589 research outputs found

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Bayesian Optimization for Image Segmentation, Texture Flow Estimation and Image Deblurring

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Plant Seed Identification

    Get PDF
    Plant seed identification is routinely performed for seed certification in seed trade, phytosanitary certification for the import and export of agricultural commodities, and regulatory monitoring, surveillance, and enforcement. Current identification is performed manually by seed analysts with limited aiding tools. Extensive expertise and time is required, especially for small, morphologically similar seeds. Computers are, however, especially good at recognizing subtle differences that humans find difficult to perceive. In this thesis, a 2D, image-based computer-assisted approach is proposed. The size of plant seeds is extremely small compared with daily objects. The microscopic images of plant seeds are usually degraded by defocus blur due to the high magnification of the imaging equipment. It is necessary and beneficial to differentiate the in-focus and blurred regions given that only sharp regions carry distinctive information usually for identification. If the object of interest, the plant seed in this case, is in- focus under a single image frame, the amount of defocus blur can be employed as a cue to separate the object and the cluttered background. If the defocus blur is too strong to obscure the object itself, sharp regions of multiple image frames acquired at different focal distance can be merged together to make an all-in-focus image. This thesis describes a novel non-reference sharpness metric which exploits the distribution difference of uniform LBP patterns in blurred and non-blurred image regions. It runs in realtime on a single core cpu and responses much better on low contrast sharp regions than the competitor metrics. Its benefits are shown both in defocus segmentation and focal stacking. With the obtained all-in-focus seed image, a scale-wise pooling method is proposed to construct its feature representation. Since the imaging settings in lab testing are well constrained, the seed objects in the acquired image can be assumed to have measureable scale and controllable scale variance. The proposed method utilizes real pixel scale information and allows for accurate comparison of seeds across scales. By cross-validation on our high quality seed image dataset, better identification rate (95%) was achieved compared with pre- trained convolutional-neural-network-based models (93.6%). It offers an alternative method for image based identification with all-in-focus object images of limited scale variance. The very first digital seed identification tool of its kind was built and deployed for test in the seed laboratory of Canadian food inspection agency (CFIA). The proposed focal stacking algorithm was employed to create all-in-focus images, whereas scale-wise pooling feature representation was used as the image signature. Throughput, workload, and identification rate were evaluated and seed analysts reported significantly lower mental demand (p = 0.00245) when using the provided tool compared with manual identification. Although the identification rate in practical test is only around 50%, I have demonstrated common mistakes that have been made in the imaging process and possible ways to deploy the tool to improve the recognition rate

    Computational Imaging Approach to Recovery of Target Coordinates Using Orbital Sensor Data

    Get PDF
    This dissertation addresses the components necessary for simulation of an image-based recovery of the position of a target using orbital image sensors. Each component is considered in detail, focusing on the effect that design choices and system parameters have on the accuracy of the position estimate. Changes in sensor resolution, varying amounts of blur, differences in image noise level, selection of algorithms used for each component, and lag introduced by excessive processing time all contribute to the accuracy of the result regarding recovery of target coordinates using orbital sensor data. Using physical targets and sensors in this scenario would be cost-prohibitive in the exploratory setting posed, therefore a simulated target path is generated using Bezier curves which approximate representative paths followed by the targets of interest. Orbital trajectories for the sensors are designed on an elliptical model representative of the motion of physical orbital sensors. Images from each sensor are simulated based on the position and orientation of the sensor, the position of the target, and the imaging parameters selected for the experiment (resolution, noise level, blur level, etc.). Post-processing of the simulated imagery seeks to reduce noise and blur and increase resolution. The only information available for calculating the target position by a fully implemented system are the sensor position and orientation vectors and the images from each sensor. From these data we develop a reliable method of recovering the target position and analyze the impact on near-realtime processing. We also discuss the influence of adjustments to system components on overall capabilities and address the potential system size, weight, and power requirements from realistic implementation approaches

    Inversion pour image texturée : déconvolution myope non supervisée, choix de modèles, déconvolution-segmentation

    Get PDF
    This thesis is addressing a series of inverse problems of major importance in the fieldof image processing (image segmentation, model choice, parameter estimation, deconvolution)in the context of textured images. In all of the aforementioned problems theobservations are indirect, i.e., the textured images are affected by a blur and by noise. Thecontributions of this work belong to three main classes: modeling, methodological andalgorithmic. From the modeling standpoint, the contribution consists in the development of a newnon-Gaussian model for textures. The Fourier coefficients of the textured images are modeledby a Scale Mixture of Gaussians Random Field. The Power Spectral Density of thetexture has a parametric form, driven by a set of parameters that encode the texture characteristics.The methodological contribution is threefold and consists in solving three image processingproblems that have not been tackled so far in the context of indirect observationsof textured images. All the proposed methods are Bayesian and are based on the exploitingthe information encoded in the a posteriori law. The first method that is proposed is devotedto the myopic deconvolution of a textured image and the estimation of its parameters.The second method achieves joint model selection and model parameters estimation froman indirect observation of a textured image. Finally, the third method addresses the problemof joint deconvolution and segmentation of an image composed of several texturedregions, while estimating at the same time the parameters of each constituent texture.Last, but not least, the algorithmic contribution is represented by the development ofa new efficient version of the Metropolis Hastings algorithm, with a directional componentof the proposal function based on the”Newton direction” and the Fisher informationmatrix. This particular directional component allows for an efficient exploration of theparameter space and, consequently, increases the convergence speed of the algorithm.To summarize, this work presents a series of methods to solve three image processingproblems in the context of blurry and noisy textured images. Moreover, we present twoconnected contributions, one regarding the texture models andone meant to enhance theperformances of the samplers employed for all of the three methods.Ce travail est dédié à la résolution de plusieurs problèmes de grand intérêt en traitement d’images : segmentation, choix de modèle et estimation de paramètres, pour le cas spécifique d’images texturées indirectement observées (convoluées et bruitées). Dans ce contexte, les contributions de cette thèse portent sur trois plans différents : modéle, méthode et algorithmique.Du point de vue modélisation de la texture, un nouveaumodèle non-gaussien est proposé. Ce modèle est défini dans le domaine de Fourier et consiste en un mélange de Gaussiennes avec une Densité Spectrale de Puissance paramétrique.Du point de vueméthodologique, la contribution est triple –troisméthodes Bayésiennes pour résoudre de manière :–optimale–non-supervisée–des problèmes inverses en imagerie dans le contexte d’images texturées ndirectement observées, problèmes pas abordés dans la littérature jusqu’à présent.Plus spécifiquement,1. la première méthode réalise la déconvolution myope non-supervisée et l’estimation des paramètres de la texture,2. la deuxième méthode est dédiée à la déconvolution non-supervisée, le choix de modèle et l’estimation des paramètres de la texture et, finalement,3. la troisième méthode déconvolue et segmente une image composée de plusieurs régions texturées, en estimant au même temps les hyperparamètres (niveau du signal et niveau du bruit) et les paramètres de chaque texture.La contribution sur le plan algorithmique est représentée par une nouvelle version rapide de l’algorithme Metropolis-Hastings. Cet algorithme est basé sur une loi de proposition directionnelle contenant le terme de la ”direction de Newton”. Ce terme permet une exploration rapide et efficace de l’espace des paramètres et, de ce fait, accélère la convergence
    corecore