

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Gibb, Andrew

Title:
Dealing with Time Varying Motion Blur in Image Feature Matching

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

Dealing with Time Varying Motion Blur
in Image Feature Matching

By

Andrew Gibb

Department of Electrical and Electronic Engineering
University of Bristol

A dissertation submitted to the University of Bristol in ac-
cordance with the requirements of the degree of Doctor
of Philosophy in the Faculty of Engineering.

May 2018

Word count: Fifty-one thousand, one hundred and sixty-six.

Abstract

Motion blur is present in many images and can be due to many causes: From shaky hand held
photographs, the panning of 24 frames-per-second feature film cameras, a broadcast camera
following a sprinter, or a camera on an autonomous robot. Judicious choice of camera parame-
ters, illumination, and object speed can mitigate motion blur in some circumstances, but often
it is unavoidable, or even desirable. For example, in the particular case of feature film and
broadcast video, some amount of motion blur is desired, as it aids the creation of the illusion
of a moving object, given a succession of still images, presented rapidly.

For video analysis however, motion blur remains an obstacle. Much of the work to date
in visual analysis, and particularly in image matching, has not addressed motion blur. In the
cases where both images are similarly blurred, this is not problematic, as these images appear
similar, and can readily be identified as such. However when the motion blur differs between
frames, many existing approaches fail or offer significantly reduced performance.

This thesis presents experiments that verifies the model of motion blur, which relates un-
blurred images to blurred ones, as a rectangular filter. It then proposes a modification to phase
correlation, which is based on this rectangular filter model of motion blur. This is shown to
perform as well as the best existing methods from the literature. Finally, modifications to
SIFT descriptor matching are proposed and tested. One of the methods increases the accuracy
of correct matching of SIFT features by up to 60%, for the case of matching a non-blurred
image region to a blurred one.

i

Dedication and acknowledgements

For Mum and Dad.

I am grateful to the BBC for allowing me the freedom to undertake this study as part
of my work, and for funding my tuition. I am particularly indebted to my BBC supervisor
Prof. Graham Thomas without whose tireless support and enthusiasm this work would have
been poorer in every way. I am also very grateful to Prof. Dave Bull from the University of
Bristol, who was relentlessly helpful and positive, and with whom I shared many enlightening
conversations.

Thanks are due to the co-ordinators of the European Union 7th Framework project “Fas-
cinate”, and their legal team, and also to Sam Chadwick, for arranging the agreement without
which I would not have been allowed to do this work at all.

Dr. Johannes Steurer and colleagues at ARRI and Alastair Bruce at BBC R&D all deserve
thanks for providing equipment and space for the experiments on motion blur. Without their
help the selection of cameras would have been much less interesting. Thanks too to Dr. Steffen
Gauglitz of the University of California, Santa Barbara, for his help with the data set he
published.

Jen Hawkins was particularly helpful when it came to learning the ways of Bristol Univer-
sity. The people from Bristol University Merchant Venturer’s Building for help, encouragement,
or interesting distraction: Drs. Richard Vigars and Aaron Zhang for guidance at the start.
Drs. Pui Anantrasirichai, Tilo Burghardt, Sion Hannuna and Paul Hill for their guidance at
important junctures. Drs. Osian Haines, David Gibson, and everyone else for many stimulating
conversations.

The people I work with every day at BBC R&D are, without exception, fantastic. The
inspirational, supportive, and interesting working environment is a place I am very grateful to
be in, every day, and it is made so by the people. There are far too many to name them all
here, but a few notable characters deserve a mention: The newly minted Dr. Al Hinde, for
sharing the pain. Dr. James Weaver, for his always clear, helpful, and caring advice. Kevin
Price and Dr. Frank Melchior, for sharing another perspective entirely.

And finally, to my partner Rae, who has been an unwavering source of help, support and
encouragement. Thanks so much for helping me out of the lowest points. Thanks for being by
my side at the highs. And thanks for all the biscuits.

iii

Author’s declaration

I declare that the work in this dissertation was carried out in accordance with the
requirements of the University’s Regulations and Code of Practice for Research
Degree Programmes and that it has not been submitted for any other academic
award. Except where indicated by specific reference in the text, the work is the
candidate’s own work. Work done in collaboration with, or with the assistance of,
others, is indicated as such. Any views expressed in the dissertation are those of
the author.

SIGNED: .. DATE: ..

v

Table of Contents

Page

List of Tables xi

List of Figures xiii

1 Introduction 1

1.1 Motivation . 1

1.1.1 The Piero sports graphics system . 2

1.1.2 The Fascinate Project . 8

1.2 Contributions . 12

1.3 Outline of Thesis . 12

2 Literature Review 15

2.1 Introduction . 15

2.1.1 Timing analysis . 16

2.2 Camera Tracking . 17

2.3 Preliminaries . 18

2.3.1 Scale Space . 18

2.3.2 Random Sample Consensus (RANSAC) 19

2.3.3 Camera Models . 19

2.4 Performance comparisons . 19

2.5 Image Feature Detectors . 21

2.5.1 Harris, Harris-Affine and Hessian-Affine 21

2.5.2 Difference of Gaussians . 22

2.5.3 Fast Hessian . 23

2.5.4 Maximally Stable Extremal Regions (MSER) 24

2.5.5 Edge-based regions . 25

2.5.6 Intensity-based regions . 26

vii

TABLE OF CONTENTS

2.5.7 Salient regions . 26

2.6 Template-based matching . 27

2.6.1 Phase Correlation . 27

2.6.2 The “KLT” Method . 28

2.6.3 Efficient Second-Order Minimisation (ESM) 30

2.6.4 Simultaneous Minimisation of Motion Blur and Affine Parameters . . . 30

2.6.5 Direction Detection and Exhaustive Search Blur Synthesis 32

2.7 Descriptor-based matching . 32

2.7.1 Scale-Invariant Feature Transform (SIFT) and Related Methods 32

2.7.2 Speeded-up Robust Features (SURF) . 36

2.7.3 Dual Tree Complex Wavelet Transform (DT-CWT) Multiscale Keypoints 37

2.7.4 Phase-based Local Features . 38

2.7.5 Phase Quantization . 39

2.8 Scale-Space Approximation . 42

2.9 Motion Blur Removal . 42

2.9.1 Deconvolution . 43

2.9.2 Multi-image . 45

2.9.3 Data-driven . 46

2.9.4 Conclusion . 49

2.10 Optical Flow from Motion Blur . 50

2.11 Feature Matching incorporating de-blurring . 51

2.12 Summary . 51

3 Experimental Validation of Motion Blur Model 55

3.1 Introduction . 55

3.2 Camera Models . 56

3.2.1 Instantaneous Camera . 56

3.2.2 Instantaneous Camera: Modelled Distortions 58

3.2.3 Integrating Camera . 60

3.2.4 Integrating Camera: Modelled Distortions 61

3.3 A model of motion blur . 63

3.3.1 The pinhole camera . 63

3.3.2 Integration and sampling . 63

3.3.3 A moving edge . 64

3.3.4 Motion blur as filtering . 65

3.4 Method . 66

viii

TABLE OF CONTENTS

3.4.1 Requirements . 66

3.4.2 Physical configuration . 67

3.4.3 Subject . 69

3.4.4 Post-processing and data conditioning 72

3.5 Results . 75

3.6 Analysis . 80

3.6.1 Error bias with exposure duration . 81

3.6.2 For.A FT-ONE Results . 81

3.7 Conclusion . 83

3.7.1 A note on rolling shutters . 84

4 Assessing Feature Matching — Experimental Method 87

4.1 Introduction . 87

4.2 Data Set . 88

4.3 Procedure . 90

4.4 Evaluation . 96

4.5 Conclusion . 96

5 Velocity Corrected Phase Correlation 99

5.1 Introduction . 99

5.2 Background . 100

5.2.1 Phase in Images . 100

5.2.2 Sub-pixel location refinement . 101

5.3 Velocity Corrected Phase Correlation (VCPC) 102

5.3.1 The effect of motion blur on Fourier Phase. 102

5.3.2 Correcting for Motion Blur . 104

5.3.3 Estimating the Rectification Mask . 107

5.3.4 Sampling Limits . 108

5.3.5 Squared Cross Power Spectrum Phase Correlation (SCPS) 109

5.3.6 Dealing with Noise . 110

5.4 Timing . 111

5.4.1 Complexity analysis . 111

5.4.2 Suitability for real time use . 112

5.5 Results and Discussion . 113

5.6 Conclusions . 114

6 Velocity Corrected SIFT 115

ix

TABLE OF CONTENTS

6.1 Introduction . 115

6.2 Background . 115

6.2.1 SIFT Feature Matching . 117

6.2.2 Motion Blur and SIFT Descriptors . 117

6.2.3 RootSIFT . 118

6.3 Proposed methods . 119

6.3.1 Directional Weighting . 119

6.3.2 Naive Vector Space Flattening . 120

6.3.3 Speculative Vector Space Flattening . 121

6.3.4 Directional Vector Space Flattening . 122

6.3.5 Implementation . 122

6.4 Experiments . 123

6.4.1 Parameter setting . 123

6.5 Results . 126

6.6 Discussion . 128

6.6.1 Future Work . 130

7 Conclusion 131

7.1 Future Work . 132

Bibliography 135

x

List of Tables

Table Page

2.1 Summary of real time methods . 52

5.1 The peak separation distance compared to the difference between the actual motion

blur and the assumed motion blur. 108

5.2 Complexity of phase correlation based algorithms 112

6.1 Steps to compute a SIFT difference and their timing. 117

6.2 Steps to compute a directionally weighted SIFT difference and their timing. 120

6.3 Steps to compute a naive vector space flattening difference and their timing. . . . 121

6.4 Steps to compute a speculative vector space flattening difference and their timing. 121

6.5 Steps to compute a directionally flattened SIFT difference and their timing. 122

xi

List of Figures

Figure Page

1.1 Top: Input field. Bottom: Piero output with diagnostic markup. 6

1.2 The Omnicam . 9

1.3 An example frame from the Omnicam . 10

2.1 The main stages in the BBCs pan-tilt-zoom camera tracking software. 18

2.2 Three examples of approximations made by the Fast Hessian detector. Top row:

Second order partial derivatives of Gaussians. Bottom row: Fast Hessian approxi-

mations. 23

2.3 Gauglitz et al’s [1] results for detectors under motion blur. Solid lines show matches

between adjacent blurred frames. Dashed lines are matches between the first (un-

blurred) frame and later frames. 23

2.4 Examples of Maximally Stable Extremal Regions, demonstrating affine invariance. 24

2.5 The grey quadrilateral in (a) is an Edge-based region. (b) Intensity-based region. . 25

2.6 Top row: Image regions from a selection of frames in the video sequence. Middle

row: The region from the first image motion blurred to match the top row frame.

Bottom row: The region from the first image, motion blurred and warped to match

the top row frame. 31

2.7 The accumulation of image gradients into histograms in the SIFT descriptor. The

circle on the left indicates the presence of a Gaussian weighting over the region.

For clarity, fewer regions are shown than used in practice. 33

2.8 Gauglitz et al’s [1] results for descriptors under motion blur. The star is SIFT,

the cross SURF and the square phase correlation. The triangles are results for

classifier-based methods. The dashed line indicates precision with respect to the

first (unblurred) image in the sequence, the solid lines precision with respect to the

previous frame in the sequence. 33

2.9 The arrangement of areas within which GLOH accumulates gradient histograms. . 35

xiii

List of Figures

2.10 The construction of the SURF descriptor. Gradients accumulated in each sub-region

are collected into four values. 36

2.11 (a) The sampling structure used to extract DT-CWT coefficients in the vicinity of

a feature point. (b) The arrangement of the extracted coefficients into a feature

matrix. 38

2.12 The selection of sample points in Phase-based local features. 39

2.13 Anantrasirichai et al’s results [2]. UDT-CWT L=3 uses subbands 2 and 3, L=4

uses subbands 2, 3 and 4. 41

2.14 The relationship between short motion blur phase inversion and the first four oc-

taves of a signal. The numbered regions at the top are the frequency bands ex-

tracted at the indicated octave by the (U)DT-CWT. The shaded regions at the

bottom show which phases are inverted for 3- and 5-pixel motion blurs. 41

2.15 An Artifical Neuron 1 . 47

2.16 An Artificial Neural Network2 . 47

2.17 The network architecture used by Su et al [3] . 48

3.1 On the left, the 3D point X is transformed into the image coordinate x = PX.

The right figure shows the relationship between a 3D coordinate, its image, and the

focal length. 57

3.2 The motion of the intensity edge through during the exposure 64

3.3 The intensity function at the pixel xn+∆n . 64

3.4 Ideal camera configuration: The optical axis is aligned with the turntable rotation. 67

3.5 The arrangement of camera, turntable and lighting. 70

3.6 Circle extraction. 73

3.7 Detail of edge blur. 74

3.8 Estimating blur length by fitting a line to the blur ramp. The grey regions indicate

excluded pixels distorted by the optical filters. The red line is the best fit to the

remaining points. 74

3.9 Motion blur length with varying shutter, Sony PMW-500. (a) 1080p25, Rec.709

gamma. (b) 1080p25, linear gamma. (c) 720p25, Rec.709 gamma. (d) 720p25,

linear gamma. 76

3.10 Motion blur with varying shutter, other cameras. (a) Sony PMW-500, 720p50. (b)

ARRI ALEXA-S, 1620p50. (c) RED EPIC, 1080p50. (d) For.A FT-One, 2160p50. 77

3.11 Motion blur with varying shutter, other cameras. (a) ARRI ALEXA-S 1620p25.

(b) RED EPIC, 1080p25. 77

xiv

List of Figures

3.12 Motion blur with varying framerate, 360°shutter. (a) Sony PMW-500. (b) RED

EPIC. (c) ARRI ALEXA-S. (d) FOR.A FT-One. 78

3.13 Motion blur with varying framerate, 180°shutter. (a)ARRI ALEXA-S mechanical

shutter. (b) ARRI ALEXA-S electronic shutter. (c) Sony PMW-500 (d) RED EPIC. 78

3.14 Motion blur with resolution. Exposure from camera settings is always 0.02s. Cam-

era sources are Sony, Sony, ARRI, RED, For.A respectively. 79

3.15 Difference between estimated exposure and specified exposure. Exposure varied

using shutter control. Rec.709 and Linear refer to the gamma at capture. 80

3.16 Difference between estimated exposure and specified exposure. Exposure varied

using framerate control. 81

3.17 The tendency to over-estimate blur rather than under-estimate in the presence of

noise. 82

4.1 The targets included in the data set from Gauglitz et al. From left to right Wood,

Bricks, Building, Paris, Mission, Sunset . 88

4.2 Example frames from the UCSB dataset. 89

4.3 Spectral Occupancy of various signals. 90

4.4 Left: A row and column of pixels showing the effect of the sharpening filter on

horizontal edges. Right: Image crop showing the pixels extracted. 91

4.5 Example images for wavelet analysis. (a) UCSB Sunset; (b) Long Jump 1; (c) Long

Jump 2; (d) Kiel Harbour. 94

4.6 Wavelet decompositions. (a) UCSB Sunset; (b) Long Jump 1; (c) Long Jump 2;

(d) Kiel Harbour. 95

5.1 Phase carries the structural information about the content of an image. The dog’s

face is visible in the bottom-right image. The structure of the wood is visible in

the upper right. 100

5.2 Comparing cross correlation and phase correlation. 102

5.3 A line from the result of finding phase correlation between two copies of Kiel Har-

bour, where one has artificial motion blur. 104

5.4 The real and phase components of sinc function. 104

5.5 Phase inversion masks. 105

5.6 Image lines extracted from Sfg between an unblurred image and copies shifted by

55 pixels with motion blur of length indicated by M. For motion blurs greater than

3 pixels, there are two peaks. Figure: Tom Cox. 106

xv

List of Figures

5.7 A row from phase correlation solution surfaces with appropriate rectification masks

applied. The double peak structures visible in Figure 5.6 have disappeared. All the

peaks are overlaid on the correct location. Figure: Tom Cox. 107

5.8 The effect of applying the wrong rectification mask to a motion blurred image.

Figure: Tom Cox. 108

5.9 The impact of quantisation on masks for different motion blur lengths. 110

5.10 Mean phase correlation result across all targets . 113

5.11 Results for the targets bricks and paris, showing the content-dependence of the

VCPC method. 114

6.1 Distribution of gradient energy within a SIFT feature. Figure: Neill Campbell. . . 116

6.2 Hypothetical impact of horizontal motion blur on a SIFT feature. The black dot

indicates the centre of the histogram. 118

6.3 Proportional improvement for varying n bins discarded. Line colour indicates n. . 124

6.4 Proportional improvement for varying the improvement threshold t. Line colour

indicates threshold. 125

6.5 Feature matching precision. Results for the mission target is on the left, and paris

on the right. 126

6.6 Feature matching precision. Results for the bricks target is on the left, and building

on the right. Legend as in Figure 6.5 . 127

6.7 (left) Feature matching precision aggregate scores for all targets, (right) comparison

of SIFT features and RootSIFT features. 128

6.8 Inter-frame tracking. Left shows the results for bricks, and right is the aggregate. . 129

xvi

Chapter 1

Introduction

Motion blur occurs in many images, for many different reasons. In live and pre-recorded TV,

and feature films, it is often intentional, or at least unavoidable. Industrial applications of

computer vision often attempt to control the lighting, cameras, and object speed so that there

is little or no motion blur. But as applications of computer vision become more widespread, and

take place in uncontrolled environments (for example, self-driving cars), it becomes necessary

to design algorithms which are robust to motion blur.

When motion blur changes by a small amount between a pair of images of the same ob-

ject taken from similar locations, methods designed without considering motion blur can work

rather well — the images will be very similar arrays of pixel values. But this is not always

the case. Images containing strongly differing motion blur must often be matched. For exam-

ple, a sensor on a car moving at different speeds along a particular stretch of road, a visual

search algorithm trying to match a shaky photograph to other, non-blurred images, or a broad-

cast camera tracking system trying to match image regions between fast-moving frames and

stationary ones.

This Thesis explores two questions derived from problems such as these:

1. Does motion blur behave as conventionally modelled?

2. Can these models improve visual tracking in situations of differing motion blur, in real

time?

1.1 Motivation

Large differences in motion blur between images occur in unconstrained environments, or

where the computer is not the primary “audience” for the video or images. Broadcast video

and feature film recordings are intended for a human viewer first, and machine second. This

1

CHAPTER 1. INTRODUCTION

is in contrast to a lot of computer vision research, where the parameters for the camera can

be set for the machine, and the subjective quality discarded. Applications in robotics and

manufacturing monitoring are good examples of this.

A paper by Mikolajczyk and Schmid [4] won the 2014 CVPR Longuet-Higgins Prize, which

recognises papers from ten years ago which have had “significant impact on computer vision

research”. This paper was part of a short series with [5, 6] which created a robust assessment

framework for image feature detectors and descriptors. This framework incorporated test

data with a variety of image distortions, but no motion blur. Invariance to affine change,

illumination change, and scale change have all become part of the lexicon of computer vision

research, but robustness to motion blur is much more rarely seen (let alone invariance to motion

blur.)

Virtual graphics for broadcast video and for films have become a huge industry over the

past two decades or so. Automated and semi-automated tools are used to find the position

and orientation (“pose”) of the camera for every frame so that virtual graphics can be added

in such a way that they appear to be fixed to the real objects in the scene. A recent paper by

Barber et al points out [7] the tools used in practice by the feature film industry for finding

camera pose are often manual. In feature film post production, a predictable workflow is more

important than one with more automation, if that automation produces larger variance in the

time to complete a task.

Live broadcast television has different requirements than feature films (and post-produced

TV.) Organisations such as the BBC have very high quality standards. As such, visual tracking

for live broadcast must be extremely reliable. The BBC is also compelled to provide good value

for money. This means they seek cheaper software based systems to produce equivalent results

to camera mounts incorporating sensors, which are accurate, but expensive. Sensor based

systems can also be impractical for broadcast — it is often the case that the cameras are

installed and operated by a different company, and the the BBC only has access to the video.

1.1.1 The Piero sports graphics system

The Piero sports graphics system [8] is based on a set of software libraries developed by BBC

Research and Development for adding virtual graphics to broadcast video coverage of live

sports events. The day-to-day management of Piero, interface design, and integration into the

broadcast chain are done by Red Bee Media in partnership with BBC R&D. The computer

vision parts of Piero are designed to operate on pan-tilt-zoom broadcast cameras, which are

common at live sports events. It is increasingly common for the users of Piero only to have

access to the video feeds of a sports event - they cannot physically access the cameras. Because

of this, the system is designed to work on video only. Inertial measurements of camera pose,

2

1.1. MOTIVATION

and encoded lens parameters, are assumed to never be available. Over the years Piero has

been adapted by various authors to operate on more and more sports, and in increasingly

challenging visual conditions.

The core functions of Piero are to calibrate frames of running video, live and in real time,

and to do so in a reference frame which includes some real, physical geometry (such as the

locations of the lines on a football pitch.) This enables the interactive portion of the software to

create virtual graphics which appear to be fixed to the real world. A virtual camera is created

with geometry matching the calibrations, and the graphics are rendered into that camera. The

output from the virtual camera is composited with the video frame. As the camera moves, the

graphics appear fixed to the world.

The tracking in this software is based on methods described by Lucas and Kanade [9]

and Shi and Tomasi[10] which has become known as the “KLT” method. This approach, and

derived methods, are described in more detail in Section 2.6.2.

In live broadcast it is critical that the graphics and the calibration be reliable and accurate.

Even when the system is not generating graphics for immediate transmission, real time oper-

ation is important. When analysis packages are being collected together (including different

angles of view on a particular event, expert analysis, as well as virtual graphics) the operator

of the system may wish to navigate around the recorded timeline randomly. It is important

that any section the operator chooses can be calibrated and rendered with virtual graphics

immediately, so they can decide whether this is an appropriate view, and move on.

Many adaptations beyond the standard methods described in the literature have been

made to ensure that the calibration works reliably in live broadcast situations. This means

adaptations to varying lighting, animated advertising signs, unpredictable camera movement,

and others. Each adaptation will be described in the following section.

The next section will consist of a detailed overview of the operation of Piero. The section

after will describe the specific problem which motivates the research in this Thesis.

Operation

This section will first describe the online tracking process, as it operates on a frame of video

where the previous frame is already calibrated. Next the various special additions will be

described, and finally methods for initialization will be described. A more detailed description

of this tracking system is given in [11].

Because the system is only ever used to calibrate cameras which do not translate, a sim-

plified world model can be used to keep track of point correspondences between frames. Once

the calibration for a frame has been established, any new features added in this frame are

projected onto a cube which is centred on the camera and which has a fixed orientation with

3

CHAPTER 1. INTRODUCTION

respect to the world coordinate system. The 3D coordinates of the feature on the cube are

treated as the world positions which correspond to the feature locations, for the purposes of

estimating the camera pose.

On-line tracking proceeds as follows: When a new frame arrives, the velocity and pose from

the previous frame are used to compute an estimated pose for this frame. An image pyramid

is formed by repeatedly applying a fast running-average low pass filter, and downsampling by

a factor of two in both image dimensions.

The 3D positions of the points on the cube are projected into the frame using the estimated

pose. The KLT registration algorithm is used to refine the image coordinates of the projected

points by comparing their appearance between this frame and the previous one. The KLT

algorithm is applied in a coarse-to-fine manner using the image pyramid. Broadcast video

tends to change in focal length in a slow, smooth manner, so image pyramids from adjacent

frames can be assumed to represent the same scale. This process results in a set of point

correspondences between the current and previous frames. Each pair of corresponding points

also maps to a location on the cube surrounding the camera.

RANSAC [12] is now used to reject outliers. Pairs of features are selected at random.

An estimated pose is found by assuming the geometry of one feature matches perfectly, then

finding the rotation and focal length needed to cause the smallest error in the location of the

other feature. This provides an estimated camera pose. These camera poses are compared and

feature points which contributed to dissimilar camera poses are discarded.

An iterative optimization process now runs to determine the pose of the camera given

the correspondences between each remaining feature point and its corresponding 3D “world”

position. It is usual for iterative optimization procedures to have a threshold for per-iteration

improvement, to halt the process. Piero also allows a hard limit on the number of iterations, so

that the amount of time spent by the optimization is limited. Once the pose has been found,

a normal calibration step is completed.

The process described above is prone to the accumulation of small errors, or “drift”. When

drawing virtual graphics on real-world objects, this has the effect of the graphics appearing to

move away from the object they should be fixed to. Drift is corrected for in Piero using a set of

features which are treated as a canonical reference set. The reference set is generated by storing

image patches every time new features are detected in a region. In the coarse-to-fine matching

process, the coarser levels of the image pyramid are matched by comparing the current frame

with the previous one. After a number of coarser levels, the current frame is compared with

the canonical feature instead. The levels at which this can occur can be configured by the

user. By storing a permanent version of the appearance of a patch, and a 3D location, drift is

minimised. As will be discussed later, this poses a problem when the amount of motion blur

4

1.1. MOTIVATION

in current and stored patches is significantly different.

There are a number of additional operations which don’t happen every frame: As the

camera view moves around the scene, parts of the image will no longer contain features, so

new ones must be detected. The feature detection step operates on a sub-section of the frame

(in x and y) per frame (in time). So, if the camera has panned, then the feature-less region at

one side of the image will be populated over the course of a small number of frames (usually

4). Harris corners are detected in the sub-section. Optionally, the cornerness score of Harris

[13] or the eigenvalue-based quality score of Shi and Tomasi [10] can be used to filter features.

If more features are found than required, then areas of the sub-section which are crowded with

features are culled, leaving a somewhat even distribution of feature points across the frame.

In an early version of the system, feature points could be detected on moving foreground

objects, which would later need to be removed using RANSAC. A feature has been added to

detect regions of the image where the motion cannot adequately be explained by the movement

of the camera, which can be subsequently be masked out when feature detection takes place.

This step takes place after the pose of the camera has been established for this frame. Low-pass-

filtered versions of the current and preceeding frames are overlaid, one having been warped to

match the view of the other. Areas where the intensity differences are greater than a threshold

are treated as being part of a moving object, and excluding from the feature detection step.

Visual Feedback

Figure 1.1 shows the diagnostic from a test of Piero on a long jump attempt. The top shows

the input field (interlaced video is still common in broadcast sports. If either the odd or even

field alone is selected, it can be used as a proxy for a frame, as long as the aspect ratio is

accounted for.) The bottom shows the same field with diagnostic markup. The green grid is

a visualisation of the cube. Whether or not the grid appears fixed is a helpful proxy when

trying to judge the stability or accuracy of the tracking by eye. The yellow crosses and green

boxes indicate tracked feature points. A yellow cross is a feature point which has been located

in this frame, and has been found to be an inlier in the RANSAC process. (The cross is red

if it’s a RANSAC outlier.) The green box around the yellow point indicates this feature point

is one of the canonical reference features. In this sequence, the system has been automatically

filling in reference features. The filled-in green area partially covering the athlete indicates the

non-camera motion mask. Note that this motion mask doesn’t just cover the athlete; they

appear to have a “shadow”. This is a result of examining the difference between two frames.

Not only does the appearance of the athlete in this frame not match the background in the

previous frame, but the appearance of the athlete in the last frame also does not match the

appearance of the current frame.

5

CHAPTER 1. INTRODUCTION

Figure 1.1: Top: Input field. Bottom: Piero output with diagnostic markup.

Practical use

Piero is used mostly for broadcast coverage of sports. Many sports, especially those which are

broadcast on TV, have markings on the ground, which usually follow some more or less strict

rules. Why not use these markings as calibration targets? Piero has this capability, although

there are some practical limitations, which lead to the development of the image feature based

method described above. Some structures are not as well-defiend as might be expected. For

example, there is no standard dimension for an English Premier League football pitch. Also,

football pictches are not flat. So in order to use the pitch markings as a calibration target,

they must first be measured. Another problem when providing broadcast coverage for football

is that the pitch lines are not always visible. A version of Piero capable or calibrating suitable

shows using only pitch lines was developed earlier. It is described in detail it [14]. Quite

often shots which need graphics cannot be calibrated using lines along because the shot only

contained a single line segment. Finally, for athletics events, there are sometimes only parallel

6

1.1. MOTIVATION

lines. When viewing only a set of parallel lines, the position of the lines in the image will be

almost totally invariant to a small camera movement along the lines. This is an example of

the aperture problem, whereby the position along an edge viewed through a limited aperture

is impossible to determine.

Lens distortion is ignored for broadcast sports applications. The way the system is used is

robust to small errors of a few pixels, as long as the errors do not vary between frames.

Initialization

Two different approaches to initialization are available. If the Piero operator can control

the view of the camera, then a manual initialization can be done. Otherwise an automatic

calibration can be done. The automatic calibration is also used in case of emergency re-

calibration.

Manual calibration involves arranging the camera view to include enough points with known

3D locations in the world (for example, measured corners on a football pitch. The operator

indicates correspondences between image points and world points, and the camera pose is

solved for.

Automatic calibration requires that the manual calibration has been carried out at least

once, and some feature points have been stored. An exhaustive search is performed across a

range of pan, tilt and zoom values, at specified intervals. For each set of pan, tilt and zoom

parameters, the system attempts to match the visible features to the current frame using same

approach as described above for a new frame. The best pose is taken as correct, and tracking

is resumed. This procedure takes about a second, depending on the parameter values. The

size of the intervals used depends upon the density of features stored, and the number of levels

on the image pyramid.

Motivating examples

The following observation of the use of Piero for calibrating a camera showing a long jump

attempt provided motivation for the work in this Thesis. During broadcast coverage of the

long jump, the camera is positioned to the side of the sand pit, and some distance away. The

camera pans to look at the athlete as they begin their approach run. As the athlete accelerates

and moves closer the camera position, the rate of pan must increase to keep up. The camera

is panning with maximum inmage plane velocity as the athlete makes their jump, then comes

to an abrupt halt a very short time later as the athlete lands. The camera tracking is observed

to oscillate once the camera stops panning. The overlaid graphics can be seen to move back

and forwards by a few pixels. This is not satisfactory for broadcast use.

7

CHAPTER 1. INTRODUCTION

It is believed that this problem arises from the canonical reference features which are created

as the sand-pit comes into view. Once the camera comes to rest on the sand pit, the system

must match the (now sharp) features of the sand pit and surrounding area, using canonical

features which are all blurred. (In this case, the user of Piero does not have control over the

camera position. They only have a recording of the sequence to play, which they must attempt

to calibrate, given just a few seconds to do so.) The work in this Thesis was begun with the

initial aim of solving this problem.

1.1.2 The Fascinate Project

Fascinate [15, 16] was a collaborative project supported by the EU’s 7th Framework. It ran

from early 2010 until mid 2013 and involved 11 partner organisations from around Europe.

The vision for the project was to create a “Format-agnostic, script-based production system”

for live events. Such a system would capture a wide range of audio and video sources from

a live event, annotate descriptive metadata alongside the audio and video, to create “scripts”

which could render many different possible versions of the same live event dependent upon

user preferences, device and network capabilities, and service provider control. This ambitious

scope amounts to a complete repacement broadcasting system. Clearly it would be impossible

to build such a system with a small project team in a few years. Instead, a vision of the

complete system was used to inform a prototype design of the complete system, with each

important subsystem represented. Over the course of the project, the consortium built and

demonstrated this prototype.

Capture System

The vision of the capture system was to use many microphones and clusters of cameras [17]. A

cluster of cameras would consist of several cameras with different capabilities, located as close

together as possible. For example, there might be a wide-angle panoramic camera, a number of

pan-tilt-zoom broadcast cameras, and a high frame-rate camera, all located near one another.

In this example, the pan-tilt-zoom cameras would probably be manually operated, and would

be following direction either from a human director, or some fixed guidelines. The panoramic

camera would be stationary. Analysis algorithms or human operators would extract regions of

interest and generate virtual shots by cropping the region from the panorama, with the various

crops described only as metadata. The high frame-rate camera could be used as an input to

analysis algorithms, or as part of the coverage if appropriate.

A feature of the project was the “Omnicam”, developed by Fraunhofer HHI, which could

capture a 180 degree panorama using 6 HD cameras and a mirror rig. After stitching, the

8

1.1. MOTIVATION

output resolution was 6000 × 2000 pixels. The Omnicam, installed in the Royal Albert Hall

for a test shoot of the BBC Proms, is shown in Figure 1.2. An example frame showing the

field of view of the Omicam is shown in Figure 1.3.

Figure 1.2: The Omnicam

It was specified in the project proposal document that dense 3D reconstruction would not

be used, rather image-based rendering techniques based on calibration, segmentation, and

warping should be used to combine information from the various cameras in the cluster. Since

the intended used of the system was for coverage of live events, it was important to use real

time processing with minimal latency everywhere.

Audio capture was carried out by the University of Salford and Technicolor. Various

systems were used at different capture sessions including spatial audio capture with Soundfield

Microphones and an “Eigenmic”. Arrays of microphones with measured position captured

audio information for localised parts of the scenes.

9

CHAPTER 1. INTRODUCTION

Figure 1.3: An example frame from the Omnicam

Automatic and semi automatic metadata generation

According to the vision of the system, the audio and video is processed to annotate metadata

describing audio signals of interest, video regions of interest, common features, and so on.

Some of this is done automatically, and some of it is operator assisted. All of the audio, video,

and metadata, is then passed into the delivery system.

In the prototype a number of analysis systems were developed [18]. Systems were created

by the BBC to locate players and the football in the various camera views during a football

match using difference keying and some machine learning. Audio analysis was developed by

the University of Salford and Technicolor to automatically extract audio objects such as the

loudest part of the crowd at a football match, or the location of the kicked ball. Visual scene

analysis was developed to allow detection of locally relevant semantic concepts (ie “people

dancing”, “person riding a bicycle”) in a temporally stable way.

Data Network Considerations

The amount of data produced by the capture system is clearly too large for any existing large-

scale delivery system to transmit, for a single event. Ten or twenty HD video streams, around

forty audio signals, as well as all the attendant metadata, is far too much for any large-scale

internet infrastructure to consider as “one channel” in the early twenty-first century. Doubtless

that will change as time goes on, and for that reason the network capabilities to transmit such

an enormous bandwidth were out of the scope of the project.

Some strategies for dealing with data in the network were investigated. For example, it

seems plausible that the “last mile” of a network connection will remain low-bandwidth and

heavily congested compared to the longer distance backhaul networks. Therefore, strategies

for computing more or less of the rendering in the network were investigated. Tiled delivery

of high-resolution video, remote control of an in-network renderer, and Publisher/Subscriber

methods were all investigated by TNO and Alcatel-Lucent.

10

1.1. MOTIVATION

Script-based rendering system

The renderer’s job is to receive all the media available (possible negotiating with a server to

receive only relevant streams) along with the metadata and construct video and audio outputs

determined by the user’s preferences, service provider, and output device.

The final prototype renderer was able to render different parts of the Omnicam scene into a

form suitable for display on a television or tablet. The crop could be chosen by the user, or could

be driven by metadata describing a region of interest. This metadata might have originated

automatically, or from a human operator. Suitable audio was rendered in a sophisticated way

based on automatically extracted metadata, production-user input, and consumer input. The

audio renderer was developed by the University of Salford. The video renderer, and renderer

integration, was done by Technicolor. A video renderer was also developed by the author for

some time during this project. Work was abandoned when it became clear the Technicolor

renderer would be available to use for experiments.

Relevant problems

One motivation for this Thesis arises from the need for the Fascinate camera cluster to be

calibrated. The panoramic camera is stationary, so stationary objects will be imaged without

motion blur. Any object moving sufficiently fast will have motion blur. Note that changes to

the camera aperture and exposure time are limited by the overall illumination of the scene,

rather than to make crisp a single moving object. So, still things will be sharp, and moving

things blurred.

Other cameras in the cluster will be able to pan, tilt and zoom in order to follow objects

of interest. The exposure time and other camera parameters will be adjusted to achieve

subjectively high quality pictures of the moving object. For an object moving sufficiently

quickly, the background will be blurred, and the foreground will be sharp (mostly. Composite

objects like humans might be blurred in parts owing to relative motion.) To calibrate these

cameras into a common reference frame automatically, image features from both cameras

must be matched. It would be sensible to use stationary background features - variation in

illumination and appearance can be modeled over time to improve the stability of tracking over

multi-day events. Therefore the calibration requires matching stationary background features

from the panoramic camera (which are sharp) with those from the moving camera (which are

blurred). And the calibration must be done in real time. It is possible to maintain camera

calibration, once established, using only the video from that camera. But in order to prevent

the calibration of the cluster of cameras from drifing apart, calibration of features between

cameras must be done from time to time. There is no guarantee during a live event that any

11

CHAPTER 1. INTRODUCTION

particular camera will be stationary. Sometimes then it will be necessary to match blurred

background features from the moving camera with sharp ones from the stationary camera.

Hence, the problem investigated by this Thesis.

1.2 Contributions

There are three main contributions presented in this Thesis. The first is an experiment which,

in this context, is used to verify the rectangular filter model of motion blur. Although this

model is based on well-tested theoretical principles, no experiments have been carried out to

verify that it is correct in this context. Experiments presented in this Thesis verify this model,

and demonstrate the degree to which small degradations in the camera such as noise and small

optical imperfections limit the precision of such measurements. The experimental design is

found to be sensitive to image noise and spectral occupancy, two characteristics which map

well onto subjectively good quality pictures. Therefore, the experimental method presented

here can be used as a proxy for determining the overall quality of a camera and lens, in

situations where image noise and spectral occupancy are critical.

The second contribution is a modification to Phase Correlation which permits accurate

offsets to be found between signals degraded by motion blur, where ordinary phase correlation

(and other methods - as discussed in Chapter 2) fail. This method is shown to have better

performance than the state of the art method [19]. The method presented here offers the

possibility of learning motion blur duration and can find larger offsets between images than

[19]. This is not explored in detail, although preliminary findings are reported.

The final contribution is a collection of modifications to the procedure used to match SIFT

features [20]. The best of these improves the number of correctly matches features between an

image degraded by motion blur, and one unaffected, by up to 60%. The comparison of several

different approaches sheds some light on the behaviour of SIFT features in the presence of

motion blur. The work described in this Chapter has been submitted to ICIP 2017, but was

not selected for inclusion. Publication is being sought elsewhere.

1.3 Outline of Thesis

This Thesis is structured as follows: A review of the literature is presented in Chapter 2. This

covers previous attempts to deal with motion blur in both template-matching and detector-

descriptor frameworks. The suitability of other published methods for modification to deal

with motion blur is also discussed.

12

1.3. OUTLINE OF THESIS

Chapter 3 describes the experiments to measure motion blur. Chapter 4 describes an ex-

perimental procedure to measure the performance of visual tracking methods in the presence

of motion blur. Chapter 5 contains a description of the modification to Phase Correlation.

Included are some observations based on the work carried out on this method, and an assess-

ment of the performance of the method using the experimental procedure described in the

previous Chapter. Chapter 6 contains a description of several possible modifications to SIFT

feature matching to improve performance in the presence of motion blur. This method is also

assessed using described experimental procedure. Finally, the Thesis concludes in Chapter 7.

The contributions are assessed, and proposals for future work are given.

13

Chapter 2

Literature Review

2.1 Introduction

The main topic of this Thesis is the problem of matching image features from a sharp image

to image features from an image with motion blur. Detecting locations in images which are

both repeatable and stable with respect to image transformations (image features) has been

addressed since at least 1980 [21]. Image features are useful in visual tracking, image and video

search, classification, and data rate reduction as well as camera calibration. Describing these

image feature points in a manner covariant with ([4]) any image transformations or distortions

is crucial in any application where we wish to reproduce the human ability to identify an image

of an object as the same object as in another image.

Computing correspondences between image features is important in the context of visual

tracking, camera calibration, visual search, classification, and structure from motion. When

the feature descriptor is a vector, it is conventional to choose between sum of absolute differ-

ences, Euclidean distance or Mahalanobis distance to determine how similar image features

are. Occasionally specific applications will describe a novel matching method, or a particu-

larly unusual descriptor will describe a custom matching procedure, as in [22] and [23]. The

power of RANSAC [12] for finding a subset supporting a consensus hypothesis whilst rejecting

non-supporters is so powerful that almost every method which involves feature matching uses

it. In other cases, regions of images may be compared directly to determine if they match,

and if they do, what the relative offset it. In this Thesism these latter methods are called

“Template-based matching”.

Despite this widespread base of computer vision applications, the majority of work reported

ignores motion blur, although it is ubiquitous in amateur video and photography, broadcast

and feature films, moving robots, autonomous cars, and the almost infinite variety of images

and video on the internet. Most work on visual tracking employs an instantaneous camera

15

CHAPTER 2. LITERATURE REVIEW

model, where objects do not move during the exposure. A few papers describe methods which

accomplish visual tracking, or at least some kind of registration, in the presence of motion blur

without explicitly modelling a moving camera. In general, these are less successful than those

methods for tracking which attempt to take motion blur into account by using some kind of

integrating camera model, where the relative motion of objects and the camera is accounted

for.

2.1.1 Timing analysis

In attempting to find a new method for matching blurred and unblurred features in real time,

the execution time of existing methods is crucial. Any modification to deal with motion blur

is likely to involve additional work beyond the standard approach. A full tracking system such

at Piero (Section 1.1.1) has many other jobs, all of which must also execute within the a frame

period in order for real time performance to be achieved. Some offer a trade-off between their

execution time and the time for the feature macthing process (eg, filtering of features to ensure

they are sparsely distributed about the scene, and with a limit on the maximum number per

frame)

When analysing whether a method might be suitable for a real time system, based on the

description in a paper, a number of factors must be taken into account. Some authors provide

timing information, and others do not. If timing information is not given, an estimate must

be made. If timing information is given, then it is imperative to know what is accomplished in

that time, and how is that relevant to incorporation in a tracking system. Additionally, some

attempt should be made to assess how much effort has already gone into finding an optimal

implementation. A GPU implementation is likely to be well adapted to the problem, as the

APIs are low level. A Matlab implementation has the potential to be greatly improved upon as

the interpreter introduces considerable overhead unless the code has been written with great

care.

Each method described below will have a discussion on timing. As a rule of thumb, if

a detection method can operate in around a frame period, then it’s likely to be suitable for

real time with some optimization. If a descriptor-matching method can perform around one

hundred matches within a frame period, then it is likely to be suitable. A frame period is

assumed to be 0.02s, for a 25 Hz frame rate. Progressive broadcast video usually runs at 25

frames progressive or 50 fields interlaced. In either case, computing the camera parameters

at 25Hz is suitable for live virtal graphics. A few methods in this review describe methods

about an order of magnitude too slow, but were written ten or more years ago. These methods

are generally considered suitable for use in a modern real time system, as CPU speeds have

16

2.2. CAMERA TRACKING

gone up, and the problems for feature detectors and descriptor computation and matching are

readily parallelizable, so they can can take advantage of modern multi-core CPUs.

This review is structured as follows: Some introductory sections describe the standard

approaches to camera tracking, some widely used techniques, and key papers. Then, the

remainder is divided into image feature detection, template-based tracking and descriptor-

based tracking. The next section describes a paper with an integrated approach. Following

that are section on deblurring and feature matching incorporating deblurring. The last Section

summarises the findings.

2.2 Camera Tracking

Camera calibration is used for broadcast video live special effects, post-production virtual

graphics, and augmented reality. This section describes the method used by the BBC R&D

Piero system for live tracking of a pan-tilt-zoom camera, and also a model of camera tracking

assumed for feature film post production. This model is based only on conversations with

people working in the industry. Little is published by post production houses.

The approach used in Piero is to manually input a number of correspondences between 3D

world coordinates and 2D image coordinates. From this information, the initial camera pose

can be computed by triangulation. During this computation lens calibration information can

be used to undistort the image and increase the accuracy of the tracking. (Not doen in Piero.)

Once initialized, the camera pose can be tracked from frame to frame by seeking corre-

sponding points between frames. Figure 2.1 illustrates coarsely the processing in Piero. Drift

can become a problem in camera calibration, as small errors accumulate. To counter this the

software maintains a collection of “reference” features, which are treated as ground truth. Peri-

odically, the camera pose is refined based on correspondences with the reference set. Broadcast

camera motion tends to be smooth. As a result, motion blur tends to vary smoothly between

frames, although it can still vary widely over a sequence. Drift correction which matches frames

with strong motion blur against reference features without can cause significant errors in the

tracking process. A number of optimisations have been added to this system to enable the

tracking to be relatively stable for live broadcast use.

Camera calibration for feature film visual effects also uses feature correspondences and

triangulation, but operates offline, so the computation has access to all frames in a sequence

simultaneously. This means that global optimisations (eg [24]) can be applied. Frames which

have been incorrectly calibrated are adjusted manually before virtual graphics are added. From

conversations with staff at Double Negative, a post-production house, it is common for whole

shots (of the order of 100 frames at 24 Hz) to require manual calibration, as a result of motion

17

CHAPTER 2. LITERATURE REVIEW

New frame
Compute

correspondences
Estimate

camera pose

Features from
previous frame

Store features

Retreive features

Reference features

Refine
camera pose

Camera pose

Figure 2.1: The main stages in the BBCs pan-tilt-zoom camera tracking software.

blur. Barber et al at Double Negative discuss [7] how significant numbers of man hours are

spent computing the camera pose, and motion blur contributes significantly to the manual

nature of this task.

2.3 Preliminaries

The concept of a Scale Space is used by a number of methods described in this review. RANSAC

is used as a component in real-world matching systems. Both are important concepts and are

introduced briefly below.

2.3.1 Scale Space

Some detectors and descriptors (eg [20, 9]) operate in “Scale Space” [25]. Typically, a scale

space is found by applying a low pass filter to both dimensions of an image with a cut-off at

fs/4, then downsampling by a factor of 2 in both dimensions. This process is repeated for

as many octaves as the application needs. The “Scale Space representation” of an image is

the collection of all filtered and downsampled images, optionally including the original image.

Sometimes, for example in SIFT [20], this general approach is modified. By localising a feature

location in scale as well as image coordinates, some scale-invariance can be achieved, eg [6, 26].

18

2.4. PERFORMANCE COMPARISONS

2.3.2 Random Sample Consensus (RANSAC)

RANSAC [12] is a method for rejecting outliers in noisy data sets. The procedure is to pick

a minimal random subset of the data, and determine the model parameters which those data

imply. After a number of iterations, a particular set of model parameters will have a large

number of supporting data. Those model parameters, along with the data which support them,

are chosen and passed to the next stage of processing. The data which did not support the

model can be discarded, or recorded as known bad data.

This method is applied to sets of correspondences in Piero tracking (See Figure 2.1) to

eliminate spurious matches.

2.3.3 Camera Models

When dealing with motion blur, the relative motion between the scene and the camera must

be taken into account. Methods not designed explicitly to deal with motion blur often use

the “Instantaneous Camera” model, which assumes that the camera and all objects in the

scene are not moving while the picture is made. Methods which explicitly attempt to deal

with motion blur must assume some relative motion between the scene and the camera. In

some cases, free motion of the camera and all objects in the scene can be modelled. In others,

only scene-camera motion can be modelled. All elements of the scene are assumed relatively

static, or even co-planar. All of these camera models are grouped under the term “Integrating

camera”.

2.4 Performance comparisons

A few key papers provide results which enable methods from different authors to be compared.

Mikolajczyk et al prepared [27] a comparison of region detectors which remains the key

reference. They examine the impact of the following distortions:

• Angle of view (ie affine)

• Scale change

• In-plane rotation

• De-focus blur

• JPEG compression

• Illumination change

19

CHAPTER 2. LITERATURE REVIEW

They assess detectors using metrics for repeatability and accuracy by comparing an undis-

torted image with one suffering a distortion. Repeatability is the proportion of features from

a reference image which are re-detected in a distorted image. Accuracy is examined by mea-

suring the proportion of features which match, using a standard feature-matching method.

The assessment includes some careful consideration of sources of error. The experimental data

and framework are published. Note that the impact of motion blur on the detectors is not

considered.

Mikolajczyk et al published [4] a framework for measuring the performance of image feature

descriptors under the same set of distortions as in [27]. Again, motion blur is not considered.

Descriptors were assessed in terms of recall vs 1-precision, defined as follows: Regions with

similar descriptors are a match. Regions nearby in image space (after the distortion has been

accounted for) correspond. If a feature point both matches and corresponds then it is a true

match. If it matches but does not correspond then it is a false match.

Recall is the number of true matches divided by the number of correspondences. 1-precision

is the number of false matches divided by the total number of matches. By varying the thresh-

old below which two features match, curves are obtained showing how sensitive a particular

descriptor is to the distortion in question.

Note that the number of correspondences is independent of the descriptor used - it is

determined by the detector. Different detectors are used for different distortions with the aim

of providing optimal input to the descriptor stage. More than one detector is used in some

experiments to illustrate the suitability of the chosen detector.

Gauglitz et al produced [1] an analysis of detectors and descriptors, motivated by robotics.

Their data covered a different set of distortions than [27]. They used multi-frame video se-

quences instead of image pairs:

• Angle of view (ie affine)

• Scale change

• In-plane Rotation

• Panning

• Motion blur

• Illumination change (both static and dynamic)

• Unconstrained

20

2.5. IMAGE FEATURE DETECTORS

The Unconstrained sequences allow a more realistic tracking task to be assessed in the

same framework as the isolated distortions. They re-use the performance metrics from Miko-

lajczyk [27, 4]. An additional performance metric “reliability” assesses the combined tracking

ability of detector-descriptor pairs by comparison with a ground truth. To find reliability, the

homography is computed between the frame and an abstract reference frame using the can-

didate correspondences. The average distance of four reference objects from ground truth is

computed. If less than 5 pixels, the frame has been reliably tracked. Rates of reliably tracked

frames per sequence are reported.

Some of Gauglitz et al’s results on Motion Blur are included below. The results show

performance of a descriptor or detector against motion speed. The camera begins at rest, and

accelerates over a few frames up to full speed. The nine speed values are 1 to 9 × 5.1 pixels

per frame.

2.5 Image Feature Detectors

Detecting stable image features, (sometimes “keypoints”) is the starting point for any matching

procedure. This Section describes a diverse set of techniques for detecting image features, and

analyses their suitability for detecting features in the presence of motion blur.

2.5.1 Harris, Harris-Affine and Hessian-Affine

Harris corners [13] are widely used in vision systems with static cameras and lighting conditions.

They have been generalized for use in more complex vision problems into the Harris-Affine and

Hessian-Affine detectors. The basis of all methods is the so-called “second moment matrix”,

which is computed by first applying a Gaussian blur to the image, then finding the derivatives

in x and y of the results. For the traditional Harris and Harris-Affine method, the second

moment matrix S is given at each pixel x as

S(x) =

[
∂2I(x)
∂x2

∂I(x)
∂y

∂I(x)
∂x

∂I(x)
∂y

∂I(x)
∂x

∂2I(x)
∂y2

]

Alternatively, the Hessian of the image at each pixel can be used in place of the second moment

matrix:

S(x) =

[
∂2I(x)
∂x2

∂
∂y

∂I(x)
∂x

∂
∂y

∂I(x)
∂x

∂2I(x)
∂y2

]
In the original Harris design [13], corners occur at local maxima of R = det(S) − k tr(S)

above some threshold. k controls the tuning between corner and edge detection. In the Harris-

Affine generalization introduced by Mikolajczyk and Schmid [28] maxima of R are sought in a

21

CHAPTER 2. LITERATURE REVIEW

scale space created from the image. Then an iterative method is used to find warping (skew and

stretch) parameters which define an affine-invariant representation of each point. As before

the Hessian-Affine method substitutes the Hessian for the second moment matrix.

In their review paper, Mikolajczyk et al [27] found that the Harris-Affine and Hessian-Affine

detectors were usually the strongest, with numbers of correct matches greater than any other

detector in the majority of cases. None of the measures investigated caused the number of

correct matches to fall to an unusably small number.

The computational cost of the Harris detector is O(n), for n pixels. The cost of the scale-

selection and affine normalisation step is O((m+k)p) where p is the number of points found by

the initial Harris detector, m is the number of scales in the scale-space, and k is the number of

steps in the iteration. The Harris detector is considered suitable for real time feature detection.

No results are available that show how this family of feature detectors work under motion

blur. Theoretically, the parameter k, and the threshold on R work together to prevent edges

from being detected as features, because the feature position is ambiguous along the direction of

the edge. Motion blur applied to the remaining corner-like features will increase the ambiguity

in location of the feature, causing fewer features to be detected.

2.5.2 Difference of Gaussians

Lowe proposed [29, 20] a method to detect image features using the Difference of Gaussians.

By incrementally convolving the image with Gaussians, a scale space is produced, which ap-

proximates the scale space of the scale-normalised Laplacian-of-Gaussians, [25]. Taking the

difference between adjacent levels in the scale-space results in a set of images each convolved

with a successively greater difference of Gaussians. Points which are local extrema in image

coordinates and scale are the detected points.

In Gauglitz’s [1] analysis the Difference of Gaussians detector performs relatively well,

usually scoring better repeatability than the majority of the others tested. The only case when

many other detectors outperform Difference of Gaussians is under perspective distortion. In

Gauglitz’s results, three of the other detectors outperform difference of Gaussians by more

than 0.1 on their repeatability scale. For context, the best repeatability score for any detector

under perspective distortion is 0.7. Under motion blur, the performance of this detector is

second only to the Fast Hessian detector (Section 2.5.3).

Lowe’s method requires multiple filtering operations on the scale space. Then the image

differences must be computed. Bay et al [30] found that the run time for Difference of Gaussians

was 400ms on an 640 × 480 pixel image. Since this was some years ago, it is likely that this

detector is suitable for real time use today.

22

2.5. IMAGE FEATURE DETECTORS

2.5.3 Fast Hessian

Figure 2.2: Three examples of approximations made by the Fast Hessian detector. Top row:
Second order partial derivatives of Gaussians. Bottom row: Fast Hessian approximations.

Figure 2.3: Gauglitz et al’s [1] results for detectors under motion blur. Solid lines show matches
between adjacent blurred frames. Dashed lines are matches between the first (unblurred) frame
and later frames.

Bay et al introduced [30] the Fast Hessian detector, which utilises coarse approximations

to earlier methods.

In a Hessian-based image feature detector, such as in Section 2.5.1, an optimisation can be

made by exploiting the commutativity of the derivative operator. The Hessian of a Gaussian

23

CHAPTER 2. LITERATURE REVIEW

is computed, then each image can be convolved with the Hessian of the Gaussian to give the

Hessian of the image blurred with a Gaussian. Bay et al approximate the Gaussian with a

much simpler filter, composed entirely of square blocks of pixels, each of which represents

multiplication by an integer. Some examples are given in Figure 2.2.

The blocks of pixels are aligned with the sampling grid, so they can be computed using

integral images. This allows for computation of a filter response in constant time, rather than

time proportional to the number of pixels in the filter. In [30], Bay et al report that this

detector runs in between 70 and 160 ms for a 640×480 pixel image. Since this was some years

ago, it is likely suitable for real time use today.

In their own results, Bay et al [30] show the performance of the Fast Hessian detector to

be better than every other detector in Mikolajczyk’s analysis [27]. Subsequent analysis by

Gauglitz et al [1] showed that the Fast Hessian detector was usually the most reliable of the

detectors under test. (See Fig 2.3.) Of most interest to this work, Gauglitz found that the

performance under motion blur was much better than any other detector.

2.5.4 Maximally Stable Extremal Regions (MSER)

The MSER detector was introduced by Matas et al [31]. MSER features are contours of

constant intensity which contain pixels of either only greater or only lesser value, and which

occur at a local minimum of change in region size. They are constructed by incremental growth

from intensity extrema. Figure 2.4 shows some example MSERs.

Figure 2.4: Examples of Maximally Stable Extremal Regions, demonstrating affine invariance.

24

2.5. IMAGE FEATURE DETECTORS

Matas et al reported in 2004 [31] that this detector would run in 0.14 s on a 530×350 pixel

image. Since this was over ten years ago, it is likely this method will be useful for real time

use today.

MSER performed well in the tests by Mikolajczyk et al [27]. Performance falls away sharply

in the presence of defocus blur. This suggests that motion blur performance might also be

poor, although no results supporting this have been published. Motion blur will change the

distribution of intensity values around an image, potentially altering the sizes and shapes of

MSERs.

2.5.5 Edge-based regions

This region detector was described in two papers co-authored by Tuytelaars and Van Gool

[32, 33]. The method begins by finding Harris corners. Two strong edges are found at the

corner, then an affine-invariant parameter is computed along the two edges. The corner and

the points along either edge define a parallelogram. Two parameters are then examined, a

function on the pixel values within the parallelogram, and another on the size and shape of

the parallelogram. If an extremum is found in either of these functions, then an Edge-based

feature point is recorded. Figure 2.5(a) indicates how and Edge-based region is formed.

Figure 2.5: The grey quadrilateral in (a) is an Edge-based region. (b) Intensity-based region.

Mikolajczyk et al’s results [27] showed the performance of the edge-based region to vary

between the middle and the bottom of the distribution of results. Notably, for central blur of a

textured scene, performance is similar across the whole range of values tested, although always

returning fewer correct matches than other detectors tested. The number of correct matches

falls off relatively slowly under JPEG compression. Under change of illumination, the results

are similar for MSER, Edge-based regions, and both Hessian- and Harris-Affine.

The computational complexity of Edge-based regions is relatively high. Finding Harris

corners is O(n), for n pixels. The second stage is O(pd), where p is the number of corners

found in the first stage, and d is the average number of edges in the vicinity of a corner.

Mikolajczyk et al reported [27] a run time approximately 100 times greater for Edge-based

regions than for the Harris-Affine and Hessian-Affine methods. This is an offline method.

25

CHAPTER 2. LITERATURE REVIEW

No results have been published demonstrating the performance of edge-based regions in the

presence of motion blur. However, under sufficient motion blur an edge perpendicular to the

direction of motion will become smoothed out such that a feature no longer appears. Further,

a small section of a wiggly edge perpendicular to motion blur might change the values of the

integral along the line. This detector is therefore not expected to perform well under motion

blur.

2.5.6 Intensity-based regions

This method was described by Tuytelaars and Van Gool [32]. This method begins with an

intensity extremum. Intensity values are shifted such that the value at the extremum is zero.

A function is computed along radial lines which evaluates the intensity value divided by the

integral of intensity up to that point. The region is defined by joining together extrema of this

function. The authors note these extrema typically occur where the image gradient changes

sharply. Figure 2.5(b) indicates how one of these regions is formed.

Mikolajczyk et al [27] mention this descriptor very briefly in their discussion. In most of

their tests it has average performance. They observe that its performance varies with the

material in the scene.

Computationally its performance is also average. It is slower to compute that Harris-Affine

and Hessian-Affine, but not as slow as Edge-based regions and Salient regions (Section 2.5.7).

Is is likely to be an offline method.

The effect of motion blur on these features will be two-fold. Locations of intensity extrema

will become ambiguous, and the patterns of intensity extrema used to compute the function

will be corrupted. This feature detector would not be expected to perform well under motion

blur.

2.5.7 Salient regions

Kadir and Brady’s Salient regions [34] search for extrema in entropy. First, the entropy is

calculated at every pixel for a family of ellipses centred on that pixel, parameterized by radius,

orientation, and ratio of major to minor size. The entropy scores for all ellipses are sorted.

The n ellipses with the highest scores are salient features.

In their tests, Mikolajczyk et al [27] found Salient regions usually produced the fewest

number of correct matches. Under scale changes, the number of correct matches falls very

close to zero (it is hard to tell because of the size of the plot on the page.) Salient regions

score lowest in the majority of tests.

26

2.6. TEMPLATE-BASED MATCHING

In addition to relatively poor performance in detection, matching and tracking, Salient

regions are very slow to compute, owing to the exhaustive computation of entropies required.

Mikolajczyk et al reported an example computation time for one of their images, where Harris-

Affine took 1.43 seconds, Salient regions took over 33 minutes. This is an offline method.

Given that all distortions applied by Mikolajczyk et al corresponded to a drop in perfor-

mance of this feature, it seems unlikely that it will perform well in the presence of motion

blur.

2.6 Template-based matching

Template-based methods seek matches between image regions using the pixel values directly.

The methods in this Section work within this limitation to attempt to match images. Some

attempt to modify the images by estimating model parameters for the distortions described in

Section 2.2.

2.6.1 Phase Correlation

Phase correlation is an early method of determining an offset between two image regions.

Applying this technique to find image alignment was proposed by Kuglin and Hines [35]. For

a pair of image regions f(x) and g(x), phase correlation gives the offset between the images

∆x as

F = F(f(x)), G = F(g(x)),

Ŝfg(u) = F−1 F̄G

|F̄G|

where F indicates the Fourier transform. For non-infinite signals, edge behaviour must be

defined. Repeating support or constant values outside the main support are both used.

The timing analysis in Section 5.4 indicates that Phase Correlation can match several

hundred pairs of image patches in a frame. Therefore, this method is suitable for real time

use.

Phase correlation is widely used for image registration. Image differences in brightness

and contrast are dealt with by normalisation, but changes in viewpoint, scale, and blur cause

changes in the pixel values which will interfere with the matching. Applications including

registration of aerial images, motion estimation for compression, and tracking the motion of a

pan-tilt-zoom camera are suitable for phase correlation.

27

CHAPTER 2. LITERATURE REVIEW

Squared-Power Phase Correlation

Ojansivu and Heikkilä observed [36] that by raising the cross power spectrum F̄G to an even

power, the effect of any centrally symmetric filter upon phase is removed. The maximum offset

which can be measured is equal to the size of the support divided by the power to which the

cross power spectrum has been raised. This is not problematic in practice, as larger offsets

cannot reliably be found using phase correlation.

The timing analysis in Section 5.4 also describes this method. Several hundred features

can be compared in a frame. Therefore this is considered a real time method.

Their results [36] show that the RMS registration error remains small for regions of 300×300

pixels for motion blurs of up to 11 pixels in length. This is a promising method for registering

small image regions subject to motion blur.

2.6.2 The “KLT” Method

The first widely used method for matching similar parts of images was the so-called Kanade-

Lucas-Tomasi (KLT) tracker, which combined the methods described by Lucas and Kanade [9]

with those from Shi and Tomasi [37]. Related work was collected together in a paper by Baker

and Matthews [38], which focused on methods to compute the numerical part more efficiently.

Lucas and Kanade

Lucas and Kanade introduced [9] a gradient descent approach to matching similar regions

between images. By assuming that the offset in image coordinates between images is small,

the difference between the two images approximates the gradient of either image. A Newton-

Raphson iterative gradient descent method can then find the relative offsets of the two images.

When the images are separated only by offsets in image coordinates, using Newton-Raphson

iteration is relatively straightforward. The method can also be applied to images separated

by an affine homography. Estimating all parameters of this transform requires computing the

Jacobian and Hessian of the parameter vector, which is expensive.

The method works well as long as the initial offset is less than a quarter wavelength of the

highest frequency present in the signal. Offsets larger than a quarter wavelength can be found

by using a scale-space, starting with a low-frequency estimate, and then refining by moving

back up the scale space.

Neither Gauglitz et al [1] nor Mikolajczyk [27] give any results for this method. In internal

tests, BBC R&D has found the KLT method to be effective for calibrating and tracking a pan-

tilt-zoom broadcast camera, with some modifications [11]. It is well-suited to this problem

because the static parts of the scene are approximately the interior of a sphere, with the

28

2.6. TEMPLATE-BASED MATCHING

camera at the centre. Thomas et al published [11] results showing that the second derivative

of pan remained small over a sequence of typical broadcast video, which means the tracking

was smooth.

Good Features

Shi and Tomasi introduce [37] a method for selecting which image regions are worth tracking.

The Lucas and Kanade method as described [9] encounters problems when image features

were initialized on depth discontinuities or became occluded. Shi and Tomasi addressed both

of these cases with a pair of criteria.

The first was to prevent low-contrast features from participating in the tracking. The

eigenvalues of the covariance matrix at the feature should both be large. (Strictly, they must

be within a few orders of magnitude of one another, and neither small.) This selects features

which are high contrast and have broad frequency content in orthogonal image dimensions. It

rejects low contrast features and those with highly directional information, like edges.

The second criterion is to reject features which become too dissimilar to the initial template

against which they are tracked. This is done by warping each feature template to match the

current version. If the difference is too great, or too variable, then the feature is removed from

the analysis.

The camera tracker in the Piero sports graphics system uses this method with some en-

hancements [8, 39]. It has been found to work well with smoothly varying motion blur, and a

camera which occasionally comes to rest. In internal testing, matching motion blurred frames

with unblurred reference features can result in subjectively poor tracking results.

A Modern Framework

Baker and Matthews describe [38] a framework collecting together work building on [9]. They

assume a generalized tracking problem where the input and template are related by an affine

transform. The framework discriminates methods based on how the warping parameters are

updated in the Newton-Raphson iteration. Additive methods compute an increment to the

parameter vector δp which is added to the parameters from the previous iteration, p1 = p0+δp.

Compositional methods compute an incremental warp which is composed with the previous

warp, W (p1) = W (p)∗W (p0). The framework also discriminates between forwards and inverse

methods. Forwards methods iteratively improve a warp on the input until the difference with

the template is small. Inverse methods warp the template to estimate an incremental warp,

then compose the inverse of that warp with the input image, and iterate.

29

CHAPTER 2. LITERATURE REVIEW

The Piero sports graphics system includes an implementation of the KLT method, in-

corporating the changes proposed by Shi and Tomasi [37], but not the model of Baker and

Matthews. Without parallelisation, the Piero implementation was able to compare a small

number of hundreds of features during a frame. This is then considered a real time method.

The key contribution of this paper is the inverse compositional method, which is much more

efficient than the KLT (forward additive) method because it allows the Hessian of the update

parameters to be precomputed. This efficiency gain increases as the square of the number

of warping parameters. In the general affine case, this is significant, but for a pan-tilt-zoom

camera, with only two warping parameters, the benefit is negligible.

2.6.3 Efficient Second-Order Minimisation (ESM)

Behnimane and Malis proposed [40] a different approach to avoiding the computation of the

Hessian every iteration. They are able to replace the Hessian with the Jacobians of the pa-

rameters at 0, and the Jacobian of the current parameters by relying on the Lie Algebra

representation of an affine transform which was introduced by Cipolla and Drummond [41].

As with the Inverse Compositional method (Section 2.6.2), this results in a greater increase in

performance for an affine transform than a simpler one.

ESM with Pixel-wise Motion Estimation

Park, Lepetit and Woo describe [42, 43] an extension to ESM. They introduce an integrating

camera into the parameter estimation step. They show that it is still possible to avoid com-

puting the Hessian, and compute motion parameters along with the affine warp. In the latest

iteration of their work [43] they also compute rolling shutter readout time duration.

The method works quickly. The authors give little detail on the implementation of the

tracking part of their algorithm, but report that tracking takes 4.36 ms, which is fast enough

for real time processing. The results presented show that the method is both reliable and

accurate. In [42], the results indicate that for a sequence where ESM fails on 11 frames out of

752, this method fails on 5. Since ESM is essentially an optimisation on KLT, this performance

is to be expected. Results showing behaviour when matching between an unblurred template

and blurred input would have been more useful.

2.6.4 Simultaneous Minimisation of Motion Blur and Affine Parameters

Jin et al describe [44] a method which relies on the commutative nature of convolution. The

problem they address is that of matching two image feature points which are related by an

affine transform as well as differing motion blurs. Using the integrating camera model whereby

30

2.6. TEMPLATE-BASED MATCHING

a motion blurred image I is some notional unblurred image Is convolved with a filter kv, then

for a template image I0 and an input image It, both of which are corrupted with motion blur,

and which are related by an affine transform, there should be a solution to the minimisation

arg min
v0,vt,At,dt

∑
x∈W
‖kvt ∗ I0(x)− kv0 ∗ It (Atx + dt)‖(2.1)

which simultaneously finds the image velocities vt,0, the affine transform At and the offset in

image coordinates dt. Figure 2.6 shows an example of how this method affects a feature point

over a video sequence. Observe that the image patches in the bottom row are a very close

visual match for those in the top row.

Figure 2.6: Top row: Image regions from a selection of frames in the video sequence. Middle
row: The region from the first image motion blurred to match the top row frame. Bottom row:
The region from the first image, motion blurred and warped to match the top row frame.

The results in [44] show a small number of sequences where the tracking is visualised. It

performs well in the cases shown. RMS errors are given for seven matched regions, with KLT

matching as a comparison [10]. Jin et al’s results are much better, which is to be expected. Data

showing tracking accuracy across a sequence is not provided, and would have been informative.

It is not clear whether this method would be suitable for real time tracking or not. The

proposing paper [44] includes no timing information. The KLT method upon which this is based

can compute a few hundred comparisons per frame, but this method includes many additional

convolution operations to create the blurred image patches. This method is probably only

suitable for offline operation. A very careful GPU-based implementation may be suitable for

real time use, given the optimisations proposed by Mei and Reid [45].

Jin et al assert that the parameters for the affine transformation and those for motion blur

should be estimated independently. Mei and Reid tested [45] this assumption by using the

parameters of the affine transformation to calculate the direction of the blur, and estimating

only one parameter for the length of the blur independently. Both approaches performed

similarly in [45], except in the presence of noise, where the single parameter estimate resulting

in more stable tracking.

31

CHAPTER 2. LITERATURE REVIEW

2.6.5 Direction Detection and Exhaustive Search Blur Synthesis

Dai et al describe [46] a method which attempts to blur an unblurred template to match an

input frame using an integrating camera model. For a new frame, a match with a template

is sought using a mean-shift method. If this method fails, their blur-matching algorithm is

invoked. Blur direction is determined using steerable filters. The unblurred template is then

filtered with motion blurs of different lengths. A line search algorithm finds the best blur

length. Mean-shift is used to match features with motion blur to this synthetically blurred

template.

The results in the paper consist of six frames from video, with bounding boxes. The

performance appears very good. It is too small a data set to draw any meaningful conclusions

from. They give no indication of the computation time of their method. Given the number of

steps required, it seems unlikely that a real time implementation will be possible.

2.7 Descriptor-based matching

Descriptors are representations of image regions which are not an array of pixel values. The

goal is to create some representation which is the same for images of the same real object

which suffer any or all of the distortions listed in Section 2.2.

2.7.1 Scale-Invariant Feature Transform (SIFT) and Related Methods

SIFT

Lowe’s Scale Invariant Feature Transform [20] is inspired by how the early mammal visual

system operates. The region around the image feature point is multiplied by a Gaussian, then

divided into a square grid of subsections (typically 4× 4). The grid is optionally aligned with

the orientation of the image feature point. Each subregion is then further subdivided into

4 × 4 sample points. The image gradient is measured at each sample point, and a histogram

(typically of eight bins) of image gradient direction in the subregion is computed. The fea-

ture descriptor vector is constructed by concatenating together the histograms from all 16

subregions. Figure 2.7 illustrates how the SIFT descriptor is constructed.

SIFT features perform very well in Mikolajczyk’s analysis [4]. It is consistently near the

top of the recall-precision curves.

In the analysis by Gauglitz et al [1] SIFT features perform relatively well under motion

blur. In the single-image matching tests, the descriptor has the best or near-best matching

scores under every distortion. In tracking tests, SIFT performed very well, with tracking

32

2.7. DESCRIPTOR-BASED MATCHING

Figure 2.7: The accumulation of image gradients into histograms in the SIFT descriptor. The
circle on the left indicates the presence of a Gaussian weighting over the region. For clarity,
fewer regions are shown than used in practice.

performance which was more consistent across a longer motion blur than any other descriptor

except Speeded-Up Robust Features [30] (Section 2.7.2).

Figure 2.8: Gauglitz et al’s [1] results for descriptors under motion blur. The star is SIFT,
the cross SURF and the square phase correlation. The triangles are results for classifier-based
methods. The dashed line indicates precision with respect to the first (unblurred) image in
the sequence, the solid lines precision with respect to the previous frame in the sequence.

In his paper, Lowe observes [20] that “several thousand keypoints can be extracted from a

typical image with near real time performance”. A feature comparison requires 128 subtrac-

tions, and then the norm of the resulting 128-vector to be computed. This requires a trivial

33

CHAPTER 2. LITERATURE REVIEW

amount of computation. This makes this method suitable for real time analysis.

If the feature descriptor is not oriented with the direction of the image feature point, but

instead aligned with the sampling grid of the image, then there is a well-defined mapping

between image direction and feature vector coefficient. This fact is exploited later in this

Thesis in one method for dealing with motion blur when performing visual tracking.

Gradient Location and Orientation Histogram (GLOH)

Mikolajczyk and Schmid introduced [4] a new descriptor in their analysis paper. GLOH uses a

similar approach to SIFT of computing gradient direction histograms of sub-regions around the

image feature point. Instead of a square grid of sub-regions, GLOH divides the image region

using a log-polar grid to compute histograms. They sample more, smaller regions, which results

in a longer feature vector. This is reduced in size by principal component analysis (PCA) on a

database of image features. The feature vector is constructed using the 128 largest eigenvectors.

They do not describe the resultant covariance matrix.

Mikolajczyk and Schmid’s results [4] for GLOH are similar to SIFT, and often a little better

in terms of precision-recall. Timing performance is not given explicitly. However, this method

is closely related to SIFT, which has already been classified as a real time method. The main

differences are

• Computing a gradient histogram with a larger number of bins and

• Performing a matrix multiplication to convert from feature space to the space discovered

in the PCA analysis.

Neither of these operations will vastly increase the computational cose beyond SIFT, and com-

parisons will cost almost the same as SIFT. Therefore, this is a real time method. Considering

motion blur, the PCA step complicates the relationship between image directions and feature

vector coefficients, compared to the more straightforward relationship observed in SIFT. With-

out knowing the covariance matrix, it is difficult to say what the effect of motion blur on this

descriptor might be. Since motion blur is not included in [4], it might be assumed that there

is no motion blur in the training data used to compute the covariance matrix.

PCA-SIFT

Mikolajczyk and Schmid [4] briefly discuss PCA-SIFT, due to Ke and Sukthankar [47]. This

method samples many more subimages and constructs a much longer histogram than SIFT,

then computes a PCA step similar to GLOH. The performance of PCA-SIFT in [4] is always

close to average across all descriptors tested.

34

2.7. DESCRIPTOR-BASED MATCHING

Figure 2.9: The arrangement of areas within which GLOH accumulates gradient histograms.

Computational complexity will be broadly similar to GLOH, so this is a real time method.

As with GLOH, the relationship between image directions and feature vector coefficient

is only known if the covariance matrix is known. The ability of PCA-SIFT to operate in the

presence of motion blur is, as with GLOH, difficult to say without knowledge of the covariance

matrix.

Scale-Invariant Feature Detector with Error Resilience (SIFER)

Mainali et al [48] introduce SIFER, a modification to SIFT in which the filtering used to create

the scale space is modified in order to distribute spacing more evenly between scale and space.

They show results for their detector and descriptor working in this modified scale space for a

number of image distortions. The results in [48] show better performance than SIFT or SURF

when trying to register an image containing motion blur with one which does not.

The authors report timing performance of 3690 ms for this method on an image of 800×640

pixels. But in the same paper they report 1791 ms for SIFT and 1140 for SURF. This is

much longer than suggested by the original authors of these two methods. Assuming that all

implementations used for these experiments are equally optimised, this method takes about

twice as long as SIFT. It seems likely this will be suitable for a real time system, although it

might require more careful optimisation than others.

The authors note that the image features in the lower octaves are not found or matched

reliably, and the matching process relies on features found in the higher octaves which are

corrupted proportionally less by a given length of motion blur.

Iterative Affine and Illumination Matching

Yu et al introduced [49] a method for matching images from different viewpoints and illumi-

nations. First, an affine transformation between a pair of images is estimated using corre-

spondences derived using SIFT. That transformation is used to warp one image to match the

other. Then histogram matching is performed to improve the illumination match between the

35

CHAPTER 2. LITERATURE REVIEW

images. These steps are then iterated until the difference between the images is below some

threshold, or a certain number of steps have been taken.

No results on motion blur are presented. This method seems unlikely to be useful in

matching a motion blurred image to a sharp image, without modification to the SIFT matching

process. Motion blur in one of the pair of images will also introduce errors into the histogram

matching process. In the motion blurred image illumination levels of individual pixels will mix

together, to produce a histogram with a different shape.

Since this method seems inappropriate for the main problem of this Thesis, no timing

analysis was performed.

2.7.2 Speeded-up Robust Features (SURF)

Bay et al introduced [30] a feature descriptor which utilizes coarse approximations to filters,

computed with integral images, to provide fast, approximate computation.

Given an image feature point location, the surrounding region is divided into a grid of 4×4

sub-regions. Within each sub-region, the Haar wavelet response is computed in x and y on a

grid of 5×5 sample points. (The Haar wavelet is simply –1 for one half of the support, and 1 for

the other half, divided in the centre. Clearly this is amenable to computation using integral

images.) The responses in x and y are summed to provide the first two coefficients in the

feature vector per sub-region. The magnitudes of the sum of the responses are the other two

coefficients per sub-region. The feature vector is then constructed by concatenating together

the wavelet responses and their magnitudes for each of the 16 sub regions, to give a feature

vector 64 coefficients long. Figure 2.10 illustrates how the SURF descriptor is constructed.

Figure 2.10: The construction of the SURF descriptor. Gradients accumulated in each sub-
region are collected into four values.

In [30], Bay et al describe the time taken to carry out a combined detection, using the Fast

Hessian detector, descriptor computation, and comparison on 1529 features in 610 ms, or 400

ms for upright SURF features. Since this paper is from 10 years ago, it seems likely that SURF

36

2.7. DESCRIPTOR-BASED MATCHING

will be suitable for real time use today, particularly if used in conjunction with a strategy for

limiting the number of features, as used in Piero.

Both the results in the original paper by Bay et al [30] and the analysis by Gauglitz et al

[1] found SURF descriptors to have good performance. (See Figure 2.8.) Gauglitz et al also

showed that SURF features perform relatively well in the presence of motion blur. They were

relatively able to perform matches between adjacent motion blurred frames, and between the

starting, non-blurred frame and a random selection of later, blurred frames.

2.7.3 Dual Tree Complex Wavelet Transform (DT-CWT) Multiscale

Keypoints

Bendale et al proposed [50] a descriptor based on the DT-CWT [51]. In the ordinary wavelet

transform the image is filtered by pairs of filters operating horizontally and vertically to produce

a coefficient image which contains directional information about the image, localized in image

co-ordinates, and a low-pass filtered image. The process is repeated iteratively on the low-pass

filtered image to produce coefficients for lower octaves.

The wavelet transform is not shift-invariant: For a small change in the location of the signal

with respect to the support, the wavelet coefficients will vary significantly and will not match

under correlation. The DT-CWT introduces a second pair of filters (all four filters are designed

together as a quad.) Analysis with these four filters produces a set of filter coefficients with

properties analogous to the magnitude and phase of the Fourier transform. The magnitude of

these coefficients is shift-invariant, and the phase encodes sub-wavelength shifts. The various

combinations of high- and low-pass filters result in a family of six complex wavelets, each

of which is directionally selective, and which together span all orientations. The results of

DT-CWT analysis is therefore six complex subbands per octave.

Bendale et al adapt the descriptor introduced by Kingsbury [23] to multiple scales. Given

an image feature point which is localized in image coordinates and scale, the descriptor is

computed by concatenating together samples taken from all the subbands. Each subband is

sampled twelve times around a circle of radius 1 centred on the image feature point as shown

in Figure 2.11a. These are then assembled into matrix, as defined by the pattern shown in

Figure 2.11b.

The result is a 2D array of DT-CWT coefficients in which image rotations corresponds to

“cycling” the columns of the array.

No performance information is given by the original authors. Some informal experiments

with the matlab code supplied by Prof Kingsbury (by direct request only) suggest that the

execution time is too long for real time use. Therefore, this method is classified as an offline

method.

37

CHAPTER 2. LITERATURE REVIEW

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

A

B

C
D

E

F

G

H

I
J

K

L

M

(a)

Column 1 1
2345

6
7

8 9 1011
12

Column 2
1 2

3

4

5
678

9

10

11
12

Column 3
1 2 3

4

5

6
789

10

11

12

Column 4

1
2 3 4

5

6

7
8910

11

12

Column 5

1

2
3 4 5

6

7

8
91011

12

Column 6

1

2

3
4 5 6

7

8

9
101112

Column 7

1
2

3

4
5 6 7

8

9

10
1112

(b)

Figure 2.11: (a) The sampling structure used to extract DT-CWT coefficients in the vicinity
of a feature point. (b) The arrangement of the extracted coefficients into a feature matrix.

No results were presented demonstrating the performance in the presence of motion blur.

The effect of motion blur to corrupt phase as well as magnitude may well introduce significant

errors in the subband coefficients. As with SIFT, there is a well-defined relationship between

image direction and coefficient location means that the impact of motion blur can be easily

understood and isolated, and potentially corrected for.

2.7.4 Phase-based Local Features

Carneiro and Jepson introduced [52] a phase-based image descriptor. The method uses a

quadrature pair of filters. One filter is the second derivative of a Gaussian, and the other is

the approximation of the Hilbert transform of the first. It seems that these filter kernels are

specified in two dimensions, but either the Gaussian or the derivative (or both) is a function

of one dimension, whose orientation varies to give a directional response. By using the Hilbert

transform, the response to the filter pair can be interpreted as a complex value, f + ih, where

f is the response to the Gaussian part, and h the response to the Hilbert transform part.

To compute the descriptor, first a sampling structure is defined around an oriented feature

point, as illustrated in Figure 2.12. The feature point forms the centre of the circle, and the

first sampling point. The second is a point r pixels away in the direction of the orientation of

the feature point. n other points are evenly spaced in a circle of radius r pixels around the

feature point. A number of filter pairs are applied at each feature point, with varying angles

and standard deviations. The complex results of these are concatenated together into a feature

38

2.7. DESCRIPTOR-BASED MATCHING

vector.

Figure 2.12: The selection of sample points in Phase-based local features.

The results in [52] show good performance in the presence of brightness changes, and worse

performance in the presence of scale changes. There are no results describing performance in

the presence of motion blur.

This method only requires the computation of n filter responses per image which, depending

on n, might be fast enough for real time performance. The matching process is a comparison

between two short vectors, so requires a trivial amount of computation. This is classified as a

real time method.

The authors specify that the difference between two feature descriptors be computed as

the normalised sum of the difference in phase at each feature coefficient. If these descriptors

were computed oriented to the image sampling structure, then it would be possible to map

from image directions to feature coefficient. This means that it may be possible to isolate the

feature coefficients affected by motion blur.

2.7.5 Phase Quantization

Two papers have been found which attempt to provide immunity to motion blur by quantising

phase. The first quantized phase of Fourier coefficients, and the second the phase of DT-CWT

subband coefficients.

Small-Time Fourier Phase Quantization

Rahtu et al suggest [53] a method for texture classification based on the small-time Fourier

transform of image regions. They examine image regions of between 3× 3 and 11× 11 pixels.

The descriptor is computed as follows: A set of directional filters are applied to the image.

Each filter produces a complex response at each pixel in the region. The phases of these

complex responses are quantized to a 2-bit value. These values are concatenated, producing a

codeword at each pixel. A histogram of all the codewords in the patch is built, and normalised.

39

CHAPTER 2. LITERATURE REVIEW

They present results using other descriptors, under two different clustering methods. They

only show detailed results for motion blur length of up to four pixels, after which their best

performing descriptor has 75% classification accuracy, down from around 95%. The perfor-

mance of their descriptors appears to fall off sharply when the motion blur length reaches 2.5

pixels. This might be a result of the motion blur phase inversion effect: Phases quantized into

4 bins after being inverted will still not match.

This method only requires a small number of filtering operations on the image per frame

period. It is likely that a real time implementation would be possible.

The results presented in [53] only show motion blur up to four pixels long. Performance

drops off significantly with increasing blur. The reader is left to speculate on whether increasing

blur further will cause a proportional drop off in matching performance.

Undecimated DT-CWT Phase Quantisation

Anantrasirichai et al describe [2] a method for texture classification based on the Undecimated

Dual-Tree Complex Wavelet Transform (UDT-CWT). They take the UDT-CWT of a candidate

texture patch, and quantize the phase in each subband to create a 2-bit descriptor for each

pixel. The descriptors are concatenated over octaves to give a codeword for each pixel. These

codewords are then collected into a histogram to represent the image region.

Results are reported for descriptors computed up to the third and fourth octaves, and for

motion blur of up to five pixels in length. The first octave is discarded, as it was not found to

be useful. With no motion blur, classification accuracy of textures close to 100% is reported

for both the authors method and others. At five pixels motion blur, the method using octaves

two, three and four attains 90% accuracy, and the method using only levels two and three

attains 65% accuracy.

Figure 2.13 shows the results from [2] for texture classification in the presence of motion

blur. This plot shows poorer performance when using only octaves two and three, compared

to two, three and four. The phase inversion effect of motion blur may provide an explanation.

Figure 2.14 shows how the phase inversion effect of motion blur maps onto the octaves of

wavelet decomposition. The phase inversion effect of the five-pixel motion blur described in the

paper only impacts the upper third or so of the energy in the second octave. Some proportion

of the sample phases in this octave are likely to be inverted by motion blur. Exactly how many

will depend on the direction of the motion blur, the distribution of gradient directions, and

the spectral content at each sample location. Under the assumption that some proportion of

the signal is corrupted, it is conceivable that the distance between descriptors in feature space

is increased by this effect.

40

2.7. DESCRIPTOR-BASED MATCHING

Figure 2.13: Anantrasirichai et al’s results [2]. UDT-CWT L=3 uses subbands 2 and 3, L=4
uses subbands 2, 3 and 4.

1234

0 fs/2fs/4fs/8fs/16

fs/3 2fs/5fs/5

3 pixel blur

5 pixel blur

Figure 2.14: The relationship between short motion blur phase inversion and the first four
octaves of a signal. The numbered regions at the top are the frequency bands extracted at the
indicated octave by the (U)DT-CWT. The shaded regions at the bottom show which phases
are inverted for 3- and 5-pixel motion blurs.

This method relies on the DT-CWT, which as noted above has yet to have a fast imple-

mentation. It is classified as an offline method.

The descriptor which includes the fourth octave includes 50% more data points than lower

frequency descriptor, and these data are free from motion blur influence. The effect of the

same number of corrupted sample phases will be considerably smaller on the overall distance

between descriptors when the fourth octave is included.

41

CHAPTER 2. LITERATURE REVIEW

2.8 Scale-Space Approximation

Pretto et al describe [54] a method to compute visual odometry for a legged robot using an

integrating camera model. They compute the direction of motion blur by finding the minimum

of the response to a set of directional high-pass filters. The extent is computed by finding the

minimum of the auto-correlation along the blur direction. Blur parameters are computed for

each pixel and clustered into rectangular subregions.

If motion blur is modelled as a convolution of some notional unblurred image I(x) with a

rectangular filter kv(x), then it should be possible to find a filter g′(x) which, when applied to

the motion blurred image, approximates the effect of a Gaussian blur on the notional unblurred

image:

g(x, σ) ∗ I(x) ≈ g′(x, σ) ∗ kv(x) ∗ I(x)

They use a numerical iterative method to approximate the filters g′(x). g′ is then used to com-

pute an approximate scale-space. Once the scale-space is computed, they use the determinant

of the Hessian to locate image feature point candidates, and prune some features which are

unlikely to contribute to the matching process.

The results presented show that their method outperforms SIFT and SURF significantly

in six image pairs. The prose suggests a larger number of tests might have been performed,

and that they used variable amounts of motion blur. Results showing variation in performance

with motion blur length or direction were not given.

Other results present the number of correct matches between images which have been

warped using planar homographies computed using their matches. A threshold of a small

number of pixels is used to determine whether feature pairs match or not. Their method

does not produce matches when the threshold is very strict — large numbers of matches

seem to be produced with a threshold of two pixels or greater. As noted above, the direction

sensitivity of SIFT descriptors is particularly prone to suffering mis-matches due to motion

blur. The alterations to scale space described by the authors should be expected to produce

an improvement over SIFT or SURF. The processing time of their implementation is not

immediately suitable for real time applications: They report an execution time of 1 second per

640x480 frame, therefore this is an offline method.

2.9 Motion Blur Removal

The main objective of this Thesis is to match features between an image with motion blur and

one without, at video frame rate. A straightforward approach to this problem might be to take

an existing method for removing motion blur and apply it to the blurred image. If the motion

42

2.9. MOTION BLUR REMOVAL

blur was successfully removed, then many of the existing feature matching methods might be

suitable.

This section of the review examines some recent developments in the removal of motion

blur. Methods are examined based on their computation time, and the quality of their results.

Whilst computation time can be examined objectively, none of the resulting images are tested

in a feature matching system. As will be seen, the computation times of all methods are far

too long, so the ability of the de-blurred images to be matched is not relevant.

State of the art image de-blurring methods fall into one of threee broad categories; de-

convolution, multi-image, and data driven methods which use Convolutional Neural Networks

(CNNs).

2.9.1 Deconvolution

Deconvolution could be considered the “classical” signal-processing approach to de-blurring. If

the image is treated as a signal on two-dimensional support I(x), as described in Section 3.2.3,

then motion blur can be expressed as a convolution

(2.2) I(x) = k(x) ∗ Is(x) + n(x)

where the symbols have the same meaning as in Section 3.2.3. The problem of de-blurring is

then to find Is given I. This is an ill-posed problem. There are two possible avenues to solving

this problem. One is to attempt to estimate the blur kernel k from I, then deconvolve Ic from

I and k. The other is to attempt to find Is and k simultaneously from I. These are referred

to in the literature as “non-blind” and “blind” respectively.

Non-blind Deconvolution

The “non-blind” collection of methods are rather varied. Various approaches are taken to

estimating the blur kernel. A number of different options are available to carry out the decon-

volution once the blur kernel has been estimated. The “Richarson-Lucy” algorithm is cited

as the basis of this approach to de-blurring by a number of papers . Two papers by these

authors [55, 56] proposed the idea of treating the restoration of an image with a known filter

as a Bayesian statistical problem. More recent methods manipulate the Prior probabilities

used to control the sharp image as it is being computed, and the optimisation technique used

to find the sharp image. The well-known Wiener filter is another common method for blind

deconvolution of signals corrupted by noise. Of the methods discovered during this review,

only one uses Wiener filtering to deconvolve the latent image from the blurred image and the

filter, once the filter has been found.

43

CHAPTER 2. LITERATURE REVIEW

Zhang and Hirakawa [57] model the kernel using the Dual Discrete Wavelet Transform.

Their results show ghosting and ringing artefacts, so the method is probably not suitable

for feature matching. They don’t mention execution time. Zoran and Weiss [58] propose

attempting to learn priors on image patches. Patch-based restoration is used to attempt to

lighten the computational load compared to whole-image restoration. Learning the statistics of

patches seems more tracable, and likely to be useful, than statistics over whole images. They

show promising results on de-noising problems with results similar to other state of the art

methods. The run-time is 300s per image, which is too slow for real-time applications.

Shah and Dalal [59] use a method related to the Cepstrum to find the length and orientation

of an in-plane motion blur filter. They show that by taking the fourth bit-plane of the log-

spectrum-log-specrtum of a blurred image, then taking the Hough transform, the parameters

of the blur can be found. The sharp image is then found using Wiener filtering. In their test

data, the upper right and lower left triangular segments of a rectangular image are blurred

with different motion blur filters. The results of their method are very crisp and are able to

restore much detail, but they are corrupted with artefacts which appear as diagonal lines on

the image. It isn’t clear if these artefacts are a consequence of the test set-up, or the method.

These artefacts are likely to appear as false positives or noise in a feature matching algorithm.

Run-time is not discussed.

Blind Deconvolution

Blind deconvolution effort appears to be focussed on the refinement of a Bayesian approach.

Fish et al [60] proposed the original extension of the Richardson-Lucy algoriothm to blind

deconvolution problem.

The probability maximisation takes the form:

(2.3) arg max
Ic,k

p(Ic, k|I) = arg max
Ic,k

p(I|Ic, k)p(Ic)p(k)

Here p(I|Ic, k) models the noise, p(Ic) models the distribution of possible sharp images, and

p(k) models the distribution of blur kernels. The left hand side says we want to find the values

of Is and k which are most likely, given I. This equation can be rewritten[61] as :

(2.4) arg min
Ic,k

‖k ∗ Ic − I‖22 + λJ(Ic) + γG(k)

here, ‖ · ‖2 is the L2 norm. The first term is the data fitting term, which describes how well

the convoluved k and Ic match f . The other two terms are regularization, which control how

the minimization can vary Ic and k. This formulation invites experimentation upon choices of

J , G, λ and γ, as well as approaches to optimisation.

44

2.9. MOTION BLUR REMOVAL

The early approach due to Fish et al [60] was to alternate between optimisations to find Ic,

assuming k was known, and finding k assuming known Ic. This was a direct extension of the

Richardson-Lucy algorithm to find k as well as Ic by assuming the current value of one was

correct, and minimising the cost to find the other, then alternating.

A modern approach which scores well in comparisons is “Total Variation”. This method

was first proposed for blind deconvolution by Chan and Wong [62], as a modification of a

non-blind method. Perrone and Favaro [61] present a clear description of Total Variation,

with a discussion clarifying some formerly contentious points. In this paper, they set J(Ic)

to be the L1 norm of the L2 norm of the gradient of Ic, which is the same total variation

regularizer used by Chan and Wong. They set γ to 0, and instead control the behaviour of k by

applying constraints on that it must be positive everywhere and normalized. (The contentious

point clarified by Perrone and Favaro is that applying these constraints sequentially instead

of together influences the behaviour of the algorithm such that it is no longer a pure gradient

descent method, and can escape local minima.)

Perrone and Favaro [61] show that by carefully selecting λ their simplified method produces

results of similar quality to the modern, sophisticated implementations of Total Variation.

Their implementation takes between 2 and 5 minutes to compute a 255 pixel square image.

This is far too slow for video rate processing, and even with aggresive optimisation it seems

unlikely to be suitable for real-time processing. The examples of restored images provided in

the paper are of relatively high quality. Their are some artefacts, and softness to the images.

But the motion blur is almost completely gone.

Takeda and Milanfar [63] proposed a blind method for removing blur from one frame of

a video sequence. They assume motion in the video is locally smooth in space and time,

and then upsample the video in both space and time. Ic and k are then found at the original

resolution by applying a Bayesian energy minimisation. The results they have chosen for visual

comparison contain very little motion blur. The results of this method appear visibly sharper

than the comparison, but not significantly so. They don’t mention the execution time, but

the method includes two optimisation steps. It’s quite likely this will take considerably longer

than a video frame period, so this method is likely unsuitable for real-time tracking.

2.9.2 Multi-image

Multi-image methods reconstruct a non-blurred frame from a number of input frames. The

assumption here is that the objects in the blurred frame will appear somewhere in the one of

the other frames either without blur, or with sufficiently different blur to enable a non-blurred

image of the object to be constucted. There are fewer of these methods in the literature, and

45

CHAPTER 2. LITERATURE REVIEW

they are not necessarily appropriate for the broadcast camera tracking case, as the camera

motion (and resultant blur) tends to be similar in adjacent frames.

Delbracio and Sapiro [64] register images together using filtered SIFT feature matching.

(Note that Gauglitz [1] found the Difference of Gaussian detector, used by SIFT, to have

poor repeatability under small amounts of motion blur, when comparing images with differing

blurs. This means the registration process will be error-prone) then accumulate the Fourier

transform of the images, and reconstruct an image by taking the inverse Fourier Transform.

The visualised results show considerably reduced noise compared to the input, and mostly

sharper images. However, occasional spurious features appear in some images, as some part of

the image is reconstructed in the wrong place, or duplicated. The run-time is reported to be

“a few seconds”.

Considering use in a real-time tracking system, this method has two properties which make

it unsuitable: First, it requires multiple images as input, each with a different, random blur

kernel. Secondly, the run time is too long.

2.9.3 Data-driven

CNNs have been applied widely to computer vision problems with great success over the last

few years. Since demonstrations of style transfer [65] and the unique results of the “deep

dream” experiments, it was made clear that CNNs were capable of synthesising images in a

convincing way.

An Artifical Neural Network (ANN) is a method for computing a mapping between an input

and output. The input usually contains many more values than the output. The architecture

of an ANN is modelled after the connections of the mammalian brain. Each neuron takes

a weighted sum of its many inputs, applies a non-linear activation function, and returns an

output. Neurons are typically arranged in layers where each neuron will have the same inputs

as its layer-mates, but will each have different weightings. A schematic artifical neuron is

shown in Figure 2.15 and a simple ANN is shown in Figure 2.16

1Figure due to Gonzalo Medina, from https://tex.stackexchange.com/questions/132444/

diagram-of-an-artificial-neural-network
2Figure due to Gonzalo Medina, from https://tex.stackexchange.com/questions/132444/

diagram-of-an-artificial-neural-network

46

https://tex.stackexchange.com/questions/132444/diagram-of-an-artificial-neural-network
https://tex.stackexchange.com/questions/132444/diagram-of-an-artificial-neural-network
https://tex.stackexchange.com/questions/132444/diagram-of-an-artificial-neural-network
https://tex.stackexchange.com/questions/132444/diagram-of-an-artificial-neural-network

2.9. MOTION BLUR REMOVAL

x2 w2 Σ f

Activation
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 2.15: An Artifical Neuron 1

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

Output

Figure 2.16: An Artificial Neural Network2

47

CHAPTER 2. LITERATURE REVIEW

A training phase is used to set the values of the weightings using a technique called back

propagation. A data set of ground truth inputs and outputs is required. An input is presented

to the network, and an error is computed by comparing the output with the ground truth. This

error is then used to modify the weights at each node in a way proportional to the gradient.

If the training has been successful, the ANN can now be used on an unseen input to discover

the corresponding output. Training success depends heavily on the quality of the training data.

A Convolutional Neural Network (CNN) is a modification of the ANN where a single neuron

can take as input a subset of the input signal, rather than the whole signal. This means that

data relating to different parts of the signal propagate through different parts of the network.

CNNs also tend to be much larger than ANNs, A complete CNN will usually include so-called

“fully connected layers” which are configured like ANNs. CNNs have been found to be capable

of creating images which are realistic [66], (although they can also create images which are

not realistic, but are fascinating [67].) This ability to synthesise realistic images has lead some

researchers to investigate how well they deblur images.

A few papers have attempted to use CNNs to remove motion blur from an image, either di-

rectly or indirectly. Su et al [3] describe an architecture where the conventional CNN structure

is augmented with a second network, reversed. Figure 2.17 shows a diagram of the network.

(For definitions of the different types of layer, see their paper.) There are three “skip con-

nections” which enable nodes in the second network to access information in the first. This

network is trained using blurred image sequences as input and the central unblurred image as

output.

Figure 2.17: The network architecture used by Su et al [3]

The method can incorporate side-channel data such as inter-frame homographies to en-

hance performance. The visualised results seems somewhat content dependant, and are clearly

improved when the homographies relating the input frames, or the optical flow, are included.

The run time reported is around one second per frame. This is too slow for real-time visual

tracking, and the visual quality might cause problems for tracking systems. The main draw-

back with this method is the requirement for optical flow, or homographies, for the highest

quality result. Computing this data on blurry sequences is hard to do, and not possible to do

48

2.9. MOTION BLUR REMOVAL

quickly (That being the central question of this Thesis!)

Noroozi et al [68] use a CNN to find a residual which is added to the blurry image to

give the sharp version. They also provide a data set made up of high frame rate video, from

which blurry frames are synthesised by frame averaging. In a similar manner to Su et al [3]

the network architecture starts with image-scale convolutional layers, before reducing in size,

and later increasing again. The visualised results are content-dependent. In some cases, the

motion blur is only reduced rather than eliminated. In other cases, artefacts which look like

mis-placed image content are apparent. They do not mention the run time to synthesise a

sharp image from a blurry one. The network architecture and scale is not too dissimilar from

Su et al [3], so a similar run time of around 1 second seems likely.

Chakrabarti et al [69] propose a CNN based approach which incorporates more domain-

specific knowledge. The input to the network is a custom frequency domain representation of

an image patch, and the output is the deconvolution filter required to find the unblurred patch

from the blurred one. The network is trained on synthetic data; sharp images are blurred

with a synthetic blur kernel. The network works patch-wise, on dense, overlapping patches.

An optimization process recombines the unblurred patches into a sharp image. Two sets of

results are given as visualisations. The first set use images corrupted with very heavy blur

and noise as input, and produce results which appear to contain significantly more detail than

the input. The second set contain less blur and noise, but show a wider variety of scenes.

The ability of this method to remove blur and not produce artefacts seems to be somewhat

content-dependant, based on this set of results. The methods chosen for comparison also show

a similar variability. The execution time they report is 65s. This is too slow for consideration

in a real-time system.

2.9.4 Conclusion

Removing motion blur from an image, with no other information, is a challenging task. The

papers surveyed contain a wide variety of approaches, representing the state of the art, as far

as the author is able to determine. All approaches have significant drawbacks for the task of

real-time visual tracking. Of the methods which produce results which appear relatively good

quality they all either take significantly longer than a video from to compute [58, 61, 3, 69]

or don’t report their run time, but contain tasks which are conventionally computationally

slow, such as large non-convex optimizations[57, 59, 63, 68]. Delbracio and Sapiro [64] takes

too long, and also needs images in a format which would not be available from a tracking

broadcast camera.

It seems that, at present, de-blurring a blurred image is not a sensible approach to real-time

visual tracking of blurred and non-blurred images.

49

CHAPTER 2. LITERATURE REVIEW

2.10 Optical Flow from Motion Blur

A number of methods exists to compute optical flow in the presense of motion blur. Whilst

optical flow is not the main focus of this Thesis, it is a related area, and worth examining

briefly in case there are techniques which are suitable for inclusion in these experiments.

Most of these rely on the assumption that the motion of an object between a pair of frames

will be closely related to the amount of motion blur on that object. Portz et al [70], Kim et

al [71], and Daraei [72] all provide energy functions which incorporate the formation of blur

from a latent sharp image and some spatially-varying motion. Portz at al [70] rely on the

commutative property used by Jin et al. They estimate knowledge of the unknown blur by

computing a few hundred different blurs with different lengths and orientations, sampling and

interpolating as needed. This method requires lots of computation time and memory. The

cost function of Kim et al [71] uses the optical flow estimated on the latent images along with

the latent images to measure similarity to the observed blurry images. This is solved in a

large optimization. The authors do not remark on execution time except to say the current

implementation “is time consuming and needs large resources”. Daraei [72] estimates the

motion blur on the latent images by warping one set of optical flow using the previous and

next optical flows. The visualised results and the numerical results are very good compared to

the competition, but still high frequency lack detail. Again, there’s no mention of execution

time, but a large scale optimisation is required, so this method is expeced to be too slow.

Schoueri et al [73] claim to compute optical flow, but actully compute a 2-parameter motion

blur kernel for a a grid of image tiles. Tu et al [74] modify the existing non-blur-aware method

of Brox et al. They use a mask so that their deblurring operation only occurs on parts of

images detected to be blurred. They also add an edge-preserving regularization. The blur

detection and labelling part of the algorithm along takes 113 seconds for one image. This is

too slow for real-time use.

Li et al [75] attach a motion sensor to the camera and incorporate the sensor data into

the optical flow measurements. The pre-processing combines methods from several previous

methods to improve the results. The visualised results appear good, and mostly free from

artefacts. The computation takes tens of seconds per frame which is too slow for real-time use.

All of the methods found are too slow for real time use. Even the addition of a hard-

ware sensor, which is explicitly beyond the scope of this Thesis, does not improve run-time

sufficiently to be useful in this context.

50

2.11. FEATURE MATCHING INCORPORATING DE-BLURRING

2.11 Feature Matching incorporating de-blurring

This topic does not appear to be heavily investigated, as far as could be determined. Certainly

as the main topic of reported work, the approach of deblurring before performing matching is

not common. This is the only paper on the topic discovered during the literature review:

Deblurred SIFT

Okade et al [76] describe a method to improve video stabilization by visual tracking in the pres-

ence of motion blur by deblurring blurred video frames, then applying SIFT feature matching.

They use the integrating camera model described in Section 3.2.3. They detect blurred video

frames by taking the sum of the squared image gradient in both x and y, and comparing it

to a threshold, set per-sequence. Those frames found to contain blur are deblurred using a

method due to Fergus [77]. Then SIFT features are matched between the newly deblurred

frame and an earlier frame, and used to estimate the inter-frame motion. The inter-frame

motion is smoothed with a low-pass filter.

Attempting to recover a non-blurred version of a motion blurred image is error prone. The

motion blur filter contains zeros, and small coefficients, which mix the signal with thermal noise

in the cameras. The results shown in [77] are subjectively of good quality, but still contain

some artefacts which appear similar to ringing, or ghost images.

Their results show an improvement in Interframe Transform Fidelity (ITF), their chosen

metric, for three sequences. There are no results showing detailed analysis of performance

with respect to a controlled variation of motion blur parameters. As their application was

video stabilisation, some subjective measurements of subjective video quality would have been

informative. Given the good subjective quality of the results in [77], some detailed analysis of

the impact of the few remaining artefacts upon the matching process would have been very

useful.

2.12 Summary

Visual tracking in the presence of motion blur is addressed sparsely in the literature. Of the

papers [43, 46, 44, 78, 2, 76, 49, 53, 54, 36] which address the problem, none attempt to assess

their methods using the standard methods introduced by Mikolajczyk et al [27, 4]. The only

review paper [1] which does present any formal analysis of visual tracking performance in the

presence of motion blur does not include any of these specialised methods.

Of particular interest to this Thesis are methods which can deal with planar motion blur

which differs between the two image regions being considered. The method should be com-

51

CHAPTER 2. LITERATURE REVIEW

putationally efficient, ideally suitable for inclusion in a real time system, as described in Sec-

tion 2.1.1.

Several of the detection, template matching, and descriptor methods were categorised as

real time. To review, they were:

Table 2.1: Summary of real time methods

Detectors Template Matchers Descriptors

Harris Phase Correlation SIFT
Difference of Gaussians KLT GLOH

Fast Hessian ESM + Pixel-wise PCA-SIFT
MSER Simultaneous Minimisation SIFER

SURF
Phase-based Local

Fourier Phase Quantisation

Of these methods, none explicitly addressed the problem of matching features between

images containing motion blur and images without motion blur. The analysis of Gauglitz et al

[1] finds that performance falls off rapidly with increasing blur length for SIFT and SURF. The

problem addressed by this Thesis is an appropriate one, then. There is little work addressing

the specific problem, and the methods which have been tested do not perform well.

Of these real time methods, which should be selected to be modified in an attempt to

make them more robust to differences in motion blur between images? A straightforward

relationship between motion blur and some property of the algorithm is important, as it means

modifications are readily identifiable and testable. The faster the method, the better, as the

extra work to deal with motion blur is likely to incur some additional computation. For these

experiments, we are concerned with pan-tilt-zoom cameras and stationary backgrounds, as

described in Sections 1.1.1 and 1.1.2. So sophisticated methods which can model full camera

motion and pixel-wise varying blur are too general, and will likely take up more computational

resources than necessary.

The Harris detector is used throughout these experiments, as it is used in the Piero system.

The experiments later will then be a good predictor of performance of these methods were they

to be incorporated into Piero. As noted later in Chapter 4, the Harris detector also seems like

the best choice for comparison with the results of [1].

To test modification to template-matching, Phase Correlation is selected. Phase correlation

is chosen over the KLT because of the clear mapping between coefficient position and motion

blur. In addition, Dawes et al found [14] that the KLT is efficient when motion blur variation

between frames in small, but cannot handle large variations in motion blur, which can be

important for preventing drift. Of the other real time matching methods, ESM with pixel-wise

52

2.12. SUMMARY

blur estimation [42, 43] already attempts to track features in the presence of motion blur. To

run in real time the method runs in real time and is capable for solving for pixel-wise motion

blur and a fully moving camera. This is too general a method for the problem investigated in

this Thesis.

SIFT features are also chosen for their clear mapping of direction onto coefficient, which

allows reasoning about how each coefficient might behave under motion blur. SURF [30]

would also have been suitable for analysis. The more straightforward modifications to SIFT

were performed first, and time was not left after the SIFT experiments to investigate SURF

also. Similar arguments could be made for using Phase-based local features [52]. Fourier Phase

quantisation [53] already attempts to deal with motion blur, and performs poorly, on short

motion blurs. GLOH [4] and PCA-SIFT [47] are not suitable because the relationship between

motion blur and coefficient is masked by the PCA operations. SIFER [48] is noted by the

authors of the paper as beign susceptible to differences in motion blur.

The review of the literature on deblurring given in Section 2.9 that there are no real time

methods for deblurring which approach state of the art performance. Indeed, there is no

recent work on real time blind deblurring. This finding means that the approach of deblurring

the blurred frame and matching to a frame with no blur is not suitable when the matching

algorithm is required to run in real time.

53

Chapter 3

Experimental Validation of Motion

Blur Model

3.1 Introduction

This Chapter described the investigation into question 1 of this Thesis: “Does motion blur

behave as conventionally modelled?” This contribution consists of an experimental design

which both provides evidence supporting the conventional model, but also is sensitive to noise

and low spectral occupancy in images in a way that makes it useful as an assessment of camera

quality. The experimental design requires very little specialist equipment — no frequency-

sweep test cards or calibrated lighting. As such it is a more accessible method for assessing

camera quality, when noise and sharpness are the camera qualities of interest.

The models for motion blur described under the integrating camera in Section 3.2 have

not been experimentally verified in published work known to the author. In this chapter, an

experiment and results are presented which verify the model of motion blur as a rectangular

filter. It is shown that, for a moving edge, the experiment also verifies the model of the pixel

as an integrator.

The experiments in this Chapter were designed to verify that there were no deviations

from the integrating camera model in a range of professional broadcast and feature film digital

cameras. Manufacturers are sometimes not willing to disclose details of how their cameras

work, and usually for sensible commercial grounds. Commercial grounds are of no use to an

investigator who wishes to discover precise details, however!

In which ways might a video camera deviate from a perfect theoretical model?

• Does the proportion of incident charge accumulated vary under different intensity, already

accumulated charge, or anything else?

55

CHAPTER 3. EXPERIMENTAL VALIDATION OF MOTION BLUR MODEL

• Does charge leak between adjacent photo-sites?

• Electronic shutter rise and fall times are modelled to be instantaneous. Is this the case?

• Is the precision of exposure duration set by frame rate and shutter sufficiently high?

• Are the unexpected non-linearities anywhere else in the system?

The experiments described below were an attempt to examine these effects and how they

might influence the formation of motion blur. Deviations found can be taken into account

when attempting to design visual tracking systems which attempt to account for motion blur.

This Chapter is structured as follows: In Section 3.2 the instantaneous and integrating

camera models introduced in the Literature Review are expanded upon. In Section 3.3 the

model of motion blur is described in more detail, with some verification based on idealised

theoretical camera behaviour. Then in Section 3.4 an experimental method is described to

measure the response of several cameras to a test signal designed to generate highly repro-

ducible motion blur. Section 3.5 describes the results of the experiment, which are discussed

in Section 3.6. The Chapter is concluded in Section 3.7.

3.2 Camera Models

Two distinct camera models are used in visual tracking. The instantaneous camera models

stationary scenes, and thereby enables tractable mathematical analysis [79]. The integrating

camera introduces relative motion between the camera and the objects in the scene, thereby

providing a framework for dealing with motion blur. The following two sections describe

these camera models, and list the image distortions each can account for, when trying to find

correspondences between pairs of images.

3.2.1 Instantaneous Camera

Most published algorithms [38, 10, 31, 80, 20, 30, 81, 40, 4] rely on an instantaneous camera

model. This model can account for changes in scene brightness, contrast, gamma correction,

viewpoint, object scale, central blur, and in-camera processing. Under certain conditions this

model is accurate enough for reliable tracking.

In the instantaneous camera the entire field of view is exposed at the same instant. Light

is modelled as a classical ray, and travels instantaneously. Neither the camera nor objects in

the world are assumed to move during the exposure.

56

3.2. CAMERA MODELS

Geometry

An instantaneous camera is modelled by a focal point, focal plane, angle of view, and orien-

tation. A point in 3D space X is projected into its image x on the focal plane of the camera

as

x = PX

where P is the 3×4 projection matrix. The projection matrix encodes all the intrinsic param-

eters of the camera, as well as its position in space and orientation. Hartley and Zisserman [79]

introduce this model very thoroughly, but briefly, the projection matrix can be broken down

into

P = K[R| −RC̃]

where K is the camera calibration matrix, R is a rotation matrix describing the orientation of

the camera in the world reference frame, and C̃ is the position of the focal point in the world

reference frame. Figure 3.1 below illustrates the action of a camera matrix incorporating a

rotation matrix R = I. K can be decomposed into the individual parameters intrinsic to the

camera:

K =

f s cx

0 f/r cy

0 0 1

 .
f is the focal length and r is the aspect ratio. cx and cy are the coordinates of the point where

the camera direction of view vector intersects the focal plane, in the focal plane coordinate

system, and s describes skew, which is usually zero.

p
f

C

Y

Z

f Y / Z

y

Y

x

X

x

p

image plane
camera
centre

Z

principal axis

C

X

Figure 3.1: On the left, the 3D point X is transformed into the image coordinate x = PX. The
right figure shows the relationship between a 3D coordinate, its image, and the focal length.

57

CHAPTER 3. EXPERIMENTAL VALIDATION OF MOTION BLUR MODEL

Spatial Quantisation

In a real camera, the focal plane is quantized into regions which integrate the incident light

to produce an output signal. In digital cameras this quantisation is a regular grid. Broadcast

and motion picture cameras typically output three channels at each of these photo-sites, one

each for red, green, and blue. In some cameras this data has been captured directly by

three sensors, behind filters. In others, the output is interpolated from a single sensor, whose

individual photo-sites are sensitive to different colours.

Depending on the camera, a number of linear and non-linear steps might be taken between

the voltage output by the sensor and the digital output image. Their effects can be seen in

the output frames, but the parameters and operations used to create them are usually masked

from the user. Thermal processes within the sensor also produce some random variation in

the pixel values, which can only be modelled statistically as an unknown noise. This camera

model results in a three-dimensional array of values, which represent the digital image.

3.2.2 Instantaneous Camera: Modelled Distortions

Image distortion can be broadly defined to mean any change in the pixel values representing the

image of a particular object. The resulting image may be more or less recognisable, subjectively.

But this Thesis is concerned with algorithms which may be sensitive to properties of images

which the human visual system is not. So this broad definition of image distortion will be

used. The instantaneous camera is capable of modelling any per-pixel image distortions, and

any distortions which occur at the level of the image as a sample array. Changes in appearance

resulting from relative changes of the position of objects between frames can be modelled.

Per-Pixel Distortions

Given a pair of images from cameras in identical positions, pixels observing identical parts of the

real world can still differ in their output value. Brightness, contrast, gamma and colourspace

model the mapping function between two such pixels.

Colourspace and gamma for an input image are usually known, as they are set by the

camera operator. Brightness and contrast can be influenced by the camera iris, exposure,

optical filtering, and electronic gain and bias. (They will also change if the illumination

changes.) All of these changes map single pixel values between images.

Gamma correction is used in every television and video frame. It is a nonlinear mapping

which has multiple purposes in data reduction and psychovisual accuracy. Sample values must

be converted from gamma corrected to linear values if they are to be processed accurately.

58

3.2. CAMERA MODELS

In the EBU Specification for HD TV [82], gamma correction is to be performed by calcu-

lating

Iout(x) = (1 + a)Iin(x)γ − a

where Iin and Iout are the normalised channel luminance values before and after gamma,

x is the pixel coordinate, γ is the gamma correction coefficient, and a is set to 0.099, for

HD TV. All cameras used for TV production use equations based on this, sometimes with

additional adjustments to allow more control over the look of the image. Parameters are

either as defined in the specification, or closely related ones. Digital Film cameras often use

considerably different curves [83].

If it was desired to undo the effect of gamma correction, if would be sufficient to apply the

inverse of the above equation. This is rarely done, however: Of the papers cited in this review,

[77] mentions that gamma correction is removed as part of the method, the review paper, [27],

notes that one method is relatively immune to gamma, [53] notes in their conclusion that one

of their references removed gamma and found improved results. [50] apply additional gamma

to their signal before analysis. None of the other papers reviewed mention gamma.

It is perhaps worth considering the assumption of constant brightness is a sensible one for

visual tracking, and industrial applications. In that case, correcting for gamma would change

the inter-frame match only a little, or not at all. Many of the methods described below claim

invariance to illumination changes. These methods would need to model gamma somehow, or

suffer some additional error.

Changes in colourspace can be modelled trivially if the colourspaces of both images are

known. The primaries for colour spaces are clearly defined, and converting between them

usually just requires a 3 × 3 matrix multiplication of the colour channels. Broadcast, motion

picture, and still cameras all output images in a colourspace which is convertable to RGB.

Most approaches to visual tracking operate on luminance. When a single camera is involved,

any linear combination of the colour channels would be satisfactory. When trying to identify

features or match regions between different cameras, care must be taken to extract signals

from the cameras which are equivalent. For example, by finding the matrices to convert from

the cameras colourspace to a defined luminance.

Brightness and contrast can model the remaining difference in pixel values between the

images. In the earlier example with two identical cameras observing the same scene from the

same position, once gamma has been removed and colorspace matched, we expect to be able

to model the pixels in one image I1 as a function of the pixels in the other image I0:

I1(x) = b+ cI0(x)

where b is the brightness and c the contrast.

59

CHAPTER 3. EXPERIMENTAL VALIDATION OF MOTION BLUR MODEL

Affine Distortion

Differences in image viewpoint and scale can be modelled as affine distortions of the image

space. The affine camera is used as an approximation to a perspective camera [84, 79], and

certain constraints apply for the approximation to be valid: The largest distance in world space

between the points subject to the transform must be small compared to the distance from the

camera centre to the points. Under these constraints one image can be represented as an affine

warping of another by

I ′(x) = I(Ax)

where A is a 3× 3 matrix, and the image coordinates x are expressed in homogeneous coordi-

nates. In general A has 8 degrees of freedom; matrices which are related by a constant factor

produce identical transformations.

Image-level distortions

Two further distortions can be modelled straightforwardly: In-plane rotation is modelled as a

transformation of pixel coordinates. Defocus blur can sometimes be modelled using a filtering

operation applied to a notional unaffected image. Different lenses have different point spread

functions, and some will be more straightforward to model than others.

Other Distortions

Some distortions are more difficult to model accurately, and can be treated as sources of error:

Noise. All images contain some noise. Some high quality cameras include a measurement

of the fixed-pattern noise, which is made at the time of manufacture, which is subtracted from

every frame. But random noise from thermal processes is still present. In analysis algorithms,

this is modelled as a small random error.

Obfuscated In-Camera Processing. Broadcast cameras include features with names like

“Edge Enhancement”, “Aperture Correction”, and “Sharpness”, which usually have one or two

parameters which can be controlled by the user. Their effects are never explicitly described in

operators manuals. These features can sometimes be disabled. When present, they must be

taken into account as a source of unknown, nonlinear error.

3.2.3 Integrating Camera

The integrating camera is an extension of the instantaneous camera. It is not well defined in

the literature. Here it is an umbrella term for models which assume there is an underlying

motion between the objects in the scene and the camera during a single exposure.

60

3.2. CAMERA MODELS

Incorporating all of the factors which influence the appearance of a picture into an analysis

tool would be complicated. The feature film industry is getting quite close to producing

convincing synthetic reality, including diffraction effects from particles, specular reflections,

sub-surface scattering for convincing human skin, and so on. This shows that the models

are rather accomplished on the synthesis side. Still, incorporating such detail into analysis,

particularly in real time, is beyond the state of the art today. Further, the feature film industry

has shown that the benefit of adding refinement to physical models diminishes as more and

more refinements are added.

A number of papers [42, 43, 45, 44] have made steps towards a more realistic model by

incorporating some dynamics into their camera models. Some model global motion, others

incorporate per-pixel relative motion between the camera and scene. All assume that the

colour of a region in the real world will not change as it moves. Specular reflections, and other

physical effects which cause significant changes in brightness over the small motions which

occur during a frame are considered to be a source of noise.

3.2.4 Integrating Camera: Modelled Distortions

Incorporating dynamics into the instantaneous camera model allows motion blur and rolling

shutter distortion to be modelled. No standard model for motion blur exists; the papers cited

in the previous paragraph all use related but different models.

Motion blur

A common approach to motion blur is to model it as a filter. The motion blurred image

I(x) is modelled as a notional instantaneous image Is(x) convolved with a rectangular filter

kv(x). The subscript v indicates k is parameterized by a motion velocity in image space with

orientation θ and length L. This model assumes the motion can be approximated by a straight

line in the image plane. The length L will be a function of the relative motion between the

camera and the scene, the frame rate, and the shutter setting of the camera. L will be in

inverse proportion to the frame rate, and direct proportion to the shutter.

kv(x) =

{
1/L if −L/2 < x < L/2

0 otherwise.

In two dimensions the rectangular filter kernel is a straight line one pixel wide and L pixels

long. The length of the blur and angle of the line to the sample structure depends upon the

relative motion between the camera and the object. The filter kernel extent and angle can

vary across the image, representing non-uniform motion indicated by an additional subscript

x. A motion blurred image I would then be modelled as follows:

61

CHAPTER 3. EXPERIMENTAL VALIDATION OF MOTION BLUR MODEL

I(x) = kv,x(x) ∗ Is(x) + n(x)

where ∗ is the convolution operation and n(x) is camera thermal noise.

Clearly this model cannot accurately describe image regions which are revealed or occluded

as part of the camera-scene motion. Also, the modelled motion must have constant speed

(owing to the flat, symmetrical filter kernel). More sophisticated models, discussed later, allow

the parameters of the motion blur filter to vary over the image, or allow non-straight lines as

the motion blur kernel.

Phase Inversion The Fourier transform of the rectangular filter is the sinc function. The

sinc function has negative lobes for certain frequencies, which can be thought of as inverting the

phase of those frequencies. This interpretation of the effect of motion blur is used throughout

this Thesis.

Schelten and Roth explored [85] the removal of motion blur by estimating a blur kernel like

kv,x in a free, non-parametric way, so as to estimate blur arising from non-linear (in time and

space) motion. Their method has not been applied to tracking in the literature.

Additional models of motion blur used in different integrating camera models will be in-

troduced along with the papers describing them.

Rolling Shutter

The instantaneous camera model implies a “global” shutter — The entire frame is exposed at

one instant. CMOS sensors, which are now widely used in cameras, violate this model. The

sensor is read out one line at a time, so each line is integrating the scene for a different period

of time. The amount of distortion introduced is proportional to the amount of time which

elapses between the first line starting its exposure and the last line. (It also depends on the

horizontal motion speed of objects in the scene.) Some sensors mitigate this by reading out

into a buffer more than once per frame, so that the total time offset between the first and last

line is reduced from the frame time to an integer fraction of the frame time.

Models for dealing with rolling shutter distortions are still a subject of research. An inte-

grating camera model could potentially deal with rolling shutter distortion in a more sophis-

ticated way than treating it as a source of uncertainty. This review does not look at rolling

shutter effects in depth. The models for motion blur described under the integrating camera

in Section 3.2 have not been experimentally verified in published work known to the author.

In this chapter, an experiment and results are presented which verify the model of motion blur

as a rectangular filter. It is shown that, for a moving edge, the experiment also verifies the

model of the pixel as an integrator.

62

3.3. A MODEL OF MOTION BLUR

3.3 A model of motion blur

In this section a model of motion blur is described using standard approaches and simplifica-

tions, which place some restrictions on the experimental design. A type of integrating camera

is modelled, observing a planar scene.

3.3.1 The pinhole camera

The pinhole camera is a model of a lens and sensor as a focal point and a focal plane respectively.

Rays from the world are traced through the focal point until they intersect the focal plane. An

object moving parallel to the focal plane with uniform speed will form an image on the focal

plane moving at uniform speed, by similar triangles.

This model has some shortcomings when dealing with real lenses. Real lenses deviate from

the model with barrel distortion, tangential distortion, chromatic aberration, and depth of

field. Barrel distortion, tangential distortion, and chromatic aberration can be dealt with to a

high degree of accuracy by using a high quality lens. The experimental design in Section 3.4

includes means to deal with depth of field, and further ameliorate the effect of barrel distortion.

The pinhole camera defines how real objects are imaged on the focal plane. In a real

camera, this image must be sampled.

3.3.2 Integration and sampling

The idealised image sensor is made up of a number of light-sensitive photo-sites, which ac-

cumulate charge proportionally to the number of photons which fall on them. The output

of these photo-sites are processed into an output array of pixels. Even with the camera pa-

rameters fixed, some video cameras perform non-linear functions to compute the pixel values,

sometimes these functions depend upon more than one photo-site. The most significant of

these in the material gathered for the experiments described in this Chapter are gamma and

edge-enhancement. Gamma does not have any spatial component. The output value of the

gamma stage for the pixel at x is dependent only on the input at x, and the gamma parameter.

It can be corrected for if the mapping is known.

Edge enhancement is a filtering process and hence combines nearby pixels to find the

output at x. It is a high-pass filter, which only effects sharp edges; since here we deal with

blurred edges, the effect of edge enhancement can be safely ignored. Other processing like

noise reduction will be a source of uncertainty in these experiments.

For the purposes of this model, the value of the pixel I(x) output by the camera is propor-

tional to the charge Vout(x) accumulated by the sensor at x: I(x) = qVout(x).

63

CHAPTER 3. EXPERIMENTAL VALIDATION OF MOTION BLUR MODEL

h
t = 0

x

E

xn xm

t = sT

x

E

xn xm

Figure 3.2: The motion of the intensity edge through during the exposure

h

t

E
E0

t1 t2 sT

Figure 3.3: The intensity function at the pixel xn+∆n

Each photo-site has a finite size, and so will accumulate together small details. An optical

low-pass filter is present in front of the sensor on most cameras to prevent aliasing. Moving

shapes will be distorted somewhat by the sampling structure, depending on the relative size

of the motion on the sensor and the photo-site size.

3.3.3 A moving edge

In these experiments, motion blur is measured using a moving edge. A high contrast straight

edge moving with constant speed in the direction of maximum gradient is a useful tool for

measuring motion blur. The constant motion of the edge, and constant sensor illumination

either side, result in a straight line blur. This makes for relatively straightforward measurement.

The simple framework described below shows how a straight line blur arises from constant

motion of a straight edge without considering filtering:

A moving edge is a straight line illuminated to one side, moving perpendicularly. A pixel

on the illuminated side is subject to an intensity E, and a pixel on the dark side receives 0.

The sensor has square pixels px metres across. The edge is moving at a speed v ms-1 across

the sensor such that at the beginning of the exposure the edge is at column n and at the end

of the exposure is at column m (Figure 3.2). For simplicity the start of the exposure is defined

to be t = 0, and the end of the exposure to be sT , where T is the frame period in seconds and

s is the shutter factor, expressed as a value between 0 and 1. A constant level of illumination

E0 is chosen such that ∫ sT

0
E0 dt = 1

64

3.3. A MODEL OF MOTION BLUR

Based on this model, the intensity function at some pixel n + ∆n must vary over time

(Figure 3.3). Integrating this intensity function will give an expression for the intensity as a

function of pixel position, under the moving edge. The integral is evaluated as three definite

integrals, which are then summed.

• The integral of the region from t = 0 to t1 is zero.

• The region from t1 to t2 is a straight line. By geometry this integral is E0.(t2 − t1)/2.

• The integral of the region from t2 to sT is E0.(sT − t2).

Summed, these give an expression for the illumination at pixel n+ ∆n:

(3.1) E(xn+∆n) =
E0

2
[2sT − (t1 + t2)]

t1 and t2 are

t1 =
xn+∆n − xn

v
=

∆npx
v

(3.2)

t2 =
xn+∆n − xn + px

v
=

(∆n+ 1)px
v

(3.3)

which substituted in to Equation 3.1 gives a function which is a straight line with ∆n.

(3.4) E(∆n) =
E0

2

[
2sT −

(
2∆npx + px

v

)]
This example supports the model of motion blur as a rectangular filter whose length cor-

responds to the length of the relative camera-object motion over the exposure time. It also

enables a straightforward experimental design — the image of a moving edge is a straight

line, which can be found by least-squares fitting to the appropriate samples. The slope of the

straight line is proportional to the exposure time.

Since exposure time is set in the camera, it is possible to test whether motion blur behaves

as predicted for a moving edge by comparing estimates of exposure time derived from motion

blur length with camera exposure time. Section 3.4 describes an experiment to make this

comparison.

3.3.4 Motion blur as filtering

Blur arising from front-on, planar motion can be modelled as a rectangular filter kv(x) acting

on a notional unblurred image Is(x):

kv(x) =

{
1/L if −L/2 < x < L/2

0 otherwise.

65

CHAPTER 3. EXPERIMENTAL VALIDATION OF MOTION BLUR MODEL

where L is the length of the motion in pixels. The 2D filter is created by taking a rectangular

region of width one and length L and rotating it so the long edge is parallel to v. In the

sampled image there will be some errors arising from quantisation, but these will be small.

The image containing motion blur is then computed as

I(x) = kv,x(x) ∗ Is(x) + n(x)

where ∗ is the convolution operation and n(x) is camera thermal noise.

Because the 2D case can be decomposed into a rotation and a 1D filtering operation,

evidence supporting the 1D model is sufficient to support the 2D model.

Applying a rectangular filter to a step function results in a signal with the same form as

that derived in the previous section. Therefore, evidence gathered in an experiment measuring

the blur caused by a moving edge will verify the rectangular filter model of motion blur.

3.4 Method

This Section describes the experimental method used to measure motion blur. Motion blur

is measured by carefully setting up a camera and moving object to create a moving edge on

the camera sensor, with known parameters. The shape of blur created by the moving edge is

verified by calculating an estimate of the exposure time from the gradient of the image of the

moving edge. The first part of this Section deals with the physical configuration of objects used

to create a reproducible, constant motion. The second part deals with the software analysis

carried out to produce measurements of motion blur from the captured video frames.

3.4.1 Requirements

The experiment had to meet the following requirements:

• A test signal which can be accurately modelled and precisely re-created.

• Use a simple signal amenable to analysis under experimental conditions which correspond

to real broadcast or film use.

• Examine the behaviour of motion blur as a dependent variable on the following indepen-

dent variables:

– Exposure time (arising from varying shutter and framerate).

– Motion length, arising from changing resolution.

– Sensor type.

66

3.4. METHOD

3.4.2 Physical configuration

The basic configuration was a camera pointing at a Technics 1200 direct drive record player

(“the turntable”.) A record player was chosen as it produces reliable motion whose speed

is well-defined. Further, the tangential speed at any point in the image of a turntable is

straightforward to compute, as the speed is directly proportional to the radius.

Camera

Turntable

Side view Plan view

Camera centred
over turntable.

Optical axis
aligned with centre
of turntable.

Figure 3.4: Ideal camera configuration: The optical axis is aligned with the turntable rotation.

The ideal configuration of camera and turntable has the optical axis of the camera passing

through the centre of the turntable, and the rotating platter perpendicular to this axis. This

configuration produces video frames containing circular images of the turntable platter. Sam-

ples can then be extracted on a circle centred on the turntable centre. If desired, these can be

sub-sampled and interpolated to yield samples evenly spaced in angle, enabling straightforward

analysis as a signal. Because the optical centre of the lens passes through the centre of the

turntable, these extracted circles would each have uniform radial lens distortion. Therefore,

no correction for lens distortion would be required. Figure 3.4 illustrates this ideal set up.

A “Rostrum” camera mount would have been ideal for this, but one was not always avail-

67

CHAPTER 3. EXPERIMENTAL VALIDATION OF MOTION BLUR MODEL

able. The following more general approach was used: The camera was mounted on a tripod

which could point the camera nearly straight downwards, and the turntable placed on the floor

beneath it with each corner supported independently. Several separate stages of adjustment

were made to achieve the best possible alignment:

1. Initial estimate: Position and orientation of the turntable adjusted until the spindle is

close to the image centre, and orientation very roughly correct.

2. Align optical axis and turntable spindle: The optical axis is estimated by observing the

motion of the turntable centre as the focal length is varied. The turntable position is

adjusted to align the turntable centre and optical axis.

3. Align turntable platter with optical axis: A mirror is placed centrally on the turntable.

The position of the camera, and orientation of the turntable, are adjusted so that the

image of itself the camera sees is centred on the spindle.

The last two stages were usually carried out iteratively; it was difficult to adjust one without

spoiling the other. In practice, the errors gradually converged until the errors were too small

to distinguish by eye.

The magnitudes of the errors involved can be estimated: The cameras all had user aids

which would mark the centre of the screen. This provided a reference point against which

to judge the motion of the turntable spindle as focal length was varied. Although no formal

measurement of the error in the centre position was made, a reasonable estimate would be the

position of the centre is correct to less than 40 pixels.

Judging the position of the image of the camera lens was more difficult. The cameras did

not offer any on-screen devices against which the symmetry of the image of the camera could

be measured. A reasonable assumption is that when the image of the camera is placed 10%

of its width away from the centre, the error becomes noticeable. The turntable was typically

placed just over a meter from the camera. Based on those distances and the diameter of the

camera lens housing, if the reflected image of the camera was off by 10% of its width, then the

turntable would be misaligned by less than one degree.

What would be the resultant deviation in circularity? In the affine approximation, the

diameter of the turntable would be reduced to cos(θ) of the diameter when imaged perpendic-

ularly. cos(1) = 0.9998, so the error in circularity will be small. The iterative approach taken

to aligning the equipment meant that these errors are all as small as practically possible.

Figure 3.5 shows how the equipment was arranged for three of the four test shoots. The

ARRI ALEXA S is supported by a dolly instead of a tripod, allowing it to be positioned with

its optical axis almost vertical. The illumination for the RED, FOR.A and Sony PMW-500

68

3.4. METHOD

was provided by a pair of “Kelvin Tiles”, a brand of LED lighting. The illumination for the

ARRI shoot was provided by a pair of incandescent lights, pointed at the ceiling. (The room

used for the ARRI shoot was designed to be used in this way.)

3.4.3 Subject

The high contrast edge was created with black felt and office paper. A circle of black felt the

size of the turntable was cut, with a hole in the centre for the turntable spindle. A semicircular

piece of white paper was cut, using the manufactured edge as the line across the centre of the

circle. A small notch was made at the centre of the edge to accept the spindle.

The alignment of the white paper across the centre of the turntable was performed manually,

before each capture. Before any experiments were carried out, two markers were fixed on the

turntable, opposite one another, using the following method: The piece of paper was placed

such that it lined up with these two markers. The turntable was then turned half a rotation and

the alignment was checked. The positions of the paper edge, and markers, were changed until

the alignment was subjectively correct with the edge in either position. Once this procedure

has been finished, the markers on the turntable were made permanent. Before each experiment,

the piece of paper was placed on the felt, lined up with the markers, and the centrality checked

against the markers by eye, in both positions. Clearly this method will include some small

error in the position of the edge. This was the most accurate method available.

69

CHAPTER 3. EXPERIMENTAL VALIDATION OF MOTION BLUR MODEL

(a) RED EPIC

(b) FOR.A FT-ONE (c) ARRI ALEXA S

Figure 3.5: The arrangement of camera, turntable and lighting.

70

3.4. METHOD

Procedure

Once all the equipment was aligned, videos were recorded with whichever independent param-

eters were available per camera. Those parameters were:

• Shutter (as a proportion of the frame duration)

• Frame duration

• Resolution

• Shutter type

Experiments were performed with four cameras; a Sony PMW-500, an ARRI ALEXA-S, a

For-A FT-ONE and a RED EPIC. Their relevant characteristics are given below:

Sony PMW-500:

• 25fps at 1080× 1920. 25fps and 50 fps and 720× 1280

• 3-CCD sensors, with global electronic shutter.

RED EPIC:

• up to 200fps at 4096× 2160 & 1920× 1080

• Single CMOS sensor, with rolling electronic shutter.

ARRI ALEXA-S:

• up to 100fps at 1620× 2880.

• Single CMOS sensor, with rolling electronic shutter1.

FOR-A FT-ONE:

• up to 800fps at 4096× 2160.

• Single CMOS sensor, rolling electronic shutter.

1This camera has a very fast rolling shutter readout, which emulates a global shutter very well.

71

CHAPTER 3. EXPERIMENTAL VALIDATION OF MOTION BLUR MODEL

3.4.4 Post-processing and data conditioning

In order to make useful measurements of motion blur length, some pre-processing is required.

Each video sequence of the rotating edge is exported to single-frame images, then goes through

the following pipeline:

• Read image.

• Undo gamma correction.

• Convert to luminance, or luminance proxy.

This results in a video frame in linear luminance. For some cameras tested it was not possible

to find a reliable description of the colour space. In experiments examining the high-contrast

edge, colour does not matter, so the green channel is used as a proxy for luminance if luminance

cannot be found. The centre and radius of the turntable in the image are found (in practice,

this requires many images, so is computed once per sequence).

Finally, for each sequence an approximation to the illumination is computed. The illumi-

nation was set up to be as uniform as possible with a simple lighting set-up (Typically two

stage lights.) By measuring the illumination at each pixel, the variation in illumination can be

corrected for, to give normalised data across each image. The illumination is found by finding

the mean value of every pixel, but only when it is imaging the white half of the turntable.

These are stored in an illumination file for each sequence. The normalisation will only be

correct up to the variation in illumination of the white paper, under an amount of motion

blur which will vary with radius. The error resulting from this variation is expected to be

very small, and never appeared to come close to the error resulting from thermal noise in the

camera.

Circle Extraction and Analysis

Individual measurements of motion blur length are made by extracting circles of pixels from

the luminance images. The data is noisy, and for some cameras corrupted by rolling shutter

artefacts, so many circle measurements are needed. This section describes the process by which

circles are extracted and analysed to give an estimate of motion blur length.

Circles of pixels are extracted using Bi-Quadratic interpolation of the luminance image at

sites regularly spaced around the circle. They are normalised by dividing by an identically

extracted set of pixels from the corresponding illumination file. This results in an array with

the characteristic shape shown in Figure 3.6b. There is a “white” region with a value around

1, a “black” region with a value around 0, and two “edge blur” regions connecting them.

72

3.4. METHOD

(a) The typical appearance of the turntable in a
frame.

4 3 2 1 0 1 2 3 4
Position (radians)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
lis

e
d
 I
n
te

n
si

ty

Normalised Subsampled Circle

(b) The characteristic shape of a circle of pixels.

Figure 3.6: Circle extraction.

The motion blur length is computed by fitting a straight line to the edge blur regions and

measuring the length in pixels between where this line intersects the white and black regions

either side. Lines are fit to the white and black regions by either fitting a line to the samples,

or assuming they have zero gradient, taking the average, and using the horizontal line at that

average value.

Fitting a line to this data automatically is not a trivial task. Figure 3.7 shows an edge blur

ramp in detail. Observe that there is a smooth curve between Positions 1.70 and 1.75, and

between 1.85 and 1.90. This is not the modelled behaviour. The slight smoothing of the ideal

sharp corners is the result of several very small point-spread functions in the optical path:

• Imperfection of the lens.

• Imperfection of the focus setting by the operator.

• Optical antialiasing low pass filter.

Four points must be chosen which divide the circle of samples into “white”, “black” and

edge blur regions.

To initialize the process of finding the dividing points the circle is smoothed with a low-

pass filter, then local extrema are sought in the gradient of the smoothed circle, with some

local suppression of secondary peaks. These extrema are treated as estimates of the four

transitions between sections of the circle. The result of this stage is verified by checking that

the white and black regions are approximately the same length, and the two edge blur regions

are approximately the same length. (In bulk processing, if this check is failed then this circle

is discarded.) Next, a simulated annealing algorithm is used to refine the estimates of the

transition points.

73

CHAPTER 3. EXPERIMENTAL VALIDATION OF MOTION BLUR MODEL

1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95
Position (radians)

0.2

0.0

0.2

0.4

0.6

0.8

1.0
N

o
rm

a
lis

e
d
 I
n
te

n
si

ty
Normalised Subsampled Circle (detail)

Figure 3.7: Detail of edge blur.

The cost function for simulated annealing is as follows: The circle is divided into four

regions at the current four points. Straight lines are fitted to the samples in each of the four

regions. Then, a weighted average of the perpendicular distances from the points to the line

is taken, using up to 6 points from either end. (Fewer points are used only when the number

of points in a region is less than 12.)

Blur length
Mean black

Mean white

Figure 3.8: Estimating blur length by fitting a line to the blur ramp. The grey regions indicate
excluded pixels distorted by the optical filters. The red line is the best fit to the remaining
points.

74

3.5. RESULTS

The simulated annealing algorithm then proceeds as follows: If the cost of this set of

transition points is lower than the last set, it becomes the new set. If it is higher, then it

has a chance to become the new set with a probability which decreases with the number of

iterations. Finally, one of the four intersection positions is selected at random, and randomly

shifted up or down by one to give a new set of regions. The process is repeated until the cost

function converges, or a maximum number of iterations is reached.

Once the final set of intersection points has been computed, the duration of the blur is

calculated by fitting lines to the four sets of points. Optionally, some pixels in the edge blur

region can be discarded in an attempt to mitigate the effect of the shape of the curve in

the vicinity of the boundary between the edge blur region and the white and black regions.

Figure 3.8 illustrates this.

Finally, the blur length in pixels is divided by the speed of the turntable at the appropriate

radius in pixels per second. This gives an estimate of exposure duration which is independent

of radius, which can then be compared between frames and sequences.

3.5 Results

Figures 3.9 to 3.14 present the measurements of exposure time based on motion blur length.

Most plots are labelled “Expected exposure time” on the x-axis. This is calculated as Expected

exposure time = s/T , where s is the shutter, expressed as a fraction with 1 meaning the sensor

is exposed for the full duration of the frame. T is the frame rate in frames per second.

(Both framerate and shutter are taken from the camera specification.) The y-axis shows the

estimated exposure time derived from the experiments, as described above. The grey dashed

lines in each of these plots shows x = y, which represents the value expected if the camera is

behaving according to its specification, and the experiment is unbiased.

Figures 3.9, 3.10 and 3.11 show estimated exposure times where the camera exposure was

varied using the shutter. In these figures each data point shows the mean estimated exposure

time found from up to 10 circles extracted from 100 frames. (Sometimes circles would be

automatically discarded.) The error bars indicate one standard deviation. In many cases the

error is too small to be accurately represented on the plot.

Figure 3.9 shows measurements taken with the Sony PMW-500 at 25 frames per second.

(a) and (b) were shot at 1920 × 1080 pixels, (c) and (d) at 1280 × 720 pixels. (a) and (c)

were recorded using the standard gamma setting used for broadcast, corrected in the post

processing. (b) and (d) were recorded in linear light. The short exposure experiments show a

small bias to over-estimating the motion blur length, compared to the expected results based

on the camera specification. Where the camera was set to a longer exposure, the estimated

75

CHAPTER 3. EXPERIMENTAL VALIDATION OF MOTION BLUR MODEL

exposure time tends to be lower than expected.

0.00
0.01
0.02
0.03
0.04
0.05 (a) (b)

0.00 0.01 0.02 0.03 0.04
0.00
0.01
0.02
0.03
0.04
0.05 (c)

0.00 0.01 0.02 0.03 0.04

(d)

Expected exposure time (s)

Es
tim

at
ed

 e
xp

os
ur

e
tim

e
(s

)

Figure 3.9: Motion blur length with varying shutter, Sony PMW-500. (a) 1080p25, Rec.709
gamma. (b) 1080p25, linear gamma. (c) 720p25, Rec.709 gamma. (d) 720p25, linear gamma.

Figures 3.10 and 3.11 give results from some other cameras where camera exposure time

is varied using the shutter. Fig. 3.10 shows results where the camera was set to 50 frames

per second, and Fig. 3.11 shows results for 25 frames per second. Each camera was using a

different resolution. Estimates of exposure time based on the For.A camera are larger than

expected from the specification, by 17-34%. The other cameras estimate the exposure time

according to the manufacturers’ specification, or over-estimate slightly.

Figures 3.12 and 3.13 show results from experiments where the shutter angle is fixed, and

the frame rate varied. In Fig. 3.12 the shutter is fixed at 360 degrees, and in Fig. 3.13 the

shutter is fixed at 180 degrees. Results from the ARRI ALEXA-S mechanical shutter mode

are included here. There is no significant difference between the modes. As before the results

from the For.A camera tend to over-estimate the exposure time compared to the camera

specification. The other cameras usually estimate the exposure duration correctly to within

one standard deviation.

Figure 3.14 shows 5 results extracted at different resolutions. Again, the measurements of

exposure time are mostly in accordance with the manufacturers’ specifications, with a small

tendency to over-estimation. The measurements on the For.A FT-One once again over-estimate

the exposure by more than the other manufacturers.

76

3.5. RESULTS

0.00
0.01
0.02
0.03
0.04
0.05 (a) (b)

0.00 0.01 0.02 0.03 0.04
0.00
0.01
0.02
0.03
0.04
0.05 (c)

0.00 0.01 0.02 0.03 0.04

(d)

Expected exposure time (s)

Es
tim

at
ed

 e
xp

os
ur

e
tim

e
(s

)

Figure 3.10: Motion blur with varying shutter, other cameras. (a) Sony PMW-500, 720p50.
(b) ARRI ALEXA-S, 1620p50. (c) RED EPIC, 1080p50. (d) For.A FT-One, 2160p50.

0.00 0.01 0.02 0.03 0.04
0.00
0.01
0.02
0.03
0.04
0.05 (a)

0.00 0.01 0.02 0.03 0.04

(b)

Expected exposure time (s)

Es
tim

at
ed

ex
po

su
re

 ti
m

e
(s

)

Figure 3.11: Motion blur with varying shutter, other cameras. (a) ARRI ALEXA-S 1620p25.
(b) RED EPIC, 1080p25.

77

CHAPTER 3. EXPERIMENTAL VALIDATION OF MOTION BLUR MODEL

0.00
0.01
0.02
0.03
0.04
0.05 (a) (b)

0.00 0.01 0.02 0.03 0.04
0.00
0.01
0.02
0.03
0.04
0.05 (c)

0.00 0.01 0.02 0.03 0.04

(d)

Expected exposure time (s)

Es
tim

at
ed

 e
xp

os
ur

e
tim

e
(s

)

Figure 3.12: Motion blur with varying framerate, 360°shutter. (a) Sony PMW-500. (b) RED
EPIC. (c) ARRI ALEXA-S. (d) FOR.A FT-One.

0.00
0.01
0.02
0.03
0.04
0.05 (a) (b)

0.00 0.01 0.02 0.03 0.04
0.00
0.01
0.02
0.03
0.04
0.05 (c)

0.00 0.01 0.02 0.03 0.04

(d)

Expected exposure time (s)

Es
tim

at
ed

 e
xp

os
ur

e
tim

e
(s

)

Figure 3.13: Motion blur with varying framerate, 180°shutter. (a)ARRI ALEXA-S mechanical
shutter. (b) ARRI ALEXA-S electronic shutter. (c) Sony PMW-500 (d) RED EPIC.

78

3.5. RESULTS

720 1080 1620 2160 2160
Pixels per line

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Es
tim

at
ed

 e
xp

os
ur

e
tim

e
(s

)

Figure 3.14: Motion blur with resolution. Exposure from camera settings is always 0.02s.
Camera sources are Sony, Sony, ARRI, RED, For.A respectively.

79

CHAPTER 3. EXPERIMENTAL VALIDATION OF MOTION BLUR MODEL

3.6 Analysis

Overall the results of these experiments support the model of motion blur described in Sec-

tion 3.3 up to experimental error. Two consistent deviations between the camera specified

exposure time and the measured exposure time were observed:

• Estimates of exposure time tended to be longer than specified for short blur lengths and

shorter than specified for long blur lengths.

• Measurements made using the For.A FT-ONE camera consistently over-estimated the

exposure time compared to the specification by more than the other cameras.

Figures 3.15 and 3.16 shows these deviations explicitly. The difference between the camera

specification of the exposure time and the measured exposure time is on the x axis, in units of

standard deviations. The estimated exposure time is on the y axis. There is a clear trend to

increased error with shorter motion blurs. The For.A camera always over-estimates by more

than one standard deviation.

Figure 3.15: Difference between estimated exposure and specified exposure. Exposure varied
using shutter control. Rec.709 and Linear refer to the gamma at capture.

80

3.6. ANALYSIS

Figure 3.16: Difference between estimated exposure and specified exposure. Exposure varied
using framerate control.

3.6.1 Error bias with exposure duration

In almost all measurements of exposures of 0.01s, and all exposures of 0.005s, the estimated

exposure time is greater than expected by more than one standard deviation. The point spread

function of the optical part of the camera has already been identified as a source of error. An

attempt was made to correct for this by omitting some of the points near the transition between

the edge ramp and white/black (see Section 3.4.4). This was done by specifying minimum and

maximum values of normalised intensity to fit a line to. For a short blur, fewer samples are

omitted, allowing more of the point spread function to contaminate the results. The method

could have been modified to account for this, but a trade off must always be made between

omitting samples from the edge blur region, and leaving sufficient samples in the blur ramp to

fit a line whilst still suppressing noise.

3.6.2 For.A FT-ONE Results

Figures 3.10 and 3.12 show consistent over-estimation of exposure time in the results from the

For.A. The alternative view in Figures 3.15 and 3.16 shows results from the For.A camera to

81

CHAPTER 3. EXPERIMENTAL VALIDATION OF MOTION BLUR MODEL

White

Ground truth blur ramp

Underestimate fit

Overestimte fit

Black

Worst under-estimate

Ground truth

Worst over-estimate

Noise

Figure 3.17: The tendency to over-estimate blur rather than under-estimate in the presence of
noise.

have consistent bias with respect to the camera specifications, which the other cameras do

not have. Note that the standard deviation is usually higher for the For.A compared to the

other cameras, for a particular set of parameters. This means Figures 3.15 and 3.16 show the

For.A results in a relatively favourable light. Yet still the difference between the experimental

estimate of exposure and the camera setting is the greatest with the For.A.

The pictures from the For.A were subjectively more noisy than those from the other cam-

eras. Excess noise can explain the higher standard deviation, and also explain the bias to

over-estimate, in the following way: The method used to estimate motion blur is biased to-

wards higher values in the presence of noise, as illustrated in Figure 3.17. The grey area

indicates the possible bounds for a certain amount of noise to corrupt the signal by. The Un-

derestimate fit line indicates the shortest possible under-estimate given this amount of noise,

and the corresponding under estimate of the exposure time. The Overestimate fit line indicates

the longest possible over-estimate given the same amount of noise. The corresponding estimate

of the exposure time goes to infinity. From this example it should be clear that a sloping line

82

3.7. CONCLUSION

fitted in the presence of noise is biased to over-estimation of a quantity based on the horizontal

projection of the line.

The pictures from the ARRI Alexa were less noisy than the other cameras - this camera

contains a correction process for fixed pattern noise which is manually calibrated per-camera

during the manufacturing process. These results better estimate exposure time, and have

smaller standard deviations, which also supports the argument that excessive noise causes the

error in the For.A FT-One camera results.

Figures 3.9, 3.10 and 3.10 show results matching the predictions of the model, when ex-

posure is varied using the shutter. Figures 3.12 (a-c) and 3.13 show results matching the

predictions of the model. Figure 3.12(d) overestimates blur length compared to the model,

with deviation explained by the poor noise performance of the For.A camera, as discussed

above. Figure 3.14 shows an estimate of motion blur at various resolutions. The noise perfor-

mance of the For.A camera explains the over-estimate in the right-most data point. All other

measurements show no discernible deviation from the model of motion blur, or deviation of

the performance of the cameras from their settings.

3.7 Conclusion

The results of these experiments broadly support the model of motion blur as a rectangular

filter for fronto-planar motion. Measuring short blurs is very difficult. Many of the results for

very short exposures had to be discarded because they were too distorted by the optical point

spread function. When trying to make sufficiently precise measurements using a video camera,

noise is a significant source of error.

It has not been possible to determine whether any of the cameras mis-behave in any of

the ways described in the Introduction to this Chapter. The combination of noise and optical

point spread functions mean that the overall accuracy is low. To put the results in context, the

standard deviations can be expressed in shutter angles. In Figure 3.9 the errors vary between

12 degrees and 125 degrees. In Figures 3.10 and 3.11 the errors vary between 9 and 43 degrees.

It is perhaps not surprising that the manufacturers of cameras and lenses which are consid-

ered by most to be of very high quality (and are amongst the most expensive available) should

meet the idealised models. It would be a sensible design goal of a high quality video camera to

make the effect of the various non-linear complexities involved in the whole processing chain

to be indistinguishable from the unavoidable noise, and a very small blur in the optical path.

The experimental design is susceptible to noise and low spectral occupancy, when attempt-

ing to measure motion blur. But, were one to assume motion blur did follow the predictions of

the models, then this experimental design could be useful as a measurement of image noise and

83

CHAPTER 3. EXPERIMENTAL VALIDATION OF MOTION BLUR MODEL

spectral occupancy. If a camera is being used for Television, Film, or other media where the

end consumer is a human, it is desirable to have low noise and high spectral occupancy. Nor-

mally these properties must be determined with experiments requiring specialised equipment

and calibration [83]. But this experiment requires only everyday equipment, and some studio

lights. With some additional work to provide a calibrated scale of results, this experimental

design could be useful for low-budget video makers who wish to find a high-quality camera

without professional facilities.

The industrial contribution from this work is the experimental design, which is a cheap,

accessible way to determine the quality of a camera. The academic contribution from this work

is the observation that point spread function prevents this experimental design from achieving

high measurement precision. Precise measurements of motion blur, and possibly other precise

measurements of the temporal characteristics of cameras, will require a more sophisticated

test set up. If, for example, objects were to move much more quickly, the effect of temporal

integration would become greater than the effect of the point spread function.

3.7.1 A note on rolling shutters

The Red EPIC and ARRI ALEXA-S cameras have CMOS sensors. These can create a rolling

shutter effect as a result of the exposure period for the line at the top of the sensor taking place

slightly before the period for the line at the bottom, and varying continuously in between. The

time difference between the first and last lines is called the readout time.

The ARRI also has a mechanical shutter, which when engaged can mitigate the rolling

shutter effect by physically blocking light to and from the sensor at both the start and end of

the exposure. The effect is not removed entirely, as the mechanical shutter also moves across

the sensor in some non-zero time. However, it is not on the focal plane, and as such the image

of the shutter edge will not be in focus on the sensor. (It was not possible to capture an image

of the shutter edge directly using the camera.)

The Sony PMW-500 has a CCD sensor. The shutter behaviour is global, in that the

exposure for each pixel begins and ends at the same time. For.A do not provide any information

about their sensors.

A pre-experiment was carried out with a lower-quality camera. A frame was taken showing

the turntable with the high contrast edge running vertically through the frame. By fitting a

curve to the image of the edge, it was possible to measure the readout time of this camera.

The same procedure was tried with the ARRI ALEXA-S, in electronic shutter mode, and the

readout time was sufficiently small that it was masked by the (very small) point spread function

and image noise.

84

3.7. CONCLUSION

Rolling shutter was taken into account in this experiment in the following way: When the

rotating edge was near horizontal in the frame, the blur ramp would appear shorter on one

side of the frame, and longer on the other side. Because all points on the turntable are the

same distance from the camera, the effect is symmetrical. The errors cancel out by including

two measurements of blur length from each sampled circle.

During this experiment it was observed that the ability to estimate the exposure time

accurately was sensitive to image noise and the point spread function. Low noise and image

sharpness are desirable qualities in many imaging applications, which are difficult to quantify.

This experiment could be used, without modification, to measure the combined noise and point

spread function of a camera-lens system. Whilst it is not possible to measure either quantity

directly, the measurement of exposure time will only be measured precisely if the image noise

is low, and the spectral occupancy is high. The results in this Thesis could be used as a

baseline for comparison. In the future subjective tests could be used in conjunction with this

experiment to develop a set of thresholds of image quality. The equipment needed to reproduce

this experiment are easy to acquire, which is a benefit for anyone with limited time or budget.

85

Chapter 4

Assessing Feature Matching —

Experimental Method

4.1 Introduction

In the following two Chapters, methods for dealing with motion blur in template-based match-

ing and feature descriptor-based matching are proposed and evaluated. The methods proposed,

and the experimental results describing their performance, constitute answers to question 2

posed at the beginning of this Thesis: “Can these models improve visual tracking in situations

of differing motion blur, in real time?” This Chapter describes the experimental method used

for the evaluation. The experimental design has two goals:

1. To produce results suitable for comparison with those in [1].

2. To measure suitability of a method to match sharp images to ones which might be

corrupted by motion blur.

The experiment is based on the data published by Gauglitz et al in [1]. By following their

method as far as possible, the results in this Thesis are directly comparable with [1].

Sections 1.1.1 and 1.1.2 motivated the problem of matching image features containing

motion blur to those without blur. In order to investigate this problem in a formal way, a set

of data of sharp and motion blurred images is required. The data provided by Gauglitz et al

[1] includes a “reference” tracking mode, which provides this data exactly. It includes ground

truth geometry between all camera frames to enable all inter frame motions to be computed.

This data also allows for performance with varying motion blur to be varied.

This Chapter is structured as follows: Section 4.2 describes the data set provided by [1] in

detail. Section 4.3 describes the experimental procedure. Section 4.4 describes the method for

87

CHAPTER 4. ASSESSING FEATURE MATCHING — EXPERIMENTAL METHOD

evaluating performance, and Section 4.5 concludes the Chapter.

4.2 Data Set

The data set published by Gauglitz et al [1] includes six sets of nine sequences of a camera

panning past a planar target. There are nine different panning speeds of approximately integer

multiples of 5.1 pixels per frame, and six different targets. Ground truth homographies relating

the position of the planar target in each frame are provided. The data set included lens

calibration information, calculated using OpenCV [86].

The camera is stationary in the first frame of each sequence, and is accelerated up to speed

over a small number of frames after which the speed remains constant. The targets are shown

in Figure 4.1.

Figure 4.1: The targets included in the data set from Gauglitz et al. From left to right Wood,
Bricks, Building, Paris, Mission, Sunset

Some care was taken by Gauglitz et al in the computation of the ground truth homogra-

phies. A mount was made to place the tracking targets within. The mount included four red

balls, and had been engineered such that the centres of the balls were coplanar with the planar

tracking target. A canonical reference frame was defined in which the balls form a rectangle.

The position of all four balls was determined using an offline multi-step template tracking

algorithm. The relative positions of the balls between pairs of frames was used to estimate a

homography. Each video frame was warped to the canonical frame, and a user-guided image

alignment process was used to finalise the homographies.

Figure 4.2 shows two example frames from the UCSB data set. On the left, the first frame

from the Bricks sequence at speed 1 is shown. The target is in the mounting frame, with the

coplanar balls visible at the corners. The target has not yet begun to move. This frame is the

source of sharp features. On the right, a frame from the middle of the sequence showing Sunset

at speed 6. In all sequences, only the target is used for the tracking. The chequerboard pattern

around the perimeter is excluded. This is a small region, approximately 120× 90 pixels. The

software ignores the rest of the image.

88

4.2. DATA SET

(a) The start position used for the motion blur se-
quences

(b) Example frame mid-motion. Speed 6 of 9.

Figure 4.2: Example frames from the UCSB dataset.

A small webcam style camera was used to capture these sequences. To analyse how rep-

resentative this data is of broadcast camera footage, the spectral content will be examined.

The spectral occupancy plot in Figure 4.3 shows the mean horizontal log-spectrum of some

test images. The horizontal spectrum is chosen as it allows direct comparison between fields

from broadcast cameras running in interlaced mode, with a picture from a still camera, and

the data in this data set, which is captured in progressive mode.

Figure 4.3 compares the spectral occupancy of some frames from this data set with an

identically sized crop from a broadcast camera and a high-quality stills camera. Log-spectrum

is plotted against frequency. Frequency is in units of the sampling frequency.

Kiel Harbour is a BBC test image taken with an SLR camera, and scanned. It is a useful

image, as it is a very sharp image containing lots of high frequency detail, as well as some

planar areas. It has been in use for more than 30 years is broadcast research at the BBC. This

image clearly contains a lot of information at all frequencies.

The line labeled “Broadcast Sand Pit” is the occupancy of a long jump sand pit as seen

by a broadcast camera. The lower half of the Sand Pit spectrum has comparable energy to

those from the UCSB camera, but the upper half contains more energy. Later, it is noted

that features are detected in the second octave. based on this spectral occupancy plot, there

is a broadly similar amount of energy in the UCSB data as in a typical broadcast camera

picture. Finally, it is worth noting that most of the energy in the UCSB Sunset picture is in

the horizontal (And therefore appears in this plot.)

When covering live events, and particularly sports, broadcast cameras often use filters which

boost the high frequencies in images, in order to make edges appear sharper. Usually called

“aperture correction”, the filters are often implemented to introduce minimal delay, and hence

89

CHAPTER 4. ASSESSING FEATURE MATCHING — EXPERIMENTAL METHOD

0 0.1 0.2 0.3 0.4 0.5
1

2

3

4

5

6

7

8

9

Frequency

L
og

S
p

ec
tr

u
m

M
a
gn

it
u

d
e

UCSB Bricks
UCSB Sunset
UCSB Paris

Broadcast Sand Pit
Kiel Harbour

Figure 4.3: Spectral Occupancy of various signals.

are not symmetrical. The camera used in the UCSB data set has a similar filter. The effect can

be seen by examining the sawtooth signal from the chequerboard pattern around the UCSB

frames. The effect of this filter is shown in Figure 4.4. Although this makes the pictures look

un-natural when viewed closely, this actually reflects quite well how real broadcast pictures

look.

4.3 Procedure

The experimental procedure is described below.

Preparation, for each sequence, takes the following steps:

• Preprocessing: Remove lens distortion using supplied homographies, convert to lumi-

nance.

• (Phase Correlation only) remove gamma.

• Detect Harris corners in the first frame.

• Warp these corners to other frames in the sequence using supplied homographies.

90

4.3. PROCEDURE

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

Pixels

L
u

m
in

an
ce

Row 165
Column 220

Figure 4.4: Left: A row and column of pixels showing the effect of the sharpening filter on
horizontal edges. Right: Image crop showing the pixels extracted.

Then, two modes of tracking are tested: In both methods, the aim is to match features

from a template frame to those in an input frame. In Inter-frame tracking the template and

input are consecutive frames. Reference tracking uses the first frame in the sequence as the

template frame, and searches for matches with each of the remaining frames in the sequence.

Phase correlation-based methods (assessed in Chapter 5) and SIFT-based methods (assessed

in Chapter 6) take different approaches to matching:

SIFT In Inter-frame tracking the co-ordinates of a feature in the template frame is

used as the centre of a circular search region of radius 50 pixels in the input frame. The

matching score is found between each feature in the template frame and the correspond-

ing search region. In Reference tracking the co-ordinates of the feature point in the frame

preceding the input frame are used to initialize the 50 pixel radius search region.

Phase correlation In both Inter-frame and Reference tracking, each feature in the

template frame is matched against the corresponding feature in the input frame.

In order to isolate the impact of the proposed changes to tracking, features are not detected

in every frame. Instead, the “perfect” feature detector approach from [1] is adopted. [1] showed

that no feature detector achieves high repeatability under strong motion blur, even allowing for

a 2 pixel reprojection error between frame pairs. Adopting the “perfect” detector means that

matching procedures are given the best chance of success. Variations resulting from particular

combinations of detector and descriptor are removed.

91

CHAPTER 4. ASSESSING FEATURE MATCHING — EXPERIMENTAL METHOD

The “perfect” detector operates as follows: Image features are detected on a 2-times down-

sampled version of the first frame in each sequence. The provided ground truth homographies

are used to find corresponding co-ordinates in the later frames in the sequence.

Gauglitz et al do not state which detector they use for their descriptor results. Informal

experiments carried out as part of this work showed that the Harris corner detector [13] yielded

results most similar to those published. The properies of the Sunset target are described

next. From Figure 4.1 it is clear that the Wood target contains a similar amount of spectral

information as Sunset.

The Harris detector did not detect a sufficient number of features for the targets Wood and

Sunset to produce meaningful results. It is worth noting that this data set is designed to test

image feature detectors as well as descriptors. Therefore it is not surprising that some test

data yielded fewer features.

The Haar Wavelet decomposition can be used to visualise how energy in individual octave

bands is distributed spatially within an image. It is a useful tool to understand the spectral

content and signal to noise ratio of a camera when the camera is not available to run formal

tests on. Figure 4.6 shows Haar wavelet decompositions of four image regions. The source

image regions are shown in Figure 4.5. The colour images were converted to Luminance and

all pixel values linearised and normalised before analysis. A gain of 5 and bias of 0.5 has

been applied to make the low level high frequency signals more clearly visible. The wavelet

decompositions have the horizontal energy in the top-right, the vertical energy in the bottom-

left, and the diagonal energy in the bottom-right. The top-left quadrant contains the same

decomposition for the next octave of the signal. The top-left quadrant which does not contain

wavelet coefficients ordinarily contains the residual low-frequency energy. The processing to

make the noise visible has put the low frequency energy out of the luminance range, so it is

clamped to white.

The wavelet decompositions in Figure 4.6 (b) and (c) are fields extracted from an interlaced

broadcast camera signal, so their vertical resolution is half the horizontal. This means that the

vertical energy is not directly comparable with the vertical energy in the other decompositions.

The top-left picture is a frame from the UCSB Sunset sequence, with no motion. The bottom-

right is a crop from the BBC test image Kiel Harbour. The wavelet decomposition of Kiel

harbour (Fig. 4.6 (d)) shows a relatively large amount of high frequency detail in all bands, and

relatively low noise in planar areas. The two decompositions of broadcast camera data show

significant high frequency detail, both on the athlete and the sandpit. Compare the amount

of high frequency energy in the sandpit and the running track beyond to get an impression of

the signal to noise ratio.

There are a few important differences in the UCSB Sunset wavelet decomposition (Fig. 4.6

92

4.3. PROCEDURE

(a)). Firstly, the amount of signal in the bottom-right part of the wavelet decomposition is

very low, and comparable to the noise in the rest of this region. There is a lot of energy in the

horizontal part of the decomposition but relatively little in the vertical. A similar pattern is

visible in the second octave of the wavelet decomposition, although with a little more signal

compared to noise. The Harris detector is tuned to find corners, where there is significant

energy in at least two directions. Clearly the Sunset image has relatively little energy in the

vertical, which is likely to be the reason the Harris detector did not find many features.

This data set is designed to test both detectors and descriptors. Including Sunset and

Wood in the data set is a sensible design. It will help to identify detectors which are not able

to detect features in image regions where there is only energy in one direction. Because the

Wood and Sunset targets appear to have been designed to be difficult for feature detectors to

operate on, it is prudent to remove them from this analysis.

93

CHAPTER 4. ASSESSING FEATURE MATCHING — EXPERIMENTAL METHOD

(a)

(b)

(c)

(d)

Figure 4.5: Example images for wavelet analysis. (a) UCSB Sunset; (b) Long Jump 1; (c)
Long Jump 2; (d) Kiel Harbour.

94

4.3. PROCEDURE

(a)

(b)

(c)

(d)

Figure 4.6: Wavelet decompositions. (a) UCSB Sunset; (b) Long Jump 1; (c) Long Jump 2;
(d) Kiel Harbour.

95

CHAPTER 4. ASSESSING FEATURE MATCHING — EXPERIMENTAL METHOD

4.4 Evaluation

Precision is used to measure the performance of the methods under test in Chapters 5 and 6.

Recall (as paired with precision in [4]) is not used: It provides a measure of the discriminatory

power of a descriptor over a large corpus of image feature points. This is not necessary in

visual tracking because the camera motion is assumed to be small between frames, so the

corpus of candidate features is constrained. Recall also has an implicit assumption that one

image feature is being measured against many. This is not the case in phase correlation based

tracking, so recall is not appropriate.

precision =
number of correct matches

number of correct+ number of false matches

Different methods are needed to distinguish correct matches from incorrect matches for

descriptor-based tracking and template-based tracking. Phase Correlation, and the related

methods examined in Chapter 5 are template-based. Each of these methods provides an

updated location for a feature point in the input image, based on the template image and an

initial guess. No measure of the quality of the match is produced, though. In these cases, a

match is assumed to be correct if the algorithm results in a location within the image within

some threshold distance of the ground truth position.

The SIFT-family methods examined in Chapter 6 do not update the position of the feature

in the input frame. Instead they produce a matching score which describes the similarity of the

template and input feature point. Matching scores are computed between a descriptor from

the template frame and all the descriptors in the 50 pixel search window in the input frame.

If the best matching score is found between the known-correct feature pair, and is less than

0.8 times the second best, then the feature point is assumed to have been correctly matched.

(The 0.8 factor was originally proposed for this purpose by Lowe [20].) Otherwise the point is

assumed to be a false match.

Following the method described in [1], Gauglitz et al do not assess feature matching methods

capable of refining keypoint locations. However, when assessing integrated use of detectors and

descriptors to track feature points, a threshold radius of 2 pixels is used to decide if a detected

point matches a ground truth location. Based on this decision, a feature location found to

within 2 pixels of the ground truth location will be taken to be a correct match.

4.5 Conclusion

This Chapter has described an experimental method which is designed to meet the aims given

at the beginning. The experimental method mimics [1] as closely as possible. By measuring

96

4.5. CONCLUSION

precision with a suitable threshold, the suitability for practical applications in broadcast camera

tracking can be assessed.

Different methods are needed for SIFT descriptor matching and phase correlation matching,

as they operate differently and produce different outputs. The different methods are made

closely comparable by defining similar precision metrics for both.

An analysis of the qualities of the data set is given. They are a compromise between testing

feature detectors and testing matching techniques. In Section 7.1, suggestions are made for an

improved data set.

97

Chapter 5

Velocity Corrected Phase

Correlation

5.1 Introduction

This Chapter proposes a new modification to phase correlation, velocity corrected phase cor-

relation. This approach is designed to improve real time visual tracking between images where

one contains motion blur, as in question 2 at the beginning of this Thesis. Velocity corrected

phase correlation is assessed using the experimental procedure described in Chapter 4, and is

compared to the state of the art method [19].

As described in the literature review, phase correlation was chosen to be the basis for this

method because it is fast enough for use in a real time tracking system, and there is a clear

and simple method to undo the effects of motion blur on the matching process.

Velocity corrected phase correlation is shown to have the following advantages over the

state of the art:

• Higher precision for longer motion blur lengths.

• Larger potential registration radius.

• Blur parameters are found as a side effect.

The computational requirements are shown to be equivalent, or negligibly more than the state

of the art method.

This Chapter is structured as follows: Some background introducing Correlation-based

methods is given in Section 5.2 from which velocity corrected phase correlation is derived

in Section 5.3. An analysis of the computation time required by velocity corrected phase

99

CHAPTER 5. VELOCITY CORRECTED PHASE CORRELATION

FFT

FFT

Magnitude

Magnitude

IFFT

IFFT

Phase

Figure 5.1: Phase carries the structural information about the content of an image. The dog’s
face is visible in the bottom-right image. The structure of the wood is visible in the upper
right.

correlation, as well as the state of the art method, is given in Section 5.4. In Section 5.5 results

are presented and discussed. The Chapter concludes in Section 5.6.

5.2 Background

5.2.1 Phase in Images

The phase information in the Fourier representation of an image represents more of the sub-

jective appearance of an image than the magnitude. This can be shown with the simple exper-

iment in Figure 5.1. The magnitude and phase information of a pair of images are swapped,

in the Fourier domain. The dogs face is clearly visible in the bottom-right image. The wood

structure is clearly visible in the top-right image. The phase information clearly carries the

structural information about the image.

To find matching regions in image pairs, it is more important to consider the phase of the

spectrum than the magnitude. In signal processing, the cross correlation function is used to

identify relative shifts between two signals. The cross correlation function of a pair of signals

f and g is given by

Ŝfg(u) =

∫
f̄(x)g(x− u)du

where f̄ is the complex conjugate of f . The location of the peak of Ŝfg(u) indicates the relative

offset at which f and g are most similar, ie f(x− d) ≈ g(x) if d is the location of the peak in

100

5.2. BACKGROUND

Ŝfg.

This can be extended to two dimensions by replacing the signals on a single variable f(x)

with signals in two variables f(x) where x is a 2-component vector (and similarly u becomes

u). Using the well-known relationship between the spatial domain product and Fourier domain

convolution, the cross-correlation can be computed in the Fourier domain:

F = F(f(x)) ; G = F(g(x)),

Ŝfg(u) = F−1(F̄G)

where F indicates the Fourier transform.

Phase correlation is closely related to cross correlation. During the computation of the

cross correlation, the intermediate product F̄G is called the cross power spectrum. To find the

phase correlation Sfg the cross power spectrum is normalised, by dividing each coefficient by

its magnitude:

(5.1) Sfg = F−1 F̄G

|F̄G|

Because the phase correlation only responds to the phase, it is immune to linear changes

in both brightness and contrast. (Assuming that the signal doesn’t clip.) It is also immune

to the magnitude of any filter applied to the image, and is only changed by the phase. This

is the property exploited by veclocity corrected phase correlation. The immunity to Fourier

magnitude is not total. Noise has an effect which must be dealt with, which is discussed in

Section 5.3.6.

Figure 5.2 shows example correlation surfaces from cross correlation and phase correlation

between two images. The top row shows the two input images. These are cropped from a

larger image, at slightly different locations. A Gaussian blur has been applied to the upper

right image. The lower left image shows the cross correlation result. The lower right image

shows the phase correlation result. The green cross indicates the maximum. The red cross

indicates the correct offset between images. The lower-right image has been magnified by a

factor of 10 to show the detail in the peak. Even with the magification the phase correlation

peak is much more sharp than the cross correlation peak. The phase correlation result is a

much clearer, sharper peak than the cross correlation one. Phase correlation is also correct

(The red and green crosses are on top of each other in the lower-right image.)

5.2.2 Sub-pixel location refinement

In an appendix to his Thesis [87], Thomas proposes a fast method for estimating sub-pixel peak

location in Sfg, based on the assumption that the shape of Sfg is a sinc (sin(x)/x) function.

101

CHAPTER 5. VELOCITY CORRECTED PHASE CORRELATION

Figure 5.2: Comparing cross correlation and phase correlation.

If the value of Sfg at the peak is S(d), the refinement method is to find

(5.2) δ =
S(d+ 1)− S(d− 1)

2(aS(d) + bS(d+ 1) + cS(d− 1))

where

a = 0.8, b = 0.2, c = −1, if S(d+ 1) > S(d− 1)

a = 0.8, b = −1, c = 0.2, if S(d+ 1) < S(d− 1)

The sub-pixel peak location is at d+ δ. (The derivation of the values of a, b, and c are given in

[87].) According to the theoretical results, this approximation is correct to at worst 0.01 pixels.

This method will be used to compute refined sub-pixel peak locations in these experiments.

5.3 Velocity Corrected Phase Correlation (VCPC)

5.3.1 The effect of motion blur on Fourier Phase.

As was verified by the measurements of Chapter 3, an image with motion blur I(x) can be

modelled using a rectangular filter k(x) convolved with a notional unblurred image Is(x):

(5.3) I(x) = kv,x(x) ∗ Is(x) + n(x)

102

5.3. VELOCITY CORRECTED PHASE CORRELATION (VCPC)

When tracking a pan-tilt-zoom broadcast camera, it is usual to omit foreground information

using a coarse process as described in Section 1.1.1. For a given frame, stationary background

objects will suffer very similar amounts of motion blur. (This assumption will be violated if

a fisheye lens, or very long telephoto lens, is used.) These experiments assume a normal lens

will be used. It is also assumed that a camera is being tracked, and so a good first estimate of

velocity is available.

The Fourier transform of the rectangular filter kv(x) is a sinc function, which has positive

and negative lobes. (See Figure 5.4.) Recall that, except for small magnitudes which bring the

signal into the noise, phase correlation is immune to the magnitude of the filter, and is only

effected by the phase. The filter coefficients corresponding to positive lobes will not modify the

phase of the output signal, but those corresponding to negative lobes with change the phase

by π. The result is that some components of the spectrum of I(x) will be π out of phase with

Is(x). This effect will be referred to as “phase inversion”.

Recall the motivating problem is to match features from an unblurred reference image

with those from a blurred input image. What impact does motion blur have on the phase

correlation between sub-images where one contains motion blur? Ignoring noise for a moment,

computing F̄G/|F̄G| in Equation 5.1 is equivalent to finding the difference in phase between

each coefficient in F and G. When the inverse Fourier transform is taken, the coefficients

of F̄G/|F̄G| interfere constructively to produce a peak at one location, and destructively

everywhere else. If a motion blur filter has shifted the phases of some of the coefficients of one

image by π, then this pattern of constructive and destructive interference will be broken.

The following experiment shows the effect; Apply an artificial motion blur to an image

using a rectangular filter. Find the phase correlation Sfg between the image and the copy with

artificial blur. Figure 5.3 shows a line of pixels from the result of this process. Two peaks are

clearly visible, and neither is at the correct offset (0).

This shape in the correlation surface is characteristic of phase correlation in the presence

of motion blur. Figure 5.6 shows that the inter-peak distance is equal to the blur length. A

spatial domain interpretation of this observation is that the end of a blurred edge will match

the unblurred edge better than anything else along the blurred image, so there will be peaks

corresponding to a poor match at each end of a blurred object, but the match in the centre

will be no better than any other part of the image.

It has been shown that motion blur interferes with phase correlation. The negative filter

coefficients in the motion blur filter result in phase inversion. Consequently, Sfg no longer has

a clear peak. A double peak structure is the characteristic result.

103

CHAPTER 5. VELOCITY CORRECTED PHASE CORRELATION

−16 −14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12 14

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

x

S
(x

)

Figure 5.3: A line from the result of finding phase correlation between two copies of Kiel
Harbour, where one has artificial motion blur.

5.3.2 Correcting for Motion Blur

The frequencies which have negative coefficients are predictable, given the velocity of the

motion blur in the image. If the locations of these negative coefficients can be predicted, then

they can be inverted again to restore the “original” phase correlation (not accounting for noise,

and the attenuation into the noise floor of some signal coefficients by the filter.) The previous

section showed how phase inversion arises from negative filter coefficients, in the filter model

of motion blur. Here a correction mask is derived from the Fourier transform of the filter.

0 1 2 3 4 5 6 7−4

−2

0

2

4

6

8

10

12

14

Figure 5.4: The real and phase components of sinc function.

104

5.3. VELOCITY CORRECTED PHASE CORRELATION (VCPC)

Figure 5.4 shows the real and phase parts of a sinc function. The important characteristic

to note is that when the real part is negative, the phase is π. Hence the mask required can be

computed from the signs of the corresponding blur filter coefficients. The mask m is related

to the filter k as:

K = F(k)(5.4)

m = sign(K)(5.5)

where sign(x) is 1 if x is positive and −1 if x is negative. To correct phase correlation for

motion blur, multiply the mask elementwise with the normalised cross power spectrum, and

take the inverse Fourier transform:

(5.6) Sfg = F−1mF̄G

|F̄G|

The mask introduces a further phase shift of π to each coefficient which has already been

shifted by π, leaving other coefficients unaffected. After the application of the mask, each

coefficient will have suffered a total phase shift of either 0 or 2π. This intermediate stage is

equivalent to a corresponding stage between two images with no motion blur.

Figure 5.5(a) shows an example mask computed for a horizontal motion blur. Figure 5.5(b)

shows an example mask for a motion blur at an angle to the horizontal. The masks are related

only by a rotation.

(a) Horizontal blur vector. (b) Angled blur vector.

Figure 5.5: Phase inversion masks.

Figures 5.6 and 5.7 show results from experiments where image features were artificially

blurred by horizontal motion blur kernels of varying length and had a relative offset of 55

105

CHAPTER 5. VELOCITY CORRECTED PHASE CORRELATION

pixels applied. In each experiment, the correlation Sfg is found between the unblurred original

image and a copy with artificial motion blur. Figure 5.6 shows one line of samples from Sfg

without a rectification mask. The double peak structure is clearly visible for blurs longer than

3 pixels, and peaks move further apart with increasing blur length. Figure 5.7 shows the phase

correlation surfaces with the appropriate phase rectification applied. The peaks here are all

clear above their relative noise floors, and have the correct coordinate.

The method of finding a mask based on the Fourier transform of the motion blur filter

and using it in modified phase correlation, as in Equation 5.6, will be referred to as “velocity

corrected phase correlation” (VCPC).

Figure 5.6: Image lines extracted from Sfg between an unblurred image and copies shifted by
55 pixels with motion blur of length indicated by M. For motion blurs greater than 3 pixels,
there are two peaks. Figure: Tom Cox.

106

5.3. VELOCITY CORRECTED PHASE CORRELATION (VCPC)

Figure 5.7: A row from phase correlation solution surfaces with appropriate rectification masks
applied. The double peak structures visible in Figure 5.6 have disappeared. All the peaks are
overlaid on the correct location. Figure: Tom Cox.

5.3.3 Estimating the Rectification Mask

In the examples described above we have calculated the rectification mask from the Fourier

transform of the motion blur kernel. In real use, the motion blur may not be known a priori.

Therefore we must derive some way of calculating a rectification mask for unknown blur.

If the direction is known (or can be estimated), then by assuming some motion blur length,

and applying the appropriate motion mask, a strong indication of the correct motion mask

can be found: A phase correlation Sfg has been found between an image and a copy of the

same image with artificial motion blur of 7 pixels and a shift of 55 pixels. Figure 5.8 shows a

row from this correlation where several different rectification masks m have been applied. The

C-value in the legend indicates the length of blur used to generate rectification mask. In the

case where the rectification mask is correct there is a clear peak at 55, as expected. In all the

other cases, there are pairs of high peaks, each followed immediately by a low trough. The

separation between these peaks is (approximately) equal to the magnitude difference between

the actual motion blur and the motion blur used to generate to the rectification mask. None

of these peaks are as high as in the case where the rectification mask matches the true motion

blur.

The results in Table 5.1 suggest that a fast algorithm to estimate and match images where

107

CHAPTER 5. VELOCITY CORRECTED PHASE CORRELATION

Figure 5.8: The effect of applying the wrong rectification mask to a motion blurred image.
Figure: Tom Cox.

Table 5.1: The peak separation distance compared to the difference between the actual motion
blur and the assumed motion blur.

Motion Blur Rectification |M −R| Measured distance
M mask R between peaks S

7 3 4 4
7 7 0 0
7 11 4 4
7 15 8 8
7 19 12 12

one suffers from motion blur may be possible. After one iteration an estimate of one (or two,

if R − S is positive) possible motion blurs is available. This estimate can be used to predict

one or two new motion blur masks, one of which would be expected to give a single peak at

the correct offset.

5.3.4 Sampling Limits

The rectification mask is constructed, either from the blur parameters, or the Fourier transform

of the blur filter, as described in Sections 5.3.2 and 5.3.3. The mask is an array of the same

size as the image it is applied to. Figure 5.5 shows the typical structure of the phase inversion

masks. There is always a double-width band at the centre which corresponds to the central

108

5.3. VELOCITY CORRECTED PHASE CORRELATION (VCPC)

lobe of the Sinc function. Beyond that central band there are a number of bands of equal

width. The number of bands is directly proportional to the blur length, which implies for

longer blurs, there are more bands.

In the continuous case the mask m is found using Equation 5.5. But a real implementa-

tion of this method requires a discrete mask. So the mask must be sampled somehow. The

experiments described here use a sample and hold approach, where the value of the mask at

the centre of the sampling pixel is chosen. This approach introduces some limitations.

Samples which are close to the boundary between bands represent a problem for this

method. The left plot in Figure 5.9 shows the mask for a 16× 16 pixel phase correlation with

a motion speed of 5 pixels. Most of the samples in the mask are fully in either a “1” band or

a “-1” band, but a few are in both. The right plot shows how this problem is compounded for

a motion blur of length 13. Relatively few samples remain which are fully in one band.

It is worth noting that the motion blur filter magnitude in the vicinity of these band

boundaries (which are just the zero-crossings of the sinc function) will be very small, so even

a sample which is mostly in one band will suffer some significant attenuation. For the longer

motion blur in Figure 5.9 many samples include both the edge of a band, and the centre of the

same band.

The noise suppression strategy discussed in Section 5.3.6 will reduce the impact of the

small-signal components to the overall analysis, but it is clear from Figure 5.9 that as the

motion blur length approaches the patch size, very few well-defined mask samples remain.

Because of this, a drop off in performance is expected for motion blur above a particular

length. This limitation was observed near the end of the work, and as such has not been

thoroughly developed. The future work section contains ideas for further development and

improvement of this method.

5.3.5 Squared Cross Power Spectrum Phase Correlation (SCPS)

Ojansivu and Heikkilä described a method for dealing with motion blur in phase correlation

[19]. Their method is to square the cross power spectrum (strictly, raise to any even power,

m), then halve (divide by m) the offset measured by finding the peak of the correlation Sfg.

(5.7) Sfg = F−1

(
mF̄G

|F̄G|

)2

Squaring the cross power spectrum means the phase of each component is doubled. De-

noting the phase of a component each from images f and g as θ and φ, the corresponding

component of the normalised cross power spectrum is φ − θ. Squaring the normalised cross

power spectrum gives phase 2(φ − θ). Now, if either of these components has been phase

109

CHAPTER 5. VELOCITY CORRECTED PHASE CORRELATION

Figure 5.9: The impact of quantisation on masks for different motion blur lengths.

inverted as a result of motion blur, then the normalised cross power spectrum is φ− θ−π, and

squared is 2(φ−θ−π) = 2(φ−θ)−2π. Since a phase angle is functionally identical when 2π is

added or removed, squaring the cross power spectrum normalises the effect of phase inversion.

The multiple of 2 can be dealt with by noting that phase angle varies linearly with image

position for a given frequency. So scaling all phases by n results in the pixel offset also being

scaled by n.

The key drawback of this method, when compared to VCPC, is that the maximum possible

offset which can be found is p/2n, for an image region of size p×p. VCPC is capable of finding

the same range as ordinary phase correlation, up to p/2.

This method has a similar approach to VCPC, but is limited in that it can only determine

the patch offset to within hald the patch size. Results are included below for this method

alongside the proposed velocity correction method, and referred to as SCPS.

5.3.6 Dealing with Noise

Each frequency component will not necessarily contain useful information. The Fourier trans-

form of many natural images is sparsely populated. Often many high frequency components in

an image contain only noise. Usually the main source of noise in digital images is thermal noise

arising directly from the sensor. This noise tends to be full-spectrum. So spectral components

with little or no energy in the image will be dominated by noise. The fewer components which

contain image information, the more the phase correlation result will be corrupted.

110

5.4. TIMING

Random noise in phase will result in a poorer signal to noise ratio in Sfg. The normalisation

step can be modified to suppress data which is likely to be noise.

Equation 5.6 becomes:

(5.8) Sfg = F−1 mF̄G

|F̄G|+ α

where α is some small value. This approach has been used in previous work on phase correlation

within BBC R&D, although may not have been published. BBC Research Technical Report

1990-11 [88] mentions setting small components to zero, although thresholds are not mentioned.

Using Equation 5.8, components of the cross power spectrum whose magnitude is comparable

to α will have half the magnitude before the inverse Fourier transform step. As always when

dealing with noise, there is no distinguishing a small wanted signal from a small noise signal.

The fewer frequency components contain signal at a level much greater than α, the less effective

this method, and the more poorly localized the peak in Sfg. A similar adaption is made for

SCPS.

5.4 Timing

VCPC and SCPS are quite similar from a computational standpoint. The key difference is the

computation of the mask. However, this is not an onerous additional requirement. As will be

shown, it is equivalent to computing an additional feature per frame. If there are many features

in the frame, then computing an additional one is not significant. If there are few features per

frame, then the method is fast enough for this to not impact the real time requirement.

5.4.1 Complexity analysis

Both methods exist within a framework where pairs of features are presented, and the resulting

registration is returned. Therefore this analysis will look only at the operation of VCPC

and SCPS within this framework. Table 5.2 contains an analysis of both algorithms using

“big-O” notation. Here, n is the number of samples in an image patch. Clearly the theoretical

complexity of both algorithms are the same, in this framework.

If the mask is not known, it can be found by doing VCPC on a pair of features and finding

the distance between the two largest peaks, as described in Section 5.3.3. This can be computed

in the same time as VCPC given in the table. (Finding the two highest values in an array

takes the same time as finding the highest value.)

111

CHAPTER 5. VELOCITY CORRECTED PHASE CORRELATION

Table 5.2: Complexity of phase correlation based algorithms

Task VCPC O SCPS O
FFT of patches n log n n log n
multiply spectra n n
multiply by mask n —
square CPS — n
normalise n n
inverse FFT n log n n log n
find peak n n

Total n+ n log n n+ n log n

5.4.2 Suitability for real time use

Time was not available duing the course of this work to implement an optimised real time

version of VCPC or SCPS. However, some simple experiments on an ordinary laptop computer

suggest that an algorithm with complexity O(n + n log n) is suitable for real time feature

matching. The parts which run in O(n log n) are Fast Fourier Transforms. Using the FFTW

library [89] via the Julia programming language, an FFT on a 32× 32 array of 64 bit floating

point numbers is computed in about 16 microseconds on a 2.9GHz laptop running on one core.

The benchmarks published on the FFTW website report 8 microseconds for the same FFT on

an older processor at 3.0GHz. The discrepancy is likely due to the optimised conditions for

the benchmark, and the overhead in the Julia wrapper to allow straightforward calling into

the FFTW library.

Assuming that the O(n log n) parts of the algorithm take about 30 microseconds (for one

FFT and one inverse FFT), and the others take less than that, there is time in a 20 millisecond

frame to compute several hundred VCPC or SCPS matches. In Section 1.1.1 a strategy is

discussed for limiting the number of image features by ensuring no image region is too densly

populatted. If VCPC or SCPS is implemented as part of a system which also limits the number

of features per frame to less than a few hundred, then either method would be suitable for real

time tracking.

The overhead arising from computing the mask is equivalent to computing at most two

additional matches. The number of matches can vary quite significantly in real use, and is

likely to be capped in a system where real time performance is a strict requirement. In all the

systems discussed so far, the cost of computing two matches is at most two percent of the total

run time. Therefore, the overhead will be practically insignificant in all real use cases.

112

5.5. RESULTS AND DISCUSSION

5.5 Results and Discussion

This section presents results for template matching precision, using the experimental framework

described in Chapter 4.

2 4 6 8 10 12 14 16 18 20 22 24

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PC

VCPC
SCPS

Figure 5.10: Mean phase correlation result across all targets

Figure 5.10 shows the mean results of reference tracking features on all sequences. Fig-

ure 5.11 shows the results from two individual targets. In all cases, patches of 32 × 32 pixels

are matched between images. Identical feature locations are used. The figures are the mean

precision for the whole sequence, or sequence indicated.

The precision achieved by VCPC clearly beats SCPS for longer motion blurs in the average

case (Figure 5.10.) Figure 5.11 shows how the improvement over SCPS varies between marginal

and significant, depending on the image content.

Figure 5.10 also shows the drop off in performance resulting from longer motion blurs, and

sampling effects in the masks, as discussed in Section 5.3.4.

113

CHAPTER 5. VELOCITY CORRECTED PHASE CORRELATION

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

PC
VCPC

Squared CPS

5 10 15 20

Figure 5.11: Results for the targets bricks and paris, showing the content-dependence of the
VCPC method.

5.6 Conclusions

The results of these experiments show that, for long motion blurs of up to 18 pixels, VCPC

outperforms SCPS for matching blurred to non-blurred features, and gives equally good per-

formance for shorter blurs. The timing analysis in Section 5.4 shows that the execution time

of the methods is comparable. As a side effect of using this VCPC, the motion blur parame-

ters are available at trivial extra computational cost, which OHPC does not produce. Finally,

VCPC is capable of detecting offsets of up to half a patch width, rather than half the patch

size, which is the limit with SCPS.

114

Chapter 6

Velocity Corrected SIFT

6.1 Introduction

This chapter proposes a number of novel modifications to SIFT feature matching. These are

all based on observations about the impact of motion blur on SIFT features. These approaches

are assessed and compared using the experimental framework described in Chapter 4. One

of the methods, called Speculative vector space flattening, is found to provide a significant

improvement over matching ordinary SIFT features, where one image has motion blur and the

other has not. All methods introduced introduce a small additional computational overhead,

although not enough to render this method unusable in real time.

This chapter is structured as follows; Section 6.2 summarises the operation of SIFT feature

description and matching, and how motion blur affects both. Section 6.3 proposes several

methods to make SIFT matching more tolerant to motion blur, and Section 6.4 explains the

experiments conducted on both simulated and real video sequences, with the results being

presented in Section 6.5. Section 6.6 contains conclusions and some discussion of future work.

6.2 Background

SIFT descriptors were discussed in Section 2.7.1. A SIFT descriptor is a representation of

a region of the image around a feature point. The size of this region is determined by the

characteristic scale determined by the detector. (Or can be fixed by the operator.) The region

is divided into a grid of squares, which can be oriented with a characteristic direction from

the feature detector, or can have fixed orientation with respect to the image (“upright” SIFT

features). Within each square, a weighted histogram of gradient directions is computed. The

weight is a Gaussian with a peak at the feature point and σ of half the size of the region

selected around the feature point.

115

CHAPTER 6. VELOCITY CORRECTED SIFT

The energy from each gradient sample is spread around the histogram slightly, to avoid

abrupt changes in histogram values if the feature point is not localized precisely. Figure 6.1

illustrates the effect. In the left panel, the SIFT descriptor without the energy spreading effect

is shown. The dot and yellow line indicate the location of a gradient sample. The red line is

the quantised distribution of that gradient sample into the nearest bin, at the nearest angle. In

the right panel, the contribution from the same gradient sample is distributed to bins adjacent

in angle, and in both image directions. Each sample from the gradient image is weighted by

1 − R, where R is the distance from the histogram bin centre — be that in angle or (scaled)

pixels.

Figure 6.1: Distribution of gradient energy within a SIFT feature. Figure: Neill Campbell.

The histograms are concatenated together to form the descriptor “vector”. (Whether or

not the SIFT descriptor is a vector with a meaningful vector space is a moot point. Treating

it as such has some benefits, as shall be seen.) The vector is normalised so it has unit length,

then to prevent large values from dominating, any single coefficient which is greater than 0.2

is reduced to 0.2, and the vector is unit-normalised once more.

In [20], Lowe proposes a 4 × 4 grid of squares, and within each an 8-bin histogram. This

gives a 128-coefficient vector of gradient values. These parameters are used here.

In broadcast video and feature films rotation invariance is not important because the camera

generally does not roll. Therefore “upright” SIFT features are used in the methods described

116

6.2. BACKGROUND

below. Indeed, these methods rely upon there being a well-defined range of image directions

for each histogram bin.

6.2.1 SIFT Feature Matching

Conventionally the matching score between two SIFT features d is computed by treating the

feature vectors as describing points in a Euclidean vector space, and finding the distance

between them. This is expressed as the Euclidean norm:

d2 =
127∑
i=0

(Ai −Bi)2

Where A and B are SIFT descriptors, and Ai is the ith coefficient in A.

The impact of motion blur is a disproportionate increase in distance between features A

and B in feature space, as the Euclidean norm emphasises large coefficient differences over

small ones.

SIFT Feature matching is a real time operation, as discussed in the literature review. For

the purposes of comparison, the steps to compute the difference between a normal pair of SIFT

descriptors is given here. This will be revisited for each modification, to see the additional

work required. Table 6.1 shows the steps needed to compute the difference between a pair of

SIFT descriptors. This gives a total of 383 simple operations, readily parallelisable, and one

complex operation.

Table 6.1: Steps to compute a SIFT difference and their timing.

Logical step Work required

Find differences Ai −Bi 128 subtractions
Square each difference 128 multiplications

Sum the squared differences 127 additions
Square root the result 1 square root

6.2.2 Motion Blur and SIFT Descriptors

In Chapter 3 it was shown that a moving edge is strongly affected by motion blur. Recall that

an edge, with constant velocity across an image sensor parallel to the gradient direction, will

be recorded as an intensity ramp with a small constant gradient. The gradient of the edge is a

large value, tightly localized in the image. The gradients of the ramp and the edge will result

in very different contributions to SIFT descriptors. A simple thought experiment will show

that an edge moving perpendicular to the gradient direction is not affected, and its gradient

is consequently unchanged.

117

CHAPTER 6. VELOCITY CORRECTED SIFT

A B A - B

Figure 6.2: Hypothetical impact of horizontal motion blur on a SIFT feature. The black dot
indicates the centre of the histogram.

How should this direction-dependant effect on gradient be interpreted in SIFT descriptors?

Begin by assuming that edge directions perpendicular to to the direction of the motion blur

will be the only ones affected. Figure 6.2 shows a toy version of this idea. A and B are

SIFT responses to a particular image region, where the image for B has been subject to

some horizontal motion blur. The bins of B in the horizontal directions are small because

they represent response to vertical edges, which have been reduced in intensity and dispersed

by the motion blur. In the difference histogram A-B the horizontal bins contribute large

differences, whereas differences elsewhere are small (zero, in the illustration). In this figure,

small histogram coefficients, ie short bars, represent a better match than longer bars. These

large differences cause two features differing only in motion blur to have a large inter-feature

distance.

Note that the bottom-right histogram in Figure 6.2 has no large differences — if there is

no energy in the histogram in that region, it cannot be attenuated, and there will be no (or

little) mis-match.

This model is likely to be too simple. In general, the impact of motion blur is likely to

be strongest for edges perpendicular to the direction of blur, and weakest for edges parallel to

the blur, with the effect varying smoothly for directions in-between. SIFT features accumulate

edge information into histogram bins, so the bins which include the edges perpendicular to the

blur will be most strongly affected, and those bins which include edges parallel to the blur will

be least affected. The methods described in Section 6.3 attempt to deal with this distortion.

6.2.3 RootSIFT

In [90], Arandjelović and Zisserman point out that in texture classification and image catego-

rization, it has been found that the Hellinger measure or χ2 measure provide better results

when comparing histograms than the Euclidean distance. Observing that SIFT descriptors are

histograms, they propose RootSIFT matching: The values in the SIFT descriptor are modified

such that finding the Euclidean distance between two RootSIFT descriptors is equivalent to

118

6.3. PROPOSED METHODS

comparing the original SIFT descriptors using the Hellinger kernel.

RootSIFT features are created from SIFT descriptors by first normalising the coefficients

such that they sum to one, then taking the square root of each coefficient. Once the conversion

is done, RootSIFT features can be used in place of SIFT features throughout the feature

matching pipeline. Arandjelović and Zisserman report a 12% increase in performance for an

object retrieval task. This general-purpose method for improving the performance of SIFT

features will be compared to the methods proposed in this chapter. (They are both relatively

low-overhead, which makes the comparison useful.) Because RootSIFT is a drop-in replacement

for SIFT features, results are also presented for the proposed modifications built on top of

RootSIFT features.

6.3 Proposed methods

Four modifications to SIFT descriptor matching are proposed in this Section. All attempt to

exploit the properties of motion blur and SIFT descriptors, in different ways. The methods

are:

• Directional Weighting.

• Naive Vector Space Flattening

• Directional Vector Space Flattening

• Speculative Vector Space Flattening

The Directional methods require that the motion blur direction is known. Naive and

Speculative Vector Space Flattening do not. In some circumstances an estimate of the motion

blur vector will be available (for example, during the tracking of a pan tilt zoom camera.)

Other times it will not. In those cases, some approach to estimating the blur vector will be

required. The literature contains some possible approaches, including [91, 92, 93, 94, 95, 77].

6.3.1 Directional Weighting

A simple change, given the impact of motion blur described above, is to weight the contributions

of the coefficient differences according to which are most likely to have been affected by a given

direction of blur. Coefficients corresponding to gradient directions perpendicular to the motion

blur direction are downweighted. Weightings are computed using a sinusoid. This was found

to be a good approximation of average amount by which coefficients are altered by motion

119

CHAPTER 6. VELOCITY CORRECTED SIFT

blur. The weights wi are calculated using:

wi = 0.5 + |sin(θi − θb)|

Where θi is the central angle of the ith SIFT histogram bin, and θb is the direction of the

motion blur.

Using this method the matching score d between two SIFT features is

(6.1) d2 =

127∑
i=0

wi(Ai −Bi)2.

Table 6.2: Steps to compute a directionally weighted SIFT difference and their timing.

Logical step Work required

Apply weights 128 multiplications
Find differences Ai −Bi 128 subtractions

Square each difference 128 multiplications
Sum the squared differences 127 additions

Square root the result 1 square root

Table 6.2 gives the steps to compute a directionally weighted SIFT difference. The com-

putation of the weight vector will be an additional overhead. For the appications described in

Sections 1.1.1 and 1.1.2, the same motion blur vector is used everywhere, so this will be a small

overhead compared to matching around one hundred image features. This method represents

an increase of about one-third in computation time over ordinary SIFT.

6.3.2 Naive Vector Space Flattening

In Section 6.2.2 it was postulated that the impact of motion blur on SIFT descriptor matching

was to introduce a small number of much larger coefficient differences. These Vector Space

Flattening methods are different attempts to discard these larger differences, without impacting

the rest of the matching process. The vector space in which inter-feature distances are measured

can be flattened by removing some of the dimensions. A new Euclidean distance between the

descriptors is found in this new vector space. Motion blur direction information is not required

for this method.

Define D to be the vector of coefficient differences:

(6.2) Di = Ai −Bi

Naive Vector Space Flattening finds and then discards the largest n entries in D. The Euclidean

norm of the remaining values in this shortened D̂ is the matching score.

120

6.3. PROPOSED METHODS

Table 6.3: Steps to compute a naive vector space flattening difference and their timing.

Logical step Work required

Find differences Ai −Bi 128 subtractions
Sort differences O(128 log 128)

Square each difference 120 multiplications
Sum the squared differences 119 additions

Square root the result 1 square root

Table 6.3 gives the timing for naive vector space flattening. The main differnce is the

sorting step, which will dominate the run-time. Since log2 128 is 7, the sorting step will take

at least 7 times as long as ordinary SIFT matching. However, since ordinary SIFT features

are computable in thousands per frame, in real time [20], reducing this count by a factor of 7

is likely to still result in real time performance.

6.3.3 Speculative Vector Space Flattening

In a tracking or visual search system, the final part of the SIFT descriptor matching process

is to compare the matching score for a number of features in a small neighbourhood. If the

best match is not less than 0.8 times the second best match, then it is assumed to be a false

match. A possible side effect of Naively flattening the vector space of feature pairs which are

not a match is to reduce the size of the second best match, thereby reducing the number of

true matches. Speculative Vector Space Flattening is introduced to deal with this.

This method speculates that a large improvement in matching score might be gained by

Vector Space Flattening. If the improvement is not sufficiently large, then matching reverts to

ordinary SIFT: Speculative Vector Space Flattening proceeds as follows: The largest n entries

in D are discarded. Now, if the Euclidean norm of D̂ is less than t times the Euclidean norm

of D, then D̂ is the matching score. Otherwise, D is the matching score.

Table 6.4: Steps to compute a speculative vector space flattening difference and their timing.

Logical step Work required

Find differences Ai −Bi 128 subtractions
Sort differences O(128 log 128)

Square each difference 120 multiplications
Sum the squared differences 119 additions

Square root the results 2 square roots
Decide which value to use 1 comparison

Table 6.4 gives the timing for speculative vector space flattening. As with naive vector

space flattening, the main extra work is in the sorting step. As with that method, this is likely

to still be suitable for real time implementation.

121

CHAPTER 6. VELOCITY CORRECTED SIFT

6.3.4 Directional Vector Space Flattening

If the direction of the motion blur is known, then the SIFT coefficients likely to be worst

affected can be determined and removed. This can be thought of as a binary weight. If the

histogram directions are indexed by αi, and the bin containing the blur direction is alphab,

then

wi =

1 if αi 6= αb

0 if αi = αb

The matching score can then be found using Equation 6.1.

Directional Vector Space Flattening also includes the “Speculative” final comparison step

to improve performance when a feature point has multiple similar matches.

Table 6.5: Steps to compute a directionally flattened SIFT difference and their timing.

Logical step Work required

Apply weights 128 multiplications
Find differences Ai −Bi 128 subtractions

Square each difference 128 multiplications
Sum the squared differences 127 additions

Square root the result 1 square root

Table 6.5 gives the timing for directional vector space flattening. Because this can be

computed as a weight vector, the overhead in timing is similar to directional weighting. It is

suitable for real time implementation.

6.3.5 Implementation

The implementation of all of these methods is straightforward. These experiments used the

VLFeat [96] SIFT implementation to compute SIFT descriptors. Directional Weighting adds

additional complexity at O(n), where n is the number of SIFT features per frame, if it can

be assumed that the estimate of the velocity for a particular feature does not change. All

Vector Space Flattening methods add additional complexity at O(m2), where m is the average

number of matches tested. (The length of the sort is always 128 at most, so the sort is always

in constant time. There are m2 feature comparisons per frame.)

The proposed modifications to SIFT matching were implemented as part of a test harness

in the Julia programming language [97].

122

6.4. EXPERIMENTS

6.4 Experiments

An experiment was conducted to determine appropriate parameters for the Speculative and

Naive vector space flattening methods.

6.4.1 Parameter setting

An experiment was carried out to determine a good estimate for n for speculative and Naive

vector space flattening, and t for speculative vector space flattening. Clearly the optimal n and

t will always be image dependent, but this cannot be known a priori, so it must be estimated.

A test data set was created using a set of images with diverse content. Each image had

synthetic motion blur and noise added to create pairs of blurred and non-blurred images.

Harris corners [13] were detected on a 2-times downsampled version of the non-blurred image

in each pair. Upright SIFT descriptors are computed at the feature points in both original

and distorted images. Matching scores are computed between each feature descriptor from an

original image and each feature descriptor within 50 pixels of that feature in the blurred image,

using Speculative Vector Space Flattening.

If the best matching score is less than 0.8 times the second best, then the feature point

is assumed to have been correctly matched. (The 0.8 factor was originally proposed by Lowe

[20].) Otherwise the point is assumed to be a false match.

The 23 images from the Kodak Sampler Photo CD 1 are high quality images with diverse

content. They were chosen as the basis for a set of image pairs. Figure 6.3 shows the results

of the experiment to vary n, aggregated over all image pairs. If cSIFT is the number of

features correctly matched with SIFT, and cN is the number correctly matched with some n,

the improvement metric is (cN − cSIFT)/cSIFT . From the Figure, n = 8 gives the greatest

improvement.

Figure 6.4 shows the result of the experiment to vary t. From the figure, t = 0.8 gives the

greatest improvement. These values for n and t will be used in the experiments in this chapter.

1Retreived from http://www.math.purdue.edu/~lucier/PHOTO_CD/

123

http://www.math.purdue.edu/~lucier/PHOTO_CD/

CHAPTER 6. VELOCITY CORRECTED SIFT

3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Motion Blur length

Im
p

ro
ve

m
en

t
ov

er
p

la
in

S
IF

T

Varying numbers of discarded bins

2
4
6
8
10

Figure 6.3: Proportional improvement for varying n bins discarded. Line colour indicates n.

124

6.4. EXPERIMENTS

3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Motion Blur length

Im
p

ro
ve

m
en

t
ov

er
p

la
in

S
IF

T

Varying numbers of discarded bins

0.7
0.75
0.8
0.85
0.9

Figure 6.4: Proportional improvement for varying the improvement threshold t. Line colour
indicates threshold.

125

CHAPTER 6. VELOCITY CORRECTED SIFT

6.5 Results

Results are given here showing precision for each of the methods and for each of the tracking

targets used, following the procedure described in Chapter 4. The aggregate precision is also

shown, as well as some results using RootSIFT features.

Results for Reference tracking are shown first. Figures 6.5 and 6.6 show the precision of

matching for all methods, plus ordinary SIFT, for each of the tracking targets individually. (In

the legends, Vector Space Flattening is abbreviated VSF.) The left plot in Figure 6.7 shows

the aggregate precision when the data from all tracking targets are combined. The right plot

in Figure 6.7 compares ordinary SIFT and Speculative Vector Space Flattening computed on

normal SIFT and RootSIFT features.

5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Motion Blur length (pixels)

P
re

ci
si

on

Ordinary SIFT
Naive VSF

Speculative VSF
Directional Weighting

Directional VSF

5 10 15 20

Motion Blur length (pixels)

Figure 6.5: Feature matching precision. Results for the mission target is on the left, and paris
on the right.

Directional weighting improves slightly over SIFT in each of the different target images,

but is usually outperformed by the other methods.

In general, Directional Vector Space Flattening improves performance compared to SIFT

for short motion blurs, but then does not do as well for longer motion blurs. The performance

126

6.5. RESULTS

5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Motion Blur length (pixels)

P
re

ci
si

o
n

5 10 15 20

Motion Blur length (pixels)

Figure 6.6: Feature matching precision. Results for the bricks target is on the left, and building
on the right. Legend as in Figure 6.5

improvements for motion blurs of less than ten pixels are significant, particularly on the building

image. Naive Vector Space Flattening usually provides a small improvement over SIFT.

Speculative Vector Space Flattening performs best overall. It has the best performance for

mission and bricks, and is best for long motion blurs on building. On paris, there is a small

performance regression for short blurs. This is not very important, as there will generally be

more features available for shorter motion blurs. On the aggregate result plot in Figure 6.7,

there is an improvement of about 10% in precision for longer motion blurs.

In Figure 6.7 RootSIFT shows a small improvement in matching for some blur lengths, but

the overall impact is small compared with the improvement from Speculative Vector Space

Flattening, particularly for longer motion blur.

Figure 6.8 shows the results for Inter-frame tracking. Clearly, plain SIFT works well in this

case, and the improvements are small. Directional Weighting shows poorer performance than

SIFT here because the method assumes that there is some difference in motion blur between

the the features. This is the same result found by Gauglitz et al.

127

CHAPTER 6. VELOCITY CORRECTED SIFT

5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Motion Blur length (pixels)

P
re

ci
si

o
n

5 10 15 20

Motion Blur length (pixels)

SIFT
SIFT, SVSF
RootSIFT

RootSIFT, SVSF

Figure 6.7: (left) Feature matching precision aggregate scores for all targets, (right) comparison
of SIFT features and RootSIFT features.

6.6 Discussion

Of all the methods tested, Speculative Vector Space Flattening provides the most significant

improvement over plain SIFT when matching unblurred features to those corrupted by motion

blur. In an experiment matching an unblurred image with one containing 20 pixel long motion

blur, on the bricks sequence, SVSF was able to correctly match 60% more SIFT features than

ordinary SIFT matching. In the left panel of Figure 6.7 the average results across all textures

show that for long motion blurs, SVSF is able to increase the number of correctly matched

features by 30%.

SVSF has the useful feature that it is not required to know any of the characteristics of

the motion blur, which can be difficult and time consuming to estimate blindly. It is worth

examining why removing the n largest coefficient differences was more effective than removing

those coefficient differences indicated by the simple model (In Section 6.2.2). Two factors taken

together produce a plausible explanation:

One: The model suggests that only edges near-perpendicular to the motion blur direction

128

6.6. DISCUSSION

5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Motion Blur length (pixels)

P
re

ci
si

o
n

Ordinary SIFT
Naive VSF

Speculative VSF
Directional Weighting

Directional VSF

5 10 15 20

Motion Blur length (pixels)

Figure 6.8: Inter-frame tracking. Left shows the results for bricks, and right is the aggregate.

will have their SIFT response altered. As noted earlier this is probably an over-simplification.

It is likely that the image gradient in other directions will be affected as well.

Two: Stronger edge responses have a disproportionately larger effect when they disagree

between two features than when they agree: Consider two edge responses. One is large, the

other is small. Assuming they are not affected by any distortions, the difference between the

small edge response in image 1 and the same small edge response in image 2 will be zero. The

same is true of the two large responses. If some distortion causes these edge responses to be

reduced in intensity by half in image 2, then the difference signal will now be in proportion

with the size of the responses. (This is possibly related to the observations about Euclidean

distance being poorly suited to comparing histograms, as noted in the motivation for Root

SIFT. See Section 6.2.3 and [90].)

The intersection of these two effects will be a content-dependant effect: When the largest

edge response differences are in the bins eliminated by Directional VSF, then it will be effective.

If the largest edge response differences end up in other bins, then Speculative VSF will be more

effective, and Directional VSF will have less effect, in proportion to the coefficient differences

129

CHAPTER 6. VELOCITY CORRECTED SIFT

removed.

Getting a low matching distance between the two correct descriptors is one result of this

effect. A corresponding result will determine to what extent the other descriptors in the search

area are likely to receive an even lower matching score.

Figures 6.5 and 6.6 bear this out. The difference in Precision score between Ordinary SIFT

and Directional VSF shows more variance than the difference in Precision between Ordinary

SIFT and Speculative VSF.

The implementation is very simple, and incurs a very small overhead beyond matching

SIFT features conventionally. Although, if an application involves a very large number of

features then the overhead will become large. Still, the increase in computational load is likely

to be far smaller than any comparable methods such as [43, 44, 54, 98, 76, 2].

6.6.1 Future Work

These experiments report results on Harris features, which are found only on one scale of

image. The detector which is described along with SIFT in [20], or some of the other described

in Chapter 2 can detect characteristic scale. If both feature scale and motion blur length were

known, then this could be taken into account when deciding whether to apply these methods

or not.

The principle behind Speculative Vector Space Flattening might be applicable to other

feature matching methods. Testing the principle with SURF features [30], Dual-Tree Complex

Wavelet Transform-based features [99, 2] and others might yield useful results. It would also

be worth testing in the presence of other image distortions, or a combination thereof.

This work has only investigated the impact on upright SIFT features. For applications

where image rotation is a consideration, Speculative Vector Space Flattening may be worth

investigating, with the caveat that orientation assignment is likely to suffer significantly in

the presence of motion blur. Still, the results in this context would almost certainly provide

further insight.

Speculative Vector Space Flattening relies upon high quality feature detection in the pres-

ence of motion blur. Figure 10 in [1] shows that most feature detectors do not reliably detect

the same features, particularly when compared to a non-blurred reference frame. The better

feature detectors get, the more the improvements will be gained from Speculative Vector Space

Flattening.

130

Chapter 7

Conclusion

This Thesis posed two questions:

• Can the models describing motion blur be verified by experiment?

• Can the effect of motion blur be predicted and corrected for in the image feature matching

process?

In particular, improvements were sought to match image regions containing motion blur

with those which contain no blur in real time. The literature shows that matching image fea-

tures containing similar motion blur already works well. The literature also contains examples

[44, 45] of methods which perform well at matching blurred features to non-blurred features

offline. The experiments described in this Thesis were concerned with real time performance.

The measurements in Chapter 3 showed that motion blur behaves in accordance with the

models. By measuring the length of motion blur, it was possible to extract an estimate of

exposure time which agreed with the camera settings up to one standard deviation with all

but one of the cameras under test. These experiments also highlighted that motion blur is

coupled with the effects of the optical parts of the camera. For high-precision image analysis,

this coupling cannot be ignored.

Image noise was a source of bias on the estimated measurements of exposure duration.

For some cameras this was not a significant problem, but the pictures from the For.A camera

were sufficiently noisy to cause large over-estimates of the exposure duration. The effect of

the point-spread function of the optical parts of the cameras resulted in lower precision results

than would have been ideal. Because the point spread function was not characterized, the

exact extent of its influence was not determined.

When considering the position of the motion blur measurements in the wider research

context, they appear to be a unique resource. The confirmation of the behaviour of motion blur

131

CHAPTER 7. CONCLUSION

is not surprising — other methods relying on the rectangular filter model and the integrating

camera (eg [42]) provide implicit verification. However, no other work has been found in

the research explicitly recording the relative importance of accounting for different effects

which influence image formation. This kind of information is usually considered “common

knowledge.” The results in Chapter 3 provide evidence of the relative importance of motion

blur, lens distortion, noise, and anonymous in-camera processing for a selection of cameras.

Also, the sensitivity to noise and spectral occupancy noted in these experiments means this

experimental design can be used as a measure of the noise and sharpness performance of a

camera. Determining these properties otherwise requires specialised equipment, whereas the

experimental design proposed uses only everyday equipment.

Having gathered evidence for the formation of motion blur, the Thesis then considered

whether knowledge of the behaviour of motion blur could be used to improve matching re-

sults. In Chapters 5 and 6 results were presented which tested the principle that determining

the effect of motion blur on a matching process and correcting for it could yield significant

improvements in performance. Velocity corrected phase correlation (VCPC) has been shown

to improve template-matching precision compared to ordinary phase correlation. Speculative

vector-space flattening (SVSF) has been shown to improve descriptor-matching precision com-

pared to ordinary SIFT. The largest improvement (60%) due to SVSF has been shown to be

provided in the critical cases where ordinary SIFT produced the fewest matches.

The work described in Chapter 5 provides experimental validation of the method due to

Ojansivu and Heikkilä [19] on the only known test material for examining visual tracking

performance in the presence of motion blur. Both VCPC and Ojansivu and Heikkilä’s method

are thereby put into the current context of visual tracking research.

The experiments on SVSF and other modification to SIFT yield significant improvements

in the matching of image regions containing motion blur with those which contain no blur,

using SIFT features. Gauglitz et al [1] showed that SIFT was amongst the best at this task

in their comparison of commonly used image feature descriptors, and the results on their data

presented here show a significant improvement.

7.1 Future Work

The general principle of determining the impact of motion blur on some matching process

and mitigating it has been shown to be effective on two different methods for image region

matching. There is further work to be done in the application of this principle to other con-

texts. The literature review identified the descriptor in [50], based on the Dual-Tree Complex

Wavelet transform as one possible candidate. Gauglitz et al’s review [1] found that SURF

132

7.1. FUTURE WORK

descriptors performed best overall when matching a unblurred image features with features

containing motion blur. SURF was not investigated as part of this work because the simpler

approaches enabled by the structure of Phase Correlation and SIFT meant for more straight-

forward analysis. Now the principle has been shown to work in two cases, attempting to find

an application to SURF [30] descriptors and Phase based local features [52] should follow.

An improved data set containing differences in motion blur could be produced. This may

improve the precision available from the experimets described in Chapters 5 and 6. The

Sintel open source animated movie [100] could be used to produce frames with realistic motion

blur, with free control over the camera parameters leading to blur. The frames would show

animation, rather than real scenes, but the differences in image quality due to noise, spatial

occupancy, and so on could be analysed and described. Such differences would likely be

worthwhile, compared to the control available from the virtual camera.

Gauglitz et al [1] found that image feature detectors are not very reliable under changes in

motion blur. It may be possible to apply the principle to the design of some detectors, too.

VCPC might be extendable to a method to estimate the motion blur orientation, which is

not recoverable from [19]. In addition, the effect of anti-aliasing, or other more sophisticated

methods of generating the mask for VCPC would be interesting, and likely to improve results

even further.

The experiments in Chapter 6 showed significant gains in precision. But the perfect detector

model is quite unrealistic. Based on these results it is not possible to say that SVSF SIFT

matching would provide any significant benefit to a broadcast or feature film virtual graphics

system. More work is needed, using a real feature detector, to say with any certainty.

133

Bibliography

[1] S. Gauglitz, T. Höllerer, and M. Turk, “Evaluation of interest point detectors and feature

descriptors for visual tracking,” International Journal of Computer Vision, vol. 94,

no. 3, pp. 335–360, Mar. 2011.

[2] N. Anantrasirichai, J. Burn, and D. R. Bull, “Robust texture features for blurred images

using Undecimated Dual-Tree Complex Wavelets,” in IEEE International Conference

on Image Processing, 2014, pp. 5696–5700.

[3] S. Su, M. Delbracio, J. Wang, G. Sapiro, W. Heidrich, and O. Wang, “Deep video de-

blurring for hand-held cameras,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2017, pp. 1279–1288.

[4] K. Mikolajczyk and C. Schmid, “A performance evaluation of local descriptors,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 10, pp. 1615–

1630, Oct. 2005.

[5] T. Tuytelaars and K. Mikolajczyk, “Local invariant feature detectors: A survey,” Foun-

dations and Trends in Computer Graphics and Vision, vol. 3, no. 3, pp. 177–280,

2007.

[6] K. Mikolajczyk and C. Schmid, “Scale & affine invariant interest point detectors,” In-

ternational Journal of Computer Vision, vol. 60, no. 1, pp. 63–86, 2004.

[7] A. Barber, D. Cosker, O. James, T. Waine, and R. Patel, “Camera tracking in visual

effects: an industry perspective of structure from motion,” in Proceedings of the

Symposium on Digital Production. New York, New York, USA: ACM Press, 2016,

pp. 45–54.

[8] http://www.redbeemedia.com/piero.

[9] B. D. Lucas and T. Kanade, “An iterative image registration technique with an appli-

cation to stereo vision,” in International Joint Conference on Artificial Intelligence,

1981, pp. 674–679.

135

http://www.redbeemedia.com/piero

BIBLIOGRAPHY

[10] J. Shi and C. Tomasi, “Good features to track,” in IEEE Computer Society Conference

on Computer Vision and Pattern Recognition. IEEE Comput. Soc. Press, 1994, pp.

593–600.

[11] G. A. Thomas, “Real-time camera tracking from patches of rich texture,” BBC R&D,

Tech. Rep. 3379, Dec. 2011.

[12] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography,” Communi-

cations of the ACM, vol. 24, no. 6, pp. 381–395, Jun. 1981.

[13] C. Harris and M. Stephens, “A combined corner and edge detector,” in Alvey Vision

Conference, vol. 15, 1988, p. 50.

[14] R. Dawes, J. Chandaria, and G. Thomas, “Image-based camera tracking for athletics,”

in Broadband Multimedia Systems and Broadcasting. IEEE International Symposium

on, 2009, pp. 1–6.

[15] http://www.fascinate-project.eu.

[16] O. Schreer, I. Feldmann, C. Weissig, A. Finn, J. Steurer, G. Thomas, A. Gibb, J. Spille,

A. Kochale, H. Kropp, M. Borsum, J. Ruiz-Hidalgo, R. Oldfield, B. Shirley, J.-F.

Macq, N. Verzijp, M. Prins, S. Matthew, O. Niamut, G. Kienast, R. Kaiser, W. Weiss,

and W. Bailer, “Report on final demonstration. fascinate deliverable d6.3.1,” 2013.

[17] O. Schreer, P. Kauff, J.-F. Macq, P. Rondão Alface, J. Spille, R. Oldfield, and G. Thomas,

“Final specification of generaic data representation and coding scheme,” 2013, avail-

able from http://www.fascinate-project.eu.

[18] W. Bailer, M. Thaler, F. Lee, R. Oldfield, G. Thomas, and H. Fraser, “Automated

metadata extraction tools,” 2013, availability restricted.

[19] V. Ojansivu and J. Heikkilä, “Blur insensitive texture classification using local phase

quantization,” in International conference on image and signal processing. Springer,

2008, pp. 236–243.

[20] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International

Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[21] H. Moravec, “Obstacle avoidance and navigation in the real world by a seeing robot

rover,” in tech. report CMU-RI-TR-80-03, Robotics Institute, Carnegie Mellon Uni-

versity & doctoral dissertation, Stanford University, September 1980, no. CMU-RI-

TR-80-03.

136

http://www.fascinate-project.eu
http://www.fascinate-project.eu

BIBLIOGRAPHY

[22] Z. Chen and S.-K. Sun, “A Zernike moment phase-based descriptor for local image rep-

resentation and matching,” IEEE Transactions on Image Processing, vol. 19, no. 1,

pp. 205–219, 2010.

[23] N. Kingsbury, “Rotation-invariant local feature matching with complex wavelets,” in

European Conference on Signal Processing, 2006, pp. 901–904.

[24] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle adjustment

- A modern synthesis,” vol. 1883, no. Chapter 21, pp. 298–372, Apr. 2002.

[25] T. Lindeberg, “Scale-space theory: A basic tool for analyzing structures at different

scales,” Journal of applied statistics, vol. 21, no. 1-2, pp. 225–270, 1994.

[26] Y. Dufournaud, C. Schmid, and R. Horaud, “Matching images with different resolutions,”

in IEEE Conference on Computer Vision and Pattern Recognition, 2000, pp. 612–618.

[27] F. Schaffalitzky, T. Kadir, K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,

J. Matas, and L. Van Gool, “A comparison of affine region detectors,” International

Journal of Computer Vision, vol. 65, no. 1-2, pp. 43–72, Oct. 2005.

[28] K. Mikolajczyk and C. Schmid, “An affine invariant interest point detector,” in European

Conference on Computer Vision, May 2002, pp. 128–142.

[29] D. G. Lowe, “Object recognition from local scale-invariant features,” in IEEE Interna-

tional Conference on Computer Vision. IEEE, 1999, pp. 1150–1157.

[30] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),”

Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346–359, 2008.

[31] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-baseline stereo from max-

imally stable extremal regions,” Image and Vision Computing, vol. 22, no. 10, pp.

761–767, 2004.

[32] T. Tuytelaars and L. Van Gool, “Matching widely separated views based on affine in-

variant regions,” International Journal of Computer Vision, vol. 59, no. 1, pp. 61–85,

Apr. 2004.

[33] ——, “Content-based image retrieval based on local affinely invariant regions,” in Visual

Information and Information Systems, 1999, pp. 493–500.

[34] T. Kadir and M. Brady, “Scale saliency: A novel approach to salient feature and scale

selection,” in IET International Conference on Visual Information Engineering, 2003,

pp. 25–28.

137

BIBLIOGRAPHY

[35] C. D. Kuglin and D. C. Hines, “The phase correlation image alignment method,” in

Proceeding of IEEE International Conference on Cybernetics and Society, 1975, pp.

163–165.

[36] V. Ojansivu and J. Heikkilä, “Image registration using blur-invariant phase correlation,”

Signal Processing Letters, IEEE, vol. 14, no. 7, pp. 449–452, 2007.

[37] C. Tomasi and T. Kanade, “Detection and tracking of point features,” Pittsburgh, 1991.

[38] S. Baker and I. Matthews, “Lucas-Kanade 20 years on: A unifying framework,” Inter-

national Journal of Computer Vision, vol. 56, no. 3, pp. 221–255, 2004.

[39] http://www.bbc.co.uk/rd/projects/piero.

[40] S. Benhimane and E. Malis, “Real-time image-based tracking of planes using efficient

second-order minimization,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2004, pp. 943–948.

[41] T. Drummond and R. Cipolla, “Visual tracking and control using Lie algebras,” in IEEE

Computer Society Conference on Computer Vision and Pattern Recognition. IEEE,

1999, pp. 652–657.

[42] Y. Park, V. Lepetit, and W. Woo, “ESM-Blur: Handling & rendering blur in 3D tracking

and augmentation,” in IEEE International Symposium on Mixed and Augmented

Reality. IEEE Computer Society, 2009, pp. 163–166.

[43] ——, “Handling motion-blur in 3D tracking and rendering for augmented reality,” IEEE

Transactions on Visualization and Computer Graphics, vol. 18, no. 9, pp. 1449–1459,

2012.

[44] H. Jin, P. Favaro, and R. Cipolla, “Visual tracking in the presence of motion blur,” in

IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

2005, pp. 18–25.

[45] C. Mei and I. Reid, “Modeling and generating complex motion blur for real-time track-

ing,” in IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Jun.

2008, pp. 1–8.

[46] S. Dai, M. Yang, Y. Wu, and A. K. Katsaggelos, “Tracking motion-blurred targets in

video,” in IEEE International Conference on Image Processing, 2006, pp. 2389–2392.

[47] Y. Ke and R. Sukthankar, “PCA-SIFT: A more distinctive representation for local image

descriptors,” in IEEE Computer Society Conference on Computer Vision and Pattern

Recognition. IEEE, 2004, pp. 506–513.

138

http://www.bbc.co.uk/rd/projects/piero

BIBLIOGRAPHY

[48] P. Mainali, G. Lafruit, Q. Yang, B. Geelen, R. Lauwereins, and L. Van Gool, “SIFER:

Scale-invariant feature detector with error resilience,” International Journal of Com-

puter Vision, vol. 104, no. 2, pp. 172–197, Apr. 2013.

[49] Y. Yu, K. Huang, W. Chen, and T. Tan, “A novel algorithm for view and illumination

invariant image matching,” IEEE Transactions on Image Processing, vol. 21, no. 1,

pp. 229–240, 2012.

[50] P. Bendale, B. Triggs, and N. Kingsbury, “Multiscale keypoint analysis based on complex

wavelets,” in British Machine Vision Conference. British Machine Vision Associa-

tion, 2010, pp. 49.1–49.10.

[51] N. Kingsbury, “Complex wavelets for shift invariant analysis and filtering of signals,”

Applied and Computational Harmonic Analysis, vol. 10, no. 3, pp. 234–253, 2001.

[52] G. Carneiro and A. D. Jepson, “Phase-based local features,” in European Conference on

Computer Vision. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 282–291.

[53] E. Rahtu, J. Heikkilä, V. Ojansivu, and T. Ahonen, “Local phase quantization for blur-

insensitive image analysis,” Image and Vision Computing, vol. 30, no. 8, Aug. 2012.

[54] A. Pretto, E. Menegatti, M. Bennewitz, W. Burgard, and E. Pagello, “A visual odometry

framework robust to motion blur,” in IEEE International Conference on Robotics and

Automation. IEEE, Mar. 2009, pp. 2250–2257.

[55] W. H. Richardson, “Bayesian-based iterative method of image restoration,” Journal of

the Optical Society of America, vol. 62, no. 1, pp. 55–59, 1972.

[56] L. B. Lucy, “An iterative technique for the rectification of observed distributions,” The

astronomical journal, vol. 79, p. 745, 1974.

[57] Y. Zhang and K. Hirakawa, “Blind deblurring and denoising of images corrupted by

unidirectional object motion blur and sensor noise,” IEEE transactions on image

processing, vol. 25, no. 9, pp. 4129–4144, 2016.

[58] D. Zoran and Y. Weiss, “From learning models of natural image patches to whole image

restoration,” in IEEE international conference on computer vision. IEEE, 2011, pp.

479–486.

[59] M. J. Shah and U. D. Dalal, “Blind estimation of motion blur kernel parameters using

Cepstral domain and Hough transform,” in Advances in Computing, Communications

and Informatics (ICACCI, 2014 International Conference on, 2014, pp. 992–997.

139

BIBLIOGRAPHY

[60] D. A. Fish, A. M. Brinicombe, and E. R. Pike, “Blind deconvolution by means of the

Richardson-Lucy algorithm,” Journal of the Optical Society of America, vol. 12, no. 1,

pp. 58–65, 1995.

[61] D. Perrone and P. Favaro, “A clearer picture of total variation blind deconvolution,”

IEEE transactions on pattern analysis and machine intelligence, vol. 38, no. 6, pp.

1041–1055, 2016.

[62] T. F. Chan and C.-K. Wong, “Total variation blind deconvolution,” IEEE transactions

on Image Processing, vol. 7, no. 3, pp. 370–375, 1998.

[63] H. Takeda and P. Milanfar, “Removing motion blur with space–time processing,” IEEE

transactions on image processing, vol. 20, no. 10, pp. 2990–3000, 2011.

[64] M. Delbracio and G. Sapiro, “Burst deblurring: Removing camera shake through Fourier

burst accumulation,” in IEEE Conference on computer vision and pattern recognition.

IEEE, 2015, pp. 2385–2393.

[65] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using convolutional

neural networks,” in Computer Vision and Pattern Recognition (CVPR), 2016 IEEE

Conference on. IEEE, 2016, pp. 2414–2423.

[66] A. Dosovitskiy, J. T. Springenberg, and T. Brox, “Learning to generate chairs with con-

volutional neural networks,” in Computer Vision and Pattern Recognition (CVPR),

2015 IEEE Conference on. IEEE, 2015, pp. 1538–1546.

[67] Inceptionism: Going Deeper into Neural Networks. [Online]. Available: https:

//research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

[68] M. Noroozi, P. Chandramouli, and P. Favaro, “Motion deblurring in the wild,” in German

Conference on Pattern Recognition. Springer, 2017, pp. 65–77.

[69] A. Chakrabarti, “A neural approach to blind motion deblurring,” in European conference

on computer vision. Springer, 2016, pp. 221–235.

[70] T. Portz, L. Zhang, and H. Jiang, “Optical flow in the presence of spatially-varying

motion blur,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE

Conference on. IEEE, 2012, pp. 1752–1759.

[71] T. H. Kim, S. Nah, and K. M. Lee, “Dynamic scene deblurring using a locally adaptive

linear blur model,” arXiv preprint arXiv:1603.04265, 2016.

[72] M. H. Daraei, “Optical flow computation in the presence of spatially-varying motion

blur,” in International Symposium on Visual Computing. Springer, 2014, pp. 140–

150.

140

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

BIBLIOGRAPHY

[73] Y. Schoueri, M. Scaccia, and I. Rekleitis, “Optical flow from motion blurred color

images,” in Computer and Robot Vision, 2009. CRV’09. Canadian Conference on.

IEEE, 2009, pp. 1–7.

[74] Z. Tu, R. Poppe, and R. Veltkamp, “Estimating accurate optical flow in the presence of

motion blur,” Journal of Electronic Imaging, vol. 24, no. 5, p. 053018, 2015.

[75] W. Li, Y. Chen, J. Lee, G. Ren, and D. Cosker, “Robust optical flow estimation for

continuous blurred scenes using rgb-motion imaging and directional filtering,” in

Applications of Computer Vision (WACV), 2014 IEEE Winter Conference on. IEEE,

2014, pp. 792–799.

[76] M. Okade and P. K. Biswas, “Improving video stabilization in the presence of motion

blur,” in Third National Conference on Computer Vision, Pattern Recognition, Image

Processing and Graphics. IEEE, 2011, pp. 78–81.

[77] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing

camera shake from a single photograph,” ACM Transactions on Graphics, vol. 25,

no. 3, pp. 787–794, 2006.

[78] Y. Wu, H. Ling, J. Yu, F. Li, X. Mei, and E. Cheng, “Blurred target tracking by Blur-

driven Tracker,” in Computer Vision (ICCV), 2011 IEEE International Conference

on, 2011, pp. 1100–1107.

[79] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed.

Cambridge University Press, ISBN: 0521540518, 2004.

[80] T. Kadir, A. Zisserman, and M. Brady, “An affine invariant salient region detector,” in

European Conference on Computer Vision. Springer, 2004, pp. 228–241.

[81] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up robust features,” in Euro-

pean Conference on Computer Vision. Springer, 2006, pp. 404–417.

[82] “ITU-R BT.709: Parameter values for the HDTV standards for production and interna-

tional programme exchange,” Jul. 2009.

[83] A. Roberts, Circles of Confusion, 1st ed. European Broadcasting Union, Aug. 2009.

[84] J. J. Koenderink and A. J. Van Doorn, “Affine structure from motion,” Journal of the

Optical Society of America, vol. 8, no. 2, pp. 377–385, 1991.

[85] K. Schelten and S. Roth, “Localized image blur removal through non-parametric kernel

estimation,” in 2014 22nd International Conference on Pattern Recognition (ICPR).

IEEE, pp. 702–707.

[86] G. Bradski, “The opencv software library,” Dr. Dobb’s Journal of Software Tools, 2000.

141

BIBLIOGRAPHY

[87] G. A. Thomas, “Motion estimation and its applications in broadcast television,” Ph.D.

dissertation, University of Essex, 2 1990.

[88] S. C. Dabner, “Real-time motion measurement hardware: Phase correlation unit,” BBC

Research Department, Tech. Rep. 1990/11.

[89] “The fastest fourier transform in the west,” http://fftw.org.

[90] R. Arandjelović and A. Zisserman, “Three things everyone should know to improve object

retrieval,” in IEEE Computer Society Conference on Computer Vision and Pattern

Recognition. IEEE, 2012, pp. 2911–2918.

[91] G. S. Klein and T. Drummond, “A Single-frame visual gyroscope,” in British Machine

Vision Conference. British Machine Vision Association, 2005.

[92] M. Ben-Ezra and S. K. Nayar, “Motion-based motion deblurring,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 26, no. 6, Jun. 2004.

[93] D. L. Donoho and M. E. Raimondo, “A fast wavelet algorithm for image deblurring,”

ANZIAM Journal, vol. 46, no. 0, pp. 29–46, Mar. 2005.

[94] A. Levin, “Blind motion deblurring using image statistics,” in Advances in Neural In-

formation Processing Systems 19:Proceedings of the 2006 Conference, pp. 841–848.

[95] Y.-W. Tai, P. Tan, and M. S. Brown, “Richardson-Lucy deblurring for scenes under

a projective motion path,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 33, no. 8, pp. 1603–1618, 2011.

[96] A. Vedaldi and B. Fulkerson, “VLfeat: an open and portable library of computer vision

algorithms,” in MM ’10: Proceedings of the international conference on Multimedia.

ACM Request Permissions, Oct. 2010.

[97] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach

to numerical computing,” CoRR, vol. abs/1411.1607, 2014. [Online]. Available:

http://arxiv.org/abs/1411.1607

[98] S. Dai and Y. Wu, “Motion from blur,” in IEEE Conference on Computer Vision and

Pattern Recognition. IEEE, 2008, pp. 1–8.

[99] J. Fauqueur, N. Kingsbury, and R. Anderson, “Multiscale keypoint detection using the

dual-tree complex wavelet transform,” in Image Processing, IEEE International Con-

ference on, 2006, pp. 1625–1628.

[100] “Sintel, the durian open movie project,” https://durian.blender.org.

142

http://fftw.org
http://arxiv.org/abs/1411.1607
https://durian.blender.org

	List of Tables
	List of Figures
	Introduction
	Motivation
	The Piero sports graphics system
	The Fascinate Project

	Contributions
	Outline of Thesis

	Literature Review
	Introduction
	Timing analysis

	Camera Tracking
	Preliminaries
	Scale Space
	Random Sample Consensus (RANSAC)
	Camera Models

	Performance comparisons
	Image Feature Detectors
	Harris, Harris-Affine and Hessian-Affine
	Difference of Gaussians
	Fast Hessian
	Maximally Stable Extremal Regions (MSER)
	Edge-based regions
	Intensity-based regions
	Salient regions

	Template-based matching
	Phase Correlation
	The ``KLT'' Method
	Efficient Second-Order Minimisation (ESM)
	Simultaneous Minimisation of Motion Blur and Affine Parameters
	Direction Detection and Exhaustive Search Blur Synthesis

	Descriptor-based matching
	Scale-Invariant Feature Transform (SIFT) and Related Methods
	Speeded-up Robust Features (SURF)
	Dual Tree Complex Wavelet Transform (DT-CWT) Multiscale Keypoints
	Phase-based Local Features
	Phase Quantization

	Scale-Space Approximation
	Motion Blur Removal
	Deconvolution
	Multi-image
	Data-driven
	Conclusion

	Optical Flow from Motion Blur
	Feature Matching incorporating de-blurring
	Summary

	Experimental Validation of Motion Blur Model
	Introduction
	Camera Models
	Instantaneous Camera
	Instantaneous Camera: Modelled Distortions
	Integrating Camera
	Integrating Camera: Modelled Distortions

	A model of motion blur
	The pinhole camera
	Integration and sampling
	A moving edge
	Motion blur as filtering

	Method
	Requirements
	Physical configuration
	Subject
	Post-processing and data conditioning

	Results
	Analysis
	Error bias with exposure duration
	For.A FT-ONE Results

	Conclusion
	A note on rolling shutters

	Assessing Feature Matching — Experimental Method
	Introduction
	Data Set
	Procedure
	Evaluation
	Conclusion

	Velocity Corrected Phase Correlation
	Introduction
	Background
	Phase in Images
	Sub-pixel location refinement

	Velocity Corrected Phase Correlation (VCPC)
	The effect of motion blur on Fourier Phase.
	Correcting for Motion Blur
	Estimating the Rectification Mask
	Sampling Limits
	Squared Cross Power Spectrum Phase Correlation (SCPS)
	Dealing with Noise

	Timing
	Complexity analysis
	Suitability for real time use

	Results and Discussion
	Conclusions

	Velocity Corrected SIFT
	Introduction
	Background
	SIFT Feature Matching
	Motion Blur and SIFT Descriptors
	RootSIFT

	Proposed methods
	Directional Weighting
	Naive Vector Space Flattening
	Speculative Vector Space Flattening
	Directional Vector Space Flattening
	Implementation

	Experiments
	Parameter setting

	Results
	Discussion
	Future Work

	Conclusion
	Future Work

	Bibliography

