete random variable we have

FX(xn) =
n∑
i=0

P (X = xi) (2)

where P (X = xi) is the probability that X will have value xi. In case of contin-
uous random variables we get

FX(x) =

x∫
0

f(t)dt (3)

where the function f(x), the derivative of FX(x), is called the probability density
function (or simply the density function) for the random variable X . 2

Some typical examples for distribution functions and related probabilities or
density functions are shown in Figure 6.

Definition 3. (Stochastic Process)
A stochastic process is a family {X(t)} of random variables indexed by a param-
eter t ∈ I and taking values of some state space E. Usually, t has the meaning
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of time, I is some time interval, and the state space denotes the set of possible
values (or states) of X(t). 2

The classification of stochastic processes considers both the type of random
variables and the time instants at which state changes may take place. Some
examples are shown in Figure 6. Note that discrete state processes are often
called stochastic chains.

 
     X 
Continuous 

Continuous progress in  time t 

a) 

b) 

  X 
Discrete 

Discrete or  continuous time t 

c) 

d) 

Fig. 7. Stochastic Process Examples: Mean packet delay in the Internet (a),
duration of a telephone call (b), counting process (c), number of busy channels
in an ATM-network (d).

The complete probabilistic description of an arbitrary stochastic process is
not feasible. However, based on binomial trials there are two important limiting
processes, Gaussian and Markovian processes. While the well known Gaussian
process allows to accurately model many natural phenomena exposed to a large
number of random influences, the Markovian processes are often well suited for
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our purpose i.e. the modeling of resource sharing system dynamics (a refined
classification can be found in Figure 13).

Definition 4. (Markov Process)
A stochastic process is called Markov process if its future evolution depends

only upon its current state and not upon any previous values. More formally,
the conditional probabilities are given by the following relation:

P (X(t) = x|X(t1) = x1, X(t2) = x2, . . . , X(tn) = xn) =
P (X(t) = x|X(tn) = xn) (4)

for arbitrary n ∈ IN; t1, t2, . . . , tn, t ∈ I with t1 < . . . < tn < t and x, x1, . . . , xn
included in some state space2. Markov processes with discrete state space are
called Markov chains (MC). Dependent on their timing behavior we talk about
CTMC (Continuous Time MC; changes in state may occur anywhere within a
(set of) finite or infinite intervals in the time axis) or DTMC (Discrete Time MC;
changes in state may take place at time instants which are finite or countable).

2

Markovian processes

– posses per definition an outstanding mathematical property, the memoryless
or Markov property

– have a solid mathematical foundation laid by researchers like Einstein (1905),
Markov (1907), Erlang (1909/18) and Kolmorgoroff (1931),

– are very well investigated and many analytic results as well as efficient nu-
meric analysis techniques are known, and

– often approximate measured system dynamics in nature and society very
well.

4.3 The Family of Exponential Distribution Functions

From books on statistics and probability, various distribution functions for ran-
dom variables are well known, e.g. Gauss-, Gamma-, geometric- and the Weibull
distribution. Some of them are well suited to precisely describe system dynamics
such as interarrival and service times; however, to systematically derive perfor-
mance characteristics is extremely difficult or impossible. To avoid these eval-
uation problems a special family of distribution functions is mostly used: It is
based on the exponential d.f., the only continuous d.f. which fulfills the mem-
oryless property of Markovian processes and allows one - as we will see - a
systematic and relatively simple analysis of models, i.e. performance values may
be derived with relative ease. Moreover, an arbitrarily close approximation of any
non-negative random variable is possible by the superposition of exponentials.

We briefly characterize the exponential d.f. as a prerequisite for the next
section on Markov chain analysis. Some remarks on the family and examples
conclude this section.
2 If the permitted times at which changes in state may take place are finite or countable
we often write Xt rather than X(t).
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Definition 5. (Exponential Distribution)
The distribution and density functions as well as the expected value and the

variance of the exponential distribution are given by the following relations

FX(x) = P (X ≤ x) = 1 − e−λx ; x ≥ 0 (5)

fX(x) =
d

dx
FX(x) = λ · e−λx (6)

E[X ] =

∞∫
0

t · fX(t)dt =
1
λ

(7)

VAR[X ] =

∞∫
0

(t− E[X ])2 · fX(t)dt =
1
λ2

(8)

2

As mentioned before, it is the only continuous d.f. for which the memoryless
property holds, it has a constant transition rate λ irrespective of the past be-
havior and its residual sojourn time is a random variable with the same density
function as the whole sojourn time

fX(x + d|x ≥ d) = fX(x) (9)

A proof of these unique features can be found in the standard literature, e.g.
in [46]. The density function fX(x) is shown in Figure 8 beside other functions.

Definition 6. (Family of Exponentials)
A family of exponential distribution functions is defined by the serial superposi-
tion of exponential distribution functions and by the probabilistic selection out
of different branches of exponentials or series of exponentials. 2

This superposition of phases can be described, interpreted and analyzed as a
multidimensional Markov process.

Figure 8 shows the density functions for some members out of this family.
Numerous experiments and measurements show that the exponential d.f. often
allows one to accurately model real situations in road traffic, in telephone and
data networks or time-sharing and mainframe computer systems. Using superpo-
sition of exponentials even a much wider class of real situations can be modeled;
then, however, we often are faced with the so called state-space explosion prob-
lem, i.e. the state-space grows dramatically and compute times for the numerical
evaluations may explode. This problem will be mentioned later on, again.

4.4 Representation of Continuous Time Markov Chains

Recall that a Continuous Time Markov Chain (CTMC) is given by discrete
states and exponential residence time in each of them, cf. Definition 4 and 5.
The standard representation of such Markov chains is given by state transition
diagrams, suited for graphical representation, or by a generator matrix, suited for
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Fig. 8. Density Function Examples for Different Markov Processes: Exponential-,
Erlang-k- and General Erlangian Distribution Function

computations. State transition diagrams show the set of possible states and the
transition rates between them. The generator matrix is the corresponding matrix
representation; for an efficient evaluation it stores, however, in the diagonals the
negative row sum (

∑
) of transition probabilities. Figure 9 shows some simple

examples.

Fig. 9. Some Examples for the Standard Representation of Markov Chains, cf.
Text.

The uniqueness of processes with Markovian behavior is captured by the so
called Chapman-Kolmogoroff system of equations for the transition probabilities.
Since we are mainly interested in the unconditioned state probabilities Pj(x)
some transformations allow one to derive a system of differential equations



Formal Methods for Performance Evaluation 15

dPj(t)
dt

=
∑
i�=j

Pi(t) · qi,j(t) − Pj(t) · qj,·(t) j ∈ E (10)

where the transition rates qi,j(t) are usually independent of t, and qj,.(t) rep-
resents the negative row sum −∑j . The interpretation of these equations is
straightforward: The differential change of the state probability Pj(t) corre-
sponds to the difference between its probability of emergence from other states
and its probability of disappearance to neighboring states at time t.

The transient solution is very meaningful when the system under investiga-
tion needs to be evaluated with respect to its short term behavior. Considering
it for the long run, however, it can be shown that the state probabilities often
converge to constant values. These steady-state- or equilibrium equations can be
readily derived from the above system of equations. One gets

Pj
∑

k
k �=j

qj,k =
∑

k
k �=j

Pk · qk,j (11)

This system of equations expresses that the disappearance of a state j to
other states and its emergence from there are in a statistical equilibrium.

Markov processes have the invaluable advantage that we always know - at
least in principle - how to investigate them. The standard solution technique
includes the following steps:

1. Define all states j of the state space E and determine the corresponding
transition rates qj,k

2. Determine the Chapman-Kolmogoroff differential equations system or, for
stationarity, the linear equilibrium equations system.

3. Compute the state probabilities in either case analytically or numerically.
4. Derive standard performance measures - throughput, waiting times, etc. -

from the state probabilities Pi.

More details and literature can be found in section 5.

4.5 Remarks on System Modeling

Up to now, we assumed that the state-transition diagram, representing all states
and possible state transitions, is given. However, its structure and parameters
heavily depend on the system under investigation; moreover there is not a unique
system representation and skillful modeling and state-definitions may ease the
evaluation process.

Here, we only show some basic system models which can be used in many
different situations and sketch the idea of modeling of complex systems.

Basic System Models The single-server-queue is one of the most exciting
models allowing one to describe and investigate many different situations. Fig-
ure 10 shows a self-explaining scene, different interpretations in technical systems
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and the usual symbolic representation. Note that the model is very abstract with
many implicit assumptions (scheduling strategy, priorities, type of arrival/service
processes etc.). The lower part shows the corresponding state-transition diagram
if we assume both exponential arrivals and service times.

Arriving Customers 
 
 
 
 
 

Queue Service Station 
 

Serviced Customers 
 

Customers Service Station QoS 
 
Request from a  
TS-system user 
 

 
HOST-computer 

 
Response-time 

Arriving packets Switching node Total nodal delay 
 

Sequence of 
 instructions 

Central processor Throughput 

 
Symbolic Representation: 
 
 
 
      
   
 
 
 
State Transition Diagram: 
 
 
 
 
 
 
 
 
 

Arrival 

process 

Input queue Server 

Output 

process 

... 4 2 3 1 0 

    

   

Fig. 10. The Single-Server System. (Abbreviations: TS-time sharing, QoS-
quality of service)

Many performance results have been derived, evaluated, tabulated or pro-
grammed in tools for the single server system. E.g. the pioneer J. Cohen (who
passed away only recently) investigated this fundamental model carefully on
more than six hundred pages [14].

Another example for an important class of queuing model is the central server
model with a constant number of customers. A simple instance of such a model
is shown in Figure 11. Buzen [11] developed this class of models to analyze the
performance of computer systems with a single processor - the central server -
and various I/0 devices; the limited number of customers reflects the fact of a
limited (fixed) degree of multiprogramming.
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Central
Server

2,0,0

0,1,1

0,0,2 1,0,1 1,1,0 0,2,0

I/01

Fig. 11. A Central Server System. Closed Model with two I/O-stations as well as
state-transition diagram in case of two customers (K = 2) exponential service
(service rates (µi, i = 1, 2, 3) and transition probabilities pij from queue i to
queue j.

Hierarchical Modeling Suppose we have to investigate the performance of
some host-to-host communication in a national or international network with
virtual connections. Trying to model such a complex scenario with a single model
is impossible: it either does not represent the detailed system structure and
dynamics accurately or it is too unwieldy for performance evaluation and result
validation.

A very successful approach in such situations is the hierarchical modeling
technique. Its basic idea is the stepwise refinement of complex scenario models.
Parts of the macro-level model are detailed by intermediate-level models which
may be again refined into micro-level models, etc. The modeling steps and the
corresponding modeling hierarchy for our initial host-to-host communication sce-
nario are shown in Figure 12:

At first, we have to study the fundamental sequence of events in the real
system: connection request, successful and unsuccessful establishment of a virtual
connection, in case of success data transmission. The corresponding queuing
model is shown next: a single-server with two phases of service and a feedback
loop; t1 represents the time of trying to establish a connection, q is the probability
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for an unsuccessful trial while t2 describes the transmission time. At least, t1 and
q are unknown, often all three parameters. In each case, intermediate models -
representing the signaling procedure as well as switching and transmission in the
network - have to be built.

These intermediate models may be refined, again, modeling congestion in the
control units and blocking in the switching units individually for each node of
the network. 3. In analyzing this model hierarchy, these micro-level parameters
are fed into the intermediate-level models allowing one to determine the three
unknown parameters of the macro-level model. Finally, the macro-level model
enables us to estimate the wanted overall-delay dependent on cross traffic, rout-
ing strategies, network topology etc.

This procedure of top down modeling and bottom up analysis has been of-
ten and very successfully used since the 1970ies [48] in modeling computer and
communication systems. Layered queuing networks for example are a popular
technique supported by elaborate tools [72,58,41]. However, in general, the de-
composition strategy, the selection of models and especially the interfacing of
various models is an art mastered only by very experienced specialists. Beside
the basic idea - stepwise refinement - there are usually no rules, no guidelines
supporting the modeling and evaluation procedure. However, in section 6 on
advanced modeling techniques we will see some first steps for a systematic and
general solution.

5 Analysis of System Dynamics

5.1 General Remarks

Up to now, we have given a justification for stochastic modeling, we have sur-
veyed its theoretical foundation and we have seen some typical examples for
classical models. The question is now how to analyze the time-dependent dy-
namic system behavior and how to determine characteristic QoS values? There
are various performance measures we may be interested in. Dependent on our
role or view we may need qualitative statements representing a system’s useful-
ness for customers or its economical value for the operating authority. Typical
examples are

– User view: Waiting time, response (sojourn) time, total delay (in all cases
mean values, variance and distribution function).

– System view: Utilization and throughput of different resources, number of
waiting customers at various locations, probability of overflow in case of
alternate or adaptive routing, etc.

Independent of the qualitative statements in which we are interested, we can
distinguish three classes of evaluation techniques:

3 Technical details on these submodels may be found in [27] and the standard literature
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“control unit” “switching unit (link-system)”
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Fig. 12. The Process of Hierarchical Modeling, a Case Study [27].
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– Analytic/Algebraic Methods
– Numerical Analysis, and
– Simulation

They are characterized and outlined in the following three sections. These sum-
maries also point to relevant literature and contributions in this book.

5.2 Analytic/Algebraic Methods

When we speak of analytic/algebraic models we usually mean a solution tech-
nique that allows us to write a functional relation between system parameters
and a chosen performance criterion in terms of equations that are analyti-
cally/algebraically solvable [48]. The theory of service systems and particularly
queuing theory provides a mathematical framework for formulating and solving
such problems.

Markov Pr.

Future evolvement
depends only upon
the current state and
not upon the history
(Exp/Bernoulli distr.)

Independent Pr.

Simpliest random
sequences in which
{Xa} forms a set of
independent r.v.

Semi-Markov Pr.

Arbitrary remaining
stay time; at instance
of state transition like
Markovian processes

Poisson-Process
Birth & Death Process
Batch Processes

Generalized SMP

SMP driven by a
stochastic timed auto-
mation equipped with
a stochastic clock and
score updating mechanism

Renewal Pr.(RP)

Chain {N(t)} whose
purpose is to connect
state transitions, i.e.
the number of events int.

Continuous state process
(General MP)

Discrete state processes (Chains)
- Discrete time Markov Chain DTMC
- Continuous time Markov Chain CTMC
Continuous state process (General MP)

Stochastic Process

Random Walk

Next position in state-space
is equal to the previous
position plus a r.v. drawn
independently from an arbitrary d.f.

SMP
MP

Birth-Death

Random Walk
RP

Poisson

Fig. 13. Classification of Stochastic Processes.

There is a variety of methods dependent on the type of stochastic behavior by
which the system can be described with. Figure 13 classifies stochastic processes
and relates them to each other.

The Chapman-Kolmogoroff system of equations and the steady-state equa-
tions, cf. section 4.4 are often the base of performance analysis; event sequence
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State-Based Approaches
Principle:
Use Chapman-Kolmogorov or
Steady-State Equations
Examples:
– Standard Approaches (MP)
– Phase Concept and Matrix Analytic
Method

– Embedded Renewal Processes
– Supplementary Variables
– Diffusion-Approximation, . . .

Event Sequence Approach
Principle:
Explore special sequences of events

Examples:
– Lindley’s Integral Equations
– Method of Moments
– Convolution of Exponentials
– Piecewise Exponential Functions
– (Max,+)-Algebra, . . .

Bounding Techniques
Principle:
Consider the process under special
conditions
Examples:
– Asymptotic Bounds
– Balanced System Bounds, . . .

Fundamental Laws
Examples:
– Little’s Law
– Flow Equivalence Law
– Work Conservation Law, . . .

Transformation Techniques
Principle:
Change the form of an equation to one
which is easier to investigate
Examples:
– Laplace-Transform
– Generating Functions
– Discrete Fourier-Transform
– Complex Cepstrum, . . .

Special Network Algorithms
Principle:
Utilize the special structure and system
parameters
Examples:
– Jackson’s State Probabilities
– Buzen’s Convolution Algorithm
– Mean-Value-Analysis of Lavenberg
and Reiser, . . .

Fig. 14. Elements of Analytic/Algebraic Solution Techniques

analysis is another general principle and many different solution techniques have
been proposed. Both principles and other successful elements of analytic/algebra-
ic solution techniques are summarized in Figure 14. Books like [59,46,48,69,22,68]
survey the various techniques and lead to original papers. Some very sophisti-
cated techniques are also presented in this book, e.g. by German [21] and Ciardo
[13].

5.3 Numerical Analysis

Closed form analytic or efficient recursive solutions are possible only for a few
classes of models. For the general case, however, such direct techniques are not
available. Nevertheless, a wide variety of standard and customized numeric tech-
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niques are at hand. Stewart [64,65] proposes the following three step methodol-
ogy:

1. Describe the system to be analyzed as a Markov chain.
2. Determine a matrix of transition rates and transition probabilities.
3. Numerically compute performance measures of interest.

Figure 15 summarizes the different numerical methods. For more details see
[64] or [6] and Haverkort’s [26] and Ciardo’s [13] contribution in this book.

Direct Methods
Principle:
Operate and modify matrix
– Fill-in effect of matrix entries
– Accumulation of round-off errors
Examples:
– Gaussian elimination
– Grassmann, Taksar, Heyman variant
Reliable and accurate for small models
with some hundred or thousand states

Iterative Methods
Principle:
Preservation of matrix sparsity, succes-
sive consequence to the solution
– Convergence not always guaranteed
– Sensitive to the parameter values
and the initial estimate

Examples:
– Power method
– Jacobi, Gauss-Seidel, SOR

Other Methods
– Projection (create vector subspace)
– Recursive (stability problem)
– Matrix geometric (certain Markov chains)
– Uniformization (randomization, Jensen, transient)

Fig. 15. Successful Methods for Numerical Analysis

5.4 Simulation

Kobayashi [48] describes the role of analytic models and simulation to the point:
“An analytic model should be sought wherever possible, since it can evaluate
the performance with minimal efforts and cost over a wide range of choices in
the system parameters and configurations. Even with simplifying assumptions
and decompositions, however, the resultant analytic model is often not mathe-
matically tractable. Then the only alternative for predicting the performance of
a non existing system is a simulation.”

In simulation, objects, their properties and relations are described by some
data structure whereas their specific behavior, interactions and evolution in time
is formulated by a program. There are several disadvantages of simulation, sum-
marized in the following list:

– Complicated programs that execute a large number of trials. Not easy to
debug.
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– Very expensive to run for reliable computer experiments (e.g. the simulation
of one second real-time of an ATM-ring configuration took us four hours of
simulation time on a SPARC).

– Real optimization at reasonable expense is almost impossible.

But simulation is necessary and advantageous in many situations:

– A detailed and flexible modeling and evaluation of arbitrary system dynamics
including sophisticated interdependencies is possible .

– First estimates for new types of problems may be obtained readily.
– Comfortable simulation tools are available, easy to understand and therefore

highly accepted for performance assurance.

The pros and cons are detailed in standard books, e.g. [54,43] and in Cas-
sandras’ book [12]. But from the above we already can see that simulation and
analytic methods complement each other.

6 Advanced Integrated Approaches

6.1 Deficiencies of Classical Modeling and Analysis Technique

Classical modeling and analysis techniques have a high standard, are very elabo-
rate and many fundamental results as well as efficient PE-tools are available. In
many situations, even for complex hard- and software structures, they allow to
accurately predict system performance. This is particularly true when engineers
and performance specialists work closely together.

However, this is not the normal situation especially when software-engineers
are involved as set out in section one. Moreover, classical workload assumptions
take for granted that (except for simulation)

– processes occurring at the same time are independent of each other (e.g.
simultaneous telephone calls or competing user programs), and

– processes being dependent on each other take a sequential turn (e.g. the se-
quences connection→data→acknowledgment or input→processing→output).

Today, however, modern multiprocessor-systems, workstations organized as
a cluster or distributed systems work differently in general. This means that they

– take advantage of the parallelism inherent in many control and application
tasks, i.e.

– tasks are decomposed into well-defined cooperating subtasks, competing for
the same resources, and serviced in parallel or with some overlap.

In all these situations, we have to be aware of the simultaneity and extreme
interdependency. A simple example with two tasks arriving simultaneously and
processed by two servers is shown in Figure 16.

– If the tasks are independent of each other the expected response time is 1.4
seconds and the shape of the overall d.f. is the same as for the individual
tasks, i.e. the d.f. does not change.
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Fig. 16. Response Time in Case of Task Synchronization.

– If we have synchronizing tasks, i.e. service is completed if and only if both
tasks are processed, the expected response time amounts to 1.64 seconds;
but even more important is that the shape of the d.f. changes drastically.

Again, this is only a very simple example. There are extensions of classical
models (”synchronizing queuing models”) taking into account this effect, but
only for very simple dependency structures and not for the general case.

Working in the area of multiprocessor-performance modeling we started al-
ready in the 1980ies to extend classical queuing models but the expressiveness is
very limited. From our experience and point of view, only integrated approaches,
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i.e. approaches considering at the same time functional and temporal aspects,
offer a general, flexible solution.

Such integrated approaches allow one to capture the above mentioned effects
in a unified system description. And very important, such descriptions might
allow us to enable the areas of SW and HW development to enjoy the benefits
of PE in a more or less automatic fashion. All kind of scenarios are imaginable
and under investigation with the common goal of avoiding typical performance
bottlenecks in system design: There is research from

– the open specification and analysis technique showing both the functional
and temporal behavior and QoS-parameters of a system, e.g. [31], over

– the automatic instrumentation and measurement of an implemented proto-
type [49], up to

– the specification and implementation technique which completely hides per-
formance details, but gets performance parameters out of a library, and
composes hardware- and software components in an optimal way [63] [19].

In the following, we briefly survey three integrated approaches which are
promising and described in more detail by separate contributions of Balbo [3]
and Sanders [61] or Brinksma and Hermanns [7] and Katoen [44]: Stochastic Petri
nets, stochastic activity networks and stochastic process algebras. The length of
these summaries reflects our own experience and involvement in these advanced
integrated modeling techniques.

6.2 Stochastic Petri Nets

Petri nets (PN) are an early and effective modeling tool for the description and
analysis of concurrency and synchronization in parallel systems exhibiting the
cooperative actions of different entities [1]. They were introduced by C.A. Petri
[56], thoroughly investigated during the last thirty years and extended to capture
also performance issues [53,1].

The structure of a standard PN is a bipartite graph consisting of two types of
nodes N , places P and transitions T - and a set of directed arcs A between them.
In a graphical representation of PNs, places are drawn as circles and transitions
as bars, cf. Figure 17. The dynamic behavior of a PN is modeled by tokens
marking activated places and firing rules:

– the transitions are enabled when all input places contain at least one token,
and

– enabled transitions can fire, i.e. remove one token from each input place and
put one token to each output place.

Thus, the state of a marked PN is defined by the number of tokens contained
in each place. The modeling of a queuing situation where customers arrive, may
wait in the queue Q for the server S to be free, then being serviced and departing
from the system by means of a PN is illustrated in Figure 17.
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Fig. 17. A Queuing Situation and its Functionally Detailed PN-Representation.

Functional properties, such as deadlock situations or safety may be analyzed
by the so called reachability analysis. If we associate with each or some transi-
tions in a PN an exponentially distributed r.v. that expresses the delay from the
enabling to the firing of the transition we obtain a SPN - Stochastic Petri Net -
or GSPN - Generalized SPN - , respectively.

In these cases firing rates need to be specified, which can be marking depen-
dent. Now, both functional and all kind of temporal properties can be analyzed.
Standard text books, e.g. [1,8,6] as well as Balbo’s [3] contribution carefully in-
troduce Stochastic PN and survey the state-of-the-art. From our point of view,
we summarize the pros and cons of SPN as follows

Advantage
– Mature in both theoretical exploration and tool development
– Performance bounds derivable already from PN-structure, detailed per-

formance analysis by mapping the marked PN onto a Markov chain
– Successfully applied in many situations where synchronization has a de-

termining influence, also in industrial studies

Disadvantage
– Expenditure for the specification and representation of large systems

very high (Gorrieri: exponential compared to linear in case of process
algebras [25])



Formal Methods for Performance Evaluation 27

– Parallelism inherent in the marked PN is not reflected in the underlying
Markov chain.

6.3 Stochastic Activity Networks

Stochastic Activity networks (SAN) are a particular class of Stochastic Petri
Nets. In order to support an efficient modeling of systems they provide the
following building blocks:

– Places
– Activities (exponential, constant or instantaneous transitions),
– Input Gates, controlling the enabling of activities dependent on some input

places (Boolean enabling predicate and input gate function)
– Case Probabilities (possible outcomes of an activity, dependent on the net-

work marking)
– Output Gates, defining the marking changes of a single output.
– The operations “Join” and “Replicate” for constructing modular models.

With the help of these building blocks, SANs allow one to describe a system’s
structure and dynamic behavior in a very compact way. This compactness, of
course, comes at the price that understanding a model is sometimes not so easy.

Figure 18 shows the SAN model of a faulty microprocessor. SANs are tailored
for the modeling and evaluation of large-scale systems with many symmetric
subcomponents. Taking into consideration such symmetries, enormous state-
space-reductions are possible. QoS-Parameters can be derived using the concept
of impulse rewards. From our point of view, the main advantage of SANs is their
ability to construct models in a modular fashion with the help of the “Join” and
“ Replicate” operators, and that in the presence of “Replicate” an automatic
reduction of the state space is carried out. More details and a state-of-the-art
summary can be found in the contribution of Sanders [61].

Fig. 18. SAN Model of a Faulty Microprocessor [60].
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6.4 Stochastic Process Algebra

Being confronted with all kinds of synchronization and cooperation problems
of an experimental, hierarchical multiprocessor [18] we started already in the
late eighties to study process algebras and to embed stochastic processes. The
following is a excerpt from some recent publications and summarizes the main
features, and the current state-of-the-art of process algebras [31,29,30,41].

The Concept Classical process algebras, among them CCS [52],
CSP [40], or LOTOS [4], have been designed as formal description techniques for
concurrent systems. Therefore, they are well suited to describe the functionality
of reactive systems, like operating systems, automation systems, hierarchies of
communication protocols, etc.

From the very beginning, the basic idea of process algebras was to system-
atically construct complex systems from smaller building blocks and to check
formally whether systems behave equivalently or not.

The behavior of each building block - whether hardware, software or a com-
bination of both - is described as a process which may communicate with other
processes. Standard operators allow various kinds of process composition, syn-
chronization and communication. Therefore, software processes can be mapped
onto other, more elementary software processes - this may be done repeatedly
- and finally mapped and executed on computer- or communication hardware.
Such systems can be combined again to build a network, etc. Since such network
systems are very complex, another important operator allows one to abstract
from internal details at any level of system description.

A process algebra can be seen as a progressive extension of classical au-
tomata theory enhanced by the above sketched features. However, instead of
describing the state transition system directly a two step methodology is used
(cf. Figure 19):

– The system is described with the help of a high-level language which is quite
user-friendly and design-oriented (our input language is an enhanced version
of BASIC LOTOS-Language of Temporal Ordering Specification-, the core
language of ISO-standard 8807).

– A rule system called formal semantics allows one to automatically translate
the language expressions into states and transitions of the labeled transition
system (semantic model).

Two systems or system components are considered equivalent if the transi-
tion systems show the same (functional) behavior. There are several possibilities
to define this formally: Trace equivalence means that all possible sequences of
actions are identical. Popular is also bisimulation, meaning that both systems
(or components) simulate each other in any situation. Having defined equivalent
behavior, equational laws - deduced by axiomatization - reflect these equiva-
lences on the system description level; therefore, comparison of two systems or
system components is possible on both levels and therefore, one speaks of process
algebras.
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Fig. 19. Basic Concept of Process Algebras. In the case of stochastic process
algebras, temporal information is added at each level and analysis includes per-
formance measures as well as mixed properties (cf. section 6.4).

Classical process algebras dealt exclusively with the functional aspects while
features of performance evaluation have been added during the last decade, cf.
[23,32,51,10].

Stochastic Process Algebra The main motivation behind the development of
stochastic process algebras has been to accurately describe and investigate the
behavior of resource-sharing systems and to benefit from their unique properties
also in case of performance modeling. To achieve this goal, temporal information
has been attached to process descriptions in the form of (continuous) time ran-
dom variables. These random variables allow one to represent time instants as
well as durations of activities. Then, the concept of stochastic process algebras
follows the lines of classical process algebras:

As before - cf. Figure 19 - the main ingredients are a formal mapping from the
system description to a transition system and substantive notions of equivalence.
Equational laws reflect these equivalence on the system description level. Rather
than considering only the functional behavior we add stochastic timing informa-
tion. This additional information in the semantic model allows the evaluation of
various system aspects:

– functional behavior (e.g. liveness or deadlocks)
– temporal behavior (e.g. throughput, waiting times, reliability)
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– combined properties (e.g. probability of timeout, duration of certain event
sequences)

The stochastic process associated with every specification is the source for
the derivation of performance results. Its characteristics clearly depend on the
class of random distributions that are incorporated in the system description.
Several attempts have been made to incorporate generally distributed random
variables in the model [23,28,57,9]. However, the general approach suffers from
the problem of efficient analysis techniques as well as general algebraic laws
(except [15,44]). Therefore, usually exponential or phase-type distributions are
embedded into the basic functional system description. Some simple examples of
such process algebra descriptions with embedded exponential phases are shown
next. (We directly relate the temporal behavior to individual activities as usually
done; Hermanns showed (c.f. [7]) the advantage of an orthogonal approach).

– The sequential arrival of three different jobs is specified by a process Job-
stream, describing explicitely each arrival point before halting:

Jobstream := (job1, λ1).(job2, λ2).(job3, λ3).Stop

– Consequently, a Poisson-arrival process is defined by an infinite sequence of
incoming requests (in, λ).(in, λ).(in, λ) . . ., which can be formulated recur-
sively:

Poisson := (in, λ).Poisson

– A service process consisting of an Erlangian distribution of order two is given
by:

Erl2 := (end1, µ).(end2, µ).Stop

– Both a precise and concise description of many service or arrival processes is
possible; this is illustrated by a so-called train-process, which is important
for the modeling of file transfers in local area networks. Thereby, the overlap
and interleaving of different ‘trains’ is captured by the parallel operator (|||):

Train := (lok, λ).((wag1, µ).(wag2, µ)....(wagn, µ).Stop)|||Train

Mapping of software components onto other software modules or hardware
is a very important modeling step. Let us consider a very simple example:

– There is a software job consisting of two independent tasks; their different
functionality is expressed by different exponential times:

Job := start.(task1, λ1).Stop|||start.(task2, λ2).Stop

where ||| indicates again the parallel operator without synchronization. We
also assume off-the-shelf processors the first of which (Proc1) works at unit
speed while processor Procx is x-times as fast:

Procx := start.(taski, x).P rocx
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– Mapping the job onto a specific processor is given by the parallel composition
of both, taking into consideration that they have to synchronize on the events
“start” and “taski” (|(..)|-operator). Since we are not interested to ”see”
the timeless start signal we may hide it. Then the behavior of the complete
hardware/software system is given by

Systemx := hide start in (Job|(start, taski)|Procx)

where the behavior of the Job and Procx is given by the above descriptions.

These examples show how precise and concise such descriptions are. Of
course,very general task and processor behaviors can be modeled and some de-
manding examples are mentioned when we talk about experiences.

From such a modular system description we automatically generate the la-
beled transition system; it contains all functional and temporal information. By
hiding its functional information we directly derive the underlying CTMC.

The state-space explosion problem associated with the CTMC can be reduced
significantly by compositional model generation and reduction. This is a very
important feature treated in more detail by Hillston [33]. Another promising
approach uses functionally correct and temporally approximate decomposition
and reduction techniques; this permits the analysis of specific system models
with a very large number of states [37,55].

Tool Support At the moment, there are three tools available, the PEPA Work-
bench [24], Two Towers [5] and our TIPPtool [38,34]. The TIPPtool is a pro-
totype modeling tool which contains most of the specification and evaluation
features of today’s stochastic process algebras. Its main characteristics are:

– LOTOS oriented input language;
– Implementation of the structured operational semantics;
– Investigation of functional properties by reachability analysis;
– Analysis of temporal properties with various numerical solution modules for

the transient as well as stationary analysis of continuous time Markov chains;
– User guided exploitation of symmetries and exact or approximate composi-

tional reduction techniques; and,
– Computation of standard performance and reliability measures.

The tool is implemented in Standard ML and C and has an elaborate graph-
ical interface. Medium size problems up to 100K states can be solved easily; very
complex application problems with a certain structure may be solved by the ap-
proximate decomposition techniques [37,55] or via a transformation to stochastic
graphs [28,50]. We also use our tool in combination with mature tools for purely
functional specification, analysis and code generation.

Experiences There are about fifteen research groups dealing with stochastic
process algebras. A complete theory and tools are available for models with
Markovian assumptions including immediate transitions (actions consuming no
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time compared to the others). Many small and medium size examples have
shown the practicability of the stochastic process algebras concept. Recently,
researchers began to solve large non-trivial problems, e.g.

– adaptive mechanism for packetized audio over the Internet
– a Manhattan style mobile communication system
– the Erlangen Hospital Communication System
– a plain-old telephone system (POTS)

While the first two examples model systems with generally or constant dis-
tributed time intervals and evaluate them by simulation [5], [2] the others embed
exponential and phase type distributions and use the PEPA-Workbench [24] or
the compositional model construction and analytic techniques of the TIPPtool
[38,29].

The main disadvantage of SPA is that they are not yet completely developed;
acceptance is also still low because of their unconventional theoretical founda-
tion. But SPA introduce unique features into PE: The abstraction process for
complex system modeling is supported and the state-space can be reduced au-
tomatically using algorithms checking for equivalence. Moreover, stepwise com-
position including state-space reductions allows further state-space savings.

Most SPA deal with systems assuming exponential or phase type distri-
butions. Compact state-space representations (using binary decision diagrams
[39] and efficient evaluation procedures are important topics of current research.
Stochastic Model Checking, i.e. the systematic validation of SPA system model
properties using temporal logic formulations is also on its way [34]. There is fur-
thermore a clear trend to investigate systems with general distribution functions;
when these investigations are successful, the dream of systematic hierarchical
modeling with exact interface representation is reachable.

7 Conclusions

Performance evaluation has a long tradition. There are many success stories.
However, since systems consist of both, hardware and software, performance is
the major cause for project failure.

We surveyed in this contribution the standard elements and techniques of
classical PE-methods. We showed their merits and the state-of-the-art. But we
advocate more formal methods for PE since systems are getting more complex
and more sophisticated in structure, operation and use.

Although the state-of-the-art is quite mature for integrated approaches, there
are still many challenging problems;

– The Largeness Problem:
• Research on Compositional Modeling and Analysis has to be extended.
• Hierarchical Modeling with Exact Interfaces, not only at state-probabil-

ity level, is an important goal.
• Symmetry Exploitation has to be done efficiently.
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– General Traffic Models:
• Non-Markovian Distributions are required in many situations.
• Discrete-Time Processes do occur e.g. in ATM-networks.
• Long-Range Dependency of Processes appears in the Internet.

– QoS-Guarantees:
• Functional, Temporal an Mixed Properties have to be determined.
• Equivalences and Preorders for QoS-measures should be considered in

combining system components.
• Efficient bounding techniques are not yet available.
• Verification and Model Checking is today possible only for small systems.

– Advancement in Design-Productivity:
• Strict Formalization for Automation is necessary to improve the design

cycle.
• Development of complete Design-Tool-Chains is vital in modern indus-

tries.
– User Friendliness:

• Design of Graphical and Textual Languages with the Same Meaning,
and

• Visualization of System Dynamics and QoS-Values are necessary precon-
ditions for the acceptance by design engineers.

This list is by no means complete. But it clearly shows the variety of open
problem classes offering exciting research topics for the future. All kind of inno-
vative ideas are necessary to approach the ideal, a methodology which is theo-
retically well founded, automizable and accepted by the system designers.
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Abstract. Markovian models have been used for about a century now
for the evaluation of the performance and dependability of computer
and communication systems. In this paper, we give a concise overview
of the most widely used classes of Markovian models, their solution and
application.
After a brief introduction to performance and dependability evaluation
in general, we introduce discrete-time Markov chains, continuous-time
Markov chains and semi-Markov chains. Stepwisely, we develop the main
equations that govern the steady-state and the transient behaviour of
such Markov chains. We thereby emphasise on intuitively appealing ex-
planations rather than on mathematical rigor. The relation between the
various Markov chain types is explained in detail. Then, we discuss means
to numerically solve the systems of linear equations (both direct and it-
erative ones) and the systems of differential equations that arise when
solving for the steady-state and transient behaviour of Markovian mod-
els.

1 Introduction

Markovian models have inherited their name form the pioneering work by the
Russian mathematician A.A. Markov around the turn of the twentieth century
(see Figure 1). He introduced finite-state Markov chains in [49]; a translation
of another important article of his hand appears in Appendix B of [37]. In fact,
his work launched the area of stochastic processes. In the first two decades of
the twentieth century, the Danish mathematician A.K. Erlang (see Figure 2)
applied Markovian techniques (then not yet named as such) to solve capacity
planning problems for the Copenhagen Telephone Company [20]. His models
were soon adapted by others, among others by the Britisch Post Office; one of
his first models will be presented later in this paper. The Russian mathematician
A.N. Kolmogorov (see Figure 3) developed the theory for Markov chains with
infinite (denumerable and continuous) state spaces in the 1930’s [46].

Throughout the twentieth century the work of these pioneers became better
understood and more wide-spread. These days, Markov chains and stochastic
processes form the basis for model-based system evaluations in many areas of
science and engineering. For instance, in biology to model growth and decay of
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Fig. 1. Andrei Andreevich Markov (∗ June 14, 1856; † July 20, 1922)

Fig. 2. Agner Krarup Erlang (∗ January 1, 1878; † February 3, 1929)
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Fig. 3. Andrey Nikolaevich Kolmogorov (∗ April 25, 1903; † October 20, 1987)

populations, in physics to model interactions between elementary particles, in
chemical engineering to model (chain) reactions between molecules or to model
mixing processes, in management science to model the flow of commodities in
logistic or flexible manufacturing systems or to model the availability of pro-
duction lines and, most notably, in computer and communication science and
engineering to model system performance and dependability in a wide variety of
settings. In this paper, we focus on the use of Markovian models for the perfor-
mance and dependability evaluation of computer and communication systems.

But let us first take one step back, and address the question what perfor-
mance or dependability evaluation really is. Performance or dependability eval-
uation is the craft that tries to answer questions related to the performance or
dependability of systems. Typical questions take the following form:

(i) how many clients can this server adequately support?
(ii) what is the typical response time to load a WWW page from MIT?
(iii) how large should the buffer space in this IP router be to guarantee a packet

loss ratio of less than 10−6?
(iv) how many jobs can be processed before a system failure occurs?
(vi) how long does it take before this system crashes?

The above questions can only be answered when they are made more exact,
i.e., when some of the informally stated requirements or aims are made concrete.
For instance, we will have to define what “adequately” really means in question
(i), or what “typical” means in question (ii). More precisely, we have to define
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clearly what the measure of interest is, in order to express the performance or
dependability criterion we are interested in, in the best possible way. Before we
will come to this issue, we will restrict the class of evaluation techniques con-
siderably. In this paper, we will only address so-called model-based evaluation
techniques, meaning that we are not addressing measurement-based techniques
such as benchmarking. Even though measurement-based evaluation techniques
are very important and accurate (they address the real system, or at least a
prototype) these methods are also very costly, and sometimes even inappropri-
ate, for instance when the interest is in very rare events; a measurement-based
approach then takes too long to be practically feasible. Hence, we restrict our-
selves to model-based evaluation techniques, meaning that we have to develop
models, in order to evaluate the system under study. According to [36], a model
is a “small-scale reproduction or representation of something” and modelling is
“the art of making models”. The latter definition states an important aspect
of model-based performance and dependability evaluation: the construction of
appropriate models is a challenging task for which, as of yet, no general recipe
is available.

Let us now come back to the measures of interest in a performance or depend-
ability evaluation. The choice of measure strongly depends on the standpoint of
the model user (the person using the results of the model evaluation). System en-
gineers are most often interested in system-oriented measures like queue lengths,
component utilisations or the number of operational components. For system
users, seeing the system as a service-providing black box, these measures are not
that interesting; for them what counts is how fast or how many service invoca-
tions can be performed per unit of time. Examples of such user-oriented measures
are waiting times, throughput and downtime minutes per year. On top of this
classification comes the question how detailed the measure of interest should
be evaluated: does a mean value suffice, or is knowledge of higher moments or
even of the complete distribution necessary? Furthermore, is the measure to be
evaluated for a particular time instance in the operation of the system, that is,
is there an interest in so-called transient measures, or is the interest more in
long-term average values, that is, in so-called steady-state measures.

With the class of Markovian models we will address in the rest of this paper,
we have available a versatile modelling formalism, allowing us (i) to model system
performance and dependability at various levels of detail, (ii) to study a wide
variety of user- and system-oriented measures, at (iii) either in steady-state or
at some time instance t.

It should be noted that by the availability of good software tools for perfor-
mance and dependability evaluation, the actual Markov chains being used and
solved often remain hidden from the end-user. That is, users specify their per-
formance or dependability model using some high-level modelling language, for
instance based on queueing networks, stochastic Petri nets or stochastic process
algebras of some sort, from which the underlying Markov chain can automati-
cally be generated and analysed. The analysis results are then presented such
that they can be interpreted correctly in the context of the high-level model,
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so that, in fact, the translations to and from the Markov chain level remain
transparant. High-level specification techniques for Markov chains are an active
area of research, but are not addressed in more detail in this paper; the inter-
ested reader is referred to a number of surveys addressing these issues [31,30,29]
as well as to three other papers in this volume [6,10,60].

A final point of notice is the following. Model-based performance and de-
pendability evaluation necessarily have to be based on abstractions of the real
system. In that sense, it is intrinsically approximate. This is both a strength, as
it can be applied always (albeit more or less accurate), and a weakness, as its
accuracy is not known in advance. In any case, the results from an evaluation
should be interpreted with care; the results are never more accurate than the
numerical parameters used in the models! Furthermore, note that even though
model-based performance and dependability evaluation provides us with num-
bers, the insight gained in the (functional) operation of the system under study
is often even more important. As Alan Scherr, IBM’s time-sharing pioneer, puts
it in an interview with Communications of the ACM [22]: “model-based perfor-
mance evaluation is about finding those 10% of the system that explains 90% of
its behaviour”.

After this more general introduction, the rest of this paper completely fo-
cusses on Markov chains. In Section 2 we introduce discrete-time Markov chains,
followed by the introduction of semi-Markov chains and continuous-time Markov
chains in Section 3 and Section 4, respectively. We then address techniques to
solve these Markov chains with respect to their steady-state and their transient-
state probabilities in Section 5 and Section 6, respectively. A variety of important
issues not addressed in this paper is presented in Section 7. The paper ends with
Section 8.

2 Discrete-Time Markov Chains

We define discrete-time Markov chains in Section 2.1, followed by a derivation
of the steady-state and transient state probabilities in Section 2.2. We comment
on the state residence time distribution in Section 2.3 and discuss convergence
properties in Section 2.4.

2.1 Definition

Discrete-time Markov chains (DTMCs) are a class of stochastic processes. A
stochastic process can be regarded as a family of random variables {Xt, t ∈ T },
of which each instance Xt is characterisedby a distribution function. The index
set T is mostly associated with the passing of time. In DTMCs, time passes in
discrete steps, so that the subsequent time instances are denumerable and can be
seen as elements of IN , hence, one typically denotes a DTMC as {Xn, n ∈ IN}.
The continuous counterpart to DTMCs, that is, continuous-time Markov chains,
will be discussed in Section 4.
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The set of values the random variables Xn can assume is denoted the state
space I of the DTMC. In performance and dependability evaluation, most often
the state space of a DTMC is denumerable. We do restrict ourselves to that case
here. Given a denumerable set I, it can either be finite or infinitely large. We
will only address the finite case here; a few remarks with respect to denumerable
infinite state space will be given in the examples in Section 4.

The fact that we deal with a finite-state discrete-time stochastic process does
not directly imply that we are dealing with a DTMC. The distinctive property
of a DTMC is that the Markov property has to hold for it. This means that
given the current state of the DTMC, the future evolution of the DTMC is
totally described by the current state, and is independent of past states. This
property is intuitively so appealing, that one sometimes tends to forget that it is
a very special property. Mathematically, the Markov property can be described
as follows. Assuming T = {0, 1, 2, · · ·} and I = {i0, i1, · · ·} we have

Pr{Xn+1 = in+1|X0 = i0, · · · , Xn = in} = Pr{Xn+1 = in+1|Xn = in}.

From this equation we see that the future (at time instance n+1) only depends
on the current state (at time instance n) and is independent of states assumed
in the past (time instances 0 through n − 1). At this point, we also note that
the DTMCs we study are time-homogeneous, which means that the actual time
instances are not important, only their relative differences, that is:

Pr{Xn+1 = i|Xn = j} = Pr{Xm+1 = i|Xm = j}, for all n,m ∈ IN,

with i, j ∈ I. This means that in a time-homogeneous DTMC the state-transition
behaviour itself does not change over time.

We now define the conditional probability pj,k(m,n) = Pr{Xn = k|Xm = j},
for allm = 0, · · · , n, i.e., the probability of going from state j ∈ I at time m ∈ IN
to state k ∈ I at time n ∈ IN . Since we deal with time-homogeneous Markov
chains, these transition probabilities only depend on the time difference l = n−m.
We can therefore denote them as pj,k(l) = Pr{Xm+l = k|Xm = j}, the so-
called l-step transition probabilities. The 1-step transition probabilities are simple
denoted pj,k (the parameter 1 is omitted). The 0-step probabilities are defined
as pj,k(0) = 1, whenever j = k, and 0 elsewhere. The initial distribution π(0) of
the DTMC is defined as π(0) = (π0(0), · · · , π|I|(0)). By iteratively applying the
rule for conditional probabilities, it can easily be seen that

Pr{X0 = i0, X1 = i1, · · · , Xn = in} = πi0(0) · pi0,i1 · · · pin−1,in . (1)

This implies that the DTMC is totally described by the initial probabilities
and the 1-step probabilities pi,j . The 1-step probabilities are summarised in the
state-transition probability matrix P = (pi,j). The matrix P is a stochastic matrix
because all its entries pi,j satisfy 0 ≤ pi,j ≤ 1, and

∑
j pi,j = 1, for all i.

A DTMC can be visualised as a labeled directed graph with the elements
of I as vertices. A directed edge with label pi,j exists between vertices i and
j whenever pi,j > 0. Such representations of Markov chains are called state



44 Boudewijn R. Haverkort

transition diagrams. Notice the similarity with the usual graphical notation for
finite-state machines (FSMs). In fact, a DTMC can be viewed as an FSM in
which the successor function is specified in a probabilistic manner, that is, given
state i, the next state will be state j with probability pi,j .

Example 1. Graphical representation of a DTMC. In Figure 4 we show the state
transition diagram for the DTMC with state-transition probability matrix

P =
1
10
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Fig. 4. State transition diagram for the example DTMC (B.R. Haverkort, Per-
formance of Computer Communication Systems, 1998. c© John Wiley & Sons
Limited. Reproduced with Permission.)

2.2 Transient and Steady-State Probabilities

We can now proceed to calculate the 2-step probabilities of a DTMC with state-
transition probability matrix P. We have

pi,j(2) = Pr{X2 = j|X0 = i} =
∑
k∈I

Pr{X2 = j,X1 = k|X0 = i}, (3)

since in going from state i to state j in two steps, any state k ∈ I can be visited
as intermediate state. Now, due to the rule of conditional probability as well as
the Markov property, we can write

pi,j(2) =
∑
k∈I

Pr{X2 = j,X1 = k|X0 = i}

=
∑
k∈I

Pr{X1 = k|X0 = i}Pr{X2 = j|X1 = k,X0 = i}

=
∑
k∈I

Pr{X1 = k|X0 = i}Pr{X2 = j|X1 = k}

=
∑
k∈I

pi,kpk,j . (4)
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In the last summation we recognise the matrix product. Thus, the 2-step prob-
abilities pi,j(2) are elements of the matrix P2. The above derivation can be
applied iteratively, yielding the n-step probabilities pi,j(n) as elements of the
matrix Pn. For the 0-step probabilities we find the matrix I = P0. The equation
that establishes a relation between the (m + n)-step probabilities and the m-
and n-step probabilities, that is,

Pm+n = PmPn, (5)

is known as the Chapman-Kolmogorov equation.
The probability of residence in state j after n steps, that is πj(n), can be

obtained by conditioning:

πj(n) = Pr{Xn = j} =
∑
i∈I

Pr{X0 = i}Pr{Xn = j|X0 = i}

=
∑
i∈I

πi(0)pi,j(n). (6)

Writing this in matrix-vector notation, with π(n) = (π0(n), π1(n), · · ·), we arrive
at

π(n) = π(0)Pn. (7)

Since the index n in (7) can be interpreted as the step-count in the DTMC, this
equation expresses the time-dependent or transient behaviour of the DTMC.

Example 2. Transient behaviour of a DTMC. Let us compute π(n) = π(0)Pn

for n = 1, 2, 3, · · · with P as given in (2), and π(0) = (1, 0, 0). Clearly, π(1) =
π(0)P = (0.6, 0.2, 0.2). Then, π(2) = π(0)P2 = π(1)P = (0.50, 0.28, 0.22). We
proceed with π(3) = π(2)P = (0.460, 0.324, 0.216). We observe that the succes-
sive values for π(n) seem to converge somehow, and that the elements of all the
vectors π(n) always sum to 1.

For many DTMCs (but not all; we will discuss conditions in Section 2.4) all
the rows in Pn converge to a common limit when n → ∞. For the time being,
we assume that such a limit indeed exists. Defining v = (· · · , vj , · · ·) as

vj = lim
n→∞πj(n) = lim

n→∞Pr{Xn = j} = lim
n→∞

∑
i∈I

πi(0)pi,j(n). (8)

Writing this in matrix-vector notation, we obtain

v = lim
n→∞π(n) = lim

n→∞π(0)Pn. (9)

However, we also have

v = lim
n→∞ π(n+ 1) = lim

n→∞π(0)Pn+1 =
(
lim
n→∞ π(0)Pn

)
P = vP. (10)
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Hence, whenever the limiting probabilities v exist, they can be obtained by
solving the system of linear equations

v = vP ⇒ v(I − P) = 0, (11)

with, since v is a probability vector,
∑

i vi = 1, and 0 ≤ vi ≤ 1. The equivalent
form on the right, i.e., v(I−P) = 0, will be discussed in Section 4 in relation to
CTMCs.

The vector v is called the stationary or steady-state probability vector of the
DTMC, which, for the DTMCs we will encounter, will most often uniquely exist.
Furthermore, in most of the practical cases we will encounter, this steady-state
probability vector will be independent of the initial state probabilities π(0).

Example 3. Steady-state probability vector calculation. Let us compute v = vP
with P as in (2) and compare it to the partially converged result obtained there.
Denoting v = (v0, v1, v2) we derive from the system of three linear equations
that v0 = v1 and v2 = v0/2. Using the fact that v0 + v1 + v2 = 1 (normalisation)
then gives us v = ( 4

10 ,
4
10 ,

2
10 ).

The steady-state probabilities can be interpreted in two ways. One way is
to see them as the long-run proportion of time the DTMC “spends” in the
respective states. The other way is to regard them as the probabilities that the
DTMC would be in a particular state if one would take a snapshot after a very
long time. It is important to note that for large values of n state changes do still
take place!

2.3 State-Residence Time Distribution

The matrix P describes the 1-step state transition probabilities. If, at some
time instance n, the state of the DTMC is i, then, at time instance n + 1,
the state will still be i with probability pi,i, and will be j �= i with probability
1−pi,i =

∑
j 	=i pi,j . For time instance n+1, a similar reasoning holds, so that the

probability of still residing in state i at time instance n+2 (given residence there
at time instance n and n+ 1) equals p2

i,i. Taking this further, the probability to
reside in state i for exactly m consecutive epochs equals (1− pi,i)pm−1

i,i , that is,
there are m− 1 steps in which the possibility (staying in i) with probability pi,i
is taken, and one final step with probability 1−pi,i where indeed a step towards
another state j �= i is taken. Interpreting leaving state i as a success and staying
in state i as a failure, i.e., a failure to leave, we see that the state residence times
in a DTMC obey a geometric distribution. The expected number of epochs in
state i then equals 1/(1−pi,i) and the variance of the number of epochs in state
i then equals pi,i/(1− pi,i)2.

The fact that the state residence times in a DTMC are geometrical distribu-
tions need not be a surprise. From the Markov property, we know that only the
actual state, at any time instance, is of importance in determining the future,
irrespective of the residence time in that state. The geometric distribution is the
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only discrete distribution exhibiting this memoryless property, that is, when a
random variable M is geometrically distributed the following holds:

Pr{M = n+m|M > n} = Pr{M = m}, m ≥ 1.

2.4 Convergence Properties

Previously, we stated that the steady-state probability distribution of a DTMCs
can be determined when the DTMC fulfills certain conditions. In this section
we discuss concisely a number of properties of DTMCs that help us in deciding
whether a DTMC has a unique steady-state probability distribution or not.

Let us start with a classification of the states in a DTMC. A state j ∈ I is
said to be reachable from state i ∈ I if, for some value n, pi,j(n) > 0, which
means that there is a step number for which there is a nonzero probability of
going from state i to j. For such a pair of states, we write i → j. If i → j
and j → i, then i and j are said to be communicating states, denoted i ∼ j.
Clearly, the communicating relation (∼) is (i) transitive: if i ∼ j and j ∼ k
then i ∼ k, (ii) symmetric: by its definition in terms of →, i ∼ j is equivalent
to j ∼ i, and (iii) reflexive: for n = 0, we have pi,i(0) = 1, so that i → i and
therefore i ∼ i. Consequently, ∼ is an equivalence relation which partitions the
state space in communicating classes. If all the states of a DTMC belong to
the same communicating class, the DTMC is said to be irreducible. If not, the
DTMC is reducible.

The period di ∈ IN of state i is defined as the greatest common divisor of those
values n for which pi,i(n) > 0. When di = 1, state i is said to be aperiodic, in
which case, at every time step there is a non-zero probability of residing in state
i. It has been proven that within a communicating class all states have the same
period. Therefore, one can also speak of periodic and aperiodic communicating
classes, or, in case of an irreducible DTMC, of an aperiodic or periodic DTMC.

A state i is said to be absorbing when limn→∞ pi,i(n) = 1. Recall that for an
absorbing state i we have

∑
j 	=i pi,j = 0. When there is only a single absorbing

state, the DTMC will, with certainty, reach that state for some value of n.
A state is said to be transient or non-recurrent if there is a nonzero probability

that that state is not visited again at some point in the future. If this is not the
case, the state is said to be recurrent. For recurrent states, we can address the
time between successive visits. Let fi,j(n) denote the probability that exactly
n steps after leaving state i, state j is visited for the first time. Consequently,
fi,i(n) is the probability that exactly n steps are taken between two successive
visits to state i. Defining fi,i =

∑
n fi,i(n), it follows that if fi,i = 1, then state

i is recurrent. If state i is nonrecurrent then fi,i < 1. In the case fi,i = 1 we
can make a further classification based upon the mean recurrence time mi of
state i, defined as mi =

∑∞
n=1 nfi,i(n). A recurrent state i is said to be positive

recurrent (or recurrent non-null) if the mean recurrence time mi is finite. If mi

is infinite, state i is said to be null recurrent.
Having defined the above properties, the following theorem expresses when

a DTMC has a (unique) steady-state probability distribution.
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Theorem 1. Steady-state probability distributions in a DTMC. In an
irreducible and aperiodic DTMC with positive recurrent states:

– for all j, the limiting probability vj = limn→∞ πj(n) = limn→∞ pi,j(n) does
exist;

– v is independent of the initial probability distribution π(0);
– v is the unique steady-state probability distribution.

In typical performance and dependability models, the Markov chains will be
irreducible and aperiodic. When dealing with continuous-time Markov chains,
similar conditions apply as for DTMC.

3 Semi-Markov Chains

We define semi-Markov chains in Section 3.1 and give an alternative interpreta-
tion of their dynamics in Section 3.2.

3.1 SMCs as Generalisation of DTMCs

We can leave the discrete-time domain and move to the continuous-time domain
by associating with every state in a DTMC a positive residence time distribution
Fi(t) and density fi(t). In doing so, we end up with a semi-Markov chain (SMC),
which is fully described by the matrix with 1-step probabilities P (as known from
DTMCs), the initial probability vector π(0) and the vector of state residence
distributions F (t) = (F1(t), · · · , F|I|(t)). A simple interpretation of an SMC is
the following. At epochs when the state changes take place (transition epochs),
the SMC behaves as a DTMC in the sense that the state changes are completely
governed by the state transition probability matrix P, and are independent of
the past. When state i is entered, a random amount of time has to be passed,
distributed according to Fi(t), before the next state transition takes place.

To obtain the steady-state probabilities of an SMC, we first solve the steady-
state probabilities for the so-called embedded DTMCs characterisedby P. Since
the SMC behaviour at transition epochs is the same as for this DTMC, we can
compute the steady-state probabilities v for the embedded DTMC in the usual
way. Now, we have to compute the average state residence times hi for all states
i in the SMC. We do this directly from the state residence time distributions:

hi =
∫ ∞

0

tfi(t)dt.

We then obtain the steady-state probabilities in the SMC by taking these resi-
dence times into account, as follows:

πi =
vihi∑
j vjhj

, for all i.

Note that for the steady-state probabilities of the SMC only the mean state
residence times hi are of importance. Hence, in many applications, these mean
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values are given directly, so that the explicit integration above does not need to
be performed.

The computation of transient state probabilities for an SMC is far more com-
plex than for DTMCs (and for CTMCs). A derivation of the relevant equations
as well as their solution go beyond the scope of this paper, but can be found in
[48].

3.2 Alternative View on SMCs

We can also view an SMCs in a slightly different, but equivalent, way. Consider
a DTMC in which the transition probabilities are dependent on the time already
spent in (current) state i since the last entrance there, but not on states visited
before entering state i nor on any previous residence times. Thus, we deal with a
time-dependent probability matrix K(t) known as the kernel of the SMC, where
an entry ki,j(t) provides the probability that, after having entered state i, it
takes at most t time units to switch to state j, given that no transition to any
other state takes place.

From K(t), we can derive two well-known other quantities. First of all, the
limit pi,j = limt→∞ ki,j(t) expresses the probability that once state i has been
entered, the next state will be j. The thus resulting probabilities indeed coincide
with the entries of P for the embedded DTMC in Section 3.1. Furthermore, the
state residence time distribution Fi(t) can be written as Fi(t) =

∑
j ki,j(t).

Hence, once K(t) is known, both P and F (t) can be derived and the solution
procedure of Section 3.1 can be applied.

4 Continuous-Time Markov Chains

In this section, we focus on continuous-time Markov chains (CTMCs). We first
present how CTMCs can be seen as generalisations of DTMCs, by enhancing
them with negative exponential state residence time distributions in Section 4.1.
We then present the evaluation of the steady-state and transient behaviour of
CTMCs in Section 4.2.

4.1 From DTMC to CTMC

In DTMCs time progresses in abstract steps. With CTMCs, as for SMCs, we
associate positive state-residence time distributions with each state; hence we
address Markov chains in continuous-time. In SMCs, we associated general resi-
dence time distributions with states. As a result, the state transition probability
matrix K(t) became time dependent, so that the complete state of an SMC is
given by the current state number i and the time already spent in that state
(denoted in the sequel as tres).

With CTMCs, we strive for a considerably more simple notion of state. We
will chose the state residence time distribution such that the current state index
i describes the state of the chain completely. This can only be achieved when
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the chosen state residence time distribution is memoryless, so that it does not
matter what the actual value of tres is. In doing so, the Markov property is valid,
and reads for the case at hand, for all non-negative t0 < t1 < · · · < tn+1 and
x0, x1, · · · , xn+1:

Pr{X(tn+1) = xn+1|X(t0) = x0, · · · , X(tn) = xn}
=

Pr{X(tn+1) = xn+1|X(tn) = xn},
(12)

hence, the probability distribution for the (n + 1)-th state residence time only
depends on the current (n-th) state and neither on the time passed in the current
state, nor on states visited previously.

The only memoryless continuous-time distribution is the exponential distri-
bution. Thus, we have to associate with every state i in a CTMC a parameter µi
describing the rate of an exponential distribution; the residence time distribution
in state i then equals

Fi(t) = 1− e−µit, t ≥ 0. (13)

The vector µ = (· · · , µi, · · ·) thus describes the state residence time distributions
in the CTMC. To be precise, this vector describes the rates of these distribu-
tions, but these rates fully characterise the distribution. We can still use the
state transition probability matrix P to describe the state transition behaviour.
The initial probabilities remain π(0). The dynamics of the CTMC can now be
interpreted as follows. When state i is entered, this state will remain for a ran-
dom amount of time, distributed according to the state residence distribution
Fi(t). After this delay, a state change to state j will take place with probability
pi,j . To ease understanding at this point, assume that pi,i = 0 for all i; we come
back to this issue below.

Instead of associating with every state just one negative exponentially dis-
tributed delay, it is also possible to associate as many delays with a state as there
are transition possibilities. We therefore define the matrix Q with qi,j = µipi,j ,
in case i �= j, and qi,i = −∑j 	=i qi,j = −µi. Since pi,i = 0, we have qi,i = −µi.
Using this notation allows for the following interpretation. When entering state
i, for those states j that can be reached from i, i.e., for those with qi,j > 0, a
random variable is thought to be drawn, according to the (negative exponential)
distributions Fi→j(t) = 1−e−qi,jt. These distributions model the delay perceived
in state i when going to j. One of the “drawn” delays will be the smallest, mean-
ing that the transition corresponding to that delay will actually occur before any
of the others (race condition: the faster one wins). This interpretation is correct
due to the special properties of the negative exponential distribution. Let us
first address the state residence times. In state i, the time it takes to reach
state j is exponentially distributed with rate qi,j . When there is more than one
possible successor state, the next state will be such that the residence time in
state i is minimised (race condition). However, the minimum value of a set of
of exponentially distributed random variables with rates qi,j (j �= i) is again an
exponentially distributed random variable, with as rate the sum

∑
j 	=i qi,j of the
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original rates. This sum is, however, exactly equal to the rate µi of the residence
time in state i.

A second point to verify is whether the state-transition behaviour is still the
same. In general, if we have n negative exponentially distributed random vari-
ables Xk (with rates lk), then Xi will be the minimum of them with probability
li/
∑
k lk. In our case, we have a number of competing delays when starting from

state i, which are all negative exponentially distributed random variables (with
rates qi,j). The shortest one will then lead to state j with probability

qi,j∑
k 	=i qi,k

=
pi,jµi
µi

= pi,j , (14)

so that also the state-transition behaviour is as required.
Let us now discuss the case where pi,i > 0, that is, the case where, after having

resided in state i for an exponentially distributed period of time (with rate µi),
there is a positive probability of staying in i for another period. In particular,
we have seen in Section 2 that the state residence distributions in a DTMC
obey a geometric distribution (measured in “visits”), with mean 1/(1− pi,i) for
state i. Hence, if we decide that the expected state residence time in the CTMC
constructed from the DTMC is 1/µi, the time spent in state i per visit should on
average be (1− pi,i)/µi. Hence, the rate of the negative exponential distribution
associated with that state should equal µi/(1−pi,i). Using this rate in the above
procedure, we find that we have to assign the following transition rates for j �= i:

qi,j =
µipi,j
1− pi,i

= µi
pi,j

1− pi,i
= µi Pr{jump i → j|leave i}, j �= i, (15)

that is, we have renormalised the probabilities pi,j (j �= i) such that they make up
a proper distribution. To conclude, if we want to associate a negative exponential
residence time with rate µi to state i, we can do so by just normalising the
probabilities pi,j (j �= i) appropriately.

4.2 Evaluating the Steady-State and Transient Behaviour

CTMCs can be depicted conveniently using state-transition diagrams. i.e., as
labelled directed graphs, with the states of the CTMC represented by the vertices
and an edge between vertices i and j (i �= j) whenever qi,j > 0. The edges in
the graph are labelled with the corresponding rates.

Formally, a CTMC can be described by an (infinitesimal) generator matrix
Q = (qi,j) and initial state probability vector π(0). Denoting the system state
at time t ∈ T as X(t), we have, for h → 0:

Pr{X(t+ h) = j|X(t) = i} = Pr{X(h) = j|X(0) = i} = qi,jh+ o(h), i �= j,
(16)

where o(h) is a term that goes to zero faster than h. This result follows because
the CTMC is time-homogeneous and the fact that the state residence times
are negative exponentially distributed; in fact, (16) represents the first-order
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Taylor/MacLaurin series expansion of 1−e−qi,jh around 0. The value qi,j (i �= j)
is the rate at which the current state i changes to state j. Denote with πi(t) the
probability that the state at time t equals i: πi(t) = Pr{X(t) = i}. Given πi(t),
we can compute the evolution of the Markov chain in the period [t, t + h) as
follows:

πi(t+ h) = πi(t) Pr
{
do not depart from i

during [t, t+ h)

}
+
∑
j 	=i

πj(t) Pr
{

go from j to i
during [t, t+ h)

}

= πi(t)


1−

∑
j 	=i

qi,jh


+


∑
j 	=i

πj(t)qj,i


h+ o(h). (17)

Now, using the earlier defined notation qi,i = −∑j 	=i qi,j , we have

πi(t+ h) = πi(t) +


∑
j∈I

πj(t)qj,i


 h+ o(h). (18)

Rearranging terms, dividing by h and taking the limit h → 0, we obtain

π′
i(t) = lim

h→0

πi(t+ h)− πi(t)
h

=
∑
j∈I

qj,iπj(t), (19)

which in matrix-vector notation has the following form:

π′(t) = π(t)Q, given π(0). (20)

We thus find that the time-dependent or transient state probabilities in a CTMC
are described by a system of linear differential equations.

In many cases, however, the transient behaviour π(t) of the Markov chain
is more than we really need. For performance evaluation purposes we are often
already satisfied when we are able to compute the long-term or steady-state
probabilities πi = limt→∞ πi(t). When we assume that a steady-state distribution
exists, this implies that the above limit exists, and thus that limt→∞ π′

i(t) = 0.
Consequently, for obtaining the steady-state probabilities we only need to solve
the system of linear equations:

πQ = 0,
∑
i∈I

πi = 1. (21)

The right part (normalisation) is added to ensure that the obtained solution is
indeed a probability vector; the left part alone has infinitely many solutions,
which upon normalisation all yield the same probability vector.

Note that the equation πQ = 0 is of the same form as the equation v = vP we
have seen for DTMCs. Since this latter equation can be rewritten as v(P−I) = 0,
the matrix (P − I), as already encountered in (11), can be interpreted as a
generator matrix.

Note that we can also solve the steady-state probabilities of a CTMC by
seeing it as a special case of an SMC, with embedded DTMC described by the
probabilities pi,j = qi,j/|qi,i| and mean state residence times hi = |qi,i|−1.
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λ

Fig. 5. A simple 2-state CTMC (B.R. Haverkort, Performance of Computer
Communication Systems, 1998. c© John Wiley & Sons Limited. Reproduced
with Permission.)

Example 4. Evaluation of a 2-state CTMC. Consider a component that is either
operational or not. The time it is operational is exponentially distributed with
mean 1/λ. The time it is not operational is also exponentially distributed, with
mean 1/µ. Signifying the operational state as state “1”, and the down state as
state “0”, we can model this system as a 2-state CTMC with generator matrix
Q as follows:

Q =
(−µ µ

λ −λ

)
.

Furthermore, it is assumed that the system is initially fully operational so that
π(0) = (0, 1). In Figure 5 we show the corresponding state-transition diagram.
Solving (21) yields the following steady-state probability vector:

π =
(

λ

λ+ µ
,

µ

λ+ µ

)
. (22)

This probability vector can also be computed from the embedded DTMC which
is given as:

P =
(
0 1
1 0

)
.

Solving for v yields us v = (1
2 ,

1
2 ), indicating that both states are visited equally

often. However, these visits are not equally long. Incorporating the mean state
residence times, being respectively 1/µ and 1/λ, yields

p =


 1

2
1
µ

1
2

(
1
µ + 1

λ

) , 1
2

1
λ

1
2

(
1
µ + 1

λ

)

 =

(
λ

λ+ µ
,

µ

λ+ µ

)
, (23)

which is the solution we have seen before.
For the transient behaviour of the CTMC we have to solve the corresponding

system of linear differential equations. Although this is difficult in general, for
this specific example we can obtain the solution explicitly. We obtain (see also
Section 6):

π(t) = π(0)eQt, (24)
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from which we can derive

π0(t) =
λ

λ+ µ
− λ

λ+ µ
e−(λ+µ)t,

π1(t) =
µ

λ+ µ
+

λ

λ+ µ
e−(λ+µ)t. (25)

Notice that π0(t) + π1(t) = 1 (for all t) and that the limit of the transient
solutions for t → ∞ indeed equals the steady-state probability vectors derived
before. In Figure 6 we show the transient and steady-state behaviour of the
2-state CTMC for 3λ = µ = 1.
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Fig. 6. Steady-state and transient behaviour of a 2-state CTMC (B.R.
Haverkort, Performance of Computer Communication Systems, 1998. c© John
Wiley & Sons Limited. Reproduced with Permission.)

Example 5. Availability evaluation of a fault-tolerant system. Consider a fault-
tolerant computer system consisting of three computing nodes and a single voting
node. The three computing nodes generate results after which the voter decides
upon the correct value (by selecting the answer that is given by at least two
computing nodes). Such a fault-tolerant computing system is also known as a
triple-modular redundant system (TMR). The failure rate of a computing node
is λ and of the voter ν failures per hour (fph). The expected repair time of a
computing node is 1/µ and of the voter is 1/δ hours. If the voter fails, the whole
system is supposed to have failed and after a repair (with rate δ) the system is
assumed to start “as new”. The system is assumed to be operational when at
least two computing nodes and the voter are functioning correctly.

To model the availability of this system as a CTMC, we first have to define the
state space: I = {(3, 1), (2, 1), (1, 1), (0, 1), (0, 0)}, where state (i, j) specifies that
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i computing nodes are operational as well as j voters. Note that the circumstance
of the computing nodes does not play a role any more as soon as the voter goes
down; after a repair in this down state the whole system will be fully operational,
irrespective of the past state. Using the above description, the state-transition
diagram can be drawn easily, as given in Figure 7. The corresponding generator
matrix is given as:

Q =




−(3λ+ ν) 3λ 0 0 ν
µ −(µ+ 2λ+ ν) 2λ 0 ν
0 µ −(µ+ λ+ ν) λ ν
0 0 µ −(µ+ ν) ν
δ 0 0 0 −δ


 . (26)

We assume that the system is fully operational at t = 0. The following numerical
parameters are given: λ = 0.01 fph, ν = 0.001 fph, µ = 1.0 repairs per hour (rph)
and δ = 0.2 rph.

3, 1 2, 1 1, 1 0, 1

0, 0
δ

µ

ν

3λ 2λ λ

µµ

ν

ν

ν

Fig. 7. CTMC for the TMR system (B.R. Haverkort, Performance of Computer
Communication Systems, 1998. c© JohnWiley & Sons Limited. Reproduced with
Permission.)

We can now compute the steady-state probabilities by solving the linear
system πQ = 0 under the condition that

∑
i πi = 1 (see Section 5) which yields

the following values (note that we use the tuple (i, j) as state index here):

(i, j) (3, 1) (2, 1) (1, 1) (0, 1) (0, 0)
π(i,j) 9.6551× 10−1 2.8936× 10−2 5.7813× 10−4 5.7755× 10−6 4.9751× 10−3

The probability that the system is operational can thus be computed as 0.99444.
Although this number looks very good (it is very close to 100%) for a non-stop
transaction processing facility, it would still mean an expected down-time of 48.7
hours a year ((1 − 0.99444)× 24× 365).

The transient behaviour of this small CTMC can be obtained by numerically
solving the differential equation for π(t) with a technique known as uniformisa-
tion (see Section 6). In Figure 8 we show the probability π(3,1)(t) for the first 10
hours of system operation. As can be observed, the transient probability reaches
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the steady-state probability relatively fast. A similar observation can be made
for the other transient probabilities in Figure 9 (note the logarithmic scale of
the vertical axis).
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Fig. 8. Transient probability π(3,1) for the TMR system (B.R. Haverkort, Per-
formance of Computer Communication Systems, 1998. c© John Wiley & Sons
Limited. Reproduced with Permission.)

Example 6. A finite-buffer queueing station. Consider a single server that accepts
requests to be processed in first-come first-served order. The processing time is
assumed to be exponentially distributed with mean 1/µ and the interarrival
times are exponentially distributed with mean 1/λ. An arrival process in which
the interarrival times are independent and negative exponentially distributed is
called a Poisson process. The number of arrivals taking place over a finite time
interval [0, t) in a Poisson process with rate λ follows a Poisson distribution with
mean λt; Pr{n arrivals in [0, t)} = e−λt (λt)n

n! , n ∈ IN , named after Professor
Siméon Denis Poisson, who lived in France from 1781 through 1840. Being an
excellent mathematician, he published largely over 300 articles, devoted to a
wide variety of topics. His name is attached to a wide area of concepts, e.g., as
in the probability-related examples above, but also in the Poisson integral, the
Poisson equation for potential energy and Poisson’s constant in electricity.

The state of the server is, due to the involved memoryless distributions,
completely given by the number of requests in the server. If we assume that the
server can hold at most K requests, (including the one actually being processed)
the state of the server is governed by a CTMC, as given in Figure 10. In fact,
we are dealing here with the CTMC underlying the so-called M|M|1|K queue,
in which both the interarrival and service times are memoryless (explaining the
two “M”s), hence negative exponentially distributed, there is 1 server and there
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Fig. 9. Transient probabilities π(i,j) for the TMR system (B.R. Haverkort, Per-
formance of Computer Communication Systems, 1998. c© John Wiley & Sons
Limited. Reproduced with Permission.)

are K buffer spots (including the server itself). The notation employed here to
denote the particular queueing system is due to D.G. Kendall [43] (professor
emeritus of Oxford University since 1989).

By the fact that the CTMC has a structure in which only left and right
“neighbouring” states can be reached, this type of CTMC is called a birth-death
process. The (K+1)×(K+1) generator matrix for the CTMC is given as follows:

Q =




−λ λ 0 · · · · · ·
µ −(λ+ µ) λ 0 · · ·
. . . . . . . . . . . . . . .
0 0 0 µ −µ


 .

The special tridiagonal structure of Q is typical for birth-death processes. Ex-
ploiting the birth-death structure of the CTMC, we can solve the equation
πQ = 0 explicitly to reveal that πi = π0 · ρ, i = 1, · · · ,K. Here, ρ = λ/µ is
the ratio of the arrival rate and the service rate, which is also called the traf-
fic intensity or the utilisation. We observe that all steady-state probabilities
are related to the probability that the server is empty (π0). The normalisation∑

i πi = 1 then yields π0, in the following way:

π0

K∑
i=1

ρi = 1 ⇒ π0 =
1− ρ

1− ρK+1
,

where the latter equality follows from the geometric series:
∑K

i=0 a
i = (1 −

aK+1)/(1− a) (with a > 0, a �= 1). Note at this point that only the steady-state
probabilities can be obtained explicitly; the transient probabilities can only be
obtained numerically.
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Fig. 10. CTMC underlying the M|M|1|K queue

Example 7. An infinite-buffer queueing station.We can extend the previous ex-
ample by making the buffering capacity of the server unbounded. Surprisingly, a
closed-form solution for the steady-state probabilities then still exists. The state
space of the corresponding CTMC then equals IN and we still have πi = π0ρ.
Furthermore, if we require λ < µ, i.e., the average number of requests arriv-
ing per unit of time is smaller than the average number of jobs that can be
handled per unit of time, we have ρ < 1, so that πi becomes smaller for increas-
ing i. Moreover, the sum

∑∞
i=0 ρ

i = (1 − ρ)−1, so that we find for all i ∈ IN :
πi = (1 − ρ)ρi (which is a geometric distribution). Furthermore, we can simply
obtain a closed-form solution for the mean number of requests in the server:

E[N ] =
∞∑
i=0

iπi =
∞∑
i=0

i(1− ρ)ρi =
ρ

1− ρ
, 0 ≤ ρ < 1.

This example shows that, provided a regular structure exists in the Markov
chain, steady-state probabilities can still be obtained explicitly, even if the state
space is infinitely large. For more information on this topic, refer for instance to
[27,67].

Example 8. Erlang’s loss model. As stated in the introduction, Erlang studied
Markovian models of telephone exchanges. In Kendall’s notation, his model can
now be described as an M|M|K|K queueing model, in which calls arrive according
to a Poisson process with rate λ and take an exponentially distributed time with
length 1/µ. Furthermore, the telephone switch considered can accommodate K
simultaneous calls (“there are K lines”) and cannot put calls on hold. Clearly,
when all K lines are busy, an arriving call will be lost; the caller will hear a
busy tone. The problem to be solved then, is to compute the required number
of lines K so that, given traffic characteristics in terms of λ and µ, the call loss
probability remains under some threshold.

Erlang’s model describes a birth-death process, as illustrated in Figure 11,
where the state number denotes the number of calls in progress. The call rate
λ is constant for all states. The service rate linearly depends on the number of
calls underway. For this birth-death process, the matrix Q has again a tridiag-
onal structure and we can easily solve the steady-state probabilities explicitly.
Defining ρ = λ/µ, we find:
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πi = π0
ρi

i!
, i = 0, · · · ,K, with π0 =


 K∑
j=0

ρj

j!




−1

,

where the expression for π0 follows from the normalisation equation. The prob-
ability that an arriving call is lost, is now given by the probability for state K,
that is:

Pr{arriving call lost;K, ρ} =
ρK/K!∑K
i=0 ρ

i/i!
.

This result is also known as Erlang’s loss formula B(K, ρ). As part of his studies,
Erlang published large tables with these loss probabilities, which were used to
dimension telephone switches.

0 1 2 K
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µ

λ λ λ

Kµ2µ 3µ

Fig. 11. CTMC underlying the M|M|K|K queue

5 Solution Methods for Steady-State Probabilities

As has become clear from the previous sections, in order to obtain the steady-
state probabilities of finite DTMCs and CTMCs (with N states; numbered 1
through N) we need to solve a system of N linear equations which takes the
following form (here given for a CTMC, but similar in the DTMC case):

πQ = 0,
N∑
i=1

πi = 1, (27)

We assume here that the Markov chain is irreducible and aperiodic such that π
does exist and is independent from π(0). Notice that the left part of (27) in fact
does not uniquely define the steady-state probabilities; however, together with
the normalisation equation a unique solution is found. For the explanations that
follow, we will transpose the matrix Q and denote it as A. Hence, we basically
have to solve the following system of linear equations:

AπT = b, with A = QT and b = 0T . (28)

Starting from this system of equations, two solution approaches can be chosen:
direct methods or iterative methods. These methods will be discussed in Section
5.1 and 5.2, respectively.
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5.1 Direct Methods

The main characteristic of a so-called direct method is that it aims at rewriting
the system of equations in such a form that explicit expressions for the steady-
state probabilities are obtained. The rewriting procedure costs an a priori known
number of operations, given the number of states N .

Gaussian Elimination Perhaps the best-known direct solution technique is
Gaussian elimination, named after the famous German mathematician Johann
Carl Friedrich Gauss (1777–1855). The Gaussian elimination procedure consists
of two phases: a reduction phase and a substitution phase.

In the reduction phase repetitive subtractions of equations from one another
are used to make the system of equations upper-triangular (see also Figure 12).
To do so, let the i-th equation be

∑
j ai,jpj = 0 (this equals

∑
j pjqj,i = 0 in the

non-transposed system). We now vary i from 1 to N . The j-th equation, with
j = i + 1, · · · , N , is now changed by subtracting the i-th equation mj,i times
from it, where mj,i = aj,i/ai,i, that is, we reassign the aj,k values as follows:

aj,k := aj,k −mj,iai,k, j, k > i.

Clearly, aj,i := aj,i −mj,iai,i = 0, for all j > i. To avoid round-off errors, it is
important to set aj,i to zero. By repeating this procedure for increasing i, the
linear system of equations is transformed, in N −1 steps, to an upper-triangular
system of equations. The element ai,i that acts as a divisor is called the pivot.
If a pivot is encountered that equals 0, an attempt to divide by 0 results, which
indicates that the system of equations does not have a solution. Since Q is a
generator matrix of an irreducible ergodic CTMC, this problem will not occur.
Moreover, since A is weakly diagonal dominant (ai,i is as large as the sum of
all the values aj,i (j �= i) in the same column) we have that mj,i < 1 so that
overflow problems are unlikely to occur.

At the end of the reduction phase, the N -th equation will always reduce to
a trivial one (0 = 0). This is no surprise, since the system of equations without
normalisation is not of full rank. We might even completely ignore the last
equation. Since the right-hand side of the linear system of equations equals 0,
nothing changes there either. When the right-hand side is a non-zero vector b,
we would have to set bj := bj −mj,ibi, for all j > i in each step in the reduction
process.

After the reduction has been performed, the substitution phase can start. The
equation for πN does not help us any further; we therefore assume a value α > 0
for πN , which can be substituted in the first N − 1 equations, thus yielding
a system of equations with one unknown less. We implement this by setting
bj := bj − aj,NπN . Now, the (N − 1)-th equation will have only one unknown
left which we can directly compute as πN−1 = bN−1/aN−1,N−1. This new value
can be substituted in the N − 2 remaining equations, after which the (N − 2)-
th equation has only one unknown. This procedure can be repeated until all
probabilities have been computed explicitly in terms of πN (or α). We then use
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Fig. 12. Schematic representation of the i-th reduction step in the Gaussian
elimination procedure (B.R. Haverkort, Performance of Computer Communica-
tion Systems, 1998. c© John Wiley & Sons Limited. Reproduced with Permis-
sion.)

the normalisation equation to compute α to obtain the true probability vector,
that is, we compute σ =

∑N
i=1 πi and set πi := πi/σ, for all i.

Instead of assuming the value α for πN , we can also directly include the
normalisation equation in the Gaussian elimination procedure. The best way to
go then, is to replace the N -th equation with the equation

∑
i πi = 1. In doing

so, the last equation will directly give us πN . The substitution phase can proceed
as before.

Complexity Considerations for Gaussian Elimination The computational
complexity for Gaussian elimination is O(N3). By a more careful study of the
algorithm, one will find that about N3/3 +N2/2 multiplications and additions
have to be performed, as well as N(N+1)/2 divisions. Clearly, these numbers in-
crease rapidly with increasing N . The main problem with Gaussian elimination,
however, lies in its storage requirements. Although A will initially be sparse for
most models, the reduction procedure normally increases the number of non-
zeros in A. At the end of the reduction phase, most entries of the upper half
of A will be non-zero. The non-zero elements generated during this phase are
called fill-ins. They can only be inserted efficiently when direct storage structures
(arrays) are used. To store the upper-triangular matrix A, N2/2 floats have to
be stored, each taking at least 8 bytes, plus 2 to 4 bytes for the correspond-
ing indices. For moderately sized models, generated from some high-level model
specification, N can easily be as large as 105 or even 106. This then precludes the
use of Gaussian elimination. Fortunately, there are methods to compute π that
do not change A and that are very fast as well. We will discuss these methods
after we have discussed one alternative direct method.
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LU Decomposition A method known as LU decomposition is advantageous to
use when multiple systems of equations have to be solved, all of the form Ax = b,
for different values of b. This occurs, for instance when one tries to invert A by
solving Axi = ei, where the vectors ei have as single nonzero element a 1 at the
i-th position; the matrix A−1 = (x1, x2, · · ·).

The LU method starts by decomposing A such that it can be written as the
product of two matrices L and U, where the former is lower-triangular, and the
latter is upper-triangular. We have:

Ax = b ⇒ L Ux︸︷︷︸
z

= b. (29)

After the decomposition has taken place, we solve Lz = b, after which we solve
Ux = z. Since the last two systems of equations are triangular, their solution
can be found by a simple forward- and back-substitution.

The main question then lies in the computation of suitable matrices L and
U. Since A is the product of these two matrices, we know that

ai,j =
N∑
k=1

li,kuk,j , i, j = 1, · · · , N. (30)

Given the fact that L and U are lower- and upper-triangular, we have to find
N2 +N unknowns:

{
li,j , i = 1, · · · , N, k = 1, · · · , i,
uk,j , k = 1, · · · , N, j = k, · · · , N.

(31)

Since (30) only consists of N2 equations, we have to assume N values to de-
termine a unique solution. Two well-known schemes for this are [66]: (i) the
Doolittle decomposition where one assumes li,i = 1, i = 1, · · · , N ; (ii) the Crout
decomposition where one assumes ui,i = 1, i = 1, · · · , N .

Let us consider the Doolittle variant. First notice that in (30) many of the
terms in the summation are zero, since one of the multiplicants is zero. In fact,
we can rewrite (30) in a more convenient form as follows:

{
i ≤ j : ai,j = ui,j +

∑i−1
k=1 li,kuk,j ,

i > j : ai,j = li,juj,j
∑j−1

k=1 li,kuk,j .
(32)

From this system of equations, we can now iteratively compute the entries of L
and U as follows:

{
i ≤ j : ui,j = ai,j −

∑i−1
k=1 li,kuk,j ,

i > j : li,j = 1
uj,j

(
ai,j −

∑j−1
k=1 li,kuk,j

)
,

(33)

by increasing i from 1 until N is reached.
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Example 9. LU decomposition after Doolittle. Suppose we want to decompose

A =


 3 2 5

−6 1 8
−7 2 −3


 ,

using a Doolittle LU decomposition. We then know that

L =


1 0 0

· 1 0
· · 1


 and U =


 · · ·

0 · ·
0 0 ·


 .

We start to compute u1,1 = a1,1 = 3. We then compute l2,1 = a2,1/u1,1 = −2
and u1,2 = a1,2 = 2. From this, we find u2,2 = a2,2 − l2,1u1,2 = 5. We then
compute l3,1 = − 7

3 and find l3,2 = 4
3 . Via u1,3 = a1,3 = 5 and u2,3 = 18 we find

u3,3 = a3,3 −
∑2
k=1 l3,kuk,3 = − 46

3 . We thus have:

A = LU with L =


 1 0 0

−2 1 0
−2 1

3 1 1
3 1


 and U =


3 2 5

0 5 18
0 0 −15 1

3


 .

To solve Ax = 1, we first solve for z in Lz = 1. A simple substitution procedure
yields z = (1, 3,− 2

3 ). We now continue to solve Ux = z; also here a substitution
procedure suffices to find x = 1

115 (−4, 51, 5).

Example 10. LU decomposition for a CTMC. We reconsider the CTMC for
which the matrix Q is given by

Q =


−4 2 2

1 −2 1
6 0 −6


 .

We form A = QT and directly include the normalisation equation. To find the
steady-state probabilities we thus have to solve:

−4 1 6
2 −2 0
1 1 1


 ·


π1

π2

π3


 =


0

0
1


 . (34)

We now decompose A using the Doolittle decomposition as follows:

A = LU =


 1 0 0

− 1
2 1 0

− 1
4 − 10

12 1




−4 1 6

0 − 3
2 3

0 0 5


 . (35)

The solution of Lz = (0, 0, 1)T now reveals, via a simple substitution, that
z = (0, 0, 1). We now have to find π from Uπ = z, from which we, again via a
substitution procedure, find π = (2

5 ,
2
5 ,

1
5 ), as we have seen before.
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In the above example, we took a specific way to deal with the normalisa-
tion equation: we replaced one equation from the “normal” system with the
normalisation equation. In doing so, the vector b changes to b = (0, 0, 1) and
after the solution of Lz = b, we found z = (0, 0, 1)T . This is not only true for
the above example; if we replace the last equation, the vector z always has this
value, so that we do not really have to solve the system Lz = (0, 0, 1)T . Hence,
after the LU decomposition has been performed, we can directly solve π from
Uπ = (0, · · · , 0, 1)T .

Opposed to the above variant, we can also postpone the normalisation. We
then decompose A = QT = LU, for which we will find that the last row of U
contains only 0’s. The solution of Lz = 0 will then always yield z = 0, so that we
can immediately solve Uπ = 0. This triangular system of equations can easily be
solved via a back-substitution procedure; however, we have to assume πN = α
and compute the rest of π relative to α as well. A final normalisation will then
yield the ultimate steady-state probability vector π.

Postponing the normalisation is preferred in most cases for at least two rea-
sons: (i) it provides an implicit numerical accuracy test in that the last row of U
should equal 0; and (ii) it requires less computations than the implicit normali-
sation since the number of non-zeros in the matrices that need to be handled is
smaller. Of course, these advantages will become more apparent for larger values
of N .

Complexity Considerations for LU Decomposition The LU decomposi-
tion solution method has the same computational complexity of O(N3) as the
Gaussian elimination procedure. The decomposition can be performed with only
one data structure (typically an array). Initially, the matrix A is stored in it, but
during the decomposition the elements of L (except for the diagonal elements
from L, but these are equal to 1 anyway) and the elements of U replace the
original values.

Under- and Overflow We finally comment on the occurrence of over- and
underflow during the computations. Underflow can be dealt with by setting in-
termediate values smaller than some threshold, say 10−24, equal to 0. Overflow
is unlikely to occur during the reduction phase in the Gaussian elimination since
the pivots are the largest (absolute) quantities in every column. If in other parts
of the algorithms overflow tends to occur, which can be observed if some of the
values grow above a certain threshold, e.g., 1010, then an intermediate normal-
isation of the solution vector is required. A final normalisation then completes
the procedures.

5.2 Iterative Methods

Although direct methods are suitable to solve the system of equations (28), for
reasons of computational and memory efficiency they cannot be used when the
number of states N grows beyond about a thousand. Instead, we use iterative



Markovian Models for Performance and Dependability Evaluation 65

methods in these cases. With iterative methods, the involved matrices do not
change (fill-in is avoided), so that they can be stored efficiently using sparse
matrix methods. Moreover, these methods can be implemented such that in the
matrix-multiplications only the multiplications involving two non-zero operands
are taken into account.

Iterative procedures do not result in an explicit solution of the system of
equations. A key characteristic of iterative methods is that it is not possible
to state a priori how many computational steps are required. Instead, a simple
numerical procedure (the iteration step) is performed repeatedly until a desired
level of accuracy is reached.

The Power Method We have already seen the simplest iterative method to
solve for the steady-state probabilities of a DTMC in Section 2: the Power
method. The Power method performs successive multiplication of the steady-
state probability vector v with P until convergence is reached. The Power method
can also be applied to CTMCs. Given a CTMC with generator matrix Q, we can
compute the DTMC transition matrix P = I+Q/λ. If we take λ ≥ maxi{|qi,i|},
the matrix P is a stochastic matrix and describes the evolution of the CTMC in
time-steps of mean length 1/λ (see Section 6 for a more precise formulation). Us-
ing P and setting π(0) = π(0) as initial estimate for the steady-state probability
vector, we can compute π(k+1) = π(k)P and find that π = limk→∞ π(k).

In practice, the Power method is not very efficient. Since more efficient meth-
ods do exist, we do not discuss the Power method any further.

The Jacobi Method Two of the best-known (and simple) iterative methods
are the Jacobi and the Gauss-Seidel iterative methods. For these methods, one
first rewrites the i-th equation of the linear system (28) in the following way:

N∑
j=1

ai,jπj = 0 ⇒ πi = − 1
ai,i


∑
j<i

πjai,j +
∑
j>i

πjai,j


 .

We clearly need ai,i �= 0; when the linear system is used to solve for the steady-
state probabilities of an irreducible aperiodic Markov chain, this is guaranteed.

The iterative procedures now proceed with assuming a first guess for π,
denoted π(0). If one does know an approximate solution for π, it can be used
as initial guess. In other cases, the uniform distribution is a reasonable choice,
i.e.,π(0)

i = 1/N . The next estimate for π is then computed as follows:

π
(k+1)
i = − 1

ai,i


∑
j 	=i

π
(k)
j ai,j


 . (36)

This is the Jacobi iteration scheme. We continue to iterate until two successive
estimates for π differ less than some ε from one another, i.e., when ||π(k+1) −
π(k)|| < ε (difference criterion). Notice that when this difference is very small,
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this does not always imply that the solution vector has been found. Indeed,
it might be the case that the convergence towards the solution is very slow.
Therefore, it is good to check whether ||Aπ(k)|| < ε (residual criterion). Since
this way of checking convergence is more expensive, often a combination of these
two methods is used: use the difference criterion normally; once it is satisfied use
the residual criterion. If the convergence is really slow, two successive iterates
might be very close to one another, although the actual value for π is still
“far away”. To avoid the difference criterion to stop the iteration process too
soon, one might instead check on the difference between non-successive iterates,
i.e., ||π(k) − π(k−d)|| < ε, with d ∈ IN+ (and d ≤ k).

The Gauss-Seidel Method The Jacobi method requires the storage of both
π(k) and π(k+1) during an iteration step. If, instead, the computation is struc-
tured such that the (k + 1)-th estimates are used as soon as they have been
computed, we obtain the Gauss-Seidel scheme:

π
(k+1)
i = − 1

ai,i


∑
j<i

π
(k+1)
j ai,j +

∑
j>i

π
(k)
j ai,j


 , (37)

where we assume that the order of computation is from π
(k+1)
1 to π

(k+1)
N . This

scheme then requires only one probability vector to be stored, since the (k+1)-
th estimate for πi immediately replaces the k-th estimate in the single stored
vector.

The SOR Method The last method we mention is the successive over-relaxation
method (SOR). SOR is an extension of the Gauss-Seidel method, in which the
vector π(k+1) is computed as the weighted average of the vector π(k) and the
vector π(k+1) that would have been used in the (pure) Gauss-Seidel iteration.
That is, we have, for i = 1, · · · , N :

π
(k+1)
i = (1− ω)π(k)

i − ω

ai,i


∑
j<i

π
(k+1)
j ai,j +

∑
j>i

π
(k)
j ai,j


 ,

where ω ∈ (0, 2) is the relaxation factor. When ω = 1, this method reduces to
the Gauss-Seidel iteration scheme; however, when we take ω > 1 (or ω < 1)
we speak over over-relaxation (under-relaxation). With a proper choice of ω,
the iterative solution process can be accelerated significantly. Unfortunately, the
optimal choice of ω cannot be determined a priori. We can, however, estimate ω
during the solution process itself; for details, refer to Stewart [66] or Hageman
and Young [26].

Example 11. Comparing the Power, the Jacobi and the Gauss-Seidel method.We
reconsider the CTMC for which the matrix Q is given by

Q =


−4 2 2

1 −2 1
6 0 −6


 .
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As starting vector for the iterations we take (1
3 ,

1
3 ,

1
3 ). In the Jacobi and Gauss-

Seidel method we renormalised the probability vector after every iteration. In
Table 1 we show the first ten iteration vectors for these methods. As can be seen,
the Power method convergest slowest, followed by the Jacobi and the Gauss-
Seidel method.

# Power Jacobi Gauss-Seidel

1 ( 0.5000, 0.3333, 0.1667 ) ( 0.5385, 0.3077, 0.1538 ) ( 0.5833, 0.5833, 0.2917 )
2 ( 0.3889, 0.3889, 0.2222 ) ( 0.4902, 0.3137, 0.1961 ) ( 0.4000, 0.4000, 0.2000 )
3 ( 0.4167, 0.3889, 0.1944 ) ( 0.3796, 0.4213, 0.1991 ) ( 0.4000, 0.4000, 0.2000 )
4 ( 0.3981, 0.3981, 0.2037 ) ( 0.3979, 0.4023, 0.1998 ) :
5 ( 0.4028, 0.3981, 0.1991 ) ( 0.4001, 0.3999, 0.2000 ) :
6 ( 0.3997, 0.3997, 0.2006 ) ( 0.4000, 0.4000, 0.2000 ) :
7 ( 0.4005, 0.3997, 0.1998 ) ( 0.4000, 0.4000, 0.2000 ) :
8 ( 0.3999, 0.3999, 0.2001 ) ( 0.4000, 0.4000, 0.2000 ) :
9 ( 0.4001, 0.3999, 0.2000 ) : :
10 ( 0.4000, 0.4000, 0.2000 ) : :

Table 1. The first few iteration vectors for three iterative solution methods
(B.R. Haverkort, Performance of Computer Communication Systems, 1998. c©
John Wiley & Sons Limited. Reproduced with Permission.)

Complexity Considerations Iterative methods can be used to solve the lin-
ear systems arising in the solution of the steady-state probabilities for Markov
chains, with or without the normalisation equation. Quite generally we can state
that it is better not to include the normalisation equation; if the normalisation
equation is included, the second largest eigenvalue of the coefficient matrix A
generally increases (the largest one is 1) which normally reduces the speed of
convergence.

All iterative methods require the storage of the matrix A. For larger mod-
elling problems, A has to be stored sparsely; it is then important that the sparse
storage structure is structured such that row-wise access is very efficient since
all methods require the product of a row of A with the (column) iteration vec-
tor π(k). The Power and the Jacobi method require two iteration vectors to be
stored, each of length N . The Gauss-Seidel and the SOR method only require
one such vector. In all the iteration schemes the divisions by −ai,i (and for SOR
the multiplication with ω) need to be done only once, either before the actual
iteration process starts or during the first iteration step, by changing the ma-
trix A accordingly. This saves N divisions (and N multiplications for SOR) per
iteration. A single iteration can then be interpreted as a single matrix-vector
multiplication (MVM). In a non-sparse implementation, a single MVM costs
O(N2) multiplications and additions. However, in a suitably chosen sparse stor-
age structure only O(η) multiplications and additions are required, where η is
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the number of non-zero elements in A. Typically, the number of nonzero ele-
ments per column in A is limited to a few dozen. For example, if the CTMC is
derived from a high-level model specification, the number of nonzero elements
per row in Q equals the number of enabled activities in a particular state. This
number is normally much smaller than N . Hence, it is reasonable to assume that
one iteration step only takes O(N) operations.

An important difference between iterative methods is the number of required
iterations. Typically, the Power method converges slowest, and the Gauss-Seidel
method typically outperforms the Jacobi method. With the SOR method, a
proper choice of the relaxation factor ω accelerates the iteration process, so that
it often is the fastest method. In practical modelling problems, the required
number of iterations can range from just a few to a few thousands.

There do exist more advanced methods to solve linear systems of equations
which often convergence in less iteration steps. This then mostly comes at the
cost of either more complex iteration steps (more computation time required per
step) or iteration steps requiring much more intermediate solution vectors, or
both. A fast method, for instance, requiring 7 iteration vectors is CGS (conju-
gate gradient squared), an example of a so-called Krylov subspace method [66,
Chapter 4]. It goes beyond the scope of the current paper to go in more detail
here.

6 Solution Methods for Transient-State Probabilities

In this section, we discuss the solution of the time-dependent behaviour of
Markov chains. As we have seen in Section 2, the time-dependent behaviour
of a DTMC is simply obtained by successive matrix-vector multiplications and
is therefore not further considered here. The time-dependent behaviour of an
SMC is much more complex; it goes beyond the scope of this paper. Hence, we
focus on the transient behaviour of CTMCs in this section.

In Section 6.1 we explain why transient behaviour is of interest and which
equations we need to solve for that purpose. We discuss “traditional” methods to
solve these equations in Section 6.2 and continue with the use of uniformisation
in Section 6.3. Finally, in Section 6.4, we comment on the use of uniformisation
to compute so-called cumulative measures.

6.1 Introduction

Steady-state measures (probabilities) do suffice for the evaluation of the perfor-
mance of most systems. There are, however, exceptions to this rule, for instance

– when the system life-time is so short that steady-state is not reached;
– when the period towards the steady-state situation itself is of interest;
– when temporary overload periods, for which no steady-state solution exists,

are of interest;
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– when reliability and availability properties are taken into account in the
model, e.g., non-repairable systems that are failure-prone are of no interest
in steady-state, since then they will have completely failed.

The time-dependent state probabilities of a CTMC are specified by a linear
system of differential equations (as already given in (20)):

π′(t) = π(t)Q, given π(0). (38)

Measures that are specified in terms of π(t) are called instant-of-time measures.
If we associate a reward ri with every state, the expected reward at time t can
be computed as

E[X(t)] =
N∑
i=1

riπi(t). (39)

The rewards express the amount of gain (or costs) that is accumulated per unit
of time in state i; E[X(t)] then expresses the speed of gain accumulation (per
time-unit).

In many modelling applications, not only the values of the state probabilities
at a time instance t are of importance, but also the total time spent in any state
up to some time t, as expressed in so-called cumulative measures. We define the
cumulative state vector l(t) as

l(t) =
∫ t

0

π(s)ds. (40)

Notice that the entries of l(t) are no longer probabilities; li(t) denotes the overall
time spent in state i during the interval [0, t). Integrating (38), we obtain∫ t

0

π′(s)ds =
∫ t

0

π(s)Qds, (41)

which can be rewritten as

π(t)− π(0) = l(t)Q, (42)

which can, after having substituted l′(t) = π(t), be written as

l′(t) = l(t)Q + π(0). (43)

hence, l(t) follows from the solution of a linear non-homogeneous system of
differential equations. If ri is the reward obtained per time-unit in state i, then

Y (t) =
N∑
i=1

rili(t) (44)

expresses the total amount of reward gained over the period [0, t). The distribu-
tion FY (y, t) = Pr{Y (t) ≤ y} has been defined by Meyer as the performability
distribution [50,51]; it expresses the probability that a reward of at most y is
gained in the period [0, t). Meyer developed his performability measure in order
to express the effectiveness of use of computer systems in failure prone environ-
ments.
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Example 12. Measure interpretation. Consider a three-state CTMC with gener-
ator matrix

Q =


−2f 2f 0

r −(f + r) f
0 r −r


 .

This CTMC models the availability of a computer system with two processors.
In state 1 both processors are operational but can fail with rate 2f . In state
2 only one processor is operational (and can fail with rate f); the other one is
repaired with rate r. In state 3 both processors have failed; one of them is being
repaired. Note that we assume that both the processor life-times and the repair
times are negative exponentially distributed. Since in state 1 both processors
operate, we assign a reward 2µ to state 1, where µ is the effective processing
rate of a single processor. Similarly, we assign r2 = µ and r3 = 0. We assume
that the system is initially fully operational, i.e.,π(0) = (1, 0, 0). The following
measures can now be computed:

– Steady-state reward rate
∑

i riπi: the expected processing rate of the system
in steady-state, i.e., the long-term average processing rate of the system;

– Expected instant reward rate
∑

i riπi(t): the expected processing rate at a
particular time instance t;

– Expected accumulated reward
∑

i rili(t): the expected number of jobs (of
length 1) processed in the interval [0, t);

– Accumulated reward distribution FY (y, t): the probability that at most y
jobs (of length 1) have been processed during [0, t).

2f f

r r

2 31

r2 = µr1 = 2µ r3 = 0

Fig. 13. A three-state CTMC (B.R. Haverkort, Performance of Computer Com-
munication Systems, 1998. c© John Wiley & Sons Limited. Reproduced with
Permission.)

6.2 Runge-Kutta Methods

The numerical solution of systems of differential equations of type (38) and
(43) has since long been an important topic in numerical mathematics. Many
numerical procedures have been developed for this purpose, all with specific
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strengths and weaknesses. Below, we will present one such method in a concise
way, thereby focusing on the computation of π(t); for details, see [66].

With Runge-Kutta methods (RK-methods) the continuous vector function
π(t) that follows from the differential equation π′(t) = π(t)Q, given π(0), is
approximated by a discrete function π̃i (i ∈ IN), where π̃i ≈ π(ih), i.e.,h is
the fixed step-size in the discretisation; the smaller h, the better (but more
expensive) the solution.

With RK-methods, the last computed value for any point π̃i is used to com-
pute π̃i+1. The values π̃0 through π̃i−1 are not used to compute π̃i+1. For
this reason, RK-methods are called single-step methods. They are always sta-
ble, provided the step-size h is taken sufficiently small. Unlike Euler-methods,
RK-methods do not require the computation of derivatives of the function of
interest, which keeps them fairly efficient. RK-methods are distinguished on the
basis of their order: a RK-method is of order k if the exact Taylor series for
π(t + h) and the solution of the RK-scheme for time instance t + h coincide as
far as the terms up to hk are concerned.

One of the most widely used RK-methods is the 4th-order RK-method (nor-
mally denoted as “RK4”). For a vector-differential equation π′(t) = π(t)Q, given
π(0), successive estimates for π̃i are computed as follows:

π̃i+1 = π̃i +
h

6
(k1 + 2k2 + 2k3 + k4), (45)

with 


k1 = π̃iQ,
k2 = (π̃i +

h
2k1)Q,

k3 = (π̃i +
h
2k2)Q,

k4 = (π̃i + hk3)Q.

(46)

Since the RK4 method provides an explicit solution to π̃i, it is called an explicit
4th-order method. Per iteration step of length h, it requires 4 matrix-vector
multiplications, 7 vector-vector additions and 4 scalar-vector multiplications.
Furthermore, apart from Q and π̃ also storage for at least two intermediate
probability vectors is required.

In contrast, implicit RK-methods yield a system of linear equations in which
the vector π̃i appears implicitly. Such methods are normally more expensive to
employ and can therefore only be justified in special situations, e.g., when the
CTMC under study is stiff, meaning that the ratio of the largest and smallest
rate appearing in Q is very large, say of the order of 104 or higher.

6.3 Uniformisation for Transient Measures

Consider the scalar differential equation p′(t) = p(t)Q, given p(0) and scalar con-
stant Q. From elementary analysis we know that the solution to this differential
equation is p(t) = p(0)eQt. When dealing with CTMCs, the transient behaviour
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is defined by the linear system of differential equations (20); the transient be-
haviour then can still be computed as an exponential, however, now in terms of
vectors and matrices, that is,

π(t) = π(0)eQt. (47)

Direct computation of this matrix exponential, e.g., via a Taylor/MacLaurin se-
ries expansion as

∑∞
i=0(Qt)i/i!, is in general not a good idea [52]: (i) the infinite

summation that appears in the Taylor series cannot be truncated efficiently; (ii)
severe round-off errors usually will occur due to the fact that Q contains posi-
tive as well as negative entries; and (iii) the matrices (Qt)i become non-sparse,
thus requiring too much storage capacity for practically relevant applications. To
avoid these problems, a method known as uniformisation, also known as Jensen’s
method or randomisation, is regarded as the method of choice [24,25,39]. To use
uniformisation, we define the matrix

P = I+
Q
λ

⇒ Q = λ(P − I). (48)

If λ is chosen such that λ ≥ maxi{|qi,i|}, then the entries in P are all between 0
and 1, whereas the rows of P sum to 1. In other words, P is a stochastic matrix
and describes a DTMC. The value of λ is called uniformisation rate.

Example 13. Uniformising a CTMC. Consider the CTMC given by

Q =


−4 2 2

1 −2 1
6 0 −6


 . (49)

and initial probability vector π(0) = (1, 0, 0). For the uniformisation rate we find
by inspection: λ = 6, so that the corresponding DTMC is given by:

P =
1
6


2 2 2

1 4 1
6 0 0


 . (50)

The CTMC and the DTMC are given in Figure 14.

The process of uniformising a CTMC can be understood as follows. In the
CTMC, the state residence times are exponentially distributed. The state with
the shortest residence times provides us with the uniformisation rate λ. For
that state, one epoch in the DTMC corresponds to one negative exponentially
distributed delay with rate λ, after which one of the successor states is selected
probabilistically. For the states in the CTMC that have total outgoing rate λ,
the corresponding states in the DTMC will have no self-loops. For states in the
CTMC having a state residence time distribution with a rate smaller than λ
(these states have on average a longer state residence time), one epoch in the
DTMC might not be long enough; hence, in the next epoch these states might



Markovian Models for Performance and Dependability Evaluation 73

1 21 21

2

1
6

6
2 3 1

2
6

2
6

4
6

1
6

2
6

1

3

Fig. 14. A small CTMC (left) and the corresponding DTMC (right) after uni-
formisation (B.R. Haverkort, Performance of Computer Communication Sys-
tems, 1998. c© John Wiley & Sons Limited. Reproduced with Permission.)

be revisited. This is made possible by the definition of P, in which these states
have self-loops, i.e., pi,i > 0. Using (48) we can write

π(t) = π(0)eQt = π(0)eλ(P−I)t = π(0)e−λIteλPt = π(0)e−λteλPt. (51)

We now employ a Taylor-series expansion for the matrix exponential as follows:

π(t) = π(0)e−λt
∞∑
n=0

(λt)nPn

n!
= π(0)

∞∑
n=0

ψ(λt;n)Pn, (52)

where

ψ(λt;n) = e−λt
(λt)n

n!
, n ∈ IN, (53)

are Poisson probabilities, i.e.,ψ(λt;n) is the probability of n events occurring
in [0, t) in a Poisson process with rate λ. Of course, we still deal with a Taylor
series approach here, however, the involved P-matrix is a probabilistic matrix
with all its entries between 0 and 1, as are the Poisson probabilities. Hence, this
Taylor series “behaves nicely”, as we will discuss below.

Equation (52) can be understood as follows. At time t, the probability mass
of the CTMC, initially distributed according to π(0) has been redistributed
according to the DTMC with state-transition matrix P. During the time interval
[0, t), with probability ψ(λt;n) exactly n jumps have taken place. The effect of
these n jumps on the initial distribution π(0) is described by the vector-matrix
product π(0)Pn. Weighting this vector with the associated Poisson probability
ψ(λt;n), and summing over all possible numbers of jumps in [0, t), we obtain,
by the law of total probability, the probability vector π(t).

Uniformisation allows for an iterative solution without matrix-matrix multi-
plications, so that matrix fill-in do not occur. Instead of directly computing the
n-th Power of P as suggested by (52) one considers the following sum of vectors:

π(t) =
∞∑
n=0

ψ(λt;n) (π(0)Pn) =
∞∑
n=0

ψ(λt;n)π̂(n), (54)

where π̂n is the state probability distribution vector after n epochs in the DTMC
with transition matrix P, which can be derived recursively as

π̂(0) = π(0) and π̂(n) = π̂(n− 1)P, n ∈ IN+. (55)
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Clearly, the infinite sum in (54) has to be truncated, say after kε epochs in the
DTMC. The actually computed state probability vector π̃(t) then equals:

π̃(t) =
kε∑
n=0

ψ(λt;n)π̂(n). (56)

The number of terms that has to be added to reach a prespecified accuracy ε
can now be computed a priori as follows. It can be shown that the difference
between the computed and the exact value of the transient probability vector is
bounded as follows:

||π(t)− π̃(t)|| ≤ 1−
kε∑
n=0

e−λt
(λt)n

n!
. (57)

Thus, we have to find that value of kε such that 1 −∑kε

n=0 e
−λt(λt)n/n! ≤ ε.

Stated differently, we need the smallest value of kε that satisfies

kε∑
n=0

(λt)n

n!
≥ 1− ε

e−λt
= (1− ε)eλt. (58)

For reasons that will become clear below, kε is called the right truncation point.

Example 14. How large should we take kε? In Table 2 we show the number of
required steps kε as a function of ε and the product λt in the uniformisation
procedure. As can be observed, kε increases sharply with increasing λt and de-
creasing ε.

If the product λt is large, kε tends to be of order O(λt). On the other hand, if λt
is large, the DTMC described by P might have reached steady-state along the
way, so that the last matrix-vector multiplications do not need to be performed
any more. Such a steady-state detection can be integrated in the computational
procedure (see [57] and the example below).

λt
ε 0.1 0.2 1 2 4 8 16

0.0005 2 3 6 8 12 19 31
0.00005 3 3 7 10 14 21 34
0.000005 3 4 8 11 16 23 37

Table 2. The number of required steps kε as a function of ε and the product λt
(B.R. Haverkort, Performance of Computer Communication Systems, 1998. c©
John Wiley & Sons Limited. Reproduced with Permission.)
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Example 15. Transient solution of a three-state CTMC. We consider the tran-
sient solution of the CTMC given in Figure 14; we already performed the uni-
formisation to form the matrix P with uniformisation rate λ = 6.

We first establish how many steps we have to take into account for increasing
t. This number can be computed by checking the inequality (58) and taking
ε = 10−4. We find:

t 0.1 0.2 0.5 1 5 10 20 50 100
kε 5 7 11 17 52 91 163 367 693

We then continue to compute π̃(t) according to (56) to find the curves for πi(t)
as indicated in Figure 15. As can be observed, for t ≥ 2 steady-state is reached.
Although for larger values of t we require very many steps to be taken, the
successive vectors π̂(n) do not change any more. Denote with kss < kε the value
after which π̂i does not change any more. Instead of explicitly computing the
sum (56) for all values of n, the last part of it can then be computed more
efficiently as follows:

π̃(t) =
kε∑
n=0

ψ(λt;n)π̂(n) =
kss∑
n=0

ψ(λt;n)π̂(n) +

(
kε∑

n=kss+1

ψ(λt;n)

)

︸ ︷︷ ︸
1−
∑kss

n=0
ψ(λt;n)

π̂(kss), (59)

thus saving the computation intensive matrix-vector multiplications in the last
part of the sum. The point kss is called the steady-state truncation point.

If the product λt is very large, the first group of Poisson probabilities is very
small, often so small that the corresponding vectors π̂(n) do not really matter.
We can exploit this by only starting to add the weighted vectors π̂(n) after the
Poisson weighting factors become reasonably large. Of course, we still have to
compute the matrix-vector products (55). The point where we start to add the
probability vectors is called the left truncation point.

Finally, we note that the Poisson probabilities ψ(λt;n), n = 0, · · · , N, can be
computed efficiently when taking into account the following recursive relations:

ψ(λt; 0) = e−λt, and ψ(λt;n+ 1) = ψ(λt;n)
λt

n+ 1
, n ∈ IN. (60)

When λt is large, say larger than 25, overflow might easily occur. However, for
these cases, the normal distribution can be used as an approximation. Fox and
Glynn report on a stable algorithm to compute Poisson probabilities [21].

To use uniformisation, the sparse matrix P has to be stored, as well as two
probability vectors. Given an N -state Markov chain, two probability vectors of
length N have to be stored. Given that the matrix P is sparse, which typically is
the case, the cost to store it is of order N . Hence, the overall storage complexity
is O(N).

The main computational complexity lies in the min{kss, kε} matrix-vector
multiplications that need to be performed (plus the subsequent multiplication
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Fig. 15. First two seconds in the evolution of the three-state CTMC (B.R.
Haverkort, Performance of Computer Communication Systems, 1998. c© John
Wiley & Sons Limited. Reproduced with Permission.)

of these vectors with the precomputed Poisson probabilities). As we have seen
above, for large λt, kε is of order O(λt). A single matrix-vector multiplication
costs, in case of a sparse matrix P only O(N), and in case of a non-sparse
matrix O(N2). Taking the sparse case, we arrive at an overall time complexity
of O(λtN).

To increase the efficiency of uniformisation in specific situations, various vari-
ants have been developed. A good overview can be found in [53,55,54].

6.4 Uniformisation for Cumulative Measures

Let us now address a uniformisation-based efficient procedure for computing the
expected accumulated reward over [0, t), that is:

E[Y (t)] = E

[
N∑
i=1

rili(t)

]
. (61)

We first note that in the interval [0, t), that is, an interval of length t, the expected
time between two jumps, when k jumps have taken place according to a Poisson
process with rate λ equals t/(k + 1). Interpreting λ as the uniformisation rate,
the expected accumulated reward until time t, given k jumps, in the uniformised
chain equals

t

k + 1

N∑
i=1

ri

k∑
m=0

π̂i(m).

This expression can be explained as follows. The right-most sum expresses the
sum of the probabilities to reside in state i over the k + 1 intervals addressed;
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multiplied with the mean interval length (left-most factor), this gives the ex-
pected time spent in state i. The first summation weights these times with the
corresponding reward and adds over all states.

We can now sum the above expression over all possible number of jumps that
might occur during the interval [0, t) and weight them with the usual Poisson
probabilities, to arrive at:

E[Y (t)] =
∞∑
k=0

ψ(λt; k)
t

k + 1

N∑
i=1

ri

k∑
m=0

π̂i(m). (62)

Based on this expression, efficient numerical procedures can be devised as follows
(see also [63,64]). First define

φ(λt; k) = ψ(λt; k)
t

k + 1
= e−λt

λntn+1

(k + 1)!
,

which can be computed recursively in a similar way as ψ(λt; k). When we define
the diagonal matrix R = diag(r), i.e.,R is a matrix with on the diagonal the
rewards ri, we can rewrite (62) by transforming the summation over all states
in a matrix-vector multiplication as follows:

E[Y (t)] = 1

( ∞∑
k=0

φ(λt; k)
k∑

m=0

π̂(m)

)
R, (63)

where φ is computed recursively and π̂(m) = π̂(m− 1)P, with P the transition
matrix for the uniformised DTMC. By defining the vector C(k), which denotes
the cumulative probability over k steps to reside at each of the states, in the
following way: C(0) = π̂(0) and C(k) = C(k − 1) + π̂(k), we finally arrive at

E[Y (t)] = 1

( ∞∑
k=0

φ(λt; k)C(k)

)
R. (64)

As for the transient measures, a truncation criterion for the infinite summation
can be easily developed. Similar storage and computational complexity consid-
erations apply as in Section 6.3.

We finally comment on the solution of the performability distribution FY (y, t),
i.e., the probability distribution Pr{Y (t) ≤ y} [50,51]. Also here, uniformisation
can be employed; however, a direct summation over all states does not suffice any
more. Instead, we have to sum the accumulated reward over all paths of length
l (given a starting state) that can be taken through the DTMC, after which
we have to compute a weighted sum over all these paths and their occurrence
probabilities; for details we refer to [63,64,59].

7 Other Issues

In this section, a number of important issues not covered in detail in this chapter
will be addressed briefly; pointers to relevant literature will be provided.
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Phase-Type Distributions In this paper, we did not further address ab-
sorbing Markov chains, even though their applicability is substantial. Given a
CTMC with a single absorbing state, the time from the initial state to absorp-
tion in that absorbing state has a so-called phase-type distribution, a distribution
that can be seen as the sum of a possibly infinite number of exponential phases.
Many well-known distributions are indeed of this type, e.g., the Erlang or an
hyperexponential distribution. Moreover, almost any other distribution can be
approximated very well with phase-type distributions. The birth-death processes
we encountered in the examples, can be extended such that instead of exponen-
tial distributions, phase-type distributions are used. The thus resulting Markov
chains are of so-called quasi-birth-death type and can still be solved efficiently
using matrix-geometric methods, even when the state spece is infinitely large.
For details, we refer to [58], [66, Chapter 5] or [27, Chapter 8].

Product-Form Solutions There is a large class of Markov chains that exhibits
a so-called product-form solution. Most often such Markov chains arise when
modelling systems not directly at the Markov chain level by identifying states
and state-transitions, but when modelling systems as networks of queues. The
structure of the Markov chain underlying the queueing network then results in
an overall steady-state probability vector that can be written as the product
of steady-state probabilities over smaller parts of the model. The book by Van
Dijk on queueing networks and product-forms [18] is an excellent source on
this topic. Also the more general books on performance evaluation mentioned
above address product-form models. Hillston addresses product-form results for
stochastic process algebras [35].

Distributed Solution of Markovian Models Especially when Markov chains
are automatically generated from high-level specifications, these Markov chains
tend to become very large. To cope with Markov chains with several millions (or
more) states, specialised data structures have to be employed that are efficient
both from a memory and a computational point of view. Recent advances in
the use of tensor algebra and binary decision diagrams (and variants) should
be mentioned here [15,13]. Furthermore, recently also the use of parallel and
distributed computer systems has been advocated for both the generation of large
Markov chains from high-level model specifications, as well as their numerical
solution. Early work in this area can be found in [11,14]. With the PARSECS
prototype tool, the generation and solution of Markov chains with more than
750 million states has recently been reported [7,28].

Tools for Markovian Modelling The practical application of Markovian
modelling techniques has become widespread since the beginning of the 1980’s.
At that time, powerful workstations with larger memories became available for
daily use. Since then, a large number of software tools has been built that sup-
port, in one way or another, the generation and solution of Markovian models.
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Typically, the Markovian models are constructed using either general-purpose
high-level modelling formalisms such as queueing networks (cf. QNAP2 [68],
NUMAS [56] and MACOM [47]), stochastic Petri nets (cf. GreatSPN [12] and
SPNP [16]), the “balls and buckets” formalism (cf. MARCA [65] and [66, Chap-
ter 10.2–3]) stochastic activity networks (cf. UltraSAN [61,62]) or stochastic
process algebras (cf. the PEPA workbench [34], TIPPtool [32] or TwoTowers
[8]) or are more application-specific formalisms (cf. SAVE [23] for availability
evaluation). It goes beyond the scope of the current paper to give an overview
of all these tools; the interested reader is referred to a number of surveys: [31,30]
and [29, Chapter 10].

Model Checking Markovian Models Recently, there has been an increased
interest in the merging of Markovian modelling and evaluation techniques (as de-
scribed in this paper) and techniques for formal system verification, in particular
model checking [19,17,41]. Where previously timing aspects were not addressed
in model checking, this becomes a necessity when model checking systems and
protocols for real-time systems. By adding time in a specific stochastic manner
to a finite-state machine, it can be interpreted as a Markov chain. By extend-
ing the logic to express time-related properties over the finite-state machine,
as has been done with the logic CSL, a stochastically timed extension of CTL,
such properties can be checked efficiently using evaluation techniques for Markov
chains. Seminal work in this direction has been reported by Aziz et al. [2,1]; more
recent developments can be found in [5,4,3,33].

8 Concluding Remarks

In the preceding sections we have addressed in a nutshell a large number of
aspects of the use and solution of Markovian models. However, the amount
of literature on Markovian models, their solution and application is vast. To
conclude, let me refer to a number of well-known textbooks in the field. An
absolute “must-read” on the numerical solution of Markov chains is Stewart’s
textbook [66]. Very readable is the two-volume work by Howard [37,38] as is the
book by Kemeny and Snell [42]. A variety of books on performance evaluation
in general address Markov chains in more or less detail, most often providing
numerous examples [9,27,40,44,45,67].
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Abstract. Stochastic Petri Nets are a modelling formalism that can be
conveniently used for the analysis of complex models of Discrete Event
Dynami Systems (DEDS) and for their performance and reliability eval-
uation. The automatic construction of the probabilistic models that un-
derly the dynamic behaviours of these nets rely on a set of results that
derive from the theory of untimed Petri nets. The paper introduces the
basic motivations for modelling DEDS and briefly overviews the basic
results of net theory that are useful for the definition of Stochastic Petri
Nets and Generalized Stochastic Petri Nets. The different approaches
that have been used for introducing the concept of time in these models
are discussed in order to provide the basis for the definition of SPNs
and GSPNs as well. Details on the solution techniques and on ntheir
computational aspects are provided. A brief overview of more advanced
material is included at the end of the paper to highlight the state of the
art in this field and to give pointers to relevant results published in the
literature.

1 Introduction

Petri nets [60,1,59,63] are a powerful tool for the description and the analysis
of systems that exhibit concurrency, synchronization and conflicts. Timed Petri
nets [7,54] in which the basic model is augmented with time specifications are
commonly used to evaluate the performance and reliability of complex systems.

The pioneering work in the area of timed Petri nets was performed by Merlin
and Faber [50], and by Noe and Nutt [58]. In this early work, timed Petri nets
were viewed as a formalism for the description of the global behaviour of complex
structures. The nets were used to tell all the possible stories that systems could
experience based on their temporal specifications and analysis was conducted on
the basis of observations made on these stories.

Following these initial ideas, several proposals for incorporating timing infor-
mation into Petri net models appeared in the literature. Interpreting Petri nets
as state/event models, time is naturally associated with activities that induce
state changes, and hence with the delays incurred before firing transitions.

Stochastic Petri Nets (SPNs) were introduced in 1980 [68,56,53] as a for-
malism for the description of Discrete Event Dynamic Systems (DEDS) whose
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dynamic behaviour could be represented by means of continuous-time homoge-
neous Markov chains. The original SPN proposal assumed atomic firings, expo-
nentially distributed firing times, and a race execution policy; i.e., when multiple
transitions are simultaneously enabled, the race policy selects the transition with
the statistically minimum delay to fire.

With the aim of extending the modelling power of stochastic Petri nets, Gen-
eralized Stochastic Petri Nets (GSPNs) were proposed in [4]. GSPNs include
two classes of transitions: exponentially distributed timed transitions, which are
used to model the random delays associated with the execution of activities,
and immediate transitions, which are devoted to the representation of logical ac-
tions that do not consume time. Immediate transitions permit the introduction
of branching probabilities that are independent of timing specifications. When
timed and immediate transitions are enabled in the same marking, immediate
transitions always fire first. In GSPNs the reachability set is also partitioned
in two sets. Tangible markings are those in which only timed transitions are
enabled whereas vanishing markings are those in which at least one immediate
transition is enabled. The time spent by a GSPN in a tangible state is exponen-
tially distributed with the parameter depending on the timed transitions that are
enabled in that marking; the time spent by a GSPN in a vanishing marking is in-
stead zero. Other generalizations of the basic SPN formalism that are related to
GSPNs, are the Extended Stochastic Petri Nets [35] and the Stochastic Activity
Networks [51]. GSPNs are among the SPN formalisms that are most commonly
used for the analysis of important problems and a considerable effort has been
devoted to their improvement since the time of their original introduction.

In this paper, we discuss the relevance of this modelling formalism by provid-
ing first a broad view of its application field and by introducing the basic results
that set the ground for the derivation of the stochastic processes corresponding
to these models and for the study of their solution methods. The balance of the
paper is the following. Section 2 briefly discusses the relevance of modelling to
support the analysis and the design of complex systems. Section 3 introduces the
characteristics of Discrete Event Dynamic Systems and discusses the role that
models play in the analysis and the design of applications that can be repre-
sented within this framework. Section 4 describes the relevance of Petri nets for
modelling Discrete Event Dynamic Systems and introduces the basic classical
properties of the formalism that are needed later in the paper. Section 5 briefly
surveys the impact that a global priority structure has on the properties and the
behaviours of Petri nets. Section 6 presents the different possibilities that exist
for introducing the concept of time in Petri net models. Section 7 introduces the
definition of Stochastic Petri nets and provides the details for the construction
of their underlying stochastic process. Section 8 discusses the characteristics of
Generalized Stochastic Petri Nets and provides details on some of the compu-
tational issues that are relevant for the application of this modeling formalism.
Section 9 concludes the paper with a few pointers to more advanced material.
and with some general remarks on net modelling.
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The paper has been written in the attempt of providing a uniform and self-
contained introduction to the problem of modelling Discrete Event Dynamic
Systems with Stochastic Petri Nets. The discussion introduces the basic termi-
nology and operational rules of Petri nets for which a comprehensive reference
can be found in [55] where the reader will be able to find a clear explanation of
all the concepts that are only marginally addressed in this work.

2 Models

Understanding the behaviour of real systems is always difficult due to the com-
plexity of their organization and to the intricacy of the interactions among their
components.

Designing and managing real systems often require that relationships be-
tween organizational choices and attained results be identified in order to decide
on possible improvements of the system architecture and of the operational en-
vironment for achieving better performance.

In all these cases, reasoning on the behaviour of systems can become more
reliable if proper descriptions are available that help in clarifying the relation-
ships among system components. The best way of obtaining such descriptions is
that of constructing a model that highlights the important features of the system
organization and provides ways of quantifying its properties neglecting all those
details that are relevant for the actual implementation, but that are marginal
for the objective of the study.

Models can be developed for a variety of reasons that include understanding
and learning about the behaviour of the system, improving its performance and
making decisions about its design or its operation. Models are useful for explain-
ing why and how certain features of the system actually occur. The model helps
in developing insights on the operation of the system and in understanding the
directions of the influence that certain input parameters may have on the results.

The mathematical formulation of a model provides ways for formal reasoning
about the behaviour of a real system in a manner that is safe (although difficult
in same cases) and that is amenable for automatization.

The possibility of computing results from the analysis of a model is the key
for closing a loop that starts from the abstraction of the relevant features of the
system during modelling construction and that ends with the interpretation of
the results provided by the model and reflected on the real system.

3 Discrete Event Dynamic Systems

A system is often defined as a collection of objects together with their relations.
Objects are characterized by attributes some of which are fixed, while others are
variable. The value assumed by a variable attribute contributes to the definition
of the state of the object (local state). The state of the system (global state) results
from the composition of the states of the individual objects (components). The
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relations among objects represent the constraints that drive the change of states.
Abstracting from the particular event that may cause the change of state, we
call transitions such change of state patterns. We can say that state variables
are passive elements, while transitions are active.

Discrete Event Dynamic Systems (DEDS) are systems with a discrete state
space (i.e., they have a countable - possibly infinite - number of states) and
whose evolution is not directly due to the passage of time, but to the occurrence
of events. Depending on whether events happen at arbitrary points in time or
only at precise instants, DEDS are called asynchronous or synchronous

3.1 DEDS as a View

Many real systems can be viewed as DEDS not because of their intrinsic charac-
teristics, but because of the aspects of their behaviour that we want to emphasize.
For instance, a water reservoir that contains a continuously varying quantity of
water, can be viewed as a DEDS if we restrict our attention to the fact that
the water exceeds or not a predefined safety level. In this case the reservoir can
assume only two states (safe and un-safe) and the events that may cause the
change of state can be identified in the occurrence of thunderstorms and in the
openings of the dam.

We thus always speak of DEDS systems referring either to DEDS view of a
real system or to a system that can be viewed in this way.

DEDS systems can be identified within quite different application domains.
In Flexible Manufacturing, the state of the system may be represented by the
number of parts present in front of the different machine-tools and the events may
correspond to the completions of the activities performed by different machine-
tools, to the production of a good, or to the arrival of new raw parts

In Computing, the state of the system may corresponds to the number of
tasks currently in process as well as to those waiting for the completion of some
I/O actions; examples of events are in this case the CPU quantum expiration,
the interrupts coming from the I/O devices and the traps due to system call
executions. In Telecommunication, the state may corresponds to the number of
packets stored in the different buffers and the events to message submissions
as well as to protocol actions. Finally, in Traffic the state of the system may
corresponds to the number of cars waiting in a parking lot, or at a crossroad, or
using a section of road while events may correspond to arrival and departures of
cars as well as to changes of semaphore colours.

In all these cases, independently of the actual meaning of the different com-
ponents, understanding the behaviour of these system is usually hard because of
the intrinsic complexity of the problem (e.g., the number of machine tools and of
parts of Flexible Manufacturing System may give rise to millions of states that
may be difficult to envision and to keep under control), because of the subtle
interference among components (e.g., in Traffic systems the existence of bottle-
necks, temporarily hidden by the presence of other congestion points that gener-
ate huge traffic-jams, may defeat the expected improvements coming from the -
often costly - removal of such delay causes), and of the paradoxical relationship
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among the operations of certain components (e.g., in Time Sharing Computing
System increasing the multiprogramming level to keep the CPU busy may yield
an actual reduction of the CPU utilization because of the consequent increasing
of the page fault rate - thrashing effect). Reasoning about the behaviour of such
systems is difficult without the support of proper models.

Formal models are thus the basis for a better understanding of existent sys-
tems and for the effective and efficient design of new solutions.

3.2 Performance Evaluation of Discrete Event Dynamic Systems

One of the reasons for modeling DEDS is that of constructing a formal represen-
tation that can be used to drive design decisions toward efficient solutions and
to optimize system operation to obtain the best results at the minimum cost.

As real systems may undergo failures, DEDS models must be capable of rep-
resenting such failure/repair cycles in order to design real systems that perform
well also in presence of temporary failures. Performance and Dependability Eval-
uation is the discipline that uses mathematical and simulation models for the
computation of time-related performance indices such as resource utilization,
system productivity and system response time accounting for system failures.

To compute these results the modelling formalism must include the possi-
bility for time specifications (usually expressed in terms of the delay needed for
performing a given action) and for routing/selection information.

The great diversity of real systems is commonly reflected at the level of time
and selection specifications by means of random variables, thus leading to the
construction and the solution of probabilistic models. Performance indices are
evaluated for DEDS in these cases through the computation of the probability
of finding the DEDS in each of its states.

4 Petri Net Models of DEDS

Petri nets (PNs) are abstract formal models that have been developed in search
for natural, simple, and powerful methods for describing and analyzing the flow
of information and control in systems. Petri nets have been originally proposed
for the description and the analysis of systems in which concurrency and conflicts
play a special role. In Petri nets, the state of the system derives from the combi-
nation of local state variables that allow a direct representation of concurrency,
causality, and independence. Petri nets are graphically represented as collections
of places and transitions connected by directed arcs so to form bi-partite graphs.
The connections of transitions with places by means of input and output arcs
represents the pre- and post-conditions, respectively, for the transitions to be
enabled to fire. These conditions can be captured by the incidence matrix of the
model that is the basis for the computation of a large set of structural results
that represent the real advantage of using these type of models. The graphical
aspect of these models are very attractive for practical modelling since they help
in understanding how features of the real system are conveyed in the model.
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In order to keep the PN models of DEDS concise, high level PN have been
introduced that provide a form of abbreviation when repetition of similar sub-
nets would make the model large and difficult to understand. Always to make
models easier to understand, several extensions have been introduced in the
basic PN formalism, often with the disadvantage of reducing the analyzability of
the model (e.g., inhibitor arcs give to the Petri net formalism the computation
power of Turing Machines, but their effect is, in general, neglected during the
structural analysis of the net).

The behaviour of PNs is independent of time and environment and is char-
acterized by the non-deterministic firing of transitions that are simultaneously
enabled in a given marking. The connection of the formalism with reality is
provided in this case by interpretations that incorporate in the model external
constraints such as time considerations. Different extensions and different inter-
pretations yield different PN based formalisms sharing some basic principles.

Petri nets are models consisting of two parts:

1. A net structure - an inscribed bipartite directed graph, that represents the
static part of the system. The two types of nodes are called places and
transitions and are represented as circles and boxes (or bars), respectively.
Places correspond to state variables of the system and transitions to ac-
tions that induce changes of states. Arcs connecting places to transitions are
called input arcs; output arcs connect instead transitions to places. Different
types of inscriptions lead to various families of nets. When the inscriptions
are natural numbers associated with arcs, named weights or multiplicities,
Place/Transition (P/T) nets are obtained.

2. A marking - an assignment of tokens to places. The marking of a place
represents its state value.

The specification of a PN model is completed by the definition of an initial
marking. The dynamics of a system (i.e., its behaviour) is given by the evolu-
tion of the marking that is driven by few simple rules. The basic rule allows the
occurrence of a transition when the input state values fulfill some conditions ex-
pressed by the arc inscriptions. The occurrence of a transition changes the values
of its adjacent state variables (markings of input and output places) according
to arc inscriptions again. This separation allows to reason on net based models
at two different levels: structural and behavioural. From the former we may de-
rive ”fast” conclusions on the possible behaviours of the modelled system. Pure
behavioural reasonings can be more conclusive, but they may require substantial
computations, which in certain cases may not even be feasible. Structural rea-
soning may be regarded as an abstraction of the behavioural one: for instance,
instead of studying whether a given system has a finite state space, we might
address the problem of whether the state space is finite for every possible initial
state; similarly, we could investigate whether there exists an initial marking that
guarantees infinite activity, rather than verifying if this is the case for a given
initial state.
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A marked Petri net is formally defined by the following tuple

PN = (P, T, F, W, m0)

where
P = (p1, p2, ..., pP ) is the set of places,
T = (t1, t2, ..., tT ) is the set of transitions,
F ⊆ (P × T )⋃(T × P ) is the set of arcs,
W : F → IN is a weight function,
m0 = (m01, m02, ..., m0P ) is the initial marking.

As we have said, a marking m is an assignment of tokens to places and can
thus be represented by a vector with as many components as there are places
in the net: the i − th component of such a vector represents the number of
tokens assigned to place pi. When nets are large, a more convenient notation for
markings is that of expressing the assignment of tokens by means of a formal
sum in which we explicitly represent the name of a marked place multiplied by
the number of tokens assigned to it. A marking that has h tokens in place i
and k tokens in place j (only) will be denoted as m = hpi + kpj (a formal sum
denoting the multiset on P defined by the marking).

The dot notation is used for pre- and post-sets of nodes: •v = {u| < u, v >∈
F} and v• = {u| < v, u >∈ F}. A pair comprising a place p and a transition
t is called a self-loop if p is both input and output of t (p ∈ •t

∧
p ∈ t• - see

Figure 1).

P4

P3

P2

P1

t3

t1

t2

t4

Fig. 1. Self-loops

A net is said to be pure if it has no self-loops. Pure nets are completely
characterised by a single matrix C that is called the incidence matrix of the net
and that combines the information provided by the flow relations and by the
weight function.
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C =
p
l
a
c
e
s

transitions

cpt

with cpt = c+pt + c
−
pt = w(t, p) − w(p, t)

4.1 System Dynamics

The graph and matrix characterizations that we have described in the previous
section represent the static component of a PN model. The dynamic evolution of
the PN marking is governed by transition occurrences (firings) which consume
and create tokens.

“Enabling” and “firing” rules are associated with transitions. The enabling
rule states the conditions under which transitions are allowed to fire. The firing
rule defines the marking modification induced by the occurrence of a transition.
Informally, we can say that the enabling rule defines the conditions that allow
a transition to fire, and the firing rule specifies the change of state produced by
the transition.

Both the enabling and the firing rules are specified in terms of arc charac-
teristics. In particular, the enabling rule involves (most of the time) input arcs
only, while the firing rule depends on input and output arcs. Note that input
arcs play a double role, since they are involved both in enabling and in firing.

A transition t is enabled if and only if each input place contains a number
of tokens greater or equal than given thresholds defined by the multiplicities of
arcs. Formally, this condition is expressed by the following definition:

Definition 1 (Enabling). Transition t is enabled in marking m if and
only if

– ∀p ∈ •t,m(p) ≥ O(t, p)
that, in matrix notation is equivalent to

– m ≥ c(., t)−T

The set of transitions enabled in markingm is indicated with E(m); the number
of simultaneous enablings of a transition ti in a given marking m is called its
enabling degree, and is denoted by ei(m).

When transition t fires, it deletes from each place in its input set •t as many
tokens as the multiplicity of the arc connecting that place to t, and adds to each
place in its output set t• as many tokens as the multiplicity of the arc connecting
t to that place.
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Definition 2 (Firing). The firing of transition t, enabled in marking
m, produces marking m′ such that

– m′ = m + O(t) − I(t)
again, this same relation is expressed in matrix notation as follows

– m′ = m − c(., t)−T + c(., t)+T

This statement is usually indicated in a compact way as m[t〉m′, and we say
that m′ is directly reachable from m.

The natural extension of the concept of transition firing, is the firing of a tran-
sition sequence (or execution sequence). A transition sequence1 σ = t(1), · · · , t(k)
can fire starting from markingm if and only if there exists a sequence of mark-
ings m = m(1), · · · ,m(k+1) =m′ such that ∀i = (1, · · · , k),m(i)[t(i)〉m(i+1). We
denote by m[σ〉m′ the firing of a transition sequence, and we say that m′ is
reachable from m.

An important final consideration is that the enabling and firing rules for a
generic transition t are “local”: indeed, only the numbers of tokens in the input
of t, and the weights of the arcs connected to t need to be considered to establish
whether t can fire and to compute the change of marking induced by the firing of
t. This justifies the assertion that the PN marking is intrinsically “distributed”.

A common way of describing the behaviour of a P/T system is by means
of its sequential observation. A hypothetical observer is supposed to ”see” only
single events occurring at any point in time. The interleaving semantics of a net
system is given by all possible sequences of individual transition firings that could
be observed from the initial marking. If two transitions t1 and t2 are enabled
simultaneously, and the occurrence of one does not disable the other, in principle
they could occur at the same time, but the sequential observer will see either
t1 followed by t2 or viceversa. The name interleaving semantics comes from this
way of seing simultaneous occurrences.

Starting from the initial marking it is possible to compute the set of all
markings reachable from it (the state space of the PN) and all the paths that
the system may follow to move from state to state.2

Definition 3. The Reachability Set of a PN with initial marking m0

is denoted RS(m0), and is defined as the smallest set of markings such
that

– m0 ∈ RS(m0)
– m1 ∈ RS(m0) ∧ ∃t ∈ T :m1[t〉m2 ⇒m2 ∈ RS(m0)

1 We write t(1) rather than t1 because we want to indicate the first transition in the
sequence, that may not be the one named t1.

2 Obviously this computation is feasible only in the case of models with finite state
spaces. In the rest of this paper, we assume that our models satisfy this condition,
except when it is sted differently. Proper generalisations are possible to deal with
infinite state spaces introducing the notion of ”covering tree” [55].
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When there is no possibility of confusion we indicate with RS the set RS(m0).
We also indicate with RS(m) the set of markings reachable from a generic
marking m.

The RS contains no information about the transition sequences fired to reach
each marking. This information is contained in the reachability graph, where
each node represents a reachable state, and there is an arc from m1 to m2 if
the marking m2 is directly reachable from m1. If m1[t〉m2, the arc is labelled
with t. Note that more than one arc can connect two nodes (it is indeed possible
for two transitions to be enabled in the same marking and to produce the same
state change), so that the reachability graph is actually a multigraph.

Definition 4. Given a PN system, and its reachability set RS, we call
Reachability Graph RG(m0) the labelled directed multigraph whose set
of nodes is RS, and whose set of arcs A is defined as follows:

•A ⊆RS×RS×T
•〈mi,mj , t〉 ∈ A⇔mi[t〉mj

(1)

m0 is taken as the initial node of the graph.

Multiple events may happen at any given time. A step S is a multi-set of
transitions that are enabled to concurrently fire in the same marking. Firing a
step amounts to withdraw the tokens from all the input places of the transitions
of the step and to deposit tokens in all their output places. If a set of transitions
can be fired in a step, this makes explicit the fact that they need not occurring in
a precise order. The occurrence of a step can be denoted bym S−→m′, orm σ−→
m′, if σ is an arbitrary sequentialisation of S. In fact, every sequentialisation of
the step is fireable so that, in practice, the reachable markings can be computed
considering individual transition occurrences only.

The dynamic behaviour of Petri net models is characterized by three basic
phenomena that account for the fact that actions may occur simultaneously
(concurrency), some actions require that others occur first (causal dependency),
and actions may occur only in alternative (conflicts).

Concurrency - Two transitions are concurrent in a given marking if they can
occur in a step.

Definition 5. Transitions ti and tj are in a concurrency relation in

marking m, denoted by < ti, tj >∈ CO(m), if m ti−→ m′, m
tj−→ m′′,

ej(m′) > 0, and ei(m′′) > 0.

in other words, < ti, tj >∈ CO(m), if m > c(., ti)
T + c(., tj)

T . Notice that
steps allow to express true concurrency. In the case of interleaving semantics,
as we mentioned before, concurrency of two (or more) actions t1 and t2 is rep-
resented by the possibility of performing them in any order, first t1 and then
t2, or viceversa. Nevertheless, the presence of all possible sequentialisations of
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the actions does not imply that they are ”truly” concurrent, as the example in
Figure 2 illustrates: t1 and t2 can occur in any order, but they cannot occur
simultaneously, and in fact the step t1 + t2 is not enabled. The distinction is
especially important if transitions t1 and t2 were to be refined, i.e., if they were
to be replaced by subnets.

P3

P4

P5

P1

P2

t2t1

Fig. 2. Shared place

Causal Dependence - Informally, causal dependencies are represented by the
partial ordering of actions induced by the flow relation. They correspond to
situations in which the firing of a given transition can happen only after the
occurrence of others in whatever order.

Definition 6. Transitions ti is in direct causality relation with tj in
markingm, denoted by < ti, tj >∈ DC(m), ifm ti−→m′, and ej(m′) >
ej(m).

The very basic net construct used to model causal dependences is a place con-
necting two transitions. Transitions connected through a place are said to be in
structural causal connection relation < ti, tj >∈ SCC(m), if t•i

∧ •tj �= ∅.

Conflicts - Informally, we have a situation of conflict when, being several tran-
sitions enabled in the same marking, we have to chose which one to fire and, by
so doing, we affect the enabling conditions of the others. We can thus say that
a transition tr is in conflict with transition ts in marking m iff tr, ts ∈ E(m),
m

ts−→m′, and tr �∈ E(m). Things are more complex when we consider concur-
rent systems where the fact that two transitions are enabled in a given marking
does not necessarily means that we have to choose which one to fire even if they
share some input places. Formally, we have a situation of conflict when the set
of transitions enabled in a given marking is not a step.

Definition 7. Transition ti is said to be in effective conflict relation
with transition tj in marking m, denoted by < ti, tj >∈ EFC(m), if
m

ti−→m′, and ej(m′) < ej(m).
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This relation is antisymmetric as we can see from the second example of Figure
3 where t′2 is in effective conflict with t′1, but not the other way around, since
the firing of t′1 does not decrease the enabling degree of t′2.

P1 P’1

t’2t’1t2t1

_2 _2

Fig. 3. Effective conflicts

The very basic net construct used to model conflicts is a place with more
than one output transition. The output transitions of a place of this type are
said to be in structural conflict relation (< ti, tj >∈ SC, if t•i

∧ •tj �= ∅.
This relation is reflexive and symmetric, but not transitive. Its transitive

closure is named coupled conflict relation and partitions the transitions of a net
into coupled conflict sets. CCS(t) denotes the coupled conflict set containing t.
In Figure 4, transitions t1 and t2 are in structural conflict, while transitions t3
and t5 are not in structural conflict, but they are in coupled conflict relation,
through t4.

P1 P2 P3

t5t4t3t2t1

Fig. 4. Structural conflicts

It is important to remark the difference between structural conflicts and
effective conflicts which depends on the marking of the net. A structural conflict
makes possible the existence of an effective conflict, but does not guarantee it,
except in the case of equal conflicts where all the transitions have the same input
set.
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Definition 8. Transitions ti and tj are said to be in equal conflict re-
lation, denoted by < ti, tj >∈ EQ, if •ti = •tj

Figure 5 shows an equal conflict set.

P1 P2

t2t1

Fig. 5. Equal conflict

When structural conflicts are not equal, it may happen that transitions ini-
tially in conflict may subsequently become elements of a step or, viceversa, when
the interleaved firing of a step yields to conflict situations. The cases depicted
in Figure 6 show situations of this type.

P1P1P2P1

tktj

ti

tk

ti

tjtktj

ti

2_3_

_2

Fig. 6. Non equal conflicts

An intriguing situation arises when different interleaved firings of the mem-
bers of a step may either yield conflict situations or not. This phenomenon is
known as confusion and is again depicted by the conflicts of Figure 6, where we
can recognize that ti and tk are a step such that, when tk fires no effects are felt
by transition ti, while the same is not true in the other case.

Properties of Petri Nets - Properties of Petri net models are characteristics
that allow to assess the quality of a given system in an objective manner. The
following are among the most useful properties that can be defined for Petri net
models.
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Reachability and reversibility — As defined in the previous sections, a marking
m′ is reachable from m if there exists a sequence σ such that m[σ〉m′.

Reachability can be used to answer questions concerning the possibility for
the modelled system of being in a given marking m. An important reachability
property is reversibility: a marked Petri net is said to be reversible if and only
if from any state reachable from m0, it is possible to come back to m0 itself.
More formally, a Petri net with initial marking m0 is reversible if and only if
∀m ∈ RS(m0),m0 ∈ RS(m). Reversibility expresses the possibility for a PN
to come back infinitely often to its initial marking. In general, we say that m ∈
RS(m0) is a home state for the PN if and only if ∀m′ ∈ RS(m0),m ∈ RS(m′).
A marking mh is called a home-state iff

∀m ∈ RS(m0), mh ∈ RS(m)

The set of the home-states of a Petri net is called its home-space
A Petri net is reversible whenever its initial markingm0 is a home-state

Liveness — A transition t is said to be live if and only if, for each marking
m reachable from m0, there exists a marking m′, reachable from m, such that
t ∈ E(m′). Formally, transition tr is live iff

∀m ∈ RS(m0), ∃m′ : ( m s→ m′∧ tr ∈ E(m′) )

A Petri net is said to be live iff ∀tr ∈ T : tr is live. Liveness is a property
that depends on the initial marking. A transition that is not live is said to be
dead. For each dead transition t, it is possible to find a marking m such that
none of the markings in RS(m) enables t.

A very important consequence of liveness is that, if at least one transition
is live, then the Petri net cannot deadlock.3 Moreover, if all transitions are
live, then the corresponding Petri net contains no livelock.4 Liveness defines the
possibility for a transition to be enabled (and to fire) infinitely often.

Boundedness — A place p of a Petri net is said to be k-bounded if and only if,
for each reachable marking m, the number of tokens in that place is less than
or equal to k. Formally, we have that a place pi is bounded (k-bounded) iff

∀m ∈ RS(m0), ∃k : mi ≤ k

A Petri net is said to be k-bounded if and only if all places p ∈ P are k-bounded.
Petri nets that are 1-bounded are said to be safe. A very important consequence
of boundedness is that it implies the finiteness of the state space. In particular,
if a Petri net comprising N places is k-bounded, the number of states cannot
exceed (k + 1)N .

3 A Petri net contains a deadlock if it can reach a state in which no transition can
be fired.

4 A system is in a livelock condition when it enters a subset of its activities from which
it has no possibility of exiting.
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It is interesting to note that boundedness, liveness and reversibility are (good)
independent properties of a Petri net [55].
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Fig. 7. Examples of two nets that are BLR and BLR, respectively.
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Fig. 8. Examples of two nets that are BLR and BLR, respectively.

Mutual exclusion — Two mutual exclusion properties are of interest: one among
places and one among transitions. Two places p and q are mutually exclusive in
a Petri net if their token counts cannot be both positive in the same marking,
i.e., ∀m ∈ RS m(p) ·m(q) = 0. Two transitions in a PN are mutually exclusive
if they cannot be both enabled in any marking.

Analysis Techniques - Depending on the techniques used for deriving these
properties, they can be classified in the following way:

– Structural properties of Petri nets are obtained from the incidence matrix and
from the graph structure of the model, independently of the initial marking.
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– Behavioural properties of Petri nets depend on the initial marking and are
obtained from the reachability graph (finite case) of the net or from the
coverability tree (infinite case)5.

Structural properties are quite interesting since they are proved directly from
the structure of the model and are thus valid for every possible initial marking.

Linear Algebraic Techniques - Linear algebraic techniques, derive some basic
properties of the net from the incidence matrix C.

The relevance of the incidence matrix is due to the fact that it allows the net
dynamics to be expressed by means of linear algebraic equations. In particular,
we can observe that for any marking m, the firing of a transition t enabled in
m produces the new marking

m′ =m+ c(., t)T (2)

where m and m′ are row vectors, and c(., t) is the column vector of C corre-
sponding to transition t.

A similar relation holds for transition sequences. Given a transition sequence
σ = t(1), · · · , t(k), we define the transition count vector vσ whose i − th entry
indicates how many times transition ti appears in the sequence σ. vσ is a |T |-
component column vector. The marking m” obtained by firing the transition
sequence σ from marking m (m[σ〉m”) can be obtained using the following
equation:

m” =m+ [Cvσ]T (3)

Observe that only the number of times a transition fires is important: the
order in which transitions appear in σ is irrelevant. The order is important for
the definition of the transition sequence, and for checking whether the sequence
can be fired, but it plays no role in the computation of the marking reached
by that sequence. This remark leads to important consequences related to the
definition of invariant relations for PN models.

P-semiflows and P-invariant relations — A Petri net is strictly conservative (or
strictly invariant) iff

P∑
p=1

mp =
P∑
p=1

m0p, ∀m ∈ RS(m0)

Let us define a |P |-component weight column vector y = [y1, y2, · · · , y|P |]T,
whose entries are natural numbers. Consider the scalar product between the row

5 The coverability tree provides a finite representation for infinite reachability graphs
based on partial information. Details on this structure and on the algorithms for its
construction can be found in [59].
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vector representing an arbitrary marking m′, and y (denoted m′ · y). A Petri
net is conservative (or P invariant) iff

∃ y = (y1, y2, ..., yP ) > 0 such that

P∑
p=1

ypmp =
P∑
p=1

ypm0p ∀m ∈ RS(m0)

If m[t〉m′, then using (2) we can rewrite m′ · y as:

m′ · y =m · y + c(., t)T · y (4)

Obviously, if c(., t)T ·y = 0, the weighted token count in the Petri net (using the
entries of y as weights) is the same form andm′. This means that the weighted
token count is invariant with respect to the firing of t. More generally, if

CT · y = 0 (5)

i.e., vector y is an integer solution of the set of linear equations

∀t ∈ T : c(., t)T · y = 0 (6)

then, no matter what sequence of transitions fires, the weighted token count
does not change, and remains the same for any marking reachable from any
given initial marking m. The positive vectors y that satisfy Equation (5) are
called the P-semiflows of the Petri net. Note that P-semiflows are computed from
the incidence matrix, and are thus independent of any notion of initial marking.
Markings are only instrumental for the interpretation of P-semiflows.

If y is an arbitrary vector of natural numbers, it can be visualized as a bag
of places in which pi appears with multiplicity yi. This leads to the expression

∀t ∈ T :
∑
pi∈P

C(pi, t) · yi = 0 (7)

which identifies an invariant relation, stating that the sum of tokens in all places,
weighted by y, is constant for any reachable marking, and equal to m0 · y, for
any choice of the initial marking m0. This invariant relation is called a place
invariant, or simply P-invariant.

As a consequence, if in a PN model all places are covered by P-semiflows6,
then for any reachable marking (and independently of the initial marking), the
maximum number of tokens in any place is finite (since the initial marking is
finite) and the net is said to be structurally bounded.

All P-semiflows of a PN can be obtained as linear combinations of the P-
semiflows that are elements of a minimal set PS. See [45,49,9,10] for P-semiflows
computation algorithms.
6 A place p is covered by a P-semiflow if there is at least one vector y with a non null

entry for p.
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T-semiflows and T-invariant relations — As observed in Equation (3), if vσ is
a firing count vector of a transition sequence σ, then

m′ =m+ [Cvσ]T (8)

Obviously, if [Cvσ]T = 0, we obtain that m′ =m and we can observe that
the firing sequence σ brings the PN back to the same marking m. The vectors
x, that are integer solutions of the matrix equation

C · x = 0 (9)

are called T-semiflows of the net. This matrix equation is equivalent to the set
of linear equations

∀p ∈ P : c(p, .) · x = 0 (10)

In general, the invariant relation (called transition invariant or T-invariant)
produced by a T-semiflow is the following:

∀p ∈ P :
∑
t∈T

C(p, t) · x(t) = 0 (11)

This invariant relation states that, by firing from marking m any transition
sequence σ whose transition count vector is a T-semiflow, the marking obtained
at the end of the transition sequence is equal to the starting one, provided that
σ can actually be fired from markingm (m[σ〉m). A net covered by T semiflows
may have home states. A net with home states is covered by T -semiflows.

Note again that the T-semiflows computation is independent of any notion
of marking, so that T-semiflows are identical for all PN models with the same
structure and different initial markings.

Observe the intrinsic difference between P- and T-semiflows. The fact that
all places in a Petri net are covered by P-semiflows is a sufficient condition for
boundedness, whereas the existence of T-semiflows is only a necessary condition
for a PN model to be able to return to a starting state, because there is no
guarantee that a transition sequence with transition count vector equal to the
T-semiflow can actually be fired.

Like P-semiflows, all T-semiflows can be obtained as linear combinations of
the elements of a minimal set TS.

5 Petri Nets with Priority

A marked Petri net with transition priorities, arc multiplicities, and inhibitor
arcs can be formally defined by the following tuple:

PN = (P, T, Π(.), I(.), O(.), H(.), m0)
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– P is a set of places,
– T is a set of transitions,
– m0 is an initial marking,
– Π(.), I(.), O(.), H(.) are four functions defined on T .

The priority function Π(.) maps transitions into non-negative natural num-
bers representing their priority level. The input, output, and inhibition functions
I(.), O(.), and H(.) map transitions on “bags” of places. The former two are rep-
resented as directed arcs from places to transitions and viceversa; the inhibition
function is represented by circle-headed arcs. When greater than one, the mul-
tiplicity is written as a number next to the corresponding arc.

The priority definition that we assume in this paper is global: the enabled
transitions with a given priority k always fire before any other enabled transition
with priority7 j < k.

This kind of priority definition can be used for two different modelling pur-
poses: (1) it allows the partition of the transition set into classes representing
actions at different logical levels, e.g. actions that take time versus actions corre-
sponding to logical choices that occur instantaneously; (2) it gives the possibility
of specifying a deterministic conflict resolution criterion.

Enabling and firing — The firing rule in Petri nets with priority requires the
following new definitions:

– a transition tj is said to have concession in marking m if the numbers of
tokens in its input and inhibitor places verify the usual enabling conditions
for PN models without priority (m ≥ I(t))

∧
(m < H(t));

– a transition tj is said to be enabled in marking m if it has concession in the
same marking, and if no transition tk ∈ T of priority πk > πj exists that has
concession in m. As a consequence, two transitions may be simultaneously
enabled in a given marking only if they have the same priority level;

– a transition tj can fire only if it is enabled. The effect of transition firing is
identical to the case of PN models without priority.

Note that the presence of priority only restricts the set of enabled transitions
(and therefore the possibilities of firing) with respect to the same PN model
without priority. This implies that some properties are not influenced by the
addition of a priority structure, while others are changed in a well-determined
way, as we shall see in a while.

5.1 Conflicts, Confusion, and Priority

The notions of conflict and confusion are modified when a priority structure is
associated with transitions. It is thus very important to be able to clearly identify
by inspection of the net structure the sets of potentially conflicting transitions.
7 Without loss of generality, we also assume that all lower priority levels are not empty,

i.e.:
∀tj ∈ T, πj > 0 =⇒ ∃tk ∈ T : πk = πj − 1
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Conflict — The notion of conflict is drastically influenced by the introduction
of a priority structure in PN models. The definition of effective conflict has to
be modified with respect to the new notion of concession. Instead, the definition
of enabling degree given in Section 4 remains unchanged for PN models with
priority. Observe that this implies that both, transitions that have concession and
enabled transitions, have enabling degree greater than zero. Conflict resolution
causes the enabling degree of some transition to be reduced, and this may happen
both for transitions with concession and for enabled ones. Hence the definition
of the effective conflict relation is modified as follows.

Definition 9. Transition ti is in effective conflict relation with transi-
tion tj in marking m, (ti EC(m) tj) iff tj has concession in m, ti is
enabled in m, and the enabling degree of tj decreases after the firing of
ti.

Observe that a necessary condition for the EC relation to hold is that πi ≥ πj ,
otherwise ti would not be enabled in m.

The definition of different priority levels for transitions introduces a further
complication, since it destroys the locality of conflicts typical of PN models
without priority. This observation leads to the possibility of indirect conflicts.

P1 P2 P3 P4

P6

P7P5

tl

tk

tj

  2π

ti

  2π

th

  2π

Fig. 9. An example of indirect conflict

Let us consider the net in Fig. 9. Transitions tl and tk are both enabled in
the marking represented in the figure (since they both have concession, and no
higher priority transition has concession), and apparently they are not in conflict,
since they do not share input or inhibition places. According to the definition
of concurrent transitions given in Section 4.1, one might conclude that tl and tk
are concurrent. However, the firing of tl enables a sequence of transitions th, ti,
and tj which have higher priority than tk, so that:

1. transition tk becomes disabled while keeping its concession;
2. transition th is certainly the next transition to fire;
3. the firing of tj removes the token from place p5, thus taking concession away

from transition tk.
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This sequence of events is not interruptible after the firing of tl, due to the
priority structure, and eventually results in the disabling of tk through the firing
of higher priority transitions. We call this situation indirect effective conflict
between tl and tk.

Definition 10. For any priority PN model Mπ, ∀ti, tj ∈ T such that
ti �= tj, ∀m : P → IN, transition ti is in indirect effective conflict with
tj in marking m (denoted ti IEC(m) tj) iff

– tj has concession in m
– ti ∈ E(m)
– ∃σ = t(1), . . . , t(k) such that

1. m[ti〉m(1)[t(1)〉 . . .m(k)[t(k)〉m′, and
2. ∀1 ≤ h ≤ k, π(h) > πj, and
3. t(k)EC(m(k))tj.

Confusion and priority — In Section 4.1, the concept of confusion was discussed
in the framework of PN models without priority. In this section we shall see how
the introduction of a priority structure can avoid confusion.

Confusion is an important notion because it highlights the fact that, in terms
of event ordering, the system behaviour is not completely defined: this under-
specification could be due either to a precise modelling choice (the chosen ab-
straction level does not include any information on the ordering of events, hence
the model analysis must investigate the effect of pursuing any possible ordering)
or to a modelling error. The introduction of a priority structure may force a
deterministic ordering of conflict resolutions that removes confusion.

For instance, let us consider again the example depicted in Fig. 9 assuming
first that transitions tl and tk have the same priority level of the others. A
confusion situation arises due to the fact that both sequences σ = tk, tl, th, tj
and σ′ = tl, th, ti, tk are fireable in marking m = p1 + p5, and that they involve
different conflict resolutions. By making the priority level of transitions th, ti,
and tj higher than that of tl and tk we have removed the confusion situation since
any conflict between tj and tk is always solved in favour of tj ; as a consequence
the sequence σ′ = tl, th, ti, tk is not fireable in m and confusion is avoided.

A structural necessary condition for indirect conflict is the presence of a non
free-choice conflict comprising at least two transitions ti and tj at the same
priority level and a third transition tk causally connected to either ti or tj and
such that πk = πi = πj .

Structural conflict — For PN models without priority, we defined the notion
of structural conflict relation (SC) to identify potentially conflicting pairs of
transitions by inspection of the net structure. Intuitively, two transitions ti and
tj are in structural conflict if they share at least one input place or if the output
set of ti is not disjoint from the inhibition set of tj . This definition does not
change for Petri nets with priority.

In this case we can also define the indirect structural conflict (ISC) relation
that gives a necessary condition for two transitions to be in indirect effective
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conflict relation in some marking. Intuitively, we have first to find a pair of
transitions tj and tk such that πj > πk and tjSCtk; then we have to follow the
net arcs backwards starting from transition tj until we find a new transition tl
such that πl ≤ πk. All the transitions on the path (including tl) with priority
greater than or equal to πk, are in indirect structural conflict relation with tk.
Indeed, any transition on the path can trigger a firing sequence of transitions with
priority higher than πk, that may eventually enable transition tj whose firing
would decrease the enabling degree of transition tk. Notice that the transitions
on the path are in causal connection relation. A formal recursive definition for
the ISC relation follows:

Definition 11. Given a priority PN model, two transitions tl and tk
are in indirect structural conflict relation (denoted tl ISC tk) iff

– πl ≥ πk;
– ∃tj : (πj > πk) ∧ (tkSCCtj) ∧ ((tjSCtk) ∨ (tjISCtk))

where SCC is the structural causal connection relation defined in the
previous section.8

Let us consider the model of Fig. 9 again; since transition tj is in SC relation
with transition tk, πj > πk and tlSCCtj , it is possible to conclude that tlISCtk.

Given the definition of structural conflict, it is possible to introduce the
notion of conflict set and extended conflict set whose motivations will become
apparent in the following sections.

We define the symmetric structural conflict as follows:

Definition 12. Transition ti is in symmetric structural conflict with tj
(denoted ti SSC tj) iff

– πi = πj and
– tiSCtj ∨ tjSCti ∨ tiISCtj ∨ tjISCti.

The conflict set associated with a given transition ti is the set of transitions
that might be in conflict with ti in some marking.

Definition 13. The conflict set associated with a given transition ti is
defined as

CS(ti) = {tj : (tiSSCtj)}
The transitive closure of the SSC relation is an equivalence relation that

allows the partition of the set T into equivalence classes called extended conflict
sets.

Definition 14. ECS(ti) = {tj : ti SSC∗ tj∧ ∼ (ti SME tj)}.
8 If the PN allows the presence of inhibitor arcs, the SCC relation must also account

for the fact that tk is causally connected with tj also in case its firing decreases the
marking of some of the places that are part of the (non-empty) inhibitor set of tj .



106 Gianfranco Balbo

In any marking that enables transitions of the same ECS, a choice that may
have effect on the future evolution of the net must be made in order to decide
which, among these transitions, has to be fired next

Two simultaneously enabled transitions ti and tj that belong to different
ECS can be fired in any order.

5.2 Properties of Petri Nets with Priority

In order to briefly discuss the impact that priorities have on the properties of PN
models, we must first divide them into two broad classes. Properties that hold for
all states in the state space are called safety or invariant properties; properties
that instead hold only for some state in the state space are called eventuality
or progress properties). Examples of invariant properties are boundedness, and
mutual exclusion. Examples of eventuality properties are reachability (a given
marking will be eventually reached) and liveness (a transition will eventually
become enabled).

Let Mπ be a PN model with priority and let M be the underlying PN
model without priority. Since the introduction of priority can only reduce the
state space, all the safety properties that can be shown to be true for M, surely
hold also for Mπ. Eventuality properties instead are not preserved in general by
the introduction of a priority structure.

It is interesting to observe that P and T-invariants describe properties that
continue to hold after the addition of a priority structure. The reason is that they
are computed only by taking into account the state change caused by transition
firing, without any assumption on the possibility for a transition of ever becoming
enabled. Boundedness is preserved by the introduction of a priority structure in
the sense that a bounded PN model remains bounded after the introduction of
a priority specification. This implies that the use of P-semiflows to study the
boundedness of a PN model can be applied to the model without priority M
associated with a priority PN model Mπ and if the former model is shown to
be structurally bounded, the conclusion can be extended to the latter model.
Observe, however, that an unbounded PN model may become bounded after the
specification of an appropriate priority structure.

On the other hand, since enabling is more restricted than in the correspond-
ing PN model without priority, reachability is not preserved in general by the
addition of a priority structure. However, a markingm′ is reachable from a mark-
ing m in a PN model with priority only if it is reachable in the corresponding
PN model without priority.

Liveness is intimately related to the enabling and firing rules, hence it is
greatly influenced by a change in the priority specification: a live PN model may
become not live after the introduction of an inappropriate priority structure and,
viceversa, a PN model that is not live, may become live after the addition of an
appropriate priority structure.

Expressive Power - According to their definition, P/T nets do not allow
modelling zero tests, i.e., transitions that are enabled only if some place is empty.
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The introduction of priorities and inhibitor arcs yields such a feature, making
the extended model less amenable for analysis as we have just seen during the
discussion of the properties of Petri nets with priorities. On the other hand, with
the addition of inhibitor arcs and priorities, Petri nets increase their modelling
power, actually leading to Turing machines [59].

It is possible to implement a system with inhibitor arcs using priorities and
viceversa, even in the unbounded case, while preserving concurrent semantics,
so both extensions can be interchanged except for modelling convenience (the
transformations are rather cumbersome [23]). Inhibitor arcs have the advantage
that they are graphically represented in the net structure, while the influence of
a priority definition on the enabling of some transition is not so clearly reflected
and is not so local. On the other hand, priorities arise naturally when a timing
interpretation is considered. Therefore, despite their formal equivalence, both
extensions are allowed on equal footing, because they have been introduced to
cope with different situations. Figure 10 shows an example in which the repeated
firing of t1 accumulates tokens in P1 until the operation mode switches and all
the accumulated tokens are consumed (repeated firing of t2). When P1 becomes
empty t3 fires and the system goes back in the initial state. The representations
with inhibitor arcs and priorities yield exactly the same behaviour.

P1

P3P2 P’2 P’3

P’1

t’3t3

t4

t2t1

t’4

  2π

t’2

  2π

t’1

  2π

Fig. 10. Equivalence between inhibitor arcs and priority specifications

Inhibitor arcs deriving from bounded places can be implemented with the
use of multiplicity and complementary places (preserving the interleaving se-
mantics), as shown in the example of Fig. 11, which is equivalent to that of Fig.
10 assuming that place P1 cannot contain more than 10 tokens. This simple
transformation does not work so well, however, when concurrent semantics is
considered (see [12] for details).

6 Time in Petri Nets

In this section we discuss the issues related to the introduction of temporal con-
cepts into PN models. Particular attention will be given to the temporal seman-
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Fig. 11. Representations of inhibitor arcs with complementary places

tics that is peculiar to stochastic PNs (SPNs) and generalized SPNs (GSPNs).
For this reason we shall always assume that timed transitions are associated
with temporal specifications such that the simultaneous firing of two or more
timed transitions can be neglected (this event has probability zero in SPNs and
GSPNs).

6.1 The Motivations for Timing

The PN models that were considered in the previous sections included no notion
of time. The concept of time was intentionally avoided in the original work by
C.A.Petri [60], because of the effect that timing may have on the behaviour of
PNs. In fact, the association of timing constraints with the activities represented
in PN models may prevent certain transitions from firing, thus destroying the im-
portant assumption that all possible behaviours of a real system are represented
by the structure of the PN.

In [59], the first book on PNs that dealt extensively with applications, the
only remark about timed PNs was the following: “The addition of timing infor-
mation might provide a powerful new feature for PNs, but may not be possible
in a manner consistent with the basic philosophy of PNs”. This attitude towards
timing in PN models is due to the fact that PNs were originally considered
as formal automata and investigated in their theoretical properties. Most of the
early questions raised by researchers thus looked into the fundamental properties
of PN models, into their analysis techniques and the associated computational
complexity, and into the equivalence between PNs and other models of parallel
computation. When dealing with these problems, timing is indeed not relevant.

Very soon PNs were however recognized as possible models of real concurrent
systems, capable of coping with all aspects of parallelism and conflict in asyn-
chronous activities with multiple actors. In this case, timing is not important
when considering only the logical relationships between the entities that are part
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of the real system. The concept of time becomes instead of paramount impor-
tance when the interest is driven by real applications whose efficiency is always
a relevant design problem. Indeed, in areas like hardware and computer archi-
tecture design, communication protocols, and software system analysis, timing
is crucial even to define the logical aspects of the dynamic operations.

Time is introduced in Petri nets to model the interaction among several
activities considering their starting and completion instants The introduction
of time specifications corresponds to an interpretation of the model by means
of the observation of the autonomous (untimed) model and the definition of a
non-autonomous model.

The pioneering works in the area of timed PNs were performed by P.M.Merlin
and D.J.Farber [50], and by J.D.Noe and G.J.Nutt [58]. In both cases, PNs were
not viewed as a formalism to statically model the logical relationships among
the various entities that form a real system, but as a tool for the description of
the global behaviour of complex structures. PNs were used to tell all the possible
stories that the system can experience, and the temporal specifications were an
essential part of the picture.

When introducing time into PN models, it would be extremely useful not to
modify the basic behaviour of the underlying untimed model. By so doing, it is
possible to study the timed PNs exploiting the properties of the basic model as
well as the available theoretical results. The addition of temporal specifications
therefore must not modify the unique and original way of expressing synchro-
nization and parallelism that is peculiar to PNs. This requirement obviously
conflicts with the user’s wishes for extensions of the basic PN formalism to allow
a direct and easy representation of specific phenomena of interest. Time speci-
fications are also used to provide ways of reducing the non-determinism of the
model by means of rules based on time considerations. Finally, time extensions
must provide methods for the computation of performance indices.

Different ways of incorporating timing information into PN models have been
proposed by many researchers during the last two decades; the different proposals
are strongly influenced by the specific application fields and can be summarized
as follows:

– Timed places - time may be associated with places:
• tokens generated in an output place become available to fire a transition
only after a delay has elapsed; the delay is an attribute of the place.

– Timed tokens- time may be associated with tokens:
• tokens carry a time-stamp that indicates when they are available to fire a
transition; this time-stamp can be incremented at each transition firing.

– Timed arcs - time may be associated with arcs:
• a travelling delay is associated with each arc; tokens are available for
firing only when they reach a transition.

– Timed transitions - time may be associated with transitions:
• activity start corresponds to transition enabling,
• activity end corresponds to transition firing.
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Fig. 12. Timed places Fig. 13. Timed tokens

Fig. 14. Timed arcs Fig. 15. Timed transitions

Fig.s 12, 13, 14, and 15, depicts in a compact manner these different possibil-
ities with the purpose of helping the reader in grasping the differences between
the various extensions that are sometimes subtle and difficult to identify at first
glance. The reader interested in understanding better the implications of the
different proposals is referred to the original papers [62,71,44,61,50,65,32,70].

6.2 Timed Transitions

Timed transitions represent the most common extension used by the authors to
add time to PN models. The firing of a transition in a PN model corresponds
to the event that changes the state of the real system. This change of state can
be due to one of two reasons: it may either result from the verification of some
logical condition in the system, or be induced by the completion of some activity.
Considering the second case, we note that transitions can be used to model
activities, so that transition enabling periods correspond to activity executions
and transition firings correspond to activity completions. Hence, time can be
naturally associated with transitions.

Different firing policies may be assumed: the three-phase firing assumes that
tokens are consumed from input places when the transition is enabled, then
the delay elapses, finally tokens are generated in output places; atomic firing
assumes instead that tokens remain in input places during the whole transition
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delay; they are consumed from input places and generated in output places when
the transition fires.

Timed transition Petri nets (TTPN) with atomic firing can preserve the basic
behaviour of the underlying untimed model. It is thus possible to qualitatively
study TTPN with atomic firing exploiting the theory developed for untimed
(autonomous) PN (reachability set, invariants, etc.). Timing specifications may
affect the qualitative behaviour of the PN only when they describe constant and
interval firing delays.

We can explain the behaviour of a timed transition (whose graphical repre-
sentation is usually a box or a thick bar and whose name usually starts with
T ) by assuming that it incorporates a timer. When the transition is enabled, its
local clock is set to an initial value. The timer is then decremented at constant
speed, and the transition fires when the timer reaches the value zero. The timer
associated with the transition can thus be used to model the duration of an
activity whose completion induces the state change that is represented by the
change of marking produced by the firing of T . The type of activity associated
with the transition, whose duration is measured by the timer, depends on the
DEDS that we are modelling: it may correspond to the execution of a task by a
processor, or to the transmission of a message in a communication network, or
to the work performed on a part by a machine tool in a manufacturing system.
It is important to note that the activity is assumed to be in progress while the
transition is enabled. This means that in the evolution of more complex nets, an
interruption of the activity may take place if the transition loses its enabling con-
dition before it can actually fire. The activity may be resumed later on, during
the evolution of the net in the case of a new enabling of the associated transi-
tion. This may happen several times until the timer goes down to zero and the
transition finally fires.

It is possible to define a timed transition sequence or timed execution of a
timed PN system as a transition sequence (as defined in Section 4.1) augmented
with a set of nondecreasing real values describing the epochs of firing of each
transition. Such a timed transition sequence is denoted as follows:

[(τ(1), T(1)); · · · ; (τ(j), T(j)); · · ·]
The time intervals [τ(i), τ(i+1)) between consecutive epochs represent the periods
during which the PN sojourns in marking m(i). This sojourn time corresponds
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to a period in which the execution of one or more activities is in progress and
the state of the system does not change.

6.3 Immediate Transitions

As we noted before, not all the events that occur in a DEDS model correspond
to the end of time-consuming activities (or to activities that are considered time-
consuming at the level of detail at which the model is developed). For instance,
a model of a multiprocessor system described at a high level of abstraction often
neglects the durations of task switchings, since these operations require a very
small amount of time, compared with the durations of task executions. The
same can be true for bus arbitration compared with bus use. In other cases,
the state change induced by a specific event may be quite complex, and thus
difficult to obtain with the firing of a single transition. Moreover, the state
change can depend on the present state in a complex manner. As a result, the
correct evolution of the timed PN model can often be conveniently described
with subnets of transitions that consume no time and describe the logics or the
algorithm of state evolution induced by the complex event.

To cope with both these situations in timed PN models, it is convenient to
introduce a second type of transition called immediate. Immediate transitions
fire as soon as they become enabled (with a null delay), thus acquiring a sort
of precedence over timed transitions. In this paper, immediate transitions are
depicted as thin bars whereas timed transitions are depicted as boxes or thick
bars.

6.4 Parallelism and Conflict

The introduction of temporal specifications in PN models must not reduce the
modelling capabilities with respect to the untimed case. Let us verify this con-
dition as far as parallelism and conflict resolution are considered.

Pure parallelism can be modelled by two transitions that are independently
enabled in the same marking. The evolution of the two activities is measured
by the decrement of the clocks associated with the two transitions. When one of
the timers reaches zero, the transition fires and a new marking is produced. In
the new marking, the other transition is still enabled and its timer can either be
reset or not depending on the different ways of managing this timer that will be
discussed in the next section.

Consider now transitions T1 and T2 in Fig. 16. In this case, the two transi-
tions are in free-choice conflict. In untimed PN systems, the choice of which of
the two transitions to fire is completely nondeterministic. When more than one
timed transition with atomic firing is enabled, the behaviour is similar, but a
problem arises: Which one of the enabled transitions is going to fire? Two alter-
native selection rules are possible:

– preselection - the enabled transition that will fire is chosen when the mark-
ing is entered, according to some metric (e.g., priority),
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Fig. 16. Conflicting transitions

– race- the enabled transition that will fire is the one whose firing delay is
minimum.

In the case of timed PNs, the conflict resolution depends on the delays asso-
ciated with transitions and is obtained through the so-called race policy: when
several timed transitions are enabled in a given markingm, the transition with
the shortest associated delay fires first (thus disabling the possible conflicting
transitions).

Having discussed the conflict resolution policy among timed transitions, it is
important to emphasize the fact that, when two or more immediate transitions
are enabled in the same marking, some rule must be specified to select the
one to fire first, thus ordering the firing of immediate transitions. Two types
of rules will be used when situations of this type occur in the following. The
first one is based on a deterministic choice of the transition to fire using the
mechanism of priority. A second mechanism consists in the association of a
discrete probability distribution function with the set of conflicting transitions.
In this case the conflicts among immediate transitions are randomly solved.

In some cases, however, it may be desirable to separate conflict resolution
from timing specification of transitions. Immediate transitions can be used to
obtain this separation. The conflict can be transferred to a barrier of conflicting
immediate transitions, followed by a set of timed transitions. The extensive use
of this technique can eliminate from a net all conflicts among timed transitions
that are simultaneously enabled in a given marking. If this mechanism is consis-
tently used to prevent timed transitions from entering into conflict situations, a
preselection policy of the (timed) transition to fire next is said to be used.

Conflicts comprising timed and immediate transitions have an important use
in timed PNs: they allow the interruption (or preemption) of ongoing activities,
when some special situation occurs. Consider, for example, the subnet in Fig. 17.
A token in place p1 starts the activity modelled by timed transition T1. If a token
arrives in p2 before the firing of T1, immediate transition t2 becomes enabled
and fires, thus disabling timed transition T1. This behaviour again provides an
example of the precedence of immediate over timed transitions.

The presence of immediate transitions induces a distinction among markings.
Markings in which no immediate transitions are enabled are called tangible,
whereas markings enabling at least one immediate transition are said to be
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Fig. 17. Interrupting an activity with an immediate transition

vanishing. The timed PN system spends a positive amount of time in tangible
markings, and a null time in vanishing markings.

6.5 Memory

An important issue that arises at every transition firing, when timed transitions
are used in a model, is how to manage the timers of all the transitions that do
not fire.

From the modeling point of view, the different policies that can be adopted
link the past history of the systems to its future evolution considering various
ways of retaining memory of the time already spent in activities. The question
concerns the memory policy of transitions, and defines how to set the transition
timers when a state change occurs, possibly modifying the enabling of transi-
tions. Two basic mechanisms can be considered for a timed transition at each
state change.

– Continue. The timer associated with the transition holds the present value
and will continue later on the count-down.

– Restart. The timer associated with the transition is restarted, i.e., its present
value is discarded and a new value will be generated when needed.

To model the different behaviours arising in real systems, different ways of keep-
ing track of the past are possible by associating different continue or restart
mechanisms with timed transitions. We discuss here three alternatives:

– Resampling. At each and every transition firing, the timers of all the timed
transitions are discarded (restart mechanism). No memory of the past is
recorded. After discarding all the timers, new values of the timers are set for
the transitions that are enabled in the new marking.

– Enabling memory. At each transition firing, the timers of all the timed
transitions that are disabled are restarted whereas the timers of all the timed
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transitions that are not disabled hold their present value (continue mecha-
nism). The memory of the past is recorded with an enabling memory variable
associated with each transition. The enabling memory variable accounts for
the work performed by the activity associated with the transition since the
last instant of time its timer was set. In other words, the enabling memory
variable measures the enabling time of the transition since the last instant
of time it became enabled.

– Age memory. At each transition firing, the timers of all the timed tran-
sitions hold their present values (continue mechanism). The memory of the
past is recorded with an age memory variable associated with each timed
transition. The age memory variable accounts for the work performed by
the activity associated with the transition since the time of its last firing.
In other words, the age memory variable measures the cumulative enabling
time of the transition since the last instant of time when it fired.

The three memory policies can be used in timed PN models for different
modelling purposes. In the first case (resampling) the work performed by activ-
ities associated with transitions that do not fire is lost. This may be adequate
for modelling, for example, competing activities of the type one may find in the
case of the parallel execution of hypothesis tests. The process that terminates
first is the one that verified the test; those hypotheses whose verification was
not completed become useless, and the corresponding computations need not be
saved. The practical and explicit use of this policy is very limited, but it must be
considered because of its theoretical importance in the case of SPNs and GSPNs.

The other two policies are of greater importance from the application view-
point. They can coexist within the same timed PNmodel, because of the different
semantics that can be assigned to the different transitions of the model. For a
detailed discussion on this topic the reader is referred to [2,31].

6.6 Multiple Enabling

Special attention must be paid to the timing semantics in the case of timed
transitions with enabling degree larger than one. Different semantics are possi-
ble when several tokens are present in the input places of a transition. Borrowing
from queueing network terminology, we can consider the following different sit-
uations.

1. Single-server semantics: a firing delay is set when the transition is first
enabled, and new delays are generated upon transition firing if the transition
is still enabled in the new marking.

2. Infinite-server semantics: every enabling set of tokens is processed as soon
as it forms in the input places of the (timed) transition. Its corresponding
firing delay is generated at this time, and the timers associated with all these
enabling sets run down to zero in parallel.

3. Multiple-server semantics: enabling sets of tokens are processed as soon
as they form in the input places of the transition up to a maximum degree
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of parallelism (say K). For larger values of the enabling degree, the timers
associated with new enabling sets of tokens are set only when the number
of concurrently running timers decreases below the value of K.

A simple example will help the reader to understand the three semantics.
Consider a timed transition T with enabling degree 3. Assume also that the net
starts to operate at time 0 with such an enabling degree. The three enablings
are associated with three activities whose durations are 3, 2, and 4 time units,
respectively. We describe next the detailed behaviour of the net, considering
the three different semantics with reference to Fig. 18 that illustrates the firing
epochs.

t32 4

0 t32

0

t0 5 93

6

Fig. 18. Firing epochs corresponding to the three different timing semantics
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1. Single-server semantics: the serial execution of the activities induces the
following sequence of events:
– t = 0: T1 is enabled and the first activity starts.
– t = 3: the first activity (duration 3) ends, T1 fires and the second activity

starts.
– t = 5: the second activity (duration 2) ends, T1 fires and the third activity

starts.
– t = 9: the third activity (duration 4) ends and T1 is disabled.

2. Infinite-server semantics: the parallel execution of the activities induces the
following sequence of events:
– t = 0: T1 is enabled and all the activities start.
– t = 2: T1 fires because of the completion of the second activity (duration

2).
– t = 3: T1 fires because of the completion of the first activity (duration

3).
– t = 4: T1 fires because of the completion of the third activity (duration

4), and it is disabled.
3. Multiple-server semantics: in this case we assume that the maximum paral-

lelism is K = 2. This induces the following sequence of events:
– t = 0: T1 is enabled and the first two activities start.
– t = 2: T1 fires because of the completion of the second activity (duration

2) thus the third activity can start.
– t = 3: T1 fires because of the completion of the first activity (duration

3).
– t = 6: T1 fires because of the completion of the third activity (duration

4), and it is disabled.

The introduction of these different firing semantics permits the definition of
PN models that are graphically simple without losing any of the characteristics
that allow the analysis of their underlying behaviours.

7 Stochastic Petri Nets

Timed Petri nets in which the firing delays are specified by random variables
yeld to probabilistic models. The execution of a timed PN model corresponds to
a realization of a stochastic point process.

The use of exponential distributions for the definition of temporal specifica-
tions is particularly attractive because timed PN in which all the transition de-
lays are exponentially distributed can be mapped onto continuous-time Markov
chains (CTMC). In this case the memoryless property of the exponential distri-
bution makes unnecessary the distinction between the distribution of the delay
itself, and the distribution of the remaining delay after a change of state.

Stochastic Petri nets are timed (transition) PN with atomic firing and in
which transition firing delays are exponentially distributed random variables:
each transition ti is associated with a random firing delay whose probability
density function is a negative exponential with rate wi.
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SPNs were originally defined in [37,53] Formally, a SPN model is an 6-tuple

SPN = (P, T, I(.), O(.),W (.),m0) (12)

P , T , I(.), O(.), and m0 have the usual meanings so that the underlying PN
model constitutes the structural component of a SPN model.

The function W allows the definition of the stochastic component of a SPN
model mapping transitions into real positive functions of the SPNmarking. Thus,
for any transition t it is necessary to specify a function W (t,m). In the case of
marking independency, the simpler notation wk is normally used to indicate
W (tk), for any transition tk ∈ T . The quantity W (tk,m) (or wk) is called the
“rate” of transition tk in marking m.

In this section we show how SPNs can be converted into Markov chains and
how their analysis can be performed to compute interesting performance indices.
The construction of the Markov chain associated with a Stochastic Petri Net
(SPN) is described first, to set the ground for the subsequent derivation of the
probabilistic model associated with a GSPN. Only SPNs with finite state space
are considered, as they yield Markov chains that are solvable with standard nu-
merical techniques. More advanced solution methods based on matrix-geometric
theory [57] are discussed in [38,57,12].

7.1 The Stochastic Process Associated with a SPN

We have already discussed the motivations behind the work of several authors
that led to the proposal of Timed and Stochastic Petri Nets (SPNs). Due to
the memoryless property of the exponential distribution of firing delays, it is
relatively easy to show [37,53] that SPN systems are isomorphic to continuous
time Markov chains (CTMCs). In particular, a k-bounded SPN system can be
shown to be isomorphic to a finite CTMC.

Finite State Machine and Marked Graph SPNs - This can be easily seen
when the structure of the SPN is that of both a finite state machine (no transition
has more than one input and one output place) and of a marked graph (no place
has more than one input and one output transition) with only one token in its
initial marking. In this case each place of the net univocally corresponds to a state
of the model and the position of the token at a given instant of time identifies the
state of the model at that same time. Each place of the net maps into a state of
the corresponding CTMC and each transition maps into an arc annotated by the
rate of the corresponding firing time distribution. Moreover, if the firing times
of the transitions have negative exponential distributions and if the structure
of the net is that of a marked graph, the time spent in each place by the net
is completely identified by the characteristics of the only transition that may
withdraw the token from that place. When the net has the structure of a finite
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state machine, conflicts among simultaneously enabled transitions arise since
several transitions may share the same input place. Since we are assuming that
all the activities have negative-exponentially distributed durations, the CTMC
corresponding to the SPN is obtained from the net in a straightforward manner.
Again each place of the SPN maps into a state of the corresponding CTMC
and each transition of the SPN maps into an arc of the CTMC annotated with
the rate of the corresponding firing time distribution. Also in this case the time
spent by the net in each place has a negative-exponential distribution, but its
rate is given by the sum of the firing rates of all the transitions that withdraw
tokens from that place.

More complex situations arise, even in this simple case, when several tokens
are allowed in the initial marking. These are due to the fact that places no longer
correspond to states of the associated probabilistic models. Moreover, in these
cases the behaviours of the probabilistic models are also affected by the service
selection policies from the input places as well as by the token selection policies
adopted at transition firing moments.

Even the very simple case of two tokens waiting in the only input place
of a transition raises a set of interesting questions that must be addressed in
developing the corresponding probabilistic model. The first has to do with the
speed at which the transition withdraws the tokens from its input place in this
situation and thus from the service policies discussed in Section 6.6. In the more
general case of assuming a form of load dependency in which the firing rate of the
transition is a function of its enabling degree, an additional specification must be
introduced in the model to define the load dependency function associated with
each transition. The second question refers to the selection of the token that is
removed from the input place upon the firing of the transition. From a “classical”
Petri net point of view, this selection policy is inessential since tokens do not
carry any identity. In many applications however, it is convenient to associate
a physical meaning with the tokens (e.g., customers), so that questions on their
flow through the net can be answered. In these situations, when several tokens
are simultaneously present in the input place of a transition, if this is assumed to
operate with a single server policy, a question on the queueing policy applied to
these tokens becomes interesting. The most natural policy (from a Petri net point
of view) is a random order. When the firing times are exponentially distributed
and when the performance figures of interest are only related to the moments
of the number of tokens in the input place of a transition, it is possible to show
that many queueing policies yield the same results (e.g., random, FIFO, LCFS).
It must however be observed that in other cases the choice of the token selection
policy may be important and that policies different from the random one must
be explicitly implemented through appropriate net constructions.

SPNs with General Structure - In general, the CTMC associated with a
given SPN system is obtained by applying the following simple rules:

1. The CTMC state space S = {si} corresponds to the reachability set
RS(m0) of the PN associated with the SPN (mi ↔ si).
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2. The transition rate from state si (corresponding to markingmi) to state sj
(mj) is obtained as the sum of the firing rates of the transitions that are
enabled in mi and whose firings generate marking mj .

Based on these simple rules, it is possible to devise algorithms for the auto-
matic construction of the infinitesimal generator (also called the state transition
rate matrix) of the isomorphic CTMC, starting from the SPN description.

Assuming that all the transitions of the net operate with a single-server
semantics and marking-independent speeds, and denoting with Q this matrix,
with wk the firing rate of Tk, and with Ej(mi) = {h : Th ∈ E(mi)∧mi[Th〉mj}
the set of transitions whose firings bring the net from marking mi to marking
mj , the components of the infinitesimal generator are:

qij =



∑
Tk∈Ej(mi)

wk

−qi

i �= j

i = j
(13)

where
qi =

∑
Tk∈E(mi)

wk (14)

Let π(mi, τ) be the probability that the SPN is in marking mi at time τ .
The Chapman-Kolmogorov equations for the CTMC associated with an SPN
are specified by:

dπ(si, τ)
dτ

=
∑
sk

π(sk, τ)qkj (15)

In matrix notation this becomes

dπ(τ)
dτ

= π(τ)Q, (16)

whose solution can be formally written as

π(τ) = π(0)eQτ (17)

where π(0) is the probability of the initial distribution (in our case we usually
have πi(0) = 1 if mi = m0 and πi(0) = 0 otherwise) and eQτ is the matrix
exponentiation formally defined by

eQτ =
∞∑
k=0

(Qτ)k

k!
(18)

In this section we consider only SPNs originating homogeneous and ergodic
CTMC. A k-bounded SPN system is said to be ergodic if it generates an ergodic
CTMC; it is possible to show that a SPN system is ergodic if m0, the initial
marking, is a home state (see Section 2).
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If the SPN is ergodic, the steady-state probability distribution on its mark-
ings exists and is defined as the limit π = limτ→∞ π(τ). Its value can be
computed solving the usual system of linear equations:


π Q = 0

π 1T = 1
(19)

where 0 is a vector of the same size as π and with all its components equal to
zero and 1T is a vector (again of the same size as π) with all its components
equal to one, used to enforce the normalization condition.

To keep the notation simple, in the rest of this section we will use πi(τ)
and πi instead of π(mi, τ) and π(mi) to denote the transient and steady state
probabilities of marking mi. The sojourn time is the time spent by the PN in a
given markingm. As we already observed, the Markovian property of this model
ensures that the sojourn time in the i− th marking is exponentially distributed
with rate qi. The pdf of the sojourn time in a marking corresponds to the pdf
of the minimum among the firing times of the transitions enabled in the same
marking; it thus follows that the probability that a given transition Tk ∈ E(mi)
fires (first) in marking mi can be expressed as follows:

P{Tk|mi} =
wk
qi
. (20)

Using the same argument, we can observe that the average sojourn time in
marking mi is given by the following expression:

SJi =
1
qi
. (21)

SPN Performance Indices - The steady-state distribution π is the basis for a
quantitative evaluation of the behaviour of the SPN that is expressed in terms of
performance indices. These results can be computed using a unifying approach
in which proper index functions (also called reward functions) are defined over
the markings of the SPN and an average reward is derived using the steady-state
probability distribution of the SPN. Assuming that r(m) represents a reward
function, the average reward can be computed using the following weighted sum:

E[R] =
∑

mi∈RS(m0)

r(mi) πi (22)

Different interpretations of the reward function can be used to compute dif-
ferent performance indices. In particular, the following quantities can be easily
computed.

(1) The probability of a particular condition of the SPN. Assuming that
condition Υ (m) is true only in certain markings of the PN, we can define the
following reward function:

r(m) =



1

0

Υ (m) = true

otherwise
(23)
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The desired probability P{Υ} is then computed using Equation (22). The same
result can also be expressed as:

P{Υ} =
∑
mi∈A

πi (24)

where A = {mi ∈ RS(m0) : Υ (mi) = true}.
(2) The expected value of the number of tokens in a given place. In this case

the reward function r(m) is simply the value of the marking of that place (say
place j):

r(m) = n iff m(pj) = n (25)

Again this is equivalent to identifying the subset A(j, n) of RS(m0) for which the
number of tokens in place pj is n (A(j, n) = {mi ∈ RS(m0) :mi(pj) = n});
the expected value of the number of tokens in pj is given by:

E[m(pj)] =
∑
n>0

[n P{A(j, n)}] (26)

where the sum is obviously limited to values of n ≤ k, if the place is k-bounded.
(3) The mean number of firings per unit of time of a given transition. Assume

that we want to compute the firing frequency of transition Tj (the throughput of
Tj); observing that a transition may fire only when it is enabled, we have that
the reward function assumes the value wj in every marking that enables Tj:

r(m) =



wj

0

Tj ∈ E(m)

otherwise
(27)

The same quantity can also be computed using the more traditional approach
of identifying the subset Aj of RS(m0) in which a given transition Tj is enabled
(Aj = {mi ∈ RS(m0) : Tj ∈ E(mi)}). The mean number of firings of Tj per
unit of time is then given by:

fj =
∑
mi∈Aj

wj πi (28)

These results show that Petri nets can be used not only as a formalism for
describing the behaviour of distributed/parallel systems and for assessing their
qualitative properties, but also as a tool for computing performance indices that
allow the efficiency of these systems to be evaluated.

To illustrate the details of this last analysis step, a simple example is pre-
sented in the following section, which encompasses the explicit derivation of the
CTMC infinitesimal generator, of the steady-state probability distribution, and
of some performance indices.
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An Example SPN Model - Consider a simple shared memory multiproces-
sor system in which two processors must occasionally access a common shared
memory. All the processors are assumed to have identical behaviours character-
ized by a cyclic sequence of local activities, followed by requests and accesses
for the common memory. All these actions last for certain amount of times.
Additional delays are experienced by a processor that requests to access the
common memory while it is busy serving the other processor. Assuming that all
timings considered in the example have negative exponential distributions, the
SPN model of this system is depicted in Fig. 19. The net comprises seven places
and six timed transitions with single-server semantics.

pact1

preq1

pacc1

pidle

preq2

pact2

pacc2

Tend2

Tstr1

µ2µ1Tend1

α1 Tstr2α2

Treq2λ2Treq1 λ1

Fig. 19. The SPN description of shared memory system

Starting from the initial marking shown in Fig. 19, in which the two proces-
sors are both in a locally active state and the memory is idle (pact1+pact2+pidle),
a possible evolution of the SPN marking that focuses on the processing cycle of
processor 1, may be the following. Processor 1 works locally for an exponentially
distributed random amount of time with average 1/λ1, and then requests an
access to the common memory. Transition Treq1 fires, and the token contained
in pact1 is removed while a token is added in preq1. Since the common memory is
available (place pidle is marked), the acquisition of the memory starts immedi-
ately and takes an average of 1/α1 units of time to complete; this is represented
by the firing of transition Tstr1 whose associated delay has a negative-exponential
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distribution with rate α1; when transition Tstr1 fires, one token is removed from
place preq1 and another token is deposited into place pacc1, where it stays for
the entire time required by the first processor to access the common memory.
Such a time lasts on the average 1/µ1 units, and ends when transition Tend1
fires returning the net to its initial state. Obviously, a similar processing cycle
is possible for processor 2 and many interleavings between the activities of the
two processors may be described by the evolution of the net.

A conflict exists in the behaviour of this system when both processors want
to simultaneously access the common memory, i.e., when transitions Tstr1 and
Tstr2 are both enabled. According to Equation (13), in this situation, transition
Tstr1 fires with probability:

P{Tstr1} =
α1

α1 + α2
(29)

whereas transition Tstr2 fires with probability:

P{Tstr2} =
α2

α1 + α2
(30)

Notice that when the two transitions Tstr1 and Tstr2 are both enabled in a
given marking M , the speed at which the PN model exits from that marking
is the sum of the individual speeds of the two transitions and the conflict is
actually resolved only at the moment the first of them fires.

Table 1. Reachability set of SPN of Fig. 19

m0 = pact1 + pidle + pact2

m1 = preq1 + pidle + pact2

m2 = pacc1 + pact2

m3 = pacc1 + preq2

m4 = preq1 + pidle + preq2

m5 = pact1 + pidle + preq2

m6 = pact1 + pacc2

m7 = preq1 + pacc2

The reachability set of the SPN model of Fig. 19 is listed in Table 1. The
reachability graph is shown in Fig. 20, while the corresponding CTMC transition
rate diagram is presented in Fig. 21.

8 Generalized Stochastic Petri Nets

Several reasons suggest the introduction of the possibility of using immediate
transitions into PN models together with timed transitions. As we observed in
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Fig. 20. The reachability graph of the SPN system in Fig. 19
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Fig. 21. The state transition rate diagram of the Markov chain associated with
the SPN in Fig. 19

Section 6.3 the firing of a transition may describe either the completion of a time-
consuming activity, or the verification of a logical condition. It is thus natural
to use timed transitions in the former case, and immediate transitions in the
latter. Moreover, as we noted in the previous sections, when all transitions are
timed the temporal specification of the model must in some cases consider at one
time both the timing and the probability inherent in a choice. It seems natural
to separate the two aspects in the modelling paradigm, to simplify the model
specification. Furthermore, by allowing the use of immediate transitions, some
important benefits can be obtained in the model solution. They will be described
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in detail later in this section; we only mention here the fact that the use of
immediate transitions may significantly reduce the cardinality of the reachability
set, and may eliminate the problems due to the presence in the model of timed
transitions with rates that differ by orders of magnitude. The latter situation
results in so-called “stiff” stochastic processes, that are quite difficult to handle
from a numerical viewpoint. On the other hand, the introduction of immediate
transitions in an SPN does not raise any significant complexity in the analysis,
as we shall see soon.

SPN models in which immediate transitions coexist with timed transitions
with race policy and random firing delays with negative exponential pdf are
known by the name generalized SPNs (GSPNs) [4].

In the graphical representation of GSPNs, immediate transitions are drawn
as bars or segments and are denoted by a name that is normally of the form tx,
where x is either a number or a mnemonic string; timed transitions are drawn as
(white or black) rectangular boxes, and are denoted by a name that is normally
of the form Tx.

Immediate transitions are fired with priority over timed transitions. Thus,
if timing is disregarded, the resulting PN model comprises transitions at dif-
ferent priority levels. The adoption of the race policy may seem to implicitly
provide the priority of immediate over timed transitions; this is indeed the case
in most situations, but the explicit use of priority simplifies the development of
the theory. We shall return to this subtle point later in this section.

Recall that markings in the reachability set can be classified as tangible or
vanishing. A marking in which no transition is enabled is tangible. The time
spent in any vanishing marking is deterministically equal to zero, while the time
spent in tangible markings is positive with probability one.

To describe the GSPN dynamics, we separately observe the timed and the
immediate behaviour, hence referring to tangible and vanishing markings, respec-
tively. Let us start with the timed dynamics (hence with tangible markings); this
is identical to the dynamics in SPNs, that was described before. We can assume
that each timed transition possesses a timer. The timer is set to a value that is
sampled from the negative exponential pdf associated with the transition, when
the transition becomes enabled for the first time after firing. During all time in-
tervals in which the transition is enabled, the timer is decremented. Transitions
fire when their timer reading goes down to zero.

With this interpretation, each timed transition can be used to model the
execution of some activity in a distributed environment; all enabled activities
execute in parallel (unless otherwise specified by the PN structure) until they
complete. At completion time, activities induce a change of the system state,
only as regards their local environment. No special mechanism is necessary for
the resolution of timed conflicts: the temporal information provides a metric that
allows the conflict resolution.

In the case of vanishing markings, the GSPN dynamics consumes no time:
everything takes place instantaneously. This means that if only one immediate
transition is enabled, it fires, and the following marking is produced. If sev-
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eral immediate transitions are enabled, a metric is necessary to identify which
transition will produce the marking modification. Actually, the selection of the
transition to be fired is relevant only in those cases in which a conflict must be
resolved: if the enabled transitions are concurrent, they can be fired in any order.
For this reason, GSPNs associate weights with immediate transitions belonging
to the same conflict set.

For the time being, let us consider only free-choice conflict sets; the case of
non-free-choice conflict sets will be considered later on, but we can anticipate at
this point that it can be tackled in a similar manner by exploiting the definition of
ECS introduced in Section 5.1. The transition weights are used to compute the
firing probabilities of the simultaneously enabled transitions comprised within
the conflict set. The restriction to free-choice conflict sets guarantees that tran-
sitions belonging to different conflict sets cannot disable each other, so that the
selection among transitions belonging to different conflict sets is not necessary.

We can thus observe a difference between the specification of the temporal
information for timed transitions and the specification of weights for immedi-
ate transitions. The temporal information associated with a timed transition
depends only on the characteristics of the activity modelled by the transition.
Thus, the temporal specification of a timed transition requires no information on
the other (possibly conflicting) timed transitions, or on their temporal charac-
teristics. On the contrary, for immediate transitions, the specification of weights
must be performed considering at one time all transitions belonging to the same
conflict set. Indeed, weights are normalized to produce probabilities by consid-
ering all enabled transitions within a conflict set, so that the specification of a
weight, independent of those of the other transitions in the same conflict set, is
not possible.

8.1 Some Extensions

Some additional features can be included in a GSPN model, with an advan-
tage in the power of the modelling paradigm and little increase in the analysis
complexity. These extensions are the possibility of using non-free-choice conflicts
of immediate transitions, the availability of multiple priority levels for immedi-
ate transitions, and the marking-dependency of transition annotations (rates for
timed transitions and weights for immediate transitions).

The availability of multiple priority levels for immediate transitions, and
the marking-dependency of transition annotations has quite a beneficial impact
on the modelling power, and hardly any impact on the complexity of the model
specification and analysis. In particular, the availability of multiple priority levels
for immediate transitions permits the simple specification of complex sequential
selection algorithms, while the marking-dependency of transition annotations
allows the development of compact models in which the behaviours of a number
of different entities are synthetically described.

Employing non-free-choice conflicts of immediate transitions, the user has the
possibility of describing a much wider range of dynamic behaviours in vanishing
markings, but he must be able to correctly associate the immediate transitions
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with the metrics that define the probabilistic conflict resolution. This requires
the knowledge of the sets of simultaneously enabled non-concurrent immediate
transitions in any vanishing marking. This knowledge may not be easy to obtain
without the generation of the reachability set, which is however very costly in
most cases. The definition of extended conflict sets (ECSs) was introduced in
Section 5 to provide the user with the information on the sets of transitions that
may be in effective conflict (either direct or indirect) in a marking, thus helping
in the definition of weights.

One extension that is not possible within the GSPN framework is the in-
troduction of more general forms of pdf for the firing delays associated with
transitions. Nevertheless, also in this respect, the availability of immediate and
exponential transitions in one modelling paradigm can be exploited for the con-
struction of somewhat more general pdfs in the description of the duration of
the real system activities (see [6] for a detailed discussion of this topic).

8.2 The Definition of a GSPN Model

GSPNs were originally defined in [4]. The definition was later improved to better
exploit the structural properties of the modelling paradigm [3]. The definition
we present here is based on the version contained in this second proposal.

Formally, a GSPN model is an 8-tuple

GSPN = (P, T,Π(.), I(.), O(.), H(.),W (.),m0) (31)

where PNπ = (P, T,Π(.), I(.), O(.), H(.),m0) is the marked PN with
priority underlying the GSPN and W (.) is a function defined on the set of tran-
sitions

Timed transitions are associated with priority zero, whereas all other priority
levels are reserved for immediate transitions.

The underlying PN model constitutes the structural component of a GSPN
model, and it must be confusion-free (see Section 5.1) at priority levels greater
than zero (i.e., in subnets of immediate transitions).

The functionW allows the definition of the stochastic component of a GSPN
model. In particular, it maps transitions into real positive functions of the GSPN
marking. Thus, for any transition t it is necessary to specify a function W (t,m).
In the case of marking independency, the simpler notation wk is normally used
to indicate W (tk), for any transition tk ∈ T . The quantity W (tk,m) (or wk) is
called the “rate” of transition tk in marking m if tk is timed, and the “weight”
of transition tk in marking M if tk is immediate.

Since in any marking all firing delays of timed transitions have a negative ex-
ponential pdf, and all the delays are independent random variables, the sojourn
time in a tangible marking is a random variable with a negative exponential
pdf whose rate is the sum of the rates of all enabled timed transitions in that
marking. In the case of vanishing markings, the weights of the immediate tran-
sitions enabled in an ECS can be used to determine which immediate transition
will actually fire, if the vanishing marking enables more than one conflicting
immediate transition.
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When transitions belonging to several different ECSs are simultaneously
enabled in a vanishing marking, as we already explained, the choice among these
transitions is irrelevant. It must be emphasized that the irrelevance in the order
of transition firings is an important consequence of the restriction that subnets of
immediate transitions must be confusion-free. The restriction to confusion-free
immediate subnets also has a beneficial impact on the model definition, since the
association of weights with immediate transitions requires only the information
about ECSs, not about reachable markings. For each ECS the analyst thus
defines a local association of weights from which probabilities are then derived.

8.3 Some Fine Points

Let us return to the points we raised in the previous sections, but left unan-
swered. These are:

1. the need for an explicit priority of immediate over timed transitions;
2. the irrelevance of the distinction between resampling, enabling memory, and

age memory;
3. the impossibility for two timers to expire at the same time.

All three points relate to the properties of the negative exponential pdf. This
distribution characterizes a continuous random variable, hence it is a continu-
ous function defined in the interval [0,∞), that integrates to one. The lack of
discontinuities in the function makes the probability of any specific value x be-
ing sampled equal to zero (however, obviously, the probability that a value is
sampled between two distinct values x1 ≥ 0 and x2 > x1 is positive).

Let us look now at the three previous points in order.

1. Consider a free-choice conflict set comprising an immediate and a timed
transition, and assume for a moment that priority does not exist. The race
policy makes the immediate transition always win, except for the case in
which a zero delay is sampled from the negative exponential pdf. Although
the probability of selecting the value zero is null, some problem may arise
when the conflict set is enabled infinitely often in a finite time interval. For
example, in the case of Fig. 22, the timed and the immediate transitions
are always enabled, because the firing of the immediate transition t2 does
not alter the PN marking. The situation is changed only when the timed
transition T1 fires. This happens with probability one in time zero, possibly
after an infinite number of firings of the immediate transition. To avoid
these (sometimes strange) limiting behaviours, the priority of immediate
over timed transitions was introduced in the GSPN definition. This makes
the timed transition T1 in Fig. 22 never enabled.

2. The memoryless property of the negative exponential pdf, ensures that at
any time instant, the residual time until a timer associated with a transition
expires is statistically equivalent to the originally sampled timer reading.
Thus, whether a new timer value is set at every change of marking, or at
every instant a transition becomes enabled after disabling, or after firing,
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p1

Fig. 22. A conflict set comprising a timed and an immediate transition

makes no difference from the point of view of the probabilistic metrics of the
GSPN.

3. Since the probability that a sample extracted from a negative exponential
pdf takes a specific value x equals zero, the probability of two timers expiring
at the same time is null. Indeed, given the value sampled by the first timer,
the probability that the second one samples the same value is zero.

8.4 The Stochastic Process Associated with a GSPN

As we have just observed, GSPNs adopt the same firing policy of SPNs; when
several transitions are enabled in the same marking, the probabilistic choice of
the transition to fire next depends on parameters that are associated with these
same transitions and that are not functions of time. The general expression
for the probability that a given (timed or immediate) transition tk, enabled in
marking mi, fires is:

P{tk|mi} =
wk
qi

(32)

where qi is the quantity defined by Equation (14). Equation (32) represents
the probability that transition tk fires first, and is identical to Equation (20)
for SPNs, with a difference in the meaning of the parameters wk. When the
marking is vanishing, the parameters wk are the weights of the immediate tran-
sitions enabled in that marking and define the selection policy used to make the
choice. When the marking is tangible, the parameters wk of the timed transitions
enabled in that marking are the rates of their associated negative exponential
distributions. The average sojourn time in vanishing markings is zero, while the
average sojourn time in tangible markings is given by Equation (21).

Observing the evolution of the GSPN system, we can notice that the dis-
tribution of the sojourn time in an arbitrary marking can be expressed as a
composition of negative exponential and deterministically zero distributions: we
can thus recognize that the marking process {M(τ), τ ≥ 0} is a semi-Markov
stochastic process.

When several immediate transitions are enabled in the same vanishing mark-
ing, deciding which transition to fire first makes sense only in the case of conflicts.
If these immediate transitions do not “interfere” they could be fired simultane-
ously and the choice of firing only one of them at a time becomes an operational
rule of the model that hardly relates with the actual characteristics of the DEDS
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we are modelling. In this case the selection is inessential from the point of view
of the overall behaviour of the net.

Assuming that the GSPN is not confused, the computation of the ECSs of the
net corresponds to partitioning the set of immediate transitions into equivalence
classes such that transitions of the same partition may be in conflict among each
other in possible markings of the net, while transitions of different ECSs behave
in a truly concurrent manner.

When transitions belonging to the same ECS are the only ones enabled in a
given marking, one of them (say transition tk) is selected to fire with probability:

P{tk|mi} =
wk

ωk(mi)
(33)

where ωk(mi) is the weight of ECS(tk) in markingmi and is defined as follows:

ωk(mi) =
∑

tj∈[ECS(tk)∧E(mi)]

wj (34)

Within the ECS we may have transitions that are in direct as well as in indirect
conflicts. This means that the firing selection probabilities may be different for
the same transition in different markings. Equation (33) however ensures that if
we have two transitions (say transitions ti and tj), both enabled in two different
markings (say markingsmr andms), the ratios between the firing probabilities
of these two transitions in these two markings remain constant and in particular
equal to the ratio between the corresponding weights assigned at the moment of
the specification of the model.

During the evolution of a GSPN, it may happen that several ECSs are si-
multaneously enabled in a vanishing marking. According to the usual firing
mechanism of Petri nets, we should select the transition to fire by first non-
deterministically choosing one of the ECSs and then a transition within it. The
assumption that the GSPN is not confused guarantees that the way in which
the choice of the ECS is performed is irrelevant with respect to the associated
stochastic process. One possibility is that of computing the weight of the ECS
by adding the parameters of all the enabled transitions that belong to that ECS
and of using this weight to select the ECS with a method suggested by Equation
(32). A simple derivation shows that the use of this method implies that the
selection of the immediate transition to be fired in a vanishing marking can be
performed with the general formula (32) that was originally derived for timed
transitions (and thus for tangible markings) only [3,21]. Moreover, it is possible
to show that if we consider the probabilities associated with the many different
sequences of immediate transitions whose firings lead from a given vanishing
marking to a target tangible one, they turn out to be all equal [3].

This last property strongly depends on the absence of confusion in the GSPN;
the fact that the presence of confused subnets of immediate transitions within a
GSPN is an undesirable feature of the model can also be explained considering
the following example.



132 Gianfranco Balbo

p0 p1

p3

p4p2 t2

t1

t0

β

α

w0

Fig. 23. Example of a simple confused GSPN model

Suppose that a subnet is identified as confused using the structural confusion
condition of Section 5.1. Suppose also that the subnet has the structure depicted
in Fig. 23. Given the initial marking m0 = (p0 + p2), markings m1 = p3
and m2 = (p1 + p4) are reached with total probabilities

P{m0,m1} =
w0

(w0 + α)
β

(α + β)
P{m0,m2} =

α

(w0 + α)
.

From these expressions we can see that, although the picture suggests transi-
tions t0 and t2 as concurrent, and transitions t1 and t2 as members of a conflict
set, the first choice of firing either t0 or t2 is actually crucial for the possibility
of reaching the desired markings. In this case the value assigned by the analyst
to w0 becomes fundamental for the quantitative evaluation of the model.

Much more intriguing however is the behaviour of the subnet in Fig. 24(b)
that differs from that of Fig. 24(a) for the simple addition of place pa and
transition ta between transition t0 and place p1. Given the initial markingm0 =
(p0 + p2), lmarkings m1 = p3 and m2 = (p1 + p4) are reached in the case
of the subnet of Fig. 24(b) with total probabilities

P{m0,m1} =
w0

(w0 + α)
wa

(wa + α)
β

(α + β)

and
P{m0,m2} =

α

(w0 + α)
+

w0

(w0 + α)
α

(wa + α)
.

From a modelling point of view, there are good reasons to consider the two
subnets of Figs. 24(a) and 24(b) equivalent since the sequence of immediate
actions represented by t0 and ta of Fig. 24(b) should be reducible to transition t0
of Fig. 24(a) without affecting the behaviour of the model. Instead, the difference
among the total probabilities that we have just computed shows that, in the case
of confused models, the trivial action of splitting an atomic (and instantaneous)
action in two has drastic effects not only on the graphical description of the
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(b)

(a)

pa

p2 p4

p3

p1p0

p0 p1

p3

p4p2

α

t0

t2

β

t1

α

β

waw0

t0 ta

t1

t2

w0

Fig. 24. Comparison of two simple confused GSPN systems

model, but also (and more important) on the values of the results obtained from
its quantitative evaluation.

Marking Dependency - The firing times and the weights that we have con-
sidered so far were assumed to be independent of the marking of the GSPN.
In principle, however, it is possible to work with transition parameters that are
marking-dependent as pointed out at the beginning of this section. When one
or more timed transitions are enabled in a given marking, we can compute the
distribution of the sojourn time in that marking, as well as the probability of
the transition that fires first, using negative exponential distributions whose fir-
ing rates may depend on that specific marking. Similarly, the selection of the
immediate transition that fires in a vanishing marking enabling several immedi-
ate transitions can be computed using weighting factors that may be marking-
dependent. In all these cases, Equations (21), (32), (33), and (34) can be gener-
alized assuming that all the parameters are functions of the marking for which
they are computed.

In practice, the generality allowed by this extension (which was assumed by
the original GSPN proposal [4]) is in contrast with the claim of GSPNs as a
high-level language for the description of complex systems. In fact, while the
construction of a GSPN model requires a local view of the behaviour of the real
system, the specification of (general) marking-dependent parameters requires
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the analyst to be aware of the possible (global) states of the system. Moreover,
a dependency of the weights of conflicting immediate transitions on the marking
of places that are not part of the input set of any of the transitions comprised
in their ECS could lead to a new form of “confusion” that is not captured by
the definitions contained in Section 5.1 and discussed in the previous section.

For this reason, a restriction of the type of marking-dependency allowed in
GSPN models was informally proposed in [21]. A definition of marking depen-
dency that satisfies these restrictions can be obtained by allowing the specifi-
cation of marking dependent parameters as the product of a nominal rate (or
weight in the case of immediate transitions) and of a dependency function de-
fined in terms of the marking of the places that are connected to a transition
through its input and inhibition functions.

Denote with m/t the restriction of a generic marking M to the input and
inhibition sets of transition t:

m/t =
⋃
p∈(•t∪◦t)

m(p) (35)

Let f(m/t) be the marking dependency function that assumes positive val-
ues every time transition t is enabled in M ; using this notation, the marking
dependent parameters may be defined in the following manner:


µi(m) = f(m/Ti

) wi

ωj(m) = f(m/tj ) wj

in case of firing rates,

in case of weights.
(36)

Multiple-servers and infinite-servers can be represented as special cases of
timed transitions with marking dependent firing rates that are consistent with
this restriction. In particular, a timed transition Ti with a negative-exponential
delay distribution with parameter wi and with an infinite-server policy, has a
marking dependency function of the following form:

f(m/Ti
) = ei(m) (37)

where ei(m) is the enabling degree of transition Ti in marking m. Similarly,
a timed transition Ti with multiple-server policy of degree K has a marking
dependency function defined in the following way:

f(m/Ti
) = min (ei(m), K) (38)

Other interesting situations can be represented using the same technique, Fig.
25 depicts two such cases. In Fig. 25(a), we have a situation of two competing
infinite servers: transition T1 fires with rate w1m(p1) if place p0 is marked;
similarly for transition T2. Obviously both transitions are interrupted when the
first of the two fires removing the token from place p0.

Using δ(x) to represent the following step function:

δ(x) =



0

1

x = 0

x > 0
(39)
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p2p0p1

(a)

p3p2p1

(b)

T1T2T1

Fig. 25. Examples of complex marking dependency situations

we can define the marking dependency function as follows:


f(m/T1) = δ(ED(T1,m))m(p1)

and similarly

f(m/T2) = δ(ED(T2,m))m(p2)

(40)

Fig. 25(b) represents instead a server whose speed depends on a linear combi-
nation of the markings of all its input places. In this case the marking dependency
function may assume the form:

f(m/T1) = δ(e1(m))
∑
p∈•T1

αpm(p) αp ≥ 0,
∑
p∈•T1

αp = 1 (41)

8.5 Numerical Solution of GSPN Systems

The stochastic process associated with a k-bounded GSPN system with m0 as
its home state can be classified as a finite state space, stationary (homogeneous),
irreducible, and continuous-time semi-Markov process.

Semi-Markov processes can be analysed identifying an embedded (discrete-
time) Markov chain that describes the transitions from state to state of the
process. In the case of GSPNs, the embedded Markov chain (EMC) can be
recognized disregarding the concept of time and focusing the attention on the set
of states of the semi-Markov process. The specifications of a GSPN are sufficient
for the computation of the transition probabilities of such a chain.

Let RS, TS, and V S indicate the state space (the reachability set), the set of
tangible states (or markings) and the set of vanishing markings of the stochastic
process, respectively. The following relations hold among these sets:

RS = TS
⋃
V S, TS

⋂
V S = ∅.

The transition probability matrix U of the EMC can be obtained from the
specification of the model using the following expression:

uij =

∑
Tk∈Ej(mi)

wk

qi
(42)
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n this way, except for the diagonal elements of matrix U , ll the other transition
probabilities of the EMC an be computed using quation (32) independently of
whether the transition to be onsidered is timed or immediate, according to the
discussion contained t the end of Section 8.4.

By ordering the markings so that the vanishing ones correspond to the first
entries of the matrix and the tangible ones to the last, the transition probability
matrix U can be decomposed in the following manner:

U = A + B =



C

0

D

0


 +




0

E

0

F


 (43)

The elements of matrix A correspond to changes of markings induced by the
firing of immediate transitions; in particular, those of submatrix C are the
probabilities of moving from vanishing to vanishing markings, while those of
D correspond to transitions from vanishing to tangible markings. Similarly, the
elements of matrix B correspond to changes of markings caused by the firing
of timed transitions: E accounts for the probabilities of moving from tangible
to vanishing markings, while F comprises the probabilities of remaining within
tangible markings.

Indicating with ψ(n) the probability distribution of the EMC at step n (i.e.,
after n (state-) transitions performed by the EMC), we can compute this quantity
using the following expression

ψ(n) = ψ(0)Un (44)

where, as usual, ψ(0) represents the initial distribution of the EMC. The steady-
state probability distribution ψ can be obtained as the solution of the system of
linear equations 


ψ = ψ U

ψ 1T = 1
(45)

The steady-state probability distribution of the EMC, can be interpreted in
terms of numbers of (state-) transitions performed by the EMC. In fact, 1/ψi is
the mean recurrence time for state si (markingmi) measured in number of tran-
sition firings. The steady-state probability distribution of the stochastic process
associated with the GSPN system is thus obtained by weighting each entry ψi
with the sojourn time of its corresponding marking SJi and by normalizing the
whole distribution.

The solution method outlined so far, is computationally acceptable whenever
the size of the set of vanishing markings is small (compared with the size of the
set of tangible markings). However, this method requires the computation of
the steady-state probability of each vanishing marking that is known a priori
to be null. Moreover, vanishing markings, by enlarging the size of the transition



Introduction to Stochastic Petri Nets 137

probability matrix U , tend to make the solution more expensive and in some
cases even impossible to obtain.

In order to restrict the solution to quantities directly related with the com-
putation of the transient and steady-state probabilities of tangible markings, we
must reduce the model by computing the total transition probabilities among
tangible markings only, thus identifying a Reduced EMC (REMC).

To illustrate the method of reducing the EMC by removing the vanishing
markings, consider first the example of Fig. 26. This system contains two free-
choice conflicts corresponding to transitions T1 , T2, and t1, t2, respectively.
From the initial marking mi = p1, the system can move to marking mj = p3
following two different paths. The first corresponds to the firing of transition T1,
that happens with probability µ1

(µ1+µ2) , and that leads to the desired (target)
markingmj in one step only. The second corresponds to selecting transition T2

to fire first, followed by transition t1. The first of these two events happens with
probability µ2

(µ1+µ2) , and the second with probability α
(α+β) . The total probability

of this second path from mi to mj amounts to µ2
(µ1+µ2)

α
(α+β) . Notice that firing

transition T2 followed by transition t2 would lead to a different marking (in this
case the initial one). Firing transition T2 leads the system into an intermediate
(vanishing) marking mr. The total probability of moving from marking mi to
marking mj is thus in this case:

u′ij =
µ1

(µ1 + µ2)
+

µ2

(µ1 + µ2)
α

(α + β)
(46)

p1

p2 p3

T1T2

t1

t2β

α

µ1µ2

Fig. 26. A GSPN system with multiple paths between tangible markings

In general, upon the exit from a tangible marking, the system may “walk”
through several vanishing markings before ending in a tangible one. To make the
example more interesting, and to illustrate more complex cases, let us modify
the net of Fig. 26 as depicted in Fig. 27. In this new case the system can move
from marking m1 = p1 to marking m2 = p2 following four different paths. The
first corresponds again to firing transition T1 and thus to a direct move from the
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initial marking to the target one. This happens with probability µ1
(µ1+µ2+µ3) . The

second path corresponds to firing transition T2 followed by t1 (total probability
µ2

(µ1+µ2+µ3)
α

(α+β)); the third path corresponds to firing transition T3 followed
by transition t4 (total probability µ3

(µ1+µ2+µ3)
γ

(γ+δ)). Finally, the last path cor-
responds to firing transition T3 followed by transition t3 and then by transition
t1 which happens with probability µ3

(µ1+µ2+µ3)
δ

(γ+δ)
α

(α+β) .

p4
p2

p3

p1

T2 T1T3

t3

t4 t2

t1

γ β

α

µ2 µ1µ3

Fig. 27. A GSPN system with several multiple paths between tangible markings

In this case the total probability of moving from markingmi to markingmj

becomes:

u′ij =
µ1

(µ1 + µ2 + µ3)
+

µ2

(µ1 + µ2 + µ3)
α

(α + β)
+

µ3

(µ1 + µ2 + µ3)
γ

(γ + δ)
+

µ3

(µ1 + µ2 + µ3)
α

(α+ β)
δ

(γ + δ)
(47)

In general, recalling the structure of the U matrix, a direct move from mark-
ing mi to marking mj corresponds to a non-zero entry in block F (fij �= 0),
while a path from mi to mj via two intermediate vanishing markings corre-
sponds to the existence of

1. a non-zero entry in block E corresponding to a move from mi to a generic
intermediate marking mr;

2. a non-zero entry in block C from this generic state mr to another arbitrary
vanishing marking ms;

3. a corresponding non-zero entry in block D from ms to mj .

These informal considerations are precisely captured by the following formula:

u′ij = fij +
∑

r:mr∈V S
eirP{r→ s} dsj (48)
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where P{r → s} dsj is the probability that the net moves from vanishing marking
mr to tangible marking mj in an arbitrary number of steps, following a path
through vanishing markings only.

In order to provide a general and efficient method for the computation of
the state transition probability matrix U ′ of the REMC, we can observe that
Equation (48) can be rewritten in matrix notation in the following form:

U ′ = F + E G D (49)

where each entry grs of matrix G represents the probability of moving from
vanishing marking mr to vanishing marking ms in any number of steps, but
without hitting any intermediate tangible marking. G can be expressed with the
following formula:

G =
∞∑
n=0

Cn

In the computation of Cn, two possibilities may arise. The first corresponds
to the situation in which there are no loops among vanishing markings. This
means that for any vanishing marking mr ∈ V S there is a value n0r such that
any sequence of transition firings of length n ≥ n0r starting from such marking
must reach a tangible marking mj ∈ TS. In this case

∃n0 : ∀ n ≥ n0 Cn = 0

and

G =
∞∑
k=0

Ck =
n0∑
k=0

Ck

The second corresponds to the situation in which there are possibilities of loops
among vanishing markings, so that the GSPN may remain “trapped” within a
set of vanishing markings. In this case the irreducibility property of the semi-
Markov process associated with the GSPN system ensures that the following
results hold [69]:

lim
n→∞ Cn = 0

so that

G =
∞∑
k=0

Ck = [I − C]−1.

We can thus write (see [5,4] for details):

H =



( ∑n0

k=0 C
k
)
D

[I − C]−1 D

no loops among vanishing states

loops among vanishing states

from which we can conclude that an explicit expression for the desired total
transition probability among any two tangible markings is:

u′ij = fij +
∑
r∈V S

eir hrj ∀ i, j ∈ TS
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The transition probability matrix of the REMC can thus be expressed as

U ′ = F + E H (50)

Denoting again with ψ0(n) the probability distribution of the REMC at step
n (i.e., after the firing of n timed transitions), we can compute this quantity
using the following expression

ψ′(n) = ψ′(0)U ′n (51)

The steady-state probability distribution ψ′ can be obtained as the solution of
the system of linear equations 


ψ0 = ψ0 U 0

ψ0 1T = 1.
(52)

The stationary probability distribution associated with the set of tangible mark-
ings is thus readily obtained by means of their average sojourn times (see
Equation (21)) using a procedure similar vto that outlined before for the EMC
method.

The construction of the REMC defined over the set of tangible markings TS
implies that a transformation exists of the semi-Markov process associated with
every GSPN system into a CTMC. The steady-state probability distribution
over the tangible markings can thus be also obtained by a direct solution of
this CTMC. In our case, the infinitesimal generator Q′ of the CTMC associated
with a GSPN can be constructed from the transition probability rate matrix
U ′ of the REMC by dividing each of its rows by the mean sojourn time of the
corresponding tangible marking. To conform with the standard definition of the
infinitesimal generators, the diagonal elements ofQ′ are set equal to the negative
sum of the off-diagonal components:

q′ij =




1
SJi

u′ij

−∑j �=i q
′
ij

i �= j

i = j
(53)

This result shows that GSPNs, like SPNs, can be analysed by solving properly
associated CTMCs. This obviously implies that the transient state probability
distribution is the solution of the following differential equation

dπ′(τ)
dτ

= π′(τ)Q′ (54)

while the steady-state probability distribution over the tangible markings re-
quires the solution of the following system of linear equations:


π0 Q0 = 0

π0 1T = 1
(55)
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The computation of the performance indices defined over GSPN models can
be performed using the reward method discussed in Section 7.1 without any
additional difficulty.

The advantage of solving the system by first identifying the REMC is twofold.
First, the time and space complexity of the solution is reduced in most cases,
since the iterative methods used to solve the system of linear equations tend to
converge more slowly when applied with sparse matrices and an improvement
is obtained by eliminating the vanishing states thus obtaining a denser matrix
[29,15]. Second, by decreasing the impact of the size of the set of vanishing states
on the complexity of the solution method, we are allowed a greater freedom in
the explicit specification of the logical conditions of the original GSPN, making
it easier to understand.

The method outlined in this section exploits the elegant mathematical struc-
ture of the problem to overcome the difficulties due to the presence of loops of
immediate transitions. The loops considered in this derivation are of the “tran-
sient” type [29] and correspond to situations in which a steady-state analysis of
the model is possible. The REMC is instead impossible to construct following
this approach when the loop of immediate transitions is of the “absorbing” type
so that during its evolution the net can be trapped into a situation from which
it cannot exit. Except for very pathological cases [29] in which the model makes
sense despite the presence of such absorbing loops, GSPNs of this type are con-
sidered non-well behaving and their analysis is stopped once the existence of
absorbing loops of immediate transitions is discovered during the construction
of the infinitesimal generator of the REMC.

Computational Considerations - The mathematically elegant solution tech-
niques outlined in the previous part of this section suffer in practice of the
difficulties due to the size of the CTMCs associated with these models and of
the time-scale differences of the activities represented by transitions. In this sub-
section we will discuss the main difficulties encountered for the computation of
the transient and steady-state probability distributions and we will outline some
solution techniques; we will refer to the specialized literature for a deeper dis-
cussion of the problem.

Transient Solution - Uniformization Method
The first difficulty in the analysis of the CTMC associated with GSPN mod-
els comes from the evaluation of the transient probability distribution on the
markings of the net.

The apparently simple solution of Equation (8.5)

π′(τ) = π′(0)eQ
′
τ = π′(0)

∞∑
k=0

(Q′τ)k

k!
(56)

is unfortunately often rather difficult and unstable to compute [67]. Moler and
Van Loan [19] discuss nineteen ”dubious” ways to compute the exponential of
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relatively small matrices whose accuracy heavily depends on the norms of the
matrices.

One of the most commonly used methods for computing the transient prob-
abilities and that avoids most of these problems is called the uniformization
technique that is based on the following simple derivation.

Assume that the diagonal elements of the infinitesimal generator Q′ are
bounded, so that there exist a Γ such that:

|q′ii| ≤ Γ < ∞, ∀mi ∈ TS (57)

A (discretized) transition probability matrix R can be defined as follows

R = I +
1
Γ
Q′ (58)

From this definition we have that Q′ = Γ (R− I), so that

π′(τ) = π′(0)eQ
′
τ = π′(0)eτΓR−τΓI = π′(0)e−τΓ eτΓR (59)

since e−(τΓ )I = e−τΓI andR and I commute. The transient distribution at time
τ is thus obtained by computing an approximation to the infinite summation

π′(τ) = π′(0)
∞∑
k=0

Rke−Γτ
(Γτ)k

k!
(60)

which is called the uniformization equation [67]. The advantages of this tech-
nique are the simplicity of its implementation and the possibility to control the
approximation error. In fact, it is possible to easily identify the limit after which
to truncate the series in order to reduce the resulting error below any predefined
threshold ε [67]. The approximated result can thus be expressed in the following
form:

π′(τ) = π′(0)
K∑
k=0

Rke−Γτ
(Γτ)k

k!
(61)

Steady-State Solution - Time Scale Decomposition
As we have seen at the beginning of this section, the steady state probability
distribution of the markings of a GSPN model is obtained from the solution of
a system of linear equations. This problem, that is mathematically simple and
well understood, may pose considerable difficulties in the case of GSPNs due
to the size of their reachability set and to the possibility of having within the
infinitesimal generator of the corresponding CTMC rates that are several orders
of magnitude different from each other. In this section we will not survey the
many methods that can be employed for the solution of these large system of
linear equations; the interested reader is referred to [67] for a comprehensive
discussion of direct as well as of iterative techniques that can be employed to
obtain the desired solution keeping under control the storage requirements as
well as the computational costs. We will instead briefly outline a technique that
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can be conveniently used to obtain approximate results when the GSPN models
are of a special type and when transitions of different speeds are included in the
net.

Consider the case of the operation of a simple processor/memory system in
which the memory may fail while it is not accessed. Fig. 28 depicts the GSPN
model of such a system in which failures happen quite rarely and repairs require
a considerable amount of time to be completed. In a model of this type, besides
the distinction between immediate and timed transitions, we can further classify
timed transitions as fast and slow. In Fig. 28, transitions Treq and Tstr can be
considered fast, while transitions Tfail and Trep can be assumed to be slow.

prep

pidle

paccpreqpact

Treq

λ

Tend

µ

TfailγTrep δ

tstrt

Fig. 28. A simple processor/memory system with failures

A technique for solving these models in a computationally convenient manner
has been proposed by Ammar and Islam [11] and called Time Scale Decomposi-
tion Method (TSDM). This approach is based on the theory of Near Complete
Decomposability due to Simon and Ando [66] and further investigated by Cour-
tois [33]. In this case we may only observe that at the fast time scale, failures
and repairs are so far apart in time, that during these intervals the system can
be assumed to be fault-free. The theory of near decomposable systems says that
as the process approaches the long-term equilibrium, a short-term equilibrium
is reached between rare events, so that the short-term analysis can be approx-
imately separated from the analysis of the long-run dynamics of such systems.
The theory is developed by identifying within the Markov chains representing
these systems, groups of states with (internal) strong interaction compared with
the weak interaction existing among states of different groups. The method of
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Ammar and Islam tries to identify these groups at the GSPN level by removing
the slow transitions so that the net decomposes into several ”fast” subnets that
describe the short-run dynamics of the system. The individual solution of the
CTMCs associated with these subnets provides the basis for the computation of
aggregated representations that are used in the construction of a reduced sub-
net, called the aggregated GSPN (AGSPN), used for the analysis of the long-run
dynamics of the system.

pact

pidle

prep

Treq

λ

tstrt

pacc

Tend

µpreq

Fig. 29. Fast subnets derived form the simple processor/memory system with
failures of Fig. 28

Following the technique proposed by Ammar and Islam, we remove the slow
transitions from the net of Fig. 28 and we obtain the two subnets of Fig. 29,
only one of which is interesting for the construction of the aggregated net of
Fig. 30. Computing the solution of this first subnet (which is very simple since
it has only two tangible markings corresponding to the processor active locally
and to the processor accessing the memory), we observe that the firing rate of
transition Ta1 of the aggregated net is different from zero only when this fast
submodels is in its first state.

Assuming that ρ = λ/µ and σ = γ/δ, and indicating with π the solution
of the original model of Fig. 28, with π∗ its approximation computed with the
TSDM of Ammar and Islam, with π1 the solution of the fast submodel of Fig. 29,
and with P the solution of the aggregated model of Fig. 30, we have:

π1(pact + pidle) =
1

1 + ρ
. (62)
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pagg2

pagg1

Ta1αTa2 β

Fig. 30. Aggregated subnet derived form the simple processor/memory system
with failures of Fig. 28

From the solution of the fast model, we have that the equivalent failure rate is:

α =
γ

1 + ρ
, (63)

while the repair rate remain unchanged:

β = δ. (64)

With these definitions, the solution of the aggregated (high level) model is easily
obtained:

P(pagg1) =
1 + ρ

1 + ρ + σ
. (65)

Once we know the probabilities of the aggregated states, we use them as condi-
tional probabilities for obtaining detailed information on the states of the fast
models. We thus obtain:

π∗(pact + pidle) =
1

1 + ρ + σ
(66)

Solving the original (whole) model directly, we would have obtained:

π(pact + pidle) =
1

1 + ρ + σ + ρσ
δ

λ + δ

. (67)

The difference between π and π∗ is due to the approximate computation of
the aggregated rate α of transition Ta1 of the model of Fig. 29. The aggregated
result would have been exact if the equivalent failure rate α had the following
expression:

α =
γ

1 + ρ (1 + γ
λ+δ )

(68)
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that differs from that of Equation (8.5) only for the ratio γ/(λ+δ) that obviously
becomes negligible when γ � λ as it is the case for our model.

In general the technique presented in [11] cannot be applied in such a straight-
forward manner and requires some clever intervention from the analyst, thus
making it unsuitable for automatic applications. Under the condition of dealing
with a somehow more restricted class of models, a variation of the above tech-
nique has been presented by Blakemore and Tripathi [16] that, working at the
level of the state space of the CTMC underlying the GSPN model, first define the
groups of states used for the aggregation, and then identify the transitions (of
the GSPN model) that make the CTMC moving among these groups of states.
Depending on the choice of the groups of states, the transitions that induce a
change of state between groups (called cross transitions) can be either fast or
slow. An implementation of this method should make sure that cross transitions
are also slow in order for the TSD technique to be accurate, issuing a warning
when this condition is not met. The interested reader will find the details of this
last method, together with an algorithm for its automatic application, in [16].

8.6 Reducing GSPNs to SPNs

As we saw in the previous sections, immediate transitions, that have quite a ben-
eficial impact on the modelling power of GSPNs, unfortunately make the overall
analysis of GSPNs more complex than that of SPNs. Indeed, while for the latter
the reachability graph is isomorphic to the state transition rate diagram of the
CTMC underlying the SPN, such isomorphism does not exist for GSPNs, but is
obtained only after the elimination of vanishing markings. Since loops of imme-
diate transitions seldom appear in GSPN models, several solution methods have
been devised that discard the vanishing states “on the fly” thus trading space
with computational effort due to the fact that in some situations sequences of
vanishing states are repeatedly generated to compute the transition rates among
different pairs of tangible markings. Usually this method is computationally con-
venient, even if some extra work must be performed to preanalyze the model in
order to discover the presence of situations that can not be treated with this
technique. The choice of not saving vanishing markings has also the drawback
of making certain performance indices related with the firing of immediate tran-
sitions impossible to compute. Details on the comparison of the advantages and
disadvantages of storing vanishing markings can be found in [29]. An analysis
procedure different from that described in the previous sections consists in the
elimination of all immediate transitions from a given GSPN before starting the
generation of its reachability set, so as to produce an SPN whose underlying
continuous-time Markov chain is identical to that corresponding to the GSPN.

A complete and formal description of these reduction rules and of the class
of GSPNs for which it is possible to compute an equivalent SPN, can be found
in [22,34]. Here we only provide a concise and informal overview of the rules for
the reduction of a GSPN model to an equivalent SPN in the case of free-choice
conflicts.
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The basic idea behind the elimination of immediate transitions is quite sim-
ple and can be easily explained in its natural form by means of an example. The
model depicted in Fig. 31(a) is a free-choice GSPN subnet whose SPN counter-
part is shown in Fig. 31(b). The two systems are equivalent as far as tangible
states are concerned.

pa

p1 p2 p3

pa

pa

p2 p3p1

Ta

T3T2T1t1 t2 t3

Fig. 31. Removing immediate transitions: the free-choice case

To understand how we can transform the GSPN into its corresponding SPN,
consider what happens in the GSPN when Ta fires: the three immediate tran-
sitions t1, t2, and t3 become enabled, due to the arrival of one token in place
pb; they are the only transitions that are enabled in the subnet, and the choice
about which one to fire is made according to their associated weights. The basic
behaviour of the subnet in Fig. 31(a) is therefore that of “moving” tokens from
place pa to one of the three places p1, p2, and p3. The net in Fig. 31(b) is clearly
equivalent to that of Fig. 31(a) from the point of view of the flow of tokens
(token flow equivalence was defined in [13]).

When time is involved, token flow equivalence is not enough to ensure the
possibility of freely interchanging the two types of models. In particular, the
equivalence notion we are interested in must preserve the underlying stochastic
behaviour of the net. We must therefore take into account not only the possible
final states of the subnet, but also the rates at which the model transits from
state to state.

The operations of the GSPN subnet induce a movement of a token from pa
to pk, k = 1, 2, 3, with rate

wawk∑
j=1,2,3 wj

(69)
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where wa is the rate of the exponential distribution associated with timed tran-
sition Ta, and wk is the weight of immediate transition tk, so that

wk∑
j=1,2,3 wj

(70)

is the probability that tk is the transition that actually fires when t1, t2, and t3
are all enabled.

The timed transition Tk in the SPN model represents the firing of timed
transition Ta followed by immediate transition tk. If we define its firing rate as
in Equation (69), then the rate at which the SPN subnet in Fig. 31(b) induces a
movement of a token from pa to pk, given that transition Ta is enabled, is exactly
the same as for the GSPN subnet, and therefore the rates of the underlying
Markov processes are the same. Note that place pb was deleted in the reduction
process: this is not surprising because pb is a vanishing place, a place that is
never marked in a tangible marking.

The elimination procedure is somewhat more complex if the set of immediate
transitions enabled by the firing of a timed transition does not form a free-choice
conflict. Indeed, in this case the probability of firing an immediate transition may
depend also on the other simultaneously enabled immediate transitions. We are
thus forced to consider all possible cases. Details on this elimination procedure
can be found in [22,34].

9 Conclusions

In this paper we have shown how Stochastic Petri Nets can be conveniently
used for the analysis of complex models of DEDS and for their performance and
reliability evaluation.

The advantage of net-based models, however, goes far beyond the modelling
power of the formalism. In fact, the analysis of the structure of the graph and
the computation of its algebraic properties provide information such as invari-
ant conditions, flow-balance equations, and special structures of the reachability
graph that can be used to identify models with peculiar solution characteristics,
to optimize the solution techniques, and to develop approximation methods.

After an initial difficulty in accepting this new formalism due to its intrin-
sic complexity, SPNs are widely used today for the performance and reliability
evaluation of many practical systems.

What was originally perceived as a disadvantage is now often appreciated
because of the capability of the formalism to describe with precision complex
phenomena that are typical of distributed and parallel systems. Moreover, the
possibility of using the same model for both a qualitative analysis (functional
validation) and an efficiency and reliability evaluation is understood as an im-
portant result in the assessment of real systems. It is a common belief that
this approach should be further exploited and that more powerful and more
user-friendly software tools must be developed to make this integrated study
common practice for system designers.
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This success also highlights a whole set of new problems since larger and
larger models are being built and need to be analyzed. Dealing with large mod-
els is obviously difficult since even in the case of bounded nets, the size of their
reachability sets can become enormous, making their numerical evaluation im-
possible and discrete-event simulation extremely expensive.

Many important results have been developed in the SPN field since the time
of the introduction of this formalism. In our view, the most important ones are
those using the net structure of the model to ease the modelling effort and to
improve the efficiency of the solution methods. This allows the analyst to reason
about the system at the net level while hiding the complexity of the underlying
probabilistic structure.

We can summarize these new developments as follows:

– General Distributions - The assumption of the negative exponential distri-
bution of firing times was soon felt to be too restrictive for a convenient
representation of complex systems and several attempts were made to intro-
duce general firing time distributions into the formalism. Firing delays that
are characterized by phase-type distributions [57], were introduced by em-
ploying suitable subnet structures that could be easily embedded into GSPN
models [20].
Using the approach of identifying an embedded Markov chain, a technique
has been proposed for the analysis of deterministic and stochastic Petri nets
(DSPNs) [8]. In this case the embedded chain is used for the computation of
the steady-state solution of nets in which at most one transition of constant
delay is enabled in any marking. The transient analysis of DSPN models is
presented in [27].
It was soon recognized that when allowing full generality in the specification
of the model the possibility for the computation of analytical or numerical
solutions was lost and simulation was the only way to analyze these models
[41,40].
Recently, the class of DSPN models has been extended allowing the transi-
tions to have generally distributed firing times, provided that the constraint
of having at most one of these transitions enabled in each marking is still
satisfied [39]. This class of models is also called Markov Regenerative SPNs
[48,28] and special formulas for the computation of their steady-state solu-
tion were derived. A systematic study of this class of models can be found
in [30].

– Symmetries - When dealing with complex systems, it often happens that
their models can be constructed via the replication of many identical sub-
models. To deal with this problem, coloured Petri nets have been proposed
to allow the construction of more compact representations [47].
A special class of coloured Petri nets is that of Stochastic Well Formed Petri
Nets (SWNs) in which restrictions are introduced on the functions that reg-
ulate transition firings and colour manipulations [36,25,24]. The important
feature of SWNs is that the special form of their colour functions allows the
direct construction of an aggregated state space. With this formalism the
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symmetries intrinsic in the model are directly exploited to identify markings
that are representative of large groups of states having similar characteris-
tics. The aggregation method is fully automated and the direct generation
of the aggregated Markov chain is obtained with considerable saving at the
level of memory requirements. A significant advantage is also obtained when
the reduced state space is still too large for the model to be solved numeri-
cally and we must resort to simulation to obtain the performance indices of
interest. A method of symbolic simulation has been developed in which only
the aggregated markings are generated [26].

– Block Structure - The problem of mastering the complexity of models of real
systems has also been investigated using an approach driven by the idea that
efficient solutions of difficult problems must be sought from the earliest stage
of model construction. This approach tries to exploit the properties and the
structure of the net to guide the solution method. This principle implies
that, in order to understand how complex systems work, their behaviours
must be considered as following from the composition of their individual
parts. Thus in the development of the model, the analyst must maintain a
local view of the different components avoiding the direct representation of
global system features that, resulting from the interaction of the individual
parts, could exhibit unexpected behaviours in pathological cases that are
difficult to foresee. The Markov chain that underlies the entire model is only
formally specified in this approach in terms of the Markov chains (transition
probability matrices) of the individual submodels and of certain correcting
factors that account for the interactions among the submodels. The complete
transition probability matrix is never really constructed thereby allowing the
solution of extremely large models in a very efficient manner. This solution
technique also has the non-trivial advantage of being quite suitable for par-
allelization. In addition, the solution of the entire model is made easier when
the submodels interact in very special ways [18], thus making the correcting
factors extremely simple.

– Product-Form SPNs - To overcome the state-space explosion problem of the
Markov chains associated with these models, a class of SPNs has been identi-
fied in which the steady-state probability distribution of their markings can
be expressed in a product-form. The characterization of this class of SPNs
was first expressed in terms of the special repetitive structures exhibited by
their reachability graph [46,64] and subsequently in terms of structural cri-
teria that can be easily checked by inspecting the incidence matrix of the net
[43,42]. Proofs have been developed to show that it is possible to recognize
whether SPNs have a product-form solution strictly from the results of their
structural analysis. A complete characterization of this class of models can
be found in [17].

Despite these results that we have briefly overviewed, the state-space explo-
sion problem remains the major difficulty for using Petri net models in practical
applications. There is general consensus that the only means of successfully deal-
ing with large models is to use a “divide and conquer” approach in which the
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solution of the entire model is constructed on the basis of the solutions of its
individual submodels.

Compositionality is a property that is not natural in the Petri net field,
but the tendency of constructing complex models from many small “building
blocks” is becoming increasingly common and a need exists for also developing
this approach for Petri nets. New theoretical results, mostly inspired by the
research on “process algebras” [52] and “box calculus” [14], are being derived in
this direction contributing to the development of a solid theoretical framework
for compositionality both at the level of model construction and model solution.
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Abstract. If in stochastic modeling the idealized assumption of expo-
nential distributions is removed, the resulting stochastic process is non-
Markovian. In this tutorial paper we give an overview of possible analytic
approaches for such non-Markovian models. The modeling framework of
stochastic Petri nets is used, but the ideas are applicable to other frame-
works as well, if a state space can be constructed. We give a detailed
presentation of one analysis approach which is based on the method of
supplementary variables and give a brief review of another analysis ap-
proach which is based on embedding. A model of a timer for holding a
connection is used as a tutorial example and a model for a medium access
mechanism in wireless networks is used as a more complex example.

1 Introduction

The exponential distribution is popular in model-based performance and de-
pendability evaluations. Due to its memoryless property, the stochastic process
underlying a stochastic model is a continuous-time Markov chain which can be
analyzed easily. However, there is some debate whether the exponential distri-
bution is indeed adequate.

For arrival processes we know two properties which give us confidence in the
exponential distribution. In many cases the superposition of a large number of
independent renewal processes tends to a Poisson process, which has exponen-
tially distributed interarrival times. Furthermore, if a fixed interval is taken, the
arrival instants of a Poisson process inside that interval are completely random.
However, for service times there is no such reasoning.

Consider a simple non-Markovian model, a queuing system with a Poisson
arrival process, generally distributed service times, and infinite capacity (an
M/G/1 system). The well-known Pollaczek-Khintchine formula tells us that the
mean waiting time W for a customer in the queue and service unit is given by

W = X̄ +
ρX̄(1 + C2

X)
2(1− ρ)

,

where X̄ is the mean service time, C2
X the squared coefficient of variation of the

service time, and ρ the utilization (ratio of arrival rate and service rate). If we
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would ignore the general service time and would just replace it by an exponential
distribution with identical mean, the squared coefficient of variation would be
equal to one (C2

X = 1). For a utilization ρ = 0.5 and mean service time X̄ = 1
the mean waiting time for exponential service thus gets W = 2. Contrast this
with the situation when C2

X = 100, the mean waiting time is then W = 51.5,
approximately 25 times larger!

According to our experience it is hard to predict whether the higher mo-
ments of a distribution influence the measures of interest in a stochastic model
significantly. There are of course cases in which only the mean value affects the
steady-state result, this phenomenon is referred to as insensitivity. If steady-
state is sufficient for the problem at hand, one can proceed in those cases with
the analytically tractable exponential distribution. There are also cases in which
the higher moments affect the results, but the difference is negligible compared
with the other approximations of the model. Compare for instance in the above
example the mean waiting time for exponential services (W = 2) with the mean
waiting time for deterministic service times (W = 1.5). The results are of the
same order of magnitude, the difference is probably not significant taking into
account that a queue is an abstract model of a real system. From our experience
we can derive the following rules of thumb: for measures like mean waiting times
or throughputs, differences become often significant if the variances of some
distributions get large; for measures like loss probabilities even going from the
exponential distribution to deterministic values may cause differences in several
orders of magnitude.

The following list gives some examples of modeling problems in which non-
exponential distributions are natural:

– If measurements are taken (e.g., of some service time, such as transmissions
of packets in a communication system), it is very unlikely that the empiri-
cal distribution fits well to an exponential distribution. (Very often packet
lengths shows three peeks: small, medium and large packets.) The empirical
distribution can be fed into in a model.

– If only the minimum and the maximum of some quantity is known and more
information is not available, the uniform distribution would be a good choice.

– The Weibull distribution is common in reliability, since it can have age-
dependent failure rates and is thus better suited to model parts of the so-
called bath-tub curve.

– Many measurements of various quantities in computer and communication
systems, such as file transmission times in the Internet and file sizes on a
host give evidence of heavy tails. This means that the complement of the
distribution function does not decrease exponentially fast (as it is the case
for the exponential and similar distributions), but do decrease according to
a polynomial law. One example of such a heavy-tailed distribution is the
Pareto distribution with suitable parameters.

However, some quantities in a stochastic model are deterministic and not ran-
dom:
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– The clock cycles in computers are fixed. Very often activities last fixed mul-
tiples of these clocks cycles. For instance, packet switches of a wide area
network have an internal clock for their switching fabric and an external
clock with which packets are switched.

– For given bitrates and fixed packet lengths, transmission times are fixed.
This situation arises for instance in ATM cell switching or often in IP rout-
ing where the default segment size is 536 bytes. Also, many communication
systems have a slotted frame structure: frames are composed of a fixed num-
ber of slots with fixed size.

– Deadlines in real-time systems or timeouts in communication systems are
fixed.

– In reliability models repair times and scheduled maintenance intervals have
often a fixed length.

Both lists are non-exhaustive.
Assuming that this is sufficient motivation for non-Markovian models, we

provide a review of analytic approaches for such models in the rest of the paper.
We concentrate on state-space-based analysis, that is, for the analysis the state
space of the model needs to be constructed. Recently, most work in this direction
has been performed in the context of stochastic Petri nets (SPNs). We also use
this framework for the presentation. We refer the reader to [1] in this volume for a
tutorial about SPNs and do not discuss their definition and semantics here. The
reader should note that all presented analysis approaches would be applicable
to other specification techniques as well. If for instance process algebras or state
charts are extended in a similar way as Petri nets to stochastic Petri nets, the
same analysis is possible.

In Sec. 2 we give a short discussion of possible analytic approaches. One of
these approaches, the method of supplementary variables is discussed in detail
in Sec. 3. Another approach, which is based on embedding is briefly reviewed in
Sec. 4. Tool support is discussed in Sec. 5 and an application example is given
in Sec. 6.

This tutorial paper is based on the textbook [16]. In some parts of this
paper we give a slower introduction than in the textbook and in some parts we
summarize the results of the textbook. The interested reader is also directed to
[33] as a standard reference for Markovian SPNs, material can also be found in
[38] and [22]. In [31] the stationary analysis of deterministic and stochastic Petri
nets (DSPNs) is also investigated. DSPNs are a restricted class of non-Markovian
models in which both exponentially timed activities and deterministically timed
activities are allowed. Another tutorial paper about the development in non-
Markovian SPNs is [3].

2 Analysis Approaches for Non-Markovian Models

In a time-continuous Markovian model all distributions are exponential (geo-
metric in case of a time-discrete model). Due to the memoryless property it is
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sufficient to consider just the discrete state space of the underlying continuous-
time Markov chain (CTMC) (discrete-time Markov chain (DTMC)) [23]. From
the theory of stochastic processes, queuing theory, reliability theory, and from
the work on SPNs a number of analysis approaches is known for non-Markovian
stochastic models as well. In the following we give a brief review of these ap-
proaches.

State-space expansion based on continuous phase-type distributions [35,36].
A non-exponential distribution is given by the time to absorption in a CTMC.
As a prominent example, deterministic times can be approximated by an Erlang
distribution, which is composed of a sequence of exponential phases. Theoreti-
cally, an infinite number of phases is required to achieve a deterministic time,
the same is true for distributions with a discrete part. By the introduction of
phases an underlying CTMC with an expanded state space can be constructed.
The state space grows by a multiplicative factor of order MN , where N is the
number of concurrent non-exponential activities and M is the number of phases.
In the context of SPNs, the concept was introduced in [10]. Some relief in the
state-space increase is possible by taking symmetries into account using lumping
and/or using compositional techniques based on Kronecker algebra [21].

Themethod of supplementary variables [19,15]. In this method the memory of
activities with non-exponential distribution is represented as a “supplementary
variable” and added to the state space. This leads to a hybrid state space: a com-
ponent for the discrete state and a component for the continuous supplementary
variable. It is then possible to form equations which describe the dynamics of
the system just by using first principles and then to analyze this system of equa-
tions. If each discrete state is supplemented by at most one continuous variable,
efficient analysis procedures are possible. In the stationary case the solution can
be based on the analysis of Markov chains only and no discretization is required.
In the transient case the analysis can be based on a one-dimensional discretiza-
tion of the continuous variable. It is in principle possible to use the method of
supplementary variables also in more general cases with more than one continu-
ous variable added to each state, but then the numerical analysis becomes more
tedious.

The method of supplementary variables comes in several flavours: the sup-
plementary variables can be age or rest variables (expressing the time since start
or until end of an activity), forward or backward equations can be formulated,
and the equations can be expressed as differential or integral equations. Age
variables can be thought of as clocks, whereas rest variables can be thought
of as decrementing timers. Note that rest variables correspond very much to
event scheduling used in discrete-event simulation. In any case, supplementary
variables provide a straightforward way to extend formal methods by time.

In Sec. 3 we will use age variables and describe the dynamics of the stochastic
process by forward differential equations. Another variant is based on generalized
semi-Markov processes (GSMPs), which is applied for the analysis of DSPNs with
concurrent deterministically timed activities [32,31]. In the GSMP approach rest
variables are used and the dynamics of the stochastic process is described at
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equidistant time instants by integral equations. The solution requires a kernel
matrix with entries which can depend on 2N continuous variables which all have
to be discretized.

Probably the best-known method is based on embedding (also known as
Markov renewal theory). In this method the time axis is considered at certain
time instants, at which certain events occur. These time instants are referred to
as regeneration points, and it is possible to define a DTMC, referred to as em-
bedded Markov chain at these time instants. Then a generalized Markov renewal
equation can be formulated to express the evolution over time. The method re-
quires roughly the same restriction as the method of supplementary variables
(only one memory can be present in each state). Some generalizations are pos-
sible and will be discussed in Sec. 4.

State-space expansion based on discrete phase-type distributions [7,26]. In
this approach the greatest common divisor of all deterministic firing times has
to be taken as the basic time step. However, the approach requires the encoding
of phase counters in the markings and it leads to a significant increase of the
state space (e.g., when the deterministic times differ just slightly or by several
orders of magnitude). Kronecker algebra may be used in the discrete case as well
[40]. As a further generalization of modeling power it is possible to mix discrete
and continuous phase type distributions in the same model [28].

3 Analysis with Supplementary Variables

Non-Markovian SPNs are used for the model description. Instead of giving a
formal definition here, we just say that the model class is the same as generalized
stochastic Petri nets (GSPNs), as defined in [1] in this volume or in [33], in
which the firing times of the timed transitions are also allowed to have a general
distribution. We will discuss some subtle aspects of the underlying semantics
in Sec. 3.2. However, we will assume throughout the paper that the transitions
with non-exponential firing time distribution are mutually exclusive, that is, they
must not be concurrent. As a consequence, at most one age variable has to be
added to each state.

Figure 1 gives an overview of the required analysis steps. The model is de-
scribed as an SPN together with the measures of interest. Reward expressions
provide a convenient and flexible way to formulate the measures on the same
level as the model.

The SPN model is mapped on the reduced reachability graph (RRG) which
contains only tangible markings. The measures are mapped on correspond-
ing state-space based representations. The RRG is then used to construct the
stochastic process consisting of discrete states and continuous supplementary
variables. The data structures for the representation of the stochastic process
are three sparse matrices, as we will see later.

The numerical analysis is executed on these data structures and yields two
vectors: the state probabilities and the firing frequencies. These two vectors and
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state probabilities,
firing frequencies

SPN model + measures
(on model level, rate + impulse rewards)

RRG + measures 
(on state-space level)

numerical values of meaures

RRG generation

mapping

use information

stochastic process:
discrete states + continuous variables

sparse data structures

numerical

simple
computations

analysis

Fig. 1. Overview of the required analysis steps

the state-space based representation of the measures are used to compute the
numerical values of the measures in comparably simple computations.

3.1 Construction of the Underlying Stochastic Process

The RRG is constructed as for GSPNs, for instance by a breadth-first search
over the tangible markings and elimination of the immediate markings on-the-
fly. Typically, the construction of the RRG and of the underlying stochastic
process is performed in one pass. We present in the following an example in
which we construct the stochastic process with its discrete states and continuous
supplementary variables.

Figure 2 shows an SPN model which models the timeout for a connection
in a communication system, referred to a “on-demand connection with delayed
release” (OCDR). The model is an adapted version of [24] and taken from [16].
In the OCDR mechanism a connection is setup when the first packet arrives
and the connection is held when the buffer is empty until a timeout expires.
We assume that packets arrive according to a Poisson process with a rate of
100 per second, that the packet lengths are uniformly distributed from 100 to
2000 bytes, that the bit rate is 10 Mbps, that connection setup time is 10 ms
and the timeout is 20 ms. One second is taken as the underlying time unit.
Transition arrival models packet arrivals and has an exponentially distributed
firing time with rate λ = 100. Transition service models packet transmissions
and has a uniformly distributed firing time from 0.00008 to 0.0016. Transition
connect models connection setup and has a deterministic firing time of 0.01 and
transition releasemodels the timeout and has a deterministic firing time of 0.02.
Transition start models the start of a packet transmission and is immediate.

Measures of interest could be the mean number of packets in the system
N = E[#buffer+#busy] and the system throughput S = E[#service]. E[·] is
the expected value operator, #place gives the number of tokens in place (referred
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Fig. 2. Example SPN model

to as rate reward), and #transition gives a value equal to one when transition
fires (referred to as impulse reward). Formally, an impulse reward is a Dirac
impulse with area one, see [16], pp. 47–51. These are two examples of reward-
based measure definitions. More complex expressions can be formed by common
arithmetic and boolean operators. Note that the formulation is in terms of model-
level entities (and not in terms of the state space).

We will now construct the underlying stochastic process. Formally, it is a
tuple

{(N(t), X(t)), t > 0},
where N(t) is the discrete process which describes the tangible marking andX(t)
is the continuous supplementary variable which describes the age (that is, the
time since the instant of enabling) of the enabled transition with non-exponential
distribution. For convenience we use the following numbering for the states of
the discrete process:

N(t) = #buffer+#busy + 1{#notconnected=0}(K + 1).

Table 1 shows the mapping of state numbers on tangible markings for K = 2
(the ordering of places is: free, buffer, busy, connected, notconnected).

Figure 3 (a) - (f) shows the single steps in the construction of the stochas-
tic process. The stochastic process is visualized by its state-transition diagram.
Starting with state 0 (the initial marking shown in Fig. 2), each step explores the
enabled transitions and next reachable states of the current state. The current
state is drawn with a thick line. If in a state only exponentially timed transi-
tions are enabled, no age variable has to be added to the discrete state. This
is the case for state 0. An exponential state transition is labelled by its rate.
For instance, the firing of arrival in the initial marking corresponds to the arc
from state 0 to state 1 labelled by λ. If in a state a non-exponentially timed
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Table 1. State numbers of the OCDR model

state number tangible marking

0 (2,0,0,0,1)
1 (1,1,0,0,1)
2 (0,2,0,0,1)
3 (2,0,0,1,0)
4 (1,0,1,0,0)
5 (0,1,1,0,0)

0 1,x

λ

(x)

0 1,x 2,x

λ λ

µc

4,x

(a) current state: 0 (b) current state: 1

(x) (x)

0 1,x 2,x

λ λ

5,x

µc µc

4,x
(x)µs

(x) (x)

0 1,x 2,x

λ λ

5,x

λ

µc µc

4,x3,x

(c) current state: 2 (d) current state: 4

(x)µs (x)µs

(x) (x)

0 1,x 2,x

λ λ

5,x

λ

µc µc

4,x3,x

(x)µs (x)µs

(x)
(x) (x)

0 1,x 2,x

λ λ

5,x

λ
r µc µc

µ
λ

4,x3,x

(e) current state: 5 (f) current state: 3

Fig. 3. Construction of the underlying stochastic process



164 Reinhard German

transition is enabled, an age variable x is added to the state description. This is
the case for all states besides state 0. x represents the time since enabling of the
non-exponentially timed transition which is enabled in this state. Therefore x is
the age variable of connect in states 1 and 2, of service in state 4 and 5, and
of release in state 3. A state transition caused by a non-exponentially timed
transition is labelled by its age-dependent firing rate. For instance, the firing of
connect in state 1 corresponds to the arc from state 1 to state 4 labelled by

µc(x) =
f c(x)

1− F c(x)
,

where F c(x) and f c(x) are the distribution and density functions of the firing
time of connect. Analogously, µs(x) and µr(x) are the age-dependent firing rates
of service and release.

The exponential transition from state 3 to state 4 in Fig. 3 (f) requires
special attention. It corresponds to the firing of arrival when buffer and
busy are empty but connected holds a token. In state 3 deterministic tran-
sition release is also enabled (modeling the timeout). After arrival has fired
immediate transition start removes the token from connected and release is
preempted (timeout timer is stopped). After some time release will be enabled
again. It is therefore important to specify exactly what happens with the age
variable in this situation. In this model we assume that it is reset to zero when
release becomes preempted. This preemption policy is referred to as preemptive
repeat different.

The model-level measure definitions can be translated into rate and impulse
reward vectors. Rate reward vectors are later multiplied with the vector of state
probabilities and impulse reward vectors with the vector of general firing fre-
quencies (see below) to get the desired expected values. In the given example
we get for N the rate reward vector rrN = (0, 1, 2, 0, 1, 2) and we get for S the
impulse reward vector irS = (0, 0, 0, 0, 1, 1).

3.2 Model Class and Notation

The class of stochastic processes under consideration is given by the marking
processes of SPNs with the following properties:

1. The set of tangible markings (the discrete state space) is finite.
2. The general transitions are mutually exclusive (there is no tangible marking

in which two or more are enabled).
3. The preemption policy of all transitions is preemptive repeat different.
4. The general firing time distributions are marking-independent.

Properties 2 and 3 ensure that at most one supplementary variable has to be
added to each discrete state. Generalizations of properties 3 and 4 are possible
and discussed in Sec. 3.5.

For describing the stochastic process we introduce some notation:

– t is the model time and x is the supplementary age variable,
– g ∈ G is a general transition, G the set of all general transitions,
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– F g(x), fg(x), µg(x), and F̄ g(x) refer to the distribution, density, instanta-
neous rate, and complementary distribution function, respectively,

– S is the state space,
– Sg, SG, and SE are the subsets in which g is enabled, any general transition

is enabled, only exponential transitions are enabled, respectively.

In the example of Sec. 3.1 the three general transitions service, connect,
and release are abbreviated by their first letters s, c, and r, respectively. The
general firing time distributions are denoted as F s(x), F c(x), and F r(x). The set
of general transitions is given by G = {s, c, r}. According to the given numbering
of states we have for K = 2 the following state space and subsets:

– S = {0, 1, 2, 3, 4, 5}
– SE = {0}, SG = {1, 2, 3, 4, 5}
– Ss = {4, 5}, Sc = {1, 2}, and Sr = {3}
The state transitions of the stochastic process are given by the three matrices

Q, Q̄, and ∆ defined as follows:

– The non-diagonal entry qij , i �= j, is the rate of the exponential state tran-
sitions from i to j which do not preempt a general transition; the diagonal
entry qii is the negative sum of all rates of exponential state transitions out
of state i (including those which preempt a general transition).

– q̄ij is the rate of the exponential state transitions from i to j which preempt
a general transition.

– δij = Pr{N(t+) = j | N(t−) = i, a general transition fires at t}; in words:
δij is the branching probability, it is the probability that the firing of a general
transition g leads to state j, given that g fires in i.

All matrices are square matrices and their dimension is given by the cardinality
of the state space, |S|. Q is a defective generator matrix since the outgoing rates
of preemptive state transitions are not included.

Figure 4 shows the matrices in the example of Sec. 3.1. The left side shows
the matrices and the right side shows the state-transition diagram with only
those state transitions which are represented by the matrix entries.

For the analysis of the stochastic process we need quantities defined in Ta-
ble 2; π(t), ϕ(t), π(t, x), and p(t, x) are vectors of these quantities and have
dimension |S|. πn(t, x) dx can be interpreted as the probability that the discrete
state is n and that the elapsed general firing time is in a neighbourhood of x.
pn(t, x) dx can be interpreted as the probability that the discrete state is n and
that the elapsed general firing time is in a neighbourhood of x, given that the
transition has not yet fired. For fixed values of t, πn(t, x) is a defective density
function and pn(t, x) a defective instantaneous rate function. ϕn(t) is the rate
of firing of the general transition enabled in state n at time t.

We also use the following filter concept: for subset SG ⊆ S a filter matrix
IG is defined as the diagonal matrix whose ith entry is equal to one if i ∈ SG
and equal to zero otherwise. In a similar way, filters can be defined for Sg and
SE . Filters are used to filter out certain parts of the vectors and matrices. Given
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Table 2. Definition of quantities required for the analysis

quantity definition

state probability πn(t) = Pr{N(t) = n}

age density πn(t, x) =
∂

∂x
Pr{N(t) = n, X(t) ≤ x}

age intensity pn(t, x) = πn(t, x)/F̄ g(x)

general firing frequency ϕn(t) =
∫∞
0

πn(t, x)µ
g(x) dx

Q =




−λ λ 0 0 0 0
0 −λ λ 0 0 0
0 0 0 0 0 0
0 0 0 −λ 0 0
0 0 0 0 −λ λ
0 0 0 0 0 0




0 1,x 2,x

λ λ

5,x4,x3,x

λ

(a) matrix Q and corresponding state transitions

Q̄ =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 λ 0
0 0 0 0 0 0
0 0 0 0 0 0




0 1,x 2,x

5,x

λ

4,x3,x

(b) matrix Q̄ and corresponding state transition

∆ =




0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




(x)µs (x)µs

(x)
(x) (x)

0 1,x 2,x

5,x

r µc µc

µ

4,x3,x

(c) matrix ∆ and corresponding state transitions

Fig. 4. Matrices and corresponding state transitions
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a vector v and a filter IA, the filtered vector is vA = vIA, given a matrix M
the filtered matrix is MA = IAM. It is possible to filter out both rows and
columns of a matrix: a multiplication with a filter from the left filters out rows
and a multiplication from the right filters out columns. Applied to a matrix
the first superscript denotes the set of originating states and the second super-
script the set of destination states. The concept of filtering allows us to write
all vector/matrix equations without caring about the cardinality of the different
portions of S and about the ordering of the states.

3.3 Transient Analysis

The dynamics of the stochastic process can be described by a system of differen-
tial and integral equations. As illustration we derive a single state equation for
state 1 of the example of Sec. 3.1.

Consider the possible change of the system in an interval [t, t + ∆t] and
assume that x > 0 at the beginning of the interval. The age density of state
1 can change by the following single-step state transitions: state 1 can be left,
either to state 2 or 4; an entry from state 0 in one step is not possible since
x > 0. This is expressed as a difference equation:

π1(t+∆t, x+∆t) = π1(t, x) − π1(t, x)(λ∆t + µc(x)∆t) + o(∆t),

where o(∆t) is a term with higher order than ∆t and represents state transition
paths with more than one step. Subtracting π1(t, x) on both sides and dividing
by ∆t leads to:

π1(t+∆t, x+∆t)− π1(t, x)
∆t

= −(λ+ µc(x))π1(t, x) +
o(∆t)
∆t

,

taking the limit ∆t → 0 leads then to the partial differential equation (PDE):

∂

∂t
π1(t, x) +

∂

∂x
π1(t, x) = −(λ+ µc(x))π1(t, x).

Substituting π1(t, x) = p1(t, x)F̄ (x) in the PDE we can derive the simplified
PDE

∂

∂t
p1(t, x) +

∂

∂x
p1(t, x) = −λp1(t, x),

which no longer contains a term with µc(x).
Now consider the possible change of the system in an interval [t, t+∆t] and

assume that x = 0 at the beginning of the interval. The system can not have
been in state 1 immediately before t, a single-step entry is only possible from
state 0:

Pr{N(t) = 1, X(t) ≤ ∆t} =
∫ ∆t

0

π1(t, x) dx = π0(t)λ∆t+ o(∆t).
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Expanding the integral up to the first term, taking ∆t → 0, and substituting
π1(t, x) = p1(t, x)F̄ (x) leads to

p1(t, 0) = λπ0(t),

which is a boundary condition for the PDE.
Equations for the other states can be derived with similar reasoning, for all

states with a supplementary variable we get a PDE and a boundary condition,
for all states without a supplementary variable we get an ordinary differential
equation (ODE). These equations must be combined with initial conditions for
t = 0 and integrals which express the state probabilities and general firing fre-
quencies in terms of the age intensities.

Using the matrix notation of Sec. 3.2 the complete system of equations is
given in Box 1. A detailed derivation can be found in [16], Chapter 7.

ODEs:
d

dt
�

E(t) = �E(t)QE,E + '(t)∆G,E + �G(t)Q̄G,E

PDEs:
∂

∂t
pG(t, x) +

∂

∂x
pG(t, x) = pG(t, x)QG

Initial conditions:
pG(0, x) = �G(0)δ(x)

Boundary conditions:

pG(t, 0) = �E(t)QE,G + '(t)∆G,G + �G(t)Q̄G,G

Integrals:

'(t) =
∑
g∈G

∫ ∞

0

pg(t, x)fg(x) dx, �
G(t) =

∑
g∈G

∫ ∞

0

pg(t, x)F̄ g(x) dx

Box 1: Transient state equations

The PDEs describe a propagation of the age intensities along characteristic
lines with slope one (the lines on which t and x increase with same speed), they
can therefore be simplified to:

pG(t, x) = pG(t0 + ϑ, x0 + ϑ) = pG(t0, x0)eQ
Gϑ. (1)

A numerical analysis of the equation system is possible by discretization.
In [16] an algorithm is described which steps over discretized values of t and
needs to store at the current value of t the age densities for discrete values of
x. Therefore, only discretized values in one dimension need to be stored. The
main operation of the algorithm is to evaluate the age densities at (t+ϑ, x+ ϑ)
from known values at (t, x). Figure 5 shows the computational dependencies



Non-Markovian Analysis 169

between the age densities at different points. From Eq. (1) we see that these
computations are similar to the transient evaluation of a Markov chain; it is
possible to use uniformization for it. These computations are responsible for the
major computational costs of the algorithm. The other steps of the algorithm
use the information of the remaining equations (the ODEs, boundary conditions,
and integrals); these steps are Runge-Kutta ODE solution, integration, inter-
and extrapolation. The algorithm uses an adaptive step-size, two error control
mechanisms and is able to deal with possible discontinuities explicitly. It has
been realized in the tools SPNica and TimeNET, we have solved models up to
approximately 100,000 states with it.

tit i+1

g

x

maxx

t

g(t,x):p

Fig. 5. Discretization of the PDE system

3.4 Stationary Analysis

If “long-term average” measures are sufficient, the state equations and their
analysis can be simplified such that no discretization is required. Very often
in performance related studies such long-term results are sufficient whereas in
reliability evaluations mostly time-dependent results are required.

The long run corresponds to taking t to infinity: in the equations t cancels
out and we arrive at a system of ODEs combined with some linear equations
(i.e., πn = limt→∞ πn(t)). As a technical problem sometimes this limit (referred
to as steady-state) does not exist (think of a model cycling between two states
with deterministically timed state transitions). In such a case we can take time-
averaged limits (i.e., πn = limt→∞ 1

t

∫ t
0 πn(τ) dτ), leading to the same equations,

referred to as the stationary state equations.
With this limit operation we get the vectors π, ϕ, π(x), and p(x) and the

stationary state equations shown in Box 2.
Simple operations transform this system to a form suitable for analysis. The

ODEs solution can be expressed as a matrix exponential and inserted into the
integrals. If we define the two matrices Ω and Ψ



170 Reinhard German

The ODEs become balance equations:

0 = �EQE,E + '∆G,E + �GQ̄G,E

The PDEs become ODEs:
d

dx
pG(x) = pG(x)QG

Boundary conditions:

pG(0) = �EQE,G +'∆G,G + �GQ̄G,G

Integrals:

' =
∑
g∈G

∫ ∞

0

pg(x)fg(x) dx, �
G =

∑
g∈G

∫ ∞

0

pg(x)F̄ g(x) dx

Additional normalization condition:

�e = 1

Box 2: Stationary state equations

Ω =
∑
g∈G

Ig
∫ ∞

0

eQ
gxfg(x) dx, Ψ =

∑
g∈G

Ig
∫ ∞

0

eQ
gxF̄ g(x) dx, (2)

the firing frequencies ϕ and general state probabilities πG get:

ϕ =
∑
g∈G

∫ ∞

0

pg(0)eQ
gxfg(x) dx = pG(0)Ω

and
πG =

∑
g∈G

∫ ∞

0

pg(0)eQ
gxF̄ g(x) dx = pG(0)Ψ.

Insertion of this into the balance equations and boundary conditions and adding
them leads to the linear equations

0 = wS,

where w = πE + pG(0) and S = QE + Ω∆ + ΨQ̄ − IG. Insertion into the
normalization condition leads to

π = wD,

where D = IE +Ψ. In [16] Chapter 8 a more detailed derivation can be found.
It can be shown that S is the generator of a continuous time Markov chain (to

which we refer as embedded CTMC) and that the stationary solution is unique if
this embedded CTMC has at most one recurrent class. The required algorithmic
steps are summarized as follows:
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1. compute the integrals of the matrix exponentials of Ω and Ψ, a generalized
version of uniformization can be used for this purpose,

2. solve the linear system of the embedded CTMC 0 = wS, subject to the
normalization condition π = wD by common methods for Markov chains,

3. back substitute w in order to get the state probabilities and general firing
frequencies: π = wD, ϕ = wΩ.

From π and ϕ it is easy to compute the values of the measures by multiplying
with the rate and impulse reward vectors. In the example of Sec. 3.1 the mean
waiting time of packets is given by the ratio of N and S (following Little’s law):
W = (0, 1, 2, 0, 1, 2)π/(0, 0, 0, 0, 1, 1)ϕ. With the TimeNET implementation of
the algorithm and with K = 1000 we get the curve for the mean waiting time
shown in Fig. 6. The computation of all points of the curve typically lasts some
minutes on a “normal” workstation.
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Fig. 6. Mean waiting time versus packet arrival rate for the OCDR model

3.5 Generalizations

A number of generalizations of the model class are possible [16]. Instead of “pre-
emptive repeat different” also the policy “preemptive resume” is possible, where
the age of a preempted transition is preserved until it gets enabled again (the
transient case has been covered in [44]). This is useful for modeling activities
which can be interrupted but which do not loose their performed work in that
period. Additionally it is possible to let the general distributions of the firing
times depend on the current marking. This is useful for modeling activities with
varying speeds, as for instance transmission of a large message over a link with
varying transmission rates. Finally, it is possible to deal with reducible models
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in the stationary case with the same costs as the presented stationary analysis
algorithm for irreducible models, see [16], Chapter 11. This is useful in some reli-
ability models, for instance it is possible to compute the mean time to absorption
or the probability to end up in safe/unsafe failure states.

4 Analysis Based on Embedding

Another approach for analyzing non-Markovian models is based on embedding.
More generally speaking, it find its roots in Markov renewal theory. Most text-
books about queueing systems present this approach for M/G/1 and related
systems, e.g., [29]. Historically, this approach was used to derive the first results
for non-Markovian SPNs [34].

The idea is to sample the process at certain instants of time referred to as
regeneration points. By an appropriate choice the process is memoryless at these
regeneration points and its evolution becomes a probabilistic replica after each
regeneration point. It is then possible to define a discrete-time Markov chain,
referred to as the embedded Markov chain (EMC), to study the dynamics of this
EMC, and to derive from its solution the solution of the actual process.

In case of a non-Markovian SPN with the properties given at the beginning
of Sec. 3.2, the regeneration points can be chosen as follows:

– If the process is in an exponential state n ∈ SE , the instant of the next state
transition is the next regeneration point.

– If the process is in a general state n ∈ SG, the instant when the general
transition fires or is preempted is the next regeneration point.

The situation is illustrated in Fig. 7: in general states exponential state transi-
tions are possible and have to be taken into account.

in S G in S Gin S E

exponential state transitions

t

regeneration points

Fig. 7. Regeneration points in a non-Markovian SPN

The time-dependent behaviour can be expressed by the so-called generalized
Markov renewal equations [6], a system of Volterra integral equations of the
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second type. An analysis is possible by discretization. As a major difference to
the method of supplementary variables a matrix and not just a vector of unknown
functions has to be discretized. A Laplace domain analysis is also possible but
restricted to models with small state space.

Stationary state equations can be derived from the generalized Markov re-
newal equations by taking t to infinity or directly from the regenerative structure
of the process. The EMC expresses the state transition probabilities from one
regeneration point to the other, it is represented by a stochastic matrix P

P = IE − diag−1
(
QE
)
QE +Ω∆+ΨQ̄,

where diag−1 (·) is the inverse of the diagonal matrix restricted to non-zero en-
tries. The first two terms on the right side represent the transition probabilities
in exponential states, the third term represents the transition probabilities ac-
cording to the firing of general transitions and the last term represents transition
probabilities according to the preemption of general transitions. The stationary
solution of this EMC can be obtained from the solution of the linear system

u = uP, ue = 1.

The stationary probability of state n of the actual process is then found by
dividing the expected sojourn time in state n by the expected time between two
arbitrary regeneration points. This operation is expressed in matrix terms as:

π =
uC
uCe

.

Summarizing, the required algorithmic steps are:

1. compute the integrals of the matrix exponentials of Ω and Ψ,
2. solve the linear system of the EMC u = uP, subject to the normalization

condition ue = 1,
3. back substitute u in order to get the state probabilities: π = uC/uCe.

The similarities with the algorithm derived with supplementary variables are
obvious. It is indeed possible to formally transform the state equations derived
with supplementary variables and those with Markov renewal theory into each
other [20]. In the stationary case, both algorithms can be regarded as identical,
but in the transient case there are significant differences.

Two extensions of the approach based on Markov renewal theory are pos-
sible. The algorithm can be organized in a pure iterative version which does
not require the storage of Ω and Ψ [17]. Storage of these matrices is expensive
since they are densely populated. In another work the embedding scheme has
been extended to cascaded intervals (referred to a cascaded embedding) [14]. This
gives a limited support for concurrent deterministic transitions. A layered iter-
ative algorithm can be used for the stationary analysis and phase counters or
discretization are not required. More work has also been done for dealing with
different preemption policies [4,2,42,41,43] and for dealing with simultaneously
enabled general transitions [37].
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5 Tool Support

The following is a list of tools which support the analysis of non-Markovian
models.

– ESP was developed at the University of Turin by Cumani and Bobbio [10]. It
is based on Fortran and has a textual interface. Generally distributed firing
times as well as preemption policies preemptive repeat different and preemp-
tive resume can be represented by continuous phase type distributions. The
expanded state space is constructed automatically.

– DSPNexpress was developed by Lindemann and coworkers at the Technis-
che Universität Berlin and University of Dortmund [30,31]. It is especially
tailored to the analysis of DSPNs, the analysis components are based on
embedding and GSMPs. DSPNexpress provides a graphical user interface
(GUI).
See http://www4.cs.uni-dortmund.de/home/lindemann/

– UltraSAN was developed by Sanders and coworkers at the University of
Arizona and at the University of Illinois at Urbana-Champaign [9,39]. Be-
sides various analysis and simulation components, hierarchical modeling fea-
tures, and a GUI, UltraSAN provides a component for the stationary analysis
of DSPN-like models based on embedding.
See http://www.crhc.uiuc.edu/PERFORM/

– TimeNET was developed as a successor of DSPNexpress at the Technische
Universität Berlin by the author and coworkers [18,12]. It provides com-
ponents for the transient and stationary analysis and simulation for non-
Markovian SPNs, modeling with discrete-time SPNs, colored and hierarchi-
cal SPNs, a GUI, animation of the token game and on-line result visualiza-
tion. The analysis components for non-Markovian SPNs are based on the
approaches described in this paper. Figure 8 gives a snapshot of the GUI
with the running tutorial example.
See http://pdv.cs.tu-berlin.de/forschung/timenet/

– WebSPN was developed by Bobbio, Puliafito, Scarpa, and Telek from the
Universities of Turin, Catania, and Budapest. It provides a Web-accessible
GUI and is aimed for the analysis of non-Markovian SPNs with different
preemption policies. The analysis component relies on discrete-time phase
type distributions and on automatic mapping on an expanded DTMC [26].
See http://sun195.iit.unict.it/ webspn/webspn2/

– TANGRAM-II was developed at the Federal University of Rio de Janeiro
by de Souza e Silva and coworkers [5]. It provides an object-oriented modeling
paradigm for the networking context. It includes models with exponential
and deterministic activities and offers a stationary analysis component based
on embedding and on optimized iteration formulas.

– SPNica was developed by the author as a prototype tool in Mathematica.
It offers a realization of several analysis algorithms for non-Markovian SPNs.
It takes advantage of many features of Mathematica (formulation of expres-
sions, visualization, ...) but is not designed for efficiency. It is possible to solve
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models with up to approximately 1000 states and to inspect the internal data
structures. Down-loadable from ftp://ftp.wiley.co.uk/pub/books/german

Fig. 8. Graphical user interface of TimeNET 3.0

A list of Petri net tools is accessible at the Petri net Web site via
http://www.daimi.au.dk/PetriNets/tools/. Recently, a number of tools have been
developed which have an open architecture and support multiple modeling for-
malisms: SMART [8] at the College of William and Mary, Möbius [11] at the
University of Illinois at Urbana-Champaign, and IDEAS at Duke University [13].
An open architecture allows the exchange of evaluation components with other
tools, and multiple modeling formalisms allow a user to select a domain-specific
modeling formalism.

6 Example: IEEE 802.11 WLAN MAC

The tutorial example we have been using so far is relatively simple. In this sec-
tion we outline a modeling study with a more complex model to give the reader
a better impression of the potential use of the methodology. The results are
obtained with TimeNET and SPNica. The system under study is the medium
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access control (MAC) for wireless local area networks (WLANs) according to
IEEE 802.11 [27]. The MAC mechanism is a variant of so-called carrier sense
multiple access, a collision detection like in wired media is not practical. We
compare two proposed mechanisms: Basis Access (BA) and RTS/CTS (RTS).
The interesting modeling question is to determine the performance (in terms
of throughput and mean delay) of the two mechanisms in the presence of colli-
sions (transmissions which start at almost the same time get garbled and waste
bandwidth).

A detailed model of the mechanism (the two variants can be modeled by
different firing times of the transitions) is shown in Fig. 9. It models one station
with a Poisson arrival process (exponential transition gen). Successful trans-
missions are modeled by general transition Ttxsucc, colliding transmissions by
general transition Ttxcoll and the backoff by general transition Tbackoff. The
whole WLAN with N stations is modeled by duplicating and connecting the
shown subnet N times (TimeNET provides mechanisms which makes this dupli-
cation easier). The detailed model tries to model the internal behaviour of the
mechanism as correctly as possible. However, it is not possible to analyse this
model numerically, not only because of the concurrent general transitions, also
because the state space gets too large. Therefore we used discrete-event simula-
tion to get numerical values out of this model (with 99 % confidence intervals
and maximum relative error of 1 %).

From the detailed model the compact model shown in Fig. 10 can be derived
by folding the station subnets and by introducing some approximations. Tran-
sition gen is still exponential but has now “infinite-server” semantics (the firing
rate is multiplied with the number of tokens in place idle). Deterministic tran-
sition Tvuln models the “vulnerable period” in which stations do not percept an
ongoing transmission and deterministic transition Ttimeout models the timeout
in which a station waits for an acknowledgement. General transition Ttxsucc
and Ttxcoll have the same meaning as before. The backoff is now approximated
by exponential transition Tbackoff. This non-Markovian SPN can be analyzed
by the method of supplementary variables or by embedding, as described in this
paper.

Simulation results from the detailed model and analysis results from the
compact model are now presented. We compare Basic Access and RTS/CTS.
Figure 11 shows the throughput vs. the load and Figure 12 shows the mean
waiting time to transmit a packet vs. the throughput. We see that the analytic
results from the non-Markovian model do very well approximate the simulation
results. From a system point of view, Basic Access shows throughput decrease
and instabilities for high loads.

More information about the MAC mechanism, the models, and the results can
be found in [16], Chapter 15. In [25] the model is extended by other mechanisms
of the standard and the modeling of the backoff counter is improved.
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Fig. 9. Detailed SPN model of WLAN MAC
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7 Conclusions

The main obstacles for the numerical analysis of stochastic models are the large-
ness of the state space, the kind in which general distributions appear, and, not
covered in this paper, the stiffness. Stiffness occurs when the model parameters
differ in several orders of magnitude. In this case, the “conventional” analytic
methods either get slow or can even give wrong results.

The analysis of non-Markovian models has matured for cases in which the
generally timed activities are mutually exclusive. Here it is possible to realize
stationary analysis methods which do not require discretization or phase-type
expansion, maybe the major problem remains the fill-in of some needed matrices.
Transient analysis methods can be formulated which do require only a one-
dimensional discretization.

If non-exponential activities can happen concurrently, one either can use
phase-type expansion (continuous, discrete, or mixed), use the GSMP approach
(but discretizations are required), use the cascaded embedding approach if ap-
plicable, or resort to discrete-event simulation. If analytic methods are available
they are of course preferable. This is especially the case if the interesting mea-
sures have small values, known as rare events in simulation. However, if analysis
gets too costly (in terms of time for implementing the analysis algorithm or in
terms of storage and timing requirements of the actual computations), we believe
it is more efficient to use simulation at some point.

Finally, we repeat our statement that the presented analysis methods are not
restricted to Petri nets. It is possible to extend other modeling frameworks in a
similar way and to apply the same approaches.
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Abstract. This paper surveys and relates the basic concepts of process
algebra and the modelling of continuous time Markov chains. It provides
basic introductions to both fields, where we also study the Markov chains
from an algebraic perspective, viz. that of Markov chain algebra. We
then proceed to study the interrelation of reactive processes and Markov
chains in this setting, and introduce the algebra of Interactive Markov
Chains as an orthogonal extension of both process and Markov chain
algebra. We conclude with comparing this approach to related (Marko-
vian) stochastic process algebras by analysing the algebraic principles
that they support.

1 Introduction

The construction of models for the performance and reliability analysis of sys-
tems is a difficult task that requires intelligence and experience. Due to the ever
increasing size and complexity of systems, such as e.g. embedded and distributed
systems, there is a growing need for powerful methods to master the related com-
plications of the modelling task. Performance models do not only become very
large, but because of the intricate interplay between (many) system components
they can also have a highly irregular structure that is very hard to understand
and control. Traditional performance models like Markov chains and queueing
networks are widely accepted as simple but effective models in different areas, yet
they lack the notion of hierarchical system (de)composition that has proved so
useful for conquering the complexity of systems in the domain of functional sys-
tem properties. The absence of such techniques seriously hampers the adequate
modelling of complicated modern systems.

A prominent example of a (class of) formalism(s) for the compositional, hier-
archical description and analysis of functional system behaviour is process alge-
bra [37,3,28]. It offers a mathematically well-elaborated framework for reasoning
about the structure and behaviour of reactive and distributed systems in a com-
positional way, including abstraction mechanisms that allow for the treatment
of system components as black boxes, encapsulating their internal structure.
Process algebras are typically equipped with a formally defined structured op-
erational semantics (SOS [51]) that maps process algebra terms onto labelled
transition systems in a compositional manner. Such labelled transition systems
consist of a set of states and a transition relation that describes how the system
evolves from one state to another. These transitions are labelled with action
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names that represent the (inter)actions that may cause the transitions to occur.
Such transition systems can be represented as directed edge-labelled graphs, with
the states as nodes of and the transitions as edges (labelled with action names).

The labelled transition model is very close to the usual representation of
Markov chains as transition systems or automata. Also there system states are
connected by directed transition arcs that are labelled. In the case of discrete
time Markov chains the labels are probabilities, and in the case of continuous
time Markov chains, which are the topic of this paper, the labels are the rates
that correspond to the exponential distributions that represent the stochastic
delays associated with the state transitions. This structural correspondence be-
tween the two models motivated the beginning of research in the early 1990’s on
stochastic process algebras [4,27,16], which sought to integrate performance mod-
elling with Markov chains with functional analysis, and to transfer the process
algebraic notions of (de)composition and hierarchy to Markov chain theory.

The fruitfulness of this approach to the specification and generation of
Markov chains has been demonstrated by a number results. In the stochastic
setting, bisimulation equivalence [40], a central notion of equivalence for com-
paring labelled transition systems, has been shown to coincide with lumpability, a
key concept for the aggregation of Markov chains [27]. Moreover, as bisimulation
can be shown to be preserved under system composition operators (algebraically:
bisimulation is a congruence), Markov chain aggregation can be carried out
compositionally, i.e. component-wise. Several (small to medium size) case stud-
ies have shown the practicality of this compositional approach, and important
progress has been made in exploiting the syntactic structure of specifications for
performance analysis purposes, see [26].

In this paper we aim (i) to give an introduction to the essentials of pro-
cess algebra that are needed for compositional performance modelling, (ii) to
introduce the process algebraic approach to Markovian performance modelling
using Interactive Markov Chain (IMC) algebra, and (iii) to survey the main al-
gebraic principles that underly related (Markovian) stochastic process algebras.
The paper is organised as follows. Section 2 introduces the concepts and fea-
tures of process algebras, while Section 3 introduces continuous time Markov
chains from an algebraic perspective. The algebra of interactive Markov chains
is discussed in Section 4. At the end, section 5 compares IMC and other existing
stochastic process algebra in terms of the algebraic principles that they support.
Section 6, finally, presents the conclusions of the paper.

2 Process Algebra

In this section we introduce a simple process algebraic framework that we will use
throughout our paper. Its purpose is to give an intuitive understanding of the key
ingredients of process algebra, and prepare for their use in the rest of the paper.
We start with the introduction of labelled transition systems, which constitute
a simple but powerful operational model for reactive behaviour. We show how
these transition systems can be constructed with the aid of three basic operators,
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viz. action-prefixing, choice, and recursive specification. Together, these opera-
tions give rise to a basic process algebra that can be used for the description
of sequential processes. We then extend this algebraic language to concurrent
processes with the aid of an operator for parallel composition, in combination
with an abstraction operator to control the scope of the interactions between
concurrent processes. It turns out that for many purposes the labelled transition
system model is too fine, i.e. there are many different transition systems that
display intuitively identical behaviour. This leads us to the definition of use-
ful behavioural equivalences over reactive behaviour, viz. the notions of strong
and weak bisimulation. Finally, we turn to an axiomatic presentation of process
algebra by discussing the axiom systems that are induced by the bisimulation
equivalences. For a fuller account of the material covered by this section, we refer
the reader to the extensive literature of process algebra, e.g. [3,40,5,10].

2.1 Labelled Transition Systems

State-transition diagrams, automata and similar models are widely used to de-
scribe the dynamic behaviour of systems. They consists of a set of states S
together with a representation of possible state changes. The latter is usually
given in the form of some relation (or function) over states, i.e. a subset of the
Cartesian product S×S. Intuitively, a pair of states (P,Q) is in this relation if it
is possible to change from state P to Q in a single step. Such transition relation
are often denoted with an arrow (e.g. −→), so that (P,Q) ∈ −→ can then be
conveniently rewritten, in infix notation, as P −→ Q, thus nicely representing
the possible state change between P and Q.

In the context of process algebras, transition systems appear in a specific
form, viz. that of labelled transition systems. Labelled transition systems form
a particular class where state changes are conditioned on occurrences of actions
drawn from an action set , or alphabet , A. A state change between P and Q here
entails the occurrence of a related action. Therefore, the transition relation −→
is a subset of S × A × S rather than a binary relation over just S. Again, it
will be convenient to denote (P, a, Q) ∈ −→, using a kind of mixfix notation,
as P

a−→ Q. Here the action appears as the label of the transition, whence the
term ‘labelled’ transition system.

Definition 1. A labelled transition system is a triple (S,A,−→), where

– S is a nonempty set of states,
– A is a set of actions, and
– −→ ⊂ S × A × S is a set of action labelled transitions.

In order to use labelled transition systems as an operational model of systems
it is common practice to identify a specific initial state P in the transition system
where operation starts. A transition system with an initial state is called a
process.

Definition 2. A process is a quadruple (S,A,−→, P ), where (S,A,−→) is a
labelled transition system and P ∈ S is the initial state.
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in

out

E1
E2

in in

out out

in in

Fig. 1. Two processes.

Example 1. Figure 1 contains two examples of processes. In principle, states are
represented as circles labelled with identifiers from S. We adopt the convention,
however, to use state labels only if they are required for understanding. We use �
to denote the initial state. The first process, with initial state E1, is a simple one-
place buffer. It accepts data via the action in and releases them with the action
out. The right process is able to buffer two values, but with a slightly unusual
restriction. From its initial state E2 there is a choice between two transitions
that are both labelled with in. In the standard interpretation of process algebra
this represents a nondeterministic choice that is made as part of the execution
of the action in, i.e. the receipt of a first datum. The lower branch leads to the
usual behaviour of a two-place buffer, whereas after the upper branch no datum
can be released, i.e. no out can be executed, before two data have been accepted.

2.2 Basic Processes

Process algebra is a means to specify processes and to reason about them. To
achieve this we use an algebraic language, based on combinators , i.e. operators
that compose processes into new ones. The terms of the algebraic language,
the behaviour expressions, are interpreted as labelled transition systems with a
distinguished initial state, i.e. as processes in the sense of Definition 2. This is
done using so-called structural operational semantic rules. This semantic inter-
pretation induces equalities between different behaviour expression, yielding an
equational calculus for reasoning about processes.

We introduce the language by a simple BNF-style grammar. We assume as
given a countable set V of variables that are used to express repetitive behaviour,
and, as before, a set of actions A. We use a, b, . . . for elements of Aτ . We also
assume a distinguished element τ , representing internal (or silent , or hidden)
actions, and let Aτ denote the set A ∪ {τ}.

Definition 3. Let a ∈ Aτ and X ∈ V. We define the language PA as the set of
expressions given by the following grammar.

E ::= 0 | a.E | E + E | X | [X := E ]i
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[X := E ] is a shorthand notation for an arbitrary (finite) set of defining equa-
tions of the form [X1 := E1 , X2 := E2 , . . . , Xn := En] , or in vector notation,


X1

X2

...
Xn


 :=




E1

E2

...
En




with Xi ∈ V, and Ei complying to the above grammar.
We use E, E1, E2, F , . . . to range over arbitrary expressions of PA. The intuitive
meaning of the language constructs is as follows.

– The terminal symbol 0 describes a terminated behaviour that cannot engage
in any (inter)action.

– The expression a.E may interact on action a and afterwards behave as ex-
pression E. We shall say that E is action prefixed by a.

– The expression E + F combines two alternatives. It either exhibits the be-
haviour of expression E or the behaviour of expression F . The terminal
symbol + is called the choice operator. The choice between E and F is re-
solved in interaction with other processes on the initial actions of E and
F .

– The expression [X := E]i defines a behaviour in terms of the set [X := E]
of mutually recursive behaviour definitions . Its meaning is as follows:
[X := E]i behaves as Ei, where the behaviour of the recursion variables
is obtained by ‘unrolling’: wherever a behaviour Xj is reached, it is replaced
by (the behaviour of) its definition [X := E]j .

In the sequel, we restrict ourselves to expressions, where each occuring vari-
able Xj is bound by a defining equation Xj := . . . . Such expressions are called
closed expressions. An expression E ∈ PA is closed, if each variable Xj ∈ V ap-
pearing in E only appears inside the scope of a guarding defining equation set,
i.e. inside an expression [. . . , Xj := . . . , . . .]i . The set of closed expressions is
denoted PAc.

Example 2. An example of an expression that is not closed is in.[X1 := in.X2]1 .
The processes of Figure 1 can be specified as follows:

– E1 is defined by [X1 := in.out.X1]1
– E2 is defined by [X1 := in.X2 + in.in.out.X2 , X2 := in.out.X2 + out.X1]1

We formalise this intuitive interpretation by giving it an operational seman-
tics in terms of labelled transition systems. The style of definition that we use
goes back to Plotkin [51], and is usually referred to as structured operational
semantics (SOS), since it defines the operational interpretation of a behaviour
expression inductively over its syntactical structure.

We define a semantics for closed expressions of PA by mapping the complete
language PAc onto a universal transition system. The state space of this transi-
tion system is the set of all closed expressions according to Definition 3. Since
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a.E
a−→ E

E
a−→ E′

E + F
a−→ E′

F
a−→ F ′

E + F
a−→ F ′

Ei{[X := E]i /Xi} a−→ E′

[X := E]i
a−→ E′

Table 1. Operational semantic rules for PAc.

each E ∈ PAc appears somewhere in this transition system the corresponding
semantics is determined by the state space reachable from this expression.

The first SOS-rules that we need are given in Table 1. The rules have the
format

B

C
A,

to express that if A holds, then B implies C , where A,B and C statements about
the existence of labelled state transitions. The notation E{F/X} is used to
represent the result of a simultaneous substitution of each occurrence of variable
X by expression F in expression E.

Definition 4. The universal transition system U is given by the triple
(PAc,A,−→), where −→ ⊂ PAc × A × PAc is the least relation satisfying the
operational rules in Table 1.

This definition provides a semantics for each element of E ∈ PAc, via the
fragment of −→ reachable from the state E in U . For a closed expression E, we
let Reach(E) denote the set of states reachable from E in the universal transition
relation U : Reach(E) = {E′ | (E,E′) ∈ T ∗} where T is the unlabelled transition
relation in U , i.e. T = {(F, F ′) ∈ PAc × PAc | ∃a ∈ A. F

a−→ F ′}.

Definition 5. The semantics of a closed behaviour expression E ∈ PAc is a
process (S,A,−→′, E), where S = Reach(E) and −→′ = −→ ∩(S × A × S).

Because of this definition we can adopt the fairly general convention of iden-
tifying a process with its initial state. Closed expressions are thus also called
processes.

Example 3. In order to prove that the process E1 of Figure 1 possesses an out-
going transition labelled with action in we apply the operational rules of Table
1 to construct the following derivation.

in.out.[X1 := in.out.X1]1
in−→ out.[X1 := in.out.X1]1

[X1 := in.out.X1]1
in−→ out.[X1 := in.out.X1]1
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2.3 Concurrency and Abstraction

Although basic process algebra suffices, at least in principle, for the description
of processes, it is too limited to be of great practical value. When specifying
and analysing reactive systems it will often be necessary to conceive of them as
the concurrent composition of a number of subprocesses. This can be the case
because parallelism is a natural feature of the given system, and we wish to
represent it. Or it may be that the properties of a system can be understood
better if its behaviour is decomposed into a number of smaller components. Many
realistic systems are so complicated, in fact, that they can only be understood
in terms of a concurrent composition of components.

A key ingredient of concurrency is the possibility for component processes to
interact. Processes interact to achieve a common goal, which means that they
somehow have to synchronise their activities, e.g. by exchanging data. Different
forms of process interaction have been studied in the literature of process algebra
[37,40,10,29]. Distinctive features are asynchronous vs. synchronous and binary
vs. multiparty interaction. For our purposes it will be convenient to use the syn-
chronous multiparty interaction as defined, for instance, in the ISO specification
language LOTOS [30,5].

We introduce a binary parallel composition operator that is indexed with the
set of actions that its component processes have to synchronise on. All other ac-
tions, i.e. those that are not in the index set of the composition operator, can be
performed independently of the other component process. The basic form of in-
teraction therefore is synchronisation on actions: the execution of a synchronised
action is a joint activity of all synchronising processes.

If P and Q are two processes, such synchronous parallel composition is de-
noted

P a1 . . . an Q

By varying the set of synchronising actions, parallel composition ranges from
full synchronisation, when the set comprises all the possible actions, to arbitrary
interleaving, when the set is the empty (in this case we use the concise notation
P Q). The intuition behind this operator is summarised by the following
informal properties:

– A state change of P a1 . . . an Q is possible if P may change to, say P ′, on
the occurrence of an action a that is not contained in {a1 . . . an}. The result
of the state change is P ′ a1 . . . an Q, since only P has changed state.

– Symmetrically, a state change of P a1 . . . an Q is also possible if Q may
change to some Q′, on the occurrence of an action a that is not contained in
{a1 . . . an}, resulting in P a1 . . . an Q′.

– In order to be able to interact on an action a contained in {a1 . . . an}, both
P and Q have to be able to perform a and thereby evolve to some P ′ and Q′.
If this condition is met P a1 . . . an Q may in a single step change state to
P ′ a1 . . . an Q′.

– No other transitions are possible for P a1 . . . an Q.
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P
a−→ P ′

P a1 . . . an Q
a−→ P ′ a1 . . . an Q

a �∈ {a1 . . . an}

Q
a−→ Q′

P a1 . . . an Q
a−→ P a1 . . . an Q′ a �∈ {a1 . . . an}

P
a−→ P ′ Q

a−→ Q′

P a1 . . . an Q
a−→ P ′ a1 . . . an Q′ a ∈ {a1 . . . an}

Table 2. Structural operational rules for parallel composition.

in

mid out

mid

out in

E5

E3 mid E5

in out

E4 mid E5

mid

E4E3
mid

Fig. 2. Parallel composition of two processes.

We extend PAc with the new operator by stipulating that if P and Q are
in PAc then P a1 . . . an Q is in PAc as well. We can now formalise the
above requirements as SOS-rules for the process P a1 . . . an Q. The first
three requirements are reflected in the three derivation rules of Table 2. The last
property is automatically fulfilled as the transition relation itself is defined as
the least relation satisfying the definition, i.e. it does not possess non-derivable
transitions.

In the third SOS-rule of Table 2 it can be seen that the result of synchroni-
sation on an action a is a transition of the composite behaviour again labelled
with the same action a. This choice (borrowed from [46,5]) is an essential ingre-
dient to enable so-called multiway synchronisation, where further processes may
synchronise with the a-labelled transition of the composition. This approach,
although fairly straightforward, is one of a number of alternatives to interaction
and synchronisation, e.g. see [39] for a discussion of this topic.
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P
a−→ P ′

hide a1 . . . an in P
a−→ hide a1 . . . an in P ′ a �∈ {a1 . . . an}

P
a−→ P ′

hide a1 . . . an in P
τ−→ hide a1 . . . an in P ′ a ∈ {a1 . . . an}

Table 3. Structural operational rules for abstraction.

Example 4. Figure 2 shows parallel composition of two processes E3 and E5.
Below these processes the resulting process E3 mid E5, obtained by applying
the rules of Table 2, is also depicted.

The concept of multiway synchronisation has proven convenient from a spec-
ification engineering point of view. It allows for a constraint-oriented style of
system specification, where processes add conditions on the occurrence of inter-
actions incrementally using concurrent composition, see e.g. [58]. However, with
the operators introduced so far, all actions that occur anywhere in a system spec-
ification remain available for further synchronisation with new processes. This is
undesirable, since most system design methods try to work with components as
black boxes, i.e. as functionality without internal structure. Such an approach
calls for mechanisms to abstract from internal aspects that are irrelevant at
higher design levels.

In process algebra the concept of abstraction must be dealt with in terms of
an operator, the abstraction operator . The key to this operator is a distinguished
action, usually named τ , that symbolises internal or hidden action, e.g. a state
change that does not depend on synchronisation with the environment. Actions
other than τ are called external or observable. For a given process P and actions
a1 . . . an abstraction or hiding of those actions simply renames them into the
internal action τ . We use

hide a1 . . . an in P

to denote this operation. Again, we extend PAc with a closure condition, viz. that
if P is in PAc then so is hide a1 . . . an in P . The semantics of the abstraction
operator are given by the operational rules in Table 3.

We would like to point out that in a concurrent composition internal actions
of one component process should be completely independent of those of the other.
Hence, synchronisation on internal actions is ruled out, i.e. τ cannot occur in
the index set {a1 . . . an} of a composition P a1 . . . an Q.

Example 5. In Figure 3 we have depicted the result of internalising the action
mid in the process E3 mid E5 by means of abstraction. The behaviour of the
resulting process behaves as a two place buffer composed out of two one-place
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out in

τ
in out

hide mid in E4 mid E5

hide mid in E3 mid E5

Fig. 3. Abstraction applied to composed processes.

buffers, E3 and E5. The first accepts data with action in. These are then passed
internally to process E5, which, in turn, can output them. E3 may accept a
second input, but before it can pass it on to E5 this process has to output the
input it accepted earlier.

2.4 Equivalence

An essential part of the development of process algebraic theory has been devoted
to the study of suitable notions of behavioural equivalence. Such equivalences
are induced by various notions of what constitutes process behaviour, different
processes being equivalent iff they display identical behaviour. This behaviour-
oriented (as opposed to state-oriented) point of view implies that the identity
of states cannot be relevant for distinguishing between processes, whereas the
labelling of transitions is. All common process algebraic equivalences share this
characteristic. Still, there exists an overwhelmingly rich collection of such equiva-
lences. Their variety is caused by the different intuitions about process behaviour.
R.J. van Glabbeek has extensively studied the different behavioural equivalences
[56,55]. They are classified according to the observational powers that an ob-
server or experimenter must have to distinguish between different processes. In
this paper we will confine ourselves to a particular, but very important class of
equivalences, the bisimulation relations. We will argue why this is a good class
of equivalences for our purposes, in this section and also later on, when proba-
bilities and probability distributions come into play. We start by considering the
so-called ’strong’ equivalence, where internal and external actions are treated
on an equal footing. After that we proceed with the ’weak’ equivalence, which
abstracts from internal transitions.

Strong equivalence. A labelled transition system can be seen as being essen-
tially an automaton, with its finiteness conditions removed and with only suc-
cess states. Therefore, the notion language equivalence of automata would seem
a natural candidate to be considered for the characterisation of process equiva-
lence. Two transition systems are language equivalent iff they accept the same
language, i.e. their (finite) execution traces determine the same set of finite se-
quences over Act. In the context of process algebra this relation is called trace
equivalence.
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E6

E2
out out

in in

in in

out out

in in

Fig. 4. Two processes with equivalent traces.

Notation. We use P
a1−→ a2−→ · · · an−→ P ′ to denote that there exist processes

P1, P2, . . . , Pn−1 such that P
a1−→ P1

a2−→ P2 · · ·Pn−1
an−→ P ′.

Definition 6. Let P and Q be processes. P and Q are strong trace equivalent,
written P ∼tr Q, if for all P ′ and Q′,

P
a1−→ a2−→ · · · an−→ P ′ if and only if Q

a1−→ a2−→ · · · an−→ Q′.

Example 6. Consider the process depicted in Figure 4. E6 describes the usual
two place buffer. E2 already appeared in Figure 1. Depending on the in branch
taken E2 may loose the possibility to output the first input before a second is
accepted. However, both processes are trace equivalent according to Definition
6.

This example gives some insight into the weaknesses of trace equivalence.
The process E2 is not always able to release an input after it has accepted one
whereas E6 always is. This is problematic if E2 is put in a context where an
output is required for synchronisation after every input, (with E1 of Figure 1,
for instance, synchronising on action out and in). E6 would be able to interact
on action out after action in has occurred, whereas E2 may not, thus forcing a
deadlock. In other words, trace equivalence does not preserve deadlocks.

The main reason why trace equivalence is suitable for automata theory, while
it does not fit with the process algebraic theory of processes, is the difference
between their models of interaction. Automata theory assumes complete control
of the automaton over its transitions. In the process algebraic view of processes
all observable actions are under the joint control of the process and its envi-
ronment. In this context automata can be seen as processes with only internal
actions (but not necessarily labelled with τ), or alternatively, as a process with
a completely cooperative environment, i.e. one that is always capable of syn-
chronising on the action of the automatons’ choice. The standard interaction
between process algebraic processes, however, assumes an interactive resolution
of choices, at least between observable transitions. This means that a process
cannot select a transition labelled with an observable action if this action is not
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Fig. 5. Two strongly bisimilar processes.

also enabled by the environment. If several such jointly enabled transitions exist,
then the choice is made nondeterministically.

In the presence of concurrent composition it is natural that two transition
systems should be equivalent if and only if they interact in the same way with
arbitrary environments. In view of the above, that means the way in which they
constrain the choices between different actions is relevant. This is also referred
to as the branching (time) structure of processes, as opposed to the linear (time)
structure of classical automata.

Milner and Park [40,47] have introduced the most important class of equiv-
alence relations that respect the branching structure of a process and therefore
are deadlock preserving. This is the class of bisimulation equivalences or bisimi-
larities. Two processes are bisimilar if they can simulate each other’s behaviour
step-by-step. This leads to an inductive definition of bisimulation, based on single
steps, that is simple but quite powerful.

Definition 7. A binary relation B on PAc is a strong bisimulation if (P,Q) ∈ B
implies for all a ∈ Aτ :

– P
a−→ P ′ implies Q

a−→ Q′ for some Q′ such that (P ′, Q′) ∈ B,
– Q

a−→ Q′ implies P
a−→ P ′ for some P ′ such that (P ′, Q′) ∈ B.

Two processes, P and Q, are strongly bisimilar, written P ∼ Q, if they are
contained in some strong bisimulation B,i.e. (P,Q) ∈ B.

Strong bisimilarity, therefore, is the union of all strong bisimulations, i.e.

∼=
⋃

{B | B is a strong bisimulation}
In words, the above definition says that two states in a transition system are

bisimilar if each has transitions labelled with the same actions as the other such
that the states after corresponding transitions are bisimilar again.

Example 7. Following Definition 7, the two processes E6 and E1 E1 depicted in
Figure 5 are bisimilar. To facilitate the inspection of this claim we have shaded
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strongly bisimilar states with the same pattern. Note that the right process
is obtained by composing in parallel two (one-place) buffers E1 without any
synchronisation. They behave like a two-place buffer E6 (in fact, they implement
a two-place bag, but because the data have no identity this is indistinguishable
from a buffer).

Strong bisimilarity gives us appropriate means to compare processes with
respect to their branching structure. Besides its intuitive content, it also has the
correct formal properties that allow for a smooth mathematical treatment.

Proposition 1. Strong bisimilarity is

– an equivalence relation on PAc.
– a strong bisimulation on PAc.
– the largest strong bisimulation on PAc.

The style of the definition of bisimulation is sometimes called coinductive,
since it borrows the concept of coinduction from category theory [31]. Roughly
speaking, a coinductive definition characterises the largest set satisfying an in-
ductive definition, whereas induction characterises the smallest such set.

Later, we will later also rely on an alternative characterisation of strong
bisimilarity, borrowed from [57], which defines ∼ as the union of equivalence
relations. It makes use of a (boolean) function γO : S×Aτ×2S �→ {true, false}.
γO(P, a, C) is true iff P can evolve to a state contained in a set of states C by
interaction on a.

Definition 8.

γO(P, a, C) :=
{
true if there is P ′ ∈ C such that P a−→ P ′,
false otherwise.

With this definition, bisimilarity can be expressed as ’having the same pos-
sibilities to interact and make a transition into the same class of behaviours’
where these classes are, of course, classes of equivalent behaviour.

Lemma 1. An equivalence relation E on S is a strong bisimulation iff (P,Q) ∈ E
implies for all a ∈ Aτ and all equivalence classes C of E that

γO(P, a, C) =⇒ γO(Q, a, C).

Note that E is presupposed to be an equivalence relation in this definition, and
therefore is symmetric by assumption. Thus, we could equally well replace ’ =⇒ ’
by ’ ⇐⇒ ’ (or ’=’) in the above Lemma.

Example 8. If we use
���
���
���
���

���
���
���
���

to denote the set of states shaded like
��
��
��

��
��
��in Figure 5,

and similar with
���
���
���

���
���
���

and , then each of these sets is a class of an equivalence
relation E satisfying Lemma 1. In particular, we compute the following values for
each of the states in the respective class. All other combinations return false.

γO( , in,
���
���
���

���
���
���

) = true γO(
���
���
���
���, out, ) = true

γO(
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) = true γO(
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) = true



196 Ed Brinksma and Holger Hermanns

Let us now turn our attention to another important property of bisimilarity.
Since we work in a setting with composition operators, we must investigate
whether ∼ induces a proper algebraic notion of equality. In particular, this means
that equality should be preserved under composition. In the above example, we
have seen that E6 and E1 E1 are bisimilar. They both describe the behaviour of
a buffer with two places. However, it is not yet clear whether we can use either
of them in a larger composition context and obtain again equivalent overall
behaviours. This is, of course, a highly desirable property, because it allows
normal equational reasoning, replacing a subterm by an equivalent one, without
affecting the resulting behaviour. What we need, in general, is the substitutivity
of an equivalence relation. In algebraic terms this means that we have to show
that ∼ is a congruence (relation) with respect to the operators.

Theorem 1. Strong bisimilarity is a congruence relation with respect to the
operators of PAc, i.e.

P1 ∼ P2 implies a.P1 ∼ a.P2

P1 ∼ P2 implies P1 + P3 ∼ P2 + P3,

P1 ∼ P2 implies P3 + P1 ∼ P3 + P2,

P1 ∼ P2 implies P1 a1 . . . an P3 ∼ P2 a1 . . . an P3,

P1 ∼ P2 implies P3 a1 . . . an P1 ∼ P3 a1 . . . an P2,

P1 ∼ P2 implies hide a1 . . . an in P1 ∼ hide a1 . . . an in P2 .

Strong bisimilarity shares this substitutivity property with other equiva-
lences, such as trace equivalence. On top of that, it respects the branching
structure of processes and therefore preserves deadlocks. Furthermore, it can
be defined coinductively. These properties are the main reasons why bisimilarity
is a central concept in the theory of process algebraic equivalences. It is easy to
define, has a simple proof technique, and is mathematically elegant.

Weak equivalences. So far we have only discussed equivalences that treat internal
actions exactly the same way as external actions. In particular, internal actions
have to be simulated stepwise to establish strong bisimilarity between two pro-
cesses. This is counterintuitive, because we ultimately mean to characterise the
behaviour of processes by means of their black box, i.e. observable, behaviour.
But as internal actions are not observable there seems to be no direct need to
be able to simulate each internal transition of an equivalent process.

Example 9. We have discussed before that a serial connection of two one-place
buffers as in hide mid in E3 mid E5 behaves like a two-place buffer. How-
ever, it is not possible to construct a strong bisimulation between this process
and E6 even though E6 appears as a canonical representation of a two place
buffer. The reason is that we have to (bi)simulate internal τ−→ transitions that
E6 does not possess (Figure 6).
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Fig. 6. Not strongly bisimilar processes.

To abstract from internal moves it seems natural to ignore them as far as they
do not influence the observable behaviour of a process. To do so, we introduce
the notion of an observable step of a process, consisting of a single observable
action preceded and followed by an arbitrary finite number (including zero) of
internal steps [40]. This can be seen as deriving a ’weak’ transition relation,
denoted by =⇒, from the ’strong’ transition relation −→.

Definition 9. For internal actions, ε=⇒ is defined as the reflexive and transitive
closure τ−→∗

of the relation τ−→. External weak transitions are then obtained by
defining a=⇒ to denote ε=⇒ a−→ ε=⇒.

Note that a weak internal transition ε=⇒ is possible without actually per-
forming an internal action, because τ−→∗

contains the reflexive closure, i.e. the
possibility not to move at all. In contrast, a weak external transition a=⇒ must
contain exactly one transition a−→ preceded and followed by arbitrary (possibly
empty) sequences of internal moves. We use Aε to range over visible actions and
ε, i.e. Aε = A ∪ {ε}.

Example 10. For the processes E6 and hide mid in E3 mid E5 the weak
transition relation is represented by the arrows in Figure 7.

With this relation, weak trace equivalence and weak bisimilarity are obtained
by simply replacing strong by weak transitions in Definition 6 and Definition 7,
respectively. Since weak trace equivalence inherits the problems of its strong
counterpart, we are not interested in this relation here.

Definition 10. A binary relation B on PAc is a weak bisimulation if (P,Q) ∈ B
implies for all a ∈ Aε :

– P
a=⇒ P ′ implies Q

a=⇒ Q′ for some Q′ such that (P ′, Q′) ∈ B,
– Q

a=⇒ Q′ implies P
a=⇒ P ′ for some P ′ such that (P ′, Q′) ∈ B.

Two processes, P and Q, are weakly bisimilar, written P ≈ Q, if they are
contained in some weak bisimulation B.

Weak bisimilarity has the same basic properties as strong bisimilarity (cf.
Proposition 1).
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Proposition 2. Weak bisimilarity is

– an equivalence relation on PAc.
– a weak bisimulation on PAc.
– the largest weak bisimulation on PAc.

In addition it is a congruence relation for all operators, except for the choice
operator.

Lemma 2. Weak bisimilarity is a congruence with respect to prefix, parallel
composition and abstraction, but not with respect to choice.

In order to illustrate that ≈ is not a congruence with respect to choice we
consider the following counterexample [40]. By Definition of ≈ it is obvious that

τ.a.0 ≈ a.0

holds. Supposing that ≈ is a congruence with respect to choice, we can conclude
that

τ.a.0 + b.0︸ ︷︷ ︸
P

≈ a.0 + b.0︸ ︷︷ ︸
Q

must also hold. But in P there is a transition labelled τ to a.0. In other words,
P

ε=⇒ a.0. In order to satisfy Definiton 10, there need to be some Q′ with
Q

ε=⇒ Q′, satisfying a.0 ≈ Q′. But this is not the case. The only candidate for
Q′ – Q itself – obviously differs from a.0. Thus the assumed congruence property
turns out to be false.

The problem is that initial internal transitions need to be treated slightly
stronger. To heal this problem, we refine weak bisimilarity.

Definition 11. P and Q are weakly congruent, written P ≈c Q iff for all a ∈ Aτ

1. P
a−→ P ′ implies Q

ε=⇒ a−→ ε=⇒ Q for some Q′ with P ′ ≈ Q′,
2. Q

a−→ Q′ implies P
ε=⇒ a−→ ε=⇒ P ′ for some P ′ with P ′ ≈ Q′.

Weak congruence and weak bisimilarity only differ in the treatment of initial
internal steps of P and Q. Weak bisimilarity requires that an internal transi-
tion τ−→ is simulated by a weak transition ε=⇒, which includes the possibility
that no internal transition has to be carried out (cf. Definition 9). For initial
behaviours, weak congruence strengthens this requirement. It requires that an
internal transition τ−→ has to be matched by τ−→∗ τ−→ τ−→∗

, i.e. by at least on
internal transition τ−→.

Theorem 2. Weak congruence is substitutive with respect to the operators of
PAc, i.e.

P1 � P2 implies a.P1 � a.P2

P1 � P2 implies P1 + P3 � P2 + P3,

P1 � P2 implies P3 + P1 � P3 + P2,

P1 � P2 implies P1 a1 . . . an P3 � P2 a1 . . . an P3,

P1 � P2 implies P3 a1 . . . an P1 � P3 a1 . . . an P2,

P1 � P2 implies hide a1 . . . an in P1 � hide a1 . . . an in P2 .



Process Algebra and Markov Chains 199

���
���
���

���
���
���

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

in

in

ε

ε

in

out

out

out
in

ε

ε out
ε ε

hide mid in E3 mid E5E6

ε
ε

in in

outout

Fig. 7. Two weakly congruent processes.

Indeed, weak congruence is unique in the sense that it turns out to be the coarsest
congruence contained in weak bisimilarity, as a consequence of the following
lemma.

Lemma 3. E1 � E2 iff, for each E3 ∈ IMCc, E1+E3 ≈ E2+E3 and E3+E1 ≈
E3 + E2.

As a result, we have obtained two substitutive equivalence notions on PAc:
strong bisimilarity and weak congruence, a distinguished subset of weak bisimi-
larity. The interrelation between these equivalences is expressed in the following
lemma.

Lemma 4. ∼ ⊂ � ⊂ ≈.

Example 11. We have pointed out that the processes E6 and
hide mid in E3 mid E5 are not strongly bisimilar. But they are weakly
bisimilar according to Definition 10. To illustrate this, Figure 7 shows bisimilar
states shaded with the same pattern. A crucial aspect is that the weak internal
transition

���
���
���
���

ε=⇒
���
���
���
��� of the right process can be simulated by the left process

because ε=⇒ contains the reflexive closure.

This example shows that weak congruence is an appropriate notion to com-
pare the behaviour of components when internal actions are present. Further-
more, it is indeed a congruence, it is defined coinductively, and it preserves
observable deadlocks, i.e. the (in)capacity in a state to execute weak transitions
labelled by an observable action.

Nevertheless, weak congruence is not as undisputed among the vast number
of weak relations as strong bisimilarity is among the strong relations. Some,
e.g. van Glabbeek&Weijland [54] and Montanari&Sassone [41] point out that
weak bisimilarity is too coarse to preserve the precise branching structure of
a process. Others, like Darondeau [14], Valmari [53], de Nicola&Hennessy [44],
Parrow&Sjödin [48], Cleaveland&Natarjan [42], as well as Brinksma et al. [9]
define again coarser equivalences and argue that these relations characterise the
observable behaviour of processes better than � does.
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It may be worth to point out that it is desirable to have an equivalence notion
that is as coarse as possible, given the criteria for equivalent behaviour (in the
form of required preservation properties, for example). An equivalence that is
too fine will distinguish between too many processes, and therefore satisfy fewer
equations, making verification of certain systems more difficult, if not impossible.
From this point of view, (fair) testing equivalences seem to be the right choice
[10,49,35,44,42,9] – if one is interested in the preservation of observable dead-
locks. Essentially, each of the proposed relations is the coarsest in its category,
each corresponding to a natural scenario of what an observer is able to test.
However, we will not treat them here, basically they do not have coinductive
definitions, which we will need for our stochastic extensions later.

2.5 Algebra of Processes

The previous section has illustrated the usefulness of congruences, i.e. equiva-
lences that are substitutive with respect to the language operators. In the pres-
ence of such a congruence, it is interesting to investigate in which sense the
congruence can be characterised on PAc by a set of equational laws.

Example 12. An example of an equational law is the commutativity law E+F =
F +E. The intuitive meaning of this law is as follows: Whenever a pattern of the
form E+F can be found in an expression, it can be replaced by F +E. E and F
play the roles of meta variables and can be instantiated by arbitrary expressions
of PAc. In this way we may transform b.(a.0 + c.d.0) into b.(c.d.0 + a.0): We
instantiate E ≡ a.0 and F ≡ c.d.0 and afterwards substitute F + E for E + F .

Formally, an equational law is a pair of expressions of PAc connected with the
symbol ’=’ where either of the expressions, may contain some ’meta variables’
such as E, F , and so on. In technical terms, a law (or a set of laws) induces an
equivalence on PAc, or more precise a congruence, since we are allowed to replace
sub-expressions inside larger expressions, as in the above example.

The question arises in what sense such an induced congruence is related to
the congruences we have defined on the semantics of PAc, i.e. strong bisimilarity
and weak congruence. Indeed we are aiming to provide laws that are sound with
respect to, say, strong bisimilarity. A law is sound with respect to an equivalence,
if any application of the law does not alter the equivalence class of the expression.
The converse direction is called completeness. A set of laws is complete with
respect to an equivalence, if two expressions can be transformed into each other
by (iterative) application of laws whenever they are equivalent.

Example 13. The law 0 = 0 is sound for any equivalence relation on PAc. How-
ever, this law is, as it stands alone, far from providing a complete set of laws for
any nontrivial equivalence. On the other hand, a law E = F is complete for any
equivalence relation on PAc, but it is sound only for the trivial relation PAc×PAc

that equates all processes.
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(C) E + F = F + E
(A) (E + F ) + G = E + (F + G)
(I) E + E = E
(N) E + 0 = E

Table 4. Axioms for strong bisimilarity.

(C) E + F = F + E
(A) (E + F ) +G = E + (F + G)
(I) E + E = E
(N) E + 0 = E

(τ1) a.τ.E = a.E
(τ2) E + τ.E = τ.E
(τ3) a.(E + τ.F ) + a.F = a.(E + τ.F )

Table 5. Axioms for weak congruence.

So, our ultimate goal is to provide sets of laws that are sound as well as
complete with respect to strong bisimilarity, respectively weak congruence. We
shall say that such a set axiomatises the respective congruence. This is what
turns the set PAc into a true algebra.

To give a flavor of this algebraic view on PAc, Table 4 lists the main equational
laws axiomatising strong bisimilarity. The laws state that the choice operator
is commutative (C), associative (A), idempotent (I), and that 0 is the neutral
element of choice (N). There are four more laws needed to handle recursion and
we refer to [38] or [19] for a detailed explanation.

Turning our attention to weak congruence, Table 5 presents a set of laws that
form the core of an axiomatisation of weak congruence on PAc. The upper part of
these laws is literally copied from Table 4. This should not be surprising, because
strong bisimilarity is a subset of weak congruence (cf. Lemma 4) and therefore
every pair that can be proven to be strongly bisimilar has to be weakly congruent,
as well. This is a striking reason why the axiomatisation of weak congruence is
an extension of the axiomatisation of strong bisimilarity. The law (τ1) allows
one to skip (action guarded) internal steps. Law (τ2) and (τ3) expresses that
certain behaviours that are preceded by an internal step can happen instantly
provided a τ -guarded copy persists.

We shall now discuss the additional operators we have defined on PAc, ab-
straction and parallel composition. We present a set of additional laws, that
allow one to rewrite parallel composition, as well as abstraction into the basic
operators of PAc. Table 6 lists the necessary laws. Law (X) is usually called
the expansion law. It states that non-synchronising actions of components can
be simply interleaved. Either the left (aj /∈ {a . . . an}), or the right component
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(X)
X

aj .Pj a . . . an

X
bl.Ql =

X
aj /∈{a...an}

aj .(Pj a . . . an Q) +

X
bl /∈{a...an}

bl.(P a . . . an Ql) +

X
aj=bl∈{a...an}

aj .(Pj a . . . an Ql)

(H1) hide a . . . an in 0 = 0

(H2) hide a . . . an in a.P = a.hide a . . . an in P provided a /∈ {a . . . an}
(H3) hide a . . . an in a.P = τ.hide a . . . an in P provided a ∈ {a . . . an}
(H4) hide a . . . an in P + Q = hide a . . . an in P + hide a . . . an in Q

Table 6. Axioms for rewriting parallel composition and abstraction.

(bl /∈ {a . . . an}) performs a non-synchronising action. In case of synchronisation
(aj = bl ∈ {a . . . an}), both partner evolve further.

The laws (H1)− (H4) are very simple. They say that abstraction distributes
over termination, over choice and over action prefix, where, according to (H3)
action a is internalised if it appears in the set {a . . . an} of actions. With these
laws, parallel composition and abstraction can be shifted arbitrarily deep into
a specification, until either 0 or some variable X is reached. This is enough
to ensure completeness for a language that includes abstraction and parallel
composition (but where the use of recursion is restricted, see e.g. [19]).

This concludes our brief summary how bisimulation can be characterised
axiomatically. These axioms are particularly handy to reason about PAc in an
abstract fashion. One can capture the essence of the language just by agreeing
(or disagreeing) with a particular set of axioms. It is important to mention
that a highly influential strand of process algebra research (also known as the
Dutch school [1,3]) proceeds the other way round than the way we chose here.
This school presupposes a specific equational theory, and then investigates the
models and equivalences needed to match this theory. We will follow this way in
Section 4 when we introduce an algebra of Interactive Markov Chains.

3 Markov Models

Continuous time Markov chains (MCs) are a particular class of stochastic models
that forms a cornerstone of contemporary performance and dependability eval-
uation methodology [25,18]. This section reviews the main ingredients of MCs
from an algebraic perspective, i.e. we proceed similar to the preceding section.
After introducing Markov chains and their basic properties, we discuss a bisim-
ulation style equivalence on such chains, which is also known as lumpability. We
discuss equational properties of this equivalence by developing a small algebra
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of MCs, to illustrate the relation to standard process algebra. Broad background
material on Markov chains and their analysis can be found in [18].

3.1 Continuous Time Markov Chains

A continuous time Markov chain is a stochastic process {X(t) | t ∈ R} with
discrete state space satisfying the so called Markov property. This means that
the random variable X takes values of some discrete set S (the state space),
and the values of X vary continuously as time passes, satisfying that for
tn +∆t > tn > tn−1 > tn−2 > . . . > t0,

Prob{X(tn +∆t) = P ′ | X(tn) = P,X(tn−1) = Ptn−1 , . . . , X(t0) = Pt0}
= Prob{X(tn +∆t) = P ′ | X(tn) = P}
= Prob{X(∆t) = P ′ | X(0) = P}.
Thus, the fact that the process was in state Pn−1 at time tn−1, in state Pn−2

at time tn−2, and so on, up to the fact that it was in state P0 at time t0 is
completely irrelevant. The state X(tn) contains all relevant history information
to determine the random distribution on S at time tn+1. This probability is
independent of the actual time instant tn (or t′ or 0) of observation. Nevertheless
it does depend on the length of the time interval ∆t. It requires some limit
calculation to deduce that we are facing a linear dependence [34]. More precise,
for every pair of states P and P ′, there is some parameter λ such that (for small
∆t)

Prob{X(∆t) = P ′ | X(0) = P} = λ∆t + o(∆t)

where o(∆t) subsumes the probabilities to pass through intermediate states be-
tween P and P ′ during the interval ∆t. The quantity λ is thus a transition rate,
a nonnegative real value that scales how the (one step) transition probability be-
tween P and P ′ increases with time. Here, we have implicitly assumed that state
P is different from P ′. If, otherwise, state P and P ′ coincide, the probability to
stay in state P during an interval ∆t (and hence Prob{X(∆t) = P | X(0) = P})
decreases with time, starting from 1 if ∆t = 0. The corresponding transition rate
is thus a negative real value. It is implicitly determined by the increasing proba-
bility to leave state P ; that is, it is the negative sum of the respective transition
rates.

The probabilistic behaviour of a MC is completely described by the initial
state occupied at time 0 (or an initial probability distribution on S) and the
transition rates between distinct states. We therefore fix a MC by means of a
specific transition relation, P λ−→ P ′, defined on a state space S, together with
an initial state P .

Definition 12. A Markov transition system is a tuple (S, −→ ), where S is
a nonempty set of states, and −→ is a Markov transition relation, a subset
of S × R

+ × S. A Markov chain is a triple (S, −→ , P ), where (S, −→ ) is a
Markov transition system, and P ∈ S is the initial state.
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Fig. 8. Two Markov chains

Example 14. Figure 8 contains two examples of Markov chains, E30 and E31.

The time of staying in a particular state of S is a random variable, usually
called sojourn time. The sojourn time for any state of a MC is known to be expo-
nentially distributed. We highlight the following important properties enjoyed by
exponential distributions. Let D, D1, and D2 denote exponentially distributed
random variables.

(A) An exponential distribution Prob{D ≤ t} = 1 − e−λt is characterised by
a single parameter λ, a positive real value, usually referred to as the rate
of the distribution. The mean duration of this delay amounts to 1/λ time
units.

(B) The class of exponential distribution is the only class of memoryless contin-
uous probability distribution. The remaining delay after some time t0 has
elapsed is a random variable with the same distribution as the whole delay:

Prob{D ≤ t+ t0 | D > t0} = Prob{D ≤ t}. (1)

(C) The class of exponential distributions is closed under minimum, which is
exponentially distributed with the sum of the rates:

Prob{min(D1, D2) ≤ t} = 1 − e−(λ1+λ2)t (2)

if D1 (D2, respectively) is exponentially distributed with rate λ1 (λ2).
(D) The probability that D1 is smaller than D2 (and vice versa) can be directly

derived from the respective rates:

Prob{D1 < D2} =
λ1

λ1 + λ2
(3)

Prob{D2 < D1} =
λ2

λ1 + λ2
. (4)

(E) The continuous nature of exponential distributions ensures that the prob-
ability that both delays elapse at the same time instant is zero.

Property (C) explains why the sojourn time for a state s is exponentially dis-
tributed. Every transition s

λ−→ s′ leaving state s can be seen to have an
exponentially distributed random variable (with parameter λ) associated that
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governs when this transition may happen. A race is assumed to exist between
several transitions, i.e., they compete for a state change. The sojourn time in s
ends as soon as the first transition is ready to occur, inducing a state change.
Due to property (C) this sojourn time is exponentially distributed with the sum
of the rates of the transitions involved. Property (D) determines the probability
of a specific transition to win such a race.

3.2 Equivalence

Strong and weak bisimilarities, as introduced in Section 2, are central in the the-
ory of process algebraic equivalences. Apart from their theoretical importance,
a practical merit is the possibility of behaviour preserving state space aggrega-
tion. This is achieved by neglecting the identity of states in favour of equivalence
classes of states exhibiting identical behaviours. We follow the same spirit in the
context of Markov chains.

Strong equivalence. For a given chain, assume that we are only interested in
probabilities of equivalence classes of states with respect to some equivalence ∼
(that we are aiming to define) instead of probabilities of states. Any such equiv-
alence preserving view on a Markov chain gives rise to an aggregated stochastic
process X̃ = {X̃(t)|t ∈ T }. It can be defined on the state space S/∼, the set of
the equivalence classes with respect to ∼, by

Prob{X̃t = C} := Prob{X(t) ∈ C} for each C ∈ S/∼. (5)

X̃ is a discrete state space stochastic process, but it is not necessarily a MC.
However sufficient conditions exist such that X̃ is again a time homogeneous MC.
They impose restrictions on the shape of the sets C and are known as lumping
conditions, see [34]. We approach them from a different viewpoint, namely by
constraints on the equivalence ∼, similar to [11,27]. Anticipating the technical
details, we achieve that X̃ is a MC, if ∼ is a variant of bisimulation. The difficulty
is that we have to equate not only qualities but also quantities, for example
transition rates of moving from one state to an equivalence class. In contrast,
bisimilarity only talks about a (logical) quality: Either there is a move from a
state into a class possible or it is impossible, but tertium non datur.

The bridge to quantify strong bisimilarity is an alternative characterisation of
strong bisimilarity that we have mentioned as Lemma 1. To recall its essentials,
note that it uses a predicate γO : S × Aτ × 2S �→ {true, false} that is true iff
P can evolve to a state contained in a set of states C (by interaction on action
a). Bisimilarity then occurs as the union of all equivalence relations that equate
two states if they posses the same γO values (for each possible combination of
action a and equivalence class C).

We follow this style of definition but replace the predicate γO by a (nonneg-
ative) real-valued function γM : S × 2S �→ R

+, that calculates the cumulative
rate to reach a set of states C from a single state R:

γM(R,C) =
∑

{|λ|R λ−→ R′ and R′ ∈ C|}.
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Fig. 9. A Markov chain and its aggregated representative

In this definition we let
∑ {| . . . |} denote the sum of all elements in a multi-

set (of transition rates), where {| . . . |} delimits this multiset. The need for this
notational burden is best explained by means of an example.

Example 15. Considering Figure 8, the cumulative rate to reach any state in S
from state E30 is γM(E30, S) =

∑ {|0.2, 0.2|} which amounts to 0.4 due to our
definition.

We are now ready to lift bisimilarity to the setting of Markov chains.

Definition 13. For a given Markov chain (S, −→ , P ), an equivalence relation
E on S is a Markov bisimulation iff PEQ implies that for all equivalence classes
C of E it holds that

γM(P,C) ≤ γM(Q,C)

Two states P and Q are Markov bisimilar, written P ∼M Q, if (P,Q) is contained
in some Markov bisimulation E.

Thus ∼M is the union of all such equivalences. Indeed, it is itself a Markov
bisimulation and therefore the largest such relation (Note that as in Lemma 1
the relation E is presupposed to be an equivalence, and thus we could write ’=’
instead of ’≤’).

Definition 14. For a given Markov chain (S, −→ , P ) and a Markov bisimu-
lation E on S, define an aggregated chain (S/E , −→ E , [P ]E) where the Markov
transition relation −→ E is given by

[P ′]E
λ−→ E [Q′]E iff γM(P ′, [Q′]E) = λ.

Example 16. With the notation introduced in Chapter 2 each of the sets ,
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,
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and
���
���
���
���

���
���
���
���

appearing in Figure 9 is a class of an equivalence relation
E on the state space of E30 satisfying Definition 13. In particular, we compute
the values

γM( ,
���
���
���

���
���
���

) = 0.4 γM(
���
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���
���,

���
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���
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) = 2 γM(
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���,
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���

���
���
���
���

) = 0.8

for the states in the respective classes, all other values of γM are zero. The
aggregated Markov chain [E30]E obtained by applying Definition 14 is depicted
on the right.
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Theorem 3. Let P be a Markov chain, describing the CTMC X and let E be a
Markov bisimulation on the state space of P . The aggregated chain PE describes
a homogeneous CTMC {X̃(t) | t ∈ R} such that for all equivalence classes C of
E,

Prob{X̃(t) = C} = Prob{X(t) ∈ C}.
Proof. The conditions imposed on a Markov bisimulation can be matched with
the definition of lumpability [34], see [27].

As a particular consequence, the stochastic process induced by factorising
with respect to a Markov bisimulation is again a MC.

As mentioned above this kind of aggregation is known as lumping. Lumping is
usually formulated with respect to a suitable partitioning of the state space. Here,
we have defined a suitability criterion in a coinductive way. Our partitioning
is obtained by means of a factorisation with respect to a bisimulation. This
coinductive definition can be exploited for an algorithmic computation of the
best possible lumping, see [24].

Weak equivalence. Hitherto we have studied only strong bisimilarity on Markov
chains. It seems to be equally worthwhile to investigate weak bisimilarity. For
this purpose, several questions have to be addressed.

First, what is the counterpart of a weak transition in terms of Markovian
transitions? In the non-stochastic setting we have used a weak transition relation
to successfully define weak bisimilarity. It has been based on the distinction
between internal actions (labelled τ) and external, observable actions. Such a
distinction is not obvious for Markovian chains, because there is no notion of
interaction with the external environment.

We may therefore refuse to think about weak relations on Markovian chains
at all. Alternatively we may decide that either none, or all of the Markovian
transitions are internal. In the former case, a weak Markovian bisimulation will
not differ from its strong counterpart, because there is no internal transition
that could be abstracted away. So, what about assuming that all Markovian
transitions are internal? The corresponding weak transition relation would then
combine sequences of Markovian transitions into a single ’weak’ transition, in the
same way as ε=⇒ combines sequences of τ−→ transitions. For instance, a sequence
P

λ−→ P ′ µ−→ P ′′ could be combined to a weak transition from P to P ′′ with
a parameter ν. This parameter subsumes the exponentially distributed sojourn
times in P and P ′, and it may, in general, be defined as a function φ(λ, µ).

Unfortunately, the sequence of two (or more) exponentially distributed delays
is no longer exponentially distributed. So, any particular choice of a function φ
will introduce (a possibly severe) error in the model. In other words, replacing
a sequence of Markovian transitions by a single weak Markovian transitions will
lead to a CTMC where it is impossible to reconstruct the stochastic behaviour
of the original chain. A result similar to Theorem 3 is thus not possible for any
kind of weak Markovian bisimulation. Approximate solutions to this problem
have been proposed, and we refer to [27] for a discussion of this topic.
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(λ).E
λ−→ E

E
λ−→ E′

E + F
λ−→ E′

F
λ−→ F ′

E + F
λ−→ F ′

Ei{[X := E]i /Xi} λ−→ E′

[X := E]i
λ−→ E′

Table 7. Operational semantic rules for MCc.

3.3 Algebra of Markov Chains

We now develop an algebraic view on Markov chains. To do so, we first define a
small, action less algebra, that allows us to generate Markov chains.

Definition 15. Let λ ∈ R+ and X ∈ V. We define the language MCc as the set
of closed expressions given by the following grammar.

E ::= 0 | (λ).E | E + E | X | [X := E ]i
The expression (λ).E, a delay prefixed expression, has the intuitive meaning that
a process (λ).P has to delay for some time before turning into the process P . The
amount of time needed to delay is determined by λ, which serves as a parameter
of an exponential distribution. In other words, the probability that (λ).P has to
wait less than t units of time before turning into process P equals 1 − eλt.

The semantics of MCc is depicted in Table 7, defining a Markov transition
relation −→ ⊂ MCc × R+ × MCc as the least multi-relation given by the rules.
A particular expression E then gives rise to a Markov chain with initial state E
and a discrete state space S, determined by the states reachable from E.

Note that, as before, an expressionE like (λ).E′+(µ).E′′ has two alternatives.
But different from Section 2 where the decision which alternative to take has
been nondeterministic this is not the case here. Instead, the decision is governed
by the probabilistic evolution of (λ).E′ and (µ).E′′, since a race is assumed to
exist between the different branches. The sojourn time of E, i.e. the time until
the state changes (to either E′ or E′′) is then exponentially distributed with
rate (λ+ µ). As a consequence of property (D) of exponential distributions, E′

(resp. E′′) will win the race with probability λ/λ+ µ (probability µ/λ+ µ).
In other words, imagine we want to add a probabilistic choice operator ⊕p

– that selects its left-hand side with probability p, and it’s right-hand side with
1−p. We could indeed do so easily, as long as it is guarded by some delay prefix.
We could define

(λ).(E′ ⊕p E
′′) = ((1 − p)λ).E′ + (pλ).E′′ (6)

to manifest the probabilistic effect that the operator ’+’ has due to the race
condition.

This remark leads us to the algebraic properties of bisimilarity (or lumpa-
bility) in this context. From the above discussion, it is obvious that the laws in
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(C) E + F = F +E
(A) (E + F ) +G = E + (F + G)
(I ′) (λ).E + (µ).E = (λ + µ).E
(N) E + 0 = E

Table 8. Axioms for MC bisimilarity.

Table 4 cannot be valid in MCc without change. The idempotence law (I) clearly
contradicts the race condition we assume. Instead, a revised law (I ′) is needed
that reflects the minimum property (C) of exponential distributions. It is listed
in Table 8 together with the main equational laws characterising lumpability
[20].

4 Interactive Markov Chains

This section joins the models of the preceding two sections, continuous time
Markov chains and labelled transition system in an orthogonal fashion. It does
so by means of two types of prefixes. The action-prefixed expression a.P may
interact on action a and afterwards behave as expression E. The delay-prefixed
expression (λ).F has to delay for an exponentially distributed time according
to rate λ before turning into expression F . We first introduce the language
and discuss the equational properties we expect to hold for this language. Then
we match the equational theory with a corresponding operational definition (in
SOS style) and appropriate notions of semantic equivalences, based on strong
bisimulation and weak congruence.

4.1 Algebra of Interactive Markov Chains

Definition 16. Let a ∈ Aτ , λ ∈ R+, and X ∈ V. We define the language IMCc

as the set of closed expressions given by the following grammar.

E ::= 0 | a.E | (λ).E | E + E | X | [X := E ]i

Example 17. A simple example of an expression of IMCc is

a.(λ).(µ).a.(µ).0

Our intuition is as follows: The expression initially is ready to interact on action
a. Afterwards, it delays the next possible interaction on a by a sequence of
exponential delays, the first given by rate λ, the second given by rate µ. After a
second interaction on a it delays for another exponentially distributed duration,
before turning into the terminated expression.
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This small example of what we intend to do with IMCc does not cover all
possibilities. In general, we can combine delays and actions, such as in

a.P + (λ).Q

As a consequence, we have to develop an unambiguous view of the interplay of
actions and delays. To do so, we discuss the meaning of IMCc from an algebraic
perspective, by stating which expressions of IMCc can be equated with respect
to an intuitive notion of equality. It is important to observe that we have some
freedom with respect to what we consider to be intuitive, but there are also
constraints.

Strong bisimulation. First of all we intend to inherit the algebras PAc and IMCc

i.e., the laws we established earlier should remain valid. As a consequence, our
equational theory for strong bisimulation for IMC is based on the union of the
axioms listed in Table 4 and in Table 8. We could decide that this union is pre-
cisely covering all the cases we want to equate with a strong bisimulation. This
would mean that the meaning of a.P + (λ).Q has to be obtained somehow by
interpreting the class of all algebraically equivalent expressions, i.e. all expres-
sions into which it can be rewritten using the axioms. Here, we decide not to
follow this purely algebraic approach, but instead to add one further axiom that
corresponds to an operational intuition. This is the notion of maximal progress:
we assume that intuitively actions can happen as soon as possible. This means
that a behaviour such as a.P + (λ).Q will not be delayed at all if the action a
is instantaneously enabled. In this case, a.P + (λ).Q will behave just like a.P
(since the probability of the delay to finish is 1 − e−λ0 = 0). But how do we
know that action a is indeed enabled? We do not know this in general, because
the action may depend on some interaction with the environment which is de-
layed. But in the specific case where action a is the distinguished internal action
τ the environment cannot influence its occurrence, and therefore it can occur
instantaneously. Hence we can add an axiom

(P ) (λ).E + τ.F = τ.F

to our equational theory, reflecting our maximal progress assumption. This as-
sumption is often made in real-time process algebra [45,59,52,12].1

The resulting set of core axioms for strong bisimilarity on IMC is listed in
Table 9. All of them have appeared in the subalgebras of PAc and MCc, except for
(P ) and for the law (I ′′). The latter restricts the standard idempotence law (I)
(i.e., E +E = E) to action prefixed expressions, such that it is compatible with
(I ′). Recall that (I) contradicts the race condition assumed in the MC context,
and hence needs a refinement.

1 In the context of generalised stochastic Petri nets a similar assumption is present:
by definition, immediate transition are assumed to have a higher priority level than
Markov timed transitions [2].
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(C) E + F = F + E
(A) (E + F ) + G = E + (F + G)
(I ′) (λ).E + (µ).E = (λ + µ).E
(I ′′) a.E + a.E = a.E
(N) E + 0 = E

(P ) (λ).E + τ.F = τ.F

Table 9. Axioms for IMC strong bisimilarity.

(C) E + F = F +E
(A) (E + F ) + G = E + (F + G)
(I) a.E + a.E = a.E
(I ′) (λ).E + (µ).E = (λ + µ).E
(N) E + 0 = E

(P ) (λ).E + τ.F = τ.F

(τ1) a.τ.E = a.E
(τ1′) (λ).τ.E = (λ).E
(τ2) E + τ.E = τ.E
(τ3) a.(E + τ.F ) + a.F = a.(E + τ.F )

Table 10. Axioms for IMC weak congruence.

Weak congruence. Even though the axiom (P ) of strong bisimilarity involves
a specific treatment of internal actions, the axiom system in Table 9 does not
provide means to abstract from sequences of internal actions. Recall that Table 5
presents axioms (τ1)–(τ3) that reflect the power of weak congruence to eliminate
sequences of internal actions. A similar treatment of internal actions is desirable
for IMC, and we therefore postulate some axioms for a weak congruence on IMC.
The axioms are listed in Table 10. They extend the ones we have postulated
for strong bisimulation on IMC (because we want to preserve the equations of
strong bisimulation) with additional axioms that take care of internal actions.
The axioms (τ1)–(τ3) are known from the PAc context already, and axiom (τ1′)
is an obvious adaption of (τ1) to the delay prefixed case: if we can do an internal
move after some delay, we can also skip the internal move, but not the delay.

Studying the equational theory in Table 10 raises the question why axioms
(τ2) and (τ3) do not require a similar adaptation to the delay-prefix case as (τ1)
does. For (τ2), the answer is easy, because it is not specific for the action-prefix
case, it also covers the cases where E involves delay prefixes. But for (τ3) the
answer is more involved. The adapted candidate law

(τ3′) (λ).(E + τ.F ) + (λ).F = (λ).(E + τ.F )



212 Ed Brinksma and Holger Hermanns

a.E
a−→ E

E
a−→ E′

E + F
a−→ E′

F
a−→ F ′

E + F
a−→ F ′

Ei{[X := E]i /Xi} a−→ E′

[X := E]i
a−→ E′

(λ).E
λ−→ E

E
λ−→ E′ F � τ−→

E + F
λ−→ E′

E
λ−→ E′ F � τ−→

F + E
λ−→ E′

Ei{[X := E]i /Xi} λ−→ E′

[X := E]i
λ−→ E′

Table 11. Operational semantic rules for IMCc.

is not sound for IMC weak congruence, since on the left hand side, the time
needed before being able to behave as F is governed by an exponential distribu-
tion with rate 2λ, while the process on the right is slower, since it evolves into F
after a delay with a rate of only λ. The fact that law (τ3′) is invalid shades some
interesting light on our definition, and suggests a resemblance to the behavioural
equivalence known as branching bisimulation [54]. The interested reader is re-
ferred to [19] for a detailed discussion concerning this similiarity.

We conclude our an axiomatic view on IMC by pointing out that this per-
spective still has to be matched by an operational definition of the semantics
that matches these axioms – up to appropriate notions of equalities, which also
need to be defined.

4.2 Semantics

Interactive Markov Chains involve two types of prefixes. On the semantic level
this leads to a model with a twofold transition relation −→ and −→ . The
former represents action transitions, the latter represents Markov transitions.
This should not be surprising, since we strive for an orthogonal extension of PAc

and MCc.
To give a meaning to elements of IMCc we define an operational semantics

on the basis of the SOS-rules introduced for PAc (Table 2) and MCc (Table 7),
except for one change.

Definition 17. The action transition relation −→ ⊂ IMCc × Aτ × IMCc is the
least relation and the Markov transition relation −→ ⊂ IMCc × R

+ × IMCc is
the least multi relation given by the rules in Table 11, where E � τ−→ denotes that
there is no E′ ∈ IMCc such that E τ−→ E′.

Compared to the rules in Table 2 and, Table 7, two rules are now equipped
with negative premises of the form E � τ−→ meaning that no internal transition can
be performed by E. Only in this case, a Markov transition can happen in the
context of choice. This negative premise2 is used to encode maximal progress:
2 The use of a negative premise is not mandatory to make the above axiom system
sound. Alternatively, one can take the operational rules as the plain union of the ones



Process Algebra and Markov Chains 213

An expression is only allowed to delay, if it has nothing internal to do instan-
taneously. Note that the additional negative premise is only influencing the be-
haviour of expressions that involve both delay prefixes and action prefixes. So, if
restricted to the sublanguages PAc and MCc, the operational semantics reduces
to the ones introduced in Table 2 and Table 7.

Example 18. The semantics of the process E65 defined by (2λ).(τ.0 + a.0) is
depicted in the upper left of Figure 10. As another example, the semantics of
the process E66 defined by [X1 := τ.X2 , X2 := τ.X1 + (2λ).(τ.0 + a, 0)]1 is de-
picted in the upper right of the figure.

4.3 Equivalence

We now investigate how equivalences on IMCc can be defined. Action transitions
and Markov transitions coexist in IMC. Meaningful equivalences for IMC should
thus reflect their coexistence. Strong and weak bisimilarities will therefore be
based on the respective notions for PAc and MCc. Additionally, the interrelation
of action and Markov transitions has to be captured as well, according to the
axioms we have postulated in Section 4.1.

Strong bisimulation. We introduce strong bisimilarity based on Definition 7 and
13.

Definition 18. An equivalence relation E on IMCc is a strong bisimulation iff
P E Q implies for all a ∈ Aτ

1. P
a−→ P ′ implies Q

a−→ Q′ for some Q′ with P ′ E Q′,
2. γM(P,C) ≤ γM(Q,C) for all equivalence classes C of E.
Two processes P and Q are strongly bisimilar (written P ∼ Q) if they are con-
tained in some strong bisimulation.

This definition amalgamates strong bisimilarity for PAc and for MCc. In order
to compare the stochastic timing behaviour, the cumulative rate function γM is
used, as motivated in Section 3.2. Formally speaking bisimilarity conservatively
extends [13] the respective notions on basic process algebra processes andMarkov
chains. This answers indeed why we have reused the symbol ∼, that has been
used in Section 2.4 already to denote strong bisimilarity on PAc.

We obtain the following desirable results:

for PAc and MCc, as done in [20]. In this case a more involved definition of strong
and weak bisimulation is needed that must now incorporate maximal progress. The
way we proceed here is sketched in [19, Sec. 6.1] and elaborated in [7]. The solution
is didactically more appealing, but has the drawback that divergence may imply
the awkward phenomeon of a time deadlock: If a state is on a cycle of internal
transitions, this implies that no Markov transition (indicating time progress) can be
derived, even though the system may return to this state via the internal steps ad
infinitum.
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Proposition 3. Strong bisimilarity is

– an equivalence relation on IMCc.
– a strong bisimulation on IMCc.
– the largest strong bisimulation on IMCc.

In addition, strong bisimulation turns out to be the desired notion of equivalence
relative to the equational theory we postulated.

Theorem 4. Strong bisimilarity is a congruence relation with respect to the
operators of PAc, and it satisfies the axioms in Table 9.

By adding additional laws to handle recursion the equational theory induced by
Table 9 can be shown to completey characterise strong bisimulation, see [19].

Weak congruence. Strong bisimilarity does not abstract from sequences of in-
ternal transitions like weak bisimilarity does (cf. Section 2.4). We will therefore
try to find a corresponding definition of a weak relation for IMC, that is, a weak
relation that complies to the axioms we have postulated in Table 10.

A few questions have to be addressed in order to define weak bisimulation
on IMC properly. While the treatment of action transitions can follow the lines
of Section 2.4, the treatment of Markov transitions in a weak bisimulation has
to be clarified. As remarked in Section 3.2 it is impossible to replace a sequence
of Markov transitions by a single Markov transition without affecting the prob-
ability distribution of the total delay. So, we are forced to demand that Markov
transitions have to be bisimulated in the strong sense, using function γM , even
for a weak bisimulation. However, we allow them to be preceded and followed
by arbitrary sequences of internal action transitions. These sequences are, ac-
cording to Definition 9 given by ε=⇒, the reflexive and transitive closure of τ−→.
To incorporate these sequences into the definition of weak bisimulation is a bit
involved technically. For strong bisimilarity, γM has been used to cumulate rates
of Markov transitions that directly lead from a state P into a specific equiva-
lence class C. We broaden this treatment in order to keep track of the impact
of internal transitions that follow a Markov transition: We cumulate all rates
of Markov transitions leading to states that can internally evolve into an ele-
ment of class C. For this purpose, we define the internal backward closure Cτ

as the set of processes that may internally evolve into an element of a set C, i.e.
Cτ = {P ′ | ∃P ∈ C : P ′ ε=⇒ P}.
Example 19. Concerning the IMC E67 in Figure 10, the internal backward clo-
sure
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The treatment of internal sequences preceding a Markov transitions can fol-
low the style of Definition 10. Thus, whenever there is a sequence of internal
transitions to some state P , the cumulative rate γ(P,Cτ ) should be taken into
account for comparison purposes. This requirement will be made more precise
in the following definition.
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Fig. 10. Some characteristic examples for weak bisimilarity.

Definition 19. An equivalence relation E on IMCc is a weak bisimulation iff
P E Q implies for all a ∈ Aε

1. P
a=⇒ P ′ implies Q

a=⇒ Q′ for some Q′ with P ′ E Q′,
2. P

ε=⇒ P ′ imply Q
ε=⇒ Q′ for some Q′ with γM(P ′, Cτ ) ≤ γM(Q′, Cτ ) for

all equivalence classes C of E.
Two processes P and Q are weakly bisimilar (written P ≈ Q) if they are con-
tained in some weak bisimulation.

We illustrate the distinguishing power of ≈ by means of some examples.

Example 20. E65 and E66 depicted in Figure 10 are equivalent even
though the precise argument is somewhat involved. We have for E65 that
γM( ,
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) = 2ν, as well as γM( ,
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���

���
���
���
���τ

) = 2ν. E66 has value 0 for both
classes, but this does not violate the conditions imposed by clause (2) of Defini-
tion 19. Instead, we have to find a state reachable via τ inside class satisfying

γM( ,
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) ≥ 2ν ≤ γM( ,
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). Indeed we get the values 2ν precisely for
the leftmost state reachable from E66, and hence clause (2) of Definition
19 is satisfied. On the other hand, also the rate of E66 has to be investigated.
We see that for E66, γM( ,

���
���
���

���
���
���τ

) = 0 = γM( ,
���
���
���
���

���
���
���
���τ

), which is at most the
values of E65. Note that in this reasoning, it is important that we do not demand
equality of cumulated rates in clause (2), but instead demand to find a matching
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state with at least (≤) the cumulated rates of the state we have to check. Hence
E65 ≈ E66.

The process E67 is equivalent to the former two, because γM( ,
���
���
���

���
���
���τ

) = 2ν

and γM( ,
���
���
���
���

���
���
���
���τ

) = 2ν. In contrast, γM(
���
���
���

���
���
���,

���
���
���

���
���
���τ

) = ν whence we have that
E68 is not weakly bisimilar to the former three processes.

We get the following desirable properties of ≈ .

Proposition 4. Weak bisimilarity is

– an equivalence relation on IMCc.
– a weak bisimulation on IMCc.
– the largest weak bisimulation on IMCc.
– a congruence with respect to all operators of IMCc except the choice operator
’+’.

The fact that weak bisimilarity is not substitutive with respect to choice
is inherited from non-stochastic weak bisimilarity, cf. Section 2.4. In order to
rectify this situation we identify a specific congruence contained in ≈, along the
lines of Definition 11.

Definition 20. P and Q are weakly congruent, written P � Q, iff for all a ∈ Aτ

and all C ∈ IMCc/ ≈:
1. P

a−→ P ′ implies Q
ε=⇒ a−→ ε=⇒ Q for some Q′ with P ′ ≈ Q′,

2. Q
a−→ Q′ implies P

ε=⇒ a−→ ε=⇒ P ′ for some P ′ with P ′ ≈ Q′,
3. γM(P,C) = γM(Q,C),

Weak congruence strengthens the requirement of weak bisimilarity of initial
internal transitions in precisely the same way as in Definition 11. It requires
that an initial internal transition has to be matched by at least one internal
transition. This small change it is again sufficient to fix the congruence problem
with respect to choice: weak congruence is a proper substitutive relation with
respect to all language operators.

Theorem 5. Weak congruence is a congruence with respect to all operators of
IMCc, and it satisfies the axioms in Table 10.

By adding further laws the equational theory induced by Table 9 can be shown
to be sound and complete with respect to weak congruence on IMCc [19,7] .
Furthermore, weak congruence is the coarsest congruence contained in weak
bisimilarity, as a consequence of the following lemma (cf. Lemma 3).

Lemma 5. E1 � E2 iff, for each E3 ∈ IMCc, E1+E3 ≈ E2+E3 and E3+E1 ≈
E3 + E2.

As a result, we have obtained two substitutive equivalence notions on IMCc:
strong bisimilarity and weak congruence, a distinguished subset of weak bisimi-
larity. The interrelation between these equivalences is expressed in the following
lemma (cf. Lemma 4).
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P
λ−→ P ′ Q � τ−→

P a1 . . . an Q
λ−→ P ′ a1 . . . an Q

Q
λ−→ Q′ P � τ−→

P a1 . . . an Q
λ−→ P a1 . . . an Q′

P
λ−→ P ′

hide a1 . . . an in P � τ−→
hide a1 . . . an in P

λ−→ hide a1 . . . an in P ′

Table 12. Structural operational rules for parallel composition and abstraction.

Lemma 6. ∼ ⊂ � ⊂ ≈.

Summarizing, we have managed to integrate basic process algebra – where
strong bisimulation and weak congruence are reference notions – and Markov
chain algebra – where lumpability is central – in a single algebra. An obvious
next step now is to extend this algebraic core with the other operators from
process algebra to enable the concurrent composition of IMC expressions and
abstraction from observable actions.

4.4 Concurrency and Abstraction

The two operators for abstraction and parallel composition, cf. Section 4, can be
added to IMCc without disturbing any of the theory. We extend IMCc with these
operators by stipulating that if P and Q are in IMCc then P a1 . . . an Q and
hide a1 . . . an in P are is in IMCc as well. The semantics of these operators are
given by the operational rules in Table 2, Table 3, and Table 12.

According to this definition, action transitions are treated precisely as in the
PAc setting. Markov transitions −→ are only possible if maximal progress is
assured, which is incorporated via negative premises. Negative premises in such
rule schemata have to be treated carefully in general, since they may affect the
well-definedness of the induced transition relation [17]. In this case, however, it
is not difficult to show that the rule schemata are well-defined.

In the case of parallel composition, it should be noted that the Markovian
delay transitions are interleaved as if they were standard action transitions, in
particular without adjusting rates. This is a consequence of the memoryless
property (cf. property B on page 204), and one of the principal reasons why
exponential distributions fit so well to process algebra. In the following Section 5
we will elaborate on the appropriateness of this combination.

One of the consequences of this independent delaying is that the expansion
law (X) (cf. Table 6) can be extended in a rather straightforward way to Interac-
tive Markov Chains. Table 13 lists the resulting law, together with an additional
law for abstraction, that (together with the ones in Table 6) allow one to rewrite
parallel composition, as well as abstraction into the basic operators of IMCc.

Example 21. In order to exercise the modelling of concurrent behaviour with
IMC we consider two processes, E71 and E72, depicted in Figure 11. They are
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(X ′) P a . . . an Q =
X

(λi).(Pi a . . . an Q) +
X

aj /∈{a...an}
aj .(Pj a . . . an Q) +

Pz }| {
P

(λi).Pi+
P

aj .Pj

X
(µk).(P a . . . an Qk) +

X
bl /∈{a...an}

bl.(P a . . . an Ql) +

P
(µk).Qk+

P
bl.Ql| {z }

Q

X
aj=bl∈{a...an}

aj .(Pj a . . . an Ql)

(H2′) hide a . . . an in (λ).P = (λ).hide a . . . an in P

Table 13. Axioms for rewriting parallel composition and abstraction on IMCc.

ντ

λ

λ

ν

a

E72

ν a

λa

τλ

E71

λ λλ

E71 a E72

Fig. 11. Parallel composition of IMC.

defined by [X1 := (λ).a.τ.X1]1 , respectively [X1 := (ν).(λ).a.X1 )]1 . Their par-
allel composition E71 a E72 is depicted on the right of the figure. Note that
maximal progress enforces the τ -transition of E71 to take precedence over a delay
(with rate ν) of E72 prior to reeintering the initial state.

Figure 12 illustrates the semantics of (hide a in E71 a E72 ), a process
where all actions are internalised. In this figure, states shaded with equal patterns
are weakly congruent. The shading indicates that this process is weakly congru-
ent to a process E73 defined by [X1 := (ν).(2λ).(λ).X1 + (λ).(λ).(ν).X1 )]1 . This
is a small Markov chain depicted on the right of Figure 12. The fact that

(hide a in E71 a E72 ) � E73,

means that the concurrent execution of the Interactive Markov Chains E71 and
E72 can be concisely represented by the Markov chain E73. In other words, we
have generated a small Markov chain from the composition of two IMCs.

This is a very simple example showing howMarkov chains can be compositionally
specified with IMC. Subsequently, the model can be evaluated with standard
analysis techniques for Markov chains, cf. [18]. A much larger case study is
developed in [22], where a Markov chain model of 720 states is derived from
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hide a in E71 a E72

Fig. 12. Compositional specification of a Markov chain.

an IMC specification of the plain old telephone system involving more than
107 states. To circumvent the state space explosion problem, the case study
makes heavy use of substitutivity (i.e., congruence) properties and algorithms
for simplifying (i.e., lumping) the state space (of components) according to weak
congruence. We refer to [19] for further reading on IMC.

5 Related Work: A Comparison of Algebraic Principles

As was already mentioned in the introduction a fair number of stochastic process
algebras have been developed during the last decade or so, IMC being one of
them. In this section we want to make a comparison between them. We will not
do so in terms of the complete formalisms, but will organise our discussion around
the potential resolution strategies for a number of issues that arise inevitably
when trying to combine well-known process algebraic principles with the features
of continuous time Markov chains. This will give, we hope, a more generic insight
into the (im)possibilities of the various approaches.

We will forego the challenge of defining an integrating semantical model for
the various formalisms for a deeper mathematical comparison of the various
constructs. Instead, we will try and make our comparison in terms of the various
algebraic principles, i.e. in terms of the sort of equational laws that are involved.
We think that this is the best level of abstraction to discuss the different options
and their consequences.

The three central questions that must be addressed when developing Marko-
vian process algebras are:

1. the meaning of choice
2. the meaning of concurrent composition
3. the meaning of synchronisation

We address these questions in the following sections. Our notational vehicle
will be slightly different from that of IMC, because the other stochastic process
algebras do not have the separation between actions and delays. We will therefore
have only one action-prefix construct, viz.
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(a, λ).B

meaning that action a may take place after an exponentially distributed delay
with rate λ, resulting in the behaviour specified by B. As we will also want to
discuss some aspects stochastic process algebra in a non-Markovian setting, we
also introduce the notation

(a, F ).B

where F is denotes a (general) distribution of the delay associated with a. We
allow F to be denoted by an expression over one or more stochastic variables
whose distributions are (implicitly) given, e.g. (a, X).B implies that a is delayed
with the distribution of X , and (a, f(X,Y )).B means that a is delayed with the
distribution defined by f(X,Y ) for given distributions of X and Y .

5.1 The Meaning of Choice

The choice or summation operator affects the branching structure of the transi-
tion system that is described: its SOS style semantics yields multiple outgoing
transitions from a state in the underlying transition system. In CTMCs such
outgoing transitions are interpreted as creating a race condition, i.e. they are
seen as processes that are competing for the fastest service according to their
distributions. As we have seen, for exponential distributions the time until the
first transition fires is again exponentially distributed, with a rate that is the
sum of the rates of the individual transitions.

It stands to reason that in a Markovian process algebra we should somehow
be able to add up the rates of all transitions with identical action labels. Indeed,
such transitions will all be in a race condition when the environment has enabled
the corresponding action. Using the probabilistic choice operator ⊕p introduced
in Section 3.3 we can write this down as an algebraic law, the race condition
principle (RCP):

(a, λ).B + (a, µ).C = (a, λ+ µ).(B ⊕ µ
λ+µ

C) (7)

Note that the right-hand side of the equation can be interpreted as a pro-
cess for which an a-transition with the combined rates leads to a superposition
state that, when it is reached, reduces instantaneously to one of its constituents
states. This occurs with a probability proportional to the relative weight of the
corresponding rate.

This principle can also be formalised for the non-Markovian case, where a
race condition between arbitrary continuous distributions takes place (e.g. as in
semi-Markov chains):

(a, X).B + (a, Y ).C = (a,min(X,Y )).(B ⊕P{Y <X} C) (8)
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The above laws make it clear that in a stochastic setting the choice operator
has to take the capacity of its arguments into account. This is even clearer
in the case of IMC, where the delay operator can be interpreted as a scalar
multiplication w.r.t. choice:

(λ).B + (µ).B = (λ+ µ).B (9)

This is in stark contrast to the usual interpretation of the choice operator
in process algebra, which could be referred to as structural , in the sense that
only of the arguments is chosen, and therefore there is no interference with
properties of the conflicting transitions. This leads to the idempotency law for
choice, which could be seen as a kind of ‘poor man’s choice’: choosing between
identical arguments is as good as no choice at all:

B +B = B (10)

The difference between the laws (7) and (10) is very important, as the choice
operator plays a crucial role in the formulation of other laws in process algebra,
the so-called expansion laws in particular. Below we will discuss the implications
that the capacitive interpretation of choice in the context of parallel composition.

It is possible to interpret (10) as a limit case of (7) by interpreting the former
as the behaviour for immediate transitions, cf. [27]. They can be thought of as
having an infinite rate ∞, with the property ∞+∞ = ∞. This approach makes
(10) compatible with (7) for actions for which this is a reasonable assumption
(e.g. τ -actions).

The process algebra EMPA [4] also wants to apply (10) to so-called passive
actions, actions that have no associated (finite) rates, but obtain them by syn-
chronising with non-passive actions. This, however, leads to complications, as
we will see below.

5.2 Concurrent Composition

The next operator that we consider is the parallel or concurrent composition of
processes. As we will consider the issue of synchronisation of actions separately,
here we concentrate on ‘pure’ interleaving, i.e. parallel composition without syn-
chronisation of actions between components.

To guide our discussion we consider the following, simple expansion law of
standard process algebra:

b.B c.C = b.(B c.C) + c.(b.B C) (11)

The first thing that we can observe is that for general distributions the in-
terleaving law does not hold, i.e.

(b, X).B (c, Y ).C �= (b,X).(B (c, Y ).C) + (c, Y ).((b, X).B C) (12)
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because the occurrence of b after c has taken time to occur generally has another
distribution than b occurring initially.

One way to deal with this complication is to restrict to exponential distri-
butions, i.e. the Markovian case. Because of the memoryless property of these
distributions, they are perfectly compatible with the interleaving law as distri-
butions are not affected by the conditional information that one action takes
place only after the occurrence of another. So we have

(b, λ).B (c, µ).C = (b, λ).(B (c, µ).C) + (c, µ).((b, λ).B C) (13)

showing again the perfect match of interleaving process algebra and continuous
time Markov chains, as was already evident from the elegant theory of IMC.

It is worthwhile to consider also ways out of the complications of (12), as for
many applications the assumption of memorylessness is too strong. One straight-
forward way is to complicate the interleaving law by adding the conditional
information that was missing. In this way we obtain:

(b, X).B (c, Y ).C = (b, X).(B (c, 〈Y − X |X < Y 〉).C) +
(c, Y ).((b, 〈X − Y |X > Y 〉).B C) (14)

where 〈Y − X |X < Y 〉 denotes the distribution of Y − X under the condition
that X < Y .

The disadvantage of this approach is that the formula complicates very
rapidly if more than two actions interleave with nested conditional distribu-
tions. This is unattractive, not only algebraically, but also in the sense that the
calculation of such complicated conditional distributions is computationally ex-
pensive, e.g. when doing simulations. Presumably because of this reasons this
approach has not been pursued in (non-Markovian) process algebra.

A second way out is provided by following the separation of concerns between
delay transitions and actions, as was also done in IMC. If this idea is combined
with the use of stochastic clocks to guard the occurrence of transitions, we can
formulate interleaving again in terms of an elegant algebraic law, even if one
considers the non-Markovian case. Let {X1, . . . , Xn}B mean that in the initial
state of B the clocks X1, . . . , Xn are set with random samples according to their
associated distributions overR+, after which they start counting down until they
expire (reach 0). Let (X → b) mean that b is delayed until X has expired. With
these additional stochastic clock operators we now get a new interleaving law,
viz.

{X,Y }(X → b).B (Y → c).C = (15)
{X,Y }((X → b).(B (Y → c).C) + (Y → c).((X → b).B C))

where we see that the guarded actions (X → b) and (Y → c) are interleaved,
but the clock setting {X,Y } is not. This approach to non-Markovian process
algebra is elaborated in [33].

A final approach that we wish to mention in connection with the interleaving
law in a stochastic context is to give up the law altogether. This idea belongs to
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the semantic school of the ‘true concurrency’, which insists that parallel compo-
sition is fundamentally different from interleaving and that the two should not
be equated. The causal dependencies on the left-hand and right-hand sides of the
interleaving law are different (b and c are independent versus b causes/precedes
c or vice versa) [36]. It is possible to extend so-called partial-order semantics for
process algebra with stochastic information to obtain suitable non-interleaving
semantical models for stochastic process algebras. We refer to [8,32] for further
reading.

5.3 Synchronisation

Probably the most intriguing question in the design of stochastic process algebra
is related to the synchronisation of stochastic actions of two concurrent system
components. If both actions are subject to stochastic delays, what should be the
stochastic delay of their synchronised occurrence?

Looking at this question in its simplest process algebraic form, we consider
standard process algebraic law

a.B a a.C = a.(B a C) (16)

and wonder what are reasonable functions ’∗’ that would make the corresponding
stochastic equation hold true:

(a, X).B a (a, Y ).C = (a, X ∗ Y ).(B a C) (17)

From a stochastic point of view, one may immediately think of various op-
erationalisations of ’∗’, such as the maximum of the distributions, or their con-
volution, minimum, average etc. Interestingly enough, however, the algebraic
properties of the involved operators already impose certain restrictions on ’∗’ by
themselves.

Let us consider the term ((a, X).B + (a, Y ).C) a (a, Z).D. The interplay
of choice and synchronisation allows us to derive:

((a, X).B + (a, Y ).C) a (a, Z).D = (by (8))
(a,min(X,Y )).(B ⊕P{X>Y } C) a (a, Z).D = (by (17))
(a,min(X,Y ) ∗ Z).((B ⊕P{X>Y } C) a D) = (distributing ⊕)

(a,min(X,Y ) ∗ Z).((B a D) ⊕P{X>Y } (C a D)) (18)

On the other hand, by assuming that we have a (classical) expansion law for
synchronisation of the form

((a, X).B + (a, Y ).C) a (a, Z).D = (19)
(a, X ∗ Z).(B a D) + (a, Y ∗ Z).(C a D)

we obtain by applying the RCE (8) to the right-hand side:

(a,min(X ∗ Z, Y ∗ Z)).((B a D) ⊕P{X∗Z>Y ∗Z} (C a D)) (20)
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By equating the terms of (18) and (20) we can conclude that synchronisation
with expansion in the context of RCE necessarily leads to the following two
requirements:

min(X,Y ) ∗ Z = min(X ∗ Z, Y ∗ Z) (21)
P{X < Y } = P{X ∗ Z < Y ∗ Z} (22)

In the face of these requirements, it is interesting to see how the main Marko-
vian process calculi have dealt with them.

PEPA. This stochastic process algebra [27] deals with the situation by rejecting
classical expansions like (19). To synthesise choice and synchronisation PEPA
takes its recourse to so-called apparent rates , which replace the original rates
when expanding. Interestingly enough, these rates can be obtained in a general
setting by combining RCE with (17) only:

((a, λ).B + (a, µ).C) a (a, ν).D = (by (7))
(a, λ+ µ).(B ⊕ µ

λ+µ
C) a (a, ν).D = (by (17))

(a, (λ+ µ) ∗ ν).((B a D) ⊕ µ
λ+µ

(C a D)) = (by (7))(
a,

λ

λ+ µ
((λ + µ) ∗ ν)

)
.(B a D) +

(
a,

µ

λ+ µ
((λ+ µ) ∗ ν)

)
.(C a D) (23)

The two rate parameters occurring in (23) correspond to Hillston’s apparent
rates. Note that here, however, they are actually independent of the particular
synchronisation function ’∗’ that is used. Hillston instantiates ’∗’ to theminimum
of rates (corresponding to the distribution of the slowest process): for ν greater
than λ+ µ we obtain:

((a, λ).B + (a, µ).C) a (a, ν).D = (a, λ).(B a D) + (a, µ).(C a D).

In the converse case that ν < λ+ µ we get:

((a, λ).B + (a, µ).C) a (a, ν).D =(
a,

λν

λ+ µ

)
.(B a D) +

(
a,

µν

λ+ µ

)
.(C a D).

TIPP. The requirements (21) and (22) can be reformulated for the Markovian
case in terms of rates, where we assume that ’∗’ is a function over rates , as they
uniquely determine exponential distributions. We get:

(λ + µ) ∗ ν = (λ ∗ ν) + (µ ∗ ν) (24)
λ

λ+ µ
=

λ ∗ ν

(λ+ µ) ∗ ν
(25)
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An obvious solution to fulfil these requirements is followed in the TIPP alge-
bra [23,21], where ’∗’ is interpreted as ordinary multiplication. Although this is a
very simple and computationally attractive solution for the synchronisation op-
erator, the operational intuition behind this choice is not at all obvious. There
is no useful stochastic interpretation of the multiplication of rates that corre-
sponds to some abstract mechanism for synchronisation. In TIPP, therefore, the
interpretation of ’∗’ is only motivated by its algebraic simplicity.

Buchholz, who essentially adopts this solution too [11], has given a sophisti-
cated twist to the idea to make it more acceptable. For each action a he stipulates
the existence of a systemwide (reference) rate µa. His action-prefix operators then
have the format (a, r).B where the rate of the associated transition is defined
as r.µa. In this way r defines the relative capacity of a component w.r.t. an ac-
tion occurrence. At synchronisation these relative capacities are multiplied, e.g.
(a, 2) ∗ (a, 0.5) = (a, 1).

Although, the multiplication idea in most of its forms remains questionable
as an operational interpretation of synchronisation, it is attractive from the point
of view of system decomposition. When we want to decompose a complicated
system into a set of simpler systems, then this may be useful from an analytical
point of view, even if its does not have a direct operational (or architectural)
interpretation. In much of the work centred around (Kronecker) product forms,
this approach is therefore, often implicitly, followed [50,15].

EMPA. The stochastic process algebra EMPA [4] deals with synchronisation
by imposing some restrictions. It starts from an operational interpretation of
synchronisation, viz. that all synchronisations take place in a client/server model,
where several clients may request a service represented by synchronisation on a
given action and one server grants such requests. In such a setup it is reasonable
to assume that the server determines the rate of service, and that the clients are
‘passive’ in this respect.

Algebraically this can be modelled by assuming that all clients have infinite
rates ∞ (in principle they are willing to be served instantaneously), and that
synchronisation is interpreted as selecting the minimal rate (i.e. the rate of the
slowest process), which ultimately means selecting the rate of the server. In
formula’s we get:

∞ ∗ ∞ = ∞ (26)
λ ∗ ∞ = ∞ ∗ λ = λ (27)

Assuming at most one synchronising action carries a rate parameter different
from ∞, these properties are consistent with (24) and (25). In this way we obtain
expansion laws similar to (19):

((a, λ).B + (a, µ).C) a (a,∞).D = (a, λ).(B a C) + (a, µ).(B a C) (28)
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On the other hand, when applying this principle to multiple passive actions
the EMPA approach is not free of complications, as it is unclear how the rate
ν should be ‘distributed’ over the passive components. The naive solution with
classical expansion does not work here if one also insists on having the idempo-
tency law (10) for passive actions as EMPA does, e.g.

(a, λ).(B a C)
= (a,∞).B a (a, λ).C
= ((a,∞).B + (a,∞).B) a (a, λ).B
= ((a,∞).B a (a, λ).C + ((a,∞).B a (a, λ).C
= (a, λ).(B a C) + (a, λ).(B a C)
= (a, 2λ).(B a C)

The solution of this problem in the original definition of EMPA was defective;
its revision in a more recent definition [6] essentially boils down to the imposition
of certain syntactical requirements to avoid such situations.

IMC. Because of its separation between actions and delays IMC essentially
manages to avoid the complications with synchronisation of the other calculi.
Synchronising actions does not involve the synchronisation of delays, and delay
prefixes do not synchronise, but interleave. Consequently, a (rate) synchronisa-
tion function ‘∗’ is not needed.

By itself, however, this does not guarantee that the IMC approach provides
a natural model for synchronisation. To see that this is indeed the case, we
‘translate’ combined prefixes like (a, λ).B into their IMC counterparts of the
form (λ).a.B. If we now look at the induced form of (17) under this translation
we get:

(λ).a.B a (µ).a.C = (λ).(µ).a.(B a C) + (µ).(λ).a.(B a C) (29)

The right-hand side indicates that action a will take place after a delay of
(λ).(µ) or (µ).(λ), whichever is fastest. This is equivalent to a delay with the
distribution of the stochastic value that is the maximum of the two exponential
delays. This has a very natural operational interpretation: when synchronising
the delay is determined by the slowest synchronisation party. The Markovian
process algebras that combine actions and delays cannot handle this situation,
because the maximum of two exponential distributions is no longer an exponen-
tial distribution itself, and therefore falls outside the scope of the model. As in
IMC delays can be represented by combinations of exponential delay transitions,
it can accommodate such non-exponential distributions within its model. It can,
in fact, represent delays from the much larger class of phase-type distributions
[43], which can approximate general continuous distributions arbitrarily closely
(i.e. it is a dense subset of the set of continuous distributions).
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6 Conclusion

In this paper we have shown how continuous time Markov chain models can be
integrated in the process algebraic framework for the modelling and analysis of
reactive systems. To do so, we have reviewed the main ingredients of standard
process algebra and introduced the basic concepts of continuous time Markov
chains. We have observed how Markov chains can be interpreted as transition
systems that can be described by process algebraic means, yielding an algebra
of Markov chains.

The proces algebraic treatment of Markov chains immediately induces a com-
positional framework for their representationa and analysis. Syntactically, (large)
Markov chains can be represented as the concurrent composition of simpler
chains. Semantically, the stochastic version of strong bisimulation equivalence
captures exactly the lumpability criterion for Markov chains that is used to sim-
plify chains by the aggregation of equivalent states. As strong bisimilarity is a
congruence relation w.r.t. the process algebraic operators, such simplifications
can be carried out componentwise (or compositionally) in the algebraic frame-
work, which greatly improves the practical applicability of the method for large
chains.

As a next step we have shown that the algebra of Markov chains itself can be
merged successfully with a standard process algebra over actions. In particular
we have presented the algebra of Interactive Markov Chains (IMC), which can
be used to model systems that have two different types of transitions: Marko-
vian delays (represented by their rates), and actions (represented by their action
names). We have shown that in IMC we can define both a strong and a weak vari-
ant of stochastic bisimulation. Just like in the standard theory weak bisimilarity
is not a congruence w.r.t. the choice operator, but a suitable weak congruence
can be identified in the canonical way.

IMC provides a process algebraic framework for the integrated modelling
and analysis of both functional and (Markovian) performance aspects of reac-
tive systems. Markov chain models can be obtained from the integrated models
by abstraction of all observable system actions and subsequent simplification
modulo weak bisimulation. The latter can be done compositionally by applying
reduction modulo weak congruence componentwise. Of course, this may involve
the resolution of remaining nondeterminism.

In the last part of our survey we have compared IMC with a number of other
(Markovian) stochastic process algebra’s that have been developed with similar
goals. In contrast to IMC the other approaches do not have a separation between
action transitions and delays, but instead combine them into composite actions
of the form (a, λ), meaning that action a can occur only after an exponentially
distributed delay with rate λ. In many respects these algebras are quite compa-
rable to IMC. The main exception is the treatment of action synchronisation,
which in IMC is straightforward and follows standard process algebra. The other
approaches differ according to the different mechanisms by which the rates of
the synchronised actions are determined. In IMC delays are not synchronised
but interleaved, which for exponential distributions is equivalent to waiting for
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the longest delay. This seems an intuitively natural choice. Because of the sep-
aration between delays and actions the treatment of synchronisation in IMC is
quite elegant, and in our opinion the preferred approach when the maximal delay
interpretation of synchronisation applies.

Acknowledgements. Pedro R. D’Argenio, Ulrich Herzog, Rom Langerak,
Joost-Pieter Katoen, Lennard Kerber, Michael Rettelbach, Markus Siegle, and
Vassilis Mertsiotakis are all kindly acknowledged for their support, ideas and co-
operation in our joint research of stochastic process algebra over the past years.
The second author is supported by the Netherlands Organisation of Scientific
Research (NWO).

References

1. Jos Baeten and Peter Weijland. Process Algebra, volume 18 of Cambridge Tracts
in Computer Science. Cambridge University Press, 1990.

2. G. Balbo. Introduction to Stochastic Petri Nets. This volume.
3. J.A. Bergstra, A. Ponse, and S.A. Smolka, editors. Handbook of Process Algebra.

Elsevier Science Publishers, 2001.
4. M. Bernardo and R. Gorrieri. Extended Markovian Process Algebra. In Ugo

Montanari and Vladimiro Sassone, editors, CONCUR ’96: Concurrency Theory
(7th International Conference, Pisa, Italy, August 1996), volume 1119 of Lecture
Notes in Computer Science. Springer, 1996.

5. T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language
LOTOS. Computer Networks and ISDN Systems, 14, 1987.

6. M. Bravetti and M. Bernardo. Compositional asymmetric cooperations for process
algebras with probabilities, priorities, and time. In Proc. of the 1st International
Workshop on Models for Time Critical Systems, volume 39 (3) of Electronic Notes
in Theoretical Computer Science. Elsevier Science Publishers, 2000.

7. M. Bravetti and R. Gorrieri. A complete axiomatisation for observational con-
gruence of prioritized finite state behaviours. In U. Montanari, J.D.P. Rolim, and
E. Welzl, editors, Automata, Languages, and Programming (ICALP), volume 1853
of Lecture Notes in Computer Science, pages 744–755, Geneva, Switzerland, 2000.
Springer.

8. E. Brinksma, J.-P. Katoen, R. Langerak, and D. Latella. A stochastic causality-
based process algebra. In S. Gilmore and J. Hillston, editors, Proc. of the 3rd
Workshop on Process Algebras and Performance Modelling. Special Issue of “The
Computer Journal”, 38(7) 1995.

9. E. Brinksma, A. Rensink, and W. Vogler. Fair Testing. In Insup Lee and Scott
Smolka, editors, Proceedings of 6th International Conference on Concurrency The-
ory (CONCUR ’95, Philadelphia), volume 962 of Lecture Notes in Computer Sci-
ence. Springer, 1995.

10. S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A Theory of Communicating
Sequential Processes. Journal of the ACM, 31(3):560–599, 1984.

11. P. Buchholz. Markovian Process Algebra: Composition and Equivalence. In U. Her-
zog and M. Rettelbach, editors, Proc. of the 2nd Workshop on Process Algebras
and Performance Modelling, Regensberg/Erlangen, July 1994. Arbeitsberichte des
IMMD, Universität Erlangen-Nürnberg.



Process Algebra and Markov Chains 229
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Abstract. We describe modular verification techniques for randomized
distributed algorithms as extensions of techniques for ordinary, non ran-
domized, distributed algorithms. The main difficulty to overcome arises
from the subtle interplay between probability and nondeterminism, where
probability is due to the random choices that occur within an algorithm,
and nondeterminism is due to the unknown speeds and scheduling poli-
cies of the processes. The techniques that we introduce are based on
separation of probability from nondeterminism.
When the nondeterminism is factored out, the analysis of an algorithm
has several pieces that are in common with the area of performance
evaluation. Thus, the techniques that we describe are likely to constitute
a bridge to export typical performance evaluation techniques to the area
of concurrent nondeterministic systems and, vice versa, to understand
alternative ways for handling nondeterminism when it arises.

1 Introduction

Since the pioneering paper of Rabin [81], randomization has turned out to be a
fundamental tool for the efficient solution of problems, and in particular, in the
field of distributed computation, a fundamental tool for the solution of problems
that are otherwise unsolvable. Examples are algorithms for mutual exclusion
with few shared variables [82,57], algorithms for consensus [21,12,13], shown
otherwise unsolvable in [38], and algorithms for symmetric solution to the dining
philosophers problem [65].

Unfortunately, randomization is very complicated to deal with since it is
combined with the intrinsic nondeterminism of concurrent systems that derives
from the unknown scheduling policies and relative speeds of the processes. As
opposed to the standard approach in performance analysis, we cannot simply
assume some approximate form of resolution of the nondeterminism; rather we
are interested in the worst case scenario. Thus, our main interest is to study the
functional correctness and performance of an algorithm under any resolution of
the nondeterminism, possibly with some fairness restrictions.

The main difficulty in the analysis of a randomized distributed algorithm is
that, although the designer of an algorithm may believe that a specific stochastic
process takes place during execution, the resolution of the nondeterminism may
affect such stochastic process at the point of compromising its outcome. Several
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times the resolutor of the nondeterminism, which is usually called an adversary,
has the ability not to schedule some of the elementary experiments that are
part of a stochastic process, thus creating dependencies between events that are
supposed to be independent. The result is that several algorithms proposed in
the literature turned out to be incorrect. As an example, the original algorithm
for mutual exclusion of Rabin [82] was shown to have problems in [84] and later
fixed in [57].

Our objective is to study techniques for the analysis of randomized dis-
tributed algorithms, possibly extending known techniques for the analysis of
ordinary, non randomized, distributed systems. In particular, we extend labeled
transition systems [56] to account for randomization, and we extend the typical
modular verification techniques based on analysis of computations [68] and sim-
ulation relations [71,51,69]. Modular analysis is important for scalability issues,
so that the analysis of a large system can be decomposed into the analysis of
several smaller systems.

The probabilistic extension of labeled transition systems that we obtain,
which we call probabilistic automata, turn out to be an extension of Markov
Decision Processes [32], a model used for the study of optimal control policies in
a randomized environment; furthermore, once the nondeterminism is resolved,
the objects that we obtain are infinite state Markov Processes, or more pre-
cisely semi-Markov Processes, and these semi-Markov processes, which we call
probabilistic executions, are the objects on which functional correctness and per-
formance is studied.

Large probabilistic automata are built by composing smaller probabilistic
automata and letting them interact together by means of a mechanism that re-
sembles the product of ordinary automata. An important result (cf. Theorem 1)
is that each probabilistic execution of the composition of two probabilistic au-
tomata can be seen as the result of two probabilistic executions of the two
components, respectively. This means that a property of the composition of two
probabilistic automata can be derived from the properties of the components,
i.e., it is possible to reason in a modular way.

We introduce two abstract verification techniques based on the extension of
the idea of language inclusion [49], also called trace inclusion, and of simula-
tion relation [51,69]. Both techniques induce a preorder relation on probabilistic
automata that is preserved by composition, thus leading again to modularity.
Roughly speaking, the language of a probabilistic automaton describes all the
possible communication patterns that the automaton can engage in. Thus, if the
language of a probabilistic automaton A is a subset of the language of another
probabilistic automaton B, then A cannot engage in any communication pattern
that B cannot engage in, and because of compositionality, A cannot engage in
any communication pattern that B cannot engage in independently of the con-
text in which A and B are embedded. Suppose now that B always responds to
the requests it receives. Then there are no traces in the language of B where
a request does not have any response. Because of trace inclusion, there are no
traces in the language of A where a request does not have any response, and
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thus A responds to all the requests it receives. Language inclusion can be used
as an implementation relation. Simulation relations are used as a sound proof
technique for language inclusion.

We also describe two techniques for the separation of probability from non-
determinism, since it is the interaction between probability and nondeterminism
that causes most of the problems. The first technique consists of a collection of
tools, called coin lemmas, that provide us with a rule to associate an event with
each probabilistic execution of a probabilistic automaton and a minimum prob-
ability p that each event is guaranteed to have. Thus it is sufficient to show that
all the elements in the events given by the rule ensure the correct termination
of the algorithm under examination to conclude that the algorithm terminates
correctly with probability at least p. The advantage of coin lemmas is that they
take care explicitly of the interaction between probability and nondeterminism
(cf. Sections 3 and 5), and reduce the analysis of a probabilistic property to the
analysis of a property that involves only nondeterminism.

The second technique for the separation of probability and nondetermin-
ism originates from arguments that are typical of random variables. Consider
a probabilistic execution (a semi-Markov process), and consider a function φ
that assigns a non-negative real number with each path (which we call an exe-
cution) in the probabilistic execution. We call φ a complexity function. Consider
a reachability property that holds with probability 1. Function φ applied to the
minimum paths where the reachability property is satisfied is a random vari-
able that expresses the complexity required to satisfy the reachability property.
Furthermore, the expected value of φ is the expected complexity to satisfy the
property. In distributed algorithms it is typical to study the relationship between
different complexity measures to derive the complexity of the algorithm under
examination. Such relations can be lifted to expectations using the results that
hold for random variables. Once again, results about expectations are proved by
analyzing properties that involve only nondeterminism.

Throughout the paper we give highlights of a large case study [79] where all
the techniques that we present are used. We do not work out all the details of
the example and we refer the interested reader to the paper that documents the
whole case study. Other simpler case studies appear in [2,67,78,86].

The fact that in our analysis we have to deal with objects that are similar to
Markov Decision Processes and with Markov processes in general suggests that
the analysis of randomized distributed algorithms has several elements in com-
mon with classical performance analysis. It is our hope that the experience we
have gained can constitute one of the bridges for exchanging techniques between
concurrency theory, specifically the study of nondeterminism in concurrency the-
ory, and performance analysis. Our presentation is focused on algorithms; yet
people familiar with other problems that include randomization and that need
an explicit treatment of nondeterminism may find useful suggestions.

The rest of the paper is structured as follows: Section 2 gives an overview
of related work in the areas of probabilistic models with nondeterminism and
of analysis of randomized distributed algorithms; Section 3 illustrates some ex-
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amples of typical problems that arise in the analysis of randomized distributed
algorithms; Section 4 introduces probabilistic automata and the related modular
verification techniques; Section 5 introduces coin lemmas; Section 6 shows how
to apply the techniques of this paper by giving highlights on a specific example
that is studied in more detail in [79]; Section 7 studies techniques for performance
analysis, and Section 8 shows how to analyze the performance of the algorithm
of Section 6; finally, Section 9 gives some concluding remarks.

2 Related Work

The study of probability in concurrency theory dates back to the 80’s [62], where
the nondeterministic + operator was replaced by a probabilistic + operator.
Since then, several models were proposed, and a first classification attempt came
in [41,40], where probabilistic processes were classified into reactive, generative,
and stratified. Typical reactive models are in [62,24,63,64,27] and typical gen-
erative models are in [39,54,92,14,31,11]. A generative process is like a Markov
process and does not include any nondeterminism, while a reactive process in-
cludes some form of nondeterminism. A mixed model was introduced in [94,95].
Denotational models for probabilistic systems were studied in [50,91]. Models
with real nondeterminism and probability were introduced in [45,46,96,89].

Several concepts from concurrency theory are extended to the probabilistic
case. Among these are simulation relations [52,89], trace based semantics [39,86],
and testing based semantics [26,96,27,73,87]. In the area of probabilistic bisim-
ulation there is a lot of interest in decision algorithms [18,75,20] and in variants
of bisimulation that lead to more efficient algorithms [20].

Other studies that combine concurrency theory and performance analysis
are stochastic process algebras [48,42,22]. The reader interested in this area may
find more specific information in this volume [25,47]. Typically stochastic process
algebras include little nondeterminism and are more alike generative processes.

Nondeterminism was studied also in the area of model checking [36], where
the validity of a formula expressed in some temporal logic is verified mechanically
on a model expressed in terms of automata. The pioneering paper was in 1985
[93], where a simple model checking algorithm for Concurrent Markov Chains
was introduced. Concurrent Markov Chains are very much alike probabilistic
automata if we do not dive too deeply into semantic issues. Other model checking
algorithms for properties that hold with probability 0 or 1 are studied in [29,30],
and extensions with real time are studied in [9,10]. The first model checking
algorithm for properties that hold with any probability is presented in [43,44],
and more efficient algorithms are studied in [23]. Fairness is studied in [19], and
symbolic model checking algorithms are studied in [17,8]. Quantitative properties
in the presence of real time are studied in [59,60].

Other relevant work in the analysis of systems with probability and nonde-
terminism is in [4,6,5,7]. Here, some automatic techniques for the analysis of
long average behavior properties of systems are introduced. The models and
techniques are inspired by former studies on Markov Decision Processes [32], a
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model that in essence coincides with reactive processes and that was introduced
to study optimal control policies for systems that include randomization.

Finally, objects like probabilistic automata were introduced long ago in [80]
for the study of generalizations of the class of regular languages.

In the area of verification of randomized distributed algorithms there is work
on extending temporal logic based techniques in [76,77,83,70]. These techniques
can be used to study events that hold either with probability 1 or probability 0
and are based on transforming the 0/1 probability of an event into a topological
property of the underlying transition system. The main underlying concepts are
called extreme fairness and α-fairness. The same techniques were used for the
study of performance [76], but the results are not very tight.

Other logic-based techniques are introduced in [70], where the reasoning style
of probabilistic predicate transformers [72] is applied to the analysis of a dis-
tributed algorithm. Predicate transformers are a generalization of the weakest
precondition style of reasoning; their semantics is a real number rather than a
boolean, and the real number is an expectation. Thus, the performance of an
algorithm is the semantics of the formula that expresses its complexity.

In recent work [35] a new idea of scheduler-luck games was introduced. Given
a randomized distributed algorithm we set up a game between a player scheduler
and a player luck. The player scheduler resolves the nondeterminism trying to
compromise the correctness of the algorithm, while the player luck fixes the
outcome of some of the coin flips trying to ensure the correctness of the algorithm.
We say that luck has a k winning strategy if it can ensure correctness against
any scheduler by fixing the value of at most k coins. In such case we can conclude
that the algorithm is correct with probability at least 1/2k. Scheduler-luck games
can be seen as an instance of the coin lemmas that we introduce in Section 5;
however in some cases they provide us with a very elegant verification technique.

3 The Problems with Randomization

We can view a distributed system as a collection of tasks that evolve on separate
processors and that communicate through messages. A distributed algorithm is
a description of the tasks that each processor should perform, and a distributed
algorithm is called randomized if some of the operations performed by the pro-
cessors involve some randomization. The evolution of a randomized distributed
system can be described as a stochastic process; however, the stochastic process
changes depending on the relative speeds of the processors and/or the schedul-
ing policy between the processors. Thus, since processor speeds and scheduling
policies are generally unknown, there is no way to know exactly the stochastic
process that will take place. Stating that an algorithm is correct means stating
that no matter what stochastic process takes place the algorithm achieves its
goal.

Showing the correctness of a randomized distributed algorithm is not easy
at all. To cite some authoritative comments, “intuition often fails to grasp the
full intricacy of the algorithm” [76], and “proofs of correctness for probabilistic
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distributed systems are extremely slippery” [65]. Moreover, the difficulty of the
problem is supported by the existence of are several flawed algorithms.

One problem in the analysis of an algorithm is that it is difficult to define
precisely the probability space on which to reason, and the lack of a well defined
probability space forces the designer of an algorithm to reason informally. This
is the problem at the base of the error in the analysis of the the first randomized
algorithm of Rabin for mutual exclusion [82]: one of the informal steps in the
proof relates two probabilities that are not defined in the same probability space.

Another problem derives from the fact that sometimes the stochastic process
that a designer anticipates may not take place in the algorithm. We illustrate
the problem by referring to a case study [2]. In [3] a randomized algorithm for
computing a spanning tree in a network is presented. In the algorithm each node
tries to detect what tree to belong to and in particular each node decides whether
it is a root of its tree by using randomization to break symmetry. Roughly, when
two or more nodes are in conflict because they all want to be a root of the same
tree, the nodes throw a random number, called an id, according to the Afek-
Matias schema [1], i.e., number i is chosen with probability 1/2i. Then the root
is the process that draws the highest id. It is shown in [1] that there is a constant
c such that, whenever k processes draw a number according to the Afek-Matias
distribution (k is any fixed number), with probability at least c there is a unique
maximum. Then we can conclude that there is a unique root with probability at
least c, which is sufficient to show the correctness of the algorithm.

Unfortunately, a closer look at the argument above shows that there is a
serious flaw. Specifically, the result of [1] is stated in terms of conditional prob-
abilities, in the sense that if we first fix k and then we draw k numbers, then
there is a unique maximum with probability at least c. However, if we choose how
many id’s to draw based on some partial outcome of the process, then we could
continue to draw id’s until we have two maximums. In such case the probability
of a unique maximum would be very low. Thus, in order to show the correctness
of the algorithm of [3], we need to make sure that it is not possible to schedule
processes so that the number of id’s to draw can be determined based on some
partial outcome of the drawing process. Indeed, the problem was present in a
previous unpublished version of the algorithm and it was discovered only when
one of the authors tried to apply coin lemmas to verify its correctness. We will
return to this problem when talking about coin lemmas.

4 Probabilistic Automata

In this section we describe probabilistic automata [86], the model that we use
for our analysis. All our definitions are given in the discrete case; generalizations
to non-discrete systems appear in [34,33].

4.1 Probabilistic Automata

A probabilistic automaton A is a tuple (S, s̄, Σ,D) where S is a set of states, s̄ ∈ S
is a start state, Σ = (E,H) is a pair of disjoint sets of external and internal
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(hidden) actions, respectively, called an interface, and D ⊆ S × Σ × Disc(S)
is a transition relation, where Disc(S) denotes the set of discrete probability
measures over S.

States are ranged over by s, q; actions are ranged over by a, b, c; internal
actions are ranged over by τ ; discrete distributions are ranged over by µ. We
call an element of D a transition, and we denote a generic transition (s, a, µ)
alternatively by s a−→ µ. We say that a transition (s, a, µ) is enabled from s and
that it is labeled by a. We call a transition (s, a, µ) Dirac if µ is a Dirac measure,
i.e., a measure that assigns probability 1 to a single element. We call a state s
Dirac if all the transitions enabled from s are Dirac; we call s deterministic if
it enables at most one transition for each action; we call s single if it enables at
most one transition. We say that a probabilistic automaton is deterministic if
each state is deterministic.

For notational convenience, we denote the elements of a generic probabilistic
automaton A by S, s̄, Σ,E,H,D, and we propagate primes and indicies. Thus,
the elements of A′

i are denoted by S
′
i, s̄

′
i, Σ

′
i, E

′
i, H

′
i,D′

i. Sometimes we abuse of
notation and write Σ for the set E ∪H rather than the pair (E,H). Finally, for
a state s we denote by D(s) the set of transitions of D that are enabled from s.

If we think of a Markov process, for each state there is a unique probability
distribution over states that describes the probability distribution of the next
state in the stochastic process. In probabilistic automata the distribution is not
unique; rather there are several distributions. From the formal point of view, in
a Markov process D is a function rather than a relation. In the description of a
distributed algorithm nondeterminism arises from the fact that from each state
several processes are ready to perform a computational step, but only one of them
will be the first one to take its step. Each computational step is described by a
transition; thus, for each state there are several transitions enabled. Probabilistic
automata are equipped also with a set of actions that take an active role in
the transitions. Actions are used to describe potential communication between
automata when they interact (cf. Section 4.3).

An ordinary labeled transition system (automaton) [56] is essentially a prob-
abilistic automaton where all states are Dirac. The probabilistic automata of
[86] are more general than the probabilistic automata defined here in that
D ⊆ S × Disc(Σ × S ∪ ⊥), where ⊥ is a special symbol that denotes the pos-
sibility of not moving from s forever. The probabilistic automata of this paper
coincide with the simple probabilistic automata of [86]. The reactive systems of
[62] are deterministic probabilistic automata. The probabilistic automata of [80]
are essentially our probabilistic automata. Markov Decision Processes [32] are
essentially deterministic probabilistic automata. The alternating model [93] can
be seen as a probabilistic automaton where each state is either Dirac or single.

4.2 Probabilistic Executions

An execution of a probabilistic automaton A is an alternate sequence of states
and actions, starting with a state and, if the sequence is finite, ending with a
state, α = s0a1s2, . . ., such that for each i there exists a transition (si, ai+1, µ) in
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D such that µ(si+1) > 0. An execution describes one of the possible evolutions
of a probabilistic automaton. It is the result of resolving the nondeterminism
and the probability as well.

Denote by fstate(α) the first state of an execution α and, if α is finite, denote
by lstate(α) the last state of α. A finite execution α1 = s0a1s1 · · · ansn of A and
an execution α2 = snan+1sn+1 · · · of A can be concatenated . The concatenation,
written α1 � α2, is the execution s0a1s1 · · · ansnan+1sn+1 · · ·. An execution α1

of A is a prefix of an execution α2 of A, written α1 ≤ α2, iff either α1 = α2 or
α1 is finite and there exists an execution α′

1 of A such that α2 = α1 � α′
1.

To study the probabilistic behavior of a probabilistic automaton we need to
study the objects that result from the resolution of the nondeterminism only,
which are semi-Markov processes. We define a function σ, called a scheduler,
that resolves the nondeterminism in a probabilistic automaton based on the
past history. That is, σ is a function that takes a finite execution and returns a
sub-probability distribution over the transitions that are enabled from the last
state of its argument. Formally, σ(α) ∈ SubDisc(D(lstate(α))). If in σ(α) the
measure of D(lstate(α)) is not 1, then with probability 1 − σ(α)(D(lstate(α)))
no transition is scheduled. In the area of distributed algorithms schedulers are
usually called adversaries, since they are seen as entities that try to degrade the
performance of an algorithm as much as possible, while in the area of Markov
Decision Processes schedulers are called policies, since the main objective is to
find the scheduler (controller) that achieves the best performance.

If we fix a starting state s and a scheduler σ, then we have determined a semi-
Markov process with start state s. Indeed, for each finite execution α that starts
with s, σ(α) determines the distribution over the next action and state in the
process. We can then compute the probability of each finite execution and define
a probability distribution over executions using the classical cone construction.
Specifically, we need to build a collection of sets of executions, called a σ-field,
that includes the empty set and is closed under complement and countable union.
The elements of the σ-field are the objects that we can measure. According to
the cone construction, a cone is a set of the form Cα = {α′ | α ≤ α′}, where α is
a finite execution that starts with s. We consider the σ-field generated by the set
of cones, that is, the smallest σ-field that includes all the cones, and we define
the probability of a cone Cα as the probability of α. Standard measure theoretic
arguments show that the measure defined on the cones extends uniquely to a
measure defined over the whole σ-field. We denote such measure by µσ,s.

Observe that a cone Cα contains exactly all those executions where α occurs,
and thus it describes the occurrence of α. For this reason it is reasonable to define
µσ,s(Cα) as the probability of α. To be convinced that the σ-field generated by
the cones is sufficiently expressive, simply observe that any reachability property
(e.g., the occurrence of some action a or the reachability of some state s) can
be expressed as a union of cones (the cones of execution where the reachability
property is successful, e.g., a occurs or s is reached) and that the set of cones
with non-zero probability is countable.
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At this point the typical statements in the analysis of an algorithm are of the
form “for each probabilistic execution the probability of an event E is at least
p”. Of course the event E must be a measurable set under any scheduler. An
event E could be the set of execution where each request has a response.

4.3 Parallel Composition

We said in several occasions that modular reasoning is essential. That is, we
said that we want to analyze the properties of a large system by analyzing its
components separately. Parallel composition is the mechanism that allows us to
compose small components to lead to a large system. In this section we introduce
the parallel composition operator and its main property that enables modular
reasoning.

Parallel composition is also the operator that illustrates how two or more
probabilistic automata communicate. Each probabilistic automaton has an in-
terface, which is the set of communications that the probabilistic automaton can
engage in. Following the approach of CSP [49], if an action is in common between
two probabilistic automata, then we force synchronization on such action: in the
composition a probabilistic automaton performs the common action iff also the
other probabilistic automaton performs the same action. In such case a com-
munication takes place. The reader interested in action-based communication is
referred to the extensive literature on proces algebras [49,71,16].

We now turn to the formal definitions. We say that two probabilistic au-
tomata A0 and A1 are compatible is E0 ∩H1 = H0 ∩E1 = ∅. The parallel com-
position of two compatible probabilistic automata A0,A1, denoted by A0‖A1,
is a probabilistic automaton A defined as follows:

– S = S0 × S1;
– s̄ = (s̄0, s̄1);
– E = E0 ∪ E1 and H = H0 ∪H1;
– D is the set of triplets ((s0, s1), a, µ1×µ2), where, for i ∈ {0, 1}, si ∈ Si, and
either
• (si, a, µi) ∈ Di, or
• a /∈ Σi and µi(si) = 1.

The definition of D needs some more words of explanation. The measure µ0×µ1

considers the experiments described by µ0 and µ1 as independent; thus, µ0 ×
µ1(s0, s1) is defined to be µ0(s0)µ1(s1). The automata A0 and A1 synchronize
on their common actions and evolve independently on the other actions. The
second item in the definition of D states that an automaton Ai idles whenever
A performs a transition labeled by an action not in Σi. In other words, A1−i
evolves independently with such action. Observe that from the compatibility
condition two probabilistic automata cannot engage in synchronizations through
their internal actions.

The main mechanism to derive properties of a probabilistic automaton from
the properties of its components is the concept of projection. That is, we can
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define the projections of a probabilistic execution onto the component automata
and prove that each projection is indeed a probabilistic execution of the compo-
nent. Later in Section 6.4 we can see this result at work.

Let A be A0‖A1, and let α be an execution of A. For i ∈ {0, 1}, define πi(α),
the projection of α onto Ai, to be the sequence obtained from α by projecting
each state onto its ith component and by removing all the actions not in Σi
together with their following state. It is immediate to show that πi(α) is an
execution of Ai.

If we apply the projection operator to a probabilistic execution µσ,s, then it
is possible to show that the projection is a measurable function from the σ-field
relative to s and the σ-field relative to πi(s). Thus, the measure induced by πi,
which we denote by πi(µσ,s), is a well defined probability measure. Recall from
probability theory that the induced measure πi(µσ,s) is defined as πi(µσ,s)[E] =
µσ,s[π−1

i (E)] The main result is then the following.

Theorem 1. Let A be A0‖A1, and let µσ,s be a probabilistic execution of A.
Let i ∈ {0, 1}. Then there is a scheduler σi for Ai such that πi(µσ,s) = µσi,πi(s).

4.4 Trace Distributions

The trace of an execution α is the sub-sequence of α that consists of the external
actions. That is, a trace extracts from an execution the sequence of externally
visible communication events that take place. Several properties can be studied
simply by looking at the communication events of a system. As an example, if
in a system requests and responses occur through communication events, then
we can see whether each request obtains a response by observing traces.

The function that extracts the trace of an execution is a measurable function
from the σ-field associated with a probabilistic execution and the σ-field over
traces generated by cones of traces. Thus, a probabilistic execution can be asso-
ciated with its corresponding probability distribution over traces, which we call
a trace distribution.

Two probabilistic automata can be compared based on their trace distribu-
tion sets in a similar way as two ordinary automata are compared based on their
languages. We say that A �D A′ if each trace distribution of A is also a trace
distribution of A′. Usually we say that A implements A′.

As an example consider the property stating that a system responds to its
requests with probability at least 1/2. If requests and responses are external
actions, then in A′ each request obtains a response with probability at least 1/2
if there is no trace distribution of A′ where a request obtains a response with
probability lower than 1/2. Since A �D A′, then also in A there is no trace
distribution where a request obtains a response with probability lower than 1/2.
Thus, also in A each request obtains a response with probability at least 1/2.

Trace distribution inclusion is not preserved by parallel composition, which is
a problem if our objective is to reason in a modular way. Roughly speaking, two
probabilistic automata that have the same traces but resolve the nondetermin-
ism in different points (say A0 resolves the nondeterminism before A1) can be
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distinguished by a probabilistic automaton flips a coin and publishes the result
after A0 resolves the nondeterminism and before A1 resolves the nondetermin-
ism. In this case A1 can resolve its nondeterminism based on the outcome of the
coin flip of the context, while A0 cannot. See [85] for some detailed examples.
For this reason we introduce a new relation called trace distribution precongru-
ence, denoted by �C , which is the coarsest precongruence included in the trace
distribution inclusion.

Studying the trace distribution precongruence directly is complicated; how-
ever we can use simulations as illustrated in the next section as a sufficient
condition for trace distribution precongruence. This kind of approach is typical
in the analysis of distributed systems and will be illustrated later in this paper
(cf. Section 6.6).

4.5 Simulation Relations

Proving trace distribution inclusion is difficult in general. However, if we can
show that each move of a probabilistic automaton A0 can be simulated by a
probabilistic automaton A1, then we can conclude that each trace distribution
of A0 is also a trace distribution of A1. This idea is known as the simulation
method [69] and constitutes a very useful technique for the analysis of distributed
systems [66]. In this section we describe one of the probabilistic extensions of
the notion of simulation and state its properties with respect of modularity and
trace distribution inclusion. We refer the interested reader to [90,86].

To define formally the notion of simulation we need to define the notion of
weak transition. We say that there is a weak transition from a state s labeled by
a to distribution µ, denoted by s a=⇒ µ, if there exists a scheduler σ such that
in µσ,s the following holds:

– the support of µσ,s is included in the set of finite executions that start with
s and have trace a;

– for each state s′, µ(s′) =
∑

α|lstate(α)=s′ µσ,s(α).

In other words there is a weak transition from s labeled by a to µ if it is possible
to schedule transitions in such a way that in the resulting semi Markov process
we terminate with probability 1 after performing several internal action and a
single external action a, and the distribution over the terminal states is µ.

A simulation relation from a probabilistic automaton A0 to a probabilistic
automaton A1 is a relation R⊆ S0 × S1 such that

– s̄0 R s̄1, and
– if s0 R s1 and s0

a−→ µ0, then there exists a distribution µ1 such that
s1

a=⇒ µ1 and µ0 R µ1.

We write A0 � A1 if there is a simulation from A0 to A1.
We have not said yet what it means that µ0 R µ1. If µ0 and µ1 are Dirac

distributions, then we can simply say that the states that have probability 1 are
related. In general the definition is slightly more complicated since a state in the



Verification of Randomized Distributed Algorithms 243

support of µ0 could be related to several states in the support of µ1 and vice
versa. What counts is that each state s0 in the support of µ0 is related to states
in the support of µ1 that have a cumulative probability equal to µ0(s0) and vice
versa. Formally, µ0 R µ1 if there is a function w : S0 × S1 → [0, 1] such that

– if w(s0, s1) > 0 then s0 R s1;
– for each s0 ∈ S0,

∑
s1∈S1

w(s0, s1) = µ0(s0);
– for each s1 ∈ S1,

∑
s0∈S0

w(s0, s1) = µ1(s1).

The two main properties of simulation relations are the fact that simulation
relations are preserved by parallel composition and that they imply trace dis-
tribution inclusion. Combining the two facts, simulation relations imply trace
distribution precongruence.

Theorem 2. Let A0,A1 be two probabilistic automata such that A0 � A1, and
let A be a probabilistic automaton compatible with both A0 and A1. Then,

– A0 �C A1, and
– A0‖A � A1‖A.

5 Coin Lemmas

Stating that a property φ holds with some minimum probability p no matter
what the adversary does means that for each probabilistic execution the event
that expresses φ has probability at least p. The property φ could state that
an algorithm terminates successfully. Unfortunately, it is usually the case that
analyzing φ directly is very difficult. Thus, rather than identifying the event that
expresses φ, we can identify a sub-event that is guaranteed to have probability
at least p. It is even better and less error prone if we can identify a simple rule
to associate an event of probability at least p with each probabilistic execution.

A possible rule consists of identifying a set of executions θ and associate each
probabilistic execution µ with the event Ωµ ∩ θ, where Ωµ denotes the sample
space associated with µ. With such a rule, once we know that each execution
of θ ensures φ, we can conclude that φ holds with probability at least p, where
p is the minimum probability ensured by the rule. The main advantage of this
approach is that the analysis of a property that involves probability is reduced
to a property that does not involve probability. The problem that we have to
solve is how to choose a rule that would guarantee the minimum probability p.
Coin lemmas [86,67,88] serve this purpose.

The choice of a rule is not as simple as it might appear. As a simple exam-
ple, consider an algorithm where at some time two processes may flip one coin
each, and suppose that the algorithm terminates successfully whenever the two
coins give the same result. Something along these lines occurs in the randomized
consensus algorithm of Ben Or [21]. We would like to say that the algorithm
terminates successfully with probability at least 1/2. However, there may be
executions of the algorithm where either no coin is flipped or exactly one coin
is flipped. In order to state that the algorithm is successful with probability
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at least 1/2 we have to show either that two coins are always flipped, or that
the algorithm terminates successfully whenever less than two coins are flipped.
Problems like this one are very easy to overlook. Alternatively, we can formu-
late a coin lemma stating that, if we define θ to be the set of executions where
either less than two coins are flipped or two coins are flipped and they give the
same result, then for each probabilistic execution µ the probability of Ωµ ∩ θ
is at least 1/2. Then it is sufficient to consider all the executions of θ without
worrying about probabilities. Observe that from the definition of θ we are forced
to consider explicitly the possibility of flipping less than two coins.

We now give a formal statement of the coin lemma cited above, where we
use actions to identify the coins that are flipped.

Lemma 1. Let A be a probabilistic automaton, and let (a1, U1), (a2, U2) be pairs
consisting of an action and a set of states such that a1 �= a2. Let p1, p2 be two
numbers in [0, 1] such that, for i ∈ {1, 2}, for each transition (s, ai, µ) of A,
µ[Ui] ≥ pi.

For each probabilistic execution µ let FIRST ((ai, ui))(µ) be the set of execu-
tions α of Ωµ such that either ai does not occur in α, or ai occurs in α, and its
first occurrence leads to a state of Ui.

Then, for each probabilistic execution µ of A,

– Pµ[FIRST ((ai, Ui))(µ)] ≥ pi.
– Pµ[FIRST ((a1, U1))(µ) ∩ FIRST ((a2, U2))(µ)] ≥ p1p2.

The main idea behind the formulation of a coin lemma is the following: we
fix a collection of elementary experiments and we fix a collection of successful
outcomes. Let p be the probability of the successful outcomes. Then we map
each elementary experiment to some random draws in a probabilistic execution
in such a way that no two distinct elementary experiment map to the same
random draw. If in an execution not all the elementary experiments take place,
then the execution is considered by the rule if and only if it is possible to fix
the outcome of the elementary experiments that do not take place in such a
way that we obtain a successful outcome for the whole collection of elementary
experiments. Then we are guaranteed that the chosen set of executions always
has probability at least p.

Returning to the algorithm of [3] discussed in Section 3, the coin lemma
for the experiment of throwing k id’s would consider the set θ of executions
where either less than k id’s are drawn, or exactly k id’s are drawn and there
is a unique maximum. Then the probability of θ is at least c, where c is the
probability identified in Section 3. A scheduler that draws new id’s until there
are two maximums would stop sometimes after drawing less than k id’s, and
in the corresponding execution, which is considered in the coin lemma since we
can fix the values of the unflipped id’s so that there is a unique maximum, we
would discover that there is more than one winner, thus revealing the flaw in
the algorithm.

The reader interested in the analysis of the algorithm of [3] is referred to [2];
the reader interested in the analysis of the algorithm of Ben Or is referred to
[86]; the reader interested in details about coin lemmas is referred to [86,88].
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6 An Example: Randomized Consensus

In this section we give highlights of a case study [79] where the randomized
consensus algorithm of Aspnes and Herlihy [12] is proved to be correct and
terminate within expected cubic time. We do not work out the analysis in full
detail; rather we describe the parts of the proof that show the interplay between
probability and nondeterminism and how modularity simplifies the analysis. We
refer to [79] the reader interested in all the details.

6.1 The Consensus Problem

The consensus problem consists of making n asynchronous processes decide on
the same value (either 0 or 1) in the presence of stopping faults, given that
each process starts with its own initial value. The initial value is provided by the
environment during initialization. We say that an algorithm solves the consensus
problem if it satisfies the following properties.

Validity: If a process decides on a value within an execution of the algo-
rithm, then this value is the initial value of some process.
Agreement: Any two processes that decide within an execution of the al-
gorithm decide on the same value.
Wait-free termination: All initialized and non-failed processes eventually
decide.

It is known from [38] that there is no deterministic algorithm for asynchronous
processes that solves consensus and guarantees termination even in the presence
of at most one single faulty process. However, the problem becomes solvable
using randomization if we relax the termination condition and we replace it
with the following condition.

Probabilistic wait-free termination: With probability 1, all initialized
and non-failed processes eventually decide.

6.2 Description of the Algorithm

The algorithm of Aspnes and Herlihy proceeds in rounds. Every process main-
tains a variable with two fields, value and round , that contain the process’ current
preferred value (0, 1 or ⊥) and current round (a non-negative integer), respec-
tively. We say that a process is at round r if its round field is equal to r. Note
that, due to asynchrony, different processes could be at different rounds at some
point of an execution. The variables (value, round) are multiple-reader single-
writer. Each process starts with its round field initialized to 0 and its value field
initialized to ⊥.

After receiving the initial value to agree on, each process i executes the
following loop. It first reads the (value, round) variables of all other processes in
its local memory. We say that process i is a leader if according to its readings
its own round is greater than or equal to the rounds of all other processes. We
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also say that a process i observed that another process j is a leader if according
to i’s readings the round of j is greater than or equal to the rounds of all other
processes. If process i at round r discovers that it is a leader, and that according
to its readings all processes that are at rounds r and r − 1 have the same value
as i, then i breaks out of the loop and decides on its value. Otherwise, if all
processes that i observed to be leaders have the same value v , then i sets its
value to v, increments its round and proceeds to the next iteration of the loop.
In the remaining case (leaders that i observed do not agree), i sets its value to
⊥ and scans the other processes again. If once again the leaders observed by i
do not agree, then i determines its new preferred value for the next round by
invoking a coin flipping protocol. There is a separate coin flipping protocol for
each round. Figure 1 gives a high level view of the algorithm. The left box is
the main algorithm which is subdivided into processes; the right boxes are the
coin flipping protocols which interact with the main algorithm through some
invocation and response messages.
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Fig. 1. The interaction diagram of the algorithm of Aspnes and Herlihy.

We represent the main part of the algorithm as an automaton AP (Agree-
ment Protocol), and the coin flipping protocols as probabilistic automata CF r

(Coin Flipper), one for each round r. With this decomposition we can prove sev-
eral important properties of the algorithm as properties of AP using ordinary
techniques for non-probabilistic systems.

6.3 Informal Analysis of the Algorithm

It is easy to show that the algorithm satisfies validity since if all processes start
all with the same value v, then no process will ever observe disagreement among
the leaders and no process will ever propose a value different from v.

It is more difficult to show that the algorithm satisfies agreement. The first
important observation is that agreement does not rely on probability, but rather
on the fact that the processes at the two highest rounds all agree when a process
decides. The very strict condition on the decision action ensures that no process
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will ever be able to compromise a decision that was taken already. If a process
decides v at round r, then all processes at round r agree on v and no process
at round r − 1 can observe leaders with values different from v. More precisely,
suppose for the sake of contradiction that the decision is taken by process P and
that there is a process Q at round r− 1 that is up to proposing a value different
from v for round r or up to flipping a coin for the value to propose at round
r. Let Q be the first such process. This means that all processes at round r or
higher agree on v. We distinguish two exhaustive cases.

1. Process Q observed that the leaders agree on a value different from v.
In this case, since all processes at round r prefer v, process Q observed that
the leaders are at round r−1. Thus, since Q is at round r−1, Q itself prefers
a value different from v at round r− 1. Consider the last observation that P
made of Q. If P observed Q at round r−1, then the value preferred by Q at
round r− 1 must be v, a contradiction (it is possible to show that a process
cannot switch its preferred value within a round); if P did not observe Q at
round r − 1, then P was already at round r when Q moved to round r − 1,
which means that Q observed at least one process at round r during its last
scan, again a contradiction.

2. Process Q observed that the leaders do not agree on v.
Since during the second scan of process Q the value proposed by Q is ⊥,
process P observed Q either at a round lower than r− 1 or while process Q
was scanning the other processes for the first time. In both cases during the
second scan of round r− 1 process Q sees that process P is at round r, and
thus that all leaders agree on v. This is a contradiction.

The agreement property is quite intricate to analyze, and the analysis above
may look incomplete since each statement relies on the understanding of several
subtle interactions between processes. However, assuming that all the statements
are correct, the informal analysis above provides the main ideas behind the
correctness of the algorithm of Aspnes and Herlihy. In the formal proof [79] all
the informal analysis above is embedded into an invariant property that can be
proved easily by induction. No probability involved in the proof.

The termination property (eventually some process will decide) relies strongly
on the properties of the coin flipping protocol. If at a certain round the coin
flipping protocol behaves like a global coin flip, i.e., like the flip of a unique
coin the result of which is returned to each process, then termination occurs
within a few rounds. Informally, all the processes that do not flip coins to select
the value for the next round will select the same value, and all the processes
that flip obtain the same value. The key problem is how to define a coin flipper
that behaves like a global coin flipper with high probability. We postpone the
discussion to Section 6.5.

6.4 Using Modularity for the Analysis of Termination

We now show how modularity plays a crucial role in the analysis of termina-
tion and concentrate on showing that in the algorithm of Aspnes and Herlihy
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some decision is reached within some expected number of rounds. This property
depends on the probabilistic properties of the coin flipping protocols. However,
there are several progress properties of the algorithm that do not depend on any
probabilistic assumption. We first study such properties, which are properties
of AP only, and then we use modularity to combine these properties with the
probabilistic behavior of the coin flippers.

For each round r, let CF r be a coin flipping protocol, that is, a probabilistic
automaton with the interface of a coin flipper of Figure 1. Define AH (Aspnes-
Herlihy) to be AP ‖ CF , where CF is (‖r≥1CF r).

Define a function φMaxRound that takes a finite execution α and gives

φMaxRound(α)
�= lstate(α).max-round − fstate(α).max-round ,

where themax-round component of a state is the maximum round number among
all the processes. Define the following sets of states.

R the set of reachable states of AH such that some process is involved in the
consensus protocol;

D the set of reachable states of AH such that no process is involved in the
consensus protocol (each process either has decided or has not started yet).

We call the states ofR active, since they represent situations where some process
is participating actively in the consensus protocol. We want to show that, under
some special conditions on the coin flipping protocols, starting from any state of
R, a state from D is reached within some bounded number of rounds. It turns
out that it is easier to split the problem in two parts: first we show a simple
property that, unless the algorithm terminates, the system reaches a point where
one process has just moved to a new maximum round (F0 and F1 below, where
the subscript corresponds to the value preferred by the process at the maximum
round); then, we show that from such an intermediate point, under some special
conditions on the coin flipping protocols, the algorithm terminates. Formally,
define the following sets of states.

F0 the set of states of R where there exists a round r and a process l such that
l just reached round r preferring value 0, and no other process has reached
round r yet;

F1 the set of states of R where there exists a round r and a process l such that
l just reached round r preferring value 1, and no other process has reached
round r yet.

We show two properties, the first of which is almost trivial:

M1 If AH is in a state s of R and all invocations to the coin flippers on non-
failing ports get a response, then a state from F0∪F1∪D is reached within
one round.

M2 If AH is in a state s of Fv, all invocations to the coin flippers on non-failing
ports get a response, and all invocations to CF s.max-round get only response
v, then a state from D is reached within two rounds.
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Informally, “all invocations to the coin flippers on non-failing ports get re-
sponses” means that whenever a process invokes a coin flipper, either it fails
or it gets a response, and “all invocations to CF r get only response v” means
that whenever CF r returns a result, the result is v. We are not interested in
the formal statements for the purpose of this paper. The proofs of M1 and M2
follow standard arguments for nondeterministic systems based on invariants.

In Section 6.5 we show how to build a distributed implementation of the coin
flippers that satisfies the following properties.

C1 For each probabilistic execution of CF r that starts with a reachable state
of CF r, the probability of the executions where all invocations to the coin
flippers on non-failing ports get responses is 1

C2 For each fair probabilistic execution of CF r, and each value v ∈ {0, 1}, the
probability of the executions where all invocations to CF r get only response
v is at least p, where p is a real number in [0, 1].

We use modularity to combine M1, M2, C1 and C2 and show that AH guar-
antees progress within expected O(1/p) rounds. That is, we prove the following
proposition.

Proposition 1. If each coin flipping protocol CF r satisfies properties C1 and
C2, then in AH , starting from any state of R and under any scheduler, a state
from D is reached within at most O(1/p) expected rounds.

The main statement that we use in the proof is

R φMaxRound≤3−→
p

D. (1)

whose meaning is that under any scheduler, starting from a state of R, with
probability at least p a state from D is reached within 3 rounds. Then we simply
have to iterate the experiment of (1) until the experiment is successful, visiting
at most 3/p expected rounds. To prove Statement (1) we prove two intermediate
statements:

R φMaxRound≤1−→
1

F0 ∪ F1 ∪ D, (2)

and for each v ∈ {0, 1},
Fv φMaxRound≤2−→

p
D. (3)

The proofs of Statements (2) and (3) rely on the properties M1, M2, C1, and
C2 and on Theorem 1.

Proposition 2. Assuming that the coin flippers in AH satisfy C1,

R φMaxRound≤1−→
1

F1 ∪ F0 ∪ D. (4)

Proof. Let µ be a probabilistic execution of AH that starts from a state of R.
Consider the inverse image θ of the event in πCF (µ) stating that each invocation
on a non failing port gets an answer. Then, the probability of θ is 1 by C1 and
Theorem 1. Observe that each execution of πAP (θ) satisfies the premise of M1.
Thus, in each execution of θ a state from F1 ∪F0 ∪D is reached within 1 round.
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Proposition 3. Assuming that the coin flippers in AH satisfy C1 and C2,

Fv φMaxRound≤2−→
p

D. (5)

Proof. Let µ be a probabilistic execution of AH that starts from a state s0 of
Fv, and let r = s0.max-round . Consider the inverse image θ of the event in
πCF (µ) stating that each invocation on a non failing port gets an answer and
each response of CF r is v. Then, the probability of θ is at least p by C1, C2 and
Theorem 1. Observe that πAP (θ) satisfies the premises of M1 and M2. Thus,
in each execution of θ a state from D is reached within 2 rounds.

6.5 The Coin Flippers

We are left to show how to build a distributed coin flipping protocol with the
properties C1 and C2. In this section we build an almost distributed version
of the coin flipping protocol where processes interact through a multiple-writer
multiple-reader shared register; in Section 6.6 we refine the protocol of this sec-
tion to yield a distributed protocol. The protocol is based on random walks
and satisfies properties C1 and C2 with a sufficiently high probability p that is
independent of n.

We represent the coin flipping protocol by letting an automaton DCN r (Dis-
tributed CoiN) interact with a centralized counter CT r (CounTer), that is,
CF r = HideI(DCN r ‖ CT r), where I is the set of actions used for the inter-
action between DCN r and CT r, and HideI is an operator that transforms the
actions of I from external to internal. Figure 2 shows the structure of the coin
flipping protocol. In this section, DCN r is distributed while CT r is composed of
n processes that receive requests from DCN r and read/update a single shared
variable: the details of the distributed implementation of a shared counter are
not necessary for any properties of the coin flipping protocol. The algorithm is
simple. To flip a coin a process reads the value of the counter and returns 0 if
the counter is below −Kn, K being a constant, 1 if the counter is above Kn.
If the counter is between −Kn and Kn, then the process flips a coin to decide
whether to increment or decrement the shared counter and then starts from the
beginning.

Since the protocols for DCN r and CT r are the same for any round r, we
drop the subscript r from our notation.

The idea behind the coin flipping protocol is very simple: the difference be-
tween the heads and tails obtained in the elementary coin flips form a stochastic
process which is known in the literature under the name of random walk [37].
The value of the shared counter and the actual difference between heads and
tails may differ by at most n since in the worst case each process may be trying
to update the counter. Finally, if the difference between heads and tails is greater
than or equal to (K + 1)n, then no process will ever observe a value below Kn.
This last property requires a careful analysis, but the idea is that the processes
that have to update the counter will not flip any more and the other processes
will flip at most once.
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Fig. 2. The structure of the coin flipping protocol.

Based on the properties above, if the difference between heads and tails
ends above (K + 1)n before ending below −(K − 1)n, then all processes will
return head: no process will ever observe a value below −Kn since the value
of the counter and the difference between heads and tails differ by at most n;
furthermore, after hitting (K +1)n all processes will observe a value above Kn.
A symmetric argument holds for tail. From random walk theory, the barrier
(K + 1)n is reached before −(K − 1)n with probability (K − 1)/2K.

Most of the properties described in this informal analysis do not rely on any
probabilistic assumption, and thus will not be described in detail in this paper.
The only thing that is relevant here is the kind of coin lemma that we need to
use for the random walk. Essentially, in the spirit of coin lemmas, we consider
the set θ of those executions where either there are finitely many coin flips and
the barrier −(K − 1)n is not reached (i.e., it is possible to fix the values of the
unflipped coins so that the barrier (K + 1)n is reached before −(K − 1)n), or
the barrier (K +1)n is reached before −(K − 1)n. Then we are guaranteed that
in each probabilistic execution the set Θ has probability at least (K − 1)/2K.
In the analysis of the coin flippers the case where the barriers are not reached
does occur whenever all the processes that are flipping fail. However, such event
does not compromise termination.

6.6 Implementing the Shared Counter

In this section we describe how to obtain an implementation of CT that can
replace the abstract automaton CT in CF without compromising properties C1
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and C2 with p = (K − 1)/2K. In this way, using the coin flipping protocol with
the new counter, we obtain a protocol for consensus that uses only single-writer
multiple-reader shared variables.

The implementation ofCT , which we denote by DCT (Distributed CounTer),
is an adaptation of an algorithm proposed by Lamport [61] for read/write reg-
isters. For our purpose the details of DCT are completely irrelevant. The im-
portant fact is that using standard results about atomic objects [66], we can
find a simulation relation from DCT to CT . Since simulation relations are pre-
served by composition (cf. Theorem 2), we have a simulation relation between
the whole algorithm of Aspnes and Herlihy with the distributed counter and the
whole algorithm with the centralized counter, which implies trace distribution
inclusion as well.

Since the termination property is a property expressible by means of trace
distributions (simply perform some visible action whenever a decision is taken),
trace distribution inclusion is sufficient to show that the algorithm of Aspnes
and Herlihy with the distributed counter works correctly within an expected
constant number of rounds.

7 Performance Evaluation with Complexity Functions

Although it is not possible to estimate the running time of a distributed asyn-
chronous algorithm (processor speeds are unknown), it is possible to give an
estimate of the running time under some assumptions on the minimum speed of
the processors. Typically we assume that each processor completes a computa-
tional step within 1 time unit once the computational step can be performed;
any other time limit can be studied simply by scaling.

In the randomized case things are complicated by the fact that our perfor-
mance measures are expectations and that such expectations change depending
on how the nondeterminism is resolved. Furthermore, it is easier to compute ex-
pected rounds rather than expected time. Once again, the main idea is to work
in the absence of probabilities and then lift the results to expectations. We start
with the notion of a complexity function.

7.1 Complexity Functions

Fix a probabilistic automatonA. A complexity function is a function from execu-
tions ofA to �≥0. A complexity measure is a complexity function φ such that, for
each pair α1 and α2 of executions that can be concatenated,max (φ(α1), φ(α2)) ≤
φ(α1 � α2) ≤ φ(α1) + φ(α2).

Informally, a complexity measure is a function that determines the complex-
ity of an execution. A complexity measure satisfies two natural requirements:
the complexity of two tasks performed sequentially should not exceed the com-
plexity of performing the two tasks separately and should be at least as large as
the complexity of the more complex task: it should not be possible to accom-
plish more by working less. The restrictions imposed on complexity measures
are required for the iterative argument of Section 6.4.
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7.2 Complexity Functions and Random Variables

Consider a probabilistic execution µ of A and a set of executions Θ such that
µ[∪q∈ΘCq] = 1. The set Θ is said to be a full cut of µ and the event denoted by Θ
is said to be finitely satisfiable. Informally, the elements of Θ represent the points
where the property denoted by Θ is satisfied. Let φ be a complexity function.
Then the restriction of φ to Θ is a random variable from the measurable space
(Θ, 2Θ). Define the measure on Θ as P [q] = µ[Cq]. We call such random variable
the random variable induced by Θ. We can define the expected complexity φ to
reach Θ in µ as follows:

Eµ,Θ[φ]
�=
∑
q∈Θ

φ(q)µ[Cq ],

i.e., the expected complexity φ to reach Θ in µ is the expected value of the
random variable induced by Θ.

7.3 Linear Combination of Complexity Functions

Given the close relationship between complexity functions and random variables
in the presence of full cuts, typical results for random variables can be used. In
particular, if several complexity measures are related by a linear inequality, then
their expected values over a full cut are related by the same linear inequality.
We use this property for the time analysis of the protocol of Aspnes and Her-
lihy. That is, we express the time complexity of the protocol in terms of two
other complexity measures (rounds and elementary coin flips), and then we use
Proposition 4 below to derive an upper bound on the expected time for termina-
tion based on upper bounds on the expected values of the other two complexity
measures. The analysis of the other two complexity measures is simpler, and
the relationship between time and the other two complexity measures can be
studied using known methods for ordinary nondeterministic systems, with no
probability involved.

Proposition 4. Let µ be a probabilistic execution of some probabilistic automa-
ton A, and let Θ be a full cut of µ. Let φ, φ1, φ2 be complexity functions, and
c1, c2 be two constants such that, for each α ∈ Θ, φ(α) ≤ c1φ1(α) + c2φ2(α).
Then Eµ,Θ[φ] ≤ c1Eµ,Θ[φ1] + c2Eµ,Θ[φ2].

7.4 Modular Analysis with Complexity Functions

To verify properties in a modular way it is useful to derive complexity properties
of a composite systems based on complexity properties of the single components.
Proposition 5 helps in doing this. Informally, suppose that we have a complexity
function φ for A = A1 ‖A2 and a complexity function φ1 for A1 such that φ and
φ1 coincide up to projection. In other words φ measures in A the property of
A1 that is measured by φ1. Furthermore, suppose that we know an upper bound
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on the expected value of φ1 that is independent of how the nondeterminism is
resolved in A1. Then, the same upper bound is valid for φ as well. In other words,
the property that we know about A1 can be lifted to A.
Proposition 5. Let A be A1 ‖ A2, and let i ∈ {1, 2}. Let φ be a complexity
function for A, and let φi be a complexity function for Ai. Suppose that for each
finite execution α of A, φ(α) = φi(α�Ai). Let c be a constant. Suppose that for
each probabilistic execution µ of Ai and each full cut Θ of µ, Eµ,Θ[φi] ≤ c. Then,
for each probabilistic execution µ of A and each full cut Θ of µ, Eµ,Θ[φ] ≤ c.

8 Performance of the Randomized Consensus Algorithm

For the analysis of the algorithm of Aspnes and Herlihy we define several com-
plexity functions and prove linear inequalities about them. Then we lift the
results to expectations using the property of reaching D as our full cut. The
complexity measures are the following:

– φt: Time elapsed.
– φflip,r: Elementary coin flips at round r.
– φid ,r: Updates to the counter at round r.
– φid : Updates to the counters.

Denote by DAH the algorithm of Aspnes and Herlihy with the distributed shared
counter, and denote by DCF r the coin flipper for round r with the distributed
shared counter. A property that can be proved by means of ordinary nondeter-
ministic analysis is the following.

Lemma 2. Let α be an execution of DAH where each computational step is
taken within 1 time unit, and let R = fstate(α).max-round. Suppose that all
the states of α, with the possible exception of lstate(α) are active, that is, are
states of R. Then, φt(α) ≤ d1n

2(φMaxRound(α)+R)+d2nφid (α)+d3n
2 for some

constants d1, d2, and d3.

That is, during the consensus protocol we perform quadratic work for each
round and linear work for each update to the shared counters. We know already
from Section 6.4 that the expected number of new rounds is constant. We need
to derive an upper bound on φid .

Since within a coin flipper the number of updates to the shared counter differs
from the number of flipped coins at most by n, we can state that for each r > 0,
φflip,r ≤ φid ,r+n. Using a coin lemma like argument and the relative properties
of random walks, we can show that the expected value of φflip,r is quadratic in
n. Thus, by Proposition5, for each probabilistic execution µ and each full cut Θ,
Eµ,Θ[φid ,r] = O(n2).

Since the expected number of visited rounds is R plus a constant number,
we obtain that Eµ,Θ[φid ] = O(Rn2). By replacing in the expression of Lemma 2,
we obtain that the expected time for termination is O(Rn3). In particular, if
initially R = 0, the expected time for termination is O(n3).

Once again we refer to [79] the reader interested in the details of the proof.
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9 Concluding Remarks

In this paper we have illustrated some of the techniques that can be used for the
analysis of randomized distributed algorithms. We addressed the main problem
of handling probability in the presence of nondeterminism, an intrinsic character-
istic of concurrent systems. All the techniques that we have illustrated originate
from concurrency theory and from the experience that we have gained through
the analysis of concurrent systems that do not involve probability.

We believe that this area constitutes one of the possible bridges between con-
currency theory and the area of performance analysis. The results of this paper
should serve two purposes: migrating some of the typical techniques of concur-
rency theory to performance evaluation, a goal that is achieved also by stochastic
process algebras, and exposing people familiar with performance evaluation to
the typical problems of concurrent systems, so that the converse migration can
take place.

It would be interesting to identify other areas of application that go beyond
randomized distributed algorithms to see whether the techniques of this paper,
possibly extended and generalized, can be applied. It would be useful as well to
see how techniques based on rewards would extend and or adapt to coin lemma
based arguments.

Finally, computer aided verification is getting increasing attention. We are
currently involved in a project where we use a model checker and a theorem
prover to get mechanized proofs for randomized distributed algorithms [58]. In
this area it is very important to find the right balance between the amount of
human intervention (the problem is undecidable in general and in any case it
has a high complexity) and the parts of an analysis that can be carried out via
model checking and/or theorem proving. Some information about related topics
can be found in this volume [55].
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42. N. Götz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed system
design: the integration of functional specification and performance analysis using
stochastic process algebras. In L. Donatiello and R. Nelson, editors, Performance
Evaluation of Computer and Communication Systems. Joint Tutorial Papers of
Performance ’93 and Sigmetrics ’93, volume 729 of Lecture Notes in Computer
Science, pages 121–146. Springer-Verlag, 1993.

43. H. Hansson. Time and Probability in Formal Design of Distributed Systems. PhD
thesis, Department of Computer Science, Uppsala University, 1991.

44. H. Hansson. Time and Probability in Formal Design of Distributed Systems, vol-
ume 1 of Real-Time Safety Critical Systems. Elsevier, 1994.

45. H. Hansson and B. Jonsson. A framework for reasoning about time and reliability.
In Proceedings of the 10th IEEE Symposium on Real-Time Systems, Santa Monica,
Ca., 1989.

46. H. Hansson and B. Jonsson. A calculus for communicating systems with time and
probabilities. In Proceedings of the 11th IEEE Symposium on Real-Time Systems,
Orlando, Fl., 1990.

47. J. Hillston. Exploiting structure in solution: decomposing compositional models.
This volume.

48. J. Hillston. PEPA: Performance enhanced process algebra. Technical Report CSR-
24-93, Department of Computer Science, University of Edimburgh (UK), 1993.

49. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International,
Englewood Cliffs, 1985.

50. C. Jones and G. Plotkin. A probabilistic powerdomain of evaluations. In Proceed-
ings 4th Annual Symposium on Logic in Computer Science, Asilomar, California,
pages 186–195. IEEE Computer Society Press, 1989.

51. B. Jonsson. Simulations between specifications of distributed systems. In J.C.M.
Baeten and J.F. Groote, editors, Proceedings of CONCUR 91, Amsterdam, volume
527 of Lecture Notes in Computer Science, pages 346–360. Springer-Verlag, 1991.

52. B. Jonsson and K.G. Larsen. Specification and refinement of probabilistic pro-
cesses. In Proceedings of the 6th IEEE Symposium on Logic in Computer Science,
pages 266–277, Amsterdam, July 1991.

53. B. Jonsson and J. Parrow, editors. Proceedings of CONCUR 94, Uppsala, Sweden,
volume 836 of Lecture Notes in Computer Science. Springer-Verlag, 1994.

54. C.C. Jou and S.A. Smolka. Equivalences, congruences, and complete axiomatiza-
tions for probabilistic processes. In Baeten and Klop [15], pages 367–383.

55. J.-P. Katoen and P.R. D’Argenio. General distributions in process algebra. This
volume.

56. R. Keller. Formal verification of parallel programs. Communications of the ACM,
7(19):561–572, 1976.

57. E. Kushilevitz and M. Rabin. Randomized mutual exclusion algorithms revisited.
In Proceedings of the 11th Annual ACM Symposium on Principles of Distributed
Computing, Quebec, Canada, pages 275–284, 1992.

58. M. Kwiatkowska, G. Norman, and R. Segala. Automated verification of a random-
ized distributed consensus protocol using Cadence SMV and PRISM. In Proceed-
ings of the 13th Workshop on Computer Aided Verification, Paris, France, July
2001, Lecture Notes in Computer Science. Springer-Verlag, 2001.

59. M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Verifying quantitative
properties of continuous probabilistic real-time graphs. In Palamidessi [74], pages
132–137.



Verification of Randomized Distributed Algorithms 259

60. M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification
of real-time systems with discrete probability distributions. Theoretical Computer
Science, 286, 2001.

61. L. Lamport. Concurrent reading and writing. Communications of the ACM,
20(11):806–811, 1977.

62. K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. In Conference
Record of the 16th ACM Symposium on Principles of Programming Languages,
Austin, Texas, pages 344–352, 1989.

63. K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94(1):1–28, September 1991.

64. K.G. Larsen and A. Skou. Compositional verification of probabilistic processes. In
Cleaveland [28], pages 456–471.

65. D. Lehmann and M. Rabin. On the advantage of free choice: a symmetric and
fully distributed solution to the dining philosophers problem. In Proceedings of
the 8th Annual ACM Symposium on Principles of Programming Languages, pages
133–138, January 1981.

66. N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1996.

67. N.A. Lynch, I. Saias, and R. Segala. Proving time bounds for randomized dis-
tributed algorithms. In Proceedings of the 13th Annual ACM Symposium on Prin-
ciples of Distributed Computing, Los Angeles, CA, pages 314–323, 1994.

68. N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed al-
gorithms. In Proceedings of the 6th Annual ACM Symposium on Principles of
Distributed Computing, pages 137–151, Vancouver, Canada, August 1987. A full
version is available as MIT Technical Report MIT/LCS/TR-387.

69. Nancy Lynch and Frits Vaandrager. Forward and backward simulations – Part
I: Untimed systems. Information and Computation, 121(2):214–233, September
1995.

70. A. McIver. Reasoning about efficiency within a probabilistic mu-calculus. In Pro-
ceedings of PROBMIV’98, volume 22 of Electronic Notes in Theoretical Computer
Science, 1999.

71. R. Milner. Communication and Concurrency. Prentice-Hall International, Engle-
wood Cliffs, 1989.

72. Carroll Morgan, Annabelle McIver, and Karen Seidel. Probabilistic predicate trans-
formers. ACM Transactions on Programming Languages and Systems, 18(3):325–
353, May 1996.

73. M. Nunez and D. de Frutos. Testing semantics for probabilistic LOTOS. In
Proceedings of Formal Description Techniques VIII, pages 365–380, 1995.

74. C. Palamidessi, editor. Proceedings of CONCUR 2000, University Park, PA, USA,
volume 1877 of Lecture Notes in Computer Science. Springer-Verlag, 2000.

75. A. Philippou, I. Lee, and O. Sokolsky. Weak bisimulation for probabilistic systems.
In Palamidessi [74], pages 334–349.

76. A. Pnueli and L. Zuck. Verification of multiprocess probabilistic protocols. Dis-
tributed Computing, 1(1):53–72, 1986.

77. A. Pnueli and L. Zuck. Probabilistic verification. Information and Computation,
1(1):1–29, 1993.

78. A. Pogosyants and R. Segala. Formal verification of timed properties of randomized
distributed algorithms. In Proceedings of the 14th Annual ACM Symposium on
Principles of Distributed Computing, Ottawa, Ontario, Canada, pages 174–183,
August 1995.



260 Roberto Segala

79. A. Pogosyants, R. Segala, and N. Lynch. Verification of the randomized consensus
algorithm of Aspnes and Herlihy: a case study. Distributed Computing, 13:155–186,
July 2000.

80. M.O. Rabin. Probabilistic automata. Information and Control, 6:230–245, 1963.
81. M.O. Rabin. Probabilistic algorithms. In J. F. Traub, editor, Algorithms and

Complexity: New Directions and Results, pages 21–39. Academic Press, 1976.
82. M.O. Rabin. N-process mutual exclusion with bounded waiting by 4 log N shared

variables. Journal of Computer and System Sciences, 25:66–75, 1982.
83. J.R. Rao. Reasoning about probabilistic algorithms. In Proceedings of the 9th An-

nual ACM Symposium on Principles of Distributed Computing, Quebec, Canada,
August 1990.

84. I. Saias. Proving probabilistic correctness: the case of Rabin’s algorithm for mutual
exclusion. In Proceedings of the 11th Annual ACM Symposium on Principles of
Distributed Computing, Quebec, Canada, August 1992.

85. R. Segala. A compositional trace-based semantics for probabilistic automata. In
I. Lee and S.A. Smolka, editors, Proceedings of CONCUR 95, Philadelphia, PA,
USA, volume 962 of Lecture Notes in Computer Science, pages 234–248. Springer-
Verlag, 1995.

86. R. Segala. Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, MIT, Dept. of Electrical Engineering and Computer Science,
1995. Also appears as technical report MIT/LCS/TR-676.

87. R. Segala. Testing probabilistic automata. In U. Montanari and V. Sassone,
editors, Proceedings of CONCUR 95, Pisa, Italy, volume 1119 of Lecture Notes in
Computer Science, pages 299–314. Springer-Verlag, 1996.

88. R. Segala. The essence of coin lemmas. In Proceedings of PROBMIV’98, volume 22
of Electronic Notes in Theoretical Computer Science, 1999.

89. R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes. In
Jonsson and Parrow [53], pages 481–496.

90. R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes.
Nordic Journal of Computing, 2(2):250–273, 1995.

91. K. Seidel. Probabilistic communicating processes. Technical Report PRG-102,
Ph.D. Thesis, Programming Research Group, Oxford University Computing Lab-
oratory, 1992.

92. C. Tofts. A synchronous calculus of relative frequencies. In Baeten and Klop [15].
93. M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state pro-

grams. In Proceedings of 26th IEEE Symposium on Foundations of Computer
Science, pages 327–338, Portland, OR, 1985.

94. S.H. Wu, S. Smolka, and E.W. Stark. Composition and behaviors of probabilistic
I/O automata. In Jonsson and Parrow [53].

95. S.H. Wu, S. Smolka, and E.W. Stark. Composition and behaviors of probabilistic
I/O automata. Theoretical Computer Science, 176(1-2):1–38, 1999.

96. W. Yi and K.G. Larsen. Testing probabilistic and nondeterministic processes. In
Protocol Specification, Testing and Verification XII, pages 47–61, 1992.



Constructing Automata from

Temporal Logic Formulas :
A Tutorial�

Pierre Wolper

Université de Liège,
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Abstract. This paper presents a tutorial introduction to the construc-
tion of finite-automata on infinite words from linear-time temporal logic
formulas. After defining the source and target formalisms, it describes
a first construction whose correctness is quite direct to establish, but
whose behavior is always equal to the worst-case upper bound. It then
turns to the techniques that can be used to improve this algorithm in
order to obtain the quite effective algorithms that are now in use.

1 Introduction

Model checking [3,11,16] is a widespread technique for verifying temporal prop-
erties of reactive programs. There are several ways to develop the theory of
model checking, a particularly attractive one being through the construction
of automata from temporal logic formulas [16,2]. As a result, there has been a
fair amount of interest in the construction of automata from temporal logical
formulas, the history of which is actually fairly interesting.

The starting point is clearly the work of Büchi on the decidability of the
first and second-order monadic theories of one successor [1]. These decidability
results were obtained through a translation to infinite-word automata, for which
Büchi had to prove a very nontrivial complementation lemma. The translation
is nonelementary, but this is the best that can be done. It is quite obvious
that linear-time temporal logic can be translated to the first-order theory of one
successor and hence to infinite-word automata. From a logician’s point of view,
this could be seen as settling the question, but an interest in using temporal
logic for computer science applications, in particular program synthesis [10,5]
triggered a second look at the problem. Indeed, it was rather obvious that a
nonelementary construction was not necessary to build an automaton from a
temporal logic formula; it could be done within a single exponential by a direct

� This work was partially funded by a grant of the “Communauté française de Belgique
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construction [18,17]. As originally presented, this construction was worst and
best case exponential. Though it was fairly clear that it could be modified to
operate more effectively on many instances, nothing was written about this,
probably because the topic was thought to be rather trivial and had no bearing
on general complexity results.

Nevertheless, the idea of doing model checking through the construction of
automata was taken seriously, at least by some, and attempts were made to
incorporate automata-theoretic model checking into tools, notably into SPIN
[7,8]. Of course, this required an effective implementation of the logic to au-
tomaton translation algorithm and the pragmatics of doing this are not entirely
obvious. A description of such an implementation was given in [6] and improved
algorithms have been proposed since [4,13]. Note that there are some questions
about how to measure such improvements since the worst-case complexity of the
algorithms stays the same. Nevertheless, experiments show that, for the tempo-
ral logic formulas most frequently used in verification, the automata can be kept
quite small. Thus, even though it is an intrinsically exponential process, building
an automaton from a temporal logic formula appears to be perfectly feasible in
practice. What is surprising is that it took quite a long time for the details of a
usable algorithmic solution to be developed and codified.

The goal of this paper is to provide a tutorial introduction to the construction
of Büchi infinite-word automata from linear temporal logic formulas. After an
introduction to temporal logic and a presentation of infinite-word automata that
stresses their kinship to logic, a first simple, but always exponential, construc-
tion is presented. This construction is similar to the one of [18,17], but is more
streamlined since it does not deal with the extended temporal logic considered
in the earlier work. Thereafter, it is shown how this construction can be adapted
to obtain a more effective construction that only builds the needed states of the
automaton, as described in [6] and further improved in [4,13].

2 Linear-Time Temporal Logic

Linear-time temporal logic is an extension of propositional logic geared to reason-
ing about infinite sequences of states. The sequences considered are isomorphic
to the natural numbers and each state is a propositional interpretation. The
formulas of the logic are built from atomic propositions using Boolean connec-
tives and temporal operators. Purely propositional formulas are interpreted in
a single state and the temporal operators indicate in which states of a sequence
their arguments must be evaluated.

Formally, the formulas of linear-time temporal logic (LTL) built from a set
of atomic propositions P are the following:

– true, false, p, and ¬p, for all p ∈ P ;
– ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2, where ϕ1 and ϕ2 are LTL formulas;
– ©ϕ1, ϕ1 U ϕ2, and ϕ1 Ũ ϕ2, where ϕ1 and ϕ2 are LTL formulas.

The operator © is read “next” and means in the next state. The operator
U is read “until” and requires that its first argument be true until its second
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argument is true, which is required to happen. The operator Ũ is the dual of U
and is best read as “releases”, since it requires that its second argument always
be true, a requirement that is released as soon as its first argument becomes
true. Two derived operators are in very common use. They are

– 3ϕ = trueU ϕ, which is read “eventually” and requires that its argument
be true eventually, i.e. at some point in the future; and

– 2ϕ = false Ũ ϕ, which is read “always” and requires that its argument be
true always, i.e. at all future points.

Formally, the semantics of LTL is defined with respect to sequences σ : N →
2P . For a sequence σ, σi represents the suffix of σ obtained by removing its i
first states, i.e. σi(j) = σ(i + j). The truth value of a formula on a sequence σ,
which is taken to be the truth value obtained by starting the interpretation of
the formula in the first state of the sequence, is given by the following rules:

– For all σ, we have σ |= true and σ �|= false;
– σ |= p for p ∈ P iff p ∈ σ(0);
– σ |= ¬p for p ∈ P iff p �∈ σ(0);
– σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2;
– σ |= ϕ1 ∨ ϕ2 iff σ |= ϕ1 or σ |= ϕ2;
– σ |= ©ϕ1 iff σ1 |= ϕ1;
– σ |= ϕ1 U ϕ2 iff there exists i ≥ 0 such that σi |= ϕ2 and for all 0 ≤ j < i,

we have σj |= ϕ1;
– σ |= ϕ1 Ũ ϕ2 iff for all i ≥ 0 such that σi �|= ϕ2, there exists 0 ≤ j < i such

that σj |= ϕ1.

In the logic we have defined, negation is only applied to atomic propositions.
This restriction can be lifted with the help of the following relations, which are
direct consequences of the semantics we have just given:

σ �|= ϕ1 U ϕ2 iff σ |= (¬ϕ1) Ũ(¬ϕ2)

σ �|= ϕ1 Ũ ϕ2 iff σ |= (¬ϕ1)U(¬ϕ2)

σ �|= ©ϕ1 iff σ |= ©¬ϕ1.

To easily understand the link between temporal logic formulas and automata,
it is useful to think of a temporal formula as being a description of a set of infinite
sequences: those that satisfy it. Note that to check that a sequence satisfies a
temporal logic formula ϕ, a rather natural way to proceed is to attempt to
label each state of the sequence with the subformulas of ϕ that are true there.
One would proceed outwards, starting with the propositional subformulas, and
adding exactly those subformulas that are compatible with the semantic rules.
Of course, for an infinite sequence, this cannot be done effectively. However, this
abstract procedure will turn out to be conceptually very useful.
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3 Automata on Infinite Words

Infinite words (or ω-words) are sequences of symbols isomorphic to the natural
numbers. Precisely, an infinite word over an alphabet Σ is a mapping w : N → Σ.

An automaton on infinite words is a structure that defines a set of infinite
words. Even though infinite word automata look just like traditional automata,
one gets a better understanding of them by not considering them as operational
objects but, rather, by seeing them as descriptions of sets of infinite sequences,
and hence as a particular type of logical formula.

We will consider Büchi and generalized Büchi automata on infinite words. A
Büchi infinite word automaton has exactly the same structure as a traditional
finite word automaton. It is a tuple A = {Σ, S, δ, S0, F} where

– Σ is an alphabet,
– S is a set of states,
– δ : S × Σ → S (deterministic) or δ : S × Σ → 2S (nondeterministic) is a

transition function,
– S0 ⊆ S is a set of initial states (a singleton for deterministic automata), and
– F ⊆ S is a set of accepting states.

What distinguishes a Büchi infinite-word automaton from a finite word au-
tomaton is that its semantics are defined over infinite words. Let us now examine
these semantics using a somewhat logical point of view. A word w is accepted by
an automaton A = {Σ, S, δ, S0, F} (the word satisfies the automaton) if there is
a labeling

ρ : N → S

of the word by states such that

– ρ(0) ∈ S0 (the initial label is an initial state),
– ∀0 ≤ i, ρ(i+1) ∈ δ(ρ(i), w(i)) (the labeling is compatible with the transition

relation),
– inf(ρ) ∩ F �= ∅ where inf(ρ) is the set of states that appear infinitely often

in ρ (the set of repeating states intersects F ).

Example 1. The automaton of Figure 1 accepts all words over the alphabet
Σ = {a, b} that contain b infinitely often.

Generalized Büchi automata differ from Büchi automata by their acceptance
condition. The acceptance condition of a generalized Büchi automaton is a set
of sets of states F ⊆ 2S , and the requirement is that some state of each of
the sets Fi ∈ F appears infinitely often. More formally, a generalized Büchi
A = {Σ, S, δ, S0,F} accepts a word w if there is a labeling ρ of w by states of
A that satisfies the same first two conditions as given for Büchi automata, the
third being replaced by:

– For each Fi ∈ F , inf(ρ) ∩ Fi �= ∅.
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Fig. 1. An automaton accepting all words over Σ = {a, b} containing b infinitely
often

As the following lemma shows, generalized Büchi automata accept exactly
the same languages as Büchi automata.

Lemma 1. Given a generalized Büchi automaton, one can construct an equiv-
alent Büchi automaton.

Proof. Given a generalized Büchi automaton A = (Σ, S, δ, S0,F), where F =
{F1, . . . , Fk}, the Büchi automaton A′ = (Σ, S′, δ′, S′

0, F
′) defined as follows

accepts the same language as A.

– S′ = S × {1, . . . , k}.
– S′

0 = S0 × {1}.
– δ′ is defined by (t, i) ∈ δ′((s, j), a) if

t ∈ δ(s, a) and
{

i = j if s �∈ Fj ,
i = (j mod k) + 1 if s ∈ Fj .

– F ′ = F1 × {1}.
The idea of the construction is that the states of A′ are the states of A

marked by an integer in the range [1, k]. The mark is unchanged unless one goes
through a state in Fj , where j is the current value of the mark. In that case the
mark is incremented (reset to 1 if it is k). If one repeatedly cycles through all
the marks, which is necessary for F ′ to be reached infinitely often, then all sets
in F are visited infinitely often. Conversely, if it is possible to visit all sets in F
infinitely often in A, it is possible to do so in the order F1, F2, . . . Fk and hence
to infinitely often go through F ′ in A′.

Example 2. Figure 3 shows the Büchi automaton equivalent to the generalized
Büchi automaton of Figure 2 whose acceptance condition is F = {{s0}, {s1}}.

Nondeterministic1 Büchi automata have many interesting properties. In par-
ticular they are closed under all Boolean operations as well as under projection.
1 Deterministic Büchi automata are less powerful and do not enjoy the same properties

(see for instance [15]).
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Fig. 2. A generalized Büchi automaton
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Fig. 3. From generalized Büchi to Büchi

Closure under union, projection are immediate given that we are dealing with
nondeterministic automata; closure under intersection is obtained using a prod-
uct construction similar to the one employed for finite-word automata. Closure
under complementation is much more tricky and has been the subject of an ex-
tensive literature [1,14,12,9]. Checking that a (generalized) Büchi automaton is
nonempty (accepts at least one word) can be done by computing its strongly
connected components, and checking that there exists a reachable strongly con-
nected component that has a non empty intersection with each set in F .

4 From Temporal Logic to Automata

4.1 Problem Statement

We now consider the following problem: given an LTL formula ϕ built from a
set of atomic propositions P , construct an automaton on infinite words over the
alphabet 2P that accepts exactly the infinite sequences satisfying ϕ.

To get an intuitive idea of what we are aiming at, let us first look at an
example.

Example 3. Consider the formula 3 p. This formula describes the sequences over
{∅, {p}} in which {p} occurs at least once. These sequences are accepted by the
automaton of Figure 4.
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Fig. 4. An automaton for 3 p

4.2 The Closure of a Formula

In order to develop a procedure for building automata from LTL formulas, we
first look at the problem of determining if a sequence σ : N → 2P satisfies a
formula ϕ defined over the set of propositions P . This can, at least conceptually,
be done by labeling the sequence with subformulas of ϕ in a way that respects
LTL semantics. First, let us define the set of subformulas of a formula ϕ that
are needed. This set is called the closure of ϕ (cl(ϕ)) and is defined as follows:

– ϕ ∈ cl(ϕ),
– ϕ1 ∧ ϕ2 ∈ cl(ϕ) ⇒ ϕ1, ϕ2 ∈ cl(ϕ),
– ϕ1 ∨ ϕ2 ∈ cl(ϕ) ⇒ ϕ1, ϕ2 ∈ cl(ϕ),
– ©ϕ1 ∈ cl(ϕ) ⇒ ϕ1 ∈ cl(ϕ),
– ϕ1 U ϕ2 ∈ cl(ϕ) ⇒ ϕ1, ϕ2 ∈ cl(ϕ),
– ϕ1 Ũ ϕ2 ∈ cl(ϕ) ⇒ ϕ1, ϕ2 ∈ cl(ϕ).

Example 4.

cl(3¬p) = cl(trueU ¬p) = {3¬p,¬p, true}

4.3 Rules for Labeling Sequences

The next step is to define the set of rules that a valid closure labeling τ : N →
2cl(ϕ) of a sequence σ : N → 2P has to satisfy. The validity criterion is that, if
a formula ϕ1 ∈ cl(ϕ) labels a position i (i.e. ϕ1 ∈ τ(i)), then the sequence σi

satisfies it (σi |= ϕ1)2. For this to hold, our labeling rules have to mirror the
semantic rules for LTL. A first set of rules deals with the purely propositional
part of LTL.

Consider a closure labeling τ : N → 2cl(ϕ) of a sequence σ : N → 2P for
a formula ϕ defined over a set of atomic propositions P . For τ to be a valid
labeling, it has to satisfy the following rules for every i ≥ 0:

1. false �∈ τ(i);
2. for p ∈ P , if p ∈ τ(i) then p ∈ σ(i), and if ¬p ∈ τ(i) then p �∈ σ(i);

2 Such a validly labeled structure is often called a Hintikka structure in the modal
logic literature
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3. if ϕ1 ∧ ϕ2 ∈ τ(i) then ϕ1 ∈ τ(i) and ϕ2 ∈ τ(i);
4. if ϕ1 ∨ ϕ2 ∈ τ(i) then ϕ1 ∈ τ(i) or ϕ2 ∈ τ(i).

Note that the labeling rules are “if” rules and not “if and only if” rules.
They give the requirements that a valid closure labeling must satisfy, but they
do not require that labelings be maximal: there can be formulas of the closure
that are satisfied at a given position, but that are not included in the label of
that position.

Let us now turn to elements of the closure whose main operator is temporal.
For the operator ©, the rule is quite immediate. We have that for all i ≥ 0,

5. if ©ϕ1 ∈ τ(i) then ϕ1 ∈ τ(i + 1).

For the U and Ũ operators, the semantic rules refer to a possibly infinite set
of points of the sequence, which we would like to avoid in our labeling rules.
Fortunately, this is mostly possible. Indeed, one can fairly easily show from the
semantic rules that the following identities hold:

ϕ1 U ϕ2 ≡ (ϕ2 ∨ (ϕ1 ∧©(ϕ1 U ϕ2)))
ϕ1 Ũ ϕ2 ≡ (ϕ2 ∧ (ϕ1 ∨©(ϕ1 Ũ ϕ2))).

These identities then suggest the following labeling rules for all positions
i ≥ 0:

6. if ϕ1 U ϕ2 ∈ τ(i) then either ϕ2 ∈ τ(i), or ϕ1 ∈ τ(i) and ϕ1 U ϕ2 ∈ τ(i + 1);
7. if ϕ1 Ũ ϕ2 ∈ τ(i) then ϕ2 ∈ τ(i), and either ϕ1 ∈ τ(i) or ϕ1 Ũ ϕ2 ∈ τ(i + 1).

The rule for Ũ is sufficient to ensure that the labeling is valid. Unfortunately,
the same is not true for the operator U . Indeed, rule 6 does not force the existence
of a point at which ϕ2 appears: such a point can be postponed forever. We thus
need to add one more labeling rule, which unfortunately does not only refer to
consecutive points. For every position i ≥ 0, we must have that

8. if ϕ1 U ϕ2 ∈ τ(i) then there is a j ≥ i such that ϕ2 ∈ τ(j).

As a hint at the requirement expressed by rule 8, a formula of the form
ϕ1 U ϕ2 is often referred to as an eventuality since it requires that the formula
ϕ2 be eventually true. Rule 8 is then said to require that the eventualities are
fulfilled.

We can now formalize the fact that the labeling rules we have given charac-
terize the valid labelings. First we show that the labeling rules only allow valid
labelings.

Lemma 2. Consider a formula ϕ defined over a set of propositions P , a se-
quence σ : N → 2P , and a closure labeling τ : N → 2cl(ϕ) satisfying rules 1–8.
For every formula ϕ′ ∈ cl(ϕ) and i ≥ 0, one has that if ϕ′ ∈ τ(i) then σi |= ϕ′.

Proof. The proof proceeds by structural induction on the formulas of cl(ϕ). Let
us consider the most interesting case, which is that of a formula ϕ′ of the form
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ϕ1 U ϕ2. By rule 8, one has that there is a j ≥ i such that ϕ2 ∈ τ(j) and, by
inductive hypothesis, such that σj |= ϕ2. Consider the smallest such j and a
k such that i ≤ k < j. Since ϕ1 U ϕ2 ∈ τ(i), and since for all i ≤ k′ ≤ k,
ϕ2 �∈ τ(k′), rule 6 implies that ϕ1 U ϕ2 ∈ τ(k) and also that ϕ1 ∈ τ(k). Hence,
by inductive hypothesis, σk |= ϕ1.

Next we need to establish that when a sequence satisfies a formula, a closure
labeling satisfying rules 1–8 exists.

Lemma 3. Consider a formula ϕ defined over a set of propositions P and a
sequence σ : N → 2P . If σ |= ϕ, there exists a closure labeling τ : N → 2cl(ϕ)

satisfying rules 1–8 and such that ϕ ∈ τ(0).

Proof. Consider the closure labeling defined by ϕ′ ∈ τ(i) iff σi |= ϕ′ for all
ϕ′ ∈ cl(ϕ). Given that σ |= ϕ, one immediately has that ϕ ∈ τ(0). Furthermore,
that fact that rules 1–8 are satisfied is a direct consequence of the semantics of
LTL.

The following theorem is then a direct consequence of Lemmas 2 and 3.

Theorem 1. Consider a formula ϕ defined over a set of propositions P and a
sequence σ : N → 2P . One then has that σ |= ϕ iff there is a closure labeling
τ : N → 2cl(ϕ) of σ satisfying rules 1–8 and such that ϕ ∈ τ(0).

4.4 Defining the Automaton

Given Theorem 1, the construction of an automaton accepting the sequences
satisfying a formula ϕ is almost immediate. Indeed, remember that an automa-
ton accepts an ω-sequence when this sequence can be labeled by states of the
automaton, while satisfying the constraints imposed by the transition relation
as well as by the initial and accepting state sets. The idea is simply to use 2cl(ϕ)

as state set and hence as set of possible labels. It then remains to express the
required properties of the labeling by an appropriate definition of the structure
of the automaton. We now show how this can be done.

Given a formula ϕ, a generalized Büchi automaton accepting exactly the
sequences σ : N → 2P satisfying ϕ can be defined as follows. The automaton is
Aϕ = (Σ, S, δ, S0,F) where

– Σ = 2P ,
– The set of states S is the set of possible labels, i.e. the subsets s of 2cl(ϕ)

that satisfy
• false �∈ s;
• if ϕ1 ∧ ϕ2 ∈ s then ϕ1 ∈ s and ϕ2 ∈ s;
• if ϕ1 ∨ ϕ2 ∈ s then ϕ1 ∈ s or ϕ2 ∈ s.

The states (and hence possible labels) are thus the subsets of 2cl(ϕ) that
satisfy rules 1 as well as rules 3 and 4.
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– The transition function δ checks that the propositional labeling matches the
one in the sequence being considered (rule 2) and that the rules 5–7 for the
temporal operators are satisfied. Thus, t ∈ δ(s,a) iff

• For all p ∈ P , if p ∈ s then p ∈ a.
• For all p ∈ P , if ¬p ∈ s then p �∈ a.
• if ©ϕ1 ∈ s then ϕ1 ∈ t.
• if ϕ1 U ϕ2 ∈ s then either ϕ2 ∈ s, or ϕ1 ∈ s and ϕ1 U ϕ2 ∈ t.
• if ϕ1 Ũ ϕ2 ∈ s then ϕ2 ∈ s and either ϕ1 ∈ s, or ϕ1 Ũ ϕ2 ∈ t.

– The set of initial states is defined in order to ensure that ϕ appears in the
label of the first position of the sequence. We thus have that S0 = {s ∈ S |
ϕ ∈ s}.

– The acceptance condition F is used to impose rule 8 on the fulfillment of
eventualities, but seeing how this can be done requires a slightly closer look
at this requirement.

What needs to be imposed to satisfy rule 8 is that, for every eventuality
formula ϕ1 U ϕ′ ≡ e(ϕ′) ∈ cl(ϕ), any state that contains that formula is followed
by a state that contains ϕ′. The problem with the way this requirement is stated
is that it requires “remembering” that a state in which e(ϕ′) occurs has been
seen and hence extending the set of states of the automaton. Fortunately, this
can be avoided.

Rule 6 (and hence the transition relation of the automaton) requires that if
an eventuality e(ϕ′) appears, it keeps on appearing until the first state in which
ϕ′ appears. So, the only problematic situation would be one in which e(ϕ′)
appears indefinitely without ϕ′ ever appearing. So its is sufficient to require that
the automaton goes infinitely often through a state in which both e(ϕ′) and
ϕ′ appear or in which e(ϕ′) does not appear, the latter case allowing for the
eventuality no longer to be required after some point. The acceptance condition
of the automaton is thus the following generalized Büchi condition.

– If the eventualities appearing in cl(ϕ) are e1(ϕ1), . . . em(ϕm),
F = {Φ1, . . . , Φm} where Φi = {s ∈ S | ei, ϕi ∈ s ∨ ei �∈ s}.

Given the way we have expressed the semantics of LTL in terms of label-
ing rules and given the semantics of Büchi automata, the correctness of the
construction we have just given is essentially immediate.

Example 5. The automaton for 3p is given in Figure 5, where F = {{1, 3, 4}}.
Note that in this example we have already applied two optimizations to the

construction. First, we have identified states containing true with the states
defined by an otherwise identical set of formulas. Second, we have omitted the
transitions leaving from nodes 3 and 4 to nodes 1 and 2. It is intuitively obvious
that these transitions are not needed but, in the next section, we will generalize
these types of optimizations and justify them precisely.
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Fig. 5. The automaton constructed for 3 p

5 Improving the Construction

5.1 Omitting Redundant Transitions

The states of the automaton we build for a formula are subsets of the closure of
that formula. The subset ordering thus naturally defines a partial order on the
automaton states. Furthermore, given the way the transition relation is defined,
any transition possible from a state s1 is also possible from any state s2 ⊂ s1.
This seems to imply that if, from a given state, two transitions lead to states s1

and s2 such that s2 ⊂ s1, then it is sufficient to keep the transition leading to
the state s2. Almost so. Indeed, the way the transition relation of the automaton
is defined guarantees that if there is a computation of the automaton on a given
word from s1, there is also one from s2. The problem is with accepting states: if
s1 contains an eventuality formula e(ϕ′) as well as its argument ϕ′, but that s2

only contains e(ϕ′), s2 might be outside an accepting set in which s1 is included.
The simplification rule we will use is thus the following.

Omit transitions. Assume that from a state s two identically labeled tran-
sitions lead to states s1 and s2 such that s2 ⊂ s1 and such that, for all
eventuality formulas e(ϕ′) ∈ s1, if e(ϕ′) ∈ s2 and ϕ′ ∈ s1 then also ϕ′ ∈ s2.
The transition from s to s1 can then be omitted.

Example 6. Applying the omit transitions rule to the automaton of Figure 5
and eliminating unreachable states, one obtains the automaton of Figure 6.

To see that the omit transitions rule is sound, we establish that for every
state of the automaton, the language accepted from that state after applying the
omit transitions rule is unchanged. First notice that we are removing transi-
tions. So, after applying the rule, the language accepted cannot contain more
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Fig. 6. A simplified automaton for 3 p

words. We show that it also cannot contain less words. Assume that there exists
an accepting computation from a state s before applying the omit transitions
rule. Such a computation still exists after applying the rule. Indeed, if the com-
putation from s starts with an omitted transition leading to a state s1, there
remains an identically labeled transition to a state s2 ⊂ s1 that is accepting
whenever s1 is accepting. Now, since s2 ⊂ s1, before the transition omission pro-
cedure, all transitions possible from s1 are also possible from s2, so there also is
an accepting computation from s2. Of course, some transitions from s2, may also
have been omitted, but the same argument can be repeated for the computation
starting at s2. By induction, one can then conclude the existence of the required
accepting computation in the simplified automaton.

5.2 Building the Automaton by Need

The most obviously wasteful aspect of the construction we have shown is that it
defines the set of states to be all subsets of the closure that satisfy the rules 1, 3,
and 4. Indeed, many of these states might not be reachable from initial states,
especially if the omit transitions simplification rule is applied. To avoid this,
we are going to construct the states of the automaton as needed, starting with
the initial states and adding the states that must appear as targets of transitions.

Preparing to do this, notice that all the rules embodied in the transitions
of the automaton require that, if some formula of the closure occurs in the
current state, then some other formula also occurs in the current or next state.
Furthermore, the omit transitions simplification allows us to only consider the
minimal states satisfying these conditions. This leads us to defining an operation
that adds to a subset of the closure all formulas that must be true in the current
and in the immediately next state. For ease of definition, we define this operation
(saturate) not on subsets of the closure, but on sets of subsets of the closure.
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Let Q = {q1,q2, . . . ,qk} ⊆ 2cl(ϕ), then we define saturate (Q) as follows.

1. Repeat until stabilization: for each qi ∈ Q,

(a) If ϕ1 ∧ ϕ2 ∈ qi, then
Q := Q \ {qi} ∪ {qi ∪ {ϕ1, ϕ2}};

(b) If ϕ1 ∨ ϕ2 ∈ qi, then
Q := Q \ {qi} ∪ {qi ∪ {ϕ1}} ∪ {qi ∪ {ϕ2}};

(c) If ϕ1 U ϕ2 ∈ qi, then
Q := Q \ {qi} ∪ {qi ∪ {ϕ2}} ∪ {qi ∪ {ϕ1,©(ϕ1 U ϕ2)}};

(d) If ϕ1 Ũ ϕ2 ∈ qi, then
Q := Q \ {qi} ∪ {qi ∪ {ϕ1, ϕ2}} ∪ {qi ∪ {ϕ2,©(ϕ1 Ũ ϕ2)}}

2. Remove all qi ∈ Q such that false ∈ qi

If the operation saturate is applied to a singleton q, then the result is a set
of sets of formulas3 that represent possible ways of satisfying the requirements
expressed by the formulas in q. Among such sets of formulas, we will be especially
interested in the propositional formulas and in the formulas having © as their
main connective, which constrain the next state. We thus define the following
filters on a set of LTL formulas q:

1. X(q) = {ϕi | ©ϕi ∈ q} (the “next” formulas in q with their © operator
stripped),

2. P (q) = {pi | pi ∈ q ∧ pi ∈ P} (the atomic propositions in q),
3. nP (q) = {pi | ¬pi ∈ q ∧ pi ∈ P} (the negated atomic propositions in q).

We are now ready to give a “by need” algorithm for generating the automa-
ton. For a formula ϕ, the algorithm generates an automaton Aϕ = (Σ, S, δ, S0,F).
The alphabet and accepting condition are defined as before. The states and tran-
sitions are progressively generated by the algorithm. For ease of notation, we will
represent the transition function δ as a set of triples (s,a, s′) where s, s′ ∈ S and
a ∈ Σ.

The algorithm works with a list of unprocessed states for which successors
still have to be generated. For these unprocessed states, additional information
in the form of “next requirements”, i.e. the formulas that have to be true in all
the immediate successors of the unprocessed state, is maintained. Unprocessed
states thus take the form of a pair of sets of formulas (s,x), where s is the state
and x the “next requirements”. The unprocessed states are stored in a list unp.
The automaton building procedure is then the following.

3 These sets are not strictly subsets of the closure since rules 1c and 1d can generate
formulas that are elements of the closure preceded by the © operator.
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build-auto (ϕ)
1. S := ∅ ; δ := ∅ ; S0 := {q ∩ cl(ϕ) | q ∈ saturate ({{ϕ}})}
2. unp := {(q ∩ cl(ϕ), X(q)) | q ∈ saturate ({{ϕ}})}
3. while unp �= ∅ do

Choose and remove (s,x) from unp;
S := S ∪ {s};
For each q ∈ saturate (x) do

For each a ∈ Σ such that P (q) ⊆ a ∧ nP (q) ∩ a = ∅
δ := δ ∪ {(s,a,q ∩ cl(ϕ))}

if (q ∩ cl(ϕ), X(q)) �∈ unp ∧ q ∩ cl(ϕ) �∈ S
then unp := unp ∪ {(q ∩ cl(ϕ), X(q))}

Note that states are restricted to be subsets of the closure of the initial for-
mula. This is not essential, but guarantees that the automaton built by the
procedure above is a subset of the one built by the abstract construction of Sec-
tion 4. Thus, it only accepts words also accepted by this automaton. That it
accepts all words accepted by this automaton is a direct consequence of the fact
that the saturate operation generates minimal sets (it only includes formulas
that must be present) and of the argument used to justify the omit transitions
simplification rule. The only somewhat delicate point concerns the special re-
quirement on eventuality formulas imposed by the omit transitions rule. But,
starting with a set containing an eventuality e(ϕ′), the saturate procedure al-
ways generates a set containing ϕ′, the presence of suitable accepting states is
thus guaranteed.

Example 7. Applying the build-auto algorithm to 3p, will produce the automa-
ton in the following stages.

1. First, the initial states {3p, p} and {3p} are produced, with unp set to
{({3p, p}, ∅), ({3p}, {3p})}.

2. ({3 p}, {3p}) is removed from unp and transitions labeled by p and ∅ are
created from the states{3p} to itself and to the state {3p, p}.

3. ({3 p, p}, ∅) is removed from unp and a transition labeled p from the {3p, p}
state to the state ∅ is added; (∅, ∅) is added to unp.

4. (∅, ∅) is removed from unp and transitions labeled by p and ∅ are created
from the state ∅ to itself.

5.3 Identifying Equivalent States

One rather obvious limit of the “by need” procedure we have outlined, is that
it only identifies states that are syntactically identical, i.e. consist of exactly the
same set of formulas. A further reduction in the size of the automaton can thus
be obtained by attempting to identify states that are semantically identical, i.e.
that define identical sets of temporal sequences. Of course, deciding semantical
equivalence in general is as hard as building an automaton from a temporal logic
formula, and cannot be usefully used during the construction. However, one can
identify some common semantical equivalences that can substantially reduce the
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size of the automaton. The following have, for instance, been used successfully
[6,4,13].

– {ϕ1, ϕ2, ϕ1 ∧ ϕ2} ⇔ {ϕ1, ϕ2}
– {ϕ1, ϕ1 ∨ ϕ2} ⇔ {ϕ1}
– {ϕ2, ϕ1 ∨ ϕ2} ⇔ {ϕ2}
– {ϕ2, ϕ1 U ϕ2} ⇔ {ϕ2}

The only caveat while using such semantical equivalences, is that they might
change the definition of accepting states. One easy way around this is to disallow
using such semantical equivalences involving formulas that are the argument of
eventualities.

5.4 Further Improvements

There are a number of further improvements that can be made to the construc-
tion of an automaton from a temporal logic formula. We briefly describe a few.

Simplifying the formula. Before applying the construction, it can be useful
to rewrite the formula using some equivalence preserving transformation. For
instance, one can use ©23ϕ ≡ 23ϕ to remove a “next” operator from a
formula.

Early detection of inconsistencies. With the procedure we have outlined so
far, inconsistencies are only detected after being propagated to the proposi-
tional level. Clearly, if a state contains both the formulas ϕ1 and ¬ϕ1 it is
inconsistent and no transitions need leave that state.

Moving propositions from states to transitions. Propositional constraints
are included in the states and uniformly applied to all transitions leaving a
given state. In many cases this is wasteful and leads to excessively nonde-
terministic automata. An alternative is to let the choice of next state be
determined by the propositions that are actually received as input. This al-
lows propositional requirements to be removed from, and moved exclusively
to, the transitions. However, special attention must be paid to the case in
which propositions are the argument of eventualities. Indeed, removing them
from states will then impact the definition of acceptance conditions.

Simplifying the acceptance condition. It is not uncommon for the struc-
ture of the strongly connected components of the automaton to allow a
simplifying of the acceptance condition. This can lead to improved efficiency
in the use of the automaton.

6 Conclusions

The intrinsically exponential complexity of building automata from temporal
logic formulas, has long been seen as a limiting factor to the use of linear-time
model checking. However, this conclusion ignores two important facts. First the
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formulas used in specifications are almost always very short. Second, the worst-
case complexity bounds on building automata from temporal logic formulas are
just that: worst-case bounds. The work surveyed in this paper shows that in
the very large majority of cases, it is possible to build automata of very reason-
able size for any temporal formula one would care to write in a specification.
Of course, it is possible to produce pathological cases. For instance, using n
propositions, one can polynomially encode an n bit counter in temporal logic,
the corresponding automaton necessarily being exponential in n.

However, if one fixes the number of propositions, it is much less obvious to
build a family of formulas for which the size of the corresponding automaton
unavoidably exhibits exponential growth. In the opinion of this author, it is
even highly unlikely that one would come upon such formulas when specifying
program properties. The doubtful reader is invited to attempt to construct such
a family of formulas.

So, in conclusion, it can be said that the work on improving the practical
behavior of algorithms for generating automata from temporal logic formulas
[6], [4], [13] has been successful to the point of showing that the inherently
exponential nature of the problem is of little practical significance. This can be
viewed as meaning that the lower bound proofs rely on using the expressive power
of temporal logic in a way that is too unnatural to occur in many applications.
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Computer-Aided Verification, Proc. 12th Int. Conference, volume 1633, pages 247–
263, 2000.

14. A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. The complementation prob-
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Abstract. Since their introduction in the early 1990s, compositionality
has been reported as one of the major attractions of stochastic process
algebras. The benefits that compositionality provides for model construc-
tion are readily apparent and have been demonstrated in numerous case
studies. Early research on the compositionality of the languages focused
on how the inherent structure could be used, in conjunction with equiva-
lence relations, for model simplification and aggregation. In this chapter
we consider how far we have been able to take advantage of compo-
sitionality when it comes to solving the Markov process underlying a
Markovian process algebra model.

1 Introduction

At the time of the introduction of stochastic process algebras (SPA) [30] there
was already a plethora of techniques for constructing performance models so the
introduction of another one could have been deemed unnecessary if it were not
for the fact that SPA offered something new—formally defined compositional-
ity. Queueing networks, which have been widely used for performance modelling
for more than thirty years, have an inherent compositionality but this is im-
plicit and informal. Stochastic extensions of Petri nets have a semantic model
but, in general, no clear compositional structure. In the process algebra the
compositionality is explicit—provided by the combinators of the language—and
formal—supported by the semantics and equivalence relations of the language.

It was immediately clear that having this explicit structure within models
offers benefits for model construction:

– when a system consists of interacting components, the components, and the
interaction, can each be modelled separately;

– models have a clear structure and are easy to understand;
– models can be constructed systematically, by either elaboration or refine-

ment;
– the possibility of maintaining a library of model components, supporting

model reusability, is introduced.

Many case studies demonstrating these and other benefits have appeared in the
literature [33,35,55,23,41,1,21], and examples have been given in earlier chapters.
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However, almost as quickly, it became clear that SPA models are prone to
problems of state space explosion: making it easy for the modeller to represent
systems in detail, coupled with the inherent complexity of the systems of interest,
inevitably leads to models which are extremely large; in many cases, intractably
so. In particular, coupled with the abstraction provided by the hiding combina-
tor, compositionality allows a modeller to represent components of the system in
detail, model their interaction in appropriate ways, and then abstract from the
internal details of the combined component. This is a good technique for cap-
turing the behaviour of systems. But note that although abstraction reduces the
observability of actions, and in some languages reduces the measures that can
be made on the model, it does not generally eliminate the internal states. Thus
this attractive “feature” of SPA actually exacerbates the state space explosion
problem.

In the context of Markovian process algebras (MPA), tackling this problem
has been a major motivation of much research. Of course, there are two state
spaces which may be considered—the state space of the MPA model, which
is generated in the labelled transition system via the operational semantics;
and the state space of the underlying Markov process, the model to be solved
(see Figure 1). Using the most straightforward procedure for generating the
underlying Markov process, there is an isomorphism between the two. We could
try to attack the state space explosion problem at either level; indeed, there
exists a substantial body of literature considering the problem of state space
explosion at the level of the Markov process via a variety of techniques. But in
order to benefit fully from the process algebra apparatus we choose to work at
the level of the MPA.

Initial efforts to combat the state space explosion problem concentrated on
model manipulation techniques—model simplification and model aggregation.
These techniques aim to improve, from the perspective of solution, the underlying
Markov process, via manipulations of the state space at the MPA level. The
simplest form of improvement is a reduction in the number of states. However,
there are other possibilities, as we will discuss at the end of the chapter. At the
core of these techniques are equivalence relations, but compositionality also has
an important role to play, as we will discuss in Section 3.

Unfortunately model manipulation alone still leaves us with a Markov process
which must be solved numerically as a single entity. This leads to the inevitable
question of how the compositional structure within MPA models relates to the
various decomposed solution techniques which can be applied to Markov pro-
cesses. We survey MPA work in this area in some detail in Section 5. Within the
possible decomposed solution techniques we will focus primarily on product form
approaches. These offer exact solution in the sense that the steady state distri-
bution of the original model can be recovered, when the decomposition satisfies
certain (stringent) criteria. Nevertheless we will also discuss some approxima-
tive decomposed solution techniques, which generally have wider applicability,
in Section 6.
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Fig. 1. Schematic view of MPA modelling methodology

In both approaches the work often exhibits common elements, although dif-
ferent researchers concentrate on different aspects of this general framework. In
order for a decomposed solution technique to be fully developed and exploited
in a tool the following steps have to be established:

– Characterisation of structures within the MPA model which correspond to de-
composable structure in the underlying Markov process. The aim of this work
is to identify those MPA models which have a structure which is amenable to
decomposed solution. In some cases this is fairly informal; in others the aim
has been to establish syntactic rules which may be applied automatically,
meaning that a tool may analyse a given model and decide whether it falls
within the decomposable class or not.

– Development of revised algorithms to generate the decomposed Markov pro-
cess (usually as a set of Markov processes) from the MPA model. Identifying
the set of Markov processes susceptible to efficient solution is only the first
step. In the “standard” solution algorithm there is a straightforward map-
ping from the semantic model to the state space of the underlying Markov
process. If this process is to be decomposed, more sophisticated Markov pro-
cess generation algorithms may be needed. Once the composite Markov pro-
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cesses are formed, in some cases known solution algorithms can be applied;
in some existing techniques can be modified; in others, new approaches to
decomposed solution have been suggested by the process algebra structure.
In the latter case, the new solution algorithms must also be developed.

– Implementation of related algorithms. Prototype tools and implementations
of the new techniques, for characterisation, Markov process generation and
decomposed solution, allow them to be tested in practice, and eventually,
put to practical use.

Each of the decomposed solution techniques is limited in its scope of ap-
plication if corresponding results and performance measures are not to be too
seriously compromised. However, the real opportunity to exploit the benefits of
decomposed solution is likely to arise when the decomposition structure is used
as a target for model manipulation. In this case a given model is manipulated
into a form which is more amenable to efficient solution, not by reducing the
number of states per se, but by manipulating its structure into a form suitable
for a decomposed solution. This is a major area of current work and will be
discussed in more detail in Section 7.

As mentioned earlier, the focus of this chapter will be a class of decomposed
solution techniques which result in exact product form solution of the steady
state distribution. All work in this area for MPA has been carried out in the
context of the MPA language PEPA (Performance Evaluation Process Algebra).
Consequently, in the following section, we give a brief introduction to PEPA;
the interested reader is referred to [33] for more details.

2 PEPA

The basic elements of PEPA are components and activities, corresponding to
states and transitions in the underlying Markov process. Each activity has an
action type (or simply type). Activities which are private to the component in
which they occur are represented by the distinguished action type, τ . The dura-
tion of each activity is represented by the parameter of the associated exponential
distribution: the activity rate (or simply rate) of the activity. This parameter
may be any positive real number, or the distinguished symbol � (read as unspec-
ified). Thus each activity, a, is a pair (α, r) where α is the action type and r is
the activity rate. We assume that there is a countable set of components, which
we denote C, and a countable set, A, of all possible action types. We denote
by Act ⊆ A × IR+, the set of activities, where IR+ is the set of positive real
numbers together with the symbol �.

2.1 Syntax and Informal Semantics

PEPA provides a small set of combinators. These allow expressions, or terms,
to be constructed defining the behaviour of components, via the activities they
undertake and the interactions between them. The combinators, together with
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their names and interpretations, are presented informally below. The essential
idea of these combinators will be familiar from earlier chapters, but they are
included here for clarity.

Prefix: (α, r).P Prefix is the basic mechanism by which the behaviours
of components are constructed. The component carries out activity (α, r) and
subsequently behaves as component P .

Choice: P + Q The component represents a system which may behave
either as component P or as Q: all the current activities of both components
are enabled. The first activity to complete, determined by a race condition,
distinguishes one component, the other is discarded.

Cooperation: P ��
L

Q The components proceed independently with any
activities whose types do not occur in the cooperation set L (individual activi-
ties). However, activities with action types in the set L require the simultaneous
involvement of both components (shared activities). These activities are only
enabled in P ��

L
Q when they are enabled in both P and Q. The cooperation

combinator associates to the left but brackets may also be used to clarify the
meaning. When the set L is empty, we use the more concise notation P ‖ Q to
represent P ��∅ Q.

The published stochastic process algebras differ on how the rate of shared
activities are defined [31]. In PEPA the shared activity occurs at the rate of the
slowest participant (see Appendix A for details). If an activity has an unspecified
rate in a component, the component is passive with respect to that action type.
A model which contains a passive activity without a partner for cooperation is
considered to be incomplete.

Hiding: P/L The component behaves as P except that any activities of
types within the set L are hidden, i.e. such an activity exhibits the unknown type
τ and the activity can be regarded as an internal delay by the component. Such
an activity cannot be carried out in cooperation with any other component: the
original action type of a hidden activity is no longer externally accessible, to an
observer or to another component; the duration is unaffected.

Constant: A
def= P associates the constant A with the behaviour of the

component P . This is how we assign names to components (behaviours). There
is no explicit recursion operator but components of infinite behaviour may be
readily described using sets of mutually recursive defining equations.

The action types which the component P may next engage in are the current
action types of P , a set denoted A(P ). This set is defined inductively over the
syntactic constructs of the language (see [33] for a formal definition). For exam-
ple, A(P +Q) = A(P )∪A(Q). The activities which the component P may next
engage in are the current activities of P , a multiset denoted Act(P ). When the
system is behaving as component P these are the activities which are enabled.
Note that the dynamic behaviour of a component depends on the number of in-
stances of each enabled activity and therefore we consider multisets of activities
as opposed to sets of action types.

Example: Simple processing system as cooperating components Consider a simple
system in which a process repeatedly carries out some task. In order to complete
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its task the process needs the cooperation of a subsidiary process for part, but
not all, of the time. Thus the task can be regarded as being in two stages.
The subsidiary process meanwhile has only two activities, it is available for use
except for a short period after use while it is reset. We model the process and
the subsidiary process as two separate components: Process and Sub respectively.
The process will undertake two activities consecutively: use with some rate r1,
in cooperation with the subsidiary process, and task at rate r2, representing the
remainder of its processing task. Similarly the subsidiary process will engage in
two activities consecutively: use, at rate r3 and reset, at rate r4.

Process def= (use, r1).Process ′ Sub def= (use, r3).Sub′

Process ′ def= (task , r2).Process Sub′ def= (reset , r4).Sub

System def= Process ��{use} Sub

Note that we can easily extend the model to represent a system with two
primary processes, independent of each other but competing for the use of the
subsidiary process: (Process ‖ Process) ��{use} Sub.

2.2 Execution Strategy

A race condition governs the dynamic behaviour of a model whenever more than
one activity is enabled. This has the effect of replacing the non-deterministic
branching of classical process algebra with probabilistic branching. The proba-
bility that a particular activity completes is given by the ratio of the activity rate
to the sum of the activity rates of all the enabled activities. Any other activities
which were simultaneously enabled will be interrupted or aborted. The memory-
less property of the exponential distribution makes it unnecessary to record the
remaining lifetime in either case.

2.3 Operational Semantics and the Underlying CTMC

The semantics of PEPA, presented in the structured operational semantics style,
are given in Appendix A. The underlying transition system also characterises the
Markov process represented by the model. PEPA is the labelled multi-transition

system (C,Act , {| (α,r)−−−→ | (α, r) ∈ Act |}) where C is the set of components, Act

is the set of activities and the multi-relation
(α,r)−−−→ is given by the rules in Ap-

pendix A.
The derivation graph is a graph in which syntactic terms form the nodes, and

arcs represent the possible transitions between them: the operational rules define

the form of this graph. Since
(α,r)−−−→ is a multi-relation, the graph is a multigraph.

This derivation graph describes the possible behaviour of any PEPA component
and provides a useful way to reason about a model. It is also the basis of the
construction of the underlying Markov process.
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Example: Simple processing system – derivation graph
Process ��{use} Sub

Process ′ ��
{use} Sub′

Process ��{use} Sub′ Process ′ ��
{use} Sub

?

(use , r1,3)

	

(task , r2)

R

(reset , r4)

�

(reset , r4)

K

(task , r2)

r1,3 = min(r1, r3)

Definition 1 (Derivatives). If P
(α,r)−−−→ P ′, then P ′ is a (one-step) derivative

of P . In general, P ′ is a derivative of P if P
(α1,r1)−−−→ · · · (αn,rn)−−−→ P ′.

These derivatives are the states of the labelled multi-transition system (and of
the underlying Markov process). The set of derivatives which can evolve from a
component is defined recursively.

Definition 2 (Derivative Set). The derivative set of a PEPA component C
is denoted ds(C) and defined as the smallest set of components such that

– if C def= C0 then C0 ∈ ds(C);
– if Ci ∈ ds(C) and there exists a ∈ Act(Ci) such that Ci

a−→ Cj then
Cj ∈ ds(C).

Thus the derivative set is the set of components which capture all the reachable
states of the system. These form the nodes of the derivation graph.

Definition 3 (Derivation Graph). Given a PEPA component C and its
derivative set ds(C), the derivation graph D(C) is the labelled directed multi-
graph, whose set of nodes is ds(C), and whose multiset of arcs, A, is defined as
follows:

– The elements of A are taken from the set ds(C)× ds(C)×Act;
– 〈Ci, Cj , a〉 occurs in A with the same multiplicity as the number of distinct

inference trees which imply Ci
a−→ Cj.

The initial component C0, where C def= C0, forms the initial node of the graph.

To form the underlying Markov process a state is associated with each node
of the derivation graph, and the transitions between states are derived from the
arcs of the graph. This use of the derivation graph is analogous to the use of the
reachability graph in stochastic extensions of Petri nets such as SPNs [52] and
has been discussed in an earlier chapter. We assume that the model is finite so
that the number of nodes in the derivation graph is finite.
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The transition rate between two components Ci and Cj , denoted q(Ci, Cj), is
the sum of the activity rates labelling arcs connecting node Ci to node Cj in the
derivation graph, i.e. q(Ci, Cj) =

∑
a∈Act(Ci |Cj)

ra where Act(Ci|Cj) is defined to be

{|a ∈Act(Ci) | Ci a−→ Cj |}. Typically this multiset will only contain one element.
If Cj is not a one-step derivative of Ci, then q(Ci, Cj) = 0. The q(Ci, Cj), or
qij , are the off-diagonal elements of the infinitesimal generator matrix of the
Markov process, Q. Diagonal elements are formed as the negative sum of the
non-diagonal elements of each row.

2.4 Cyclic PEPA

When aiming for a decomposed solution which may rely on the numerical solu-
tion of individual components within the model, it is important to ensure that
these components, as well as the model itself, are finite and ergodic. Necessary
(but not sufficient) conditions for the ergodicity of the Markov process in terms
of the structure of the PEPA model have been identified and can be readily
checked [33,24]. These conditions imply that the model must be a cyclic PEPA
component.

Definition 4 (Cyclic Components). A PEPA component is cyclic, or irre-
ducible, if it is a derivative of all the components in its derivative set.

C ∈ ds(Ci) for all i such that Ci ∈ ds(C)
A cyclic component is one in which behaviour may always be repeated—

however the model evolves from this component it will always eventually return
to this component and this set of behaviours. In particular this means that for
every choice, whichever one-step derivative is chosen the model must eventually
return to the point where the choice can be made again, possibly with a different
outcome. If we consider the layering imposed on a component by cooperation
combinators, this implies that choice combinators may only be introduced at
the lowest level of a cyclic component since syntactic terms are associated with
states. In other words, a component which involves a choice combinator may
subsequently be used in a cooperation, but a component involving a cooperation
may not be subsequently used in a choice.

This leads us to formally define the syntax of PEPA expressions in terms of
sequential components S and model components P :

P ::= S | P ��
L
P | P/L

S ::= (α, r).S | S + S | A
For the remainder of the chapter we will assume that all the models which

we consider are cyclic.
As stated earlier there is a strong relationship between cyclic PEPA compo-

nents and irreducibility in the underlying Markov processes. This is formalised
in the following theorem.
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Theorem 1. The Markov process underlying a PEPA model is irreducible, and
therefore ergodic, if, and only if, the initial component of the model is cyclic.

As explained in the previous subsection the “states” of a PEPA model as it
evolves are the syntactic terms, or derivatives, which the model will go through.
For a model component the sequential components it consists of will be ap-
parent in every derivative of the model1, i.e. the sequential components in the
model, and the cooperation sets in operation between them, will remain static
throughout the evolution of the model. Only the particular derivatives exhib-
ited by each of the sequential components may change. This suggests a compact
representation of any particular state.

Definition 5 (State Vector). Let P be a model component comprising sequen-
tial components S1, S2, . . . SK . Then a state vector of the model component P
as derivative Pi is the vector (S1i , S2i , . . . , SKi)P where Ski , 1 ≤ k ≤ K is the
current derivative of Sk in Pi.

This can be regarded as analogous to the state representation of a queueing
network which consists of a vector (n1, n2, . . . , nK), where ni denotes the number
of customers currently at queue i. The subscript P is required since knowledge of
the static structure of P must be retained in order to reason about the model’s
behaviour. However, it will be omitted when it is clear from the context which
P is intended.

Definition 6 (Redundancy (within the state vector representation)). A
sequential component Sk is redundant within the state vector representation of a
model component P if Sk is a sequential component of P and for all derivatives
Pi ∈ ds(P ) given the current derivatives of the other sequential components
Sji , j �= k, the current derivative of Sk, Ski , can be inferred.

If a sequential component is shown to be redundant within the state vector,
a reduced state vector may be formed in which the derivatives of this component
have been eliminated.

3 Harnessing Compositionality

As outlined in Section 1, initial attempts to exploit the compositionality of MPA
languages focused on model manipulation—improving the model in some sense
before the underlying Markov process is generated and solved.

There have been two principal approaches to model manipulation:

model simplification: Here an equivalence relation is used to establish be-
havioural or observational equivalence between models. The aim is to replace
one model by an equivalent one which is more desirable from a solution point

1 However they will not necessarily all change with every transition of the derivation
graph.
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of view. Once the desirable model has replaced the original, the underlying
Markov process is generated as usual, associating one state with each node
in the labelled transition system generated by the semantics. Equivalence
relations which have been used in this way are weak isomorphism in PEPA
[33,14], Markovian bisimulation and weak bisimulation in TIPP [47].

model aggregation: Here an equivalence relation is used to establish equiva-
lence between states within a model. The aim is to use an alternative mapping
from the labelled transition system, given by the semantics of the model, to
the underlying Markov process. The equivalence relation is used to partition
the nodes of the labelled transition system into equivalence classes. Then, in-
stead of the usual one-to-one correspondence between nodes and states, one
state in the underlying Markov process is associated with each equivalence
class of nodes. The equivalence relation which has been used in this way
is variously called strong equivalence (PEPA) [33], Markovian bisimulation
(TIPP) [29], and extended Markovian bisimulation equivalence (EMPA) [4].

In model aggregation the introduction of equivalence classes will generally
reduce the number of states in the underlying Markov process and will certainly
never increase it. Thus the resulting Markov process is more amenable to solution
because its size has been reduced. Similarly, in model simplification reducing the
number of states is the most straightforward way to make a model more desirable
from a solution point of view; this is the approach taken in the work on weak
isomorphism in PEPA.

Note that in general, when model manipulation is based on an equivalence
relation which captures all relevant aspects of the behaviour of a model the
subsequent solution of the transformed model will be exact [33,29,4]. However,
when a partial order relation or an equivalence relation which does not consider
all aspects of represented behaviour is used, model manipulation may result in
an approximation of the original model. This is the case when weak bisimulation
is used with respect to a subset of TIPP in Mertsiotakis’s work on throughput
approximation (see Section 6.2): the weak bisimulation relation cannot capture
the timing characteristics of the models.

In the context of model manipulation, the role of compositionality is perhaps
secondary to the equivalence relations which are used to define the model trans-
formations. Nevertheless it is an important role, distinguishing the use of the
model manipulation techniques in the MPA setting from their direct application
at the Markov process level. Using process algebra apparatus we can establish
the congruence of an equivalence relation as a feature of a language. The conse-
quences of this form of model manipulation are significant: components within
the model may be manipulated, and improved, in isolation. The modified model
is formed as the composite of the modified components. Thus the state space of
the complete model may never need to be constructed [33,32,29]. This greatly
reduces the complexity of the procedure and ultimately, may make intractable
models tractable.

Another approach which has been taken to exploit MPA model composition-
ality during Markov process generation, is the use of tensor algebra. Again, the
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objective is to tackle the problem of state space explosion but the strategy is to
alter the representation of the underlying Markov process. Instead of capturing
the Markov process as a single infinitesimal generator matrix, using tensor al-
gebra it is represented as an expression of smaller matrices. Specially designed
algorithms are able to take advantage of this expression and find the steady state
solution in terms of the expression, avoiding the construction of the complete
matrix. This general approach has been pioneered by Plateau and others with
Stochastic Automata Networks [53,54,58].

In [12], Buchholz identifies the relationship between the parallel composition
operator in the SPA language, MPA, and tensor algebra expressions for the un-
derlying Markov process. He shows how an expression for the complete model
can be constructed in terms of smaller matrices representing the individual com-
ponents and the synchronisation sets in operation between them. However, the
form of synchronisation defined in the semantics of MPA is slightly unusual and
tailored to the tensor representation. Similarly, in [55], Rettelbach and Siegle con-
struct a minimal compositional semantics for a subset of TIPP, called TIPPMS .
Specifically, this language includes a synchronising replication operator but not
parallel composition in its general form. In this work a matrix is defined for
each language expression without recourse to an operational semantics and the
associated labelled transition system. This is achieved by constructing the ma-
trix from sub-matrices corresponding to terms in the expression using matrix
operators corresponding to the process algebra combinators. In particular, the
replication operator maps to the tensor sum of replicated copies of the matrix
corresponding to the replicated process.

More recently, in [36], Hillston and Kloul present a representation of the
Markov process underlying a PEPA model in terms of a tensor product of terms.
Unlike the earlier work by Buchholz, Rettelbach and Siegle, this is not based
on an especially designed, syntactically restricted, form of the process algebra.
Whilst the representation is similar to previous representations of Stochastic
Automata Networks and Stochastic Petri Nets, it has novel features, arising
from the definition of the PEPA models. In particular, capturing the correct
timing behaviour of cooperating PEPA activities relies on a new tensor operator
defined within the paper [36].

We do not classify this work as decomposed solution since the underlying
Markov process is still solved as a single entity although it is represented in a
decomposed form. In the following sections we survey work which we classify as
truly decomposed solution. In these cases the MPA model is used to generate
not one Markov process but several, and these processes are solved separately.

4 Decomposed Solution

A variety of decompositional or structural techniques have been proposed to aid
in the solution of large Markov processes. Recently several results have been
published which show that, at least for some particular cases, there is a clear
relationship between these techniques and MPA model descriptions. In the fol-
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π(M)

M

M = (m1,m2, ...., mn)

m1 m2

A

Partition the model M into
n submodels m1, m2, . . . , mn.
Treating each submodel as a
state form aggregated model A.

In isolation, find the steady state
distribution π for each of the
submodels mi and for the aggregated

model A.

Apply disaggregation function f
to the π(mi) and π(A) to find the
steady state distribution of
the original model M (approximately).

π(M)=f(π(m1), ..., π(mn), π(A))

Fig. 2. Schematic overview of decomposed solution

lowing two sections we survey some of these recent results. In this section we
aim to provide a general introduction and framework for decomposed solution
of MPA models.

The overall approach is summarised schematically in Figure 2. A model is
considered to be made up of a number of submodels m1,m2, . . . ,mn, and any
state of the model can be expressed in terms of the local states in each of the
submodels. Note that in general these submodels will correspond to regions of the
state space of a model and may or may not correspond to components within the
system being represented. Although they may not be independent, a decomposed
solution will typically solve each of these submodels in isolation, generating a
corresponding steady state distribution πi(·) over the state space of the submodel
mi. In addition an aggregated model may also be formed, aiming to capture
the pattern of interactions between submodels. In this model each submodel is
represented by a single state and the transitions between states are intended to
capture the points when the complete model moves between submodels (regions
of the state space). A steady state distribution for this aggregated model is also
generated. An approximate steady state distribution of the original model is then
obtained by applying a disaggregation function to the results of the separate
analyses. How the submodels are identified, the formation of the aggregated
model and the definition of the disaggregation function are all particular to the
decomposed solution technique.

Many such techniques are well-known at the Markov process level. The advan-
tage of characterising the corresponding class of MPA models is that by “lifting”
the definition from the stochastic process level to a formally defined high-level
modelling paradigm we can facilitate the automatic detection of these structures
when they occur, thus avoiding the construction of the original Markov process.
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π(M)

M

M = (m1,m2, . . . ,mn)

m2m1

Partition the model M into n
statistically independent
submodels m1, m2, . . . , mn

In isolation, find the steady state
distribution π for each of the
submodels mi

Form the steady state distribution of M

as the product of the solutions for each
submodel mi and a normalising constant

π(M) = G× π(m1)× . . .× π(mn)

Fig. 3. Schematic overview of product form solution

4.1 Product Form Solutions

It is clear that there is great advantage to be gained if the compositional struc-
ture of a MPA model can be used during model solution. This would mean that
the submodels within the general scenario shown in Figure 2 would correspond
directly to components within the MPA model, i.e. the components of the MPA
model could be solved separately and their solutions combined to obtain a solu-
tion, exact or approximate, of the whole Markov process. One class of Markov
processes which are susceptible to such an efficient solution technique are those
which exhibit a product form steady state distribution. Significant effort has
gone into identifying those classes of PEPA models in which the constituent
components will generate a product form solution.

Consider a Markov process X(t), whose state space S is of the form
S = S1 × S2, i.e. each state s = (s1, s2) contains two pieces of information
capturing different aspects of the current state. In general, these aspects may
be related in many ways. When the process X(t) exhibits a product form solu-
tion, i.e. π(s) = π1(s1) × π2(s2), it indicates that these different aspects of the
state description are independent. In this case the general scenario simplifies to
that shown in Figure 3. Note that the aggregate model is no longer constructed
or solved, and that disaggregation function is a simple multiple of the steady
state probabilities of the submodels. Moreover this technique generates an exact
solution up to a normalisation constant.

Product form distributions have been widely used in the analysis of queueing
networks and, due to their efficient solution, have contributed to the popularity of
queueing networks for performance analysis. For example, Jackson networks [42]
and their generalisation, BCMP networks [3], have been widely employed. Here
the underlying Markov process is known to have a reversible or quasi-reversible
structure.

In contrast stochastic Petri nets (SPN) have rarely been found to be amenable
to such efficient steady state solution, except when some of the expressiveness of
the formalism is reduced, for example by excluding resource sharing and compe-
tition over resources in a general form. By imposing these restrictions, Henderson
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and Taylor develop product form over the places of the Petri net, to obtain a
product form similar to that obtained for queueing networks [27]. Lazar and
Robertazzi establish a first step towards a product form over subnets, character-
ising independence between subnets which compete for resources [45]. Donatelli
and Sereno show how both these approaches are related to T -semiflows in the
Petri net [20]. An excellent survey of product form results for Petri nets can be
found in [57].

Work on finding PEPA models which give rise to product form solutions has
drawn on the previous work on both queueing networks and SPNs. Essentially
this can be seen as an investigation of when components interact and yet re-
main statistically independent. It is clear that when any MPA model consists
of completely independent sequential components, i.e. P ‖ Q, the equilibrium
distribution will have a product form:

π(P ‖ Q) = πP (P )× πQ(Q) (1)

where πP and πQ are the steady state distributions over the local states of
P and Q respectively. However few real systems consist of components which
are independent in this way, and if they did the state space explosion problem
would not arise because it would be obvious that the components could be
analysed separately. The challenge is to find circumstances in which components
P and Q which synchronise, P ��

L
Q in PEPA notation, still exhibit statistical

independence.

4.2 Other Decomposed Solution Techniques

In the following section we consider some techniques for aggregated decomposed
solutions. Here, it is not simply a case of splitting the model into submodels or
components in the style of product form. As well as a stochastic representation
of each of the components, the decomposed solution involves a stochastic rep-
resentation of the interactions between these components, the aggregated model.
In most cases these stochastic representations will be Markov processes but in
the work by Bohnenkamp and Haverkort on decomposition via synchronisation
points semi-Markov processes are used [8]. In addition to work on characterising
the class of MPA models for which the technique is appropriate, the research ef-
fort can also involve development of a good disaggregation function, which allows
the results of the individual submodels and the aggregated model, to combined
to approximate the solution of the original model. In several cases this effort has
been based on previous work on SPN.

5 Product Form PEPA Models

5.1 Reversibility

Informally, a reversible Markov process is one which behaves identically when we
observe it with time reversed as when we observe it with time flowing forward. At
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the Markov process level there are several ways to characterise these processes,
but we state only the local balance condition. An irreducible, stationary Markov
process X(t) is reversible if it satisfies the detailed balance equations:

π(j)q(j, k) = π(k)q(k, j) (2)

where q(j, k) is the instantaneous transition rate from state j to state k and
π(·) is the steady state probability distribution. A more complete account of
reversibility can found in the book by Kelly [44].

An initial study of MPA models giving rise to reversible Markov processes
was presented by Bhabuta et al. in [5]. This paper largely considered the prob-
lem at the level of the underlying state space. In [38], Hillston and Thomas,
identify syntactic conditions which a PEPA model must satisfy in order for the
underlying process to be reversible. The problem is tackled in two stages. First,
a basic class of sequential components which give rise to reversible structures are
identified. These are shown in Figure 4. Then, assuming that a known class of
reversible PEPA components exist, the authors investigate under what circum-
stances the conditions for reversibility will be preserved if reversible components
are composed using the combinators of PEPA.

Fundamental to the basic class of reversible sequential components is the
notion of a reverse pair. A pair of action types (α,−α) form a reverse pair if,
in any state, any α transition leads to a state in which a −α transition leading
back to the original state. This ability to “undo” any transition in the subsequent
transition seems to be fundamental to reversibility. It clear to see that this is
a necessary condition for equation (2) to be satisfied. From this starting point
various canonical forms for sequential reversible components are described. The
interesting conditions for when reversible components can be composed without
losing the reversibility property relate to cooperation. In [38] detailed conditions,
on the form of the cooperation set and the rates of the activities involved, are
given. We refer the reader to that paper for more detail.

5.2 Quasi-Reversibility

Like reversibility, the origins of quasi-reversibility are in queueing theory. It is
the condition which allows a wide class of queueing networks to be separated
into their individual queues and solved in isolation, provided traffic equations
are solved to give appropriate arrival rates at each queue. Formally, a stationary
Markov process X(t) is quasi-reversible if, for all times t0 the state X(t0) is
independent of

1. the input process after t0 and
2. the output process before t0.

Rather than the detailed balance equations which characterised reversibility, a
quasi-reversible process satisfies partial balance equations :

π(i)
∑
j∈S′

q(i, j) =
∑
j∈S′

π(j)q(j, i) (3)
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Birth-death process

Symmetrical branch-join process

Parallel input-output process

Linear input-output process

Gambler0
def
= (borrow, r).Gambler1

Gamblern
def
= (win, w).Gamblern+1

+ (lose, l).Gamblern−1 n ≥ 1

Birth-death component

Gambler0
def
= (borrow, r).Gambler1

Gambler1
def
= (win,w).Gambler2 + (lose, l).Gambler0

Gambler2
def
= (win1, w1).Cards3 + (win2, w2).Slots3

+ (lose, l).Gambler1

Cards3
def
= (win,w).Cards4 + (lose, l).Gambler2

Slots3
def
= (win,w).Slots4 + (lose, l).Gambler2

Cardsn
def
= (win,w).Cardsn+1 + (lose, l).Cardsn−1

Slotsn
def
= (win,w).Slotsn+1 + (lose, l).Slotsn−1

n ≥ 4

Linear input-output component

Gambler10
def
= (borrow, r).Gambler11

Gambler1n
def
= (win, w).Gambler1n+1

+ (lose, l).Gambler1n−1 n ≥ 1

Gambler20
def
= (borrow, r).Gambler21

Gambler2m
def
= (win, w).Gambler2m+1

+ (lose, l).Gambler2m−1 m ≥ 1

Gamblers(n,m)
def
= Gambler1n ‖ Gambler2m

Parallel input-output component

Loser0
def
= (borrow, r1).BJ1 + (borrow, r2).211

BJ1
def
= (win, w).BJ2 + (lose, l).Loser0

BJ2
def
= (win, w).Spin3 + (lose, l).BJ1

211
def
= (win, w).212 + (lose, l).Gambler0

212
def
= (win, w).Spin3 + (lose, l).212

Spin3
def
= (win, w).Spin4 + (lose, l1).BJ2 + (lose, l2).212

Spinn
def
= (win, w).Spinn+1 + (lose, l).Spinn−1

n ≥ 4

Symmetrical branch-join component

Fig. 4. Basic reversible structures
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PEPA components

interactions flow between queues

queues

Fig. 5. Relating queueing network concepts to PEPA

for all states i and a corresponding subset of states S′. Again, more details of
the definition of quasi-reversibility can be found in the book by Kelly [44].

In [25], a PEPA characterisation of this class is presented. As in the work
on reversibility, the approach is to first find simple instances of PEPA processes
which give rise to quasi-reversible structure in their underlying Markov process
(QR components). Then, conditions are established under which these compo-
nents can be composed whilst maintaining the quasi-reversible property. Relative
to the simple product form PEPA case presented in equation (1), this does allow
interaction between the components P and Q. But strong restrictions are placed
on the form of this interaction. Again the notion of a reverse pair is important.
Intuitively, it is easy to see the reverse pair action types as a generalisation of
the input-output behaviour of a queue.

Not surprisingly, given the origins in queueing networks, the form of admissi-
ble PEPA interaction is a flow cooperation. This means that the “positive” half
of a reverse pair in one component is carried out in synchronisation or coopera-
tion with the “negative” half of a reverse pair in another. The “positive” actions
correspond to the input process in the definition of quasi-reversibility, while the
“negative” correspond to the output process. The subsequent theorems, stated
below and developed in more detail in [25], correspond to those for open and
closed queueing networks reported in [44].

Theorem 2 (Open Quasi-reversible Interactions). An open flow coopera-
tion of QR components has the following properties at steady state:

– The marginal states of the individual components are independent.
– For an individual component the steady state distribution and the distribution

over states at the time of completion of a positive action of a given type are
identical and are both as they would be if the component were in isolation with
independent Poisson external sources with rates given by traffic equations.

– Under time reversal the model becomes another flow cooperation of QR com-
ponents; in particular sources become sinks and vice versa.

– The underlying Markov process is quasi-reversible. Thus the completion of
negative actions of each type at the sinks form independent Poisson processes
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and the state of the model at time t0 is independent of the completion instants
of the negative actions in the model prior to time t0.

Theorem 3 (Closed Quasi-reversible Interactions). A closed flow cooper-
ation of QR components, C1, C2, . . . , Cm has the following properties at steady
state:

– Let π(Cki ) be the steady state probability that component Ck is in state Cki ,
1 ≤ k ≤ m, when interacting only with its Poisson external sources with rates
given by the traffic equations. Then the steady state probability distribution
of the closed flow cooperation is

m∏
i=1

π(Cki )/B

where B is the normalising constant.
– The distribution over states at the time of completion of an positive action

of type α, which produces an (α, r)n-derivative in a component of the state
vector representation, is identical to that above for the closed flow cooperation
obtained by reducing n to n− 1.

– Under time reversal the model becomes another closed flow cooperation of
QR components.

– The underlying Markov process is quasi-reversible. Thus the completion of
negative actions of each type at the sinks form independent Poisson processes
and the state of the model at time t0 is independent of the completion instants
of the negative actions in the model prior to time t0.

Figure 6 shows a simple packet transmission network expressed as a PEPA
model. This model satisfies the quasi-reversibility characterisation. Each node
is a QR component, enabling two positive actions on its outgoing links and two
corresponding reverse actions on its incoming links. The cooperation between
Nodek and Node(k + 1) is a flow cooperation since a positive action in one
cooperates with a negative action in the other. The sender is a source for the
system and the receiver is a sink. Thus we have an open quasi-reversible inter-
action. As a consequence of the characterisation we know that the steady state
distribution of the complete model can be expressed as a product of terms, one
corresponding to each node in the network, as shown.

5.3 Routing Process Approach

Sereno’s work, reported in [56], derives product form criteria for PEPA models
based on earlier work on product form criteria for SPN [26,27,11]. The SPN
results rely on defining a Markov chain whose states correspond to the transitions
of the SPN, the so-called routing chain. The condition for this chain to exist is
that the set of places into which tokens are placed when a transition fires should
be exactly the input places of another transition. This condition places severe
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Fig. 6. Quasi-reversibility example: A simple packet transmission network

restrictions on the forms of synchronisation and resource contention which can
be represented in the net.

In [56], Sereno uses a vector representation of the state of a PEPA model2

in the characterisation of the class of models which have a product form based
on the routing process. It is assumed that some preprocessing of the model is
done in order to collect information and to aggregate the model, using one of the
techniques outlined in Section 3. The information which is needed is the local
state space of each component, and, for each action type of the model, which lo-
cal states of participating components enable the action and which appear after
it has been performed. These two sets of local states are called the pre-set and
post-set of the action, respectively. The state vector representation is composed
of sub-vectors, one corresponding to each defined sequential component; an el-
ement within the sub-vector corresponds to a local state within corresponding
component. In the representation of any particular state the value of an element
within the vector records the number of instances of each local state exhibited
in the current syntactical state of the model. Storing the state in this form, to-
gether with the pre- and post-sets of actions represented as vectors, allows the
effect of completing an action to be written down in vector form.

2 Note, however, that this differs from the state vector defined in Definition 5.
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There are several restrictions placed on the PEPA models, in particular with
respect to action types. An action can only have one pre-set—this implies that
each action within the behaviour of a sequential component must have a distinct
name. Moreover if actions of the same type occur within different sequential
components they must be synchronised.

Sereno’s approach for PEPA is completely analogous to the earlier work on
SPN—he defines a Markov chain in which the states correspond to the actions of
the PEPA model. This is called the routing process. The global balance equations
of the routing process correspond to the traffic equations of queueing networks.
If the state space of this process can be partitioned into equivalence classes of
enabling actions (roughly speaking, one action enables another if the post-set of
one is the pre-set of the other; we take the transitive closure of that relation),
then a product form solution exists. Moreover the partition forms the basis for
the decomposition.

5.4 Product Form over Submodels

As mentioned earlier, in [45] Lazar and Robertazzi investigate a product form
in the context of SPN—the decomposition is carried out over subnets, which
may still need to be solved by standard numerical techniques to find their local
steady state.

In [10], Boucherie generalised their result and characterised the class of un-
derlying Markov processes. Such a process is formed as the product of a set of
Markov processes which compete over a set of resources. The resources are not
explicitly represented but the competition has two important impacts on the
state space and the transition rates of the product process. Firstly, if two con-
stituent processes compete over a resource they cannot both enter the region of
their state space representing possession of the resource at the same time. Thus
areas of the state space of the product process are eliminated. It is assumed that
the product process will change state in only one of the constituent processes at
each state change. The second effect of the competition over resources is to limit
this still further—if two processes compete over a resource, and one of them is
currently holding the resource, then the other cannot make any state change, no
matter where it is in its state space. Thus when a constituent process holds a
resource, all competing processes are blocked.

This form of interaction is illustrated by the product process shown in Fig-
ure 7. Here we assume that we have two Markov processes S1 and S2. The state
space of each process is partitioned into those states in which no resource is being
used (Ai0) and those in which the resource r is being used (Air). Immediately
we see that the bottom right hand corner of the product state space has been
eliminated because the processes cannot access the resource r simultaneously.
Moreover, when, say, S1 holds the resource (is in partition A1r), we see that
process S2 is unable to make any transitions at all, not even those not involving
resource use.

Essentially the product form result holds because in each state of the product
process each constituent process satisfies its own global balance equations. If it
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Fig. 7. Simple example of two-dimensional resource contention Markov process

can make a transition it is free to act as if it were independent; alternatively, it
is completely blocked and satisfies its global balance equations trivially.

In [34,39], Hillston and Thomas characterise this class of Markov processes
in PEPA. The class of models that they identify consist of independent com-
ponents, which give rise to the constituent Markov processes of the underlying
Markov process. These components interact indirectly by synchronisation with
resource components. Compared with the simple product form model presented
in equation (1), the general form of these process algebra terms and the resulting
product form is, schematically:

π
(
(P ‖ Q)��

L
R
)
= B × πP (P ��

L
R)× πQ(Q ��

L
R) (4)

where the component R represents the resource, πP and πQ are the steady state
distributions over the derivatives of P ��

L
R and Q ��

L
R respectively, and B

is the normalising constant. The decomposition is formed by considering each
of the model terms (P and Q in this case) acting in synchronisation with the
resource (R) in isolation.

In PEPA, a component is termed a resource if it is never free to act in-
dependently; all its activities must be carried out in synchronisation with the
rest of the model. All components are assumed to have cyclic behaviour. In this
context a component is considered to be using or holding the resource if it has
carried out the first action of the resource’s behaviour in synchronisation with
the resource. The semantics of PEPA ensure that the state space of the product
process is suitably modified, i.e. that two competing components cannot hold the
resource simultaneously. In order to ensure that the correct condition is also sat-
isfied by the transition rates of the product process, Hillston and Thomas place
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a further restriction on the cooperation set in operation between the resource
component and the rest of the model. If a model component wishes to use the
resource during one of its possible behavioural cycles, it must gain control of the
resource at the start of the cycle and release it only at the end. This guarantees
that other competing components will be blocked when the component holds
the resource. Although presented here informally, these conditions are defined
as formal syntactical conditions which can be checked on the model specification
[39].

Any resource component is redundant within the state vector representation
of a model, in the sense given in Definition 6. This means that the resource
can be eliminated from the state vector and the process will then satisfy the
condition that only one constituent component changes its local state for each
global transition.

The product form PEPA models discussed in previous subsections have been
based on components of a particular structure which interact in a restricted way,
preserving a form of independence between the components. Here the charac-
terised models represent the competition of otherwise independent components
over resources. The form of these components is not restricted; however they do
place a relative restriction on the form of the resource and on the form of the
cooperation set in operation between the resource and the rest of the model. As
suggested by equation (4) above, these components, together with the resource,
are solved in isolation, these partial solutions subsequently being combined to
give a solution of the complete model. The outstanding problem of this approach,
however, is the calculation of the normalising constant.

Figure 8 shows a PEPA model which satisfies the criteria for this form of
product form. Consider a simple railway system with the arrangement of tracks
and stations as shown below. There are two trains: Train1 which circulates round
stations A, B and C, and Train2 which has a choice of two routes, either round
D, B, and C, or round D, E and F (see Figure 9).

The trains are independent of each other but must compete for access to the
shared piece of track, as controlled by the signal. In this model the signal is the
resource component. It is straightforward to see that it satisfies the condition
that it never acts independently, and that its local state can always be deduced
from the local states of the two trains. Moreover, for each train, any cycle of
behaviour involving the signal can only begin when cooperation with the signal
is possible, and ends by releasing the signal again.

The models presented in [10], including those presented as SPN, relied on
the insight of the modeller to detect the product form structure. Moreover, in
the case of the SPN models, a non-standard state representation had to be used
in order to eliminate the resource from the model representation. The PEPA
models do not have this disadvantage since the resource may (indeed, must) be
represented explicitly and subsequently eliminated from the state representation
using formally defined procedures.
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Train1A
def
= (trackAB , t1 ).(stopB , s1 ).Train1B

Train1B
def
= (trackBC , t1 ).(stopC , s1 ).Train1C

Train1C
def
= (trackCA, t1 ).(stopA, s1 ).Train1A

Train2D
def
= (trackDB , t2 ).(stopB , s2 ).Train2B + (trackDE , t2 ).(stopE , s2 ).Train2E

Train2B
def
= (trackBC , t2 ).(stopC , s2 ).Train2C

Train2C
def
= (trackCD , t2 ).(stopD , s2 ).Train2D

Train2E
def
= (trackEF , t2 ).(stopF , s2 ).Train2F

Train2F
def
= (trackFD , t2 ).(stopD , s2 ).Train2D

Signal
def
= (trackAB ,�).Signal1 + (trackDB ,�).Signal2

Signal1
def
= (trackCA,�).Signal

Signal2
def
= (trackCD ,�).Signal

Railway
def
=
�
Train1A ‖ Train2D

�
��

L
Signal

where L = {trackAB , trackCA, trackDB , trackCD}

Fig. 8. A small railway system

5.5 Queueing Discipline Models

Queueing discipline models were introduced by Clark in [15] and presented in
more detail in his recent thesis [16]. The initial motivation for Clark’s work was
the investigation of when a PEPA model could be shown to be insensitive3 to the
distribution governing activity duration. In this way he intended to increase the
expressiveness of PEPA by removing the restriction to exponential distributions
for some activities within appropriately structured models. It is well-known from
queueing theory that there is a close link between insensitivity and product
forms, so it is perhaps unsurprising that Clark’s insensitive structures also give
rise to models which have a product form steady state solution.

Queueing discipline models are constructed using a new PEPA combinator
QA,ξ(·), the queue discipline combinator. This is a derived combinator meaning
that it can be defined in terms of the existing combinators of the language and
so does not necessitate any modification of the semantics of the language. In the
combinator syntax the set A denotes a set of queueing actions and ξ denotes a
set of rates; the argument to the combinator is a set of independent, complete

3 When a Markov process is insensitive its steady state distribution is unaffected by
the form of distribution used to determine state sojourn times, and affected only by
the mean of such distributions.
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Fig. 9. Schematic representation of the small railway system

sequential PEPA components, S1, . . . , Sn. For example, in a model in which the
set of rates is left unspecified, the derived form is:

QA(S1, . . . , Sn)
def= (S1 ‖ · · · ‖ Sn) ��

MA
RA

for suitably chosen MA (the arbiter synchronisation set) and RA (the arbiter).
Intuitively, the components Si proceed in parallel except when they wish to

carry out an activity whose type appears in A. When this occurs the component
must queue to carry out the queue action, possibly waiting for other compo-
nents queueing on the same action to complete it first. The arbiter imposes the
necessary FCFS queueing discipline. This is shown schematically in Figure 10.

Fig. 10. Schematic view of queueing discipline models

If a model is constructed in this way, Clark has shown that it will have a
product form steady state solution, as stated in the following theorem (see [16]
for more details).

Theorem 4 (Solution of queueing discipline PEPA models). Consider
P ≡ Qχ(S1, . . . , Sn), assuming that there are N queues and that the rate of
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leaving queue j when there are i processes waiting is ξij. Then the steady state
solution of P is given by

π(P ) = B
n∏
i=1

πi(Si) ·
N∏
i=1

dj∏
j=qi+1

ξij ·
n∏
i=1
Si∈Θ

∑
(α,r)∈Act(Si)

r

where B is a normalising constant and Θ is the set of processes currently queue-
ing.

One of the major differences between this class of product form models and
those considered earlier in the section is that the product form of the solution of
the models is guaranteed by construction, and does not have to checked against a
syntactic characterisation. In other words the queueing discipline combinator can
be regarded as a product form combinator, i.e. it specifies interaction between
components in such a form that their independence, in terms of the steady state
distribution, is preserved.

Figure 11 shows a PEPA model of a database locking system, such as might
be found in a transaction processing system. This model is constructed using
the new combinator. It consists of components to represent a collection of trans-
action classes. A manager, which enforces locking rules on database objects is
represented implicitly by the queueing discipline and the queueing activities. A
transaction in the model may either attempt to

– modify a particular database object, in which case it attempts to acquire a
write lock for that object; or

– read a particular object in its current state, in which case it does so regardless
of any locks present on that object; this is called a dirty read.

This behaviour can be seen in the representation of the transactions.
The model has a product form steady state distribution as described by

Theorem 4. Moreover, Clark’s insensitivity result means that the think activity
associated with each transaction class is not restricted to have an exponentially
distribution. For example, the duration of this activity can be set to be deter-
ministic.

The product form solution of the queueing discipline structure suggests a
link to the well-known class of BCMP queueing networks [3]. These PEPA mod-
els appear to capture infinite server and FCFS service stations. However, note
that the PEPA model views the model from the customer’s perspective, i.e. the
behaviour of the system is captured as a set of states recording the point in its
cycle round the system that each customer has reached. Using this view of the
system, intuitively speaking, each non-queueing activity corresponds to an infi-
nite server station, whilst each queueing activity corresponds to a FCFS service
station. More explanation of this mapping can be found in [17].
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TxnCi
def
= (thinki, ti).Txni

Txni
def
=

nX
j=1

(work,ww × pj).(writelockij , rij).(commitij , wlij).Loopi

+ (work,wr).(dirtyreadi, r).(accessdb, rl).Loopi

Loopi
def
= (nexttxni, n× aij).TxnCi + (nexttxni, (1− n)× aij).Txni

Aj = {commitij , j ≤ i ≤M} for 1 ≤ j ≤ n

TPS
def
= QA1(. . . QAn(TxnC1, . . . , TxnCM) . . . ) ≡ Qξ(TxnC1, . . . , TxnCM )

Fig. 11. Transaction processing system model with queueing discipline structure

5.6 Quasi-Separability

A quasi-separable Markov process does not have a product form solution in
the sense of the other classes of models considered in this section. However we
discuss this approach here because it has more similarities with the product form
cases than with the aggregated decomposed solutions considered in the following
section. Unlike the case with product form processes it is not possible to find
the exact solution of the steady state distribution of a quasi-separable process
as a product of the local steady state distributions. Nevertheless decomposed
solution can lead to exact results for the local steady state distributions and
many performance measures, and no aggregated model needs to be formed.

As with reversibility, quasi-reversibility and queueing discipline, the notion
of quasi-separability is one which has been developed in relation to queueing
networks, in particular queueing networks in which breakdowns occur [51,50].
It is assumed that the Markov process is comprised of a number of components
and that there are two pertinent pieces of information for each component. A
representation of the whole process can then be formed as a pair of vectors, each
vector capturing one piece of information for each component. For a process to
be quasi-separable it must be possible to analyse the behaviour of a component,
say component i, given the ith element of the first vector and all elements of
the second, or vice versa. This allows the complete process to be reduced to a
number of sub-models, each of which contains all the information about exactly
one component. In the queueing network context the two pieces of information
about each queue are typically its operational state and the number of customers
present.

In [60], Thomas and Gilmore present a characterisation of PEPA models
which are quasi-separable. It is assumed in this characterisation that the infor-
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mation which must be included in each decomposed submodel is not distributed
between the components but maintained by a single scheduler component. There
are several conditions on the way in which this component may interact with
the other components of the model, which do correspond to the components of
the system. When the scheduler changes its state it must do so by an individual
action, or by a shared action in which the other participant is passive. Further-
more the individual components have no direct interaction between them—they
must be in parallel composition with no synchronisation. In other words, each of
these components interacts only with the scheduler. This bears some similarities
both with the scenario for product form over submodels and for the queueing
discipline structure. However, note that the behaviour of the scheduler and the
resource, in relation to the rest of the model, are quite different. The model is de-
composed into a set of models, each comprising of a single component considered
with the scheduler, in isolation. More details can be found in [60,59].

6 Aggregated Decomposed Solutions of MPA Models

6.1 Time Scale Decomposition

The work on time scale decomposition in MPA is based on the notion of near
completely decomposable Markov processes [18], and inspired by previous work
on time scale decomposition of SPN models [6,2]. A characterisation of a near
completely decomposable Markov process at the matrix level is that the matrix
is block structured with elements in the diagonal blocks being at least an order
of magnitude larger than elements in the off-diagonal blocks. This implies that
the model is made up of subsystems whose internal interactions are much more
frequent than the interactions between subsystems. As a consequence it can be
assumed that the subsystems reach an internal equilibrium between external
interactions. Thus a steady state for each Markov process corresponding to a di-
agonal block of the original process is found; the interactions are modelled by an
aggregated model capturing the interactions between subsystems as represented
by the off-diagonal blocks. The aggregated model has one state for each subsys-
tem/diagonal block. There are known error bounds for the technique based on
the magnitude of the largest element in an off-diagonal block.

The initial classification of MPA models susceptible to time scale decomposi-
tion [37], relied on a classification of the sequential components within a model
into fast or slow ; this in turn was based on a classification of all actions rela-
tive to some threshold rate. A component is considered to be fast if it enables
fast or passive actions; a component is considered to be slow if it enables only
slow actions. Only models consisting solely of fast and slow components could be
analysed. The state of such a process was represented by its state vector, ordered
in such a way as to emphasise the distinction between fast and slow components.
Thus a model P which is comprised of k fast and ' slow components may be
represented as: P ≡ (F1, . . . , Fk, S1, . . . , S�). Then each decomposed component
corresponds to a set of state vectors which exhibit the same derivatives in all
the slow components:
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A[S1,... ,S�] ≡ {(F ′
1, . . . , F

′
k, S

′
1, . . . , S

′
�) | S′

1 ≡ S1, . . . , S
′
� ≡ S�}

The elements of this set are found using the semantics of the language when
the original model is considered in composition over a synchronisation set which
blocks all the slow actions. Finding other decomposed components, and con-
structing the aggregated model, is achieved by removing this blocking synchro-
nisation and allowing the current submodel to evolve just one step by a slow
action. Note that the aggregated model does not have a representation at the
MPA level, only as a Markov process.

Later work by Mertsiotakis [46,47], extends the class of models to which the
technique can be applied by tackling the problem of hybrid components. These
are sequential components which cannot be classified as either fast or slow since
they enable both fast and slow actions. Mertsiotakis’ solution is to extract the
slow behaviour of the hybrid into a separate shadow component, making the
original component passive with respect to these actions. In [47] it is shown that
such a transformation preserves the behaviour of the hybrid component, and,
since the equivalence relation is a congruence, the behaviour of the complete
model. Once the transformation has been completed the original procedure of
[37] can be applied.

6.2 Decision Free Processes

Another decomposed solution technique presented in Mertsiotakis’ thesis allows
throughput approximation for a class of MPA models termed decision free pro-
cesses. This technique, developed with Silva in [48], is based on earlier work on
throughput approximation in a class of SPN called marked graphs [43]. Essen-
tially, the idea is to partition the model into components, typically two in the
marked graph case. Decomposed models are then formed in which one component
is fully represented while the other is reduced to a minimal form, usually consist-
ing of a single transition. In addition to these two decomposed models there is
also an extremely simple aggregated model, consisting of the two minimal forms
linked appropriately. An iterative scheme is then used to find a solution to the
model, the influence of one component on the other being represented in the
decomposed model by the rate of the transition in the minimal form.

The MPA decision free process approach to throughput approximation [48,47]
relies on the decomposition of a decision free process into three components, one
of which acts as an intermediary between the other two. This component is dis-
tinguished as the interface. Note that the components do not necessarily corre-
spond to sequential components (c.f. time scale decomposition). The decomposed
Markov processes are generated from the consideration of the two possible (com-
ponent, interface) pairs. In each case a reduced representation of the interface
is used, corresponding to this component’s view. In addition a basic skeleton is
formed which corresponds to a greatly reduced version of the complete model,
in which only the interface actions are carried out. Once this decomposition has
been made, the algorithm follows the same general form as outlined above for
the marked graph case.
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Rather than a characterisation to recognise models of this form, this work
relies on models having been constructed in the specified way. The class of deci-
sion free processes is defined via a reduced syntax, disallowing the choice com-
binator, +, and placing restrictions on where action types may appear within
components. In particular each action type may be performed only once within
any cycle of behaviour. This condition removes the possibility of implicit choice,
when the action is to be carried out in synchronisation with another component.
It is recognised that even working within this class the necessary structure, with
an interface component acting as intermediary between two other components,
may not be immediately apparent within the model. Therefore a series of possible
transformations are defined, each of which is shown to be based on an equivalence
relation which preserves some aspects of the model’s behaviour. However, note
that for two of the transformations the equivalence considers only functional,
not temporal, behaviour. Thus it guarantees, for example, that no deadlock is
introduced into the model but tells us nothing about the timing characteristics
of the new model in relation to the old one.

6.3 Near-Independence

In [13], Ciardo and Trivedi present a decomposition technique for stochastic
reward nets (a version of SPN with immediate transitions, inhibitor arcs and
rewards) based on the notion of near-independence. Components are considered
to be near-independent if they operate in parallel and only rarely interact. The
basic idea is that near-independent components can be solved independently
in conjunction with a graph model which represents the (limited) dependencies
that do still exist between them. Several examples of canonical near-independent
net structures are given in the paper, but in general recognising such structures
in any given model, and whether necessary conditions on the graph model are
met, rely on the expertise of the modeller.

Components are solved in isolation, as if they were independent, but their
influence upon each other is approximated by the rate at which synchronisation
can take place. This is estimated using the dependency graph. In general, fixed
point iteration may be necessary in order to achieve a satisfactory solution of
the complete model, depending on the structure of the graph.

In [7], Bohnenkamp and Haverkort suggest that this technique could be
adapted for MPA models. This paper does not progress this directly in terms of
an MPA language but does report some interesting experiments which investi-
gate the feasibility of the approach. In the proposed approach the dependence
between components is recognised as the actions on which they synchronise
(synchronisation between delays is not allowed). In effect the behaviours of the
near-independent components are serialised, first capturing the work which can
be done until blocking occurs due to a synchronisation point and then the work
necessary to achieve the synchronisation.
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6.4 Decomposition via Synchronisation Points

In [8], Bohnenkamp and Haverkort develop the ideas from [7] in a slightly differ-
ent direction. The approach still centres on the role of synchronisations between
parallel components, but now the aim is to reformulate the underlying Markov
process in terms of a set of semi-Markov processes. These semi-Markov processes
are solved via their embedded Markov chains and evaluations of the distribution
of the times between synchronisation points. Working within a MPA framework,
they consider a class of models in which there is a fixed number of sequential
processes composed in parallel, assuming each composition is subject to the
same set of global synchronisation actions. Within this class of models their
solution technique is exact with respect to throughputs and local steady state
probabilities.

In the original MPA languages a delay is associated with each action rep-
resenting its duration, resulting in a labelled transition system in which arcs
are labelled by two types of information: action type and rate information. All
the work already described in this chapter is based on such languages. However,
Bohnenkamp and Haverkort use a language in which actions and time delays
are treated separately. Several recent MPA languages [28,19] take this approach,
which is also found in the timed process algebras. Here the transition system
has two distinct transition relations: one representing instantaneous actions and
the other representing the passing of (stochastic) time.

From the point of view of the work reported in [8], this simplifies somewhat
as only actions are allowed to synchronise, and the authors do not need to be
concerned about the meaning of synchronisation between two delays. The se-
quential components of the model are treated as the decomposed processes of
the underlying Markov process. The aggregated model, the embedded Markov
chain of a semi-Markov process, is constructed compositionally: a tensor expres-
sion is formed from the embedded Markov chain of the semi-Markov process
corresponding to the synchronisation process of each sequential process algebra
component. This EMC may have several disjoint components but the initial state
of the process is used to ensure that only the “live” component is considered.
The reader is referred to [8] and [9] for more details.

7 Future Prospects

Research over the last five years has clearly demonstrated that decomposed so-
lution of MPA models is possible. Furthermore, it can be achieved by exploiting
structures which are introduced at the process algebra level, to elucidate struc-
tures in the underlying Markov process. Of course, the class of models which can
be recognised and handled by each of the current techniques, reported in this
chapter, is somewhat limited. However the diversity of these techniques means
that together they represent a substantial class of models.

In most of the work undertaken so far, the primary focus has been on char-
acterising MPA models which, when the semantics of the language are applied
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and the labelled transition system formed, generate Markov processes within the
given class. The aim is to develop the characterisation as a set of syntactic con-
ditions which can be tested without having to apply the semantics to the whole
model, although investigation of the state space of individual components may
be necessary. Moreover, these conditions should be sufficiently formal that they
can be incorporated into one of the MPA tools, such as the PEPA Workbench
[22], allowing the recognition of the structure to be automated. Note that in each
case, the current characterisation is known to be incomplete in the sense that
there are MPA models which give rise to Markov processes of the appropriate
class which would not be recognised by the current conditions. Extending the
characterisations is on-going work.

One way to extend a characterisation is to look for ways in which the syn-
tactic conditions imposed on models can be relaxed whilst still generating an
underlying Markov process that still satisfies the necessary conditions. Another
way is to look for cases when a given MPA model, which does not apparently
satisfy the characterisation, can be transformed into one which does. As with
most process algebras, PEPA allows the same model to be expressed in alterna-
tive forms; for example, a pair of interacting components may be expressed as
a single sequential component or a PEPA model (P ��

K
R)��

L
Q may be equiv-

alent to (P ‖ Q) ��
K∪L

R. In the case of the latter model, in the first form it is
not a candidate for the product form over submodels while in the second form
it is. Recent work at Edinburgh has been developing rewriting rules which al-
low a model to be systematically re-expressed towards the target of eliciting a
quasi-reversible structure, if the underlying model has one.

When using term rewriting rules we are not altering the structure of the
model (as represented by its labelled transition system), only the syntactic rep-
resentation of it. In general, however, such non-intrusive manipulations will not
be sufficient. The model will not belong to a class with efficient solution tech-
niques. Thus another use of the known characterisations is as the target for
model simplifications, in which a model that does not have the correct structure
is modified until it does have one of the product form structures, and thus is more
amenable to solution. The basic idea is that once a model has been constructed,
with tool assistance, the modeller will be able to massage her model into one of
the classes of models corresponding to a decomposed solution technique. This
approach has been investigated in recent work by Hillston and Tomasik [61,40].

In [61] the authors study several variations on a PEPA model whose struc-
ture is close to that for the reversible class of product form solution. In each case
some manipulation of the model is necessary in order to transform the model
into a reversible one. The impact of the freedom afforded the modeller during
these modifications (to choose activity rates etc.) are investigated together with
the effect of the modifications on the performance measures of interest. In [40], a
more formal approach to model simplification is taken. Whilst the motivation of
this work is still transformation of a model to one which satisfies the criteria for
reversibility, the focus is on defining a model simplification technique and assess-
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ing its impact on both the steady state distribution and associated performance
measures.

In general, interaction between components is the major barrier to exact de-
composition (i.e. product form solution), although it holds the key to some of
the aggregated decompositional techniques. There is scope to review the com-
binators for interaction which are offered by the MPA languages. As Clark’s
work on insensitive structures shows, it is possible to define a combinator which
guarantees the independence of components from the point of view of the steady
state distribution. Similarly flow cooperation, as defined in the characterisation
of quasi-reversibility, captures an acceptable form of interaction. Further study
needs to be made to see when models can be shown to be product form by
construction, rather than by syntactic checking after construction.

The work that has been completed so far demonstrates that automated de-
composed solution of MPA models is feasible. As such, it offers a solution, albeit
partial, to the state space explosion problem. Moreover, in several cases this so-
lution can already be applied transparently to the modeller [47]. This represents
a significant step forwards for performance analysis using process algebras.
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A Structured Operational Semantics for PEPA

Before stating the inference rules we must define the notion of apparent rate,
which is used to define the rate of a shared activity. The apparent rate of an ac-
tion type within a component represents the totally capacity of that component
to carry out activities of that type when it is in its current state.

Definition 7 (Apparent Rate). The apparent rate of action of type α in a
component P , denoted rα(P ), is the sum of the rates of all activities of type α
in Act(P ).

1. rα((β, r).P ) =
{
r if β = α
0 if β �= α

2. rα(P +Q) = rα(P ) + rα(Q)

3. rα(P/L) =
{
rα(P ) if α /∈ L
0 if α ∈ L

4. rα(P ��
L
Q) =

{
min(rα(P ), rα(Q)) if α ∈ L
rα(P ) + rα(Q) if α /∈ L

Note that an apparent rate may be unspecified: if P is defined as,

P
def= (α,w1�).P1 + (α,w2�).P2

then the apparent rate of α in component P is rα(P ) = (w1 + w2)�.
The apparent rate will be undefined for component expressions containing

unguarded variables, i.e. variables which are not prefixed by an activity. Conse-
quently we do not allow a component to be defined by such an expression.

Note that in cases of cooperation, the apparent rate of the shared activity
will be the minimum of the apparent rates of the components involved, where
min(�, r) = r for all r ∈ IR+. Thus we make an assumption that, in general,
shared activities proceed at the rate of the slower of the two participating com-
ponents. This is based on a notion that in general both components contribute
some work to the shared activity. For a discussion of alternative assumptions
see [31]. In the case of a passive action it is assumed that the corresponding
component does not contribute to the work required to complete the shared
activity.

The semantic rules, in the structured operational style of Plotkin, are pre-
sented here without comment; the interested reader is referred to [33] for more
details. The rules are read as follows: if the transition(s) above the inference line
can be inferred, then we can infer the transition below the line.
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Prefix

(α, r).E
(α,r)

−−−→ E

Choice

E
(α,r)

−−−→ E′

E + F
(α,r)

−−−→ E′

F
(α,r)

−−−→ F ′

E + F
(α,r)

−−−→ F ′

Cooperation

E
(α,r)

−−−→ E′

E ��
L

F
(α,r)

−−−→ E′ ��
L

F

(α /∈ L)
F

(α,r)

−−−→ F ′

E ��
L

F
(α,r)

−−−→ E ��
L

F ′
(α /∈ L)

E
(α,r1)

−−−→ E′ F
(α,r2)

−−−→ F ′

E ��
L

F
(α,R)

−−−→ E′ ��
L

F ′
(α ∈ L), R =

r1
rα(E)

r2
rα(F )

min(rα(E), rα(F ))

Hiding

E
(α,r)

−−−→ E′

E/L
(α,r)

−−−→ E′/L
(α /∈ L)

E
(α,r)

−−−→ E′

E/L
(τ,r)

−−−→ E′/L
(α ∈ L)

Constant

E
(α,r)−→ E′

A
(α,r)−→ E′

(A
def
= E)

Fig. 12. Operational semantics of PEPA
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Abstract. Stochastic activity networks have been used since the mid-
1980s for performance, dependability, and performability evaluation.
They have been used as a modeling formalism in three modeling tools
(METASAN, UltraSAN, and Möbius), and have been used to evaluate a
wide range of systems. This chapter provides the formal definitions and
basic concepts associated with SANs, explaining their behavior and their
execution policy precisely.

1 Introduction

The development of model-based methods for evaluating computer systems and
networks has as long a history as the systems themselves. When applied properly,
these techniques can provide valuable insights into nonfunctional properties of a
system, such as its performance, dependability, or performability. One approach
in this regard has been the development of stochastic extensions to Petri nets.
These extensions permit the representation of timeliness (real-time constraints)
as well as parallelism in a stochastic setting. As models for performability eval-
uation [1], they also permit the representation of fault tolerance and degradable
performance. Use of these nets was facilitated by the early recognition (see [2]
and [3,4], for example) that, with an appropriate definition, their behavior could
be represented as discrete-state Markov processes. Motivated by this represen-
tational power and solution capability, researchers sought to define particular
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variants of stochastic Petri nets well-suited to particular application needs or
solution methods (DSPNs, GSPNs, SANs, and SRNs, for example).

One stochastic extension of these nets, known as “stochastic activ-
ity networks,” was defined with the express purpose of facilitating unified
performance/dependability (performability) evaluation as well as more tradi-
tional performance and dependability evaluation. In the time since their intro-
duction, they have served as the basis for three modeling tools (METASAN [5],
UltraSAN [6], and Möbius [7,8]), and have been used to evaluate a wide variety
of systems. (See www.crhc.uiuc.edu/PERFORM for a partial list of references and
information on how to get these tools.)

In order to be effective and generally applicable, a modeling scheme should
have a formal basis that describes its primitives and behavior in an unambiguous
way. A scheme must also be general enough to allow for easy representation
of realistic systems, and formal enough to permit derivation of useful results.
This chapter provides the formal definitions and concepts for stochastic activity
networks (SANs), a variant of stochastic Petri nets. We first precisely define
activity networks. Activity networks are the non-probabilistic model on which
SANs are built, just as in a similar fashion, (un-timed) Petri nets provide the
foundation for stochastic Petri nets. We then describe the execution of a SAN as
a sequence of markings, activity completions, and case selections. With activity
networks as a base, we then define stochastic activity networks, and describe
precisely when a SAN’s behavior is fully quantified in a probabilistic sense. When
it is, we say that a SAN is well-specified. Finally, we provide basic algorithms
for determining when a SAN is well-specified, using the structure of the net to
do this efficiently.

While stochastic activity networks have been used since the mid-1980s, their
formal definition appears only in dissertation form, and is not generally available.
We hope that the definitions and concepts in this chapter will be more accessible,
and aid other researchers who are developing and applying formal methods for
stochastic evaluation of computer systems and networks.

2 Activity Networks

The desire to represent system characteristics of parallelism and timeliness, as
well as fault tolerance and degradable performance, precipitated the development
of general network-level performability models known as stochastic activity net-
works [9,10]. Stochastic activity networks are probabilistic extensions of “activity
networks”; the nature of the extension is similar to the extension that constructs
stochastic Petri nets from (classical) Petri nets.

2.1 Definitions

Informally (as in [10]), activity networks are generalized Petri nets with the
following primitives:

www.crhc.uiuc.edu/PERFORM
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– activities, which are of two kinds: timed activities and instantaneous activi-
ties. Each activity has a non-zero integral number of cases 1.

– places, as in Petri nets.
– input gates, each of which has a finite set of inputs and one output. As-

sociated with each input gate are an n-ary computable predicate and an
n-ary computable partial function over the set of natural numbers which are
called the enabling predicate and the input function, respectively. The input
function is defined for all values for which the enabling predicate is true.

– output gates, each of which has a finite set of outputs and one input. Asso-
ciated with each output gate is an n-ary computable function on the set of
natural numbers, called the output function.

Timed activities represent the activities of the modeled system whose du-
rations impact the system’s ability to perform. Instantaneous activities, on the
other hand, represent system activities that, relative to the performance vari-
able in question, are completed in a negligible amount of time. Cases associated
with activities permit the realization of two types of spatial uncertainty. Uncer-
tainty about which activities are enabled in a certain state is realized by cases
associated with intervening instantaneous activities. Uncertainty about the next
state assumed upon completion of a timed activity is realized by cases associated
with that activity. Gates are introduced to permit greater flexibility in defining
enabling and completion rules.

Before formally defining an activity network, it helps to define several related
concepts in a more precise manner. Let P denote the set of all places of the
network. If S is a set of places (S ⊆ P ), a marking of S is a mapping µ :
S → IN . Similarly, the set of possible markings of S is the set of functions
MS = {µ | µ : S → IN}. With these definitions in mind, an input gate is defined
to be a triple, (G, e, f ), where G ⊆ P is the set of input places associated with the
gate, e : MG → {0, 1} is the enabling predicate of the gate, and f : MG →MG is
the input function of the gate. Similarly, an output gate is a pair, (G, f ), where
G ⊆ P is the set of output places associated with the gate and f : MG →MG is
an output function of the gate. One can then formally define an activity network
in terms of allowable interconnections between these model primitives.

Definition 1 An activity network (AN) is an eight-tuple

AN = (P,A, I,O, γ, τ, ι, o)

where P is some finite set of places, A is a finite set of activities, I is a fi-
nite set of input gates, and O is a finite set of output gates. Furthermore,
γ : A → IN+ specifies the number of cases for each activity, and τ : A →
{T imed, Instantaneous} specifies the type of each activity. The net structure is
specified via the functions ι and o. ι : I → A maps input gates to activities, while

1 The term case, as used here, should not be confused with the notion of cases of
elementary net systems [11]. Here the term case is used to denote a possible action
that may be taken upon the completion of an event.
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o : O → {(a, c)|a ∈ A and c ∈ {1, 2, . . . , γ(a)}} maps output gates to cases of
activities.

Several implications of this definition are immediately apparent. First, each
input or output gate is connected to a single activity. In addition, each input of an
input gate or output of an output gate is connected to a unique place. In contrast
to the definition in [10], different output gates and input gates of an activity may
be connected to identical places, as has been done in practice. Ambiguity in the
execution of the net is avoided by requiring that the marking obtained upon
completion of each activity not depend on 1) the order of application of the
input gate functions, or 2) the order of application of the output gate functions.

The following definitions aid in the discussion that follows.

Definition 2 If AN = (P,A, I,O, γ, τ, ι, o) is an activity network and S,G ⊆ P
then

1. a mapping µ : P → IN is a marking of the network,
2. for S ⊆ P , µS : S → IN is the restriction of µ to places of S (i.e. µS(p) =
µ(p), ∀p ∈ S),

3. an input gate g = (G, e, f ) holds in a marking µ if e(µG) = 1,
4. an activity a is enabled in a marking µ if g holds for all g ∈ ι−1(a),
5. a marking µ is stable if no instantaneous activities are enabled in µ,
6. the input places of an activity a consist of the set IP (a) = {p | ∃ (G, e, f) ∈
ι−1(a) such that p ∈ G}, and

7. the output places of an activity a consist of the set OP (a) = {p | for some
c = 1, 2, . . . , γ(a), ∃ (G, f) ∈ o−1(a, c) such that p ∈ G}.

The marking of a network can alternatively be represented as a vector, in
which each component of the vector is the number of tokens in a particular
place. The correspondence of components of the vector to markings of places is
done via some designated total ordering of P . For example, for a set of places
{p1, p2, . . . , pn} ⊆ P and marking vector (n1, n2, . . . , nn), µ(p1) = n1, µ(p2) =
n2, . . . , µ(pn) = nn, if p1 < p2 < . . . < pn. The functional notation for markings
is more convenient for the development of theory, while the vector notation is
useful for examples.

2.2 Graphical Representation

To aid in the modeling process, a graphical representation for activity networks
is typically employed. In fact, for all but the smallest networks, specification via
the tuple formulation presented in the definition is extremely cumbersome. Not
only is the graphical representation more compact, but it also provides greater
insight into the behavior of the network. For example, let i and j be natural
numbers, and consider the following activity network:
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P = {A,B,C}, where A < B < C
A = {T 1, T 2, I1}
I = {GA1, GA2, GB,GC,G2}
O = {AG,BG,CG,G1}
γ = {(T 1, 2), (T 2, 1), (I1, 1)}
τ = {(T 1, T imed), (T 2, T imed), (I1, Instantaneous)}

GA1 = ({A}, {(i, 1) | i > 0} ∪ {(0, 0)}, {(i, i− 1) | i > 0} ∪ {(0, 0)})
GA2 = ({A}, {(i, 1) | i > 0} ∪ {(0, 0)}, {(i, i− 1) | i > 0} ∪ {(0, 0)})
GB = ({B}, {(i, 1) | i > 0} ∪ {(0, 0)}, {(i, i− 1) | i > 0} ∪ {(0, 0)})
GC = ({C}, {(i, 0) | i > 0} ∪ {(0, 1)}, {(i, i) | ∀i})
G2 = ({B,C}, {((i, j), 1) | i > 0 or j > 0} ∪

{(0, 0), 0)}, {((i, j), (0, 0)) | ∀i, j})
AG = ({A}, {(i, i+ 1) | ∀i})
BG = ({B}, {(i, i+ 1) | ∀i})
CG = ({C}, {(i, i+ 1) | ∀i})
G1 = ({A,B}, {((i, j), (i+ 2, j)) | i < 5 and j < 5} ∪

{((i, j), (i− 1, j)) | j > 5 and i = 0} ∪
{((i, j), (i, j)) | j > 5 and i �= 0})

ι = {(GA1, T 1), (GA2, I1), (GB, I1), (GC, I1), (G2, T 2)}
o = {(AG, (T 2, 1)), (BG, (T 1, 2)), (CG, (I1, 1)), (G1, (T 1, 1))}

Figure 1 depicts the graphical representation of this network.
One can immediately see the utility of a graphical representation. Here places

are represented by circles (A, B, and C), as in Petri nets. Timed activities
(T 1 and T 2) are represented as hollow ovals. Instantaneous activities (I1) are
represented by solid bars. Cases associated with an activity are represented by
small circles on one side of the activity (as on T 1). An activity with only one
case is represented with no circles on the output side (as on T 2).

Gates are represented by triangles. G2 is an example of an input gate
with 2 inputs. G1 is an example of an output gate with 2 outputs. Enabling
predicates and functions for gates are typically given in tabular form. Three
types of commonly used gates are given default (non-triangle) representations
for ease of interpretation and to illustrate their similarity to classical Petri
net primitives. In particular, an input gate with one input, enabling predicate
{(i, 1) | i > 0}∪ {(0, 0)}, and function {(i, i− 1) | i > 0}∪ {(0, 0)} (e.g., GA1) is
represented as a directed line from its input to its output. Similarly, an output
gate with one output and output function {(i, i + 1) | ∀i} (e.g., AG) is shown
as a directed line from its input to its output. Finally, an input gate with one
input, enabling predicate {(i, 0) | i > 0}∪{(0, 1)}, and function {(i, i) | ∀i} (e.g.,
GC) is shown as a directed line from its input to its output crossed by two short
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A

B C

T1

G1

G2

T2

I1

Gate Predicate Function

G1 - if (MARK(A) < 5 and MARK(B) < 5) then
MARK(A) = MARK(A) + 2;

else if (MARK(A) > 0) then
MARK(A) = MARK(A) - 1;

G2 MARK(B)>0 or MARK(C)>0 MARK(B) = 0;
MARK(C) = 0;

Fig. 1. Graphical Activity Network Representation

parallel lines. This type of input gate corresponds to an inhibitor arc in extended
Petri nets. These shorthand notations for gates help the viewer understand the
behavior of a network from its graphical representation.

2.3 Activity Network Behavior

The behavior of an activity network is a characterization of the possible com-
pletions of activities, selection of cases, and changes in markings. Specifically,

Definition 3 An activity a may complete in a marking µ if

1. a is enabled in µ, and
2. if a is timed, no instantaneous activities are enabled in µ.

This imposes two explicit priority classes on activities. We can now define the
result of the completion of an activity and selection of a possible case. This is
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made easier by expanding the domain and range of the gate functions to the
complete network marking. Specifically, for an activity network with places P , a
gate (of the network) with set of places G, and a function f , define the function
f̃ : MP →MP where if f̃(µ) = µ′ then

µ′(p) =
{

f (µG)(p) if p ∈ G
µ(p) otherwise.

Using this notion, we can define an activity completion and case selection.

Definition 4 Given an activity network AN = (P,A, I,O, γ, τ, ι, o) with activ-
ity a that may complete in µ, the completion of activity a and choice of case c
in µ yields

µ′ = f̃Om(· · · f̃O1 (f̃In (· · · f̃I1(µ) · · ·)) · · ·)
where ι−1(a) = {I1, . . . , In} and o−1(a, c) = {O1, . . . , Om}.
While the gates in the two sets are numbered, there is no implied ordering
of their application within a set, since the SAN definition does not specify an
ordering among input gates or output gates. Output gate functions are applied
after input gate functions, however. The notation µ

a,c→ µ′ is used to indicate that
the completion of a and choice of c yields µ′. Furthermore, we say that marking
µ′ is immediately reachable from a marking µ if µ

a,c→ µ′ for some activity a and
case c.

The set of reachable markings from a given marking can be defined directly
in terms of the reflexive, transitive closure of the yields relation, which we denote
as ∗→. Using this notation, the set of reachable markings from some marking can
be defined as follows.

Definition 5 The set of reachable markings of an activity network AN in a
marking µ0 is the set of markings R(AN,µ0) where

R(AN,µ0) = {µ | µ0
∗→ µ}.

Sets of “stable reachable markings” and “unstable reachable markings” of
an activity network can then be defined in terms of its reachable markings.
Specifically, the set of stable reachable markings of an activity network AN in
an initial marking µ0 is the set SR(AN,µ0) ⊆ R(AN,µ0) of reachable markings
of AN from µ0 that are stable. Similarly, the set of unstable reachable markings,
denoted UR(AN,µ0), is the set of markings reachable from µ0 that are not
stable.

The behavior of an activity network can be described in terms of successive
applications of the yields relation. Each application of the yields relation rep-
resents the completion of one of the one or more activities that may complete
in the marking. Note that, unlike elementary net systems [11], the yields rela-
tion is defined only for single activities and that the concurrent completion of
more than one activity is not considered. Each step in the evolution of the net-
work is called a configuration, which, formally, is a marking-activity-case triple
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< µ, a, c > where a is some activity with case c that may complete in µ. A
completion of a configuration occurs when the activity associated with the con-
figuration completes. The behavior of a network can thus be described in terms
of possible sequences of configurations, more formally called paths.

Definition 6 A path of an activity network, AN, with marking µ0 is a sequence
of configurations 〈µ1, a1, c1〉, 〈µ2, a2, c2〉, . . . , 〈µn, an, cn〉 such that,

1. µ1 ∈ R(AN,µ0),
2. for each pair of configurations 〈µi, ai, ci〉, 〈µi+1, ai+1, ci+1〉 (1 ≤ i < n),
µi

ai,ci→ µi+1, and
3. µn

an,cn→ µ′ for some marking µ′.

Definition of several additional terms will aid in the discussion that follows. In
particular, the initial marking of a path is the marking of the first configuration
in the path. The resulting marking of a path is the marking that is reached upon
completion of the last configuration in the path. A path is said to be from µ to
µ′ if µ is the initial marking of the path and µ′ is the resulting marking of the
path.

3 Stochastic Activity Networks

Activity networks are interesting in their own right, and several of their prop-
erties have been studied [12]. However, for the purpose of this chapter, they
serve as a non-probabilistic base for a stochastic extension, called stochastic ac-
tivity networks, that is used for performability evaluation. When they are used
in this manner, care must be taken to insure that the probabilistic behavior of
the stochastic extension is completely specified. Specifically, since we want to be
able to ask questions regarding possible sequences of timed activity completions
and intervening stable markings, we require that a stable marking eventually be
reached after any sequence of consecutive instantaneous activity completions.
Identification of situations in which this may occur is aided by the introduction
of the notion of a step.

Definition 7 Let AN be an activity network and s be a path of AN with initial
marking µ0. Then s is a step if:

1. the initial marking of s is stable, and
2. the markings of all other configurations of s are unstable.

Note that the resulting marking of the step is not required to be stable. The set
of markings that can be reached by completion of different steps from a single
initial marking provides insight into the behavior of an activity network. To see
this, let

S(µ) = {s | s is a step with initial marking µ}
where µ is a stable reachable marking of the AN in question. Now, since there
is only a finite number of steps of a given length from any marking µ, the
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cardinality of S(µ) is ℵ0 if and only if the length of steps in S(µ) increases
without bound. Or, equivalently, since all of the activities except the first in
a step are instantaneous, |S(µ)| = ℵ0 if and only if an unbounded number of
instantaneous activities can complete without resulting in a stable marking. This
leads us to the following definition of a “stabilizing” activity network. Formally,

Definition 8 An activity network AN in a marking µ0 is stabilizing if, for
every µ ∈ SR(AN,µ0), the set S(µ) is finite.

The following example illustrates the concept of stabilizing and non-
stabilizing activity networks in a marking. Consider the activity network of
Figure 2. If we denote its marking as a vector using the usual lexicographic

A B

C

T1 I

T2

1

2

Fig. 2. A Stabilizing Activity Network

ordering of place names, then the set of steps associated with marking 100, i.e.,
the set S(100), is

{〈100, T 1, 1〉〈010, I1, 1〉, 〈100, T 1, 1〉〈010, I1, 2〉}.

Similarly, S(001) = {〈001, T 2, 1〉}. These two markings are the only stable mark-
ings reachable from the pictured initial marking. Since both S(100) and S(001)
are finite, the activity network is stabilizing. Now consider the activity network
of Figure 3. For this network, S(100) is the countably infinite set




〈100, T 1, 1〉〈010, I1, 2〉,
〈100, T 1, 1〉〈010, I1, 1〉,
〈100, T 1, 1〉〈010, I1, 1〉〈010, I1, 1〉,
〈100, T 1, 1〉〈010, I1, 1〉〈010, I1, 1〉〈010, I1, 1〉,
...



.

Thus the activity network of Figure 3 is not stabilizing.
Generally, it is not decidable whether an activity network in a marking µ0 is

stabilizing. To see this, recall that it can be shown (see [13], for example) that
extended Petri nets (Petri nets with inhibitor arcs) are equivalent, computation-
ally, to Turing machines. The proof of this fact is by construction. Specifically,
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Fig. 3. An Activity Network that is Not Stabilizing

it can be shown that any register machine can be converted into an equivalent
extended Petri net. For this reason, the languages generated by the net can be
taken to be the set of sequences of transitions that lead to a reachable marking.
Given this equivalence, it is evident that activity networks are equivalent to Tur-
ing machines, since every extended Petri net is an activity network (transitions
map to activities, places to places, and arcs to gates). In the context of an ac-
tivity network, the language generated can be taken to be the set of steps with
initial marking µ0 (i.e., S(µ0)). Thus the class of languages generated by the
set of possible activity networks is coextensive with the class of recursively enu-
merable sets. Since, generally, it is not possible to decide whether a recursively
enumerable set is finite [14], we have the following theorem.

Theorem 1 It is not decidable whether an activity network in a marking µ0 is
stabilizing.

There are, however, sufficient conditions by which the stabilizing property
can be established, based on the structural properties and configuration of the
instantaneous activities in the network. Identification of conditions is aided by
the introduction of two properties of instantaneous activities. Specifically,

Definition 9 An instantaneous activity is self-disabling if, given any reachable
marking µ, it can only complete a finite number of times before any other activ-
ities complete.

This definition allows us to identify activities that can only complete a
bounded number of times before the markings of their input places change be-
cause of other activities. While this may be a difficult condition to check gen-
erally, it is easy to identify several frequently used activity-gate pairs that are
self-disabling. For example, an activity with disjoint sets of input and output
places and only default input gates (denoted by directed arcs) is self-disabling.
In order to identify those activities that have no potentially unstabilizing interac-
tions with other activities, we introduce the notion of a cycle-free instantaneous
activity.
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Definition 10 An instantaneous activity I1 is cycle-free if there does not exist
a sequence of instantaneous activities I1, I2, . . . , In such that

OP (I1) ∩ IP (I2) �= ∅ ∧
OP (I2) ∩ IP (I3) �= ∅ ∧

...
OP (In) ∩ IP (I1) �= ∅.

Informally, then, an instantaneous activity is cycle-free if there does not exist a
sequence of instantaneous activities that, through their completions, can affect
the original activity’s input places. Note that this is a purely structural condition
and that even if an activity is not cycle-free, the enabling predicates of the
activities in the cycle may be such that the cycle of completions can never
occur. Furthermore, because the number of activities in a network is finite by
definition, an algorithm exists to determine whether an activity is cycle-free.
These two concepts provide us with criteria to identify sufficient conditions for
an activity network to be stabilizing. Intuitively, if every instantaneous activity
is cycle-free and self-disabling, then no instantaneous activity can complete an
unbounded number of times before the completion of a timed activity intervenes.
More formally, we have the following theorem.

Theorem 2 An activity network AN in a marking µ is stabilizing if every in-
stantaneous activity of the network is cycle-free and self-disabling.

Proof:

The proof is by contradiction. Suppose there exists an activity network AN
with activities A that is not stabilizing in a marking µ, but in which every
instantaneous activity of the network is cycle-free and self-disabling. Then, by
definition, since AN is not stabilizing there exists an activity that can complete
an unbounded number of times without resulting in a stable marking. A self-
disabling activity can only complete an unbounded number of times without
reaching a stable marking if another instantaneous activity changes the marking
of one of its input places. But every instantaneous activity in A is cycle-free,
so that can not occur. Thus an activity network in a marking µ is stabilizing if
every instantaneous activity in the network is cycle-free and self-disabling. 2

For an example of an activity network that satisfies the conditions of the
above theorem, see Figure 4. First, note that all the instantaneous activities in
the network are self-disabling, since they all have default input gates and disjoint
input and output places. Secondly, note that all instantaneous activities are
cycle-free. Thus by Theorem 2 this activity network is stabilizing. The stability
of an activity network is an important necessary condition to insure that the
probabilistic behavior of its stochastic extension is completely specified. Before
the second necessary condition can be discussed, the definition of a stochastic
activity network must be given.



326 William H. Sanders and John F. Meyer

Fig. 4. A Second Stabilizing Activity Network

3.1 Definition of a Stochastic Activity Network

Given an activity network that is stabilizing in some specified initial marking,
a stochastic activity network is formed by adjoining functions C, F , and G,
where C specifies the probability distribution of case selections, F represents
the probability distribution functions of activity delay times, and G describes
the sets of “reactivation markings” for each possible marking. Formally,

Definition 11 A stochastic activity network (SAN) is a five-tuple

SAN = (AN,µ0, C, F,G)

where:

1. AN = (P,A, I,O, γ, τ, ι, o) is an activity network.
2. µ0 ∈ MP is the initial marking and is a stable marking in which AN is

stabilizing.
3. C is the case distribution assignment, an assignment of functions to activities

such that for any activity a, Ca : MIP (a)∪OP (a) × {1, . . . , γ(a)} → [0, 1].
Furthermore, for any activity a and marking µ ∈ MIP (a)∪OP (a) in which a
is enabled, Ca(µ, ·) is a probability distribution called the case distribution of
a in µ.

4. F is the activity time distribution function assignment, an assignment of
continuous functions to timed activities such that for any timed activity a,
Fa : MP × IR → [0, 1]. Furthermore, for any stable marking µ ∈ MP and
timed activity a that is enabled in µ, Fa(µ, ·) is a continuous probability
distribution function called the activity time distribution function of a in µ;
Fa(µ, τ) = 0 if τ ≤ 0.

5. G is the reactivation function assignment, an assignment of functions to
timed activities such that for any timed activity a, Ga : MP → ℘(MP ),
where ℘(MP ) denotes the power set of MP . Furthermore, for any stable
marking µ ∈ MP and timed activity a that is enabled in µ, Ga(µ, ·) is a set
of markings called the reactivation markings of a in µ.
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Recall that an activity is enabled if all of its input gates hold. While this
concept is sufficient to describe the behavior of an activity network, several
additional terms are needed to describe the behavior of a stochastic activity
network. Figure 5 aids in the description of these terms. In particular, since
timed activities represent operations in a modeled system, events must be defined
to denote the start and finish of these operations. The start of an operation is
signaled by an activation of an activity. An activation of an activity will occur
if 1) the activity becomes enabled (illustrated by the first time-line) or 2) the
activity completes and is still enabled (illustrated by the second time-line). Some
time after an activity is activated it will either complete (illustrated by the first
time-line) or be aborted (illustrated by the third time-line). The activity will
complete if it remains enabled throughout its activity time (which will be defined
momentarily); otherwise it is aborted.

The activity time distribution function specifies (probabilistically) the activ-
ity time of an activity, i.e., the time between its activation and completion. Any
continuous distribution (e.g., exponential or normal) is a legal activity time dis-
tribution, although the choice of distribution will affect the applicability of many
solution methods. Both the distribution type and its parameters can depend on
the global marking of the network at the activation time of the activity. Activity
times are assumed to be mutually independent random variables.

Two other functions are associated with an activity network to form a SAN.
In particular, the case distribution specifies (probabilistically) which case is to
be chosen upon the completion of an activity. These probabilities can depend
on the markings of the input and output places of the activity at its completion
time. A reactivation function is also associated with each timed activity. This
function specifies, for each marking, a set of reactivation markings. Given that an
activity is activated in a specific marking, it is reactivated (i.e., activated again)
whenever any marking in the set of reactivation markings for the activation
marking is reached before the activity completes (as illustrated by the fourth
time-line). Probabilistically, the reactivation of an activity is exactly the same as
an activation; a new activity time distribution is selected based on the current
marking. This provides a mechanism for restarting activities that have been
activated, either with the same or a different distribution. This decision is made
on a per-activity basis (based on the reactivation function) and, hence, is not a
net-wide execution policy.

The definition of a stochastic activity network presented here differs from
that presented earlier in [9] in three respects. First, probabilities associated with
cases are required to depend only on input and output places of the associated
activity. This requirement permits the development of more efficient algorithms
to test whether the probabilistic behavior of a stochastic activity network is
completely specified. Since any place in a network can be made to be an input
or output place of any activity, this is not a restrictive requirement.

Second, the new definition requires that the probability distribution function
associated with each timed activity in a possible marking be continuous. This
requirement ensures that two timed activities do not complete at the same time,
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Fig. 5. Terms Related to the Execution of a Timed Activity
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since the behavior when this occurs is not specified. This requirement is not
overly strict for stochastic activity networks that are to be solved analytically,
since the solution method usually places stricter constraints on the distributions.
In the case of SANs that are to be solved via simulation, the ambiguity can be
avoided by assigning an ordering to timed activities that may complete at the
same time.

Third, the current definition does not require that the underlying activity
network be “well-behaved” [9] in its initial marking. An activity network is said
to be well-behaved in an initial marking µ if

1. No infinite sequence of instantaneous activities can complete in any marking
reachable from marking µ, and

2. If a marking reachable from µ has more than one enabled instantaneous ac-
tivity, then, from that marking, all possible sequences of reachable markings
result in the same stable marking.

The requirement that the underlying activity network be well-behaved is more
strict than the requirement that the underlying AN be stabilizing, and does
lead to stochastic activity networks whose probabilistic behavior is completely
specified. However, delaying the introduction of conditions of this type until after
the stochastic extension is defined allows us to identify a larger class of networks
whose probabilistic behavior is completely specified.

3.2 Stochastic Activity Network Behavior

Before discussing in detail how activity time distributions, case distributions,
and reactivation functions determine an activity network’s behavior, it helps
to describe, informally, how a network executes in time. In particular, one can
think of an execution of a SAN as a sequence of configurations, where for each
configuration 〈µ, a, c〉 the SAN was in marking µ, activity a completed, and case
c was chosen. In any marking µ, the activity that completes is selected from
the set of active activities in µ, i.e., the set of those activities that have been
activated but have not yet completed or aborted. After each activity completion
and case selection, the set of activities that are active is altered as follows. If the
marking reached (as specified by the yields relation) is stable, then

1. the activity that completed is removed from the set of active activities,
2. activities that are no longer enabled in the reached marking are removed

from the set of active activities,
3. activities for which the reached marking is a reactivation marking are re-

moved from the set of active activities, and
4. activities that are enabled but are not in the set of active activities are placed

in it (including those that were reactivated).

In contrast, if the marking reached is not stable, then timed activities (other
than the one that just completed, if it is timed) are not added or deleted from
the set. Instead,
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1. the activity that completed is removed,
2. instantaneous activities that are no longer enabled in the reached marking

are removed, and
3. instantaneous activities that are enabled but not in the set are added.

The choice of the activity to complete from the set of active activities is de-
termined by the activity time distribution function of each activity in the set
and the relative priority of timed and instantaneous activities (as specified by
the definition of “may complete”). If there are one or more instantaneous ac-
tivities in the set, one of them is chosen (non-deterministically) to complete. If
there are none, the timed activity with the earliest completion time is selected
(stochastically) based on the activity times of the set of active activities. Recall
that the activity time distribution function defines the time between an activ-
ity’s activation and completion. After the activity to complete is selected, a case
of the activity is chosen based on its case distribution in the current marking,
and a new marking is reached. The set of active activities is “initialized” at the
start of an execution by adding to the set all those activities that are enabled
in the initial marking. Note that, because choices between active instantaneous
activities are made non-deterministically but not probabilistically, there may be
networks for which these choices lead to behaviors that are not probabilistically
specified. We now investigate conditions under which probabilistic behavior of
the network is completely specified.

3.3 Well-Specified Stochastic Activity Networks

This section provides the basic concepts and ideas that define when a stochastic
activity network’s behavior is completely probabilistically specified. Since the
time this material first appeared [15], further work has been done to develop
algorithms that are tailored to specific reward variables [16], and are more effi-
cient [17]. In addition, [18] presents a similar concept in the context of stochastic
reward nets. These works present newer and more efficient algorithms to deter-
mine whether a net is well-specified; in contrast, this section focuses on the con-
cept itself and how the structure of a SAN can be used to reduce the complexity
of determining whether a SAN is well-specified.

Two types of nondeterminism can occur in stochastic activity networks: 1)
uncertainty as to which activity will complete among the active activities, and
2) uncertainty as to which case of the activity that complete will be chosen. To
aid in the discussion that follows, we will refer to a choice of the first type as an
activity choice and a choice of the second type as a case choice.

In stochastic activity networks, case choices are quantified by the assignment
of a case distribution to each activity. Activity choices are quantified partially
by the assignment of an activity time distribution to each timed activity. How-
ever, the activity time distribution does not completely quantify this type of
non-determinism, since the behavior is not defined if two activities have the
same completion time. That would never occur for two timed activities, since
all activity time distributions are continuous. It will occur, however, whenever
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two or more instantaneous activities are enabled, since instantaneous activities
complete in zero time. In this situation, the choice of which activity will com-
plete next is non-deterministic and not quantified by either the activity time
distribution function assignment or the case distribution assignment.

Since we are interested in possible sequences of timed activity completions
and reached stable markings, we would like the probability distribution on
the choice of the next stable marking to be the same regardless of any non-
probabilistically quantified activity choices that have been made. To investigate
this more formally, we introduce the notion of a stable step.

Definition 12 Let S = (AN,µ0, C, F,G) be a stochastic activity network and s
be a step of AN with initial marking µ0. Then, s is a stable step if the resulting
marking of s is stable.

A stable step can be thought of as a “jump” in the execution of a stochastic
activity network that takes the network from one stable marking to another via
the completion of a timed activity and zero or more instantaneous activities.
There may be several steps with the same first marking and activity, but a
different final marking. Accordingly, we define the “set of next stable markings”
for a stable marking upon completion of an activity a as follows.

Definition 13 Let S = (AN,µ0, C, F,G) be a stochastic activity network and µ
∈ SR(AN,µ0). The set of next stable markings for S in µ upon completion of
a is the set

NS(µ, a) =
{
µ′

∣∣∣∣ ∃ a stable step s from µ to µ′ such that
a is the activity of the first configuration of s

}
.

This set allows us to focus our attention on those stable markings that may
be reached from a particular stable marking by completion of a specific timed
activity. In order to insure that the probability distribution over the next stable
markings is invariant over activity choices between instantaneous activities, we
must define a measure on stable steps that captures the probability that a stable
step will be taken given that a set of activity choices is made in a manner such
that the step is possible. The case construct allows us to define this probability.
Specifically,

Definition 14 Let S = (AN,µ0, C, F,G) be a SAN and let s be a path of S
such that s = 〈µ1, a1, c1〉〈µ2, a2, c2〉 · · · 〈µn, an, cn〉. Then, the probability of s,
denoted Pr(s), is

Ca1(µ1
IP (a1)∪OP (a1), c

1) × Ca2(µ2
IP (a2)∪OP (a2), c

2) . . .× Can(µn
IP (an)∪OP (an), c

n)

where × is taken to be normal multiplication on the set of real numbers.

This function defines the probability that a stable step will be taken given
that a set of activity choices was made such that the step may occur. Since we
want to insure that the probability distribution over the next stable markings
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upon completion of a timed activity is invariant over possible sets of activity
choices, we consider the set of steps from some stable marking µ to a stable
marking µ′ ∈ NS(µ, a), by completion of a timed activity a that may complete
in µ. Formally, let

P a
µ,µ′ = {s | s is a stable step from µ to µ′ with first activity a } .

Different stable steps in this set can arise from different sets of activity choices.
In order to specify the set of stable steps from one marking to another upon
completion of some timed activity for a single set of activity choices, it helps to
define a relation relating stable steps that can occur under a single set of activity
choices. Specifically, define the relation R on P a

µ,µ′ to be

R =
{

(s, s′)
∣∣∣∣ for every configuration 〈µ, a, c〉 in s and configuration
〈µ′, a′, c′〉 in s′ such that µ = µ′, a = a′

}
.

Thus, two stable steps are related if, for every marking they share in com-
mon, the same activity choice is made. Note that while R is not an equivalence
relation, it is a compatibility relation (i.e., it is reflexive and symmetric). While
a compatibility relation does not necessarily define a partition of a set, it does
define a covering of a set, by the maximal compatibility classes of the relation.
Recall that (as in [19]) a subset C ⊆ P a

µ,µ′ is called a maximal compatibility class
if every element of C is related to every other element of C and no element of
P a

µ,µ′ − C is related to all the elements of C. Each maximal compatibility class
contains stable steps that correspond to a single set of activity choices. More
specifically, note that all stable steps in C correspond to steps from µ to µ′ by
completion of timed activity a under some set of activity choices. The probabil-
ity that µ′ is reached from µ by completion of a, given that a particular set of
activity choices has been made, is thus the sum of the probabilities of all stable
steps in C, i.e.,

P (C) =
∑
s∈C

Pr(s).

All activity choices within stable steps correspond to choices between active
instantaneous activities and, hence, are not probabilistically specified. Therefore,
for a stochastic activity network to be completely probabilistically specified,
P (C) must be the same for all maximal compatibility classes C. To express this
precisely, we introduce the notion of a well-specified stochastic activity network.

Definition 15 A stochastic activity network S = (AN,µ0, C, F,G) is well-
specified if, for every marking µ ∈ SR(AN,µ0), each activity a that may com-
plete in µ, and all µ′ ∈ NS(µ, a), P (C) is identical for all maximal compatibility
classes C of R defined on P a

µ,µ′ .

The above definition identifies a class of networks whose behavior is com-
pletely specified, probabilistically, with respect to all notions of state that we
intend to consider.
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It is interesting to compare the notion just presented to the “well-behaved”
notion used previously. In particular, one can show that every activity network
well-behaved in some marking µ0 is well-specified for any choice of activity time
distributions, reactivation functions, and case probabilities. We state this fact
as a theorem.

Theorem 3 If an activity network is well-behaved in a marking µ0, then it is
well-specified for any choice of activity time distributions, reactivation functions,
and case distributions.

Proof:

Suppose an activity networkAN is well-behaved in a marking µ0. Then, for every
marking µ reachable from µ0, no infinite sequence of activities can complete in µ.
Thus AN is stabilizing in µ0. Augment AN with arbitrary activity distributions,
reactivation functions, case distributions, and initial marking µ0 to form a SAN.
Now, recall that this SAN is well-specified if for every stable marking µ reachable
from µ0, each activity a that may complete in µ, and each µ′ ∈ NS(µ, a),
P (C) is identical for all maximal compatibility classes C or R defined on P a

µ,µ′ .
Consider an arbitrary stable marking µ reachable from µ0 and activity a that
may complete in µ. Since S is well-behaved, one of three situations may arise
upon completion of a in µ.

In the first situation, all markings in the set of next possible markings are
stable. There is thus only one maximal compatibility class for this marking and
activity, and the criterion of Definition 15 is satisfied.

In the second situation, at least one marking in the set of next possible
markings is unstable, and all possible unstable markings that may be reached
before another stable marking is reached have at most one instantaneous activity
enabled. Then, as in the first situation, there is only one maximal compatibility
class for this marking and activity, and therefore the criterion of Definition 15
is satisfied.

In the third situation, at least one marking in the set of next possible mark-
ings is unstable, and some unstable marking that may be reached before another
stable marking is reached that has two or more instantaneous activities enabled.
But, since S is well-behaved, all possible sequences of markings reachable from
that marking will result in the same next stable marking. Thus, while there may
be more than one compatibility class for the marking and activity, they all re-
sult in the same single marking with a probability of one, and hence, P (C) is
identical for all maximal compatibility classes. Again, the criterion of Definition
15 is satisfied for this marking and activity.

Since the criterion of the definition is satisfied for each possible situation for
every reachable marking and activity that may complete in the marking, the
SAN is well-specified for any choice of activity time distributions, reactivations,
and case distributions. 2

It should be noted, however, that the converse of 3 is not a theorem, and
hence that well-specified SANs are more general than well-behaved SANs. To
see this, consider the stochastic activity network of Figure 6. This SAN is well-
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Fig. 6. A Well-Specified, but not Well-Behaved, Stochastic Activity Network

specified in the pictured marking, since the activity choice that is made after
completion of the enabled timed activity does not affect the distribution of the
next stable markings. It is not well-behaved, though, since two instantaneous
activities may be enabled and more than one stable marking can be reached
from the current marking. Recall that in order for an activity network to be well-
behaved, whenever a reached marking has two or more instantaneous activities
enabled, all possible sequences of reachable markings must result in the same
stable marking.

Any algorithm to determine whether a given stochastic activity network is
well-specified must check that the probability distribution over each next sta-
ble markings does not depend on the set of activity choices that is made. This
condition can be checked using techniques developed to find the set of all maxi-
mal compatibles [20]. The following algorithm checks this for a particular stable
marking and timed activity.

Algorithm 1 (Determines whether the next stable marking probability distribu-
tion is invariant over possible sets of activity choices for a stable marking µ and
activity a that can complete in µ, and if it is, computes this distribution.)

Compute the set of all stable steps for which the initial marking is µ and
timed activity is a.
Group the set of stable steps computed above according to the resulting mark-
ing of each step. The subset containing the stable steps from µ to µ′ by
completion of timed activity a is denoted by P a

µ,µ′ .
For each subset P a

µ,µ′ :
Construct the set of maximal compatibles of R on P a

µ,µ′ .
Compute P (C) for each maximal compatible C.
If P (C) is not identical for all compatibles C, then

Signal SAN is not well-specified and abort algorithm.
Next P a

µ,µ′ .
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Return next stable marking probability distribution for marking and
activity.

For convenience, we denote this distribution by the function hµ,a :
NS(µ, a) → [0, 1], where for µ′ ∈ NS(µ, a), hµ,a(µ′) is the probability that
µ′ will be reached given that the SAN is in µ and a completes.

The following example illustrates the use of Algorithm 1. Specifically, consider
the stochastic activity network of Figure 7. Here the case distribution for each
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Fig. 7. A Well-Specified Stochastic Activity Network

activity is denoted by the number next to each case for the activity. In addition,
markings are denoted by vectors, assuming the usual lexicographic ordering of
place names. With these facts in mind, we will show (using Algorithm 1) that
the next stable marking probability distribution is invariant over all possible
sets of activity choices for the initial marking 1000000 (lexicographic ordering on
place names) and timed activity T 1. The algorithm first computes the set of all
stable steps, which is shown in Figure 8. These steps are then used to determine




〈1000000, T1, 1〉〈0100100, I1, 1〉〈0001100, I3, 1〉,
〈1000000, T1, 1〉〈0100100, I1, 2〉〈0010100, I2, 1〉〈0001100, I3, 1〉,
〈1000000, T1, 1〉〈0100100, I1, 2〉〈0010100, I2, 2〉〈0000101, I3, 1〉,
〈1000000, T1, 1〉〈0100100, I1, 2〉〈0010100, I3, 1〉〈0010010, I2, 1〉,
〈1000000, T1, 1〉〈0100100, I1, 2〉〈0010100, I3, 1〉〈0010010, I2, 2〉,
〈1000000, T1, 1〉〈0100100, I3, 1〉〈0100010, I1, 1〉,
〈1000000, T1, 1〉〈0100100, I3, 1〉〈0100010, I1, 2〉〈0010010, I2, 1〉,
〈1000000, T1, 1〉〈0100100, I3, 1〉〈0100010, I1, 2〉〈0010010, I2, 2〉




Fig. 8. Set of Stable Steps for the Stochastic Activity Network of Figure 2.7
from Marking 10000000 by Completion of Activity T 1.
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the set of possible next stable markings (NS(1000000, T 1)), which is found to
be {0001010, 0000011}. The set of stable steps is then split into two subsets,
according to their resulting markings. These two subsets serve as input to the
portion of the algorithm that computes sets of maximal compatibles, checks to
see that the probability measure is invariant over all possible compatibles, and
computes the next stable marking probabilities. The algorithm then computes
the set of maximal compatibles corresponding to the resulting marking 0001010;
the set consist of the three elements

C1 = {〈1000000, T 1, 1〉〈0100100, I1, 2〉〈0010100, I2, 1〉〈0001100, I3, 1〉,
〈1000000, T 1, 1〉〈0100100, I1, 1〉〈0001100, I3, 1〉},

C2 = {〈1000000, T 1, 1〉〈0100100, I1, 2〉〈0010100, I3, 1〉〈0010010, I2, 1〉,
〈1000000, T 1, 1〉〈0100100, I1, 1〉〈0001100, I3, 1〉}, and

C3 = {〈1000000, T 1, 1〉〈0100100, I3, 1〉〈0100010, I1, 2〉〈0010010, I2, 1〉,
〈1000000, T 1, 1〉〈0100100, I3, 1〉〈0100010, I1, 1〉}.

P (C) is then computed for each maximal compatible C, and P (C1) = P (C2) =
P (C3) = .58. Similarly, computing the set of maximal compatibles of stable steps
with resulting marking 0000011, we obtain:

C1 = {〈1000000, T 1, 1〉〈0100100, I1, 2〉〈0010100, I2, 2〉〈0000101, I3, 1〉}
C2 = {〈1000000, T 1, 1〉〈0100100, I1, 2〉〈0010100, I3, 1〉〈0010010, I2, 2〉}
C3 = {〈1000000, T 1, 1〉〈0100100, I3, 1〉〈0100010, I1, 2〉〈0010010, I2, 2〉}

For these compatibles, P (C1) = P (C2) = P (C3) = .42. Since the probability
measure is the same for all the maximal compatibles in a set, for both sets, the
next stable marking probability distribution is invariant over the set of possible
activity choices for this SAN, starting marking, and timed activity.

By definition, then, a stochastic activity network is well-specified if this dis-
tribution is invariant for all stable reachable markings and activities that may
complete in these markings. In cases in which the set of stable reachable mark-
ings is finite, we define the following algorithm which determines whether a SAN
is well-specified.

Algorithm 2 (Determines whether a SAN with a finite reachability set is well-
specified and computes next stable marking probability distributions)

For each µ ∈ SR(AN,µ0) and activity a that may complete in µ:
Determine whether the next stable marking probability distribution
is invariant over possible sets of activity choices for this choice of
µ and a.
If distribution is not invariant for this µ and a, then

Signal SAN is not well-specified and abort algorithm.
Next µ ∈ SR(AN,µ0) and activity a that may complete in µ.
Signal stochastic activity network is well-specified.
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Note that this algorithm is simply an iterative application of Algorithm 1.
While Algorithm 1 suffices to determine whether the next stable marking prob-
ability distribution is invariant for a particular marking µ and activity a, its
performance can be improved upon if information concerning the structure of
the network is used. This technique makes use of the concept of dependent in-
stantaneous activities. Specifically,

Definition 16 Let I1 and I2 be instantaneous activities of some activity net-
work. Then I1 and I2 are dependent if

(IP (I1) ∪OP (I1)) ∩ (IP (I2) ∪OP (I2)) �= ∅.
Informally, then, two instantaneous activities are dependent if they have

common input or output places. Two activities that are dependent can affect each
other by changing the markings of each other’s input or output places. In order
to identify instantaneous activities that can affect each other through a sequence
of completions, we look at the transitive closure of a relation based on the above
definition. Specifically, let DEP denote a relation on the set of instantaneous
activities of a SAN such that I1 DEP I2 if I1 and I2 are dependent. Furthermore,

let
∗

DEP denote the transitive closure of DEP . It is easy to see that
∗

DEP is an
equivalence relation; thus, it partitions the set of instantaneous activities. The
blocks of the partition are sets of activities whose order of completion may affect
the probability distribution of the next stable markings. On the other hand,
pairs of activities from different blocks cannot affect each other by completing
(since activities can only change the markings of their input or output places,
and case probabilities depend only on input and output places). This suggests
that steps within each subnetwork defined by activities in each block can be
considered individually and combined to determine the total probability for a
possible next stable marking.

In order to explore this idea in more detail, we define the notion of an in-
stantaneous subnetwork of a SAN constructed from a set of activities.

Definition 17 Given a stochastic activity network S = (AN,µ0, C, F,G), un-
derlying activity network AN = (P,A, I,O, γ, τ, ι, o), and set of instantaneous
activities A′ ⊆ A, the instantaneous subnetwork of S with respect to A′ is a
structure (M ′, µ′0, C′) where

1. M ′ = (P ′, A′, I ′, O′, γ′, τ ′, ι′, o′) is an activity network with
(a) P ′ = {p | p ∈ P and p ∈ IP (a) ∪OP (a) for some a ∈ A′},
(b) A′ is some specified set of instantaneous activities,
(c) I ′ = {g | g ∈ I and g ∈ ι−1(a) for some a ∈ A′},
(d) O′ = {g | g ∈ O and g ∈ o−1(a, c) for some a ∈ A′ and c =

1, 2, . . . , γ(a)}, and
(e) γ′, τ ′, ι′, and o′ are the functions γ, τ , ι, and o, respectively, restricted

to P ′, A′, I ′, and O′.
2. µ′0 = µ0 restricted to places P ′, and
3. C′ is the function C restricted to A′.
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While (M ′,mu′0, C
′) does not fit the definition of a stochastic activity network

precisely since the initial marking is not stable, it does provide us with a network
made up of instantaneous activities in which all the case probabilities are speci-
fied. The revised algorithm presumes that such a subnetwork is constructed for

each set of activities corresponding to a block of the partition defined by
∗

DEP .

By the nature of
∗

DEP , these subnetworks do not interact with one another.
This fact is exploited in the revised algorithm presented below.

Unlike Algorithm 1, which computes the set of all stable steps for the given
marking and activity immediately, the revised algorithm accomplishes the same
goal in two smaller steps. First, it computes the set of “next possible markings”
for the given starting marking and activity. The set of next possible markings is
the set of markings that can be reached by one application of the yields relation,
i.e., for a given marking µ and activity a

NP (µ, a) = {µ′ | µ a,c→ µ′ for some a ∈ A and c ∈ {1, . . . , γ(a)}}.
Each of these markings can be either stable or unstable. If a marking is stable,
then it is a next stable marking for the specified starting marking and activity.
Furthermore, its probability of occurrence is just the sum of the probabilities of
all cases that lead to that marking. Since only probabilistically specified activity
choices were made in reaching the marking, the network is well-specified. A more
complicated situation exists for each unstable marking in NP (µ, a).

These markings are those unstable markings that can be reached after one
application of the yields relation and, hence, represent situations where one or
more instantaneous activities must be completed to reach possible next stable
markings. To determine these markings, consider the instantaneous subnetworks
previously constructed. First, note that although the sets of places defined by
each subnetwork are disjoint, they may not partition the set of places of the entire
network, since there may be places that are connected only to timed activities.
The markings of these places will not change by completion of instantaneous
activities and hence will remain the same in all next stable markings of the
network reached from this marking. In the algorithm that follows, the marking
of the places connected only to timed activities is denoted by µ′s, for each µ′ ∈
NP (µ, a). Similarly, the initial (unstable) markings of each of the n subnetworks
are denoted by µ′1, µ

′
2, . . . , µ

′
n, respectively, for each µ′ ∈ NP (µ, a). Now, since

the markings of places of different subnetworks are independent of each other,
sets of next stable markings can be computed for each subnetwork independently
and be combined to obtain “global” next stable markings for the entire network.

Computation of the local next stable markings, and the subsequent check
that the probabilities these markings are invariant over possible sets of activity
choices for each subnetwork, is done in a manner similar to that of Algorithm 1,
except that the initial marking of each of the possible paths to a stable marking
is not itself stable. Since these paths are suffixes of stable steps, we call them
partial stable steps. A partial stable step is a stable step without the initial
configuration. Except for this difference, the invariant check and computation
of probabilities are done exactly as in Algorithm 1. In the algorithm presented
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below, for each subnetwork i, the set of (subnetwork) next stable markings is
denoted byNSi and the probability that subnetwork marking µ′′i,j will be reached
from subnetwork marking µ′i is denoted by ĥµ′

i
(µ′′i,j).

After the possible next stable markings and probabilities of these markings
have been computed for each subnetwork, they are combined to construct next
stable markings and probabilities for the entire network. Possible next stable
markings for the entire network are constructed by forming all possible combi-
nations of µ′s’s and subnetwork next stable markings. Each marking constructed
that way is denoted by the concatenation of its constituent subnetwork markings
together with µ′s. The probability of each of these global markings is then com-
puted as the product of the probabilities of each of the constituent markings.
Since each global marking could also be reached in other ways (i.e., from another
µ′ ∈ NP (µ′, a)), the computed probability obtained in each way is summed to
obtain the total probability for this next stable marking.

A more precise description of the algorithm is the following.

Algorithm 3 (Uses concept of instantaneous subnetworks to determine, given
a stable marking µ and activity a that can complete in µ, whether the next stable
marking probability distribution is invariant over possible sets of activity choices,
and if it is, computes this distribution.)

Let NS(µ, a) equal the null set.
Let hµ,a = 0.
Compute NP (µ, a).
For each µ′ ∈ NP (µ, a):

Let h̄µ,a(µ′) =
∑

c such that µ
a,c→µ′

Ca(µIP (a)∪OP (a), c).

If µ′ is stable then
Add µ′ to NS(µ, a).
Let hµ,a(µ′) = h̄µ,a(µ′).

else
For each instantaneous subnetwork i, i = 1 to n:

Restrict µ′ to places of the subnetwork (this is denoted by µ′i).
Compute the set of all partial stable steps of the subnetwork with
initial marking µ′i.
Compute the set of resulting stable markings from the set of
partial stable steps. Label these ki markings µ′′i,1, µ

′′
i,2, . . ., µ

′′
i,ki

.
Group the set of partial stable steps computed above according to
their resulting markings. Pµ′

i
,µ′′

i,j
denotes the subset containing

partial stable steps from µ′i to µ′′i,j .
For each Pµ′

i
,µ′′

i,j
, j = 1 to ki:

Construct the set of maximal compatibles of R on Pµ′
i
,µ′′

i,j
.

Compute P (C) for each maximal compatible C.
If P (C) is not identical for all compatibles C then

Signal SAN is not well-specified and abort algorithm.
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else
Add µ′′i,j to NSi(µ′i).
Let ĥµ′

i
(µ′′i,j) = P (C).

Next j.
Next i.

{* Now form global next stable marking from subnetwork results *}
For j1 = 1 to k1

For j2 = j1 to k2
. . .

For jn = jn−1 to kn

Add µ′1,j1µ
′
2,j2 · · ·µ′n,jn

µ′s to NS(µ, a).
Let hµ,a(µ′1,j1

µ′2,j2
· · ·µ′n,jn

µ′s) =
hµ,a(µ′1,j1

µ′2,j2
· · ·µ′n,jn

µ′s) + h̄µ,a(µ′)
∏

i=1 to n ĥµ′
i
(µ′i,ji

).
Next jn.

Next j2.

Next j1.
Next µ′ ∈ NP (µ, a).
Return next stable marking probability distribution for marking and activity.

This algorithm has significant advantages over Algorithm 1 for systems that
have several instantaneous subnetworks, and reduces to Algorithm 1 when there
is a single subnetwork. To illustrate this, consider again the stochastic activity
network of Figure 7, which was shown using Algorithm 1 to be well-specified.
Figure 2.9 depicts this activity network with the instantaneous subnetworks
outlined. As shown by Algorithm 3, each of these subnetworks can be analyzed
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Fig. 9. A Well-Specified Stochastic Activity Network with Instantaneous Sub-
networks Noted
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separately to check that the network is well-specified and to compute the next
stable state probability distribution. In order to do this, we must first compute
the set of next possible markings, which in this case is {0100100}. The probability
of this marking, denoted h̄1000000,T1(0100100), is 1. Now, since the marking is
not stable, the set of next stable states and their probabilities must be computed
for each instantaneous subnetwork. For the first subnetwork, which contains I1
and I2, the set of partial stable steps is




〈1000, I1, 1〉,
〈1000, I1, 2〉〈0100, I2, 1〉,
〈1000, I1, 2〉〈0100, I2, 2〉




and the set of possible next stable markings, NS1, is {0010, 0001}. There is one
maximal compatible corresponding to each possible next stable marking. The
first,

C = {〈1000, I1, 1〉, 〈1000, I1, 2〉, 〈0100, I2, 1〉},
has probability P (C) = .58, and hence ĥ0010 = .58. The second, corresponding
to the stable marking 0001, is

C = {〈1000, I1, 2〉〈0100, I2, 2〉}

and has probability ĥ1000(0001) = .42. The computations for the second sub-
network are even simpler. For it, the set of partial stable steps is the singleton
set

{〈10, I3, 1〉}
where the set of possible stable markings, NS2, is {01} and ĥ10(01) = 1.

Since the next stable state probabilities are invariant for each subnetwork,
they are invariant for the entire network. The global next stable marking prob-
abilities are computed by forming possible combinations of the local next stable
markings. When this is done, the set of next stable markings is found to be
NS(1000000) = {0001010, 0000011} with probabilities h1000000,T1(0001010) =
.58 and h1000000,T1(0000011) = .42. This result matches that computed previ-
ously using Algorithm 1.

4 Conclusion

This chapter has presented a formal definition of activity networks and stochas-
tic activity networks, formally described their behavior, and specified conditions
which describe when their behavior is completely probabilistically defined. By
providing formal definitions of these nets, we were able to precisely define when
they can be used for evaluation. Other publications have defined the framework
for defining reward variables on SANs [21] and the stochastic process represen-
tations of the behavior of SANs [22], when these conditions are met.
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Abstract. Both the logic and the stochastic analysis of discrete-state
systems are hindered by the combinatorial growth of the state space un-
derlying a high-level model. In this work, we consider two orthogonal
approaches to cope with this “state-space explosion”. Distributed algo-
rithms that make use of the processors and memory overall available
on a network of N workstations can manage models with state spaces
approximately N times larger than what is possible on a single worksta-
tion. A second approach, constituting a fundamental paradigm shift, is
instead based on decision diagrams and related implicit data structures
that efficiently encode the state space or the transition rate matrix of a
model, provided that it has some structure to guide its decomposition;
with these implicit methods, enormous sets can be managed efficiently,
but the numerical solution of the stochastic model, if desired, is still a
bottleneck, as it requires vectors of the size of the state space.

1 Introduction

As digital systems are becoming ubiquitous and their complexity is steadily
growing, it is increasingly important to be able to study their logical and tim-
ing behavior. While direct observation, testing, and measurement are sometimes
feasible, they are normally very expensive, and, by definition, can only be em-
ployed after the system has been built. Discrete-state models are then an attrac-
tive, general, and inexpensive alternative that provides a way to study a system
at various levels of detail, even when it is still just a concept in the designer’s
mind. However, the discrete nature of the system implies that its “state” is the
collection of the states of each of its components, resulting in the well-known
“combinatorial explosion” of the state space, which poses a formidable analysis
challenge even for today’s powerful computers.
In this work, we consider techniques to cope with this state-space explosion

problem, focusing in particular on models that have an underlying continuous-
time Markov chain (CTMC). Our presentation is split into three main portions.
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Sec. 3 introduces the main concepts related to the underlying state space and
CTMC, and their traditional solution methods. Sec. 4 discusses distributed anal-
ysis algorithms that can be used to spread the memory and time requirements
over a network of N workstations, thus are able to cope with state spaces ap-
proximately N time larger. Sec. 5 moves instead to what we call “implicit”
techniques which require much less than linear memory to store the state space
and the CTMC. In the former case, this also results in enormous time savings,
while, in the latter, the approach usually involves a memory-time tradeoff. A
unified treatment of these two aspects shows some of the commonalities and re-
search challenges. Finally, in Sec. 6 we briefly conclude with our thoughts about
fruitful directions of future research.

2 Notation

We use italic letters to indicate scalars (e.g., a), calligraphic letters to indicate
sets (e.g., A), lower case boldface Roman or Greek letters to indicate row vectors
(e.g., a, α), and upper case boldface Roman letters to indicate matrices (e.g.,
A). Vector and matrix elements are indicated using square brackets (e.g., a[1],
A[1, 2]), and we extend the notation to sub-vectors or sub-matrices by allowing
sets of indices to be used instead of single indices (e.g., a[A], A[A,B]).
We indicate with diag(a), In, and 0 the diagonal matrix with vector a on its

main diagonal, the identity matrix of size n × n (n is omitted if clear from the
context), and a row vector of 0’s of the appropriate dimension, respectively.
We use subscripts to indicate event indices (e.g., Re); in the discussion of

distributed approaches, we also use subscripts, but in square brackets, for process
indices (e.g., S[n]) while, in the discussion on implicit methods, we use subscripts,
without square brackets, for sub-model indices (e.g., Sk); if both sub-model and
event indices are present, they appear in that order (e.g.,Wk,e). We consistently
number and use submodel indices “going down” fromK to 1, never up; the reader
should keep this in mind when operators such as Kronecker product and sum
are used, since these are not commutative.
States are denoted in boldface lower case letters, just as vectors, to stress

that they are somehow structured, that is, they are a collection of sub-states.

3 High-Level Models and Traditional Solution Methods

Rather than discussing analysis techniques for a particular formalism such as
Petri nets [34] or process algebras [3], we introduce instead a general framework
for discrete-state models. This is preferable since nothing in our discussion is tied
to the particular formalism chosen. However, we will sometimes make specific
references to Petri nets, since we regard them as quite graphically intuitive (or
perhaps simply because we are most familiar with them!). For more information
on Petri nets and their stochastic extensions, see G. Balbo, this volume.
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ExploreExplicitSequential : set of state

Build and return the state space S .

declare S , U : set of state ;
declare i, j : state ;

1. S ⇐ ∅; • initialize the explored states
2. U ⇐ {sinitial}; • initialize the unexplored states to the initial state
3. while ∃ i ∈ U do • there are still states to explore
4. for each j ∈ N (i) do
5. if j �∈ U ∪ S then • found a new state j
6. U ⇐ U ∪ {j};
7. end if;
8. end for;
9. U ⇐ U \ {i}; • move i from unexplored . . .

10. S ⇐ S ∪ {i}; • . . . to explored
11. end while;
12. return S ;

Fig. 1. An explicit sequential algorithm to generate the state space.

3.1 State-Space Generation

We consider discrete-state models having a finite underlying state space S. Any
such high-level model must describe the following objects in a compact way:

– Ŝ, the set of potential states, describing the “type” of the system states.
– sinitial ∈ Ŝ, the initial state of the system.
– N : Ŝ → 2 bS , the next-state function, describing which states can be reached
from a given state in a single step, or transition.

In many formalisms, the next-state function N is expressed as N =
⋃
e∈E Ne,

where E is a finite set of events, Ne is the next-state function associated with
event e, and the union operator is naturally meant to be applied to the values
of the involved functions, that is, N (i) = ⋃

e∈E Ne(i) Then, Ne(i) is the set
of states the system can enter when event e occurs, or fires, in state i. Note
that, with a single function, we encompass not only the concept of next state,
but also that of enabling, since event e is enabled in i iff |Ne(i)| > 0, and of
non-determinism, since the effect of event e is non-deterministic in state i iff
|Ne(i)| > 1. In addition, of course, a model exhibits non-determinism if multiple
events are enabled in a state and there is no a priori way to choose among them.
Given a high-level model, we can then start from sinitial and build S using the

explicit state-space generation algorithm whose pseudo-code is listed in Fig. 1.
In other words, S ⊆ Ŝ is the smallest set that contains the initial system state
sinitial and is closed with respect to N :

S = {sinitial} ∪ N (sinitial) ∪ N (N (sinitial)) ∪ · · · = N ∗(sinitial),

where we have extended the functionN to allow a set of states to be its argument,
and “∗” denotes reflexive and transitive closure.



Distributed and Structured Analysis Approaches 347

The runtime and memory requirements for ExploreExplicitSequential depend
on the data structure used to store U and S. The key operations are determining
the new states reachable from a given state i (statement 4), performed |S| times,
and searching whether each of them is already in U or S (statement 5), performed
|A| = ∑i∈S |N (i)| times, where A are the possible state-to-state transitions in
the system (for a Petri net, this is the cardinality of the arc set in its reachability
graph). If we assume that the cost of computing N (i) is proportional to |N (i)|,
that states are stored as individual entities, and that a balanced search tree
is used to store U and S (see [19,28] for a detailed discussion of alternative
techniques), the overall time complexity of ExploreExplicitSequential is O(|A| ·
log |S|) and its memory complexity is O(|S|).
Once S has been explored and stored, we can query it for the presence or

absence of states satisfying a certain condition, or we can ask more complex
questions that involve the existence of paths in the reachability graph. In the
former case, the query requires at most to scan each state once, so it can be
answered in O(|S|) time. In the latter case, the complexity depends on the par-
ticular query; a recent trend is to employ temporal logic to specify the properties
to be checked, resulting in the so-called model checking [22]. In our discussion,
we assume that state-space generation is a goal in itself; this is the case either if
we are only interested in reachability-type queries, such as “can the system reach
a deadlock” (see, for example, the model checking tool Uppaal [30]), or if state-
space generation is just an intermediate step in our ultimate goal, performing a
stochastic analysis.
Before concluding this section, we observe that we often need to associate a

unique integer index to a given a state i. We can do so with a mapping

Ψ : S → {0, . . . , |S| − 1} satisfying Ψ(i) = Ψ(j) ⇒ i = j.

While any mapping will do, two possibilities are mostly used in practice. In
traditional solution methods, it might be convenient to define Ψ(i) = i iff i
was the ith state “discovered” by ExploreExplicitSequential ; hence, in particu-
lar, Ψ(sinitial) = 0; this is a very useful choice, especially since it allows us to
know the index of a state even before completing the exploration of S. In the
structured methods we consider, Ψ(i) is instead the position of i in S according to
lexicographic order; this mapping is well-defined only once the exploration pro-
cess is complete, and requires a comparison operator defined over S (of course,
such an operator is already required by traditional methods that use a search
tree to store S). Since Ψ is a bijection, its inverse Ψ−1 exists. Also, we will
at times use a set of states A as a parameter to Ψ , with the obvious meaning
Ψ(A) = {Ψ(i) : i ∈ A}.

3.2 Markov Chain Specification and Solution

If we are interested in the timing or probabilistic behavior of the system, the logic
specification of the previous section must be augmented with stochastic infor-
mation associated with each state-to-state transition. In our discussion, we limit
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ourselves to the case of models having an underlying CTMC1, so our high-level
model needs to specify Rate(i, j), the rate at which the system, when in state i,
transitions to state j, for each reachable state i ∈ S and each j ∈ N (i); by defini-
tion, Rate(i, j) = 0 iff j �∈ N (i). For more information on CTMCs, see “Markov
Chains for Performance and Dependability Evaluation”, by B. Haverkort, this
volume.
Just as for the next-state function, this rate is normally expressed in a per-

event fashion: Rate(i, j) =
∑
e∈E Ratee(i, j), where Ratee(i, j) is the rate at which

event e leads from state i to state j ∈ Ne(i).
We then define the transition rate matrix R of the underlying CTMC as

R ∈ IR|S|×|S| where R[i, j] = Rate(i, j) and i = Ψ(i), j = Ψ(j).

The entries of R can be computed and stored during the for-loop iterations in
ExploreExplicitSequential . Alternatively, it is often more efficient to generate the
state space S first while, at the same time, just counting the number η(R) of
nonzero entries in R, essentially the number of arcs in A. Then, we can allocate
an efficient row-pointer column-index 2 data structure [40] that requires only
|S| + 1 + η(R) integers and η(R) floating point numbers. A second state-space
generation pass can then be used to fill this data structure with the actual values.
Given matrix R, we can define the holding-time vector h expressing the

expected time the CTMC spends in each state before making a transition:

h[i] =


 ∑

0≤j<|S|
R[i, j]




−1

,

and the infinitesimal generator matrix Q, which equals R except in its diagonal
entries3, defined as

Q[i, i] = −
∑

0≤i<|S|,j 
=i
R[i, j] = R[i, i]− h[i]−1.

Then, the numerical stationary solution of an ergodic CTMC involves the
computation of the vector π ∈ IR|S| of stationary state probabilities, solution of

πQ = 0 subject to
∑

0≤i<|S|
π[i] = 1. (1)

1 An analogous discussion is valid for the discrete-time Markovian case, while more
general stochastic processes present many subtle difficulties.

2 Or, rather, column-pointer row-index, as we often need only by-column access to R.
3 Unlike most definitions of CTMCs, our allows for the existence of self-transitions

R[i, i] in the transition rate matrix. These are useless from a stochastic point of
view, since they can be eliminated without changing the meaning and stochastic
behavior of the model. However, we explicitly consider them because, when using
the structured approaches of Sect. 5.2, the resulting CTMC might exhibit them. Of
course, these are apparent only when considering R and h separately, while Q does
not reflect their presence, since they cancel out.
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If the CTMC is instead absorbing, we might instead be interested in computing
the vector σ ∈ IR|T | of expected state sojourn times until absorption, solution
of σQ[Ψ(T ), Ψ(T )] = −π(0)[Ψ(T )], where T is the set of transient states and
π(0) is the initial probability vector, whose entries, in our case, would be all
zero except for a one in correspondence to sinitial, i.e., π(0)[Ψ(sinitial)] = 1.
Regardless of the nature of the CTMC, we might instead want to compute a
transient solution, that is, the probability vector at time t or the time spent
in each state up to time t. For simplicity, we do not consider these other types
of analysis here, since we focus on the data structures and discrete algorithms
that allows us to tackle models with large state spaces, but we stress that our
discussion applies also to absorbing Markov chains and transient analysis.
Many numerical algorithms are available for the solution of the linear ho-

mogeneous system of Eq. 1. In practice, S is very large and R is very sparse,
i.e., only a small portion of its entries are nonzero. Thus, iterative methods are
preferred, where successive approximations of the exact solution π are computed
starting from an initial guess, without modifying R, whose sparsity is preserved.
We now describe the iteration performed by some popular solution methods:

– Power: πnew ⇐ πold(I + Qh∗), where h∗ is a value slightly smaller than
the smallest expected sojourn time in any state, h∗ < min0≤i<|S|{h[i]}.
Element-wise, this corresponds to:

for j = 0 to |S| − 1 do
a ⇐ πold[j]; • a is a high-precision accumulator
for i = 0 to |S| − 1 do

a ⇐ a+ πold[i]Q[i, j]h∗;
end for;
πnew[j]⇐ a;

end for;
The Power method is guaranteed to converge in theory, but it is often ex-
tremely slow in practice.

– Jacobi: πnew ⇐ πoldR diag(h). Element-wise, this corresponds to:
for j = 0 to |S| − 1 do

a ⇐ 0; • a is a high-precision accumulator
for i = 0 to |S| − 1 do

a ⇐ a+ πold[i]R[i, j]h[j];
end for;
πnew[j]⇐ a;

end for;
The Jacobi method does not have guaranteed convergence, but it is usually
faster than the Power method in practice.

– (Forward) Gauss-Seidel: πnew ⇐ πoldL(diag(h)−1 −U)−1, where L and
U are the lower and strictly upper triangular portions of R, respectively.
Element-wise, this corresponds to:

for j = 0 to |S| − 1 do
a ⇐ 0; • a is a high-precision accumulator
for i = 0 to |S| − 1 do

a ⇐ a+ πcurr[i]R[i, j]h[j];
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end for;
πcurr[j]⇐ a;

end for;
Note that, unlike the Power and Jacobi iterations, which require two distinct
vectors, πold and πnew, Gauss-Seidel uses a single vector, πcurr, since its old
entries are updated to the new values one at a time, in place. The Gauss-
Seidel method does not have guaranteed convergence either, but it is at least
as fast as the Jacobi method, and often much faster, so it is considered the
best among these three methods. Its convergence rate is affected by the order
in which the states are considered.

4 Explicit Distributed Solution Approaches

Explicit distributed solution methods can make use of the workstations on a
local area network to increase the amount of memory available overall, while
at the same time attempting to speed up the solution process. We consider
first the problem of state-space generation, basing our discussion mostly on our
own work [15,35], except for the use of hashing for the mapping, which was
experimented by Haverkort [28]. We should also mention the work of Caselli,
Conte, and Marenzoni [14,31], one of the first groups to work along these lines.
We do not consider instead works on parallel, shared-memory, algorithms, such as
the one presented in [1]; these are confronted with substantially different issues.
For the distributed numerical solution of linear systems, much work is available,
thus we focus only on the special case of CTMC solution [32]. We should also
note that preliminary attempts at using distributed solutions in conjunction
with the implicit Kronecker representations of Sect. 5.2 [11,25], have also been
proposed, but more work is needed in this area.

4.1 Explicit Distributed State-Space Generation

Since explicit state-space generation essentially means a breadth-first exploration
of a large graph, eventually reaching each node at least once, the idea behind a
distributed algorithm for state-space generation is to use multiple processes that
perform this exploration concurrently on distinct nodes of the graph. Assuming
we have N processors (and processes), a natural way to do this is to define a
mapping

Proc : S → {0, . . . , N − 1},
where Proc(i) is the owner of state i, i.e., the process responsible for storing and
exploring i. This defines a partition of S into N sets S[n] = {i : Proc(i) = n},
for 0 ≤ n < N .
The outline of a distributed generation algorithm based on this mapping is

given in Fig. 2. Each of the N processes performs a task analogous to that of
the sequential algorithm, with the following differences:

– Only one of the N processes, the one with index Proc(sinitial), has initially
any work to do (a state to explore).
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ExploreExplicitDistributed (n : process) : set of state

Build and return S[n], the portion of the state space assigned to process n.

declare S[n], U[n] : set of state ;
declare i, j : state ;
declare m : process ;

1. if Proc(sinitial) = n then U[n] ⇐ {sinitial}; else U[n] ⇐ ∅; end if;
2. S[n] ⇐ ∅;
3. while “not received terminate message” do
4. while ∃i ∈ U[n] do
5. for each j ∈ N (i) do
6. m ⇐ Proc(j); • determine the process m owner of j . . .
7. if m �= n then
8. SendState(m, j); • . . . if not n itself, send j to m . . .
9. elsif j �∈ U[n] ∪ S[n] then • . . . otherwise explore later, if new

10. U[n] ⇐ U[n] ∪ {j};
11. end if;
12. end for;
13. U[n] ⇐ U[n] \ {i}; • move i from unexplored . . .
14. S[n] ⇐ S[n] ∪ {i}; • . . . to explored
15. end while;
16. U[n] ⇐ U[n] ∪ ReceiveStates \ S[n]; • get states sent by other processes, if any
17. end while;

Fig. 2. Distributed state-space generation for process n.

– Each “destination” state j encountered in the innermost loop is managed
locally only if it happens to be owned by the same process as the “source”
state i; otherwise, it is sent to the correct owner.

– Occasionally, states that have been sent to a process from any of the other
N − 1 processes are retrieved and inserted in the set of unexplored states, if
they have not yet been encountered before.

– Termination does not simply occur when the set of unexplored states for
a given process becomes empty, since more states might be sent later to
it by the other processes. Rather, a termination detection algorithm must
determine when all the processes have exhausted their unexplored state set
and no more messages are in transit4.

Several aspects in the pseudo-code of Fig. 2 can be defined in more detail, such
as the mechanism to send states (it might be advantageous to batch multiple
states in a single message destined to a given process) and the frequency at
which a process polls the receive queue for new states sent to it (we show the
call to ReceiveStates in the outermost loop, but in practice this check might
have to performed more frequently to avoid “parking” too many states in the

4 In our studies, we used the circulating probe algorithm by Dijkstra et al. [24]; another
possibility would be the scalable “non-committal barrier” described by Nicol [36].
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communication buffers). However, the main decision left unspecified so far is the
nature of the function used to map states to processes.
A good choice for Proc must be efficient to encode and compute, and should

also achieve the following performance goals:

– First and foremost, the memory required to store S[n] upon termination
should be approximately the same for all n. This is fundamental, since mem-
ory is the main resource bottleneck in explicit state-space generation. A good
measure for this is the spatial balance, which we define as the maximum
among the ratios between the sizes of the sets of states allocated to any two
processes (the closer this is to one, the better):

max
0≤m,n<N

|S[n]|
|S[m]| ≥ 1.

– The communication between processes should be balanced, that is, the num-
ber of states received and sent by each process should be approximately the
same. Even more importantly, though, this number should be kept as small
as possible, so we measure this quantity as the fraction of cross-arcs (the
smaller the better):

0 ≤
∑

i∈S |{j ∈ N (i) : Proc(i) �= Proc(j)}|∑
i∈S |N (i)| ≤ 1

– Finally, we would like to achieve a good temporal balance: most of the pro-
cesses should be active most of the time, i.e., they should rarely be idle with
an empty unexplored set, waiting to receive states from other processes. A
good temporal balance translates into a good speedup. Of course, ignoring
possible super-linear speedup effects due to virtual memory, the best we can
hope to achieve is an almost linear speedup, i.e., reducing the generation
time by a factor of N .

We mention three possibilities to define Proc.

Static User-Provided Definition. In [15] we proposed a static user-provided
function based on the idea of hashing some of the state components. In particular,
we assumed a Petri net model and the function was of the form

Proc(i) = (i[0] + p i[1] + · · ·+ pr−1i[r − 1]) mod N

where p is a prime number (we used 1,013) and i[0] through i[r−1] are the number
of tokens in r of the places of the Petri net for the given marking (i.e., state).
We observed that the selection of the subset of places upon which we base the
definition of Proc can affect the quality of the resulting partition. However, in all
cases, using several “reasonably informed choices” for this selection, we managed
to achieve good results on N = 6 processors: the spatial balance ranged from
1.33 to 1.38 in our experiments, while the fraction of cross-arcs ranged from 24%
to 61%, and the speedup was up to 4.9 out of an ideal 6.
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One advantage of letting the user specify the function is that this makes it
possible to pursue specific goals. For example, we observed how, by setting p to
1 instead of a prime number and selecting r places where the tokens can only
increase or decrease by one at each transition (i.e., event) firing, all cross-arcs
can only exist between processes with contiguous indices, i.e., from n to (n −
1) mod N or (n+1) mod N . This property could be extremely important if the
interconnection medium between the processors were a ring where any number
of pairs of adjacent processors can communicate at the same time, since all
communications would have to be only between adjacent processors in this case.
Another important observation is that the firing in marking i of any transition
not connected to any of the r places will lead to a marking j with the same
owner, i.e., Proc(i) = Proc(j). This property can be exploited when attempting
to minimize the number of cross-arcs, by choosing an appropriately small set of
r places. Of course care must be taken in both situations: in the former case,
choosing r places constituting an invariant of the form i[0] + · · · + i[r − 1] = c
would be disastrous, since all markings would be owned by process c mod N ,
while the other processes would be always idle. In the latter situation, choosing
too small a set of places, or places with too small a range of possible token
populations, could lead to an uneven partition, hence to a poor spatial balance.

Dynamic Automatic Re-mapping. Relying on a user-provided function re-
quires the user to provide additional information which is related to the solution
process, not to the high-level system behavior; in addition, as we just discussed,
there is the risk that such a static a-priori definition results in a poor spatial
balance, where most of the states are assigned to a small subsets of the processes,
or a poor temporal balance, where only a few of the processes are active at any
one time.
Thus, we explored a second approach [35] where the definition of Proc can

be dynamically adjusted at run-time, to ensure that both the size of U[n] ∪ S[n]

and that of U[n] alone are balanced across the N processes, i.e., to ensure good
spatial and temporal balance throughout the execution. This is achieved through
the use of an intermediate mapping of the states to a large number C of classes
(say, C = 100N), which are then mapped to processes:

Class : S → {0, . . . , C − 1} Proc : {0, . . . , C − 1} → {0, . . . , N − 1}.
Even when C is of the order of thousands or tens of thousands, the mapping
Proc can be easily stored by each process as an array of size C whose entries
have value in {0, . . . , N − 1}, so only the mapping Class is non-trivial. In [35],
instead of a user-provided function, we used the lexicographic order between
states to define this mapping. The description we give here is a slight variation
of this idea.
In a first phase, each of the N processes independently builds the same control

set of C − 1 different states found through a depth-first search using discrete-
event simulation. More precisely, the N processes use a pseudo-random number
generator initialized with the same seed and start exploring a path through
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Fig. 3. The definition of the Class and Proc mappings.

the state space in such a way that, once in state i, the next state j ∈ N (i)
to which the model transitions next is chosen with uniform probability (not
according to timing specifications in the model, since this might bias the search
toward the “likely” states, while, for state-space generation, all states are equally
important); then, still without communicating with each other, each process
sorts these states into an array “search” and allocates a corresponding array
“class2proc” of size C, initialized as class2proc[i] = i mod N . Then, the actual
state-space generation begins:

– Each process n initializes U[n] with the states in position i of array search,
for �C/N�n ≤ i < �C/N�(n+ 1), then begins the usual iterations.

– When a process n needs to determine the owner of a state j, it performs a
binary search for j on the array search, of which it has a copy.

– If j is found, this state is already known to its owner, there is nothing to do.
– Otherwise, the index x ∈ {0, . . . , C−1} where the search for j failed, i.e., j’s
lexicographic position with respect to the C − 1 elements of the control set,
identifies the process owner of j: m = class2proc[x]. Thus, as usual, process
n checks whether j is already stored in U[n] ∪ S[n], if m = n, or sends j to
process m, if m �= n.

For example, consider Fig. 3, where N = 4 and C = 3N . If the control
set contains states {a, . . . , l}, U0, U1, U2, and U3 will be initialized to {a,b, c},
{d, e, f}, {g,h, i}, and {j,k}, respectively. Then, during the iterations, if a pro-
cess searches for a state with a lexicographic position between f and g, it will
determine that this state would belong in position 6 of the control set, if it were
in it, but, since it is not, the process owning it is class2proc[6], that is, 2.
We now consider the dynamic remapping aspects of this approach. The

state-space generation can periodically stop and check the spatial, or tempo-
ral, balance, by comparing the size of U[n] ∪ S[n], or U[n] alone, over all val-
ues of n. If an unbalance is detected, it can be corrected by dynamically re-
arranging the allocation of classes to processes, as long as we keep track of
the contribution of each class to |U[n]| and |S[n]|. If the Class mapping is fine
enough, it should be possible to redefine the Proc mapping so that the sets
U[n] ∪ S[n] = {i : Proc(Class(i)) = n} contain approximately the same number
of states, for 0 ≤ n < N . Analogously, to focus on temporal balance, we sim-
ply need to limit ourselves to the number of unexplored states owned by each
process.
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The reallocation procedure in [35] follows an approach where each process
decides approximately how many states it wants to offload (if it is overloaded) or
it is willing to receive (if it is underloaded). Then, a greedy matching algorithm
is used to decide which classes to offload and the identity of their new owner;
this decision is broadcast to all processes, who can then update the value of the
entries in class2proc accordingly. Finally, any class that was reallocated from
process n to process m must exchange owner, i.e., the states in it must be
actually transferred.
The tradeoff between frequent checks and a more sensitive triggering condi-

tion for a reallocation decision versus less frequent checks and being willing to
accept a larger unbalance is clear: the former is more likely to ensure even mem-
ory requirements and good processor utilization, but at the cost of larger and
more frequent overhead phases during which no useful exploration takes place.
In our experiments [35], we found that dynamic re-balancing was quite ben-

eficial when using 16 processors, while the improvement was minor when using
eight processors. We also observed that the overhead as a percentage of the over-
all runtime was somewhat higher when the goal was temporal balance rather
than spatial balance, although it was in any case below 5% except when us-
ing very frequent checks. On the other hand, the best speedup on 16 processors
was achieved when balancing the temporal load, almost 13 using five re-mapping
phases throughout the state-space generation, while the speedup when balancing
the spatial load was less than 12.
This dynamic reallocation approach is quite resilient, as long as the classes

of equivalence defined by Class are fine enough: this is the reason for requiring
a value C � N . While we did not experience a problem in our experiments, one
or more of these classes could still be too large. In this case, the appropriate step
would be to break down these large classes further, splitting them into multiple
classes; of course, this requires enlarging the control set, hence extending the
search and class2proc arrays.

Hashing for State Storage and Mapping. In a sequential approach, a hash
table is a reasonable alternative to a search tree for storing states and being able
to determine whether a state is new or already in U ∪ S. The main problem in
using a hash table for this application is that the size of S cannot be predicted in
advance, but this can be remedied by resizing the hash table when the number
of collisions grows too much.
The same is true for a distributed approach as well, where we can use a

hash table for each of the N processes, and still require a separate state-to-
process mapping. Alternatively, since we already need a hashing function to
store a state, we can simply rely on this function to determine the process as
well. Conceptually, this requires us to use a single hash table of size HN , split
into N equal portions that physically reside in the corresponding N processes.
Then, the hash function

Hash : S → {0, . . . , HN − 1}
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can be used by process n to determine the ownerm of a state j:m = �Hash(j)/H�.
If n = m, process n can use the same function to determine the position
Hash(j) mod H where j should be placed in its portion of the hash table.
As one would expect, a completely hash-based approach achieves a reason-

ably good spatial balance (the authors of [28] report a value of 1.49 for their
experiment), but the number of cross-arcs is harder to control (about 50% in
[28], using the idea of restricting the definition of the hashing function to a subset
of the places of their Petri net model).

4.2 Explicit Distributed Markov Chain Generation and Solution

The distributed generation of the entries of matrix R follows the same principles
as for the sequential approach, with two main differences. First, the mapping Ψ
assigning indices to the states is more complex because it must indicate both
the identity of the state and of the process owning it. A reasonable approach is
then to define N per-process mappings

Ψ[n] : S[n] → {0, . . . , |S[n]| − 1}

so that the overall mapping Ψ is given by

Ψ(i) =
(
Proc(i), Ψ[Proc(i)](i)

)
.

A second, related, difference is the management and storage of the entries, since,
if the value Ψ[n](i) is computed using either discovery or lexicographic order (as
it is normally the case), only process n can compute its value.

Storing the Transition Rate Matrix: By Rows or by Columns? If we
want to generate and store the entries of R by rows, i.e., process n stores all
entries R[(n, i), (m, j)], these are the actions process n must perform when it is
exploring state i with index i = Ψ[n](i):

for each transition from i to j with rate λ
process n computes m = Proc(j)
if m = n then

process n computes j = Ψ[n](j)
else

process n sends the pair 〈n, j〉 to process m
process m computes j = Ψ[m](j)
process m returns the pair 〈m, j〉 to process n

endif
process n sets R[(n, i), (m, j)] to λ

If instead we want to store the entries by columns, i.e., processm stores all entries
R[(n, i), (m, j)], process n must perform the following actions when exploring
state i with index i = Ψ[n](i):
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for each transition from i to j with rate λ
process n computes m = Proc(j)
if m = n then

process n computes j = Ψ[n](j)
process n sets R[(n, i), (m, j)] to λ

else
process n sends the tuple 〈n, i, j, λ〉 to process m
process m computes j = Ψ[m](j)
process m sets R[(n, i), (m, j)] to λ

endif

(in these statements, it might be more correct to say “incrementsR[(n, i), (m, j)]
by λ” instead of “sets R[(n, i), (m, j)] to λ”, since multiple ways to transition
from i to j might exist). Thus, storing R by columns is not only preferable
in the subsequent numerical solution algorithms, but it also cuts in half the
number of logical messages that need to be sent when generating the entries
of R, since process n does not require an answer from process m. We observe
that, in [15], we generated both S and R in a single step. This is possible when
the mapping Ψ[n] is based upon the discovery order (more precisely, the order
in which states in S[n] become known to process n), but it requires the use of
more dynamic data structures, such as linked lists, to store the columns of R,
since the number of nonzero entries process n might have to store is not known
beforehand. Alternatively, we can follow the same two-phase approach discussed
for the sequential case, where the N processes just count the number of entries
while generating the state space, in the first phase, and fill these entries in the
second phase.

Block Methods for the Numerical Solution. For notational simplicity, we
define the sub-matrices

R[n,m] =df R[Ψ(S[n]), Ψ(S[m])].

Assuming storage by columns, the entries of R are distributed so that process m
stores R[n,m], for 0 ≤ n < N . At this point, the distributed numerical solution
can begin. Since, as we stressed already, memory is the bottleneck, process n
should store only the portions h[n] =df h[Ψ(S[n])] and π[n] =df π[Ψ(S[n])] of h
and π, and the same should hold for any other auxiliary vectors required by
the solution method, to allow the size of the models that can be solved to scale
linearly in N .
In such a setting, it is natural to employ so-called block methods for the

numerical solution. For example, the computation performed by process n in a
block-Jacobi iteration is

πnew[n] =


 ∑

0≤m<N
πold[m]R[m,n]


diag(h[n]). (2)
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�
old
[n] ⇐ “initial guess”;

while “keep doing global synchronizations” do
BroadcastVector (�old

[n] );
a ⇐ 0; • a is a local auxiliary vector of size |S[n]|
for each m �= n do
�

old
[m] ⇐ ReceiveBroadcastVectorFrom (m);

a ⇐ a+ �old
[m]R[m,n];

end for;
while “keep doing local iterations” do
�

new
[n] ⇐ �

�
old
[n] R[n,n] + a

�
diag(h[n]);

�
old
[n] ⇐ �

new
[n] ;

end while;
end while;

Fig. 4. The iterations performed by process n in a distributed block-Jacobi
scheme.

However, process n does not store πold[m] for m �= n, so this information must
be exchanged between processes, and this can be quite time consuming. If one-
to-many communication is possible, N broadcasts are required, where process n
sends πold[n] to all other processes; otherwise,N(N−1) one-to-one communications
are required, for all pairs (m,n) with m �= n.
To reduce the cost of communication as a fraction of the total solution time,

the iterative scheme shown in Fig. 4 can be used. In the outer while-loop, each
of the N processes broadcasts its current portion πold[n] of the probability vector
and computes the contributions of all the other portions πold[m], for m �= n, to the
right-hand-side value in Eq. 2. Then, in the inner while-loop, process n uses a
traditional iteration (we show a variant based on the Jacobi method, but one
based on the Gauss-Seidel method would be possible as well), where only the
entries of πold[n] are updated, while the ones of π

old
[m] are effectively kept constant.

Thus, there is a tradeoff between more frequent global synchronizations, which
imply more communication overhead, vs. less frequent ones, which imply using
older data in the local iterations and potentially slowing down the numerical
convergence.
We do not discuss the issue of distributed solution further. Our reason for

introducing it was simply to illustrate that it is possible to store only vectors
of size |S[n]| (in the method we presented, four are needed: the current and
new iterate, the portion of the holding time vector h[n], and an auxiliary vector
a), in addition to the blocks of R corresponding to columns in S[n] and to the
portions of the probability vector received from other processes (these, however,
can be “used and discarded on the fly” while computing a, so, in principle,
impose no additional storage requirements). Distributed solution methods, with
either synchronous communication (such as the one we illustrated, where all
processes exchange data at the same time) or asynchronous communication, and
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their convergence properties are an active area of research and a more thorough
investigation of the state of the art is beyond the scope of this presentation (see
for example [32] and references within).

5 Implicit Sequential Solution Approaches

We now turn to implicit methods for the storage of the state space and the
transition rate matrix. By this we mean methods that exploit certain symme-
tries, present to some extent in the state space of any system exhibiting some
asynchronous behavior, and use data structures that normally require much less
than linear space. Another way to state this is that, with explicit methods, we
can point at a specific memory location corresponding to a given state in S or a
given entry of R, while, with implicit methods, a state or an entry must be “re-
constructed” using information present in several memory locations. As we will
see, this results in huge memory savings, and might also result in time savings
(as it is normally the case for state-space generation), or it might instead imply
an overhead (as is often the case for Markov chain solution).
In all cases, we assume that the model is composed of (or decomposed into)

K sub-models. More precisely, this means that Ŝ is the cross-product of K local
state spaces : Ŝ = SK × · · · × S1. The assumption of such a structure in the
model is quite reasonable: indeed it is almost always the case that systems,
especially complex ones, are built of interacting components. We indicate with
nk the cardinality of Sk, for K ≥ k ≥ 1, and stress that S, hence nk, might be
known before exploring S, or might become known only afterwards (the latter
assumption complicates matters only slightly). From now on, we assume that the
local states of Sk are stored (once) and indexed separately, so that we identify
a (global) state with the K-tuple of its K local states indices. Thus, a state can
be stored in

∑
K≥k≥1�lognk� bits. We also identify a state with its mixed-base

value:

i ≡ (iK , . . . , i1) = (...((iK) ·nK−1+ iK−1) ·nK−2 · · · ) ·n1+ i1 =
∑

K≥k≥1

ik ·nk−1:1,

where nk:l =df nk ·nk−1 · · ·nl, for k ≥ l, and nk:l =df 1, for k < l. The reason for
counting the sub-models from K down to 1 should now be clear: the Kth index
is the “most significant digit”. For example, if K = 3, |S3| = 4, |S2| = 3, and
|S1| = 5, the mixed-base value of global state (2, 0, 3) is 2 ·n2:1+0 ·n1:1+3 ·n0:1 =
2 · (3 · 5) + 0 · (5) + 3 = 33.

5.1 Implicit Sequential State-Space Generation

In the area of formal methods, and in particular of model checking [22], binary
decision diagrams (BDDs [5,6]), have been successfully used to generate and
store enormous state spaces [13]. We are going to employ a non-binary version
of decision diagrams whose definition [29] can be seen as an extension from the
binary to the general discrete world, but can also be reached starting from the
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explicit data structure we introduced in [19]. We take this second point of view
[16,17,33].

An Explicit Multi-level Data Structure. The multi-level explicit data
structure introduced in [19] can be used in our procedure ExploreExplicitSe-
quential to store S as it is being built. The idea is that, since a state i ∈ S is
identified with a K-tuple (iK , . . . , i1) of local state indices, we can use K levels
of search trees as shown in Fig. 5, where we assume K = 4. To search for a state
i ≡ (iK , . . . , i1) in the current S, we first search for iK in the only search tree
at the top level, K. If iK is found, we follow the corresponding pointer to a tree
at level K − 1, and search iK−1 in this tree, and so on. The process terminates
either if we find i1 in the tree at level 1 reached according to the path determined
by (iK , . . . , i2), in which case we conclude that i is already in S, or if we fail to
find ik in the corresponding tree at level k, for some k, K ≥ k ≥ 1, in which
case we conclude that i is not yet in S, and we know the point at which to start
inserting the missing portion (ik, . . . , i1) of the state.
In [19], we pointed out two advantages of this data structure with respect to

others used in explicit approaches. First, the storage required for it is mostly due
to the bottom level, as long as there is a sufficient fan-out from level to level,
i.e., as long as each tree at each level has at least several nodes. The overall
number of nodes at the bottom level is exactly the number of states, |S|, and to
store them we can use, in principle, only integers and pointers of size �logn1�
bits. Assuming a binary tree, this means that, for most practical models, we can
store S in little over 3|S|�logn1� bits, as opposed to 3|S|

∑
K≥k≥1�lognk� bits.

A second property of this data structure results instead in an improved execution
time. Assume that we know the pointers TK , . . . , T1 to the trees where we found
iK , . . . , i1, respectively, and that j ∈ N (i). To determine whether j is in the
currently-known portion of the state space, ExploreExplicitSequential needs to
determine whether there is a path labelled with (jK , . . . , j1) in the multi-level
data structure. However, the nature of the model might imply that j can differ
from i only in components with index k or lower (for example, this happens if j
is reached from i through the firing of an event e that only affects some of the
sub-models, a very common situation). When this is the case, the first K − k
components of the two states coincide, that is, (iK , . . . , ik+1) = (jK , . . . , jk+1),
thus the search can start at the tree pointed by Tk, instead of the top tree.
Experimentally, we showed that, on a range of common applications, exploiting
this locality property can result in considerable execution time reductions, at no
extra cost in memory requirements.

Multi-valued Decision Diagrams. Themulti-valued decision diagram (MDD)
definition we adopt is conceptually obtained from the explicit multi-level data
structure by recognizing common subtrees at the same level and merging them,
in a bottom-up fashion. More formally, a (quasi-reduced ordered) MDD [17] is a
directed acyclic multi-graph where:
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Fig. 5. The multi-level explicit data structure introduced in [19] (K = 4).
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Fig. 6. An example MDD and the state space S encoded by it.

– Nodes are organized into K + 1 levels. We write 〈k.p〉 to denote a generic
node, where k is the level and p is a unique index for the nodes at that level.
Level K contains only a single non-terminal node 〈K.r〉, the root, whereas
levels K − 1 through 1 contain one or more non-terminal nodes. Level 0
consists of two terminal nodes, 〈0.0〉 and 〈0.1〉.

– A non-terminal node 〈k.p〉 has nk arcs pointing to nodes at level k−1. If the
ith arc, for i ∈ Sk, is to node 〈k−1.q〉, we write 〈k.p〉[i] = q.

– A non-terminal node cannot duplicate (i.e., have the same pattern of arcs
as) another node at the same level.

Clearly, merging common trees transforms the tree into a directed acyclic
graph, but preserves the logic of state search: we can still start from the top
level and determine whether a given state belongs to S or not, by following
the corresponding path and determining whether it leads to 〈0.1〉 or 〈0.0〉. For
example, Fig. 6 shows a four-level MDD and the set S encoded by it (paths
from the root to the node 〈0.1〉 describe the reachable states). The figure shows
arrays being used, instead of search trees: this is more efficient provided a good
portion of the array entries is actually used for paths corresponding to reachable
states, and it is possible provided that we know a priori the size of each Sk,
or are willing to use dynamic arrays. Paths leading to 〈0.0〉, which of course
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ExploreImplicitSequential : set of state

Build and return S encoded using MDDs.

declare S , O : set of state ;

1. O ⇐ ∅; • O: old state space
2. S ⇐ {sinitial}; • S : current state space
3. while S �= O do
4. O ⇐ S ;
5. S ⇐ N (S) ∪ S ;
6. end while;
7. return S ;

Fig. 7. An implicit sequential procedure to generate S.

correspond to unreachable states, are present in Fig. 6 because we use arrays,
while in the analogous explicit multi-level data structure of Fig. 5 we simply
have incomplete paths, because we use search trees. In fact, we showed how, in
an actual implementation, it is possible to avoid storing nodes at any level k
corresponding to a logical zero or one, i.e., nodes encoding ∅ or Sk × · · · × S1,
respectively, by reserving the node identifiers 〈k.0〉 and 〈k.1〉 for this purpose (in
Fig. 6, these nodes and the arcs emanating from them are shown with dotted
lines).
The enormous success of decision diagrams (in the literature, mostly binary

decision diagrams, or BDDs, have been considered) is not just due to ability of
storing state spaces in a more compact way, but also of generating them more
efficiently. This is because we do not use an explicit exploration approach that
adds just one state at a time to S. Rather, using implicit techniques, we add
entire subsets of states in a single operation, as shown in Fig. 7. Considering
statement 5, it is clear that we must be able to efficiently compute both the
set of states reachable in one step from the currently-know state space, N (S),
and their union N (S)∪S. Efficient algorithms are known to compute the union
of two sets encoded as MDDs, so the focus of much research has been on the
encoding and computation of the next-state function.

Encoding the Next-State Function. One popular way to encode the next-
state function is to use a decision diagram for it as well, where both the current
and the next state are found on a path from the root to 〈0.1〉 (thus the diagram
has 2K levels, usually interleaved for greater efficiency). Rather than following
this traditional approach, however, we introduce a different one [16,17,33] that
is both much more efficient, and also strongly related to the implicit encoding
of the transition rate matrix, which we will consider in Sect. 5.2.
The idea is based on the fact that many systems exhibit what can be called

a globally-asynchronous locally-synchronous behavior, that is, most events are
enabled by and affect only a small subset of the K sub-models, which must
then be “synchronized”, while distinct events can occur concurrently and asyn-
chronously in different parts of the system. We then require that, for each event
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e, its next-state function Ne can be written as the cross-product of K local
functions:

Ne = NK,e × · · · × N1,e, (3)

where Nk,e : Sk → 2Sk . This product-form requirement is quite natural for two
reasons. First, many modeling formalisms satisfy it (for example, we showed in
[21] that any Petri net model conforms to this behavior for any partition of its
places). Second, if a given model does not respect the product-form behavior,
we can always coarsen the sub-models or refine E so that it does (in the limit,
this results in having a single model, i.e., K = 1, or defining a different event
for each state-to-state transition, i.e., E = A, but this does not seem to occur in
practice).
When an event e is independent of a sub-model (or level) k, Nk,e is the

identity, that is:

∀ik ∈ Sk, Nk,e(ik) = {ik}. (4)

When this is not the case, we say instead that e depends on level k. We let
First(e) and Last(e) be the first and last levels on which event e depends and,
as we shall see, one of the goals of a good decomposition is to have events span
few levels, that is, to define sub-models so that the range First(e)−Last(e)+1 is
small with respect to K. In particular, events e such that First(e) = Last(e) =
k are said to be local, while those where First(e) > Last(e) are said to be
synchronizing. Note that the local events at a given level can be merged into a
single macro-event λk without violating the product-form requirement, since we
can define

Nλk
= NK,λk

× · · · × N1,λk

where Nk,λk
=
⋃
e:First(e)=Last(e)=kNk,e, where, again, the union is applied to

the value of the functions, i.e., Nk,λk
(ik) =

⋃
e:First(e)=Last(e)=kNk,e(ik), while

Nl,λk
(il) = {il} for l �= k and il ∈ Sl. From now on, we assume that the set of

events E has been redefined to reflect this merging.
Under these conditions, the next-state function N is fully captured by (L+

1)K boolean matrices Bk,e, where L is the number of synchronizing events;
indeed, in a good decomposition, a majority of these matrices are the identity,
so they do not need to be stored explicitly. Also, for any matrix matrix Bk,e

that must be actually stored, we can use a sparse row-wise data structure. Then,
given ik, we can retrieve the set Nk,e(ik) in time and memory proportional to
|Nk,e(ik)|, which, in practical applications, is much smaller than nk. In other
words, the storage required to encode N is a negligible portion of the overall
storage requirements, and the time required to build its encoding is also very
small.

Generating S as the Fixed-Point of N . Using our encoding of the next-
state function, we are able to generate enormous state spaces efficiently using a
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S :
[0; 0; �; 0; 0; 0]
[2; 0; �; 0; 0; 0]
[3; 1; 0; 0; 0; 0]

[�; �; 3; 0; 0; �]
e

+

[�; �; 0; 1; 1; �]

S :
[0; 0; �; 0; 0; 0]
[0;0;0;1;1;0]
[2; 0; �; 0; 0; 0]
[2;0;0;1;1;0]
[3; 1; 0; 0; 0; 0]

1 1 1

0 3

0

0 1 2 3 0

1

0

0 3

0

0 1 2 3 0

1

2 2

0 1 0 0 1

0 1 0 0 1

0 00

0

0

0 1 2 3 0

0 1

0 32Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Fig. 8. Firing an event e dependent only on levels 4, 3, and 2.

modification of the algorithm shown in Fig. 7. Specifically, instead of computing
N (S) at each iteration, we compute several “lighter” next-state functions, one
per event, exploiting the concept of event locality to limit our computation to
nodes at the appropriate levels. In other words, we don’t even need to explore the
firing an event e at level k, if k > First(e) or Last(e) > k. Fig. 8 illustrates, as
an example, the firing of an event e dependent on levels 4, 3, and 2 only, starting
from the state space shown on the left (nodes encoding ∅ and arcs pointing to
them are omitted for clarity). Event e is enabled only when the the sub-models
4, 3, and 2 are in the local states with index 3, 0, and 0, and its firing changes
these local states to 0, 1, and 1, respectively. The state space after this firing
is shown on the right. Note that a single firing adds the two states shown in
boldface.
Another related improvement is the use of an efficient iteration strategy,

where we explore the firing of events in a specific order: starting from an initial
set of states (in our case, {sinitial}), we fire exhaustively any event e for which
First(e) = 1 (of course, only the local macro-event λ1 satisfies this requirement),
then we fire exhaustively any event e for which First(e) = 2 (this includes both
the local macro-event λ2 and any event synchronizing level 1 and level 2) and,
for any new node (hence for the corresponding states) that these firings might
create at level 1, we again fire exhaustively any event e for which First(e) = 1,
and so on. Once we reach level K and exhaustively fire any event at levelK, plus
any event at lower levels on any newly created node, the process is completed:
our MDD is saturated and it encodes exactly S.
We introduced this idea of saturating the nodes of the MDD during fixed-

point exploration in [17], and showed how, paired with locality, it can reduce the
memory and time requirements to generate the state space of practical models by
orders of magnitude. For example, with our implementation in SMART [18], we
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could generate the state space corresponding to the famous dining philosophers
problem, with 1,000 philosophers (S contains almost 10627 states!), in less than
one second on an 800 MHz Pentium workstation. This represents an enormous
improvement with respect to more conventional symbolic methods based on a
BDD encoding of both the state space and the next state function [37,38,39,43].
Furthermore, the benefits increase with the height of the MDDs (the number
of levels K), since, when decomposing practical models, the range of levels on
which an event depends is going to be mostly a small constant, regardless of the
value of K.

5.2 Implicit Sequential Markov Chain Generation and Solution

Armed with our understanding of the structure imposed on the state space by
the logic product-form behavior, we can now discuss an analogous concept for
the description of the transition rate matrix of the CTMC underlying a high-
level model decomposed into sub-models. It is interesting to note, however, that
work on this Kronecker-based description predates that on MDDs; in fact, it was
our inspiration for it, rather than the other way around.
The use of Kronecker (also called tensor) algebra [4,23,27] for the descrip-

tion of a transition rate matrix is over twenty years old [2], but its real impact
was realized when this approach began being applied to high-level models, first
by Plateau and Stewart on Synchronized Automata Networks [26,41,42], then
by Donatelli on the more general Superposed Stochastic Automata [25] and by
Buchholz and Kemper [7,8,9,12] on several classes of hierarchical formalisms,
including queueing networks and their variants. For a brief description of the
Kronecker product “⊗” and Kronecker sum “⊕” operators, see the Appendix.

Kronecker Description of the Transition Rate Matrix. We have seen
that the transition rate from state i to state j can be expressed in a per-event
fashion:

Rate(i, j) =
∑
e∈E

Ratee(i, j).

To apply our implicit description techniques, we only need to assume a product-
form requirement analogous to that of Eq. 3:

Ratee = RateK,e · · ·Rate1,e,

where each non-negative function Ratek,e : Sk × Sk → IR expresses the (multi-
plicative) contribution of sub-model k to the rate of event e (of course, dimen-
sionally, only their product is a rate).
As it should be expected, we require that Ratek,e(ik, jk) = 0 iff jk �∈ Nk,e(ik)

and we say that event e is (stochastically) independent of level k if Ratek,e is
the identity, i.e., Ratek,e(ik, jk) = 0 when ik �= jk, 1 when ik = jk. Note that
the logic independence of Eq. 4 is a necessary but not sufficient condition for
this new definition of independence, since the local state of a sub-model k could
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affect the timing of an event e but not its enabling or its effect, i.e., we might
have Nk,e(ik) = {ik} for all vik ∈ Sk, but the (positive) value of Ratek,e(ik, ik)
could nevertheless depend on the particular local state ik. Also, we say that e is
a local event for level k iff k is the only level for which Ratek,e is not the identity,
and again we merge all such events into a macro event λk.
We can then define the matrices Wk,e as the encoding of Ratek,e, for any

synchronizing event e, which we assume indexed from 1 to L, and the matrices
Rk as the encoding of Ratek,λk

:

Wk,e[ik, jk] = Ratek,e(ik, jk) Rk[ik, jk] = Ratek,λk
(ik, jk),

and write

R = R̂[S,S] =
∑
e∈E

R̂e[S,S] =

 ⊕
K≥k≥1

Rk +
L∑
e=1

⊗
K≥k≥1

Wk,e


 [S,S], (5)

where we recall that, when inexing the “potential” marix R̂, a global state i
is interpreted as its mixed-base integer value when used as a matrix or vector
index. An analogous expression exists for Q, the infinitesimal generator.
In other words, we can express the (huge) transition rate matrixR as the sub-

matrix corresponding to the reachable states S of a (possibly even larger) matrix
that can be expressed through Kronecker operators applied to (L + 1)K small
real matrices: a huge memory saving. Furthermore, as in the logic case, many of
these matrices will be the identity in practical applications. However, unlike the
results we discussed for decision diagrams, iterative numerical methods multiply
the implicitly-encoded matrixR by “explicit” probability vectors, which are now
the main memory bottleneck, so we must examine how this encoding affects the
run-time efficiency.

Potential vs. Actual State Space, Row vs. Column Access. One potential
source of overhead when using Eq. 5 to encode R is that we need to consider a
sub-matrix of a Kronecker expression. Initial proposals [25,41] used algorithms
that can (almost) ignore the difference between the potential state space Ŝ and
the actual state space S. This is possible if we access R, or more precisely R̂,
by rows, since, by definition, an unreachable state j cannot be reached from a
reachable state i, that is, R̂[S, Ŝ \S] = 0. Unfortunately, the converse is not true,
that is, R̂[Ŝ \ S,S] is not necessarily zero. The Jacobi iteration can be rewritten
to enforce access by rows:

for each i ∈ Ŝ such that π̂old[i] > 0 do

for each j ∈ Ŝ such that R̂[i, j] > 0 do • access row i of R̂
π̂new[j]⇐ π̂new [j] + π̂old[i]R̂[i, j]ĥ[j];

end for;
end for;
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where ĥ, π̂old, and π̂new are vectors of size |Ŝ|, indexed by the mapping

Ψ̂ : Ŝ → {0, . . . , |Ŝ| − 1},

which is simply the mixed-based value of the state. This Jacobi iteration moves
the probability mass only to states reachable from those having an initial prob-
ability mass so, if π̂old is properly initialized according to the initial state, only
entries of π̂old corresponding to states in S will ever become positive, hence only
entries in R̂[S,S] are used.
The disadvantages of such a “potential” approach, however, are numerous:

ĥ, π̂old, and π̂new may require much more storage than their “actual” siblings
h, πold, and πnew; to make things worse, the entire vector π̂new is used as
an accumulator, so it should in principle be allocated using a higher-precision
floating point type, while, with access by columns, only one scalar accumulator is
required; finally, the approach just described can be used for the Jacobi method
(or the even slower Power method), but the preferred Gauss-Seidel essentially
requires access by columns.
Another potential overhead is the actual computation of the entry R̂[i, j]

using the Kronecker expression of Eq. 5. With vectors of size |Ŝ|, the indexing
function Ψ̂ is indeed easy to define and compute, but it can still involve an
overhead factor O(K); an analogous overhead is potentially implied also by the
multiplications of the K entries in the appropriateWk,e matrices (in most cases,
only one event causes an entry of R̂ to be positive). Algorithms that attempt
to amortize these computations have been introduced [10]; the best ones in
practice appear to be based on an interleaving of the row and column indices of
the K matrices, which imply an access pattern that is neither by rows nor by
columns: again, they allow us to employ methods such as Power and Jacobi, but
they precludes us from using Gauss-Seidel. It should also be mentioned that,
in the case where the matrices Wk,e are quite dense, the shuffle algorithm is
extremely efficient: for full matrices, the complexity of computing x·⊗K≥k≥1 Ak

is nK:1 ·∑K≥k≥1 nk instead of (nK:1)2 [26]; however, the matrices Wk,e are
usually ultra-sparse, i.e., they often have around one nonzero entry per row on
average, so these savings might not be realized in practice [10].
More recent implementations based on the actual state space that access

R̂ by column have been proposed. These allocate only vectors of size |S|, but
require a more complex indexing scheme that maps a state i to the index i =
Ψ(i) ∈ {0, . . . , |S|−1}. Furthermore, in the case of access by columns, for a given
reachable destination state j, a source state i may be unreachable, in which case
Ψ(i) must return a null value, to signal that the entry R̂[i, j] is to be ignored.
The lexicographic order mentioned in Sect. 3.1 is an excellent candidate to use
for Ψ , but, if used in a simplistic way, it involves an overhead factor O(log |S|),
since each state j must be searched in S to determine its index Ψ(j). Again, the
best algorithm appears to be the one using interleaving of the i and j indices
to maximize the amortization of these searches; when combined with the multi-
level data structure of [19] or, even better, the MDDs of [16,17,33], the overhead
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is only O(log n1). For a thorough discussion of algorithms based on either the
potential or the actual state space, see [10].

Matrix Diagrams. In [20], we introduced an alternative method to encode
the transition rate matrix R of a model structured into K sub-models. While
related to the expression of Eq. 5, this new method has several advantages over
a straightforward Kronecker encoding that uses (L+ 1)K matrices.
The definition of matrix diagrams is quite similar to that of MDDs, but

there are several fundamental differences. First, the nodes of a matrix diagram
are matrices, not arrays, since we are encoding a two-dimensional matrix, not a
set. Second, the entries of the matrices are lists of pairs, each pair containing a
real number and a pointer to a node at the next level, since we are encoding a real
value along a path, not just the existence of a path. Finally, as defined, matrix
diagrams are not canonical; this is not a problem since the only operation we need
to perform on them when solving the CTMC is a vector-matrix multiplication.
Formally, a (nonzero, reduced) matrix diagram is a directed acyclic multi-

graph where:

– Nodes are organized into K levels. We write 〈k.p〉 to denote a generic node,
where k is the level and p is a unique index for the nodes at that level. Level
K contains only a single node 〈K.r〉, the root, whereas levels K−1 through
1 contain one or more nodes reachable on a path from the root.

– A node 〈k.p〉 is a nk×nk matrix; for K ≥ p > 1, the entry 〈k.p〉[i, j] is a list
of pairs of the form (v, q), where v is a real number and 〈k − 1.q〉 is a node,
while, for k = 1, the entry is just a real number v.

– No two elements of a list 〈k.p〉[i, j] can have the same value or pointer.
– No two nodes at the same level duplicate (i.e., have the same pattern of
entries) each other.

Such a data structure can encode a real matrix as follows: the value of the
entry in position (i, j) is given by the sum over all paths of the products of the
form vK · · · v1, where vk is a real value found in the list in position (ik, jk) of the
matrix at level k for the path. For example, consider the matrix diagram shown
in Fig. 9 on the left, and the corresponding matrix encoded by it, on the right;
the value of the entry in position ((0, 1, 1), (1, 1, 0)) is given by the product of
the entries found in position (0, 1) of the one matrix at level 3, in position (1, 1)
of the first matrix at level 2, and in position (1, 0) of the second matrix at level
1: 45 = 1 · 5 · 9 (only one path needs to be considered because each of the lists
corresponding to the row and column indices contains only one entry); the value
of the entry in position ((1, 1, 1), (2, 1, 1)) is instead obtained by summing the
products corresponding to two paths: 22 = 2 · 2 · 5 + 2 · 1 · 1.
In [20] we showed several important advantages of matrix diagrams over a

traditional matrix-based Kronecker representation:

– A single data structure encodes the entire matrix, unlike the traditional rep-
resentation which relies on summing, for each event, the Kronecker product
of K matrices. This saves a fair amount of indexing overhead.
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Fig. 9. An example of matrix diagram and the matrix encoded by it.

– If the row and column index sets of the matrix being represented are strict
subsets of the cross-products of the row and column index sets at each level
(as it is often the case for R vs. R̂), a matrix diagram can encode exactly
the intended matrix. For example, in Fig. 9, any state of the form (1, 0, i1)
is unreachable, as indicated by the greyed portions in the large matrix; this
is reflected, in the matrix diagram, by the greyed portions in the matrices at
level 2: indeed, these can be stored as a 2×1 and a 1×2 matrix, respectively,
provided the information about their row and column index set is preserved.
This can save both memory and, especially, execution time, since it allows us
to operate with “actual” vectors while having the same low overhead enjoyed
when using “potential” vectors.

– Operation caches can be used to avoid recomputing partial multiplications of
the real values encountered along a path during an iteration of the numerical
solution method.

– Finally, because of the ability to represent the desired matrix and not a
supermatrix of it, matrix diagrams allow the numerical methods to perform
a by-column access without having to worry about the spurious nonzero
entries in R̂[Ŝ \ S,S].

Thanks to the above advantages, experimental results show that a Kronecker
implementation based on matrix diagrams has a very low overhead both in terms
of memory and execution time. For example, in [20], we solved models with tens
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of millions of states and hundreds of millions of nonzero entries on a simple Pen-
tium workstation, while explicit solutions were restricted to models about one
order of magnitude smaller, and traditional matrix-based Kronecker implemen-
tations required either two or three times as much time when using Gauss-Seidel
(due to the overhead in by-column access), or approximately twice memory when
using Jacobi (due to the need to store both the “old” and the “new” iterates).

6 Conclusion

Formal mathematical models for both logic and temporal analysis of nondeter-
ministic systems are often the most desirable tools, but their solution can be
infeasible due to time and, especially, memory limitations.
Parallel and distributed algorithms will continue to play a role in helping to

cope with the state-space explosion problem, but they can at best increase the
size of the state spaces that can be tackled linearly in the number of resources
(processors, memory) we are willing to employ for the solution process.
A more fundamental paradigm shift is achieved using implicit methods based

on decision diagrams, Kronecker algebra, and similar approaches that exploit the
complex symmetries often present in systems exhibiting globally-asynchronous
locally-synchronous behavior. The success of model checking is proof of their
effectiveness for the logic modeling aspects but, for Markov models, these ap-
proaches are only now beginning to arise the enjoy widespread acceptance.
Our prediction for the area of logic and stochastic models is that an im-

portant future research direction will focus on the use of distributed algorithms
based on decision diagrams and implicit approaches in general, combined with
approximations that avoid the memory bottleneck due to explicit vectors when
computing the numerical solution of the underlying stochastic processes.
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A A Brief Introduction to Kronecker Operators

Given K real matrices Ak ∈ IRnk×nk , for K ≥ k ≥ 1, their Kronecker product
A = AK ⊗ AK−1 ⊗ · · · ⊗ A1 =

⊗
K≥k≥1

Ak ∈ IRnK:1×nK:1

is defined by
A[i, j] = AK [iK , jK ] · · ·AK [i1, j1],

where we use the mixed-base indexing scheme

i ≡ (iK , . . . , i1) = (...((iK) ·nK−1+ iK−1) ·nK−2 · · · ) ·n1+ i1 =
∑

K≥k≥1

ik ·nk−1:1,

while the Kronecker sum of the same matrices is simply⊕
K≥k≥1

Ak =
∑

K≥k≥1

InK:k+1 ⊗ Ak ⊗ Ink−1:1 ∈ IRnK:1×nK:1 .

For example, given A =
[
a b
c d

]
and B =


 r s t
u v w
x y z


 , we have

A ⊗ B =
[
aB bB
cB dB

]
=




ar as at br bs bt
au av aw bu bv bw
ax ay az bx by bz
cr cs ct dr ds dt
cu cv cw du dv dw
cx cy cz dx dy dz




and

A ⊕ B =




a b
a b
a b

c d
c d
c d



+




r s t
u v w
x y z

r s t
u v w
x y z



=




a+r s t b
u a+v w b
x y a+z b
c d+r s t

c u d+v w
c x y d+z



.
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Intuitively, the Kronecker product expresses contemporaneous or synchro-
nized actions: if A and B are the transition probability matrices of two indepen-
dent DTMCs, A ⊗ B is the transition probability matrix of their composition,
while the Kronecker sum expresses asynchronous behavior: if A and B are the
infinitesimal generator matrices of two independent CTMCs, A ⊕ B is the in-
finitesimal generator matrix of their composition.
Note that the definition of Kronecker product (but not that of Kronecker

sum) can be extended to rectangular matrices, but we only need it for square
matrices in our case.
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Abstract. This paper is an informal tutorial on stochastic process alge-
bras, i.e., process calculi where action occurrences may be subject to a de-
lay that is governed by a (mostly continuous) random variable. Whereas
most stochastic process algebras consider delays determined by negative
exponential distributions, this tutorial is concerned with the integration
of general, non-exponential distributions into a process algebraic setting.
We discuss the issue of incorporating such distributions in an interleav-
ing semantics, and present some existing solutions to this problem. In
particular, we present a process algebra for the specification of stochas-
tic discrete-event systems modeled as generalized semi-Markov chains
(GSMCs). Using this language stochastic discrete-event systems can be
described in an abstract and modular way. The operational semantics
of this process algebra is given in terms of stochastic automata, a novel
mixture of timed automata and GSMCs. We show that GSMCs are a
proper subset of stochastic automata, discuss various notions of equiva-
lence, present congruence results, treat equational reasoning, and argue
how an expansion law in the process algebra can be obtained. As a case
study, we specify the root contention phase within the standardized IEEE
1394 serial bus protocol and study the delay until root contention reso-
lution. An overview of related work on general distributions in process
algebra and a discussion of trends and future work complete this tutorial.

1 Introduction

The design and analysis of systems, like embedded systems, communication pro-
tocols or multi-media systems, requires insight in not only the functional, but also
in the real-time and performance aspects of applications involved. Researchers in
formal methods (i.e., concurrency theory) have recognized the need for the addi-
tional support of quantitative aspects, and various initiatives have been taken to
accomplish such support. A prominent example is the treatment of real-time con-
straints, where specification formalisms like timed automata [2] have emerged,
and impressive progress has been made in the development of efficient verifica-
tion algorithms [15,72]. This has resulted in a number of tools (model checkers)
that provide interesting experimental platforms for industrial case studies.

Hard and soft real-time constraints. Constraints that one typically considers in
this real-time setting are ‘hard’, for instance,

“the system must always do a certain activity before time t”

E. Brinksma, H. Hermanns, and J.-P. Katoen (Eds.): FMPA2000, LNCS 2090, pp. 375–429, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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For many applications, though, real-time constraints are typically less stringent.
Rather than requiring that certain activities must always occur before time t,
in practice one is usually interested in more ‘soft’ real-time constraints, where
a system is required to perform the activity mostly before t. The soft real-time
requirements of systems typically address their performance characteristics, and
are often also referred to as their quality-of-service (QoS) parameters. They are
usually related to stochastic aspects of various forms of time delay, such as, for
example, mean and variance of message transfer delay, service waiting times,
failure rates, utilization, etc. In a soft real-time system one typically considers
constraints like:

“the system should perform an activity before time t in 92% of the cases”

In soft real-time systems, state changes take place in a discrete fashion and the
time of occurrence of activities is controlled by random variables. These systems
are also known as stochastic discrete-event simulation (DES) models. In contrast
to most formalisms that are restricted to a particular set of probability distri-
butions, like negative exponential or discrete distributions, the objective is to
support general distributions, discrete or continuous. This makes the formalism
more expressive and more interesting from a practical point of view.

The need for a single framework. Traditionally, there has been a clear separa-
tion between the functional and performance aspects of systems, and as a result
different communities have constructed and analyzed their own, largely unre-
lated models for the aspects under their responsibility. This has resulted in what
has been recognized as “the insularity problem of performance evaluation in the
system design process” [47]. In modern systems, though, the difference between
functional and performance features has become blurred, and both features are
becoming of comparable interest. Thus, it would be beneficial to be able to
check how changes in functionality affect performance issues, and vice versa. In
addition, one would like to have a better relationship between the models that
are used for qualitative and quantitative analysis, and avoid the use of different
models that are mutually incompatible. A single framework where both aspects
could be defined would be highly desirable [24,37]. This tutorial is focused on
an integrated approach using process algebra.

1.1 Organization of the Paper

Section 2 contains an introduction on stochastic process algebra (to what extent
do they differ from traditional process algebra?), justifies the usage of general dis-
tributions (why do we need them?), sketches the complications of incorporating
general distributions in process algebra (why are things not so straightforward
as for exponential distributions?), and provides an overview of possible solutions
that have been suggested so far. Section 3 introduces generalized semi-Markov
processes (GSMPs), a model for general distributions. Section 4 presents a couple
of small examples that serve as a justification for providing a process algebraic
framework for this model. Section 5 presents stochastic automata, an extension
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of labelled transition systems that we use as a semantic model of our process
algebra with general distributions, called SPADES (Stochastic Process Algebra
for Discrete-Event Simulation) and symbolized as . Section 7 gives an account
of evaluation techniques for specifications, including quantitative methods –
discrete-event simulation – and qualitative methods – checking of (timed) safety
properties. Section 9 discusses related work on process algebras with general
distributions. Section 10 provides a summary of the tutorial and presents some
topics for further research.

2 Fitting General Distributions in Process Algebra

In traditional process algebras, like ACP [39], CCS [77], CSP [58] and LO-
TOS [64], a (possibly concurrent) system is syntactically represented using pow-
erful composition operators which facilitate the development of modular and
well-structured specifications. The formal meaning of a process algebra term is
defined in a mathematical model. By defining an appropriate equivalence rela-
tion on this model one is able to formally compare and transform (e.g., simplify
or reduce) specifications. If, in addition, this relation is a congruence1, then such
transformation can be carried out component by component. This compositional
nature reduces the complexity of the transformation significantly. Finally, due to
the algebraic nature of the formalism it is possible to define equational rules on
the syntax that allow to perform step-wise design and minimization at a purely
syntactic level, without any reasoning in semantic terms.

2.1 Stochastic Process Algebra

Traditionally, process algebras have concentrated on the functional aspects of
systems such as their observable behavior, control flow and synchronization as
properties in relative time. In the late eighties, the interest grew in extending
process algebras with quantitative information like time and (discrete) proba-
bilities. These extensions are known as timed and probabilistic process algebras,
respectively.

Timed process algebra. Timed extensions of ACP [5], CCS [78,99], CSP [89] and
LOTOS [13,73] have been defined. The basic idea underlying timed process al-
gebras is to change the role of action-prefix, denoted by a; p for action a and
process p. Originally, the expression a; p simply means that first an action a is
offered, and after the appearance of a the process behaves like p. No statement
is made about when action a occurs. In timed process algebra there are basically
two schools:

– replace a; p by (a, t); p denoting that action a is offered after a delay of t
time units, or

1 An equivalence relation is a congruence if two equivalent terms behave indistinguish-
able in any context.
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– extend the language with a timed prefix like t �→ p denoting that process p is
reached after a delay of t time units; t �→ a; p means that action a is offered
after t time units.

(There are several finer points that we ignore here; see [80] for an overview.)
The last distinction leads to a behavior where two distinct phases are separated.
Phases, during which one or more actions occur together with their correspond-
ing state changes, but where no time elapses, are distinguished from phases
where time passes, but during which no actions happen. With some appropriate
modifications, timed process algebras can be considered as high-level specifica-
tion formalisms for timed automata [29].

Probabilistic process algebra. Probabilistic extensions of ACP [6], CCS [44], CSP
[75] and LOTOS [76] have been studied. A recent overview of probabilistic pro-
cess algebras can be found in [65]. The basic idea of these calculi is to incorporate
a probabilistic choice operator that allows terms like p ⊕π q (with π ∈ (0, 1))
where process p can be selected with probability π and process q with 1−π.
Different semantic models have been used for probabilistic process calculi, de-
pending on whether non-determinism is allowed or not. In the deterministic
case, these languages represent discrete-time Markov chains (DTMC) [68]; in
presence of non-determinism, models similar to Markov decision processes [34]
are obtained.

Markovian process algebra. In stochastic process algebras, time and probabil-
ity are integrated by considering delays of a continuous probabilistic nature. In
languages like EMPA [9], PEPA [56] or TIPP [43], a non-negative real-valued
rate is associated to actions that determines probabilistically the delay prior to
an action. For rate λ, the term (a, λ); p denotes that action a is offered after a
delay determined by a negative exponential distribution. More precisely, (a, λ); p
offers action a within t time units with probability 1 − e−λt and then evolves
into process p. The mean duration until action a is offered is thus 1/λ. As a
semantic model, transition systems are used where transitions are labelled with
pairs of actions and rates. By omitting the action labels — but keeping the
rate information — one obtains a (time-homogeneous) continuous-time Markov
chain (CTMC) for which steady-state and transient performance metrics can
be obtained using traditional techniques [95]. These process algebras provide a
high-level specification formalism for CTMCs. Due to this property they are also
called Markovian process algebras; recent overviews can be found in [19,50,57].

Separating delays and actions. The major distinction between Markovian process
algebras is the treatment of time consumption in case of interaction. Technically,
this amounts to the computation of the resulting rate in case two actions like
(a, λ) and (a, µ) synchronize. To our opinion, the most natural interpretation is
to require both delays to have completed before the synchronization (on a) can
take place — the so-called patient communication [55]. The thus resulting ran-
dom variable equals the maximum of the random variables that are exponentially
distributed with rates λ and µ, respectively. This random variable is, however,
not exponentially distributed. To overcome this technical problem, several so-
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lutions have been suggested that either lack a clear stochastic interpretation or
have a somewhat restricted applicability.

The stochastic interpretation (i.e., maximum of random variables) can be
obtained in a rather natural way by explicitly separating the advance of time
and the occurrence of actions. In this way, synchronization only takes place
via immediate actions. Thus, the usual prefix a; p remains unchanged, but is
complemented with a delay prefix λ �→ p which evolves into p after an exponential
delay with mean 1/λ. This separation of discrete and continuous phases is similar
to that in some timed process algebras (see before) and has been proposed in
the context of Markovian process algebras in [49,51,52].

2.2 Beyond Exponential Distributions

Integration of general, non-exponential distributions in a process algebraic set-
ting has received scant attention. Instead, most work has been focussed on
exponential distributions. Although exponential distributions yield analytically
tractable models (i.e., CTMCs), and are useful for many applications, they are
not realistic for modeling many phenomena in an adequate way. For example:

– in performance modeling, it is often convenient to incorporate empirical dis-
tributions into the model that have been obtained by measuring a realization
of the system. These measurements may e.g., indicate the traffic intensity of
a communication network at a working day, or indicate the length of com-
municated web pages during peak hours. These distributions are mostly not
exponential.

– if a distribution function G is only partially known, it is preferably approx-
imated by a probability distribution F with a “maximal indeterminacy” in
the sense that it is impossible to recognize from F any preference of one
event over another. Thus, F assumes the least about the structure of the
distribution G, or, stated otherwise, it has the highest degree of random-
ness. Technically speaking, F maximizes the entropy [93]:

−
∫ ∞

−∞
f(x) ln(f(x)) dx

where f is the probability density function of F . Depending on which partial
information about G is available, different appropriate choices for F remain.
If only the mean and variance are known, the normal distribution is the
most indeterminate; in cases where only the minimum and maximum are
known, the uniform distribution on the interval between these bounds is the
most indeterminate. The exponential distribution is the most indeterminate
approximation only in cases where only the mean is known (of a positive
random variable).

– empirical studies have shown that many system parameters, such as sizes
of data files stored on web servers and transferred through the Internet, job
service times in general-purpose computing environments, and node degrees
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of certain graph structures (such as hyper links of web pages), exhibit so-
called heavy-tail distributions, i.e., distributions with a very high variance.
A distribution F is heavy tailed [26] if for positive constant c:

F (x) “approximates” 1− c · x−α for 0 < α < 2

F has an infinite variance, and for α < 1 it has an infinite mean. An im-
portant heavy-tail distribution is the Pareto distribution. For a heavy-tail
distribution (with α=1), about 60% of the probability mass is contained in
just 1% of the observations; for an exponential distribution this dependency
is roughly linear. If one observes heavy-tailed inter-arrivals, then the longer
one has waited, the longer we should expect to wait — the expectation para-
dox. Instead, for exponential distributions the waiting time does not play any
role, due to the memoryless property (see next Section).

– deterministic delays are prevalent and important in computer, communica-
tion and manufacturing systems. Typical examples of deterministically dis-
tributed parameters are: timeouts in communication protocols, hard dead-
lines in real-time systems, transmission delays of fixed-length packets, and
cycle times of work-flow management systems.

– it has been argued that several phenomena in modern communication sys-
tems, in particular several aspects of multi-media communication systems,
can be most adequately modeled by non-exponential distributions. For in-
stance, the variability of the delay of sound and video frames (so-called jitter)
is mostly assumed to be controlled by a normal distribution [11,38].

2.3 Interleaving + General Distributions = Non-trivial

Given the need for non-exponential distributions, the question is whether we can-
not simply replace the exponential distributions in Markovian process algebra
by general distributions. This turns out not to be straightforward. We illustrate
this by discussing (a simplified version of) an important axiom in process alge-
bra, known as the expansion law.

Expansion law. A popular mathematical model for providing semantics to tra-
ditional process algebras is labelled transition systems, (possibly infinite-state)
automata where transitions that are labelled with actions describe how the sys-
tem can evolve from one state to another. In mapping process algebra terms to
this model, the independent parallel composition of two actions is treated as a
choice between the two possible sequential orderings. Thus, in a parallel com-
position, actions of one component are interleaved with actions of the other —
hence the term interleaving semantics. As a result, independent parallel compo-
sition (denoted ||) can be reduced in terms of choice (denoted +) and prefix as
expressed by, for example:

a; p || b; q = a; (p || b; q) + b; (a; p || q) (1)

for actions a, b and processes p, q (cf. Fig. 1 for p and q being the process 0 that
cannot perform any action). This principle, in its full generality known as the



General Distributions in Process Algebra 381

expansion law [77], is widely accepted and has proven to be of crucial importance
for process algebraic verification purposes [4].

||

a

reduces to

b

b

a b

a

Fig. 1. Interleaving of the processes a;0 and b;0

Exponential distributions and interleaving semantics fit well. The semantics of
Markovian process algebras are commonly defined using an extension of labelled
transition systems. The structure of these transition systems closely resembles
that of CTMCs. The elegant memoryless property of exponential distributions
enables a smooth integration in an interleaving setting, since in analogy of (1)
we have:

λ �→ p ||µ �→ q = λ �→ (p ||µ �→ q) + µ �→ (λ �→ p || q) (2)

To justify this law, consider the term λ �→ p ||µ �→ q. Let U be the random
variable modeling the delay before process q can start — U is thus exponentially
distributed with rate µ— and suppose that the delay of the left process “finishes
first” (with rate λ), say, after y time units. The probability that the start of
process q has to delay for at most an additional x time units is

Pr[U 6 y+x | U > y]
Due to the memoryless property of exponential distributions, it holds that

Pr[U 6 y+x | U > y] = Pr[U 6 x] (3)

Thus, the remaining duration until the initial delay of process q finishes is (again)
determined by an exponential distribution with rate µ. Stated differently, the
delay of the left process does not have any impact on the distribution of the
remaining delay in the other process — the advance of time governed by memo-
ryless distributions is independent. By symmetry, an analogous reasoning applies
when the right-hand process finishes first.

General distributions and expansion law. If we allow actions to be delayed by
general distributions F and G, though, it turns out that the analogon of (2) is
invalid:

F �→ p ||G �→ q �= F �→ (p ||G �→ q) +G �→ (F �→ p || q) (4)

The reason for this inequality is the absence of the memoryless property for
general distributions. For instance, after the delay imposed by F in the left-
hand process, the residual delay of the right-hand process G �→ q has to be
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taken into account in order to correctly determine the remaining delay before
process q becomes enabled.

2.4 Some Solutions to the Problem

If the incorporation of general distributions into process algebra is not trivial,
what are possible strategies to overcome this problem? Here, we summarize the
main schools of thought.

Still use Markovian process algebras. In this category we find two kinds of solu-
tions: approximation and exploiting insensitivity.

1. A possible solution is to approximate general distributions by appropriate
probability distributions that can be described as series/parallel combina-
tions of exponential distributions, possibly with feedback, thus residing in
the class of Markovian process algebras. An interesting class of distributions
for this purpose is the class of phase-type (PH) distributions [79]. They are
defined as distributions of absorption times in finite CTMCs (but that may
contain loops) with a single absorbing state, i.e., a state without any outgo-
ing transition. PH-distributions can approximate any distribution on [0,∞)
arbitrarily close; algorithms to fit a PH-distribution to empirical distribu-
tions do exist [3]. The encoding of PH-distributions in a Markovian process
algebra has been considered in [49,51,52] where — due to the aforemen-
tioned separation between time and actions — any CTMC with a trivial
initial distribution (and thus any such PH-distribution) can be specified. A
similar approach can be taken by using a subset of PH-distributions such as
Cox [25] or Erlang mixture distributions, see [52] and [23], respectively.

2. An alternative solution is to allow general distributions in a controlled way
such that the stochastic property of insensitivity can be exploited. A stochas-
tic process is insensitive if its steady-state distribution depends on the distri-
bution of one or more of the random variables governing state residence times
only through their mean. The theory of insensitivity has been applied to high-
level specification formalisms such as stochastic Petri nets [48]. In [22,23] a
syntactic construction is presented that guarantees the insensitivity of the
stochastic process underlying a stochastic process algebra specification. By
means of this construction it is guaranteed that for studying the steady-state
behavior of the process under consideration, it is sufficient to consider that
process in which each general distribution is replaced by, for instance, an ex-
ponential distribution with the same mean. Hence, the steady-state behavior
of such processes can be analyzed using ordinary CTMC techniques.

The main benefit of both approaches is that existing frameworks can be used
without any modification. The main disadvantage of approximation (approach
1) is that it leads to a state-space explosion since any general distribution is
represented by a (possibly complex) CTMC. Besides, choice expressions like
F �→ p+G �→ q are difficult to treat as the choice between the approximations
of F and G is determined by the first phase of their PH-distribution, and not
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by their entire PH-distribution. The insensitivity approach (2) is applicable to
a small class of processes and is restricted to steady-state properties.

Drop the expansion law. As we have seen before, obtaining an expansion law (1)
is a serious problem when considering general distributions. A feasible option is
to define a semantics for process algebra that does not obey this law. The thus
obtained semantics is known as true concurrency or partial-order semantics. In
these models, system runs are no longer represented as totally ordered sequences,
but rather as partial orders where the occurrences of causally independent ac-
tions are unrelated. Important partial-order models include Petri nets [36], and
event structures [81]. The idea of using true concurrency semantics for stochastic
process algebra has been brought up in [18] where a stochastic variant of event
structures was used as semantic model. As actions that occur concurrently are
unordered, there is no need to keep track of the residual delay of random vari-
ables that “run in parallel”. Analysis techniques that have considered for these
event structures are discrete-event simulation [67], and a decomposition-based
analysis method [12]. Similar approaches have been pursued in [83] where causal
dependencies between delays are derived from the transition labels (so-called
proved transitions) and in [53] where stochastic task graphs are used, a model
that is quite similar to event structures.

The main advantage of this approach is the potential compact representa-
tion of the state space; the main disadvantage is that it leads to infinite-state
semantic objects even for simple recursive terms. Recent investigations indicate,
however, that finite objects can be obtained for the event structure approach
(for finite-state process algebra terms) from which stochastic task graph models
are generated that can be analyzed numerically [87].

Keep track of residual lifetimes. As a third solution, we refine the earlier dis-
cussed separation of time and actions a bit further and distinguish between:

– the start of a probabilistic delay,
– the completion of a probabilistic delay, and
– the occurrence of immediate actions.

To keep track of delays labelled transition systems are extended with clocks. A
clock is initialized by sampling a probability distribution function, and starts
counting down once initialized. All clocks count down at the same pace. Tran-
sitions are labelled with an action and a set of clocks; this transition is enabled
when all clocks in the set have expired, i.e., have reached the value 0. Similarly,
we extend traditional process algebra with two new constructs: for C a finite set
of clocks, when C �→ p denotes the process that after expiration of all clocks in
C behaves like p, and set C in p denotes the process that behaves like p after
any clock x in C is initialized according to its distribution. The delay prefix
λ �→ p that we encountered before is now written as set x in (when x �→ p) with
x a clock controlled by an exponential distribution of rate λ. Note that in the
exponential case the distinction between start and finish of a delay is not needed
since
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y := G()

b, y

x := F ()

x := F ()

a, x

||
reduces to

a, x

b, y

b, y

a, x

y := G()

Fig. 2. Interleaving processes set x in (when x �→ a;0) and set y in (when y �→
b;0)

set x, y in (when x �→ a;when y �→ p)

= set x in (when x �→ a); set y in (when y �→ p)

When mapping process algebra terms onto the extended labelled transition sys-
tems, the principle of interleaving is applied (cf. Fig. 2). In the resulting automa-
ton, initially both clocks x and y are initialized and start counting down. If x
expires first, action a happens, and a state is reached in which clock y records
the remaining time until action b is enabled. A symmetric scenario happens
when clock y expires first. Accordingly, an expansion law can be obtained. For
instance, for p′ = when x �→ a; p and q′ = when y �→ b; q we have:

set x in p′ || set y in q′ = set x, y in (when x �→ a; (p || q′) + when y �→ b; (p′ || q))

This idea has first been brought up in [30], and has been extended and refined
later on [27,31,32,33]. In this tutorial we will follow this direction. A similar
approach has been taken in [17] where a “start-termination” (ST) semantics
— a model that has been originally developed to study refinement in process
algebra [40] — is used for generally distributed delays.

The labelled transition systems extended with clocks closely resemble gener-
alized semi-Markov processes (GSMPs), a model used for the study of stochastic
discrete-event systems. Accordingly, the process algebra that allows for gen-
eral distributions can be considered as a high-level specification formalism for
GSMPs.

3 Generalised Semi-Markov Chains

GSMPs have been introduced by Glynn [41] and Whitt [100]; for an introduction
to GSMPs we refer to [21,92]. We consider discrete-state GSMPs, generalised
semi-Markov chains (GSMCs, for short).

The model of GSMCs. A GSMCs is a state automaton where transitions are
triggered by the occurrence of stochastically timed events. A set of active events
is associated to each state. These are the events that are possible in that state,
i.e., that can cause a transition outgoing from that state. The remaining time
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until the possible occurrence of an event is determined by its clock; we thus have
one clock per event. Clocks are initialised according to a continuous probability
distribution function and run backwards, all with the same pace. In the following
we assume a set of clocks C is given.

Definition 1. (Z, z0,E, E, C, next) is a generalised semi-Markov chain (GSMC)
with2

– Z, a non-empty set of states with initial state z0 ∈ Z,
– E, a non-empty set of events,
– E : Z → Pf (E), the event-assignment function s.t. E(z) �= ? for all z ∈ Z,
– C : E→ C, the clock-assignment function, with continuous distribution FC(e)

for any e ∈ E,
– next : Z ×E → Z, the partial next-state function that assigns to each state
z and event e ∈ E(z) a next state next(z, e).

Example 1. Consider a queueing system in which jobs arrive and wait until they
are executed by a single server. An infinite population of jobs is assumed. Jobs
arrive with an inter-arrival time that is determined by a continuous probability
distribution F while the delay between the processing of two successive jobs is
controlled by distribution H . The serving discipline is FCFS (first come first
served). This system is known as a G/G/1/∞-queue, where G stands for gen-
eral distribution of the arrival and service process, respectively, 1 indicates the
number of servers, and ∞ denotes the infinite buffer capacity. A typical GSMC
description of such queueing system is defined in the following way. We let the
state space Z = { 0, 1, 2, . . .} where the state number indicates the number
of jobs that are currently in the system, i.e., in the queue or currently being
processed. The initial state z0 is 0, the empty system. In each state, possible
events are the arrival of a job (denoted a) and the completion of a job (denoted
c); thus, E = { a, c }. In the initial state no job completion is possible. Thus,
E(i) = { a, c } for i > 0 and E(0) = { a }. The arrival of a job causes a transition
from state i to state i+1. Completion of a job leads to a transition from state
i+1 to state i. Thus, next(i, a) = i+1 and next(i+1, c) = i. The state-transition
structure of this GSMC is depicted in Fig. 3. Clocks are initialised as follows. On
entering state i+1 after an arrival, the clock of the next arrival a is initialised

c

0

a

1

c

a

c

a

c

a

2 3 · · ·

Fig. 3. GSMC for a G/G/1/∞ queueing system

2 We adopt the following notational convention. For a set A, P(A) denotes the set of
all subsets of A, and Pf (A) denotes the set of finite subsets of A.
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according to distribution F , the job inter-arrival time. On entering state i after
a job completion, the clock of the next job completion is initialised according to
distribution H , the service delay. Accordingly, we let C(a) = x, C(b) = y and
Fx = F and Fy = H .

The behaviour of a GSMC. The dynamics of a GSMC are described as follows
in a procedural way. Note that for any state z, to each active event e ∈ E(z) a
clock value val(C(e)) > 0 is associated. Initially, all active events are initialised
according to their distribution function, i.e., val(C(e)) = FC(e)(·) if e ∈ E(z0).
Intuitively, FC(e)(·) denotes “taking a sample from distribution FC(e)”. Then:

1. determine the set of active events E(z) in the current state z
2. determine the clock value d∗ such that d∗ = min{ val(C(e)) | e ∈ E(z) }
3. determine event e∗ with val(C(e∗)) = d∗ and state z′ = next(z, e∗)
4. determine the new clock values val′ in z′ as follows:

val′(C(e)) =




val(C(e))− d∗ if e ∈ E(z) ∩ (E(z′)− { e∗ })
FC(e)(·) if e ∈ E(z′)− (E(z)− { e∗ })
∞ otherwise

5. go back to the first step of the procedure with current state z′.

Note that there always exists an event e∗, since E(z) is non-empty for every
state z. Since all clocks are initialised by continuous distributions, the event e∗ is
guaranteed to be unique with probability one, as the probability of sampling two
continuous distributions with the same value is 0. Once event e∗ with minimal
clock value has been determined, the next state z′ is determined (step 3.) and
the new clock values are calculated as follows (step 4.). For each active event e
in state z that remains active in z′, the clock value is decreased by the elapsed
time d∗. For each event e that becomes active in z′, the clock value is determined
by sampling the clock-distribution function FC(e); for all other events the clock
value equals ∞, indicating that these events are inactive.

The above procedure is also known as variable time-advance procedure [92]
which is characterised by time steps of varying length and an event occurrence in
every time step. This procedure is controlled by the occurrence of “next events”
and the time between the occurrence of two events is “skipped”. This principle
is reflected by the fact that clock values do not increase as time passes, but only
increase if the next event happens (see step 4.).

Example 2. Fig. 4 presents an example execution of the GSMC of Fig. 3 by
depicting the values of the clocks of events a (solid line) and c (dashed line) (on
the y-axis) while time evolves (x-axis). Each time a clock expires, a transition to
the next state is taken. Below the x-axis, for each time instant the current state
is indicated. Note that in this execution, event c becomes enabled when moving
from the initial state to state 1 and stays enabled while visiting states 2 and 3,
before triggering the transition back to state 2.

Restrictions. Actually, we consider a subclass of GSMCs as introduced in [41].
The main restriction that we impose is that the next state is deterministically
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Fig. 4. A sample evolution of the GSMC of Fig. 3

determined by the present state and the triggered event, whereas in the original
GSMCs the next state is chosen in a discrete probabilistic fashion from a set of
possible next states. In addition, we consider time-homogeneous GSMCs. Such
processes are invariant under time-shifts. Intuitively, the probability to be in
state z′ at time t′ given that the system is in state z at time t < t′, is equal to the
probability that the system is in state z′ at time t′−∆ given that the system is in
state z at time t−∆ (for any∆ 6 t). This is a rather common restriction. Finally,
clocks in GSMCs are allowed to have different (possibly state-dependent) rates
whereas in our case all clocks proceed with the same speed. Different rates are not
very usual in discrete-event simulation, and moreover, under certain conditions,
such multi-rated GSMCs can be represented by GSMCs where all clock rates
equal one. The notion of GSMC considered here can thus be summarised as
mono-rated, deterministic, time-homogeneous GSMCs.

GSMCs versus CTMCs and SMCs. In order to better understand the link with
related models, we briefly address the relationship of GSMCs to continuous-
time Markov chains (CTMCs) [95] and semi-Markov chains (SMCs) [86,54]. To
put it in a nutshell, a CTMC is a GSMC in which all clocks are governed by
negative exponential distributions, i.e., for each clock x we have Fx(t) = 1−e−λt,
for some non-negative real λ. A CTMC possesses the Markov property: the
probability of making a transition to a next state only depends on the current
state and not on previous states (“absence of state memory”). The memoryless
property of exponential distributions further implies that the probabilities of
taking next transitions do not depend on the amount of time spent in the current
state (“absence of age memory”). The residence time of a state is exponentially
distributed with a rate that equals the sum of the rates of its outgoing transitions.

A SMC is a GSMC in which all clocks are initialised on each state change. As
exponential distributions are memoryless, cf. equation (3), there is no difference
between setting clocks on each state change or not. Each CTMC is thus an
SMC. An SMC is, however, not a CTMC. It possesses the Markov property,
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but does not conform to the “absence of age memory” principle: probabilities of
taking next transitions do depend on the amount of time spent in the current
state. For an SMC, the state residence times are generally distributed and are
explicitly specified for each state. In a GSMC, the residence time of a state is
determined implicitly by the distributions of the set of active events in a state.
As a result, the state residence times in a GSMC may be history-dependent.
This phenomenon is the essential difference with SMCs, where state residence
times are governed by an a priori, fixed random variable.

4 Why a Process Algebra for GSMCs?

In this section, we motivate the need for a process algebraic language for the
specification of GSMCs by discussing a couple of examples. For each example
a short informal description is given, a GSMC, and a process algebraic spec-
ification. Although using the above description the dynamics of our example
GSMCs can be determined, it is in absence of any further explanation not easy
to understand. As we will illustrate, this is basically due to the fact that the
individual system components are hard to recognize from the overall system
structure. This problem becomes more apparent if we consider GSMCs model-
ing systems of more realistic magnitude. We say that GSMC specifications lack
compositionality. The idea that we shall pursue here is to specify GSMCs in a
compositional way and to exploit this compositional structure by re-using com-
ponents. We start with a process algebra specification for the G/G/1 queueing
system of Example 1.

4.1 The Simple Queueing System

In process algebra, the specification of our queueing system can be obtained in
a hierarchical manner, starting from the specifications of the individual com-
ponents: the queue, the server, and the arrival process. The buffer of infinite
capacity can be specified by the set of processes:

Queue0 = a;Queue1

Queuei = a;Queuei+1 + b;Queuei−1 for i > 0

where the process indices indicate the number of jobs in the buffer, action a
denotes enqueueing a job, and action b denotes dequeuing a job. Similarly to
GSMCs, clocks can be used to model probabilistic delays. We obtain for the
arrival and server processes:

Arrival = set xF in (when xF �→ a;Arrival)
Server = b; set yH in (when yH �→ c; Server)

In the Arrival process clock x is initialized and starts counting down. Once it
has reached the value 0, it expires and action a is enabled. The overall system
is described by:

SystemG/G/1/∞ = (Arrival ||? Server) ||{a,b}Queue0
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Queue Server

a
Arrival

b

job completion

c

job arrival dequeue job

Fig. 5. Compositional specification of G/G/1 queueing system

In process p ||A q, where A is a set of actions, p and q perform actions au-
tonomously, but actions in A should be synchronously performed by both. Ac-
tion a, for instance, can only take place when the processes Arrival and Queue
are both ready to participate; note that Server does not need to participate in
this action. The resulting specification of the G/G/1/∞ system closely resem-
bles the structure of the system itself (cf. Fig. 5), it is easy to understand, and
it is readily modifiable. For instance, a system with two servers is obtained in
the following way:

SystemG/G/2/∞ = (Arrival ||? Server ||? Server) ||{a,b}Queue0

As an alternative extension, a specification of the G/G/1/K queueing system,
where K (K > 0) denotes the finite capacity of the queue, is obtained by replac-
ing the Queue0 process by a slightly modified buffer FQueue0:

FQueue0 = a;FQueue1

FQueuei = a;FQueuei+1 + b;FQueuei−1 for 0 < i < K
FQueueK = a;FQueueK + b;FQueueK−1

where it is assumed that when the queue is full, a job arrival is neglected and
lost. The loss of a job is reflected by the fact that for process FQueueK the
capacity is unchanged on arrival of a job.

4.2 A Queueing System with Two Classes of Jobs

Informal description. Consider now a single-server queueing system with a fi-
nite queueing capacity K > 0, cf. Fig. 6. Two types of jobs are considered.
They arrive independently according to different arrival processes. Jobs of class
i (i = 0, 1) arrive with an inter-arrival time Fi; the processing delay of a job of
class i is controlled by distribution Hi. We assume that the service times are
mutually independent and are independent of the arrival process. The single
server thus takes the job (if any) at the head of the queue and services it with
a delay according to its class. The serving discipline is FCFS. (This example is
adopted from [21].)

A GSMC description. The possible events in this system are the arrival or
completion of a job of class i (i = 0, 1); accordingly, the set of events equals
{ a0, a1, c0, c1 } where the index of the actions indicate the class they are related
to. The description of the state of the system is a bit more involved than for
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class 1 (H1)

class 0 (H0)

K > 0 places

class 1 (F1)

class 0 (F0)

Fig. 6. G/G/1-queueing system with two job classes

the G/G/1/∞ queueing system. It no longer suffices to consider only the queue
length, but we also have to keep track of the class of the j-th job in the queue.
Thus, a state in the GSMC is a K-tuple (j1, . . . , jK) where jm = − if the m-th
position in the queue is empty, and jm = 0 (1) if this position contains a job of
class 0 (1), for 0 < m 6 K. The oldest job (if any) is kept at position 1. This
gives rise to 2K+1 − 1 states. The GSMC for K equal to 3 is depicted in Fig. 7
where empty positions in the queue are indicated as blanks. Note that states at
depth i indicate scenarios where i jobs are currently in the system.
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Fig. 7. GSMC of a G/G/1-queueing system with two job classes

A compositional approach. In order to obtain a process algebraic specification of
this queueing system we adapt the specification of the simple G/G/1/∞-system
in a component-wise manner. The arrival process for each class of jobs is simply
an instantiation of the Arrival process before; the server is slightly adapted in
order to be able to deal with both classes of jobs:

Arrivali = set xFi in (when xFi �→ ai;Arrivali) for i = 0, 1
Server2 = b0; set yH0 in (when yH0 �→ c0; Server2)

+b1; set yH1 in (when yH1 �→ c1; Server2)

For the finite queue, we extend the specification of the finite queue given above
such that, besides the current occupancy of the queue, we keep track of the class
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of the j-th job in the queue. The latter is carried out by adding a bit-vector (as
superscript) to the process FQueue in the following way:

OQueue0 = a0;OQueue0
1 + a1;OQueue1

1

OQueue0w
i = a0;OQueue0w0

i+1 + a1;OQueue0w1
i+1 + b0;OQueuewi−1 for 0 < i < K

OQueue0w
K = a0;OQueue0w

K + a1;OQueue0w
K + b0;OQueuewK−1

The processes OQueue1w
i are similar to OQueue0w

i (0 < i 6 K) and are omitted
here. The overall system is now described by:

SystemK = (Arrival0 ||?Arrival1 ||? Server2) ||{a0,a1,b0,b1}OQueue0 (5)

Note the resemblance with the structure of the G/G/1/∞-specification.

4.3 A Simple Queueing Network

Suppose now that we combine the two queueing systems above in the follow-
ing (open) queueing network, cf. Fig. 8. The arrival processes of the two classes
of jobs in the latter system, SystemK , are the outputs generated by two finite
G/G/1 queueing systems of size K (for class 0) and N (for class 1), respectively.
For obtaining the GSMC of this system, the GSMCs of the individual compo-

N > 0 places

M > 0 places

K > 0 places

class 1

class 0
class 0 (H0)

class 1 (H1)

Fig. 8. A simple open queueing network

nents need to be combined in an appropriate way. This is not a straightforward
exercise.

To obtain a specification of this system in the process algebraic setting,
we first observe that the structure of the queueing network resembles that of
SystemK , except that the input streams are the output streams of two finite
G/G/1 systems. Thus, the two Arrival processes in specification (5) are replaced
by the specifications of the G/G/1-queues. It now remains to “link” the output
of the G/G/1 systems to the input of the 2-class buffer system. This is estab-
lished by means of renaming. Let f be a function that maps action names to
action names. Process p[f ] behaves like process p except that actions are re-
named according to f . For instance, process SystemG/G/1/K [c/a0] denotes the
finite G/G/1 queue with K places where action c (output) is renamed into a0.
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Thus, a job completion in this system is turned into an arrival of a class 0 job.
Using this renaming operator we obtain:(

SystemG/G/1/K [c/a0] ||? SystemG/G/1/N [c/a1] ||? Server2
)
||AOQueue0

with A = {a0, a1, b0, b1}.

4.4 Non-determinism

Recall that in each state of a GSMC, the next event is determined in a unique
way. We like to point out that in the process algebra this is (deliberately) not
the case. For instance in a specification like

set x in (when x �→ a; q + when x �→ a; r)

it is not uniquely determined whether to move to q or to r once clock x has
expired. A similar scenario appears in SystemG/G/2/∞: if the buffer contains
a job and both servers are idle, it is non-deterministically determined which
server dequeues the job. This phenomenon, known as non-determinism, appears
if two (or more) equally labelled transitions become enabled simultaneously. This
concept is usually absent in stochastic discrete-event systems – how to analyze
their performance? – but has been widely accepted in the computer science
community for the purpose of under-specification. This is useful for modeling,
for instance [58]:

– Implementation freedom: non-determinism allows to specify freedom of im-
plementation; for instance, if two possible alternatives are described in the
specification, a valid implementation would just realize one of them

– Scheduling freedom: if several processes run in parallel, there is a freedom of
choice in selecting the next process that performs a move (interleaving)

– External environment: actions represent interaction opportunities with the
context in which the process is considered; the interaction capabilities of the
environment then influence how the choice is determined

Non-determinism is useful for under-specifying “how often” an alternative is
chosen. This information is usually not available in the early steps of the design,
or is deliberately left unspecified. If we are to study the performance of such
system specifications, this non-determinism will be resolved by adversaries, see
Section 7.

5 Stochastic Automata

This section introduces stochastic automata, a mixture of timed automata [2] and
GSMCs. Stochastic automata are strongly related to GSMCs and incorporate,
apart from the necessary (slightly generalized) ingredients to model GSMCs, the
possibility of specifying non-determinism. An extensive treatment of stochastic
automata is given in [27].
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Definition 2. A stochastic automaton SA = (S, s0,A, C, −→ , κ) where
– S is a non-empty set of locations with initial location s0 ∈ S
– A is a set of actions
– C is a set of clocks with distribution function Fx for each x ∈ C
– −→ ⊆ S × (A× Pf (C))× S is a set of edges
– κ : S → Pf (C) is a clock-setting function

(s, a, C, s′) ∈ −→ is denoted s a,C−−−→ s′. To each location s a finite set of clocks κ(s)
is associated. As soon as location s is entered, any clock x in κ(s) is initialized
according to its probability distribution function Fx. Once initialized, the clock
variables count down at the same rate of letting time pass (like in a GSMC).
A clock expires if it has reached the value 0. The occurrence of an action is
controlled by the expiration of clocks. Thus, whenever s a,C−−−→ s′ and the system
is in location s, action a is offered as soon as all clocks in the set C have expired.
In this situation, the edge s a,C−−−→ s′ is called enabled. After taking the edge, the
system evolves to location s′. If, after the expiration of a (possibly empty) set
of clocks, more than one edge outgoing from s is enabled, an enabled edge is
selected non-deterministically.

c, yc, yc, y

ya, x a, x a, x

c, y c, y c, y

(1, c) (2, c) (3, c)(0, c)

(0, a) (1, a) (2, a) (3, a)

a, x a, x a, x

y y y

x x x
x

Fig. 9. Stochastic automaton of a G/G/1/∞-system

Example 3. The stochastic automaton SAG/G/1/∞ (cf. Fig. 9) describes the be-
havior of the G/G/1/∞ queue. Here, we represent a location s as a circle con-
taining the clocks that are to be set in s, and denote edges by arrows. The initial
location is represented by a circle equipped with a small ingoing arrow (leftmost
circle in second row). We often omit curly brackets for singleton sets. SAG/G/1/∞
is defined by: S = {(i, α) | i > 0, α ∈ {a, c}}, s0 = (0, a), A = { a, c }, C = { x, y }
with Fx = F and Fy = H , and

κ(i, a) =
{{ x } if i �= 1
{ x, y } if i = 1 and κ(i, c) =

{{ x } if i �= 0
? if i = 0

and (i, α) a,x−−−→ (i+1, a) and (i+1, α) c,x−−−→ (i, c) for i > 0 and α ∈ A.
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This stochastic automaton can be understood as follows. Locations are pairs
where the first component indicates the number of jobs in the system (i.e., queue
and server), and the second component indicates whether the last action was
an arrival (action a) or a completion of a job (action c). Note that after the
occurrence of action a a location is reached in which clock x is set. Similarly,
after the occurrence of action c, clock y is set (except for location (0, c)). Clock
x thus controls the job inter-arrival time while clock y controls the service delay.
In location (1, a), the job that has just arrived is to be served. Thus both the
time of the next job arrival and the time until the job is serviced are determined.
Accordingly, clocks x and y are set in location (1, a). In location (0, c), however,
the last job has just been served and the delay until the next job arrival has
decided before. Accordingly, no clock is set in location (0, c).

5.1 Probabilistic Transition Systems

The formal interpretation of stochastic automata is defined in terms of prob-
abilistic transition systems. Probabilistic transition systems are labelled tran-
sition systems that contain two disjoint sets of states: probabilistic and non-
deterministic states. A non-deterministic state has zero or more outgoing tran-
sitions. These transitions determine how the system evolves from the state to a
possibly non-deterministically determined next probabilistic state. A probabilis-
tic state has a single outgoing probabilistic transition. A probabilistic transition
is a function that maps a probabilistic state onto a probability space whose sam-
ple space ranges over the set of non-deterministic states. Paths through a prob-
abilistic transition system are thus sequences of alternating non-deterministic
and probabilistic states.

Definition 3. Let Prob(H) denote the set of probability spaces (Ω,F ,Pr) such
that Ω ⊆ H.3 A probabilistic transition system (PTS, for short) is a structure
PTS = (N,P,L, T,−→, σ0) where

– N is a set of non-deterministic states
– P is a set of probabilistic states with N ∩ P = ?
– L is a set of labels
– T : P → Prob(N) is a (total) function called probabilistic transition relation
– −→ ⊆ N × L× P is the labelled (or non-deterministic) transition relation
– σ0 ∈ P is the initial (probabilistic) state

(σ′, +, σ) ∈ −→ will be denoted by σ′ �−→ σ. In the setting of this paper, the set
of labels is L = A × IR>0, where A is a set of action names. The reals denote

the (relative) time at which an action takes place. Transition σ
a,d−→ σ′ denotes

that the system evolves from non-deterministic state σ to probabilistic state σ′

by offering action a after idling precisely d time in state σ.

3 A probability space (Ω,F ,Pr) consists of a (sample) set Ω, a σ-algebra F and a
probability measure Pr : F → IR>0. More details can be found in [70].
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Example 4. Consider an automatic switch that controls a light. Assume that
the delay between two successive on-button switchings is governed by a negative
exponential distribution with mean 30 minutes and that the switch automatically
switches off the light in case the on-button has not been switched for exactly 2
minutes. The behavior of the switch is modeled by the following PTS:

– N = IR2 ∪ IR
– P = {σinit , σon} ∪ ({σoff } × IR)
– L = {on, off } × IR>0

– T (σinit ) = R(Fe,30), T (σon) = R(Fe,30, D2), and T (σoff , d) = Triv (d), and
– −→ is the smallest relation such that:

• (d, d′) on(d)−−−−→σon ⇔ 0 6 d 6 d′

• (d, d′) off (d′)−−−−−→ (σoff , d− d′) ⇔ 0 6 d′ 6 d

• d on(d)−−−−→σon ⇔ 0 6 d
– σ0 = σinit

where R(Fe,30) is the probability space on the real line with the unique proba-
bility measure obtained from Fe,30(t) = 1−e− t

30 , R(Fe,30, D2) is the probability
space on the real plane obtained from Fe,30 and D2(t) = 0 for t < 2 and 1
otherwise, and Triv (d) is the trivial probability space on { d }.

The PTS is explained as follows. The system starts in σinit , the state in which
the light is off. By taking a probabilistic transition, the time d until switching
the light on is determined according to distribution Fe,30 and the system evolves
to state d, where the switch waits until it is switched on. If the light is switched
on, the system moves to the probabilistic state σon . On taking the probabilistic
transition from σon two time instants are randomly determined: time d until the
light is switched on (again) and time d′ until the light turns itself off. The next
non-deterministic state is thus (d, d′). Note that d′ = 2 with probability one.
Now two scenarios may occur. If the light is switched on first (i.e., d 6 d′), the
on-button is switched: (d, d′) −→ σon labelled with action on(d). In this state,
both time values will be determined again. In the other case, the light turns
off while reaching state (σoff , d−d′) via performing action off (d′), where d−d′
is the remaining time until the next switching. From state (σoff , d) the non-
deterministic state d is reached with probability one, where the switch waits
until it is switched on.

5.2 Interpretation of Stochastic Automata in Terms of PTSs

The formal semantics of a stochastic automaton is defined in terms of a PTS.
The relation between stochastic automata and PTSs is similar to the relation
between timed automata and timed transition systems. We present the mapping
of stochastic automata onto PTSs in an informal way; a formal treatment can
be found in [27,31]. The states of the PTS keep track of the current location and
the values of all clocks involved. Values of clocks are determined by a valuation,
a function that assigns to each clock x ∈ C its real value v(x) ∈ IR. (We let
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V denote the set of valuations.) States are thus pairs (s, v). To distinguish non-
deterministic and probabilistic states we write [s, v] for a non-deterministic state,
and use (s, v) for probabilistic states. As above, the labelled transition is labelled
with pairs (a, d), for action a and delay d.

Performing an edge in the stochastic automaton is represented by a sequence
of two steps. Suppose there is an edge from location s to s′ labelled with a,C,
and assume the current state is [s, v]. If after delaying for some time d, say,
all clocks in C have expired, then [s, v] a,d−−−→ (s′, v′) with s′ the location just
reached in the stochastic automaton and v′ such that for all clocks d time units
have passed: v′(x) = v(x) − d. While entering location s′ though, the clocks in
κ(s′) need to be set. This is accomplished by a subsequent probabilistic transition
starting from (s′, v′), the state just reached. For the sake of simplicity, assume
that κ(s′) = { x, y }. Then, T (s′, v′) is a unique probability space induced by the
distributions of the clocks, Fx and Fy , in a Borel space on a two-dimensional real
hyper-space. The clocks that are not in κ(s′) keep their value while the clocks
x and y are initialized according to their distributions. Thus, in the resulting
state [s′, v′′] the system is still in location s′ (as expected), and v′′(z) = v′(z)
for each z different from x and y, while v′′(x) = Fx() and v′′(y) = Fy(). Note
the resemblance of this recipe with step 4. of the procedure in Section 3 that
described the dynamics of a GSMC.

There is a subtlety though in the first step of the recipe. According to the
above procedure, [s, v]−→ (s′, v′) if all clocks in C have expired. However, we did
not make clear yet whether to take such transition as soon as all clocks in C
have expired, or whether it is allowed to take it at any time point once they have
expired. In the first scenario, no delay is allowed once the clocks have expired –
it adheres to the so-called “maximal progress” philosophy – while in the second
such delay is allowed. Both interpretations have their own use:

– the notion of maximal progress is appropriate when the stochastic automa-
ton is a closed system, i.e., a system which is complete by itself and which
needs no further synchronization with other automata. As no further syn-
chronizations are envisaged, there is no need to delay transitions any further
once they are enabled, since there will be no further (external) processes
that can delay their execution. Such perspective is useful, for instance, to
determine the model’s performance characteristics.

– to study reachability properties like freedom from deadlock, it is important
to observe how the system behaves in an arbitrary context. That is, the
interaction of a system with a certain “well-behaved” component may not
induce a deadlock, while a “badly-behaved” component could take the sys-
tem through an undesired path that will end in a deadlock situation. In this
open system perspective, an action that is enabled may not be executed until
the environment is also ready to execute such an action. Therefore, it may
not take place as soon as it is enabled.

In the sequel, let O[[ SA ]]v denote the open interpretation of SA with initial
valuation v, and C[[ SA ]]v denote the closed interpretation of SA. Note that the
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only difference between the closed and open interpretation is how to treat the
expiration of clocks: either a delay is allowed once they expire (open), or it is not
(closed). All other components of the PTSs O[[ SA ]] and C[[ SA ]] are the same.

x
y

s

x

a, x

a, x

b, y

s′

Fig. 10. A simple stochastic automaton

Example 5. To illustrate the difference between the open and closed interpre-
tation, consider the stochastic automaton depicted in Fig. 10. In the closed
interpretation the following non-deterministic transitions are present:

[s, (d, d′)] a,d−−−→ (s′, (0, d′−d)) if and only if d > 0
[s′, (d, d′)] b,d′−−−→ (s, (d−d′, 0)) if and only if 0 6 d′ 6 d
[s′, (d, d′)] a,d−−−→ (s, (0, d′−d)) if and only if 0 6 d 6 d′

where (d, d′) denotes valuation v with v(x) = d and v(y) = d′. Note the rela-
tionship between the clock values of x and y for taking an edge outgoing from
location s′. In fact, if Fx and Fy would, for instance, be uniformly distributed on
the intervals [0, 5] and [11, 12], respectively, it follows that in the closed interpre-
tation the edge leading from s′ to s will never be enabled. This follows from the
fact that there is no valuation (d, d′) in s′ such that d′ 6 d. Instead on entering
location s′, clock x is reset and will always expire before clock y expires. In the
open interpretation we obtain:

[s, (d, d′)] a,d∗−−−→ (s′, (d−d∗, d′−d∗)) if and only if d∗ > 0 ∧ d∗ > d
[s′, (d, d′)] b,d∗−−−→ (s, (d−d∗, d′−d∗)) if and only if d∗ > 0 ∧ d∗ > d′
[s′, (d, d′)] a,d∗−−−→ (s, (d−d∗, d′−d∗)) if and only if d∗ > 0 ∧ d∗ > d

In the open interpretation there is no relationship between clock x and clock
y. Instead, the only requirement is that the time d∗ of taking the transition is
positive and beyond the time at which the edge becomes enabled. It follows that
in this interpretation the edge from s′ to s can indeed be taken for the uniform
distributions given above.

5.3 How to Compare Stochastic Automata?

A key question in formal methods (and in practice) is whether a system im-
plementation meets its specification, i.e., when is an implementation proper?
In our setting this question can be dealt with in the following way: first model
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the behavior of the specification as a stochastic automaton, do the same for the
implementation, and then compare these two stochastic automata. Depending
on the notion of “being a proper implementation”, different comparisons can
be made. For instance, if performance is not of much interest one may compare
solely on the structure of the two automata while neglecting the probabilistic in-
formation. If, on the other hand, performance is of importance, such comparison
is insufficient, and probabilistic information should be taken into account. Thus,
for different perspectives, different notions of comparison are of interest. As a
result, several equivalence relations (i.e., notions of comparison), are defined on
stochastic automata.

Isomorphism. The first equivalence notions that we consider is isomorphism. Two
stochastic automata are isomorphic if there exists a bijective function that maps
locations from one to locations of the other without disturbing the structure of
the automaton.

Definition 4. Stochastic automata SA1 = (S1, s
1
0, C,A, −→ 1, κ1) and SA2 =

(S2, s
2
0, C,A, −→ 2, κ2) are isomorphic, denoted SA1 ∼iso SA2, iff there exists a

bijection φ : S1 → S2 such that

– φ(s10) = s
2
0, and

– s −→1 s
′ if and only if φ(s) −→2 φ(s′), and

– κ1(s) = κ2(φ(s))

Note: for simplicity we have assumed that the clocks and actions of both au-
tomata are identical; it is not difficult to extend this notion with an isomorphism
on clocks and actions.

Structural bisimulation. In concurrency theory, one of the most interesting equiv-
alence relations for labelled transition systems is bisimulation [77]: two states
are bisimilar if they can mimic each other while evolving into bisimilar states.
Two labelled transition systems are bisimilar if and only if their initial states
are bisimilar. The notion of structural bisimulation decides the equivalence of
stochastic automata by inspecting their structure only.

Definition 5. Let (S, s0, C,A, −→ , κ) be a stochastic automaton. R ⊆ S × S is
a structural bisimulation if R is symmetric and whenever s1Rs2:

1. ∀a ∈ A, C ⊆ C. s1 a,C−−−→ s′1 implies ∃s′2. s2 a,C−−−→ s′2 and s′1Rs
′
2

2. κ(s1) = κ(s2)

If R is a structural bisimulation such that s1Rs2, we write s1 ∼ s2 and call s1
and s2 structural bisimilar.

Stochastic automata SA1 and SA2 are structural bisimilar, notation SA1 ∼
SA2, if their respective initial locations are structural bisimilar on the disjoint
union of SA1 and SA2. If we omit the clock-related information, structural bisim-
ulation reduces to usual (strong) bisimulation on labelled transition systems [77].
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Example 6. Isomorphic stochastic automata are structural bisimilar, but the re-
verse is not true, cf. Fig. 11. In the left-hand process, there is a non-deterministic
choice in the initial location to move (while emitting a on expiration of clock x)
to an absorbing location, i.e., a location without outgoing transitions. There is
no bijection that maps the absorbing locations to the single absorbing location
in the right-hand process, and thus, these processes are not isomorphic. The au-
tomata are structural bisimilar since the relation R = { (s1, t1), (s2, t2), (s3, t2) }
is a structural bisimulation.

x

∼

t2

�∼iso

x

a, x a, x a, x

s2

s1

s3

t1

Fig. 11. Two structural bisimilar but non-isomorphic stochastic automata

Probabilistic bisimulation. Structural bisimulation is a simple notion of equiva-
lence and does not take any probabilistic information into account. In order to
define a probabilistic variant of bisimulation we consider a notion of probabilis-
tic bisimulation on PTSs. Subsequently, we lift this to stochastic automata and
illustrate its usage.

Definition 6. Let (N,P,L, T,−→) be a PTS with S ⊆ N and σ ∈ P such that
T (σ) = (Ω,F ,Pr). Then µ : P × P(N)→ [0, 1] is defined by:

µ(σ, S) =

{
Pr(S ∩Ω) if S ∩Ω ∈ F
0 otherwise

Let R be an equivalence relation on N ∪ P such that if 〈σ1, σ2〉 ∈ R then either
σ1, σ2 ∈ N or σ1, σ2 ∈ P . Let N/R be the set of equivalence classes in N induced
by R. R is a probabilistic bisimulation if for all 〈σ1, σ2〉 ∈ R:
1. ∀S ⊆ N/R: µ(σ1,

⋃
S) = µ(σ2,

⋃
S), whenever σ1, σ2 ∈ P

2. ∀+ ∈ L: σ1
�−→ σ′1 implies σ2

�−→ σ′2 and 〈σ′1, σ′2〉 ∈ R, for some σ′2 ∈ P ,
whenever σ1, σ2 ∈ N

States σ1 and σ2 are probabilistically bisimilar, denoted σ1 ∼p σ2, if there exists
a probabilistic bisimulation R with 〈σ1, σ2〉 ∈ R. PTS1 and PTS2 with initial
state σ1 and σ2, respectively, are probabilistic bisimilar if σ1 ∼p σ2 in the (dis-
joint) union of PTS1 and PTS2.

Due to the involvement of continuous distributions, the definition is slightly
more involved than existing definitions that consider only discrete distribu-
tions [44,71,90]. Nevertheless, both types of probabilistic bisimulation coincide
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on the discrete case. A proof of this fact, together with a proof that ∼p is an
equivalence relation, can be found in [27]. Probabilistic bisimulation is lifted to
stochastic automata in the following way:

– SA1 and SA2 are open probabilistic bisimilar, denoted SA1 ∼◦
p SA2 if and

only if O[[SA ]]v0 ∼p O[[SA ]]v0 , for any initial valuation v0;
– SA1 and SA2 are closed probabilistic bisimilar, denoted SA1 ∼•

p SA2 if and
only if C[[SA ]]v0 ∼p C[[SA ]]v0 , for any initial valuation v0.

w

z

x, y

x
y

t3y
x
y

b
b, w a, z

s1

x, y
b

a
x y

a

xs2

t1

t2

Fig. 12. Two open p-bisimilar stochastic automata

Example 7. The stochastic automata in Fig. 12 are open p-bisimilar if

Fz(t) = Fmin{x,y}(t) = 1− (1− Fx(t))(1 − Fy(t)) and
Fw(t) = Fmax{x,y}(t) = Fx(t) · Fy(t)

since

R = { ((s1, v), (t1, u)) | u, v ∈ V }
∪ { ([s1, v], [t1, u]) | u, v ∈ V , v(z) = min{u(x), u(y)} }
∪ { ((s2, v), (ti, u)) | u, v ∈ V , i ∈ { 2, 3 } }
∪ { ([s2, v], [ti, u]) | u, v ∈ V , i ∈ { 2, 3 }, v(w) = max{u(x), u(y)} }

is a probabilistic bisimulation between their open PTSs. This can intuitively
be seen as follows. On entering location t1 in the right-hand automaton, a race
takes place between clocks x and y. According to the clock that expires first —
this corresponds to the minimum of their distributions — a transition is made
to either t2 or t3 while performing a and setting clocks x and y. The same
behavior can take place in location s1 in the left-hand stochastic automaton
where a takes place after expiration of clock z with Fz = Fmin{x,y}. From the
locations t2 and t3 a b-transition is possible back to location t1 when both clocks
x and y — this corresponds to the maximum of their distributions — have
expired. This is mimicked by going from s2 to s1 after the expiration of clock
w with Fw = Fmax{x,y}. Note that it is crucial that both clocks x and y are
set in locations t2 and t3; otherwise the automata would not have been open
probabilistic bisimilar.
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Theorem 1. ∼•
p ⊂ ∼◦

p ⊂ ∼ ⊂ ∼iso.

This result relates the different notions of equivalence that were introduced:
isomorphism is the strongest notion, whereas ∼•

p is the weakest one.
The inclusions in Theorem 1 are strict as exemplified by Fig. 13. Stochastic

automata (a) and (b) are structural bisimilar, but not isomorphic, as we have
seen before; (b) and (c) are not structural bisimilar, since e.g., the initial locations
cannot be related (due to different clocks), but are open probabilistic bisimilar,
as both automata can perform an a-action after an equal stochastic delay while
evolving to equivalent locations. Finally, the stochastic automata (d) and (e) are
closed probabilistic bisimilar as both automata perform an a immediately, but
are not open probabilistic bisimilar, because the maximal progress condition does
not apply. For instance, a context that is able to participate in b (after imposing
a possible extra delay) but forbids action a distinguishes the two processes.

a a
x x

x

a
x

a a

y, z

y z

∼•
p

x

�∼iso

∼

Provided Fmin{y,z} = Fx

(a) (b)

�∼
∼◦

p

(c) (e)(d)

x

x

a
?

�∼◦
p

?

ab

Provided Fx(0) = 0

Fig. 13. Structural vs. open vs. closed probabilistic bisimulation

Structural bisimulation is defined directly on stochastic automata, but does
not consider any stochastic information. Open and closed probabilistic bisimi-
larity do take the probabilistic behavior into account, but are defined in terms
of the underlying, infinite PTS. Probabilistic information can be considered at
a symbolic level too by considering a form of structural bisimulation [27]. The
treatment of this notion falls outside the scope of this tutorial.

5.4 GSMCs versus Stochastic Automata

The relation between stochastic automata and GSMCs is shown by providing a
mapping, denoted gsmc2sa, from GSMCs onto stochastic automata. The exis-
tence of this mapping indicates that GSMCs are properly included in stochastic
automata.

The basic idea of the mapping of a GSMC onto a stochastic automaton is to
introduce a location as a pair (z, E) where z is a state of the GSMC and E is
the set of events that are already active. The initial location is (z0,?). For each
active event in state z, there is an outgoing edge from any location (z, E). This
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edge is labelled with event e (i.e., the action) and the set of clocks {C(e)}. So,
events are considered as actions and active events of z are

E(z) =
⋃
{e | (z, E) e,{C(e)}−−−−−−→}.

Since in a GSMC exactly one clock is associated to an event, we obtain singleton
sets as triggering conditions in the automaton. In the following, we use C on sets
of events in the usual way, i.e., C(E) = {C(e) | e ∈ E }.
Definition 7. For GSMC G = (Z, z0,E, E, C,next) the stochastic automaton
gsmc2sa(G) = (S, s0, C,A, −→ , κ) is defined by:

– S = Z × Pf (E) with s0 = (z0,?),
– C = C(E),
– A = E,
– κ(z, E) = C(E(z)− E), and
– −→ is defined by the rule

e ∈ E(z)
(z, E) e,{C(e)}−−−−−−→ (next(z, e), E(z)− {e})

Due to the fact that E(z) �= ? for any z, the condition e ∈ E(z) is always
satisfied. There are many locations (z, E) ∈ S that are unreachable via −→ . All
reachable locations have the form (next(z, e), E(z)− {e}) for every (reachable)
z ∈ Z and e ∈ E(z). Note that for z′ = next(z, e) we have κ(z′, E(z) − {e}) =
C(E(z′)− (E(z)− {e})), the set of clocks for all newly active events in z′.

x
y

a, x

(3, { c })

a, x a, x

c, yc, yc, y

a, x a, x a, x

c, y c, y c, y

x x x

y y y

(1, { a }) (2, { a }) (3, { a })(0, { a })

(0,?) (1,?) (2, { c })

Fig. 14. Stochastic automaton generated from example GSMC of Fig. 3

Example 8. Consider the GSMC of the G/G/1/∞-system depicted in Fig. 3. The
stochastic automaton that corresponds to this GSMC is obtained in the following
way: the initial location is (0,?), the state in which there are no jobs in the
queue, and there is no active event; κ(0,?) = C(E(0)) = { x }; since a ∈ E(0),
and C(a) = x, the initial location has a single outgoing edge labelled a, x leading
to location (next(a, 0), E(0)− { a }) = (1,?) with κ(1,?) = C(E(1)) = { x, y }.
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It is easy to check that this location has an edge labelled c, y to location (0, { a })
and an edge labelled a, x to (2, { c }). If we continue this reasoning we obtain the
automaton of Fig. 14. Note that this automaton is isomorphic to Fig. 9.

The correctness of the translation gsmc2sa is assessed in [27]. As argued before,
stochastic automata are more expressive than GSMCs, since stochastic automata
do allow non-determinism (two or more outgoing edges that are enabled at the
same time), whereas GSMCs do not. Therefore a reverse translation does not
make much sense. In addition, in the stochastic automaton model clocks may be
initialized by general distributions — including discrete distribution functions
— without any restriction.

6 The Stochastic Process Algebra

The basic idea of the stochastic process algebra SPADES (Stochastic Process
Algebra for Discrete-Event Simulation), symbolized by , is to separate the
three ingredients that are present in stochastic automata at a syntactical level.
We thus distinguish in explicitly between:

– the start of a probabilistic delay (denoted set C in p),
– the completion of a probabilistic delay (denoted when C �→ p), and
– the occurrence of immediate actions (denoted a; p).

As we will see, this separation allows us to obtain a straightforward expansion
law.

6.1 Syntax and Semantics

Syntax. LetA be a set of actions, V a set of process variables, and C a set of clocks
with (x,G) ∈ C for x a clock name and G an general probability distribution
function. We abbreviate (x,G) by xG.

Definition 8. The syntax of is defined by:

p ::= 0 | a; p | when C �→ p | p+ p | set C in p | p ||A p | p[f ] | X.
where C ⊆ C is finite, a ∈ A, A ⊆ A, f : A → A, and X ∈ V. A recursive
specification E is a set of recursive equations of the form X = p for each X ∈ V,
where p ∈ .

Besides the operations used in Section 4 the language incorporates the basic
process 0, the process that cannot perform any action. A few words on p+ q are
in order. p + q behaves either as p or q, but not both. At execution the fastest
process, i.e. the process that is enabled first, is selected. This is known as the race
condition. If this fastest process is not uniquely determined, a non-deterministic
selection among the fastest processes is made.
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Operators when C �→ . . ., set C in . . ., prefixing and renaming have the high-
est binding precedence, followed by choice and parallel composition.

Semantics. To associate a stochastic automaton SA(p) to a given term p in the
language, we define the different components of SA(p)4. In order to define the
automaton associated to a parallel composition, we introduce the additional op-
eration nock. nock(p) is a process that behaves like p except that no clock is set
at the very beginning. As usual in structured operational semantics, a location
corresponds to a term. The clock setting function κ is defined as the smallest
set satisfying the equations in Table 1. The set of edges −→ between locations is

κ(0) = ?

κ(a; p) = ?

κ(when C �→ p) = κ(p)

κ(p+ q) = κ(p) ∪ κ(q)

κ(nock(p)) = ?

κ(set C in p) = κ(p) ∪ C

κ(p ||A q) = κ(p) ∪ κ(q)

κ(p[f ]) = κ(p)

κ(X) = κ(p) (X = p)

Table 1. Clock setting function for

defined as the smallest relation satisfying the rules in Table 2. The function F is
defined by F (xG) = G for each clock x in p. The other components are defined
as for the syntax of .

Let us briefly explain the operational rules from Table 2.

– There is no rule for the process 0 as it cannot perform any action.
– The action-prefixed process a; p can immediately perform an a while evolving

into p. Since a is performed immediately, there is no need to wait for the
expiration of a clock. So, the transition is labelled with an empty set of
clocks.

– Process when C �→ p can perform any action that p can perform, with the
restriction that it has to wait until all clocks in the set C have expired. So, if
p has to wait for the expiration of all clocks in C′ to perform action a, then
process when C �→ p has to wait for all clocks in C ∪C′.

– Processes set C in p and nock(p) can mimic p; their difference with p is solely
in the clock-setting function, cf. Table 1.

– p+ q behaves like either p or q (but not both).
– p[f ] behaves like p except that all actions are renamed according to f .
– Process X behaves like p, provided it is defined as X = p.

4 Here we assume that p does not contain any name clashes of clock variables. This is
not a severe restriction since terms that suffer from such name clash can always be
properly renamed into a term without such name clash [27].



General Distributions in Process Algebra 405

a; p a,?−−−→ p
p a,C′−−−−→ p′

when C �→ p a,C∪C′−−−−−−→ p′
p a,C′−−−−→ p′

set C in p a,C′−−−−→ p′

p a,C−−−→ p′

p+ q a,C−−−→ p′

q + p a,C−−−→ p′

p a,C−−−→ p′

p[f ] f(a),C−−−−−→ p′[f ]

p a,C−−−→ p′

nock(p) a,C−−−→ p′
p a,C−−−→ p′

X a,C−−−→ p′
(X = p)

p a,C−−−→ p′

p ||A q a,C−−−→ p′ ||A nock(q)

q ||A p a,C−−−→ nock(q) ||A p′

(a /∈ A)
p a,C−−−→ p′ q a,C′−−−−→ q′

p ||A q a,C∪C′−−−−−−→ p′ ||A q′
(a ∈ A)

Table 2. Structured operational semantics for

– For parallel composition two situations are distinguished:
• In case a synchronization takes place, i.e., some action a ∈ A is per-
formed, both involved processes must be ready to perform a. So, all
clocks needed to perform a in both processes have to be expired.

• If a process carries out an action not in A, it does so autonomously.
Naively, this yields the following traditional operational rule:

p a,C−−−→ p′
p ||A q a,C−−−→ p′ ||A q

for a �∈ A. This would, however, lead to a situation in which all clocks
in p′ and q are reset in the resulting location. This is incorrect for the
clocks in q, since now the elapse of time since the clocks of q were set
(when reaching p ||A q) is neglected, cf. equation (4) and Fig. 2. To solve
this problem, the state p′ ||A nock(q) is reached instead where the use of
nock(q) avoids the setting of the clocks in q, i.e., κ(nock(q)) = ?, cf.
Table 1.

Example 9. Using this recipe it can be shown that the semantics of the process
algebraic G/G/1/∞ specification boils down to the (at first sight somewhat
complicated) stochastic automaton depicted in Fig. 15. Here, empty sets are
omitted; in particular b stands for b,?. Note that the in locations that are
reached after the server has just completed servicing a job, no clocks are set.
Although the state space of this automaton is somewhat larger than that of
the direct representation in Fig. 14, this does not have a serious impact on the
efficiency of stochastic simulation, as will see later on. Since in our semantics
a state corresponds to a term, simulation can be carried out on the basis of
expressions rather than using their semantic representations. This will be further
discussed in Section 7.
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c, y

a, x a, x a, x a, x

a, xa, x
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a, x

a, x a, x
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a, x a, x
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c, y c, y

c, y c, y

c, y

b

b b b b

bb

x x x

xxxxx
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Fig. 15. Stochastic automaton of the compositional G/G/1/∞ specification

Expressive power of stochastic automata versus . Stochastic automata and
are equally expressive. This means that for any stochastic automaton a corre-
sponding term in can be given whose reachable part of its stochastic automaton
is identical to the stochastic automaton at hand, up to renaming of clocks.

Theorem 2. For every stochastic automaton SA there exists a recursive speci-
fication E with root p in such that the reachable part of SA and the reachable
part of SA(p) are isomorphic.

As a result of this theorem and the fact that GSMCs are a proper subset of
stochastic automata, it follows that each GSMC is representable by a specifi-
cation.

Example 10. Consider the stochastic automaton of Fig. 9. The reader is invited
to check that this stochastic automaton is isomorphic to the following recursive
specification for i > 0:

P0 = set x in (when x �→ a;P1)
P1 = set x, y in (when y �→ c;Q0 + when x �→ a;P2)

Pi+2 = set x in (when y �→ c;Qi+1 + when x �→ a;Pi+3)
Q0 = set ? in (when x �→ a;P1)

Qi+1 = set y in (when x �→ a;Pi+2 + when y �→ c;Qi)

The indices the processes indicate the number of jobs that are currently in the
system, i.e., that are either queued or currently being processed. Note that the
structure of each process definition is of the same shape: first some clocks are
set, then their expiration is awaited, and an action takes place before invoking
a process instance.

6.2 Notions of Congruence

The equivalence notions defined for stochastic automata (cf. Section 5.3) can
be lifted to terms in in the following straightforward way. Terms p and q are
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structurally bisimilar, denoted p ∼ q, if and only if SA(p) ∼ SA(q). In a similar
way we define: p ∼◦

p q iff SA(p) ∼◦
p SA(q) and p ∼•

p q iff SA(p) ∼•
p SA(q).

Here, we will investigate whether these equivalence notions are congruences.
Recall that an equivalence relation is a congruence if two equivalent terms behave
indistinguishable in any context. We have:

Theorem 3. ∼ and ∼◦
p are congruences with respect to all operators in .

(It should be noted that ∼ is also a congruence for recursion and nock.) Due to
this result, replacing in a specification a sub-term p by its bisimilar equivalent
q results in a bisimilar specification. The proof of this result for ∼ is rather
simple and follows from the fact that the operational rules of Table 2 obey a
certain syntactic format (the so-called path format of [7]); the proof for ∼◦

p is
rather involved and tedious as it requires manipulations on Borel spaces, cf. [27].
∼•

p is not a congruence for parallel composition as illustrated by the following
example.

Example 11. Consider the processes

p = a;0+ set x in (when x �→ b;0)
q = a;0+ set x in (when x �→ c;0)

where b and c are distinct actions. Note that q = p[b/c]. We have p ∼•
p q if

Fx(0) = 0, since then in both processes only action a at time 0 can be performed
due to the maximal progress principle. However,

p ||a 0 �∼•
p q ||a 0

In the context process 0, the execution of action a is disabled, since there is
no possible synchronization, and therefore b or c will happen (at a certain posi-
tive time instant). This example is depicted in terms of stochastic automata in
Fig. 16.

a,? a,?

x

b, x

�∼p

x

c, x

p p

x

b, x

x

c, x

p ||a 0 q ||a 0

∼p

but

Fig. 16. Closed probabilistic bisimulation is not a congruence for ||A

The reader is invited to check that ∼•
p is also not a congruence for the operator

when C �→ p.
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6.3 Equational Reasoning

Rather than proving that p and q are e.g., structural bisimilar using the semantic
interpretations SA(p) and SA(q) it is often more convenient to use rules defined
on the syntax of p and q that are known to preserve (in this case) ∼. This en-
ables the transformation and comparison of terms at a purely syntactic level.
In this section, we present a sound and complete axiomatization for structural
bisimulation of the core calculus of , i.e., the fragment of consisting of the
basic operators, i.e., excluding recursion and parallel composition. In addition,
some sound axioms for open probabilistic bisimulation will be presented.

Axiomatization of structural bisimulation. Let the set fv(p) of free (clock) vari-
ables of p be defined as the smallest set satisfying the equations in Table 3. The

fv(0) = ?

fv(a; p) = fv(p)

fv(when C �→ p) = C ∪ fv(p)

fv(p+ q) = fv(p) ∪ fv(q)

fv(nock(p)) = fv(p) ∪ κ(p)

fv(set C in p) = fv(p)− C

fv(p ||A q) = fv(p) ∪ fv(q)

fv(p[f ]) = fv(p)

fv(X) = fv(p) (X = p)

Table 3. Free variables of terms in

axioms for structural bisimulation are given in Table 4 and can be explained
as follows. As in traditional process algebra, the choice is commutative (A1)
and associative (A2), and 0 is the neutral element for + (A4). Axiom A3 is
a distinguishing law for stochastic process algebra (also for Markovian process
algebra) and can be regarded as a weak version of the traditional idempotence
axiom of choice (p + p = p). The reason of not having this axiom of choice is
that in case of two competing processes such as

(set x in (when x �→ p)) + (set y in (when y �→ p))

the resolution of the choice is controlled by the minimum of two random variables
with the distributions of x and y, respectively. As a result, the term p is reached
“faster” than in either of the sub-terms of the choice. Accordingly,

set x in (when x �→ a; p) + set x in (when x �→ a; p) �= set x in (when x �→ a; p)
(6)

Later on, we will make this more precise when discussing some axioms of open
probabilistic bisimulation. Note that, however, due to T5 and A3 we have:

set x in ((when x �→ a; p) + (when x �→ a; p)) = set x in (when x �→ a; p)
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A1 p+ q = q + p

A2 (p+ q) + r = p+ (q + r)

A3 a; p+ a; p = a; p

A4 p+ 0 = p

T1 when C �→ 0 = 0

T2 when ? �→ p = p

T3 when C �→ (when C′ �→ p) = when (C ∪ C′) �→ p

T4 when C �→ (set C′ in p) = set C′ in (when C �→ p) if C ∩ C′ = ?

T5 when C �→ (p+ q) = when C �→ p+ when C �→ q

C1 set ? in p = p

C2 set C in (set C′ in p) = set (C ∪ C′) in p

C3 (set C in p) + (set C′ in q) = set (C ∪ C′) in (p+ q)

if C ∩ (fv(q) ∪ κ(q)) = C′ ∩ (fv(p) ∪ κ(p)) = ?

Table 4. Axioms for structural bisimulation on

where the setting of clock x is common to both terms. In fact, one can show that
the idempotence law p+ p = p is obtained if the structure of p is restricted such
that all clock setting operations of the form set C in r in p occur in a sub-term
of the form a; q. Axioms T1–T5 show the way in which triggering conditions
can be simplified. In particular, T3 defines how to reduce nested triggering
conditions into a single one, and axioms T4 and T5 state how to move clock
settings and summations out of the scope of a guard. Axiom C1 expresses that it
is irrelevant to set an empty set of clocks. C2 gathers all the clocks settings in a
single operation and C3 moves clocks settings out of the scope of a summation.
(The auxiliary notion of free variables in a term is defined in Table 3.)

For axioms for the static operators such as renaming and parallel composi-
tion we refer to [27].

Expansion law. Using the complete and sound axiomatization of structural bisim-
ulation for one can show that any (finite) term p can be converted into a normal
form which has the shape

set C in
(∑

when Ci �→ ai; pi
)

where pi are terms in normal form and
∑

is the usual generalization of choice:∑
0<i6n pi equals p1 + . . .+ pn for n>0, and 0 for n=0. The reader is invited to

check that this format is the same as the one used in Example 10.
As we have argued in the introduction, an essential law in traditional process

algebras is the expansion law. This law allows to reduce parallel composition in
terms of prefix and choice, and has proven to be of crucial importance for process
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algebraic verification purposes. A stochastic equivalent of this law is defined by
the following result.

Theorem 4. Let p, q ∈ such that p = set C in p′ and q = set C′ in q′ with
p′ =

∑
(when Ci �→ ai; pi) and q′ =

∑
(when C′

j �→ bj ; qj). Suppose p ||A q does
not contain name clashes. Then p ||A q equals

set (C ∪ C′) in
( ∑

ai /∈A when Ci �→ ai; (pi ||A q′)
+
∑

bj /∈A when C′
j �→ bj; (p′ ||A qj)

+
∑

ai=bj∈A when (Ci ∪ C′
j) �→ ai; (pi ||A qj)

)
.

In fact, the expansion law is inherent in our model and follows at the language
level from the way in which we have distinguished between 3 activities in the syn-
tax: (1) starting a delay, i.e., setting a clock, (2) finishing a delay, i.e., expiration
of a clock, and (3) the occurrence of (immediate) actions.

Example 12. By means of the above expansion law we would like to discuss
the way in which delayed actions are synchronized in . For that purpose we
consider:

(set x in when x �→ a; p) ||a (set y in when y �→ a; q)

Using the expansion law, this term can be rewritten into the equivalent term

set x, y in (when x, y �→ a; (p ||a q))

This entails that action a can happen after both clocks x and y have expired. In
stochastic terms, this means that two random variables are competing, viz. the
maximum of the random variables with distributions Fx and Fy . As the maxi-
mum of two statistically independent random variables is distributed according
to the product of their distribution (cf. Example 7), we obtain that synchroniza-
tion of delayed actions in is based on the product of distributions. In most
Markovian process algebras (with the notable exception of [49,51]), this pol-
icy is not taken, since the class of exponential distributions is not closed under
product.

Open probabilistic bisimulation. Here, we present some sound axioms for open
probabilistic bisimulation (∼◦

p). The axioms presented in Table 5 are incomplete,
but are useful for reducing the number of clocks in a expression. Axiom P1
allows to eliminate redundant clock settings by stating that it is not necessary
to set clocks that do not occur free in process p. Since these clocks do not freely
occur in p they are either not used or are set again once they will be used.
Axiom P2 states that clocks that have been used, i.e, that have expired, are
not useful anymore (at least not before being set again), and thus can safely be
removed. Axiom P3 expresses that clocks that are set to a positive value with
probability 0 cannot affect the timing of a process. Finally, the most involved
axiom is A3′. This axiom is a weak variant of the idempotence axiom A3 (i.e.,
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P1 set C in p = p if C ∩ fv(p) = ?

P2 (when C �→ a); (when C �→ p) = when C �→ a; p

A3′ set x, y in (when x �→ p+ when y �→ p) = set z in (when z �→ p)

if {x, y, z } ∩ fv(p) = ? ∧ ∀t ∈ IR>0. Fz(t) = Fmin{x,y}(t)

P3 set x in (when x �→ p) = set x in p if Fx(0) = 1

Table 5. Some axioms for open probabilistic bisimulation on

a; p + a; p = a; p) for structural bisimulation. Axiom A3′ states that in case of
two competing processes such as

(set x in (when x �→ p)) + (set y in (when y �→ p))

which, according to C3, is equivalent to

set x, y in (when x �→ p+ when y �→ p)

the resolution of the choice is controlled by the minimum of two independent
random variables with the distributions of x and y. The process can thus be
replaced by

set z in (when z �→ p)

where z is a fresh clock (i.e., { x, y, z }∩ fv(p) = ?) with distribution min(Fx, Fy).
Note that in case x and y are exponentially distributed, axiom A3′ reduces to
the idempotence law for Markovian process algebra [52]:

λ �→ p+ µ �→ p = (λ+µ) �→ p

as stated in the notation used in the introduction.

Example 13. Using axiom A3′ we can now deduce that indeed inequation (6) is
valid in general:

set x in (when x �→ p) + set x in (when x �→ p)
= { α conversion }

set x in (when x �→ p) + set y in (when y �→ p)
= { axiom C3 }

set x, y in ((when x �→ p) + (when y �→ p))
= { axiom A3′ }

set z in (when z �→ p)

where Fz = Fx · Fy = F 2
x . Since F 2

x �= Fx for any non-trivial random variable x,
we obtain the inequality (6).
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7 Analysis of Specifications

Until so far, we have introduced a process algebra for describing GSMCs (with
possible non-determinism) while concentrating on notions like formal semantics,
equivalences, axiomatisation and so on. In this section, we focus our attention on
the analysis of specifications, both in a quantitative and qualitative sense. For
the first type of analysis we consider discrete-event simulation, for the qualitative
analysis we consider the checking of reachability properties.

7.1 Quantitative Analysis: Discrete-Event Simulation

By means of quantitative analysis, we obtain insight in questions related to the
performance (in measures like throughput or response times) and dependability
of systems (in terms of failure rates, mean time between failure, and so on).
For a restricted set of stochastic automata – those that correspond to insensi-
tive GSMCs [88] – numerical methods can be used to assess their steady-state
(i.e., long run) behavior. Alternatively, in case of absence of non-determinism,
approximation results can be employed, and arbitrary distributions can be ap-
proximated by phase-type distributions [79]. This results in a continuous-time
Markov chain for which efficient numerical methods exist [95].

A general approach towards assessing quantitative properties is simulation,
in particular discrete-event simulation [21,92]. In this simulation technique state
changes take place at discrete points in time (but time is continuous), as opposed
to continuous-time simulation techniques. In a simulation, runs (sample paths
in the simulation jargon) are generated, and on the basis of these runs data
is gathered and analyzed to determine an estimate of the desired measure of
interest. The accuracy of the estimate is given by a confidence interval.

In the rest of this section, we focus on the following issues that occur when
applying discrete-event simulation on specifications:

– how to generate sample paths from stochastic automata, and
– how to resolve non-determinism in a stochastic automaton prior to the sim-

ulation.

More details about simulation of specifications can be found in [27,33].

Runs and adversaries. A run of a labelled transition system is simply a walk
through the state space by traversing transitions starting from the initial state.
This also applies to PTSs except that we focus on traversals that are “probable”.

Definition 9. A run ρ of PTS (N,P, σ0,L, T,−→) is a (finite or infinite) se-
quence ρ = σ0σ

′
0+1 . . . +nσnσ

′
n for n ∈ IN ∪ {∞} such that, for all 0 6 i < n:

– σ′i is in the support set of the probability measure of T (σi)5

– σ′i
�i+1−−−→σi+1, and

– if ρ is finite, then ρ ends in a non-deterministic state.

5 Intuitively, the support set of a probability measure is the smallest closed (measur-
able) set which has probability one.
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Non-determinism is resolved by probabilistic adversaries: if during a run a
state has been reached which has several non-deterministic possibilities, such
adversary will make the choice in a (discrete) probabilistic way. An adversary is
similar to a policy in Markov decision processes [34]. An adversary A on PTS T
is a partial function that maps a finite run ρ of PTS T to a discrete probability
space on the non-deterministic transition relation. The sample space of A is a
non-empty subset of the set of outgoing transitions from the final state of the
run ρ. An adversary A of stochastic automaton SA is a partial function on the
runs of its closed semantics C[[ SA ]]v0 .6 Note that an adversary selects the next
transition on the entire run ρ, i.e., on the entire history of the system. Usually,
adversaries are considered that make a selection based on the current state only.
For pragmatic reasons (space efficiency) we confine ourselves to such memoryless
adversaries.

Example 14. To illustrate the notion of adversary, consider the -specification
of the queueing system with two servers from Section 4 where we assume that
all clocks in the system are governed by continuous distribution functions. The
overall system specification was given by:

SystemG/G/2/∞ = (Arrival ||? Server ||? Server) ||{a,b}Queue0

This system contains non-determinism in case the queue contains one or more
jobs and both servers are ready to process a job — which server will take the
job out of the queue? In case we do not have any preference of one server over
the other (e.g., they are both equally fast), an adversary that resolves this non-
deterministic situation with equal probability is appropriate. Then A is defined
such that A(ρ) equals 1

2 for the first server taking the job out of the queue and
1
2 for the second server taking the job out of the queue. In case we would prefer
one server over the other, a different choice for A can be made.

Discrete-event simulation. Once we have resolved the present non-determinism
(if any), the resulting system is fully probabilistic, that is to say, a stochastic au-
tomaton with an adversary that resolves all its non-determinism yields a GSMC
with probabilistic branching. Hence, discrete-event simulation of such systems
basically takes place according to the operational procedure as described in Sec-
tion 3 for GSMCs with the minor difference that the trigger event e∗ may have
several possible next states that are selected (by the adversary) in a probabilis-
tic way. The user should bear in mind that the simulation results that will be
obtained must be considered with respect to the specified adversary as different
results are obtained (in general) for different adversaries!

An interesting aspect of simulation is that the state space is generated in
an “on-the-fly” fashion – the state space is constructed dynamically and thus
requires minimal storage as only the current state needs to be stored. This means
that we are not forced to construct the entire stochastic automaton prior to the

6 There are some conditions on the sample space that we omit here for the sake of
simplicity; the interested reader may consult [27,33].
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simulation. Instead, it suffices to store only the current state and generate new
states on a call-by-need basis. As a consequence, simulation is not restricted
to finite stochastic automata, but is also applicable to infinite-state stochastic
automata. Besides, the generation of a state is very straightforward for a
specification as a state uniquely corresponds to a process algebra expression.

Example 15. Consider the compositional -specification of the G/G/1-queueing
system. Let the distribution F of clock x be such that F (0) = 0. The simulation
will start by generating the initial term. Then clock x is initialized and an arrival
(action a) is generated once x expires. The next term (i.e., location) is generated,
and a new sample for x is taken. Since Fx(0) = 0, this sample is positive.
As in this location both an immediate action (b) and a non-immediate action
(a) are possible, the latter will never be taken in a simulation since it has to
be delayed first. Accordingly action b happens and the next term is reached
(after initializing clock y). This procedure continues ad infinitum. Note that the
stochastic automaton as depicted in Fig. 14 is actually generated location by
location, and that in each step only the current location (plus the valuation
of all clocks involved) are needed to determine the next possible steps. Due
to choices between immediate actions and non-immediate actions, in fact, only
the sub-automaton of Fig. 17 is generated step-by-step. The reduction from
Fig. 14 to Fig. 17 can also be carried out in an equational way while preserving
probabilistic bisimulation [27].
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Fig. 17. Reduced stochastic automaton generated by simulation (if F (0) = 0)

7.2 Qualitative Analysis: Reachability Properties

Complementary to the quantitative analysis described above, we discuss in this
section a classical analysis technique for functional correctness — reachability
analysis. Reachability analysis is the key technique in proving safety properties
(often characterized as properties of the type “something bad can never hap-
pen”). A typical reachability property is the absence of a deadlock, which is
a state from which no further progress can be made. A naive strategy would
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be to use the simulation approach just described and consider several simula-
tion runs. As the coverage of such simulations is rather low – if no deadlock
is reached during simulation, this does not guarantee absence of deadlocks –
more systematic approaches are needed. In order to systematically check such
properties for stochastic automata, and thus terms, the underlying semantics
in terms of PTSs needs to be examined. However, even for finite terms, these
transition systems are infinite due to the fact that distributions are continuous.
We therefore consider a symbolic reachability analysis. Using a symbolic analysis
we can avoid having to build and examine the infinite underlying PTS. Instead,
we check reachability at the level of stochastic automata. We investigate this for
finite stochastic automata.

Reachability. A (non-deterministic) state in a PTS is reachable if there exists
a finite run that ends in that state. Let Reach(T ) denote the set of reachable
states of PTS T .
Definition 10. Let SA = (S, s0, C,A, −→ , κ, F ) be a stochastic automaton. A
symbolic run of SA is a finite sequence s0a1C1s1 . . . sn−1anCnsn, n > 0, such
that, for all 0 < i 6 n, si−1

ai,Ci−−−−→ si.
Location s is reachable if and only if there exists a symbolic run starting from
s0 that ends in s. The set of reachable locations of SA is denoted Reach(SA).
The relationship between runs in a stochastic automaton, and the runs in the
underlying (open and closed) PTSs is as follows. Every symbolic run of SA has
a corresponding finite run in O[[ SA ]], and vice versa:

Theorem 5. s ∈ Reach(SA)⇔ ∃v ∈ V . [s, v] ∈ Reach(O[[ SA ]]v0)

Recall that, as opposed to the open interpretation, in the closed interpretation
an edge can only be taken, if there is no earlier point in time at which the current
location can be left (maximal progress). As a consequence, certain edges present
in the stochastic automaton need not result in a transition in the underlying
closed PTS, since there exist competitive edges that are “faster” and thus will
be taken instead. As a result, every finite run of C[[ SA ]] has a corresponding
symbolic run of SA,but not the reverse:

Theorem 6. s �∈ Reach(SA)⇒ ∀v ∈ V . [s, v] �∈ Reach(C[[ SA ]]v0).

This result is e.g., sufficient to check for freedom of deadlock: if C[[ SA ]] does not
have a reachable deadlock state, SA is deadlock-free.

These results allow us to carry out systematic reachability analysis at a purely
symbolic level, i.e., without the construction of the underlying infinite PTS and
without using the clock information in the stochastic automaton. In this way, we
can exploit existing tools like Spin [59] for carrying out the reachability analysis.

Timed reachability properties. For checking reachability of locations, the stochas-
tic information may not be of any importance. However, we like to obtain more
information about timing aspects – e.g. “is a certain state reachable within t
time units?”. In this case, the precise probabilistic value of the occurrence time
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of some action is not relevant. Instead, it suffices to consider whether the action
is possible or not at a particular time instant. Therefore, only a small bit of the
information about the probability distributions involved is necessary. In fact, it
suffices to know the “support set”. In other words, we only need to consider
within which boundaries a delay is possible. For instance, in a simple stochastic
automaton like:

c, y
x y

a, x

where Fx and Fy are uniform distributions on intervals [10, 20] and [0, 12], say,
one can infer only from the bounds of the distributions that the right-most
location is reachable within 32 time units. This idea is formalized in [28] by a
compositional translation from stochastic automata into timed automata with
deadlines [14]. This translation preserves safety properties in the sense that any
state (i.e. a location and a clock valuation) that is not reachable in the generated
timed automaton is also not reachable in the original stochastic automaton.
Thus, timed safety properties are preserved.

An overview of the analysis techniques for specifications is given in Fig. 18.
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Fig. 18. Analysis of a specification

8 Case Study: The IEEE 1394 Root Contention Protocol

This section discusses a small case study where we applied to specify the root
contention phase of the IEEE 1394 protocol in a compositional way, and used
discrete-event simulation to analyze the time until contention resolution.
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8.1 Informal Problem Description

IEEE 1394. The IEEE 1394 high performance serial bus has been developed
for interconnecting computer and consumer equipment such as VCRs, CD play-
ers and multimedia PCs. It supports the addition and removal of equipment
at any time (“hot-pluggable”) and allows quick, reliable and inexpensive high-
bandwidth transfer of digitized video and audio. The bus has been originally de-
veloped by Apple (FireWire) and has been standardized by IEEE in 1996 [62]. A
revision of this standard is currently in progress [63]. As several companies have
joined in the development of the 1394 bus, there is a good chance that this will
become the future standard for connecting digital multimedia equipment; in fact,
the bus is currently also being used in areas like aerospace equipment. Various
parts of the standard have been specified and verified formally, e.g. [35,85,96,91].
Here, we consider the so-called root contention protocol.

Leader election protocol. (This description is adopted from [96].) The IEEE 1394
standard consists of a stack of protocols. The physical layer, the lowest in the
protocol hierarchy, consists of a number of phases. During the tree identify phase,
which is entered on occurrence of a bus reset, it is checked whether the network
topology is a tree, and if so, a leader is elected among the nodes in the tree. The
leader election takes place while constructing a spanning tree in the network and
electing the root of the tree as leader. Informally, the basic idea of the protocol is
as follows: leaf nodes send a “parent request” message to their neighbor. When
a node has received a parent request from all but one of its neighbors it sends
a parent request to its remaining neighbor. In this way the tree grows from the
leafs to a root. If a node has received parent requests from all its neighbors, it
knows that it has been elected as the root of the tree. It is possible that at the
end of tree identify phase two nodes send parent request messages to each other;
this situation is called root contention, cf. Fig. 19. To resolve this situation, a
root contention protocol is run. After completion of this protocol, one of the two
nodes has become root of the network.

parent?

Fig. 19. Initial network topology (a) and root contention (b)

Root contention protocol. The protocol roughly works as follows. Suppose that
the two contending nodes are node 0 and node 1. When node i (i = 0, 1) has
detected root contention it first flips a coin. If head comes up it waits a short
period of time, somewhere in the interval [δfast , ∆fast ]; otherwise, it waits a long
period of time somewhere in the interval [δslow , ∆slow ]. It is assumed that
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0 6 δfast 6 ∆fast < δslow 6 ∆slow

If after the waiting period no message has been received from the contender, the
node sends a request message to its contender and declares itself to be a child,
i.e., it assumes the contender to become a leader. Otherwise, it acknowledges
the receipt of the message and declares itself to be the leader. If a node that has
sent a request subsequently receives a request, then it concludes that there is a
root contention again, and the protocol restarts.

The basic idea behind the protocol is that if the outcomes of the coin flips
are different, the node with outcome tail (i.e., the slow one) will become root.
And since with probability one the outcomes of the two coin flips will eventually
be different, the root contention protocol will terminate (with probability one).
This has been formally proven in [96] by manually verifying a model of the
protocol in timed probabilistic I/O automata. An automatic verification of the
root contention protocol has recently been reported [94], while parameterized
verifications have been considered in [8,60].

8.2 Compositional Specification of the Root Contention Protocol

Wire1

child1 root1

Node1

send ∗1

check ∗1

child0 root0

Node0

send ∗0

check ∗

RootCont

Proc1Proc0

Buf0 Buf1

recv ∗0 recv ∗1

Wire0

Fig. 20. Overview of the IEEE 1394 specification in

Fig. 21 presents the specification of the root contention protocol in . The
model itself is based on [96]. A schematic overview of the processes involved and
their synchronizations is given in Fig. 20. The Nodei processes are connected
to each other by two Wirei processes, that represent the communication lines
between the components. Each Nodei process has a Bufi process which can hold
a single message from the other Node(1−i). New messages from Node(1−i) will
simply overwrite the old message. Both nodes start (via Proci) to wait Fxi()
units of time. If after waiting, the buffer is still empty (i.e. check empi), the
node will send a send reqi to its contender and will subsequently wait for an
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acknowledgement. If this acknowledgement (i.e. check ack i) arrives, Nodei will
declare itself a child using action child i. On the other hand, if after waiting Fxi()
units of time, Nodei receives a check reqi action, it declares itself to be the leader
using action root i. The delay of the communication line is modelled by clock yi.

RootCont = (Node0 ||? Node1) ||A (Wire0 ||?Wire1)

with the following process definitions (i = 1, 2):

Nodei = (Proci ||B Bufi)
Proci = set xi in (when xi �→ (check empi;SndReqi + check req i;SndAcki))
SndReqi = send req i; (check req i;Proci + check ack i; child i;0 )
SndAcki = send ack i; root i;0
Bufi = check empi;Bufi + recv req i;BufReqi + recv ack i;BufAcki

BufReqi = check req i;Bufi + recv req i;BufReqi + recv ack i;BufAcki

BufAcki = check ack i;Bufi + recv req i;BufReqi + recv ack i;BufAcki

Wirei = send req i;WireReqi + send ack i;WireAcki

WireReqi = set yi in (when yi �→ recv req (1−i);Wirei) +Wirei

WireAcki = set yi in (when yi �→ recv ack (1−i);Wirei) +Wirei

and the following synchronization sets:

A = { send req i, send ack i, recv req i, recv ack i }
B = { check empi, check req i, check ack i }

Fig. 21. specification of the root contention protocol

The clock distributions. The delay after detection of a root contention in Nodei
is governed by clock xi (i = 0, 1) whose distribution is given by:

Fxi(t) =




0 if t < δfast
1
2 ·
(

t−δfast

∆fast−δfast

)
if δfast 6 t < ∆fast

1
2 if ∆fast 6 t < δslow

1
2 ·
(
1 + t−δslow

∆slow−δslow

)
if δslow 6 t < ∆slow

1 if ∆slow 6 t

This distribution corresponds to first choosing either a short delay in the in-
terval [δfast , ∆fast ] with probability 1

2 , or choosing a long delay in the interval
[δslow , ∆slow ] with probability 1

2 . In fact, Fxi is the combination of uniform dis-
tributions over the two respective intervals [δfast , ∆fast ] and [δslow , ∆slow ]. The
IEEE 1394 standard [62] only specifies the lower- and upper-bounds of these
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intervals, but states nothing about mean, variances, or the like. Approximating
these non-deterministic intervals in the above way is the most inderminate ap-
proximation conform to the principle of maximizing the entropy, see Section 2.2.
A pictorial representation of Fxi is given in Fig. 22.

0

1

0.5

δfast ∆fast δslow ∆slow

Fig. 22. Distribution of delay after detection of root contention

The transmission delay of Wirei is determined by clock yi. This delay depends
on the length of the cable. We assume that the transmission delay is between
v/2 and a maximal velocity v with an average of 4

5v. The transmission delay is
approximated by a beta-distribution with parameters β1 = 2 and β2 = 6. To
be more precise, for cable-length m, the probability density function of clock yi
i = 0, 1), is given by:

fyi(t) =




(
v
m t− 1

) (
2− v

m t
)5

β(2, 6)
if m

v 6 t < 2m
v

0 if t < m
v or 2m

v 6 t

where β is a function that is well-known from statistics and probability theory,
see e.g., [93].

8.3 The Time until Contention Resolution

Simulation parameters. The verification study in [96] revealed that the correct-
ness of the root contention protocol – a leader is eventually elected with prob-
ability one – is only guaranteed if the maximum transmission delay is smaller
than δfast and (δslow −∆fast )/2. In our case, the maximum transmission delay
is assumed to be the lowest upper-bound of the support set of Fyi , i.e., 2m/v.
This corresponds to the distance the message may travel divided by the slowest
speed. To guarantee the correctness of the protocol we thus assume:

2m
v

< min
{
δfast ,

δslow −∆fast

2

}

For v = 198 mtr/µsec, the maximum velocity according to the IEEE 1394 stan-
dard, we obtain m < min{99 · δfast , 49.5 · (δslow −∆fast )}. For the discrete-event



General Distributions in Process Algebra 421

simulation we have taken the values of δfast , ∆fast , δslow , and ∆slow from the
specifications in the IEEE 1394 standard [62] and the draft IEEE 1394a proposal
[63], cf. Table 6.

δfast ∆fast δslow ∆slow m

IEEE 1394 0.24 µsec 0.26 µsec 0.57 µsec 0.60 µsec < 15.345 mtr

IEEE 1394a 0.76 µsec 0.80 µsec 1.60 µsec 1.64 µsec < 39.6 mtr

Table 6. Parameters of the root contention protocol

Simulation results. The closed behavior of the compositional specification is de-
terministic (with probability 1). Thus, no adversary is needed to resolve any
non-determinism. The discrete-event simulation has been carried out by a pro-
totype implementation in the functional programming language Haskell; for more
details see [33]. For each setting, five series of 250,000 simulations have been car-
ried out, each starting with different seeds for the random number generator. For
IEEE 1394, the length m of the cable ranged to up to 15 meters; for IEEE 1394a,
lengths of up to m=30 meters were considered. The average and variance of the
time until contention resolution are reported in Fig. 23 where the lower curves
refer to IEEE 1394 while the upper curves refer to IEEE 1394a. As expected,
the time increases on increasing cable length m. It appears that the new (draft)
version of the protocol shows a lower performance. For a given cable length, the
average time until contention resolution for IEEE 1394a is about a factor two
higher than for standardized IEEE 1394. This phenomenon is due to the longer
delay after flipping a coin. It should be remarked, though, that the IEEE 1394a
protocol guarantees the correctness of the root contention protocol over longer
distances.

9 Related Work

In this section we give an overview of stochastic process algebras that incorporate
general distributions and compare these proposals to .

– TIPP [43] is the earliest approach addressing general distributions in a pro-
cess algebra. Its syntax has the integrated prefix aF ; p which in corresponds
to set xF in when xF �→ a; p. Its semantics is based on labelled transition
systems in which transitions are decorated with the associated distribution
function and, to keep track of the execution of parallel processes, a number
that indicates how many times an action has not been chosen to execute.
This number introduces infinite semantic objects, even for simple regular
processes.
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Fig. 23. Time until contention resolution in IEEE 1394 (lower curve) and IEEE
1394a (upper curve)

– [1] extends LOTOS with several kinds of (stochastic) timers. The semantics is
given in terms of a (variety of) timed transition system, therefore abstracting
from probabilities. Separately, the authors consider the stochastic model as a
kind of GSMP. This work proposed very interesting ingredients at language
level. However, the treatment is not algebraic – despite the use of structured
operational semantics. The authors impose strong syntactic restrictions, do
not provide an adequate equivalence relation and, as a consequence, neither
algebraic laws.

– [45,46,97] introduced a process algebra for discrete event simulation. The
concerns of randomly setting a timer, expiration of such a timer, and actual
activity are split in a rather similar way to ours. The semantic model is
similar to our probabilistic transition systems where non-deterministic tran-
sitions are instead split into discrete transitions and timed transitions. As a
consequence, semantic objects contain usually uncountably many states and
transitions. Their process algebra includes an urgent and a delayable prefix-
ing, so its interpretation combines both views of closed and open system.

– [18] studies a semantics for a process algebra similar to TIPP in terms of
a stochastic extension of event structures. This model seems to be more
natural to deal with general distributions since activities that are not causally
dependent (i.e. concurrent activity) are not related in the model, contrarily
of what occurs in interleaving based models. However, recursive processes
always have associated an infinite semantic object. Recent investigations
indicate, however, that finite objects can be obtained (for finite-state process
algebra terms) from which stochastic task graph models are generated that
can be analyzed numerically [87].

– [83] followed an approach similar to [43]. The author gives semantics to a
stochastic extension of the π-calculus. In this case transitions are decorated
with locality information to keep track which process performed it.
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– A general semi-Markovian process algebra based on EMPA is discussed
in [16]. Terms in this process algebra have semantics in a semi-interleaving
model that allows for refinement of actions (the so-called ST-semantics). Al-
though this calculus preserves finiteness of semantic objects in a reasonable
way (like ours), the manner in which semantics is given is not straightfor-
ward. A nice characteristic of this process algebra is that it represents the
GSMP model in a complete way.

– Recently, [17] adapted the previous work to consider —like in our case—
the separation between beginning of a delay, ending of it, and execution of
an action. In so doing, the authors obtained a neater semantics as well as a
complete axiomatization for the weak equivalence relation they consider.

– Another recent work includes [74]. In this paper the authors pursue ideas
similar to [43,83]. To keep track of the time that has passed, the transition
is labelled with the action, its respective delay distribution, and the time
it takes. Like [1], they also use an “age” function in order to update the
distribution of the remaining delay of the concurrent events. The fact of
labelling the transition with the occurrence time makes the semantic object
infinite.

Among the stochastic process algebras enumerated above, [45,46,97] is the closest
to . Like , [45,46,97], [49], and [17] allow non-determinism. In all the other
cases (including the Markovian process algebras), choice is always solved either
by the race policy, by the pre-selection policy, or by a combination of both.

Other works that relate discrete-event simulation models (or languages) to
process algebra are [82,10]. In these works, the approach is different: rather than
generating a simulation model automatically from a process algebra specification
(as in this paper), they use process algebra as a semantic model for simulation
languages. In addition, these works do not take probabilistic timing into consid-
eration.

10 Epilogue

In this tutorial, we have given an informal overview of incorporating general dis-
tributions in a process algebraic framework. We discussed its complications and
gave an overview of possible solutions that have been suggested so far in the liter-
ature. We recapitulated the model of generalized semi-Markov chains (GSMCs)
and justified the need for a process algebraic treatment of such models. In the
second part of the paper, we have presented stochastic automata, a model that
subsumes GSMCs, includes non-determinism and is amenable to composition.
A process algebra named has been presented to describe these stochastic au-
tomata in a modular way. As a result, stochastic automata (and thus GSMCs)
can be generated automatically from specifications. Analysis methods for
specifications have been treated. The proposed approach has been illustrated by
specifying the root contention phase within the standardized IEEE 1394 serial
bus protocol. As opposed to other studies of this protocol that focus on its func-
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tional correctness we have studied the delay until root contention resolution.
Below we conclude by listing some interesting research topics for future work.

Weak bisimulation. Thanks to the efforts of several research groups, most seman-
tic issues of incorporating general distributions into a process algebraic setting
have been satisfactorily solved. One of the most important (semantic) issues for
future work is the investigation of weak equivalence relations such as variants
of weak or branching bisimulation. A weak equivalence relation that allows to
abstract from immediate invisible actions has been defined recently [17]. To our
knowledge, the replacement of a sequence of generally distributed delays by a
single delay labelled with the convolution of the delays on the sequence (i.e., the
sum of the random variables involved), has not yet been captured in a congruence
relation.

Model checking. As an alternative to discrete-event simulation techniques, model
checking could be applied to stochastic automata. Using such techniques one
would be able to check properties of the form “with probability at most 0.99
the system will deadlock within 2 hours” in a fully automated way. Such quan-
titative model checking algorithms have been recently considered for models
that are closely related to stochastic automata: for probabilistic variants of the
duration calculus on continuous semi-Markov processes [61] and for a continu-
ous probabilistic variant of timed automata [69]. It would be interesting to see
how these techniques can be effectively applied to stochastic automata and
specifications. Besides, the combination of these techniques with discrete-event
simulation could be investigated.

User-oriented specification languages. Performance engineers do consider process
algebra as being (too) complicated. In order to bridge the gap towards practition-
ers that e.g. use stochastic automata for modeling real-time multi-media systems
[11,20], efforts should be made towards making the specification formalism more
user-friendly. Interesting developments in that respect are the usage of stochas-
tic automata for stochastic extensions of UML (Universal Modeling Language)
Statecharts [42] and the activities on MoDeST (a Model Description language
for Stochastic Timed Systems) that builds upon , Promela [59], and timed
automata and for which tool-support is currently under development.
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