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Abstract

This thesis addresses three important problems within computer vision: image segmentation,

texture flow estimation, and image/video deblurring. While these three topics differ signifi-

cantly in the underlying parametric models used to formulate the problems, the uniting theme

throughout this thesis is the use of a Bayesian optimization framework to solve each specific

problem. In particular, we show how each of these problems can be formulated into one of

a maximum a posterior (MAP) estimation, where the likelihood and prior probabilities are

uniquely defined for each problem. To solve these non-convex optimizations, an alternating

optimization algorithm that iteratively solves for model parameters is used. Our experimental

results show that this Bayesian approach provides excellent performance that is either on par

or superior to the current state-of-the-art for each topics’ respective area.

This thesis is organized to begin with an overview on Bayesian formulation of parameter es-

timation, followed by self-contained chapters for the problems of image segmentation, texture

flow estimation, and image/video deblurring. A summary chapter is included to categorically

summarize our contributions and discuss future work.
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Chapter 1

Introduction

1.1 Overview

Soft Color Segmentation Texture Flow Estimation Image Deblurring

Figure 1.1: Examples of the three problems we are going to present in this thesis. The first row
shows our inputs and the second row shows our outputs.

This thesis is organized as three self-contained chapters addressing three distinct problems

of soft color image segmentation (chapter 2), texture flow estimation (chapter 3), and image

and video deblurring (chapter 4). Figure 1.1 shows examples of the input and output of each
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of these problems. The central theme uniting these three problems is of the use of a Bayesian

optimization framework to formulate a solution. In this introduction, a review of the Bayesian

method is provided in section 1.2, along with a rationale for its use in computer vision prob-

lems. Common techniques including linear regression, alternating optimization (expectation

maximization) and belief propagation for solving such optimization problems are presented in

section 1.3. This chapter also gives an introduction to the three problems addressed in this

thesis in section 1.4 and the overall structure of this thesis in 1.5. Chapter 5 concludes this

thesis with an discussion on the work presented and a summary of contributions.

1.2 Bayesian Method

The Bayesian method has been widely used by various research disciplines and is not limited

to computer vision and image processing problems. In this section, we give an overview of

how the Bayesian approach can be used to estimate model parameters. This is followed by a

discussion on why it is often a popular choice for addressing computer vision problems.

1.2.1 Bayes Rule and the Bayesian Model

Bayes rule was developed by the Reverend Thomas Bayes in 18th century and is stated as

follows:

P (A|B) =
P (B|A)P (A)

P (B)
(Eq. 1.1)

where P (A) and P (B) are the prior probability of A and B respectively, P (A|B) and P (B|A)

are the conditional probability of A given B and probability of B given A respectively. In

Bayes’ theorem, P (A|B) is called the posterior probability, P (B|A) is called the likelihood

probability, P (A) is called the prior probability and P (B) is known as the normalization
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constant. Typically, A is denoted as the Hypothesis Model, and B is denoted as the Ob-

servation. For general cases that have multiple variables, such that A = {A1, . . . , An} and

B = {B1, . . . , Bm}, equation (Eq. 1.1) can be generalized as follows:

P (A1, . . . , An|B1, . . . , Bm) =
P (B1, . . . , Bm|A1, . . . , An)P (A1, . . . , An)

P (B1, . . . , Bm)
(Eq. 1.2)

To provide a better understanding on how the probabilities are defined, consider the follow-

ing typical example given in [79]:

Suppose there is a test for cancer. Let A be the event that the person tested has cancer

and let B be the event that the test result is positive, i.e. the test says the person has cancer.

We are interested in knowing whether the person has cancer or not given the positive testing

results. That is we want to find the posterior probability, P (A =has cancer|B =positive).

For simplicity of representation, let us denote A = has cancer, Ā = does not have cancer;

B =positive, B̄ = negative. Suppose the test is 95% accurate, i.e. if the person has cancer,

the probability that the test will give a positive result is P (B|A) = 0.95. Similar definition is

given to P (B̄|Ā) = 0.95. If we further know that the probability of a person having cancer is

P (A) = 0.005. Then, according to Bayes rule:

P (A|B) =
P (B|A)P (A)

P (B)
=

P (B|A)P (A)

P (B|A)P (A) + P (B|Ā)P (Ā)
= 0.087

This means given a positive test result, there is only an 0.087 probability the person has cancer.

In this example, we can see how the Hypothesis Model A, Observation B and the prob-

abilities are defined. In many real world situations, P (A|B) is difficult to define or cannot

be defined directly, while P (B|A) and P (A) are easier to define. In these situations, Bayes

rule can be used to define the probability model of P (A|B). These kind of models are called

Bayesian models. In later sections, we will discuss how the likelihood probability P (B|A) and

the prior probability P (A) are defined in typical computer vision problems. First, we describe

some important properties of the Bayesian model.
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There are several advantages of using the Bayesian model [50]. First, the Bayesian model

allows us to learn and/or model causal relationships between hypothesis model parameters and

observations. This is useful when we are trying to gain understanding about a problem domain.

In addition, the Bayesian model encodes the strength of causal relationships with probabilities.

To better understand the causal relationship in Bayesian model, let us consider the previous

example. If we want to find the probability that a person having cancer would have a positive

test results, i.e. P (A,B) = P (B|A)P (A). This causal relationship can be expressed by the

following figure:

Figure 1.2: Bayesian network of causal relationship is a directed acyclic graph encoding con-
ditional dependencies among variable.

The causal relationship derived directly from Bayes rule is called a Bayesian network

which describes conditional dependence among variables. In most situations, prior probability

variables are defined before likelihood probability variables unless the variables are indepen-

dent/conditionally independent. By exploiting the causal relationships among variables, we

can simplify the representation of probability. For example, if the hypothesis model variables

A = {A1, . . . , An} are all independent and the observation variables B = {B1, . . . , Bm} are

all conditionally independent. We can simplify equation (Eq. 1.3) into:

P (B1, . . . , Bm|A1, . . . , An)P (A1, . . . , An)

P (B1, . . . , Bm)
=

∏m
i=1 P (Bi|A1, . . . , An)

∏n
j=1 P (Aj)

P (B1, . . . , Bm)

(Eq. 1.3)

Second, the Bayesian model is easy and flexible in combining any prior knowledge about

the problem domain and data into the prior probability P (A). Let us again using the pre-
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vious example. Assume now that we know that the person smokes and this habit would in-

crease probability of having cancer. Let A2 be the prior knowledge that the person smokes,

the probability that the person has cancer with positive testing result would be P (A,A2|B) =

P (B|A,A2)P (A|A2)P (A2)
P (B)

= P (B|A)P (A|A2)
P (B)

which asserts that A2 is conditionally independent of B

and P (A2) = 1 by exploring causal relationship between parameters. Notice that the definition

of likelihood P (B|A) in this example is still the same. Given the current Bayesian model,

if we have new priors or new observations about the problem, we can incorporate these new

priors and new observations into the current Bayesian model. This allows minimum changes

of probability defined in current model.

Third, the Bayesian model can handle incomplete data observations or noisy data observa-

tions through incorporating proper priors into the model. For example, consider a classification

or regression problem where two of the input variables are strongly anti-correlated. This cor-

relation is not a problem for standard supervised learning techniques, provided all inputs are

measured in every case. When one of the inputs is not observed, however, most models will

produce an inaccurate prediction, because they do not encode the correlation between the input

variables. The Bayesian model offers a natural way to encode such dependencies into the prior

probabilities P (A). In later section, we will see how priors are effective in dealing with noisy

observations especially in image domains where priors can be modeled as a pairwise energy

term in a Markov network.

Fourth, the Bayesian model offers an efficient and principled approach for avoiding the

over-fitting of data. From a statistical point of view, the Bayesian method is a probabilistic

method that find the most likely decision boundaries or model parameters. It has been shown

that the solution from the Bayesian method is a global optimal if the Bayesian probabilistic

model is a convex function. For more details on the optimality of Bayesian method, see [50].

In many situations, we are not interested in calculating the posterior or joint probability of

probabilistic model. Instead, we are interested in finding a hypothesis model (or hypothesis
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model parameters) that can maximize the posterior or joint probability given the current ob-

servations. The problem of finding a hypothesis model that maximizes posterior probability is

called the Maximum A Posteriori (MAP) problem:

arg max
A

P (A|B) = arg max
A

P (B|A)P (A)

P (B)

= arg max
A

P (B|A)P (A) (Eq. 1.4)

Note that the P (B) is omitted since it has no effect on the estimation of A. It is also easy to

see that maximizing posterior probability is equal to maximizing joint probability. In situations

where we do not have any prior knowledge, i.e. P (A) is uniformly distributed over the whole

observation domain, the solution of MAP problem is equal to the solution of the Maximum

Likelihood (ML) problem since P (A) is also omitted.

1.2.2 Likelihood Probability

In this section, we describe a common method to define likelihood probability. The likelihood

probability defines how the observations are generated from the hypothesis model. Typically,

we assume the process of generating observations from the hypothesis model are identical and

independent which means that the generation of Bi does not depend on the result of any of

other Bj . In order words, given multiple observations, B = {B1, . . . , Bm}, we assume the

observations are all conditionally independent. This assumption is valid in many real world

situation.

For a better understand on how likelihood probability is defined, we use image denoising

as an example. Suppose we have a noisy image, IN , and we want to estimate a clear image

I assuming that each pixel is potentially corrupted by noise that is identical and independent.

We first need to choose a distribution to model how noise is generated. A common approach is

to use Gaussian distribution with mean µ and standard derivation, σ. Now, we can define the

likelihood probability of the image denoising problem as:
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P (IN |I, µ, σ) =
∏

(x,y)

P (IN(x, y)|I(x, y), µ, σ)

=
∏

(x,y)

1

σ
√

2π
exp(−||(IN(x, y)− I(x, y))− µ||2

σ2
) (Eq. 1.5)

where (x, y) denotes image coordinate and IN(x, y) − I(x, y) denotes the noise magnitude at

an (x, y) position. Typically, µ is chosen to be zero mean and it is omitted in many technical

papers.

In some problems, the Gaussian distribution is not the best probabilistic model. Other

common distribution used in computer vision included Laplacian distribution, Poisson distri-

bution, Chi-square distribution, and so on. To make the definition more general, mixture of

distributions can also be used. The model can be represented in either parametric form or

non-parametric form. Though the models are often complicated, the definition of likelihood

probability which measures the distance between observations to the selected model is some-

what similar. The drawback of using a complicated model is that it would make the solution

space significantly more complicated and the estimation results are more likely to result in a

local maxima/minima or to be over-fitted. While using a simple model is computationally effi-

cient and can achieve a global maxima/minima, a simple model may not be the best fit to the

observation distribution. This is a tradeoff between using complicated models versus simple

models. Choosing the appropriate model for a problem is the responsibility of the algorithm

designer.

1.2.3 Prior Probability

In the previous section, we described how the likelihood probability is defined. Now, let us

look at the image denoising example again and discuss why we need the prior probability. In

the image denoising problem, our goal is to obtain a clear image I , and not the calculation
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(a) (b) (c) (d) (e) (f)

Figure 1.3: Image denoising example from [38]. (a) Input noisy image. Denoised image using
(b) 5× 5 Gaussian filter, (c) 5× 5 median filter, (d) MRF with neighborhood smoothness prior,
and (e) MRF with neighborhood smoothness prior and discontinuity prior. (f) Ground truth
image.

the posterior probability. As we have discussed in the section 1.2, this problem is a MAP

problem. Without prior probability, the MAP problem is equal to ML problem and a trivial

solution to the image denoising problem is I = IN . However, this is not the solution we want

to obtain. A common prior for image denoising problem is the neighborhood smoothness prior

which says that for a pixel at certain point (x, y) of image, its value I(x, y) should not be

very different from pixel values I(x′, y′) within a local neighbor region, (x′, y′) ∈ N (x, y). A

simple definition of neighbor region is to use first order neighborhood, i.e. the 4 or 8 adjacent

pixels. Now, we can derived the prior probability of the image denoising problem:

P (I) =
∏

(x,y)

∏

(x′,y′)∈N (x,y)

PS(I(x, y), I(x′, y′))

=
∏

(x,y)

∏

(x′,y′)∈N (x,y)

1

σ′
√

2π
exp(−||(I(x, y)− I(x′, y′))− µ′||2

σ′2
) (Eq. 1.6)

where µ′ and σ′ are mean and standard derviation of Gaussian distribution. In this example,

we use the Gaussian distribution again to model prior probability distribution. Similar to the

definition of likelihood probability, we can use any other probability distribution to model prior

probability distribution. Notice that although the definition of likelihood probability and prior
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probability in this example are very similar (they both use Gaussian distribution), their physical

meaning and effects are not the same. A simple way to distinguish likelihood probability and

prior probability in an energy function is to identify whether or not the energy term has an

observation measurement included. If there is no observation measurement in an energy term,

this energy term is prior probability, otherwise, it is likelihood probability.

With the definition of prior probability in the image denoising problem, I = IN is no longer

the optimal solution. The likelihood probability and prior probability defined above formed

a Markov network in which the likelihood probability corresponds to the data term and the

prior probability corresponds to the pairwise energy term of a Markov network. Since image

intensity is discrete, the problem of image denoising can then be transformed into a discrete

labeling problem of a Markov Random Field (MRF) for which a local optimal solution can be

achieved by using techniques such as graph-cut [58] or belief propagation [106].

The neighborhood smoothness prior used in the image denoising example produce results

that are over smoothed which some edge features of an image are also smoothed out. This is

shown in figure 1.3(d). To preserve sharp edge features, we can include another prior, edge

preserving discontinuity prior, which says that the smoothness prior should not be applied

across edges:

PD(I(x, y), I(x′, y′)) =

{
1 , |I(x, y)− I(x′, y′)| > t
0 , |I(x, y)− I(x′, y′)| ≤ t

(Eq. 1.7)

where t is a threshold to define discontinuities. Figure 1.3(e) shows the results of adding in this

discontinuity prior. Although a more complicated model can be used for this edge preserving

discontinuity prior, we choose the simplest model for better illustration. The edge preserving

discontinuity prior defined here is independent of the likelihood probability and the neighbor-

hood smoothness prior defined above given the values of I . To combine PD(I(x, y), I(x′, y′))

into the current Bayesian model, we can simply multiply it to the current model. This example
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demonstrates the flexibility of the Bayesian model to include new prior into current model. The

neighborhood smoothness prior and the edge preserving discontinuity prior are also commonly

used in other computer vision problems such as the stereo matching problem and optical flow

estimation.

Having examined how the prior probabilities are defined for image denoising, one may no-

tice that the prior probabilities are problem specific. Indeed, the performance of the Bayesian

model strongly depends on how the prior probabilities are defined. The prior probabilities en-

code our prior knowledge or our desirable behaviors of the estimated solution. In classification

problems, we may want the decision boundary to be smoothed to avoid over fitting of the data,

this desired behavior can be encoded in prior probability as a regularization term during the

training process. In image segmentation problems, we may want regions of the same segment

to exhibit some global similarity which can also be encoded in prior probability.

1.3 Common techniques for solving Bayesian model

To solve the parameters in a Bayesian model, there are several standard techniques. For ex-

ample, linear regression is often used when model parameters can be written in a linear form.

Alternating optimization (AO) 1 is used when the model parameters are interdependent. Graph-

cut or belief propagation can be used when the Bayesian model can be transformed into a dis-

crete labeling problem of Markov Random Field. Some other common techniques included

Markov Chain Monte Carlo (MCMC), Expectation Propagation, Kernel methods, and so on.

In this section, we describe three techniques that are most commonly used in computer vision

area: the Linear Regression, the Alternating Optimization (Expectation Maximization Algo-

rithm), and the Belief Propagation.

1Expectation Maximization is a special case of AO which convergence of EM has been proved while AO does
not guarantee to converge.
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1.3.1 Linear Regression

Linear regression is often used when the model parameters that we want to estimate can be

written in a linear equation which is a straight line in high dimensional feature space. The

results of data fitting are subjected to statistical analysis. Suppose that there is a set of observa-

tions B = {B1, . . . , Bm} which each observation has N features denoted as Bi(j), 1 ≤ i ≤ m

is observations index, 1 ≤ j ≤ N is feature index. We assume these observation are generated

by a linear model with N + 1 parameters:

A0 + A1B(1) + . . . + ANB(N) = 0 (Eq. 1.8)

we further assume the observations follow the identical and independent distribution (iid) and

the estimation errors following Gaussian distribution with zero mean and standard derivation

σ. Also, we assume that the model parameters A = {A0, . . . , AN} are all independent. Then,

we can define our Bayesian-MAP objective function as follow:

arg max
A

P (A|B) = arg max
A

P (B|A)P (A)

= arg max
A

m∏
i=0

P (Bi|A)

= arg min
A
− log(

m∏
i=0

P (Bi|A))

= arg min
A
−

m∑
i=0

log(P (Bi|A))

= arg min
A
−

m∑
i=0

log(
1

σ
√

2π
exp(−||A0 + A1Bi(1) + . . . + ANBi(N)||2

2σ2
))

= arg min
A

m∑
i=0

||A0 + A1Bi(1) + . . . + ANBi(N)||2 (Eq. 1.9)

In this example, we make no assumptions on P (A) and therefore it is removed and the MAP

problem is reduced to a ML problem. We have also removed the normalization constant
log(σ

√
2π)

2σ2 since it is independent of the model parameters A or observations B2. A mono-

2If each observation Bi has its own σi,
log(σi

√
2π)

2σ2
i

would become the weight of observations and it cannot be
omitted.
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tonic function log(·) is used to convert multiplications into summations to increase numerical

stability and a negative sign is added to convert the arg max problem into an arg min prob-

lem. After these mathematical manipulations, our objective function becomes a standard linear

least-squares regression problem. Re-writing equation (Eq. 1.9) into matrix form, we get:

arg min
A

[
A0 · · · AN

]



1 · · · B1(N)
...

. . .
...

1 · · · Bm(N)




T 


1 · · · B1(N)
...

. . .
...

1 · · · Bm(N)







A0
...

AN




= arg min
A
ATBTBA (Eq. 1.10)

which is a global optimal solution of A corresponding to the minimum eigenvector of BTB.

This can be reliably solved by using standard numerical routines such as LU decomposition or

singular value decomposition (SVD). The solution found by linear regression is guaranteed to

be a global maximum/minimum since the linear equation is a convex function. In practise, we

can normalize the values of observation Bi(j) between 0 and 1 to further increase numerical

stability.

Linear regression is a very reliable approach but it can fail to produce a good result for

several reasons:

• The underlying model is not a linear model which means that our basic assumptions

about the problem is incorrect and we need to re-formulate the problem.

• The estimation errors do not follow Gaussian distribution. For example, if there are

outliers presented in the observations, the estimated model parameters will be biased by

these outliers. One simple way to alleviate this problem is to assign different weight to

the observations and then performed weighted least-square fitting. Another method is to

perform outlier removal before linear regression.

• The Euclidean distance in input space is not the best distance measurements for the

observations. One method to solve this problem is to transform the input space into some
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(a) (b) (c) (d) (e) (f)

Figure 1.4: Effect of parameters in MRF. In this example, we analysis the effect of σ in equation
(Eq. 1.5). Denoised image with (a) small σ, (c) large σ and (e) optimal σ. (b)(d) and (f) shows
the respective likelihood distribution of different σ. With small σ, the likelihood distribution is
concentrated on the original noisy value, therefore its denoised result I is closer to IN . On the
other hand, a large σ allows larger difference between I and IN ; However, the denoised result
is over smoothed. In this example, there exists an optimal σ for which the energy function is
minimum. The optimal σ can be found by using alternating optimization.

other high dimensional space such that the parameters become linear in the transformed

space. This method is especially useful for classification problems using the support

vector machine (SVM).

1.3.2 Alternating Optimization (Expectation Maximization Algorithm)

Alternating Optimization is often used when model parameters are interdependent. It is typi-

cally used in many computer vision applications (e.g. [23, 18, 27, 39, 108, 120, 134]). Unlike

linear regression, Alternating Optimization or Expectation Maximization only guaranteed to

converge to local minima/maxima, while solutions found by linear regression are always global

minima/maxima.

In alternating optimization, the model parameters will be divided into disjoint subsets of

parameters, in which each subset of parameters represents different physical meaning about

the model. Take the image denoising problem as an example. The effect of the parameter σ in

this problem is demonstrated in figure 1.4. As we can see, different values of σ can produce

different results and there exists an optimal σ that allows us to produce the best result. In this

situation, we can consider {µ, σ} of the Gaussian distribution used to model noise distribution
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of an image to be the parameters we want to estimate. Now, the total number of parameters

we want to estimate are {I, µ, σ}. We can divide the parameters {I, µ, σ} into two disjoint

subset: {I} and {µ, σ}, where each subset represents a different physical meaning about the

image denoising problem and they are interdependent. Alternating Optimization is an iterative

gradient descent optimization process3. For each subset of parameters, the parameters inside

the subset would have its own iterative update rules with the parameters in the other subset

fixed during the processing of one update rule. The update rules will be operated alternatively

and iteratively, thus, the name of alternating optimization. In the image denoising example,

using the same objective function defined in (Eq. 1.5),(Eq. 1.6) and (Eq. 1.7), the update rule

for I is given by solving the MRF equation defined above with fixed {µ, σ} and the update rule

for {µ, σ} is defined by the likelihood terms with fixed I:

µ =
1

M

∑

(x,y)

(I(x, y)− IN(x, y))

σ =

√
1

M

∑

(x,y)

||(I(x, y)− IN(x, y))− µ||2 (Eq. 1.11)

where M is total number of pixels in image. We ignore the prior terms here, since they has

no influence on the estimation of {µ, σ}. An example of using alternating optimization for

finding the model parameters in a MRF stereo problem is presented in [134, 135]. Alternat-

ing Optimization is guaranteed to converge if each of the update rule is monotonic decreas-

ing/increasing about the global objective function. For more details about the convergence of

alternating optimization, see [11].

One well-known example of Alternating Optimization is the Expectation-Maximization

(EM) algorithm. The EM algorithm is a maximum-likelihood parameter estimation algorithm

which is useful in handling incomplete data or data that has missing values. Unlike alternating

optimization, the convergence of the EM algorithm to a local maxima/minima is guaranteed.
3Note that for AO their can be more than two disjoint subsets. In chapter 2, we will formulate our problem

with three subsets of parameters.
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Let us assume that the data X is observed and is generated by an unknown distribution. We call

X the incomplete data observations. We assume that a complete data set exists Z = (X ,Y), a

complete-data likelihood probability is defined as:

P (Z|Θ) = P (X ,Y|Θ) = P (Y|X , Θ)p(X|Θ) =
N∏

i=1

P (yi|xi, Θ)P (xi|Θ) (Eq. 1.12)

where Θ is the set of model parameters, N is total number of observed data. The likelihood

p(X|Θ) is referred to as the incomplete-data likelihood function. The parameters we want

to estimate are {P (Y|X , Θ), Θ}, where we can think of P (Y|X , Θ) as a probability density

function with X and Θ are constants and Y is a random variable. Again, the parameters can

be divided into two disjoint subsets {P (Y|X , Θ)} and {Θ}. Hence, the EM algorithm is a two

step alternating optimization algorithm. The two steps in the EM algorithm are usually referred

as the Expectation step (E-step) and the Maximization step (M-step).

In the E-step, the EM algorithm finds the expected value of the complete-data log-likelihood

log P (X ,Y|Θ) with respect to the unknown data Y given the observed data X and the current

parameter estimated Θt−1:

Q(Θ, Θt−1) = E[log P (X ,Y|Θ)|X , Θt−1] =

∫

y

P (y|X , Θt−1) log P (X , y|Θ)dy (Eq. 1.13)

where Θ is the new set of parameters that we optimize to increase Q, P (y|X , Θt−1) is the

marginal distribution of the unobserved data and is dependent on both the observed data X and

the current parameters Θt−1. One important thing to notice is that X and Θt−1 are constants.

Using Bayes rule, we get:

P (y|x, Θt−1) =
P (y, x|Θt−1)

P (x|Θt−1)
=

P (x|y, Θt−1)P (y|Θt−1)∫
x
P (x|y, Θt−1)P (y|Θt−1)dx

(Eq. 1.14)

In the M-step, the EM algorithm finds the parameters Θ that maximize the expectation we

computed in the first step. That is, we find:

Θt = arg max
Θ

Q(Θ, Θt−1) (Eq. 1.15)
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The E-step and the M-step are iterated alternatively. Each iteration is guaranteed to increase

the log likelihood and hence the algorithm is guaranteed to converge to a local maximum of

the likelihood function.

To let us gain a better understanding of the EM algorithm, we use the Gaussian mixture

model (GMM) parameter estimation problem as an example. We assume the data xi are gen-

erated from one of the Gaussian distributions in the GMM. The incomplete-data likelihood for

xi is then defined as follow:

P (xi|Θ) =
M∑

j=1

αjP (xi|µj, Σj) =
M∑

j=0

αj

(2π)d/2|Σj|1/2
exp(−1

2
(xi − µj)

T Σ−1
j (xi − µj))

(Eq. 1.16)

where M is number of Gaussian distribution in the mixture, αj are mixing weight of Gaussian

such that
∑M

j=1 αj = 1, {µj, Σj} are the mean and covariance matrix of the j-th Gaussian in

the GMM and d is observed data dimension.

In this example, we consider Y = {yi = j, 1 ≤ i ≤ N, 1 ≤ j ≤ M}, which is

a random variable indicating which Gaussian distribution “generated” the observed data xi.

Given {µj, Σj}, we can compute P (xi|yi = j, µj, Σj) for each i and j. In addition, the mix-

ing weight, αj can be considered as prior probabilities of each mixture component, that is

P (yi = j|µj, Σj) = αj . According to the definition in equation (Eq. 1.14), the E-step update

rule is:

P (yi = j|xi, µj , Σj) =
αjP (xi|yi = j, µj , Σj)∑M
k=1 P (xi|yi = k, µk, Σk)

=

αj

(2π)d/2|Σj |1/2 exp(−1
2(xi − µj)T Σ−1

j (xi − µj))
∑M

k=1
αk

(2π)d/2|Σk|1/2 exp(−1
2(xi − µk)T Σ−1

k (xi − µk))
(Eq. 1.17)

To compute the update rule used in the M-step, we can perform partial derivatives on the

objective function Q with respect to αj, µj and Σj and then set the partial derivative to zero.
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After some mathematical arrangements, we get the following update rules:

αt
j =

1

N

N∑
i=1

P (yi = j|xi, µ
t−1
j , Σt−1

j )

µt
j =

∑N
i=1 xiP (yi = j|xi, µ

t−1
j , Σt−1

j )
∑N

i=1 P (yi = j|xi, µ
t−1
j , Σt−1

j )

Σt
j =

∑N
i=1 P (yi = j|xi, µ

t−1
j , Σt−1

j )(xi − µt
j)(xi − µt

j)
T

∑N
i=1 P (yi = j|xi, µ

t−1
j , Σt−1

j )
(Eq. 1.18)

The mathematic details about the EM algorithm and the GMM parameters estimation example

can be found in [15].

1.3.3 Belief Propagation

Belief Propagation (BP) is used for the discrete labeling problem in pairwise Markov Random

Fields (MRF). Since image intensity is discrete, BP is commonly used in image denoising. BP

is also commonly used in the stereo problem, where the depth is quantized into discrete labels;

and in segmentation problem, where each segment corresponds to one and only one discrete

label. Another common technique for solving discrete labeling problem in pairwise MRF is

the Graph cut algorithm [58]. A comparative study between belief propagation and graph cut

is presented in [112] which concludes that their results are comparable.

Denote by X the observations, we assume there are hidden variables Y which encode the

relationships between observations. These hidden relationships between observations allow us

to form a pairwise Markov network. Our goal is then to find a configuration of Y such that it

maximizes the following joint probability energy function:

arg max
Y

P (X ,Y) = arg max
Y

P (X|Y)P (Y)

= arg max
Y

∏
i

P (xi|yi)
∏

i

∏

yj∈N(yi)

P (yi, yj)

= arg min
Y

∑
i

L(xi|yi) +
∑

i

∑

yj∈N(yi)

L(yi, yj) (Eq. 1.19)
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(a) (b)

Figure 1.5: (a) The Pairwise Markov Network, it is an undirected graph encoding the pairwise
relationships between hidden variables. (b) Local message passing in a Markov Network.
Images for this figure are from [106].

where L(·) = −log(P (·)), N(y) is the first order neighborhood of y. An illustration of the

energy function defined in equation (Eq. 1.19) is shown in figure 1.5(a). The energy func-

tion forms a pairwise Markov network. In a Bayesian formulation, P (X|Y) is the likelihood

probability, and P(Y) is the prior probability.

Belief propagation (BP) is an iterative inference algorithm that propagates messages in

the network. There are two different algorithms for implementing belief propagation: the

sum-product algorithm and the max-product algorithm. The sum-product algorithm computes

the marginal distributions of each node, while the max-product algorithm computes the MAP

estimate of the whole MRF. In this thesis, we discuss the max-product algorithm.

Let m(yj, yi) be the message that hidden node yj sends to yi, m(xi, yi) be the message

that observed node xi sends to hidden node yj , and b(yi) be the belief at node yi. Note that

the message sent from yj is different from the message sent from xi. The message sent from

xi is defined by the likelihood probability, and the message sent from yi is defined by the

prior probability. The belief b(yi) is a vector encodes the current states of yi with different

confidence. The standard max-product algorithm is given below:
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(i) Initialize all messages m(yj, yi) as uniform distributions and messages m(xi, yi) =

P (xi|yi).

(ii) Update messages m(yj, yi) iteratively for i = 1 : T :

m(yj, yi)
t+1 = κ max

yj

P (yj, yi)m(xi, yi)
∏

yk∈N(yj)\yi

m(yk, yj)
t

(iii) Compute beliefs

b(yi) = κm(xi, yi)
∏

yj ∈ N(yi)m(yj, yi)

b(yi)
MAP = arg max

yk

b(yk)

where κ is a normalization constant. Figure 1.5(b) illustrates the message passing procedure in

belief propagation. The computational complexity of a standard max-product belief propaga-

tion algorithm is O(TNL2), where N is the number of nodes in the Markov network, T is the

number of iterations and L is number of discrete labels. An example of using belief propaga-

tion for the stereo problem is given in [106] and an example for photometric stereo is given in

[125]. More information on the belief propagation algorithms can be found in [128, 129].

1.4 Using Bayesian Optimization: Our Contribution

This section gives a brief introduction to the problems we have studied: image segmentation,

texture flow estimation and image/video deblurring. Following the definitions of the Bayesian

model, we formulate the three problems into Bayesian ML/MAP optimization problems. The

central idea is on how to identify useful information available in each problem and define the

likelihood probability and the prior probability properly.

[Soft Color Segmentation] In image segmentation, we present an algorithm to perform

soft color segmentation given a color image. Unlike traditional image segmentation approaches,

our segmentation approach is designed to address a large class of image-based problems which
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require soft segments with an appropriate amount of overlap and transparency. We formulated

this problem in a Bayesian optimization framework. Our global objective function consists of

both global and local parameters. The global parameters define similarity of same segmented

regions, and dissimilarity across different segmented regions. We argue that a Gaussian Mix-

ture Model (GMM) is sufficient to represent the global color statistics of an image and each

segment corresponds to a Gaussian distribution of GMM. To handle spatial and color coherence

among soft segments while preserving discontinuities, we introduce a set of local parameters,

and we assign to each pixel a set of soft labels corresponding to their respective color distribu-

tions. The global and local parameters are interdependent. Our Bayesian optimization frame-

work simultaneously exploits the reliability given by global color statistics and flexibility of lo-

cal image compositing. We use Alternating optimization to solve our problem in which global

and local parameters are refined iteratively and alternatively. We performed extensive experi-

ments to compare our segmentation result to many current image segmentation algorithms that

included k-means clustering [32], Mean Shift [26], Expectation-Maximization (EM) [28, 6],

Watershed [116], Jseg [29], DDMCMC [114], Information-Bottleneck [44], Multiscale graph-

based techniques [101, 42], the statistical region merging [80], and user-assisted image mat-

ting [10, 98, 21]. This work has been published in CVPR’05 [110] and PAMI’07 [108].

[Texture Flow] For texture flow estimation, we propose a novel texture feature representa-

tion that is suitable for estimating the orientation and scale of texture pixels, while making no

assumptions about the underlying texture properties. Our texture flow estimation begins with a

small example patch of the texture that is specified by the user. From this example patch, a set

of principal features are extracted that are used to compute the likelihood probability about the

orientation and scale of each pixel lying in a distorted texture region. Combined with neigh-

borhood smoothness and discontinuity priors, we formulate the final texture flow estimation

problem using the Bayesian method as a discrete labeling problem of a Markov Random Field

(MRF) and solve it using a variant of belief propagation. We demonstrate the effectiveness of
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this approach on a variety of inputs, including natural and synthesized images and show the

usefulness of this extracted flow field for texture remapping. This work has been published in

CVPR’07 [107].

[Image Deblurring] In image deblurring problem, we propose a novel approach which

is based on the hybrid camera framework proposed by Ben-Ezra and Nayar [7, 8] to reduce

spatially varying motion blur. The work in [7, 8] focused on correcting motion blur due to ego

motion in a still-camera, and therefore was limited to addressing global translational motion.

Their method also processed only a single still image. In this work, we addresses the broader

problem of deblurring with spatially varying motion blur, and we target the problem of correct-

ing a temporal sequence (i.e. video footage). The central idea in our Bayesian formulation is

to combine the benefits of both deconvolution and super-resolution. Deconvolution of motion

blurred, high-resolution images yields high frequency details, but with ringing artifacts due

to lack of low-frequency components. In contrast, super-resolution-based reconstruction from

low-resolution images recovers artifact-free low-frequency results that lack high-frequency de-

tail. We show that the deblurring information from deconvolution and super-resolution are

complementary to each other, and can be used together to elevate deblurring performance.

We demonstrate that this approach produces excellent results in deblurring spatially varying

motion blur compared to state-of-the-art techniques. In addition, the availability of the low-

resolution imagery, and subsequently derived motion vectors, further allows us to perform

super-resolution in the temporal domain. This work has been published in CVPR’08 [109] and

is currently in its second revision for PAMI.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 disucsses soft color segmen-

tation; Chapter 3 present the work on texture flow estimation; Chapter 4 details our work

on image and video deblurring; and Chapter 5 presents a summary. Chapters 2, 3 and 4
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are self-contained. Each chapter describes the problem definition, related work, the Bayesian

formulation of the problem and associated optimization procedure used. Each chapter also

includes the results, discussion, and summary pertaining to its associated problem. Chapter

5 concludes this thesis with summary of each problem, a discussion on how to forumalate

problems using a Bayesian framework as well as some future research directions.
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Chapter 2

Soft Color Segmentation and its
applications

2.1 Overview

This describes an automatic approach to soft color segmentation, which produces soft color

segments with appropriate amount of overlapping and transparency essential to synthesizing

natural images for a wide range of image-based applications. While many state-of-the-art and

complex techniques are excellent at partitioning an input image to facilitate deriving a semantic

description of the scene; to achieve seamless image synthesis, we advocate a segmentation ap-

proach designed to maintain spatial and color coherence among soft segments while preserving

discontinuities, by assigning to each pixel a set of soft labels corresponding to their respective

color distributions. We formulated this problem into a Bayesian optimization framework. Our

global objective function consists of both global and local parameters. We optimize the global

objective function which simultaneously exploits the reliability given by global color statistics

and the flexibility of local image compositing, leading to an image model where the global

color statistics of an image is represented by a Gaussian Mixture Model (GMM): while the

color of a pixel is explained by a local color mixture model where the weights are defined by

the soft labels to the elements of the converged GMM. Transparency is naturally introduced in

our probabilistic framework which infers an optimal mixture of colors at an image pixel.
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To adequately consider global and local information in the same framework, an alternating

optimization scheme is proposed to iteratively solve for the global and local model parameters.

Our method is fully automatic, and is shown to converge to a local optimal solution. We

perform extensive evaluation and comparison, and demonstrate that our method achieves good

image synthesis results for image-based applications: such as image matting, color transfer,

image deblurring, and image colorization.

2.2 Background and motivation

Given a color image, our algorithm performs soft color segmentation, producing overlapping

and transparent segments suitable for a wide range of important image-based applications:

such as image matting [10, 98, 21] (figure 2.20–2.21), color transfer between images [95, 110]

(figure 2.22–2.24), image deblurring [55] (figure 2.25), image denoising [36, 86] (figure 2.26).

Unlike traditional approaches, our segmentation approach is designed to address a large class

of image-based problems which require soft segments (with appropriate amount of overlapping

and transparency). This approach is translated into an alternating optimization (AO) algorithm

which is more straightforward to implement than many state-of-the-art and complex segmen-

tation techniques, which are geared to produce a semantic segmentation of the input image for

tasks such as recognition and interpretation.

We present a probabilistic framework to address soft color segmentation, where a global

objective function is modeled by global and local parameters. These parameters are alternately

optimized until convergence. Since our goal is to maintain natural color and texture transition

across soft segments rather than assigning semantics to each segmented region, it is sufficient

to model global color statistics of an image by Gaussian Mixture Model (GMM). Each pixel’s

color can be explained by a local mixture of colors derived from the optimized GMM weighted

by the inferred soft labels.
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Our segmentation goal is different but related to that of traditional segmentation approaches.

In this chapter, we evaluate and compare our automatic method with k-means clustering [32],

Mean Shift [26], Expectation-Maximization (EM) [28, 6], Watershed [116], Jseg [29], Data

Driven Markov Chain Monte Carlo (DDMCMC) [114], Information-Bottleneck [44], Multi-

scale graph-based techniques [101, 42], the statistical region merging [80], and user-assisted

image matting [10, 98, 21] to show that better or comparable results are obtained, in terms

of region transparency, color coherence and spatial coherence. Our method produces results

comparable to the Bayesian matting [21] in terms of extracting a foreground matte from an

image. In [21], a user-supplied trimap is required while our method is fully automatic. Our

proposed algorithm is also applied to various image applications such as transferring color

between images, image deblurring, image denoising, and colorizing grayscale images.

The chapter is organized as follows: Section 2.3 reviews the related work on color and

image segmentation. Section 2.4 describes in detail our alternating optimization (AO) algo-

rithm which estimates optimal global and local model parameters. We perform experiments to

show the good optimality and convergence of our AO algorithm while the theoretical aspects

of these issues are addressed in [11]. In section 2.5, we evaluate and analyze our AO algorithm

using synthetic and real images. Results and comparisons are presented in section 2.6. In

section 2.7, we apply our soft color segmentation to various image synthesis applications and

show that significantly better results can be obtained by employing soft segments produced by

our algorithm. We conclude this chapter in section 2.8. Proposals of future research direction

as discussed in chapter 5.

2.3 Related work

We review in this section previous work most relevant to ours in image segmentation.
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2.3.1 Hard segmentation

The Watershed algorithm [116] is a region-based technique where “watershed” lines are used to

mark the boundaries of regions. The morphological operations of closing (or opening) are then

introduced to smooth ridges (or fill in valleys) of the topographical map produced. This method

is sensitive to intensity changes, so a large number of small regions is usually produced. The

Watershed algorithm is often used as a preprocessing step to obtain an over-segmented image

to preserve as much detail as possible for further processing.

The Expectation-Maximization (EM) algorithm, which is one form of alternating optimiza-

tion, was employed in [6] to address the problem of color and texture segmentation. The joint

distribution of color and texture is modeled using a mixture of Gaussians in a six-dimensional

space (three dimensions for color and three for texture). Because the grouping is performed in

a 6D space and no spatial coordinates are considered, small and fragmented regions are pro-

duced. A separate spatial grouping step is then applied to obtain pixel connected components.

The JSeg [29] is an unsupervised algorithm for color and texture segmentation. The first

color quantization step creates a class-map of color labels. The second spatial segmentation

step uses the class-map to create a J-image to identify color or texture regions. The two steps

are sequential, where the second step is dependent upon the results produced by the first one.

The Mean Shift segmentation [26] is a clustering algorithm that can perform color and

texture segmentation. The algorithm takes as input a feature bandwidth, a spatial bandwidth,

and a minimum region area (in pixels). Salient clusters are successively extracted by applying

a kernel in the feature space, which shifts toward significant cluster center. Because the feature

space is a high dimensional one, in order to reduce the number of shifts for achieving fast

convergence, a set of random locations in the feature space is usually considered for selecting

the initial location with the highest density of feature vectors.

Graph-based approaches for image segmentation and grouping have gained much attention.

The Normalized Cuts [102] is one such algorithm which uses a global criterion on the total
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dissimilarity among (and similarity within) different pixel groups, where discrete region labels

output after graph optimization.

The statistical region merging was proposed in [80], which consists of a semi-supervised

statistical region refinement algorithm for color image segmentation. Based on certain prin-

ciples on perceptual grouping and an image generation model, a simple merging method was

proposed to produce visually coherent color segments.

2.3.2 Soft segmentation

The concept of soft segmentation is not a new one. For example, the traditional k-means

clustering [32] can be considered as one form of soft color segmentation. In essence, each point

in the feature space is associated with a label and its confidence value calculated using some

function related to the distance to each converged cluster. If spatial and color coordinates are

considered simultaneously for preserving the coherence, the resulting feature space becomes

sparse and high-dimensional, making the method vulnerable to local optima.

The split-and-link algorithm [87] computes overlapping segments in a pyramidal frame-

work where the levels are overlapped so that each pixel is a descendant of four others in

the pyramid. The linking is done based on similarity to ameliorate some problems in initial

splitting. In [44], unsupervised image clustering was proposed to cluster images, subject to

minimizing the loss of mutual information between the clusters and image features. The pro-

posed clustering can be regarded as soft label classification, where GMMs are used to model

the feature space. A graph-based approach was proposed in [101] which combines multiscale

measurements of intensity contrast, texture differences and boundary integrity. The method

optimizes a global measurement over a multiscale pyramidal structure of the image, and main-

tains fuzzy relationship between nodes in successive levels. A follow-up of the work [42] made

use of multiscale aggregation of filter responses to handle complex textures.

In [78], a clustering-based algorithm was proposed to segment color textures, where multi-

scale smoothing and initial clustering are first performed to determine a set of core clusters to



CHAPTER 2. SOFT COLOR SEGMENTATION AND ITS APPLICATIONS 28

which a subset of pixels should belong. Soft labels are then assigned and updated iteratively at

all other pixels at multiple scales.

A unifying framework known as DDMCMC was proposed [114] which exploits Markov

Chain dynamics to explore the complex solution space and achieves a nearly global optimal

solution regardless of initial segmentations. Since features occur at multiple scales, the method

incorporates intrinsic ambiguities in image segmentation, and utilizes data-driven techniques

(such as clustering where soft assignment is made in the feature space) for computing impor-

tance proposal probabilities.

Fuzzy connectedness [115] groups image elements (pixels) by assigning a strength of con-

nectedness to every possible path between every possible pair of image elements. The connect-

edness strength is related to the region that the image element belongs to. An image element

can be associated with more than one region with different connectedness strength. The method

has been extensively experimented in segmenting delicate tissues from medical images.

In computer graphics, the class of image matting algorithms can be considered as a spe-

cial case of soft color segmentation. Smith and Blinn [103] were the first to present the blue

screen matting systematically. Knockout [10] is one method that gathers color samples by es-

timating the foreground and background with weighted averages of the pixel colors within a

neighborhood. Ruzon et al. [98] sampled colors by a mixture of Gaussians, and proposed to

use the color with the maximum probability. In Bayesian matting [21], the authors formulated

the matting problem using Bayesian optimization, where the maximum a posteriori (MAP)

estimation is performed to estimate the optimal alpha matte for foreground extraction. This

method performs pixelwise optimization without exploiting any spatial coherence information.

Grabcut [97] and Poisson matting [105] consider matte continuity among pixels. Note that

all the above matting techniques are not automatic, requiring some form of user interaction,

usually in the form of a user-supplied trimap which specifies “definite foreground,” “definite

background” and “uncertain” regions, in order to produce satisfactory matting results.
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2.3.3 Comparison with our work

The approaches described in the previous section have made significant contributions in image

segmentation. However, they are not suitable to be used in an image-based application which

requires soft color segments with an appropriate amount of overlapping and transparency due

to one or more of the following reasons:

• While the previous methods produce excellent image segmentation results for natural

images, they are designed to solve the general segmentation problem, which may not be

ideal for image-based applications. For instance, to obtain a good image interpretation,

general image segmentation aims to cluster similar patterns or textures. However, as

shown in the result section, the details inside each pattern should be preserved so that

distinct colors will not get mixed up in the synthesized image. Furthermore, the resulting

segments reported in the above literature are mostly hard segments which do not preserve

smooth color transition among segments.

• To maintain spatial and color coherence, many algorithms concatenate spatial and feature

vectors resulting in a sparse and high dimensional feature space. A careful initialization

is therefore needed to ensure fast convergence to a reasonable solution.

• On the other hand, spatial grouping and color clustering are considered, by certain ap-

proaches, as independent rather than interdependent processes, so errors produced in one

step are propagated to the following steps.

• All matting methods are interactive requiring somewhat careful initialization (e.g. a user-

supplied trimap).

In this chapter, we propose an automatic color segmentation approach to address the above

issues. To maintain spatial and color coherence, instead of using a high-dimensional feature
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space, an alternating optimization framework is adopted: our method optimizes a global ob-

jective function that combines the advantages given by global color statistics and local image

compositing. Using a global objective function, global and local information is properly inte-

grated by using a Markov network that optimizes for the soft labels at each image pixel, subject

to spatial and color coherence while preserving underlying discontinuities. The global color

statistics of an image is specified by the inferred three dimensional Gaussian Mixture Model

(GMM). A local mixture model is introduced to account for the observed color at each pixel,

where soft labels are introduced to naturally encode transparent and overlapping regions in our

probabilistic framework. We propose an alternating optimization (AO) algorithm to estimate an

optimal set of model parameters. Readers may refer to [11] for AO’s convergence. Our method

also proves the convergence empirically by extensive experiments on a variety of natural and

complex images. We demonstrate the efficacy of our approach in a wide variety of image-based

applications, and show that less human interaction or better results can be obtained using our

soft color segmentation method.

2.4 Soft Color Segmentation

Our approach in soft color segmentation takes into consideration both global and local color

information within the same framework. Global color statistics models the overall colors of

the input image. Local color compositing models the mixture of colors contributing to the

observed color at a pixel, where the colors are derived from the optimized global statistics.

In our framework, the global and local models cooperate with each other subject to the spa-

tial and color coherency constraints in each pixel’s neighborhood, where the similarity within

the same region and dissimilarity across regions are preserved. An alternating optimization

scheme [27, 11] is adopted to iteratively optimize the global and local parameters. The nota-

tions are summarized in Table 2.1.
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Notation Meaning
I Image space
I(x, y) RGB color at pixel (x, y)
G The 3D GMM G = {G(i; µi, Σi)}, i = 1, · · · , N
µi Mean of Gaussian component i, i = 1, · · ·N
Σi Covariance matrix of Gaussian component i, i = 1, · · ·N
L(x, y) Soft labels to G at pixel (x, y): L(x, y) = {`i(x, y)|i = 1, · · ·N}
C(x, y) Compositing colors derived from G at pixel (x, y): C(x, y) = {ci(x, y)|i = 1, · · ·N}

Table 2.1: Notation used in this chapter. For local parameters, the coordinates (x, y) may be
skipped when we refer to the entire set of parameters across the whole image. Note that µi,
I(x, y), ci(x, y) are RGB tuples. N is the number of Gaussians.

2.4.1 Problem modeling and formulation

Global color statistics By observing a large number of natural images (figure 2.1), we find

that the global color statistics can be represented by a set of overlapping regions and modeled

by a mixture of Gaussians. In other words, the color of a pixel can be predicted by a Gaussian

Mixture Model (GMM), where each Gaussian is three dimensional for encoding the R, G, and

B channels, and is parameterized by the corresponding mean and covariance matrix. Let us

denote the GMM by G = {G(i; µi, Σi)}, where 1 ≤ i ≤ N and N is the number of Gaussians,

µi is the mean, and Σi is the covariance matrix.

Note that global color statistics alone, such as GMM, are not sufficient for semantic seg-

mentation or image understanding. This explains why many approaches that use GMM (e.g. [6,

44]) introduce additional constraints to address the semantic segmentation problem. On the

other hand, given that the global color statistics of a natural image can be well modeled by a

GMM, and that our goal is to infer overlapping color segments (which may not separate well

in the color space, without any a priori information), it is a natural choice to use GMM to

represent global statistics in the color space. On the other hand, our method does not purely

rely on GMM. As we shall describe shortly, a local mixture model is used where MRFs are

incorporated so that spatial and color coherence are optimized at each pixel’s neighborhood
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face landscape texture medicine hurricane castle aerial

Figure 2.1: The global color statistics of a natural image can be modeled by a mixture of
Gaussians. Top: typical images. Bottom: For illustration, the three rows shown are the his-
tograms of the R, G, and B color channels, whereas three dimensional Gaussians are used in
our computation.

during the alternating optimization process.

Local color compositing By generalizing the image compositing equation in [89], we pro-

pose the following model for local color compositing at each pixel (x, y) which uses a mixture

of colors to encode overlapping and transparency:

I(x, y) =
N∑

i=1

`i(x, y)ci(x, y) (Eq. 2.1)

where L(x, y) = {`i(x, y)|i = 1, 2, · · ·N} is the set of soft labels corresponding to the N color

segments (or Gaussians) in G, and C(x, y) = {ci(x, y)|i = 1, 2, · · ·N} is the set of compositing

colors.

Problem formulation In summary, our color model consists of: a global term representing

the color model for the whole image described by G, and a local term for each pixel described

by L and C. The set of unknowns consists of

{ci(x, y), `i(x, y), µi, Σi|i = 1, 2, ..., N and (x, y) ∈ I}.

We formulate the problem of soft color segmentation as follows: Given an image I and

the number of Gaussians (segments) N , we seek to optimize for the global and local model
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parameters G,L, C subject to the necessary spatial and color coherency and discontinuity in-

herent in the image. Using the Minimum Description Length principle [46, 45] (also used in

the Expectation-Maximization algorithms in [6, 44]) which avoids model overfitting, the num-

ber of Gaussians N can be inferred. In practice, we fix the value of N where N < 10 in all

cases we tested. The weights of insignificant Gaussians will be converged to zero. We describe

in the following our alternating optimization (AO) algorithm to solve for the optimal L, C and

G iteratively.

2.4.2 The global optimization function

Given a color image I , we maximize the a posteriori probability to infer all unknowns. We

formulate the problem in a Bayesian framework as follows:

arg max
G,L,C

P(G,L, C|I) ∝ arg max
G,L,C

P(I|G,L, C)P(C|G,L)P(L,G)

∝ arg max
G,L,C

P(I|L, C)P(C|G,L)P(L) (Eq. 2.2)

where P(I|L, C) = P(I|G,L, C) since I(x, y) is not directly related to G by (Eq. 2.1), P(L,G) =

P(L)P(G) since in our model P(L) and P(G) are independent. Finally, P(G), the global color

statistics, is assumed to be a uniform distribution without any prior knowledge. So P(G) is

omitted in (Eq. 2.2).

2.4.2.1 Matching likelihood P(I|L, C)

We assume the observation noise follows an independent identical distribution (i.i.d.), so we

define the likelihood P(I|L, C) as a product of likelihoods at each pixel:

P(I|L, C) ∝
∏

(x,y)

P(I(x, y)|L(x, y), C(x, y))

=
∏

(x,y)

1√
2πσc

exp

(
−(I(x, y)−∑N

i=1 `i(x, y)ci(x, y))2

2σ2
c

)
(Eq. 2.3)
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which models the fidelity how I(x, y) conforms to the local model
∑N

i=1 `i(x, y)ci(x, y) with

standard deviation σc. We set σc = 0.1 in all our experiments.

2.4.2.2 Matching likelihood P(C|G,L)

We define the matching likelihood P(C|G,L) in the same way, using a product of likelihoods

at each pixel:

P(C|G,L) ∝
∏

(x,y)

P(C(x, y)|G,L(x, y)) (Eq. 2.4)

Based on the information theory [45], the relative entropy (Kullback-Leibler divergence) of

L(x, y) and P(C(x, y)|G) is defined as:

N∑
i=1

`i(x, y) log
`i(x, y)

P(ci(x, y)|Gi)
(Eq. 2.5)

where `i(x, y) measures the confidence that the value ci is generated by Gaussian element i.

The relative entropy can be minimized as we maximize its negation:

arg min
C

N∑

i=1

`i(x, y) log
`i(x, y)

P(ci(x, y)|Gi)

∝ arg max
C

N∑

i=1

(log P(ci(x, y)|Gi)`i(x,y) − log `i(x, y)`i(x,y))

∝ arg max
C

N∑

i=1

log P(ci(x, y)|Gi)`i(x,y) −
N∑

i=1

log `i(x, y)`i(x,y) (Eq. 2.6)

In the representation of the above likelihood,L is the observation. Omitting
∑N

i=1 log `i(x, y)`i(x,y)

will not influence the estimation result. Thus (Eq. 2.6) can be simplified as follows when we

take the exponent:

arg max
C

N∑
i=1

log P(ci(x, y)|Gi)
`i(x,y) ∝ arg max

C

N∏
i=1

P(ci(x, y)|Gi)
`i(x,y) (Eq. 2.7)
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Figure 2.2: The robust function for encoding the discontinuity-preserving function: plotting
the Lorentzian estimator log(1 + 1

2
(x

σ
)2) vs. x with (a) σ = 0.1, (b) σ = 0.0005, In all cases,

the curves are bounded when x → ±∞, which is more robust than the usual norm-squared
function (i.e. the unbounded x2) in terms of encoding the error term.

Given Gi(i; µi, Σi), the likelihood P(ci(x, y)|Gi) is modeled by the deviation of ci(x, y) from

the Gaussian Gi:

P(ci(x, y)|Gi) ∝ 1

(2π)
3
2 |Σ| 12

exp

(
−(ci(x, y)− µi)

T Σ−1
i (ci(x, y)− µi)

2

)
(Eq. 2.8)

Substitute (Eq. 2.8) into (Eq. 2.7), we obtain the function to be maximized:

N∏
i=1

1(
(2π)

3
2 |Σ| 12

)`i(x,y)
exp

(
−`i(x, y)

(ci(x, y)− µi)
T Σ−1

i (ci(x, y)− µi)

2

)
(Eq. 2.9)

2.4.2.3 Prior P(L)

Effective modeling of the prior is very important in producing good results in a Bayesian for-

mulation. To maintain spatial and color coherence while introducing transparency among over-

lapping segments, we apply a Markov Random Field (MRF) model, which asserts that the con-

ditional probability of a site in the field depends only on the information of its neighboring

sites.

MRFs are effective in avoiding noise or highly fragmented segments while maintaining

color smoothness across and within the segmented regions. In our soft color segmentation,

although the resulting segments may sometimes not correspond to those produced by manual

or semantic segmentation, as will be shown in the experimental section, they are adequate for

image-based applications which require soft segments for synthesizing seamless images.



CHAPTER 2. SOFT COLOR SEGMENTATION AND ITS APPLICATIONS 36

The prior P(L) encodes the probability that one pixel falls in different segments. We apply

the following pairwise constraint:

P(L) ∝
∏

(x,y)

∏

(x′,y′)∈N (x,y)

exp(−ψ(L(x, y),L(x′, y′))) (Eq. 2.10)

where ψ(L(x, y),L(x′, y′)) is the joint clique potential function of sites (x, y) and its first-order

neighborhood sites (x′, y′).

We adopt the Lorentzian estimator (figure 2.2), a robust function [16] that preserves dis-

continuity implicitly by penalizing any occurrence of color discontinuity between sites (x, y)

and (x′, y′). The joint potential function is defined as follows:

ψ(L(x, y),L(x′, y′)) = log

(
1 +

1

2

( ||L(x, y)− L(x′, y′)||
σp

)2
)

(Eq. 2.11)

where σp is set to 0.1 in all our experiments. The use of a robust discontinuity-preserving

function is typical, for instance, in MRF stereo [58, 106] and MRF photometric stereo [111,

125].

2.4.3 The alternating optimization

Combining the likelihoods of (Eq. 2.3) and (Eq. 2.9) and the prior in (Eq. 2.11), we solve the

following global optimization problem by maximizing the posterior function:

arg max
G,L,C

∏
(x,y)

1√
2πσc

exp

(
− (I(x,y)−∑N

i=1 `i(x,y)ci(x,y))2

2σ2
c

)
∏

(x,y)
∏

(x′,y′)∈N(x,y)


 1

1+ 1
2

( ||L(x,y)−L(x′,y′)||
σp

)2




∏
(x,y)

∏N
i=1

1(
(2π)

3
2 |Σ|

1
2

)`i(x,y) exp

(
−`i(x, y)

(ci(x,y)−µi)
T Σ−1

i
(ci(x,y)−µi)

2

)
(Eq. 2.12)

Obviously, this optimization problem cannot be directly solved due to the large number of

unknowns. To solve (Eq. 2.12), we propose an alternating optimization (AO) algorithm [27]:

by fixing the values of a subset of parameters in each iteration of the optimization process, the

global objective function is maximized by optimizing each subproblem alternately.
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2.4.3.1 Fix G, C and optimize L

In the first subproblem, we use the optimized values of G and C from the previous iterations to

optimize L. In the literature of probabilistic graph models, a Markov network is an undirected

graph where the nodes {xs} are used to encode hidden variables and the nodes {ys} are used

to encode observed variables. Taking X = {xs} and Y = {ys}, the posterior P(X|Y ) can be

factorized as:

P(X|Y ) =
∏

s

ψs(xs, ys)
∏

s

∏

t∈N (s)

ψst(xs, xt) (Eq. 2.13)

where ψst(xs, xt) is the compatibility matrix between nodes xs and xt, encoding the cost

between two neighboring pixels, and ψs(xs, ys) is the local evidence for node xs, representing

the observation probability from the hidden variables p(ys|xs).

In this subproblem, it can be observed that our posterior (Eq. 2.2) and (Eq. 2.13) are the

same, if we define

ψst(xs, xt) = exp(−ψ(L(x, y),L(x′, y′))) (Eq. 2.14)

ψs(xs, ys) = P(I(x, y)|L(x, y), C(x, y))P(C(x, y)|G,L(x, y)) (Eq. 2.15)

Thus finding the MAP solution of (Eq. 2.12) is equal to solving the Markov network where

each hidden node encodes L(x, y). In belief propagation terms, N is the number of labels, and

L is passed as 1D messages among the hidden nodes. Thus, the MAP estimation can be solved

(approximately) by loopy belief propagation via a message passing procedure [84]. Because

`i(x, y) ∈ [0, 1] is fractional and
∑N

i=1 `i(x, y) = 1, transparency is naturally encoded at (x, y)

by the soft labels. The memory and computational complexity of our belief propagation algo-

rithm is O(ZN) and O(TZN) respectively, where Z is total number of pixels, N is number of

Gaussians and T is number of iterations.
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2.4.3.2 Fix G,L and optimize C

In the second subproblem, we use the optimized values of G and L obtained from the previous

iterations to optimize C. Since L is fixed, P(L) is a constant. Equation (Eq. 2.12) in this

subproblem is simplified to:

arg max
C

∏
(x,y)

1√
2πσc

exp
(
− (I(x,y)−∑N

i=1 `i(x,y)ci(x,y))2

2σ2
c

)

∏
(x,y)

∏N
i=1

1(
(2π)

3
2 |Σ| 12

)`i(x,y) exp
(
−`i(x, y)

(ci(x,y)−µi)
T Σ−1

i (ci(x,y)−µi)

2

)
(Eq. 2.16)

By taking the logarithm of (Eq. 2.16), we obtain a polynomial in several variables with

constant coefficients. We perform pixelwise optimization by taking the partial derivative at

each pixel and setting the equations equal to zero to compute the stationary points. In the

following, the constant terms are ignored if they disappear after taking the partial derivative:

∂

∂ci

(
(I(x, y)−∑N

i=1 `i(x, y)ci(x, y))2

2σ2
c

+
N∑

i=1

`i(x, y)
(ci(x, y)− µi)T Σ−1

i (ci(x, y)− µi)
2

)
= 0

Hence, we obtained the following 3N × 3N linear equation system:



`1(x, y)Σ−1
1 + I`1(x, y)2/σ2

c . . . I`1(x, y)`N(x, y)/σ2
c

... . . . ...
I`1(x, y)`N(x, y)/σ2

c . . . `N(x, y)Σ−1
N + I`N(x, y)2/σ2

c







c1(x, y)
...

cN(x, y)




=




`1(x, y)Σ−1
1 µ1 + I(x, y)`1(x, y)/σ2

c
...

`N(x, y)Σ−1
N µN + I(x, y)`N(x, y)/σ2

c


 (Eq. 2.17)

where I is the identical matrix and σc = 0.1. Note that when `i(x, y) equals to 0, we do not

need to estimate ci(x, y) since the equation is already balanced, and ci(x, y) has no effect to the

objective function. Therefore, we can reduce the dimension of the linear system by removing

the entries with `i(x, y) = 0. In our implementation, we only estimate the color of pixels with
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|`i(x, y)t − `i(x, y)t−1| > ε, where t is the iteration number, and ε is a small threshold set

to be 0.01 in all our experiments. The above linear system is solved by using singular value

decomposition (SVD).

2.4.3.3 Fix L, C and optimize G

In the last subproblem, we use the optimized values of C and L obtained from the previous

iterations to optimize the unknown G. SinceL and C are fixed, P(I|L, C) and P(L) are constant

in this subproblem. Taking the negative logarithm of our global objective function (Eq. 2.12)

we obtain:

arg max
G

∏

(x,y)

N∏
i=1

1(
(2π)

3
2 |Σi| 12

)`i(x,y)
exp

(
−`i(x, y)

(ci(x, y)− µi)
T Σ−1

i (ci(x, y)− µi)

2

)

= arg min
G

∑

(x,y)

N∑
i=1

`i(x, y)

(
3 log(2π) + log(|Σi|) + (ci(x, y)− µi)

T Σ−1
i (ci(x, y)− µi)

2

)

(Eq. 2.18)

Taking the derivative with respect to µi and setting it to zero, we get:

∑

(x,y)

Σ−1
i (ci(x, y)− µi)`i(x, y) = 0 (Eq. 2.19)

which is reduced to

µi =

∑
(x,y) `i(x, y)ci(x, y)∑

(x,y) `i(x, y)
(Eq. 2.20)

To find Σi, we can write (Eq. 2.18) as (constant terms are ignored here since they disappear

after taking derivative):

1

2

∑

(x,y)

N∑
i=1

`i(x, y)
(
trace(Σ−1

i (ci(x, y)− µi)(ci(x, y)− µi)
T )− log(|Σ−1

i |)) (Eq. 2.21)

Taking derivative with respect to Σ−1
i , we get:

1

2

∑

(x,y)

N∑
i=1

`i(x, y) (2M− diag(M)) = 2S − diag(S)
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where M = (ci(x, y) − µi)(ci(x, y) − µi)
T − Σi, and S = 1

2

∑
(x,y)

∑N
i=1 `i(x, y)M. Setting

the derivative equal to 0, i.e. 2S − diag(S) = 0, implies that S = 0, which gives:

1

2

∑

(x,y)

N∑
i=1

`i(x, y)
(
(ci(x, y)− µi)(ci(x, y)− µi)

T )− Σi

)
= 0 (Eq. 2.22)

Rearranging the equation we obtain:

Σi =

∑
(x,y) `i(x, y)(ci(x, y)− µi)(ci(x, y)− µi)

T

∑
(x,y) `i(x, y)

(Eq. 2.23)

Thus, (Eq. 2.20) and (Eq. 2.23) together give the optimal G.

2.4.4 Summary

In summary, our alternating optimization algorithm is as follows: Initialize the unknowns

(G,L, C) and iterate the following steps until convergence or reaching a fixed number of it-

erations.

• Compute L by loopy belief propagation with (Eq. 2.13), (Eq. 2.14), and (Eq. 2.15).

• Compute C with (Eq. 2.17).

• Compute G with (Eq. 2.20) and (Eq. 2.23).

To initialize the optimization, we use the results produced by k-means clustering, where

the mean and covariance for each Gaussian component of GMM G is initialized as the mean

and covariance of the corresponding cluster. At each pixel, L is initialized as the soft labels

obtained via k-means clustering. C(x, y) is set to I(x, y) for all pixels (x, y).

2.4.5 Convergence

While the alternating optimization guarantees convergence to one type of global optimal solu-

tion [11], in this section, we experimentally test the convergence of our alternating optimization

algorithm for soft color segmentation. In each respective step of estimating L, G or C, we use
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2.3: We plot the negative logarithm of the global objective function (Eq. 2.2) against the
number of iterations. (a) Synthetic image (figure 2.5),28sec. (b) Graffiti (figure 2.6),114sec. (c)
Lighthouse (figure 2.8),75sec. (d) Camellia (figure 2.9),39sec. (e) River 1 (figure 2.12)94sec.
(f) Blobworld (figure 2.11)16sec. (g) Motion blur,106sec. (h) Hurricane (figure 2.18),183sec.
(i) Nebula (figure 2.19),178sec. (j) River 2 (figure 2.23),86sec. (k) Castle (figure 2.24)46sec.
(l) Gray level image ,34sec. Our goal is to maximize (Eq. 2.2) which is equal to minimizing
the negative logarithm of (Eq. 2.2). The values shown on the vertical axis are normalized by
the number of pixels and the number of clusters in the converged G. Empirically, our approach
converges to a good minima within 30 to 40 iterations. Below each graph shows the actual
running time (in second) to achieve convergence. Our AO approach typically runs in 180 secs
for images with resolution 256 × 256 on a notebook computer with a 1.40GHz Intel Pentium
M processor and 1.00GB RAM.

the values obtained for the two unknowns in the previous step to compute the maximum of

the third unknown, which makes the estimated value of P(G,L, C|I) increase monotonically.

Hence, the convergence of our method is guaranteed and the maximum of P(G,L, C|I) can be

reached upon convergence. In our implementation, we terminate our iterations in either one of

the following situations:

• ∑
0≤i<N(µt

i − µt−1
i )2 < η, where η is a predefined threshold and t is current iteration, or

• t = 40.
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To demonstrate the optimization efficiency, we run our alternating optimization algorithm

for a total of 100 iterations for each case. Figure 2.3 shows the graphs plotting the negative log-

arithm of the global objective function against the number of iterations. Note that maximizing

the objective function (Eq. 2.2) is equivalent to minimizing its negative logarithm. Typically,

our method converges within 30 to 40 iterations. Figure 2.4 shows some intermediate results

during the AO iterations. We use different colors to represent each Gaussian components in G,

and label I(x, y) as color i if `i(x, y) is largest in {`1(x, y), `2(x, y), · · · , }. The output shown

in the figure is hard color segmentation to facilitate visual evaluation. As the number of itera-

tions increases, the spatial connectivity and color homogeneity are progressively refined until

final convergence. In the result section, we shall show that our converged soft segmentation

allows smooth and natural color transition for a wide range of image synthesis applications and

produces satisfactory results.

2.5 Evaluation and Analysis

This section presents examples to evaluate our AO algorithm to perform soft color segmenta-

tion. Evaluations on synthetic and real data are first presented; followed by the study of the

effects of C and G on the soft labels L estimation.

2.5.1 Synthetic image

Figure 2.5(a) shows a synthetic image used in our evaluation. This example presents a chal-

lenge because a single pixel’s color can be explained by as many as six colors. The result

shows that our automatic method is capable of segmenting the image into six coherent regions.

Figure 2.5(b) shows a re-synthesized image
∑6

i=1 `i(x, y)ci(x, y) generated by compositing

the estimated L and C at each pixel. The image difference between the input image and the

synthesized image |I(x, y) − ∑6
i=1 `i(x, y)ci(x, y)| is shown in figure 2.5(c). We achieve an
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input image 0 iteration 10 iterations 20 iterations 50 iterations 100 iterations

Figure 2.4: We show the intermediate results of the AO algorithm. Since each pixel may
belong to more than one Gaussians, we show at each pixel the Gaussian component i with
the maximum `i. Initially, no spatial connectivity is considered by k-means clustering, which
performs clustering in the RGB space. Spatial and color coherence are progressively preserved
as the number of iterations increases.

average pixel error of 0.0147, given by
∑

(x,y) |I(x,y)−∑N
i=1 `i(x,y)ci(x,y)|

Z
where Z is the total num-

ber of pixels. We plot the soft labels L at sample pixels in figure 2.5(d) to show the transparent

boundaries of the resulting soft regions. Figure 2.5(e) shows the segmentation results of each

converged color region, displayed as Ii(x, y) = `i(x, y)ci(x, y), 1 ≤ i ≤ 6.

2.5.2 Real image

In this section we use real images to evaluate our method in the presence of rich textures and

colors. We first use Poisson matting [105] to extract the graffiti c∗ and the alpha matte `∗

from the original image. They are composited onto a set of new background images rich in

textures and colors (shown in figure 2.6(a)). Finally, we segment the graffiti from the com-
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(a) (b) (c) (d)

(e)

Figure 2.5: Evaluation using a synthetic image. (a) Here the observed color of a pixel may be
explained by a mixture of as many as six colors. (b) The re-synthesized image generated by
compositing L and C obtained upon the convergence of our AO algorithm. (c) Image difference
between (a) and (b). (d) The soft labels L of sample pixels. (e) The soft segments, displayed
as Ii(x, y) = `i(x, y)ci(x, y), 1 ≤ i ≤ 6, depict transparent and overlapping boundaries.

posited images using our soft color segmentation method. The segmented graffiti, shown in

figure 2.6(b) as `(x, y)c(x, y), is compared with `∗(x, y)c∗(x, y) at each pixel (x, y) and the

image differences are shown in figure 2.6(c). Note the small residual achieved by our method.

Figure 2.6(d) shows the ` image for the graffiti segment, and figure 2.6(e) shows the difference

|`(x, y)− `∗(x, y)|. The segmentation accuracy, defined as 1−
∑

(x,y) |`(x,y)−`∗(x,y)|∑
(x,y) `∗(x,y)

, is over 70%

in all the cases, while the segmented soft regions are visually indistinguishable from the ground

truth.

2.5.3 Effect of color re-estimation

Next, we show the necessity of re-estimating C in our AO algorithm. The color estimation

step corresponds to the second subproblem in our AO approach, which improves the results

at the overlapping regions. Figure 2.7(b) shows one example where we do not perform color

re-estimation, and we simply set all components of C to I . Comparing to figure 2.7(a) obtained

using our proposed method, the segmented Gaussian components in (b) are less separable. A

real example is shown in figure 2.8(a)–(b).
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Original graffiti on wall `∗(x, y)c∗(x, y) `∗(x, y)

Graffiti composited on grass `(x, y)c(x, y) |pc− `∗c∗| `(x, y) |`− `∗|

Graffiti composited on stone `(x, y)c(x, y) |`c− `∗c∗| `(x, y) |`− `∗|
(a) (b) (c) (d) (e)

Figure 2.6: Evaluation using real image. (a) Original image and image composites. (b) The
segmented graffiti. (c) Image difference between the ground truth segment `∗(x, y)c∗(x, y) and
the graffiti segmented from the new image composite. (d) The `(x, y) image for the segmented
graffiti. (e) Image difference between the ground truth `∗ and the converged `.

(a) (b) (c)

Figure 2.7: The three estimated Gaussians overlaid onto the histogram of the graffiti image.
Only the R channel is shown here. (a) With color estimation. (b) Without color estimation.
(c) shows the Gaussians estimated using the original EM algorithm. The estimated Gaussian
components are better separated using our AO algorithm.
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(a) (b) (c)

Figure 2.8: The images of soft label ` for a lighthouse image. The subimage on the lower
right side shows the compositing result using the estimated ` and c on a green background.
(a) Segmentation result by our AO approach. (b) Segmentation result without C re-estimation.
Comparing the result in (a), better transparent regions are obtained with color re-estimation.
(c) Segmentation result without G re-estimation. The input image is shown in figure 2.20.

2.5.4 Effect of GMM re-estimation

Finally, we show the necessity of re-estimating G in our AO algorithm. G encodes the global

color statistics for soft color segmentation. It is initialized by k-means clustering. Without G re-

estimation, our approach is reduced to one that runs belief propagation on the result produced

by k-means clustering, followed by the color estimation step.

Figure 2.8(c) shows the result without G re-estimation, which is susceptible to errors given

by the initial clustering, therefore resulting in the suboptimal estimation of L and C, as depicted

in the figure.

2.6 Results and comparison

We have evaluated our method on real and synthetic images and studied the effects of C and G
on L in the AO algorithm. In this section, we present the results and comparisons with state-

of-the-art segmentation techniques, focusing on: shading and shadows, and highly textured

scenes.
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(a)

(b) (c) (d)

Figure 2.9: (a) Input image. Soft shading and shadows are present between the petals. The
segmentation result using (b) covariance matrix (oriented Gaussians), (c) standard derivation
(unoriented Gaussians), (d) k-means clustering with belief propagation and color estimation.
Shading and soft shadows are better captured by an oriented Gaussian.

Figure 2.10: Segmentation result by the original EM algorithm. Without spatial consideration, spatially
dissimilar patterns are mixed up. See the online version for color visualization.

2.6.1 Shading and soft shadows

Because our approach is designed to produce soft color segments, soft shading and shadows

can be handled uniformly. We compare our method by using the following alternatives:

• standard deviation in modeling G,

• k-means clustering with belief propagation and color estimation.

Figure 2.9 shows that our AO method produces significantly better results. This can be

explained by the use of Σ which encodes an oriented Gaussian and captures non-uniform color

distribution due to shadow and shading.
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(a) (b) (c) (d) (e)

Figure 2.11: (a) Input image [6]. (b) Segmentation result from [6]. (c)–(e) Our soft color
segmentation results `ici.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
`1c1 image `2c2 image `3c3 image

Figure 2.12: Input image shown on the left. Results produced by (a) Mean shift segmentation, (b)
k-means clustering with k = 3, (c) Normalized cuts, (d) Watershed algorithm, (e) JSeg method, (f)
statistical region merging, (g)–(i): our AO algorithm. The three segmented regions correspond to the
three basic color components underlying the image. See the online version for color visualization.

2.6.2 Highly textured scenes

We first compare our AO algorithm with Expectation-Maximization (EM) algorithm, which is

one specific form of alternating optimization. Then comparisons are made with other represen-

tative segmentation methods.

The original EM algorithm does not have the prior probability P(L) nor color label C
in its objective function, it instead segments an image by considering the color domain only.
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Fractional boundaries can be obtained if we do not use the maximum-vote filter such as the one

proposed in [6]. Figure 2.10(a)–(c) show the results. Since no spatial information is considered,

spatially different patterns, such as the water and the leaves, cannot be well separated.

The revised EM algorithm described in [6] performs GMM estimation in the 6D feature

space, in which color/texture segmentation is performed. Figure 2.11 shows our results com-

pared with [6]. Because no spatial information is considered during their EM iteration, the

maximum-vote filter and the connected component algorithm are used to enforce spatial con-

nectivity. As shown in figure 2.11, although their approach can group relevant region centers,

the undecided region boundaries are output as unsegmented regions. Our automatic approach

produces fractional boundaries to faithfully maintain the smooth color transition among seg-

ments.

For the complex scene shown in figure 2.12, Mean Shift [26] cannot segment the river well.

The complex region boundaries cannot be preserved, as shown in figure 2.12(a). Because Mean

Shift performs segmentation by first concatenating color and spatial coordinates, the resulting

sparse and high dimensional feature space makes the segmentation more challenging.

K-means segmentation [32] segments the image by clustering in the RGB space (k = 3

in our example). The result is good from the global statistical point of view, but since spatial

information is not considered, isolated point clusters result (figure 2.12(b)).

The image segmentation problem is formulated into Normalized cuts in [102], where a

graph partitioning problem is solved. For this example, the complex region boundaries are not

well preserved (figure 2.12(c)).

The Watershed algorithm [116] segments the image into many small partitions (figure 2.12(d)),

which are suitable for applications requiring an over-segmentation of the scene.

JSeg [29] is an image-based segmentation technique which consists of regions splitting,

growing, and merging. The segmentation results are subject to a user-defined color quantiza-

tion threshold and a region merging threshold, whereas our automatic alternating maximization
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algorithm does not have critical threshold to set. The segmentation results produced by JSeg is

not satisfactory for this complex scene as shown in figure 2.12(e).

The implicit assumption used in the statistical region merging [80] is that the observed

color variations inside the same region should be smaller than those across different regions.

The use of local statistics and a single scale are not adequate in handling a complex image

with multi-scale features. Over-merging and under-merging are therefore possible, as shown

in figure 2.12(f).

In our alternating optimization, the global color statistics as well as the local spatial co-

herence are considered. In figure 2.12(g)–(i), the three basic colors of the image are separated.

Specifically, figure 2.12(g) shows the dark gray transparent segment which provides a smooth

color transition between the leaves and the river. The interweaving green and yellow leaves are

reasonably segmented from the complex scene.

Although our soft color segmentation does not necessarily generate a semantic segmenta-

tion of the scene, it does produce good synthesis results which are often used to evaluate the

segmentation quality. For instance, in the DDMCMC method [114], the input is re-synthesized

using p(I|W ) where W is the segmentation result. In our case, we re-synthesize the input using

p(I|L, C). Some results are shown in figure 2.13. Notice that, however, the goal of DDMCMC

method is to produce coherent segmentation for image understanding, while our method opti-

mizes for overlapping and transparent segments to preserve natural and smooth color transition.

2.6.3 Multiscale Processing

Our soft color segmentation can be used to process images at multiple scales. Since we use a

GMM to represent colors and a Gaussian kernel to perform prefiltering before subsampling, the

scale-space theory [124] asserts that no new edge features will be produced while processing

the subsampled data after Gaussian prefiltering.

We propose to use a Gaussian pyramid to reduce dissimilarity of `i among pixels in a single

textured region. The result obtained in a higher level is incorporated as a soft constraint while
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(a) (b) (c) (d) (e)

Figure 2.13: Evaluation by re-synthesis. (a) Input images. (b)-(d) Our segmentation results displayed
as `i(x, y)ci(x, y), 1 ≤ i ≤ 3. (e) Re-synthesized results of our approach using p(I|L, C). See the
online version for color visualization.

optimizing for the result in the immediately lower level. By enforcing the same N (obtained

in the lowest level) to all levels, we introduce the following prior term to replace (Eq. 2.10) as

follows:

P(L) ∝
∏

(x,y)

exp(−(
L(x, y)− Lms(x, y)

σms

)2)
∏

(x,y)

∏

(x′,y′)∈N (x,y)

exp(−ψ(L(x, y),L(x′, y′)))

(Eq. 2.24)

where Lms(x, y) is the result obtained in the immediate higher level in the pyramid, and σms

controls the similarity between L(x, y) and Lms(x, y). Equation (Eq. 2.24) indicates that a

small value of σms gives more penalty which in turn favors that L(x, y) and Lms(x, y) be sim-

ilar in distribution. Figure 2.14 shows the effect of σms. Note in image-based applications,

partitioning one texture pattern into exactly one segmented region may not be always desired,

so the choice of (Eq. 2.10) or (Eq. 2.24) in modeling the prior P(L) depends on the applica-

tions.

When equation (Eq. 2.24) is used, we set σms = 0.5. Figure 2.15 shows the comparison.

The top row compares the result on one example presented by Galun et al. [42]. Our result
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(a) (b) (c) (d) (e)

Figure 2.14: (a) Image of `1(x, y) estimated using (Eq. 2.10) without Gaussian pyramid construction.
(b)-(e) The results using a 5-level Gaussian pyramid. (b) `1(x, y) estimated in the highest level. Tak-
ing the segmentation result obtained in the immediately higher level as a soft constraint and applying
(Eq. 2.24), `1(x, y) is estimated in the original input scale with (c) σms = 1, (d) σms = 0.5 and (e)
σms = 0.01. By using smaller σms, the output soft labels are more uniform in the textured region.

can successfully segment the two patterns on the wall. In the bottom row of figure 2.15, we

compare our result with DDMCMC [114] in texture segmentation.

Using color transfer [95], we can re-color the segments at different scales. In figure 2.16(b),

we show `1(x, y) images produced by using (Eq. 2.24). The top row of figure 2.16 compares

the result on one example presented in Galun et al. [42] where the camouflage patterns are

progressively segmented. In the bottom row, we compare our result using an input image from

Sharon et al. [101]. Our method produces good results where the water is separated from the

tiger while the stripped textures are maintained. We re-color the resulting segments using a

different color (using small scale of analysis) or re-color them using the same color (using

large scale of analysis).

In figure 2.17, we show one instance that our multiple scale segments produced are con-

sistent among each other, allowing the user to specify and focus on regions of interest. For

example, using the multiscale soft segments, we can re-color all the dining facilities along the

waterfront using a single color (figure 2.17(b)), or re-color the individual tables and chairs (fig-

ure 2.17(c)), while the faraway mountain and windmills are re-colored using a small scale in
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(a) (b) (c) (d)

Figure 2.15: We compare our multiscale results with the those in Galun et al. [42] (top) and DDM-
CMC [114] (bottom). Using the multiscale prior (Eq. 2.24), our method automatically converges to two
soft segments, that is, `1 and `2. (a) Input images, (b) `1 images, (c) `2 images. Our multiscale method
deals with textures and produces soft segments with appropriate boundary transparency and spatial co-
herence. The results from [42, 114] are shown in (d). Note that our method works in RGB and does not
work better in intensity images with one grayscale channel.

both cases.

2.7 Applications

In this section, we present the results and applications of soft color segmentation. Our approach

provides a general framework for the following applications which are traditionally addressed

by separate algorithms. Without any human interaction, the results produced by our method are

more reasonable or comparable to previous methods, where user assistance may be required.

2.7.1 Soft color segmentation

Hurricane images Soft color segmentation can be applied to process satellite images of

hurricane, where the specification of a trimap for image matting is difficult in complex images

such as the input shown in figure 2.18(a). Hurricane segmentation from satellite images is

helpful in identifying, analyzing and predicting the formation of hurricanes. Hurricanes are

non-solid and partially transparent. Figure 2.18(b)–(d) show the results produced by our soft
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(a) (b) (c) (d) (e)

Figure 2.16: To show that our approach is capable of producing scene segmentation at multiple scales,
we process (by re-coloring) the selected segment at different scale. These two examples are respectively
presented in Galun et al. [42] (top) and Sharon et al. [101] (bottom). The selected segments are the leg
of the leopard and the torso of the tiger, respectively. (a) Input image. (b) `1(x, y) estimated with scale
prior (Eq. 2.24). Re-colored results using (c) large scale and (d) small scale. The segmentation results
from [42] and [101] are shown in (e).

(a) (b) (c) (d)

Figure 2.17: Consistency of multiple scale segments. (a) Input grayscale image. To show that our
approach is capable of producing soft segmentation at multiple scales, we re-color the image using (b)
large scale and (c) small scale at the chosen regions or scales of interest (the dining facilities along the
waterfront). The result from [114] is shown in (d).

color segmentation. Note that the inferred ` values for the hurricane are proportional to the

cloud density. Figure 2.18(e) shows an unsatisfactory segmentation result produced by hard

segmentation.

Nebulas In nebula analysis, different colors of a nebula represent different components and

temperatures of the nebula. Figure 2.19(a) shows a nebula image, Messier Object M20, cap-

tured by the Hubble Space Telescope. The red emission nebula with its young stars clustered

near its center is surrounded by a blue reflection nebula, where different components and tem-
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(a) (b) (c) (d)

(e) (f) ocean (g) land (h) hurricane

Figure 2.18: Segmentation of a satellite image of a hurricane. (a) Input image. (b)–(d) Our
segmentation results displayed as `i(x, y)ci(x, y), 1 ≤ i ≤ 3. (e) Hard segmentation result.
(f)–(h) The corresponding `i images for (b)–(d). Our approach segments the land from the
hurricane. The ` image in (h) indicates the cloud density of the hurricane. See the online
version for color visualization.

peratures exist across the nebula. Similar to hurricanes, the nebula is not a solid object and

the transition boundary between the red and blue nebulas should be soft and smooth. Results

obtained by hard segmentation cannot faithfully reflect this phenomenon. Figure 2.19(b)–(d)

show our soft color segmentation results in which smooth and natural transition across the

nebulas are achieved.

2.7.2 Image matting

Image matting, in particular Bayesian matting [21], can be regarded as a user-assisted form of

soft color segmentation for the specific case N = 2, if L = {α, 1 − α} where 0 ≤ α ≤ 1,

C = {F, B}: where F and B are the respective optimal foreground and background colors,

when G is restricted in a local neighborhood governed by a user-supplied trimap.

Figure 2.20 shows a result on natural image matting. Our result is comparable to the results

obtained by Bayesian matting [21], while our automatic approach does not use any trimap. As

depicted in our result, the fences of the lighthouse are not smoothed out. Figure 2.21 shows
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blue red stars

(a) (b) (c) (d)

(e) (f) (g)

Figure 2.19: Segmentation of a nebula image. (a) Input image, Messier Object M20. (e)–(g)
The soft labels `i(x, y) corresponding to (b)–(d). Our algorithm segments the red and blue
nebulas with fractional boundaries. Note that the bright stars are not smoothed out due to the
discontinuity-preserving property of our MRF formulation. See the online version for color
visualization.

input foreground by AO background by AO soft labels by AO

Matte by Bayesian Matte by Knockout Matte by Ruzon and Tomasi

Figure 2.20: Comparison with image matting. While approaches in natural image matting use a user-
specified trimap or other user-supplied hints, our method is fully automatic. See the online version for
color visualization.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 2.21: Boundary smoothness and transparency for an object with long hairs. (a) Input
image. (b) One automatically segmented region. (c) ` image of the region (or alpha matte).
(d)–(g) zoom-in views of the results obtained using our method. Because no trimap is used,
long and thin hairs are missed while short hairs are still preserved. See the online version for
color visualization.

an example in which long hairs are present. Our segmentation result is satisfactory for the

example except for the long hairs because no trimap is used.

2.7.3 Color transfer between images

A single Gaussian is used in [95] to model the global color statistics of the source and target

images. If diversified colors are present in any of inputs, image patches must be manually

specified to divide the colors into separate clusters. However, for complex images, it is difficult

for user to specify the right patches, and a small number of patches is inadequate to discern

different color statistics. Here we propose to perform soft color segmentation on both the

source and target images before applying color transfer so that the transfer process is fully

automatic. Recall that our soft color segmentation models the global color distribution by a

GMM, that is, each color region (not necessarily connected) corresponds to a component of
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(a) (b) (c)

(d) (e) (f) (g)

Figure 2.22: (a) The graffiti image. (b) Hard segmentation manually produced, where the region
boundaries are indicated by the solid green curves. (c) Soft segmentation produced by our AO algorithm.
The three converged color regions are shown. (d) Color transfer result using the hard segmentation
shown in (b). (e) Color transfer result using the soft segmentation shown in (c). Zoom-in views of the
result for (f) hard segmentation and (g) soft segmentation. The color transfer result in (g) is smoother
and more natural. The color transfer equation in [95] is used to generate (d)–(g). See the online version
for color visualization.

the converged GMM. We therefore define the final transferred color for a pixel g(IT (x, y)) by:

g(IT (x, y)) =
∑

j

`Tj
(x, y)(

σSi

σTj

(IT (x, y)− µTj
) + µSi

) (Eq. 2.25)

where `Tj
(x, y) is the soft label corresponding to the Tj-th Gaussian component of the GMM

of the target image, obtained by our AO algorithm for soft color segmentation. The following

examples show that our GMM model is more suitable than a single Gaussian, used in [95],

in guiding the color transfer process. Our natural color transfer with soft color segmentation

achieves smoother and more natural color transition, especially for regions rich in colors and

textures.

Figure 2.22 first demonstrates color transfer on a complex scene based on soft color seg-

mentation, which is more preferable in comparison to the one based on hard/binary segmenta-

tion. The transferred result using soft color regions (figure 2.22(g)) looks smoother and more
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natural, as opposed to that given by hard segmentation where unnatural and abrupt changes in

color are observed among adjacent color patches (figure 2.22(f)).

Figure 2.23 and figure 2.24 compare the color transfer results using a GMM model obtained

by our AO algorithm as opposed to using a single Gaussian model [95] for guiding the color

transfer process. For figure 2.23, the source image and its soft segments were already shown in

figure 2.12(g)–(i). The soft segments for the target segments are shown in figure 2.23(b)–(d).

Our transfer result is shown in figure 2.23(e). Using the GMM model and soft color segments

to guide the color transfer process, the color of the rivulet (figure 2.12) is faithfully transferred

to the river (figure 2.23). In comparison with [95], using a single Gaussian, which does not

adequately model the global color distribution of the image, as depicted in figure 2.23(f) and

(g). The transfer results are unsatisfactory as undesirable mixture of colors of the leaves and

the river is easily observed.

Figure 2.24(a) and (b) show another source/image pair. Figure 2.24(c) is the transfer result

generated using our approach. Comparing with the respective results generated by [95] in fig-

ure 2.24(d) and histogram equalization in figure 2.24(e), our result is more natural and suffers

less saturation.

2.7.4 Image correction using image pairs

We have extended the idea of color transfer using image pairs to the task of image intensities

corrections:

Image deblurring using normal/low exposure pair Given two images of the same scene

taken almost simultaneously and without a tripod: 1) one is acquired under normal exposure

and so motion and shape blur may be present, 2) the other is taken with a short shuttle speed

and so the image is crisp but under-exposed, we want to transfer the color from image 1 to

image 2 so as to generate a bright and crisp image. Since the source and the target images have

strong spatial similarity, after segmenting the respective images using our AO approach, we
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(a) (b) (c) (d)

(e) (f) (g)

Figure 2.23: Comparison of color transfer using our approach and [95]. (a) The target image
(the source image is shown in figure 2.12(a)). (b)–(d) Soft color segmentation results. (e)
Color transfer result using our approach in which soft color segmentation is performed before
transferring the colors. (f) Color transfer result without soft color segmentation [95]. (g) Color
transfer result by histogram equalization. The results in (f) and (g) show undesirable mixture
of colors of the leaves and the river. See the online version for color visualization.

can use, as the criterion, the largest overlapping area of the segmented regions for matching the

Gaussians, so as to perform the associated color transfer from the source to target to deblur the

image. Figure 2.25 shows our result of image deblurring.

Image denoising using flash/no flash pair Similarly, we can perform image denoising using

two images: one is taken with camera flash (flashed image) and the other is captured using

a high ISO configuration without flashing (non-flashed image) to preserve the original scene

color and ambiance. Images captured with a high ISO setting contain a considerable amount

of noise. In [86], the flashed image is used to denoise the non-flashed image. In our method,

we first use a median filter to reduce the amount of noise. Then, both the source and target

images are segmented using our AO algorithm. Finally, we map the colors from the non-

flashed image to the flashed image to construct our denoised and sharp image which faithfully

preserves the original scene ambiance. Figure 2.26 shows and compares the denoised result.

Our current result does not transfer shadows though, which on the other hand can be performed

as described in [36].
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(a) (b) (c) (d) (e)

Figure 2.24: Comparison of color transfer on a natural scene using our approach and [95].
(a) An old photograph of a downtown scene captured on an overcast day. (b) The target im-
age captured on a sunny day. (c) Our transfer result. (d) Transfer result generated by [95]
where unacceptable mixture of colors are present. (e) Transfer result generated by histogram
equalization in which undesirable saturation is observed. See the online version for color visu-
alization.

(a) (b) (c) (d)

Figure 2.25: Image deblurring using color transfer with/without soft color segmentation. (a) Source
image. (b) Target image. (c) Result using our approach. (d) Result using a single Gaussian model. Note
that the colors in result (d) are not preserved. See the online version for color visualization.

2.7.5 Colorization

For applications in image colorization, we only have the luminance channel in an input grayscale

image. To constrain the color transfer, we assume that two pixels in the same region have sim-

ilar colors if they have similar luminance value. Similar to the above transfer applications, we

perform soft color segmentation in both the source and target images. Here, the only modifica-

tion of our method is that we perform alternating optimization only on the luminance ` channel

and assign the same distribution to the absent ab channels. Figure 2.27 shows one result. Note

in our result the smooth and natural transition between blue sky and green trees. The whole

process is fully automatic.
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(a) (b) (c) (d)

Figure 2.26: Comparison on image denoising. (a) Non-flashed source and flashed target im-
ages. Results and zoom-in views obtained by (b) our approach, (c) [86], and (d) [36]. Our
method makes use of the strong spatial relationship between the source and target images given
by the soft color segmentation. Therefore, the red shade of the sofa, the bottles and stones are
not mixed up. Such undesirable mixture is observed in the result in (d). The result using joint
bidirectional filter [86] in (c) is still very noisy. See the online version for color visualization.

2.8 Summary

We have described an algorithm based on a Bayesian optimization framework to address the

problem of soft color segmentation. An alternating optimization (AO) procedure is used to

(a) (b) (c) (d)

Figure 2.27: Color transfer to a gray scale image. (a) The source image. (b) The target image.
(c) Result by our approach. (d) Result by [122]. See the online version for color visualization.
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simultaneously optimize both global and local parameters in the global objective function. We

have demonstrated that our method produces reasonable segmentation in the form of overlap-

ping and transparent color regions, despite the presence of rich colors, textures, shading, soft

shadows and image noises. Our soft color segmentation can be applied at multiple scales. This

general approach has found useful applications such as image matting, color transfer and im-

age correction. Our method combines the advantages of global color statistics and local image

compositing, while preserving the necessary spatial and color coherence.
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Chapter 3

Texture Flow Estimation

3.1 Overview

Texture flow estimation is a valuable step in a variety of vision related tasks, including tex-

ture analysis, image segmentation, shape-from-texture and texture remapping. This chapter

describes a novel and effective technique, based on a Bayesian optimization framework, to es-

timate texture flow in an image given a small example patch. The key idea consists of extracting

a dense set of features from the example patch, where discrete orientations are encapsulated

into the feature vector, such that rotation can be simulated as a linear shift of the vector. This

dense feature space is then compressed by PCA and clustered using EM to produce a set of

small set of principal features. Obtaining these principal features at varying image scales, we

can compute the per-pixel scale and orientation likelihoods for the distorted texture. Com-

bined with neighborhood smoothness prior, the final texture flow estimation is formulated as

the MAP solution of a labeling Markov network, which is solved using belief propagation. Ex-

perimental results on both synthetic and real images demonstrate good results even for highly

distorted examples.

3.2 Background and Motivation

Texture flow estimation serves as the starting point of many common vision tasks including

segmentation, recognition, shape-from-texture, and texture remapping. Texture flow estimation
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(a) (b) (c) (d) (e)

Figure 3.1: An input image and its texture flow estimation. (a) The user specified example
patch. (b) The input image. (c) The estimated texture flow field. Results of flow-extraction
from recent proposed techniques :(d) Paris et al. [82], and (e) Hays et al. [48].

is often targeted towards images of textured 3D surfaces in a natural scene [70, 74], where

texture flow arises due to the geometric variation of non-planar surfaces or imaging under

perspective. It is assumed that the underlying texture has some repeating structure [117] that is

varying in the image (i.e. distorted) in terms of scale and orientation. We called this distortion

texture flow. In this chapter, we address texture flow estimation for a variety of texture types that

exhibit reasonably strong distortion in both scale and orientation. These include textures found

in natural images as well as synthetically generated images. Figure 3.1 shows an example.

Our texture flow estimation begins with a small example patch of the texture that is specified

by the user. From this example patch, a set of principal features are extracted that are used to

compute the orientation and scale likelihoods of each pixel lying in a distorted texture region.

Using these per-pixel likelihoods, we formulate the final texture flow estimation as a Markov

Random Field (MRF) and solve it using a variant of belief propagation. We demonstrate the

effectiveness of this approach on a variety of inputs, including natural and synthesized images

and show the usefulness of this extracted flow field for texture remapping.

There are two main contributions of this work. First, while inspired by previous approaches,

a novel texture feature, along with a procedure for extracting principal features from the sample

patch, is introduced. These principal features are suitable for estimating the orientation and

scale of texture pixels while making no assumptions about the underlying texture properties.
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Second, the texture flow estimation problem has been formulated in Markov network, which

can resolve orientation and scale to recover reasonably complex flow fields. The texture feature

extraction and MRF formulation are both contributions in themselves, as the feature extraction

approach can be beneficial to existing texture analysis and segmentation algorithms, as well as

our MRF formulation, which can be used with other feature extraction methods to label texture

flows.

3.3 Related Work

There is a great deal of work targeting texture analysis and flow estimation. We discuss ex-

amples most relevant to our approach and refer the reader to the following recent articles by

Lazebnik et al. [62], Ben-Shahar and Zucker [9] and Lefebvre and Hoppe [63] for more thor-

ough overviews.

In the context of flow orientation, typically for segmentation, early work by Rao et al. [92,

91] proposed orientation fields estimation of gradient-like texture using first derivative Gaus-

sian filters and performed local averaging to compute coherent orientation flows. Following

work on scale-space and nonlinear diffusion, Perona [85] proposed orientation diffusion which

considered flow directions in the flow smoothing step to improve estimation results. In [113],

Tschumperle et al. proposed using vector set regularization with anisotropic diffusion. Shahar

et al. [9] proposed to incorporate curvature information and enhance global continuation of

estimated texture flows. Paris et al. [82] use band-pass filtering to enhance flow data before

estimation.

In a shape-from-texture context, the shape recovery process is generally broken into two

independent steps: 1) texture flow estimation and 2) shape recovery using the estimated flow.

In [74], Malik and Rosenholtz modeled texture distortion by a dense set of 2D affine trans-

formations and estimated these transformations by spectrograms matched in the frequency

domain, while Clerc and Mallat [24] showed how wavelets can be employed for this purpose.
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In [41], Forsyth modeled surface texture via a marked point process and estimated the affine

transformations on these points. An EM-like procedure is introduced to reconstruct global sur-

face from the sparse texture distortion map. This idea is extended by Lobay and Forsyth in [70]

to handle more complex textons. Lazebnik et al. [62] introduces RIFT to models texture distor-

tion on surface by sparse local affine regions. Hays et al. [48] introduced a technique to detect

texture regularities in natural scenes using higher-order correspondence.

In the context of texture classification, research has been focused on developing rotation

and scale invariant classifiers. In [57], Kashyap and Khotanzad developed a circular simul-

taneous autoregressive model for the extraction of rotation invariant texture features. Cohen

et al. [25] and Chen et al. [19] obtain rotation and scale invariance by training the HMM on

the texture samples from a wide variety of angles. Wu et al. [126] proposed spiral resam-

pling and sub-band decomposition to learn the rotation classifier. In Gabor filtering (or other

filtering techniques), rotation invariance is realized by computing rotation invariant features

from the filtered images or by converting rotation variant features to rotation invariant features.

Representative works using filtering techniques include [14, 33, 121, 88, 90, 81, 51].

In the context of texture synthesis, several techniques incorporate texture flow to guide the

synthesis output (e.g. see [35, 133, 60, 63]). Specifying “this guidance flow field” however

is often done manually: such as demonstrated by Ashikhmin [2] and Liu et al. [69] that allow

texture flow to be specified using a paint-like interface or by manipulating a mesh grid.

Distinguishing our work from these previous approaches, we note that the flow estimation

for segmentation focuses mainly on gradient like textures and it utilizes high frequency details

for estimation. These approaches do not consider overall structure of the underlying texture

and typically cannot handle large variations in scale. For the shape-from-texture approaches,

textures are assumed to be lying on smooth 3D surfaces and the estimated distortion map is

generally not very complex. Also, the underlying texture for shape-from-texture is usually

assumed to be an isotropic texture. In texture synthesis, the texture flow is often specified by
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Figure 3.2: This figure overviews the feature extraction process from the example patch. Initial
features are extracted about each pixel. The entire feature space (of all pixel features) is then
decomposed using PCA and each feature is projected onto the first principal component of the
PCA decomposition. A small set of principal features are extracted by first running k-means
clustering on the per-pixel features and using the cluster means as the initializations of principal
features. The feature space is then modeled using a gaussian mixture model (GMM) and the
principle features are taken to be the means and covariance matrices of k gaussians refined via
EM.

the user. While the texture flow has been proven to be effective for generating better quality

texture synthesis results, there is not much attention on estimating the texture flow from natural

scene or from a synthesized texture. In our work, we desire to extract flow from a variety of

texture types, and are make no assumptions about the texture’s structure. Moreover, while

we work from an example patch, we do not assume that the target distortion is a matter of

piecewise affine transforms of this given patch.

3.4 Texture Features

3.4.1 Feature Representation

Given an example patch, either extracted directly from the input image, or from an example

known to be sufficiently similar the target image, a set of features (the term descriptors can

also be used) are derived that will be employed to estimate orientation and scale. Our feature

extraction is inspired by the local binary pattern (LBP) operator proposed by Ojala et al. [81]

for segmentation. In this approach, a feature is constructed by collecting thresholded pixels at

varying orientations at a fixed radius about a pixel which are organized into a linear array. The
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benefit of this feature construction is that rotation can be simulated by shifting the linear array,

thus allowing this single feature to estimate multiple orientations.

This basic idea is extended in the following manner as shown in figure 3.2. RGB pixel data

is collected at 24 orientations at 5 discrete radii about each pixel in the sample patch. This

results in a 24 × 5 × 3 dimensioned feature per pixel. Assuming a reasonably sized sample

patch, e.g. 36× 36, this results in approximately 500000 intensity values to describe the input

patch. Such dense features are too large for practical use and the following steps are taken to

reduce the feature size.

First, the 24 × 5 × 3 per pixel feature space sampled over the entire patch is decomposed

via PCA. Each feature is then projected onto the first principal component, resulting in a single

24 dimensioned feature per pixel. This PCA projection captures the salient information from

the multiple radii and multiple color channels while maintaining the linear-shift property.

3.4.2 Principal Features Extraction

The per-pixel features can further be reduced to a set of so called principal features. This

is achieved by k-means clustering followed by expectation maximization (EM) as shown in

figure 3.2. Each pixel feature is considered to be a point in high dimensional space and the

distribution of these points is assumed to follow a Gaussian Mixture Model (GMM) consisting

of k gaussians. The extracted principal features are taken to be the estimated gaussian means of

the GMM. Similar procedures have been used in other work (e.g. [70, 73]) to group redundant

training features.

To estimate the k means of the GMM, we first run k-means clustering on the PCA pixel

features. The resulting cluster centers are used as initializers for the Gaussian means. We also

determine the number of Gaussians during k-means clustering. After EM converges, principal

features having very small weights assigned to their corresponding Gaussian (implying that

these means model only a few instances in the sample space) are removed. Typically, after the
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EM procedure, we are left with only 30 to 40 principal features that represent the entire sample

texture patch. Thus, using PCA projection and EM, we have reduced our initial feature space

from more than 500000 to less than 1000.

To handle scale, the principal feature extraction procedure is performed at multiple scales

of the input patch. For our implementation, we use eight scales, from 0.25 to 2. The fea-

ture sampling and reduction procedure mentioned above is applied for the sample patch at the

various scales.

3.5 MRF Formulation

The texture flow field estimation is formulated as an energy minimization problem with a well-

defined objective function for a Markov network. The global objective function is described

first, followed by the description of the likelihood and prior terms for the MRF.

3.5.1 Global Objective Function

Given the principal features extracted from the example texture patch, the goal is to estimate

the texture flow in an input image with the same texture. This problem can be formulated as a

discrete label assignment problem where we wish to assign an orientation label, O, and a scale

label, S, to every pixel in the distorted texture image. We assume that our label assignment

process follows the MRF property, which has been demonstrated to be effective at overcoming

noise and correcting errors in several vision-related problems (see recent examples [38, 58,

106]). For our problem, a Markov network is constructed where each node {ni}N
i=1 (N is

the number of nodes) corresponds to a pixel in the distorted texture, and for which a four-

neighborhood system is defined to have edges, E , connecting each node. Under the MRF
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configuration, our global objective function is defined in the standard form:

E(L) = max
L

N∏
i=1

exp(−Vi(li))
∏

(i,j)∈E
exp(−Vij(li, lj))

= min
L




N∑
i=1

Vi(li) +
∑

(i,j)∈E
Vij(li, lj)


 , (Eq. 3.1)

where l ∈ O×S is the set of all possible labels, L = {li}N
i=1 is a configuration with label li as-

signing to node ni, Vi(li) is the data cost function for assigning label li to the node ni, Vij(li, lj)

is the pairwise potential function for assigning labels li and lj to the pair of neighbor nodes

ni and nj in the Markov network. The goal is to find a configuration L such that the global

objective function is optimized. In a Bayesian MRF formulation, the configuration L corre-

sponds to the maximum a posteriori (MAP) solution, where
∏N

i=1 exp(−Vi(li)) corresponds to

the likelihood and
∏

(i,j)∈E exp(−Vij(li, lj)) corresponds to the prior. While the definition of

the energy function is standard for a Markov network, the definitions of the likelihood and the

prior costs are unique for each different problem. Our likelihood estimation and prior term are

detailed in the following subsections, however, optimizing the MRF is described first.

To minimize the MRF cost function, recent state-of-the-art MRF-based approaches that op-

timized their objective functions using either belief propagation (BP) ([38, 106]) or via graph-

cut [58] were considered. In our implementation, orientation labels are defined at each 15◦ for

eight different scale labels linearly from 0.25 to 2.0, resulting in in a total of |O| × |S| = 192

labels. Our estimation results can be further improved by using even finer quantization in ori-

entation and scale, at a trade-off of higher computational and memory costs. Using our current

quantization, the number of labels for our problem is higher than those problems addressed

in [38, 58, 106] and as a result, we elected to use Priority-BP [59], a variant of belief propaga-

tion, for our label assignment process.

The significant difference between BP and Priority-BP is the use of a dynamic label prun-

ing procedure and a priority message passing scheme to help resolve the huge memory require-

ments in storing all possible label assignments at each node. As described in [59], Priority-BP
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can tolerate label assignments with thousands of labels. While our problem does not have

thousands of labels, the number is sufficiently high to warrant the use of Priority-BP. Using

Priority-BP we find that we only need to store 20 to 30 labels per node for each updating

iteration, while still obtaining good results.

3.5.2 Likelihood

Given the set of principal features generated from the sample texture computed at a resolution

of 24 orientations and 8 different scales, denoted as labels T , where T = {Tl}|O|×|S|l=1 , we

measure the likelihood of texture feature ti extracted from a pixel position at ni in input image

is to be generated from each label, l, where l ∈ |O| × |S|, is represented by the features in

Tl. Since each Tl is assumed to follow a GMM distribution, and with the assumption that

observation noise follows an independent identical distribution, we define our likelihood as

follows:

P ({ti}N
i=1∈T |L)=

N∏

i=1

P (ti∈Tli |L)

=
N∏

i=1

exp(−(ti−µT k
li

)T Σ−1
T k

li

(ti−µT k
li

))

=
N∏

i=1

exp(−Vi(li)) (Eq. 3.2)

where N is the number of nodes in the MRF, and (µT k
li

, ΣT k
li

) are the normalized mean and

the covariance matrix of the k-th Gaussian in Tli . This k-th Gaussian is selected as the principal

feature from Tl that is most similar to ti, i.e. k = arg mink ||ti − T k
l ||2, and is denoted as T k

li
.

Although we can use the weighted sum of errors of all the Gaussian in Tli , we find that using

the most similar principal feature for each label gives the best results.
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Figure 3.3: Compatibility matrix(W (TlOi
, TlOj

)f(|lOi − lOj |)) for different texture. The darker
regions in the plots represent where the texture is more similar for pairs of orientations. (a)
a grass texture, (b) compatibility matrix of grass texture, (c) zebra texture, (d) compatibility
matrix for zebra texture. In the grass texture, there is no rotation symmetry, while in the zebra
texture, rotation symmetric exist at 180◦.

3.5.3 Prior

The Markov property asserts that the conditional probability of a site in the Markov network

depends only on its neighboring sites, which means that our prior is defined over each pair

of neighbor nodes in the Markov network. We adopt a smoothness assumption for our prior,

which assumes the changes of both orientation and scale are small across neighboring sites. To

avoid smoothing discontinuities present in the flow field a truncated linear cost model in our

prior term is used as discussed in the following.

Recall that our label l ∈ O × S consists of orientation O and scale S components. Since

there exists no statistical relationship between the scale and orientation, we assume the orien-

tation prior P (O) and the scale prior P (S) are independent. Hence, our prior P (L) can be

expanded into the joint probability of P (O) and P (S):
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P (L)=P (O)P (S)

=
∏

(i,j)∈E
exp(−VOij

(lOi , lOj ))
∏

(i,j)∈E
exp(−VSij

(lSi , lSj ))

=
∏

(i,j)∈E
exp(−(VOij

(lOi , lOj ) + VSij
(lSi , lSj )))

=
∏

(i,j)∈E
exp(−Vij(li, lj)) (Eq. 3.3)

where lOi ∈ O and lSi ∈ S denote respectively the orientation and scale component of li,

VOij
(lOi , lOj ) and VSij

(lSi , lSj ) are the pairwise potential functions of P (O) and P (S) respec-

tively.

We first define VSij
(lSi , lSj ). Since our scale labels S are defined linearly, we use a simple

truncated linear model [38] for our cost function as follows:

VSij
(lSi , lSj ) = min(cS |lSi − lSj |, dS), (Eq. 3.4)

where cS is the rate of the cost, and dS controls when to terminate increasing costs. This

model is desirable because it allows discontinuities in the labeled MRF by ceasing to increase

costs after the scale label difference, cS |lSi − lSj |, is greater than dS . A similar cost function was

used in a BP approach for stereo [106], although rather than truncating the linear cost, they use

a robust function that changes smoothly from zero to a constant as the cost increases. In our

implementation, we set cS = 10/(|S|− 1) and dS = 5 such that the cost stops increasing when

the label difference is more than half the total number of labels |S|.
To model the orientation prior, VOij

(lOi , lOj ), we also use a truncated linear model. However,

the effects of rotation symmetry found in the example patch needs to be incorporated into the

cost function, VOij
(lOi , lOj ) instead of directly using the label difference. Our modification to

the linear model is as follows:
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VOij
(lOi , lOj ) = min(cOW (TlOi

, TlOj
)f(|lOi − lOj |), dO) (Eq. 3.5)

where

W (TlOi
, TlOj

) =
1

|TlOi
||TlOj

|

|T
lO
i
|∑

m=1

|T
lO
j
|∑

n=1

||µT m

lO
i

− µT n

lO
j

||

is the average Euclidean difference between the Gaussian means of principal features in T
at orientation defined by lOi and lOj , and W (TlOi

, TlOj
) ∈ [0, 1] after normalization,

f(|lOi − lOj |) = { |l
O
i − lOj |, |lOi − lOj | ≤ |O|/2
|O| − |lOi − lOj |, |lOi − lOj | > |O|/2

defines the label difference so that the angle difference between the two label lOi , lOj within

[0, 180◦). Figure 3.3 displays the compatibility matrix W (TlOi
, TlOj

)f(|lOi − lOj |) for different

texture samples, we can see that our definition of W (TlOi
, TlOj

) models the rotation symmetric

properly. We set cO = 20/(|O| − 1) and dO = 5 which truncate the costs when the angle

difference between two labels is larger than 90◦. With both definitions of VSij
(lSi , lSj ) and

VOij
(lOi , lOj ), it is easy to observe that they take the same weights in joint function Vij(li, lj).

Combining the definition of our likelihood (Eq. 3.2), prior (Eq. 3.3) and the global objective

function (Eq. 3.1), our Bayesian MRF is formulated as:

E(L)=min
L




N∑

i=1

Vi(li) +
∑

(i,j)∈E
(VSij (l

S
i , lSj ) + VOij (l

O
i , lOj ))


 .

3.6 Experiments

Our algorithm is evaluated using both natural and synthetic image examples. For the natural

image examples, we compare our results with those obtained by two recent flow estimation

approaches proposed by Paris et al. [82] and Hays et al. [48]. We admit that this is not entirely
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a fair comparison as these approaches target specific types texture types; gradient-like textures

in [82] and regular textures in [48]. However, we use these recent approaches to demonstrate

the advantage of our method to target diverse texture types.

For examples on synthetic examples, we use the recent texture synthesis technique intro-

duced by Lefebvre and Hoppe [63] that synthesizes textures for over a specified flow field.

This gives us the ability to compare our results using the specified flow field as a ground truth

comparison.

3.6.1 Real World Examples

For the real world examples, while we make no assumption about the texture type, we do

assume the user specified example patches are not distorted and contain sufficient textons to

represent the texture. We also assume reasonably constant shading in the distorted texture.

Significant shading or shadows should be reduced before applying our algorithm. Various

techniques are available to address this task and for our purposes we will assume such pre-

processing has already been applied.

Figure 3.1 shows the paved stone road example used in figure 3.1. Our estimated texture

flow field (figure 3.1(b) is consistent with human perception in terms of scale and orientation

of the stone pattern. Figure 3.1(d) shows a result from orientation extraction using Paris et

al. [82]. Since their approach assumes a gradient-like texture its breaks down for this example.

Figure 3.1(e) shows a result from Hays et al. [48]. While the approach in [48] offers the benefit

of being fully automated, it targets textures with lattice structures. As a result, the approach

works well for a small portion of the image, but as the texture becomes increasingly distorted

under perspective projection the approach is unable to follow the texture flow.

Figure 3.4(a) shows a zebra example. We select a sample texture patch from the zebra body

as indicated by the green box. The shading of the zebra texture is first normalized as shown in

figure 3.4(b) which can be achieved with various techniques, such as homomorphic filtering.
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(a) (b) (C)

(d) (e) (f)

Figure 3.4: (a) Zebra image with the example patch indicated in the green box. (b) The esti-
mated texture flow field of zebra body. (c) Texture re-synthesized using the example patch. (d)
Shading normalized over the zebra’s body. (e) The estimated orientation field from [82]. (f)
Detected regular texture lattice from [48]
.

We show our estimated texture flow field in figure 3.4(c). Using the extracted texture flow

field, we perform texture replacement using the flow-guided texture synthesis [63] as shown

in figure 3.4(d). The example texture is used to replace the original zebra texture. Note how

similar the re-synthesized version looks to the original. Figure 3.4(e) shows a result from [82]

which scale changes are not modeled. Their approach also does not handle discontinuity and

singularity well. Figure 3.4(f) shows a result from [48]. The texture violates their regular

texture assumption and can only detect a small region of the texture.

Figure 3.5 compares our extract on an example demonstrated in the “near regular” texture

synthesis proposed by Liu et al. [69] where a lattice structure is specified by user to guide the

synthesis. Figure 3.5(a) show an example from in [69]. Our estimated texture flow field is

shown in figure 3.5(b). Figure 3.5(c) shows the result from [48]. The user specified control

lines from Liu et al. [69] are shown in figure 3.5(d). Our result is better then result from [48]

and is comparable to the orientation of control lines manually specified in [69].
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(a) (b) (c) (d)

Figure 3.5: Texture flow estimation of real image. (a) Input image from [69]. An example
texture patch is selected from the input image as shown in the green box. (b) Our estimated
texture flow field. (c) Result from [48]. (d) The user specified control line from [69].

3.6.2 Synthetic Examples

Experiments for estimating the texture flow using synthetic examples are shown in figure 3.6.

The benefit of synthetically generated textures is that we can control the difficult of the testcase

as well as provide a mechanism to test against ground truth. Seven different sample textures

are shown at the top of the figure. The example patch sizes are shown below each sample in

the figure. The input images are all 256 × 256. The texture examples vary significantly, with

different levels of symmetry, texton scale, and texton distribution.

For the first example, a texture flow field with orientation varying from 0◦ to 180◦ and a

fixed the scale is used. Even though the scale is fixed, we apply our algorithm to test over all

orientation and scale sizes. For each texture example, the root mean squared error (rms) of our

estimated flow field against the known flow field is shown in parentheses for orientation and

scale respectively. For orientation, the average rms is 9.73◦ for all examples. This is less than

the quantization angle of 15◦. In addition, only texture four (labeled at T4 in the figure) has

minor problems with scale estimation.

The second test case tests the accuracy of scale estimation. The scale of the texture flow

field are changed while the orientation is fixed. In this test case, the orientation is estimated

correctly (with rms less than 1◦). The average rms of scale is 0.09. Again, the rms of each test

example is smaller than the quantized scale (0.25).
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The third test case tests our algorithm under perspective projection and the ground truth

texture flow field is defined by a plane under projection and both orientation and scale are

distorted. Our estimated average rms for orientation and scale are 11.26◦ and 0.19 respectively.

The rms of the orientation for texture example five slightly exceeds the quantization angle.

This is due to the fact that this particular texture becomes homogeneous under down sampling.

The final test case, the ground truth texture flow field is a spiral structure with both orienta-

tion and scale changing at every pixel. This complex texture flow field is found less frequently

in natural structure but is common in manmade objects. Under this difficult test case, our algo-

rithm is still reliable at estimating the texture flow field with average rms of orientation equal

to 13.53◦ and average rms of scale equal to 0.12.

For that vast majority of the test cases, we find that the rms for both orientation and scale are

smaller than the quantization error. This demonstrates that our extracted principal features are

effective in their estimation of orientation and scale likelihoods for local texture neighborhoods,

and that our MRF label assignment process is accurate and robust.

3.7 Summary

We have presented a robust technique for estimating orientation and scale flow fields in a

distorted texture given a sample patch. We formulated this problem into a discrete labeling

Bayesian Markov Random Field with can be solved effectively by using priority belief propa-

gation. Our results show that our technique can be used with a variety of texture, and is able to

produce good results on both natural and synthetic images for considerably distorted textures.

While the use of the RGB space in our feature sampling generates good results, a perceptual

color space or gradient space may help to ameliorate the effect of illumination. Future work

includes exploiting our approach to help normalize the underlying texture for general use in

texture-synthesis.
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Ground Truth T1 : 32× 32 T2 : 64× 64 T3: 64× 64 T4 : 64× 64 T5: 64× 64 T6 : 64× 64 T7: 64× 64

Orientation rms: (8.53◦, 0.00) rms: (7.39◦, 0.01) rms: (8.29◦, 0.09) rms: (10.37◦, 0.25) rms: (14.16◦, 0.00) rms: (10.31◦, 0.00) rms: (9.04◦, 0.03)

Scale rms: (0.00◦, 0.07) rms: (0.62◦, 0.05) rms: (0.00◦, 0.10) rms: (0.00◦, 0.15) rms: (0.00◦, 0.14) rms: (0.00◦, 0.06) rms: (0.00◦, 0.09)

Perspective rms: (14.49◦, 0.21) rms: (13.47◦, 0.17) rms: (10.77◦, 0.18) rms: (7.72◦, 0.22) rms: (15.30◦, 0.19) rms: (7.94◦, 0.17) rms: (8.89◦, 0.19)

Spiral rms: (14.22◦, 0.05) rms: (15.24◦, 0.06) rms: (13.40◦, 0.19) rms: (13.82◦, 0.22) rms: (17.15◦, 0.15) rms: (14.09◦, 0.07) rms: (13.77◦, 0.08)

Figure 3.6: Our algorithm is tested on several synthetic examples. Seven sample textures are
shown on the top row. Four test cases are demonstrated: rotation, scale, perspective projec-
tion and spiral. Ground truth for the texture flow field are shown for comparison in the left
most column. For each test case, the upper row shows the distorted texture generated using
anisotropic texture synthesis from [63]. The lower row shows the estimated texture flow field
with root mean square (rms) errors for orientation angle and scale respectively. Since orienta-
tion is quantize by 15◦ and scale by 0.25, we find that for most of our test case, the rms of both
orientation and scale are below our quantization size. This means that estimation errors are
likely attributed to the angle and scale quantization than errors in the actual label assignment.
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Chapter 4

Image/Video Deblurring using a Hybrid
Camera

4.1 Overview

We describe a novel approach to reduce spatially-varying motion blur in video and images

using a hybrid camera system. A hybrid camera is a standard video camera that is coupled with

an auxiliary low-resolution camera sharing the same optical path but capturing at a significantly

higher frame rate. The auxiliary video is temporally sharper but at a lower resolution, while

the lower-frame-rate video has higher spatial resolution but is susceptible to motion blur.

Our deblurring approach uses the data from these two video streams to reduce spatially-

varying motion blur in the high-resolution camera with a technique that combines both decon-

volution and super-resolution. Our algorithm also incorporates a refinement of the spatially-

varying blur kernels to further improve results. A Bayesian optimization framework is used to

effectively combine these likelihood measurements into a single global objective function. We

solved the global objective function by using alternating optimization (AO) procedure. Our

approach can reduce motion blur from the high-resolution video as well as estimate new high-

resolution frames at a higher framerate. Experimental results on a variety of inputs demonstrate

notable improvement over current state-of-the-art methods in image/video deblurring.
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(a) (b)

Figure 4.1: Tradeoff between resolution and frame rates. (a) Image from a high-resolution,
low-frame-rate camera. (b) Image from a low-resolution, high-frame-rate camera.

4.2 Introduction

This chapter introduces a novel approach to reduce spatially-varying motion blur in video

footage. Our approach uses a hybrid camera framework first proposed by Ben-Ezra and Na-

yar [7, 8]. A hybrid camera system simultaneously captures a high-resolution video together

with a low-resolution video that has denser temporal sampling. The hybrid camera system is

designed such that the two videos are synchronized and share the same optical path. Using

the information in these two videos, our method has two aims: 1) to deblur the frames in the

high-resolution video, and 2) to estimate new high-resolution video frames at a higher tem-

poral sampling. While a high-resolution, high-frame-rate camera could be used to obtain this

data, such cameras are expensive and require high-speed data streaming and substantial mem-

ory storage. As a result, such high-end cameras are generally restricted to use in a studio or

laboratory settings. A hybrid camera system, on the other hand, is relatively cheap to construct.

The previous work in [7, 8] using a hybrid camera system focused on correcting motion blur

in a single image due to translational ego-motion in a static scene and was limited to globally

invariant motion blur. In this chapter, we address the broader problem of correcting spatially-

varying motion blur and aim to deblur temporal sequences. In addition, our work achieves
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Figure 4.2: The processing pipeline of our system. Optical flows are first calculated from
the Low-Resolution High-Frame-Rate (LR-HFR) video. From the optical flows, spatially-
varying motion blur kernels are estimated (Section 4.4.2). Then the main algorithm performs
an iterative optimization procedure which simultaneously deblurs the High-Resolution, Low-
Frame-Rate (HR-LFR) image/video and refines the estimated kernels (Section 4.5). The output
is a deblurred HR-LFR image/video. For the case of deblurring a moving object, the object is
separated from the background prior to processing (Section 4.6). In the deblurring of video, we
can additionally enhance the frame rate of the deblurred video to produce a High-Resolution,
High-Frame-Rate (HR-HFR) video result (Section 4.7).

improved deblurring performance by more comprehensively exploiting the available informa-

tion acquired in the hybrid camera system, including optical flow, back-projection constraints

between low-resolution and high-resolution images, and temporal coherence along image se-

quences. In addition, our approach can be used to increase the frame rate of the high-resolution

camera by estimating the missing frames.

The central idea in our formulation is to combine the benefits of both deconvolution and

super-resolution. Deconvolution of motion blurred, high-resolution images yields high-frequency

details, but with ringing artifacts due to lack of low-frequency components. In contrast, super-

resolution-based reconstruction from low-resolution images recovers artifact-free low-frequency

results that lack high-frequency detail. We show that the deblurring information from decon-

volution and super-resolution are complementary to each other and can be used together to

improve deblurring performance. In video deblurring applications, our method furthermore

capitalizes on additional deconvolution constraints that can be derived from consecutive video

frames. We demonstrate that this approach produces excellent results in reducing spatially-
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varying motion blur. In addition, the availability of the low-resolution imagery, and subse-

quently derived motion vectors, further allows us to perform estimate new temporal frames in

the high-resolution video, which we also demonstrate.

The processing pipeline of our approach is shown in Figure 4.2, which also relates process

components to their corresponding section in the chapter. The remainder of the chapter is

organized as follows: Section 4.3 discusses related work; Section 4.4 describes the hybrid

camera setup and the constraints on deblurring available in this system; Section 4.5 describes

our overall deconvolution formulation expressed in a maximum a posteriori (MAP) framework;

Section 4.6 discusses how to extend our framework to handle moving objects; Section 4.7

describes how to perform temporal super-resolution with our framework; Section 4.8 provides

results and comparisons with other current works, followed by a discussion and summary in

Section 4.9.

4.3 Related Work

Motion deblurring can be cast as the deconvolution of an image that has been convolved with

either a global motion point spread function (PSF) or a spatially-varying PSF. The problem

is inherently ill-posed as there are a number of unblurred images that can produce the same

blurred image after convolution. Nonetheless, this problem is well studied given its utility in

photography and video capture. The following describes several related works.

The majority of related work involves traditional blind deconvolution which simultaneously

estimates a global motion PSF and the deblurred image. These methods include well-known

algorithms such as Richardson-Lucy [96, 72] and Wiener deconvolution [123]. For a survey

on blind deconvolution readers are referred to [47, 43]. These traditional approaches often

produce less than desirable results that include artifacts such as ringing.

A recent trend in motion deblurring is to either constrain the solution of the deblurred image

or to use auxiliary information to aid in either the PSF estimation or the deconvolution itself (or
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both). Examples include work by Fergus et al. [39], which used natural image statistics to con-

strain the solution to the deconvolved image. Raskar et al. [93] altered the shuttering sequence

of a traditional camera to be make the PSF more suitable for deconvolution. Jia [54] extracted

an alpha mask of the blurred region to aid in PSF estimation. Dey et al. [30] modified the

Richardson-Lucy algorithm by incorporating total variation regularization to suppress ringing

artifacts. Levin et al. [65] introduced gradient sparsity constraints to reduce ringing artifacts.

Yuan et al. [131] proposed a multiscale non-blind deconvolution approach to progressively

recover motion blurred details. Shan et al. [99] studied the relationship between estimation

errors and ringing artifacts, and proposed the use of a spatial distribution model of image noise

together with a local prior that suppresses ringing to jointly improve global motion deblurring.

Other recent approaches use more than one image to aid in the deconvolution process.

Bascle et al. [5] processed a blurry image sequence to generate a single unblurred image. Yuan

et al. [130] used a pair of images, one noisy and one blurred. Rav-Acha and Peleg [94] consider

images that have been blurred in orthogonal directions to help estimate the PSF and constrain

the resulting image. Chen and Tang [18] extend the work of [94] to remove the assumption

of orthogonal blur directions. Bhat et al. [12] proposed a method that uses high-resolution

photographs to enhance low-quality video, but this approach is limited to static scenes. Most

closely related to ours is the work of Ben-Ezra and Nayar [7, 8], which used an additional

imaging sensor to capture high-frame-rate imagery for the purpose of computing optical flow

and estimating a global PSF. Li et al. [68] extend the work of Ben-Ezra and Nayar [7, 8] by

using parallel cameras with different frame rates and resolutions, but their work targets depth

map estimation and not deblurring.

The aforementioned approaches assume the blur to arise from a global PSF. Recent works

addressing spatially-varying motion blur include that of Levin [64], which used image statistics

to correct a single motion blur on a stable background. Bardsley et al. [4] segmented an image

into regions exhibiting similar blur, while Cho et al. [20] used two blurred images to simultane-

ously estimate local PSFs as well as deconvolve the two images. Their approaches [64, 4, 20],
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however, assume the motion blur to be globally invariant within each separated layer. Work by

Shan et al. [100] allows the PSF to be spatially-varying; however, the blur is constrained to that

from rotational motion. Levin et al. [67] proposed a parabolic camera designed for deblurring

images with 1D object motion. During exposure, the camera moves in a manner that allows

the resulting image to be deblurred using a single deconvolution kernel.

The problem of super-resolution can be considered as a special case of motion deblurring

in which the blur kernel is a low-pass filter that is uniform in all motion directions. High-

frequency details of a sharp image are therefore completely lost in the observed low-resolution

image. There are two main approaches to super-resolution: image hallucination based on train-

ing data and image super-resolution computed from multiple low-resolution images. Our work

is closely related to the latter approach, which is reviewed here. The most common technique

for multiple image super-resolution is the back-propagation algorithm proposed by Irani and

Peleg [52, 53]. The back-propagation algorithm is an iterative refinement procedure that min-

imizes the reconstruction errors of an estimated high-resolution image through a process of

convolution, downsampling and upsampling. A brief review that includes other early works

on multiple image super-resolution is given in [17]. More recently, Patti et al. [83] proposed

a method to align low-resolution video frames with arbitrary sampling lattices to reconstruct

a high-resolution video. Their approach also uses optical flow for alignment and PSF estima-

tion. These estimates, however, are global and do not consider local object motion. This work

was extended by Elad and Feuer [37] to use adaptive filtering techniques. Zhao and Sawh-

ney [136] studied the performance of multiple image super-resolution against the accuracy of

optical flow alignment and concluded that the optical flows need to be reasonably accurate

in order to avoid ghosting effects in super-resolution results. Shechtman et al. [34] proposed

space-time super-resolution in which they align video clips with different resolutions and frame

rates using homographies to produce high-resolution, high-frame-rate output. Their approach,

however, does not consider local motion, such that the blur of moving objects will remain.
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Sroubek et al. [104] proposed a regularization framework for solving the multiple image super-

resolution problem. This approach also does not consider local motion blur effects. Recently,

Agrawal [1] proposed a method to increase the resolution of images that have been deblurred

using a fluttered shutter system. Their approach can also be considered as a combination of

motion deblurring and super-resolution, but is limited to translational motion.

While various previous works are related in part, our work is unique in its focus on spatially-

varying blur with no assumption on global or local motion paths. Moreover, our approach

takes full advantage of the rich information available from the hybrid camera system, using

techniques from both deblurring and super-resolution together in a single MAP framework. We

demonstrate our results on different forms of spatially-varying motion blur, and show that our

approach can achieve sharper and cleaner results in comparison to state-of-the-art techniques.

4.4 Hybrid Camera System

Figure 4.1 illustrates the tradeoff between a high resolution image captured at a low frame

rate, and a low resolution image captured at a high frame rate. For comparable levels of scene

exposure per pixel, the high resolution image requires a longer exposure time and thus suffers

from motion blur. On the other hand, a short exposure suffices for the low resolution image

captured with larger sensor units, and it is therefore sharp but lacking in detail.

The advantages of a hybrid camera system are derived from the additional data acquired

by the low-resolution high-frame-rate (LR-HFR) camera. While the spatial resolution of this

camera is too low for most practical applications, the high-speed imagery is reasonably blur

free and is thus suitable for optical flow computation. Since the cameras are assumed to be

synchronized temporally and observing the same scene, the optical flow corresponds to the

motion of the scene observed by the high-resolution low-frame-rate (HR-LFR) camera, whose

images are blurred due to its slower temporal sampling. An obvious connection is to use the

optical flow to compute the overall blur kernel of the high-resolution image for deconvolution.
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(a)

(b)

(c)

Figure 4.3: The three conceptual design of hybrid camera purposed by [7, 8]. (a) Two cameras
are placed together as close as possible to simulate one single view. (b) Light rays are splitted
for two detectors after passing through the same aperture. (c) A single detector contains two
different sensor such that their stream rate can be adjust differently.
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Figure 4.4: Our hybrid camera combines a Point Grey Dragonfly II camera, which captures
images of 1024 × 768 resolution at 25 fps (6.25 fps for image deblurring examples), and a
Mikrotron MC1311 camera that captures images of 128 × 96 resolution at 100 fps. A beam-
splitter is employed to align their optical axes and respective images.

In the following, we discuss the construction of a hybrid camera, the optical flow and

motion blur estimation, and the use of the low-resolution images as reconstruction constraints

on the high-resolution images.

4.4.1 Camera Construction

Three conceptual designs of the hybrid camera system were discussed by Ben-Ezra and Na-

yar [7] (Figure 4.3). In their work, they implemented a simple design in which the two cameras

are placed side-by-side, such that their viewpoints can be considered the same when viewing a

distant scene. A second design avoids the distant scene requirement by using a beam splitter
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(a) (b)

Figure 4.5: Spatially varying blur kernel estimation using optical flows. (a) Motion blur image.
(b) Estimated blur kernels of (a) using optical flow.

to share between the two sensing devices the light rays that pass through a single aperture, as

demonstrated by McGuire et al. [77] for the studio matting problem. A promising third design

is to capture both the HR-LFR and LR-HFR video on a single sensor chip. According to [13],

this can readily be achieved using a programmable CMOS sensing device.

In our work, we built a hand-held hybrid camera system based on the second design as

shown in Figure 4.4. The two cameras were positioned such that their optical axes and pixel

arrays are well aligned, and video synchronization is achieved using a 8051 microcontroller.

To match the color responses of the two devices, we employ histogram equalization. Since the

exposure levels of the two devices are set to be equal, the signal-to-noise ratios in the HR-LFR

and LR-HFR images are approximately the same.

4.4.2 Blur Kernel Approximation Using Optical Flow

In the absence of occlusion, disocclusion, and out-of-plane rotation, a blur kernel can be as-

sumed to represent the motion of a camera relative to objects in the scene. In [7], this relative

motion is assumed to be constant throughout an image, and the globally invariant blur kernel

is obtained through the integration of global motion vectors over a spline curve.
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However, since optical flow is in fact a local estimation of motions, we can calculate

spatially varying blur kernels from optical flow. We use the pyramidal Lucas-Kanade algo-

rithm [71] to calculate the optical flow at each pixel location:

arg min
(u,v)

∑ (
u
δI(x, y, t)

δx
+ v

δI(x, y, t)

δy
+

δI(x, y, t)

δt

)
(Eq. 4.1)

where (u, v) is the optical flow vector at image position (x, y, t), δI(x,y,t)
δx

, δI(x,y,t)
δy

and δI(x,y,t)
δt

are the partial derivative of image I at (x, y, t) position with respect to x, y and t respectively.

We follow the brightness constancy assumption of optical flow estimation to assume our motion

blurred image are captured under constant illumination such that the change of pixel color of

moving scene/object over the exposure peroid can be neglected. The per-pixel motion vectors

are then integrated to form spatially varying blur kernels, K(x, y), one per pixel [7]:

K(x, y) =

∫
S(x, y)δt (Eq. 4.2)

where S(x, y) is a spline curve that has been fitted to the path of optical flow at (x, y) position,

δt is the time interval between each successive frame in the high frame rate video. We use a C1

continuity spline curve fit to the path of optical flow at position (x, y). The number of frame

used to fit the spline curve is 16 for image examples and 4 for video examples (Figure 4.4).

Figure 4.5 shows an example of spatially varying blur kernels estimated from optical flows.

The optical flows estimated with the multiscale Lucas-Kanade algorithm [71] may contain

noise that degrades blur kernel estimation. We found such noisy estimates to occur mainly in

smooth or homogeneous regions which lack features for correspondence, while regions with

sharp features tend to have accurate optical flows. Since deblurring artifacts are evident pri-

marily around such features, the Lucas-Kanade optical flows are effective for our purposes.

On the other hand, the optical flow noise in relatively featureless regions has little effect on

deblurring results, since these areas are relatively unaffected by errors in the deblurring kernel.

As a measure to heighten the accuracy and consistency of estimated optical flows, we use local

smoothing [127] as an enhancement of the multiscale Lucas-Kanade algorithm [71].
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Figure 4.6: In this figure, we show the benefits of using both deconvolution and super-
resolution for deblurring through a 1D illustrative example. (a) Ground truth signal. (b) Motion
blurred signal of (a) with discontinuities in motion, the motion blur kernel is also shown. (c)
Observed low resolution signal of (a), the gaussian low-pass kernel is also shown. (d) De-
blurred signal using the given motion blur kernel. (e) Super-resolution of (c). (f) Deblurred
signal using both constraints from the motion blur kernel and super-resolution. For better vi-
sualization, an image corresponds to each of the 1D signal are also shown.

These estimated blur kernels contain quantization errors due to the low resolution of the

optical flows. Additionally, motion vector integration may provide an imprecise temporal in-

terpolation of the flow observations. In our Bayesian optimization framework, we consider the

blur kernels to also be parameters to be estimated, and thus are subject to refinement in the

optimization procedure. The details will be discussed fully in Section 4.5.
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4.4.3 Back-Projection Constraints

The capture of low-resolution frames in addition to the high-resolution images not only facili-

tates optical flow computation, but also provides super-resolution-based reconstruction con-

straints [52, 53, 83, 17, 37, 3, 34] on the high-resolution deblurring solution. The back-

projection algorithm [52, 53] is one of the most common iterative techniques to minimize

reconstruction error, and can be formulated as follows:

I t+1 = I t +
M∑

j=1

(u(W (Ilj)− d(I t ⊗ h)))⊗ p (Eq. 4.3)

where M is the number of corresponding low-resolution observations, t is an iteration index,

Ilj is the j-th low-resolution image, W (·) is the warping function that align Ilj with respect

to a basis reference image, ⊗ is the convolution operation, h is the convolution filter before

downsampling, p is a filter representing the back-projection process, and d(·) and u(·) are the

downsampling and upsampling processes respectively. Equation (Eq. 4.3) assumes that each

observation carries the same weight. In the absence of a prior, h is chosen to be a gaussian

filter with a size proportionate to the downsampling factor, and p is set equal to h.

In the hybrid camera system, a number of low-resolution frames are captured in conjunc-

tion with each high-resolution image. To exploit this available data, we align these frames

according to the computed optical flows, and use them as back-projection constraints in Equa-

tion (Eq. 4.3). The number of low-resolution image constraints M is determined by the relative

frame rates of the cameras. In our implementation, we choose the first low-resolution frame

as the basic reference frame and the estimated blur kernel and other low resolution frames are

aligned with respect to this reference frame. Of course, we can choose other low-resolution

frame as the basic reference frame and this will leads to another deblurred result. As we will

see in the later section 4.8, this property of producing multiple solution is an important property

that allows us to enhance temporal sampling of deblurred video which is a unique property of

our motion deblurring algorithm.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7: Performance comparisons for different deconvolution algorithms on a synthetic
example. The ground truth motion blur kernel is used to facilitate comparison. The signal-
to-noise ratio (SNR) of each result is reported. (a) A motion blurred image [SNR(dB)=25.62]
with the corresponding motion blur kernel shown in the inset. Deconvolution results using
(b) Wiener filter [SNR(dB)=37.0], (c) Richardson-Lucy [SNR(dB)=33.89], (d) Total Varia-
tion Regularization [SNR(dB)=36.13], (e) Gradient Sparsity Prior [SNR(dB)=46.37], and (f)
our approach [SNR(dB)=50.26dB], which combines constraints from both deconvolution and
super-resolution. The low resolution image in (g) is 8x downsampled from the original image,
shown in (h).

The benefits of using the back-projection constraint, and multiple such constraints, is illus-

trated in Figure 4.6. Each of the low-resolution frames presents a physical constraint on the

high-resolution solution, in a manner resembling a set of offset images in the super-resolution

application.

4.5 Bayesian Optimization Framework

A brief review on the Richardson-Lucy deconvolution algorithm is given as our approach is

fashioned in a similar manner. For sake of clarity, our algorithm is first discussed for use with
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correcting global motion blur, followed by its extension to spatially varying blur kernels.

4.5.1 Richardson-Lucy Image Deconvolution

The Richardson-Lucy algorithm [96, 72] is an iterative deconvolution algorithm derived from

Bayes Theorem that minimizes the following estimation error:

arg min
I

n(||Ib − I ⊗K||2) (Eq. 4.4)

where I is the deblurred image, K is the blur kernel, Ib is the observed blur image, and n(·)
is the image noise distribution. A solution can be obtained using the iterative update algorithm

defined as follows:

I t+1 = I t ×K ∗ Ib

I t ⊗K
(Eq. 4.5)

where ∗ is the correlation operation. A blind deconvolution method using the Richardson-Lucy

algorithm was proposed by Fish et al. [40], which iteratively optimizes I and K in alternation.

The same equation (Eq. 4.5) was used with positions of I and K switched during optimization

iterations for K. The Richardson-Lucy algorithm assumes image noise n(·) to follow a Poisson

distribution. If we assume the image noise n(·) follows a Gaussian distribution, then a least

squares method can be employed [52]:

I t+1 = I t + K ∗ (Ib − I t ⊗K) (Eq. 4.6)

which shares the same iterative back-projection update rule as Equation (Eq. 4.3).

From video input with computed optical flows, multiple blurred images Ib and blur kernels

K may be acquired by reversing the optical flows of neighboring high-resolution frames. These

multiple observation constraints can be jointly applied in Equation (Eq. 4.6) [94] as

I t+1 = I t +
N∑

i=1

wiKi ∗ (Ibi
− I t ⊗Ki) (Eq. 4.7)
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(a) (b) (c) (d) (e)

Figure 4.8: Multiscale refinement of blur kernel. From (a) to (e) are the refined kernel at
different scales. Our kernel refinement started from coarsest level. Results of coarser level are
then upsampled and are used as initial guess for the next level refinement. The motion blurred
images are shown in figure 4.12.

where N is the number of aligned observations. That image restoration can be improved with

additional observations under different motion blurs is a important property that we demon-

strate in Section 4.8 and exploit in this work. The use of neighboring frames in this manner

may also serve to enhance the temporal consistency of the deblurred video frames.

4.5.2 Optimization for Global Kernels
In solving for the deblurred images, our method jointly employs the multiple deconvolution and
back-projection constraints derived from the hybrid camera input. For simplicity, we assume
in this subsection that the blur kernels are spatially invariant. Our approach can be formulated
into a Bayesian framework as follows:

arg max
I,K

P (I, K|Ib, Ko, Il)

= arg max
I,K

P (Ib|I, K)P (Ko|I, K)P (Il|I)P (I)P (K)

= arg min
I,K

L(Ib|I, K)+L(Ko|I, K)+L(Il|I)+L(I)+L(K) (Eq. 4.8)

where I and K are the sharp images and the blur kernels we want to estimate, Ib, Ko and Il are

the observed blur images, estimated blur kernels from optical flows, and the high frame rate

low resolution images respectively, and L(·) = −log(P (·)). In our formulation, we make no

assumption on the priors P (I) and P (K). Assuming that P (Ko|I,K) is conditionally indepen-

dent of I , the estimation errors of likelihood probabilities P (Ib|I, K), P (Ko|I, K) and P (Il|I)

follow Gaussian distributions and that each observation of Ib, Ko and Il are independent and
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identically distributed, we can then rewrite Equation (Eq. 4.8) as

arg min
I,K

N∑
i

||Ibi
− I ⊗Ki||2 + λB

M∑
j

||Ilj − d(I ⊗ h)||2

+λK

N∑
i

||Ki −Koi
||2 (Eq. 4.9)

where λK and λB are the relative weights of the error terms. To optimize the above equation for

I and K, we employ alternating minimization. Combining Equations (Eq. 4.3) and (Eq. 4.7)

yields our iterative update rules:

(i) Update I t+1 = I t +
∑N

i=1 Kt
i ∗ (Ibi

− I t⊗Kt
i ) + λB

∑M
j=1 h⊗ (u(W (Ilj)− d(I t⊗ h)))

(ii) Update Kt+1
i = Kt

i + Ĩ t+1 ∗ (Ibi
− I t+1 ⊗Kt

i ) + λK(Koi
−Kt

i )

where Ĩ = I/
∑

(x,y) I(x, y), I(x, y) ≥ 0, Ki(u, v) ≥ 0, and
∑

(u,v) Ki(u, v) = 1. The

two steps are updated in alternation until the change in I falls below a specified level. In our

implementation, we set N = 3 in correspondence to the current, previous and next frames, and

M is set according to the relative camera settings (4/16 for video/image deblurring). We also

initialize I0 = Ib (the currently observed blurred image), K0
i = Koi

(the estimated blur kernel

from optical flows), and set λB = λK .

To achieve more stable refinement and flexibility on the kernel refinement, we follows pre-

vious work [39, 130] to refine the kernel in multiscale fashion. Figure 4.8 shows an illustration

of our kernel refinement step. We refine the kernels from the coarse level by down-sampled the

observed images. Results of coarser level are then upsampled and refined again. The multiscale

pyramid are constructed using a downsampling factor of 1/
√

2 with five levels. Initial guess

of kernel is given from the estimated kernels using optical flow and the likelihood P (Ko|K) is

also applied at each level of pyramid with weight decreasing so as to allow more flexibilities of

refinement at finer level. We note that starting at a level coarser than the low-resolution images

allows our method to recover from some error in PSF estimation from optical flows.
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(a) (b) (c)

Figure 4.9: Convolution with kernel decomposition. (a) Convolution result without kernel
decomposition, where full-sized kernels are generated on-the-fly per-pixel. (b) Convolution
using 30 PCA-decomposed kernels. (d) Convolution using delta function decomposition of
kernels, with at most 30 delta functions per pixel.

Figure 4.10: Kernel decomposition using PCA verse delta function representation. Top row is
the decomposed kernel representation using PCA; The bottom row is the decomposed kernel
using delta function representation. The basis kernels are derived from the spatial varying ker-
nels of figure 4.9. We show one of the spatial varying kernels and its decomposition, the weight
of each basis kernels are displayed below each of the basis kernels. The delta function repre-
sentation not only guarantee positive values of basis kernel, but also provide more flexibility
on kernel refinement.

4.5.3 Spatially Varying Kernels

A spatially varying blur kernel can be expressed as K(x, y, u, v), where (x, y) is the image

coordinate and (u, v) is the kernel coordinate. For large sized kernels, e.g. 65× 65, this repre-

sentation is impractical due to its enormous storage requirements. Recent work has suggested

ways to reduce the storage size by constraining the motion path [100]; however, our approach

places no constraints on possible motion. Instead, we decompose the spatially varying kernels
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into a set of P basis kernels kl whose mixture weights al are a function of image location:

K(x, y, u, v) =
P∑

l=1

al(x, y)kl(u, v). (Eq. 4.10)

The convolution equation then becomes

I(x, y)⊗K(x, y, u, v) =
P∑

l=1

al(x, y)(I(x, y)⊗ kl(u, v)). (Eq. 4.11)

In [61], principal components analysis (PCA) is used to find the basis kernels. PCA, how-

ever, does not guarantee positive kernel values, and we have found in our experiments that

PCA-decomposed kernels lead to unacceptable ringing artifacts, exemplified in Figure 4.9.

The ringing artifacts in the convolution result resembles the patterns of basis kernels. We

propose instead to use a delta function representation, where each delta function represents a

position (u, v) within a kernel. Since a motion blur kernel is typically sparse, we store only

30 ∼ 40 delta functions for each image pixel, where the delta function positions are determined

by the initial optical flows. This normally results in about 500 ∼ 600 distinct delta functions in

total for an entire image, and provides a sufficient approximation of the spatially varying blur

kernels in the convolution process. An example of basis kernels decomposition using PCA

and delta function representation is shown in figure 4.10. The delta function representation

also has more flexibility on kernel refinements, while refinements of a kernel using a PCA

representation are limited to the PCA subspace.
Combining Equations (Eq. 4.11) and (Eq. 4.9), our optimization function becomes

arg min
I,K

N∑

i

||Ibi −
P∑

l

ail(I ⊗ kil)||2 + λB

M∑

j

||Ilj − d(I ⊗ h)||2

+λK

N∑

i

P∑

l

||ailkil − aoil
kil||2. (Eq. 4.12)

The corresponding iterative update rules are then

(i) Update I t+1 = I t+
∑N

i=1

∑P
l at

ilkil∗(Ibi
−∑P

l at
il(I

t⊗kil))+λB

∑M
j=1 h⊗(u(W (Ilj)−

d(I t ⊗ h)))
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(ii) Update at+1
il = at

il + (Ĩ ′
t+1 ∗ (I ′bi

−∑P
l at

il(I
′t+1 ⊗ kil))) · kil + λK(aoil

− at
il)

where I ′ and I ′b are local patches of the estimated result and the blur image. The kernel refine-

ment step can, again, be implemented in multi-scale to allow greater flexibilities and stabilities.

The number of delta functions kil stored at each pixel position may be reduced when an up-

dated value of ail becomes insignificant. For greater stability, we process each update rule five

times before switching to the other.

4.5.4 Discussion

Utilizing both deconvolution of high-resolution images and back-projection from low-resolution

images offers distinct advantages, because the deblurring information from these two sources

tend to complement each other. This can be intuitively seen by considering a low-resolution

image to be a sharp high-resolution image that has undergone motion blurring with a Gaussian

PSF and bandlimiting. Back-projection may then viewed as a deconvolution with a Gaus-

sian blur kernel, and would promote recovery of lower-frequency image features without ar-

tifacts. On the other hand, deconvolution of high-resolution images with the high-frequency

PSFs typically associated with camera and object motion generally supports reconstruction

of higher-frequency details, especially those orthogonal to the motion direction. While some

low-frequency content can also be restored from motion blur deconvolution, there is often sig-

nificant loss due to the large support regions for motion blur kernels, and this results in ringing

artifacts. As discussed in [94], the joint use of images having such different blur functions and

deconvolution information favors a better deblurring solution.

Multiple motion blur deconvolutions and multiple back-projections can further help to

generate high quality results. Differences in motion blur kernels among neighboring frames

provide different frequency information; and multiple back-projection constraints help to re-

duce quantization and the effects of noise in low-resolution images. In some circumstances
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there exists redundancy in information from a given source, such as when high-resolution im-

ages contain identical motion blur, or when low-resolution images are offset by integer pixel

amounts. This makes it particularly important to utilize as much deblurring information as can

be obtained.

Our current approach does not utilize priors on the deblurred image or the kernels. With

constraints from the low-resolution images, we have found these priors to be unneeded. Fig-

ure 4.7 compares our approach with other deconvolution algorithms. Specifically, we compare

our approach with Total Variation regularization [30] and Sparsity Priors [65], which have

recently been shown to produce better results than traditional Wiener filtering [123] and the

Richardson-Lucy [96, 72] algorithm. Both Total Variation regularization and Sparsity Priors

produce results with less ringing artifacts. There are almost no ringing artifacts with Sparsity

Priors, but many fine details are lost. In our approach, most medium to large scale ringing

artifacts are removed using the back-projection constraints, while fine details are recovered

through deconvolution.

Although our approach can acquire and utilize a greater amount of data, high-frequency

details that have been lost by both motion blur and downsampling cannot be recovered. This

is a fundamental limitation of any deconvolution algorithm that does not hallucinate detail.

We also note that reliability in optical flow cannot be assumed beyond a small time interval.

This places a restriction on the number of motion blur deconvolution constraints that can be

employed to deblur a given frame.

Lastly, we note that iterative back-projection technique incorporated into our framework is

known to have convergence problems. Empirically we have found that stopping after no more

than 50 iterations of our algorithm produces acceptable results.
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(a) (b) (c) (d) (e)

Figure 4.11: Layer separation using a hybrid camera: (a)-(d) Low resolution frames and its
corresponding binary segmentation masks. (e) High resolution frame and the matte estimated
by compositing the low resolution segmentation masks with smoothing.

4.6 Extension to Deblurring of Moving Objects

In the presence of moving objects (and thus occlusion and disocclusion), the high-resolution

image needs to be segmented into different layers, because pixels on the blended boundaries

of moving objects contain both foreground and background components, each with different

relative motion to the camera. This layer separation is inherently a matting problem:

I = αF + (1− α)B (Eq. 4.13)

where I is the observed image intensity, F , B and α are the foreground color, background color

and alpha to be estimated respectively. The matting problem is an ill-posed problem since the

number of variables are more that the number of observation. Single image approaches require

user assistance to provide a trimap [23, 22, 105] or scribbles [119, 66, 118] for collecting color

samples of foreground and background colors. Fully automatic approaches, however, have

required either a blue background [103], multiple cameras with different focus [76], polarized
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illumination [77] or a camera array [56]. In this section, we propose a simple solution to

the layer separation that takes advantage of the hybrid camera system. As matting is not the

primary focus of our work, we offer a brief description of our basic approach to moving object

layer separation, and leave a more detailed investigation of this problem for future study.

In a hybrid-camera setup, moving objects should still remain sharp in the high frame rate

video. To extract the alpha matte of a moving object, we can perform binary segmentation

of the moving object in the low resolution images, and then compose the binary segmentation

masks with smoothing to approximate the alpha matte in the high-resolution image. In Fig-

ure 4.11, an example of this matte extraction is demonstrated together with the moving object

separation method of Zhang et al. [132]. We also need to estimate the foreground color F for

deblurring. This can be done by assuming local color smoothness prior on F and B and solve

it using approach in Bayesian matting [23]:

[
Σ−1

F + Iα2/σ2
I Iα(1− α)/σ2

I

Iα(1− α)/σ2
I Σ−1

B + I(1− α)2/σ2
I

] [
F
B

]
=

[
Σ−1

F µF + Iα/σ2
I

Σ−1
B µB + I(1− α)/σ2

I

]
(Eq. 4.14)

where (µF , ΣF ) and (µB, ΣB) are the local color mean and covariance matrix (Gaussian dis-

tribution) of foreground and background colors, I is 3 × 3 identical matrix and σI is standard

derivation of I modeling the estimation errors of equation (Eq. 4.13). Given the solution of F

and B, the α solution can be further refined by solving equation (Eq. 4.13) in closed form. The

refinements of F , B, and α can be done alternatively to produce a better result.

Once the moving objects are separated, we can then deblur each layer separately using our

framework. The alpha mattes are also deblurred for compositing, and the occluded background

areas revealed after alpha mask deblurring can then be filled in either by back-projection from

the low-resolution images or by the motion inpainting method of [75].
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4.7 Temporal Super-resolution

Unlike deblurring of images, videos require deblurring of multiple consecutive frames in a

manner that preserves temporal consistency. As described in Section 4.5.2, we can jointly use

the current, previous and subsequent frames to deblur the current frame in a temporally consis-

tent way. However, after sharpening each individual frame, temporal discontinuities in the de-

blurred low-frame-rate high-resolution video may become evident, through some “jumpiness”

in the sequence. In this section, we describe how our method can alleviate this problem by

increasing the temporal sampling rate to produce a deblurred high-frame-rate high-resolution

video.

Our solution to temporal super-resolution derives directly from our deblurring algorithm.

The deblurring problem is a well-known under-constrained problem since there exist many

solutions that can correspond to a given motion blurred image. In our scenario, we have M

high-frame-rate low-resolution frames corresponding to each low-frame-rate high-resolution

motion blurred image. With our algorithm, we therefore have the opportunity to estimate

M solutions using each one of the M low-resolution frames as the basic reference frame.

While the ability to produce multiple deblurred frames is not a complete solution to temporal

super-resolution, here the use of these M different reference frames leads to a set of deblurred

frames that is consistent with the temporal sequence. This unique feature of our approach is

gained through the use of the hybrid camera to capture low-resolution high-frame-rate video in

addition to the standard high-resolution low-frame-rate video. The low-resolution high-frame-

rate video not only aids in estimating the motion blur kernels and provides back-projection

constraints, but can also help to increase the deblurred video frame rate. The result is a high-

frame-rate high-resolution deblurred video.
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(a) (b) (c)

(d) (e) (f)

Figure 4.12: Image deblurring using globally invariant kernels. (a) Input. (b) Result generated
by [39], where the user-selected regions are indicated by black boxes. (c) Result generated
by [7]. (d) Result generated by back projection [52]. (e) Our results. (f) The ground truth sharp
image. Close-up views and the estimated global blur kernels are also shown.

4.8 Results and Comparisons

We evaluate our deblurring framework using real images and videos. In these experiments,

a ground-truth blur-free image is acquired by mounting the camera on a tripod and captur-

ing a static scene. Motion blurred images are then obtained by moving the camera and/or

introducing a dynamic scene object. We show examples of several different cases: globally

invariant motion blur caused by hand shake, in-plane rotational motion of a scene object,

translational motion of a scene object, out-of-plane rotational motion of an object, zoom-in

motion caused by changing the focal length (i.e. camera’s zoom setting), a combination of
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(a) (b) (c)

(d) (e) (f)

Figure 4.13: Image deblurring with spatial varying kernels from rotational motion. (a) Input.
(b) Result generated by [100] (Result is obtained courtesy of the authors of [100]). (c) Result
generated by [7] with spatially varying blur kernels estimated from optical flow. (d) Result
generated by back projection [52]. (e) Our results. (f) The ground truth sharp image. Close-
ups are also shown.

translational motion and rotational motion with multiple frames used as input for deblurring

one frame, video deblurring with out-of-plane rotational motion, video deblurring with

complex in-plane motion, and video deblurring with a combination of translational and

zoom-in motion.

[Globally invariant motion blur] In Figure 4.12, we present an image deblurring example

with globally invariant motion, where the input is one high-resolution image and several low-

resolution images. Our results are compared with those generated by Fergus et al. [39], Ben-

Ezra and Nayar [7] and back projection [52]. Fergus et al.’s approach is a state-of-the-art
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(a) (b) (c)

(d) (e) (f)

Figure 4.14: Image deblurring with translational motion. In this example, the moving object
is a car moving horizontally. We assume the motion blur within the car is globally invariant.
(a) Input. (b) Result generated by [39], where the user-selected regions are indicated by black
boxes. (c) Result generated by [7]. (d) Result generated by back projection [52]. (e) Our
results. (f) The ground truth sharp image captured from another car of same model. Close-up
views and the estimated global blur kernels within the motion blur layer are also shown.

blind deconvolution technique that employs a natural image statistics constraint. However,

when the blur kernel is not correctly estimated, an unsatisfactory result such as shown in (b)

will be produced. Ben-Ezra and Nayar use the estimated optical flow as the blur kernel and

then perform deconvolution. Their result in (c) is better than that in (b) as the estimated blur

kernel is more accurate, but ringing artifacts are still unavoidable. Back-projection produces

a super-resolution result from a sequence of low resolution images as shown in (d). Noting

that motion blur removal is not the intended application of back-projection, we can see that
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(a) (b) (c)

(d) (e) (f)

Figure 4.15: Image deblurring with spatial varying kernels. In this example, the moving object
contains out-of-plane rotation with both occlusion and disocclusion exists at the object bound-
ary. (a) Input. (b) Result generated by [7]. (c) Result generated by back projection [52]. (d)
Our results using the first low resolution frame as the basis frame. (e) Our results using the last
low resolution frame as the basis frame. (f) The ground truth sharp image. Close-ups are also
shown.

its results are blurry since the high-frequency details are not sufficiently captured in the low

resolution images. The result of our method and the refined kernel estimate are displayed in

(e). The ground truth is given in (f) for comparison.

[In-plane rotational motion] Figure 4.13 shows an example with in-plane rotational mo-

tion. We compared our result with those by Shan et al. [100], Ben-Ezra and Nayar [7], and

back projection [52]. Shan et al. [100] is the most recent techniques targeting to deblur in-plane

rotational motion. Our approach is seen to produce less ringing artifacts compared to [100] and
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(a) (b) (c)

(d) (e) (f)

Figure 4.16: Image deblurring with zoom-in motion blur. (a) Input. (b) Result generated
by [39]. (b) Result generated by [7]. (c) Result generated by back projection [52]. (d) Our
results. (f) The ground truth sharp image. Close-ups are also shown.

[7], and it generates greater detail than [52].

[Translational motion] Figure 4.14 shows an example of translational motion. The mov-

ing object is a car moving horizontally. We assume the motion blur within the car is globally

invariant and thus techniques for removing globally invariant motion blur can be applied after

moving object layer separation. We use the technique proposed in section 4.6 to separate the

moving car from static background. Our results is compared with those generated by Fergus

et al. [39], Ben-Ezra and Nayar [7] and back projection [52]. In this example, the moving car

is severely blurred which most of high frequency details are already lost. We demonstrate the

limitation of using deconvolution alone which even the motion blur kernel can be estimated
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(a) (b) (c)

(d) (e) (f)

Figure 4.17: Deblurring with and without multiple high-resolution frames. (a)(b) Input images
containing both translational and rotational motion blur. (c) Deblurring using only (a) as input.
(d) Deblurring using only (b) as input. (e) Deblurring of (a) using both (a) and (b) as inputs.
(f) Ground truth sharp image. Close-ups are also shown.

very accurately, unsatisfactory result can still be produced as shown in (c). In this example,

the super-resolution result in (d) are better then deconvolution result. But there are still some

high-frequency details can not be recovered. Our result is shown in (e) which maintain most

low-frequency details recovered by super-resolution and some high frequency details recov-

ered by deconvolution. We notice that some incorrect high frequency details from the static

background are also retained in our final result. This is because there were still some incorrect

high frequency details from background remained in the separated moving object layer. We

believe a better layer separation algorithm that can better separate the foreground and back-
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Figure 4.18: Video deblurring with out-of-plane rotational motion. The moving object is a vase
with a center of rotation approximately aligned with the image center. First Row: Input video
frames. Second Row: Close-ups of a motion blurred region. Third Row: Deblurred video.
Fourth Row: Close-ups of deblurred video using the first low-resolution frames as the refer-
ence frames. Fifth Row: Close-ups of deblurred video frames using the fifth low-resolution
frames as the reference frames. The final video sequence has higher temporal sampling than
the original high-resolution video, and is played with frames ordered according to the red lines.
Bottom row: Results from space-time super-resolution [34].

ground details could lead to a better result. This example also exhibits a basic limitation of our

approach. Since there is significant car motion during the exposure time, most high frequency

detail is lost and cannot be recovered by our approach. (f) shows the ground truth captured

from another car of same model for comparison.

[Out-of-plane rotational motion] Figure 4.15 shows an example of out-of-plane rotation

where occlusion/disocclusion occurs at the object boundary. Our result is compared to Ben-
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Ezra and Nayar [7] and back projection [52]. One major advantage of our approach is that

we can detect the existence of occlusion/disocclusion of motion blurred moving object. This

not only helps to estimate the alpha mask for layer separation, but also helps to eliminate

irrelevance regions for back projection. We show our result by choosing the first frame and the

last frame as the basic reference frame. This example contains both occlusion and disocclusion

simultaneously.

[Zoom-in motion] Figure 4.16 shows another example of motion blur from zoom in effects.

Our result is compared to Fergus et al. [39], Ben-Ezra and Nayar [7] and back projection [52].

We admit that this is not entirely a fair comparison to Fergus et al. [39] since their approach

only targets global invariant motion blur. We show the comparison here as to demonstrate the

effects of using single blur kernel to deblur spatial varying motion blur. Again, our approach

produces a better result with less ringing artifacts and richer in details.

[Deblurring with multiple frames] The benefit of using multiple deconvolutions from

multiple high-resolutionframes is exhibited in Figure 4.17, for a pinwheel with both transla-

tional and rotational motion. The deblurring result in (c) was computed using only (a) as input.

Likewise, (d) is the deblurred result from only (b). Using both (a) and (b) as inputs yields the

improved result in (e). This improvement can be attributed to the difference in high-frequency

detail that can be recovered from each of the differently blurred images. The ground truth is

shown in (f) for comparison.

[Video deblurring with out-of-plane rotational motion] Figure 4.18 demonstrates video

deblurring of a vase with out-of-plane rotation. The center of rotation aligns with the image

center. The top row displays five consecutive frames of input. The second row shows close-ups

of motion blurred region. The middle row shows our results with the first low resolution frame

as the basic reference frame. The forth and fifth row shows close-ups of our results with respect

to the first and the fifth low resolution frame as the basic reference frame. The information

gained from consecutive frames leads to high-quality deblurring results and enhanced temporal
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Figure 4.19: Video deblurring with a static background and a moving object. The moving
object is a tossed box with arbitrary (in-plane) motion. First Row: Input video frames. Second
Row: Close-up of the motion blurred moving object. Third Row: Extracted alpha mattes of
the moving object. Fourth Row: The deblurred video frames using the first low-resolution
frames as the reference frames. Fifth Row: The deblurred video frames using the third low-
resolution frames as the reference frames. The final video with temporal super-resolution is
played with frames ordered as indicated by the red lines. Bottom row: Results from space-time
super-resolution [34].

consistency. This example also demonstrate the ability of producing multiple solutions as

described in section 4.7. To allow temporal super-resolution, we combine the results together

as indicated by the red lines in Figure 4.18. We can increase the frame-rate of deblurred high

resolution videos up to the same rate as the high-frame-rate low resolution video input.

[Video deblurring with complex in-plane motion] Figure 4.19 demonstrates another

video deblurring of a tossed box with arbitrary motion. The top row displays five consecu-
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Figure 4.20: Video deblurring in an outdoor scene. The moving object is a car driving towards
the camera, which produces both translation and zoom-in blur effects. First Row: Input video
frames. Second Row: The extracted alpha mattes of the moving object. Third Row: The
deblurred video frames using the first low-resolution frames as the reference frames. Fourth
Row: The deblurred video frames using the third low-resolution frames as the reference frames.
The final video consists of frames ordered as indicated by the red lines. By combining results
from using different low-resolution frames as reference frames, we can increase the frame rate
of the deblurred video. Bottom row: Results from space-time super-resolution [34].

tive frames of input. The second row shows close-ups of the motion blurred moving object.

The middle row shows our separated mattes for the moving object, and the forth and the last

row presents our results with respect to the first and the third low resolution frame as the basic

reference frame. Our video deblurring algorithm successfully recovers the text on the tossed

box up to certain limit. Similar to the previous video deblurring example, our output is a high

frame rate high resolution deblurred video. This result, at the same time, also shows another
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limitation, while we can deblur the moving object, the shadows of the moving object are not

deblurred, which leads to an inconsistent result. We are still investigating in this direction

and we believe more discussions and studies are needed. We leave this as a future research

direction.

[Video deblurring with a combination of translational and zoom-in motion] Our final

example is shown in Figure 4.20. The moving object is a car moving towards the camera.

Both translational effects and zoom-in effects exist in this video deblurring example. The top

row displays five consecutive frames of input. The second row shows close-ups of the motion

blurred moving object. The middle row shows our separated mattes for the moving object, and

the forth and the last row presents our results with respect to the first and the fifth low resolution

frame as the basic reference frame. In this example, our focus is to deblur the car in the center

of video while other moving objects are leaving untouched. The output is a high frame rate

high resolution deblurred video.

4.9 Summary

We have proposed an approach for image/video deblurring using a hybrid camera. Our work

has formulated the deblurring process into a Bayesian optimization framework that incorpo-

rates optical flow, back projection, kernel refinement, and frame coherency to effectively com-

bine the benefits of both deconvolution and super-resolution. We demonstrate that this ap-

proach can produce results that are sharper and cleaner than state-of-the-art techniques.

While our video deblurring algorithm exhibits high-quality results on various scenes, there

exist complicated forms of spatially varying motion blur that can be difficult for our method to

handle (e.g., motion blur effects caused by object deformation). The performance of our algo-

rithm is also bounded by the performance of several of its components, including optical flow

estimation, layer separation and also the deconvolution algorithm. Despite these limitations,

we have proposed the first and the only work that can handle spatially varying motion blur
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with arbitrary in-plane/out-of-plane rigid motion. This work is also the first to address video

deblurring and to increase video frame rates using a deblurring algorithm.

Future research directions for this work include how to improve the deblurring performance

through incorporating priors into our framework. Recent deblurring methods have demon-

strated the utility of priors, such as the natural image statistics prior and the sparsity prior, for

reducing ringing artifacts and for kernel estimation. Another research direction is to improve

layer separation by more fully exploiting the available information in the hybrid camera sys-

tem. Additional future work may also be done on how to recover the background partially

occluded by a motion blurred object.



CHAPTER 5. SUMMARY AND DISCUSSION 117

Chapter 5

Summary and Discussion

This chapter concludes this thesis by giving a short summary for each of the previous three

chapters discussing soft color segmentation, texture flow estimation, and image/video deblur-

ring. Note that each previously mentioned chapter has a self-contained summary and discus-

sion; this chapter serves to re-iterate those summaries and discussions. In addition, a short

discussion on steps and issues to consider when formulating a problem into a Bayesian frame-

work is discussed. Finally, a short description on future research directions concludes this

thesis.

5.1 Chapter Summaries

The main goal of this thesis was to demonstrate how various computer vision problems can

be addressed using a Bayesian optimization framework. In chapter 1, we discussed the basic

properties of the Bayesian formulation and use examples to describe how likelihood probabil-

ities and prior probabilities can be defined. We described common techniques, such as linear

regression, alternating optimization (expectation-maximization algorithm) and belief propaga-

tion, for solving Bayesian formulated problems. We also gave a brief introduction to our work

and its main contributions. Our work on soft color segmentation, texture flow estimation, and

image/video deblurring where described in chapter 2, 3 and 4 respectively.



CHAPTER 5. SUMMARY AND DISCUSSION 118

Chapter 2 proposed an alternating optimization frameworks for soft color segmentation. We

formulated the problem into a MAP problem whose local optimal solution can be found by us-

ing alternating optimization, with update rules defined in chapter 2. We have also discussed the

effects of the various parameters in this framework. This soft color segmentation algorithm is a

fully automatic method which segments images into regions where region boundaries are frac-

tional instead of binary. Our results are compared against other image segmentation algorithms,

including: k-means clustering [32], Mean Shift [26], Expectation-Maximization (EM) [28, 6],

Watershed [116], Jseg [29], etc. The usefulness of our algorithm was further demonstrated

through various applications, including image matting and color transfer between images.

Chapter 3 proposed a novel texture representation [107] based on filter banks and clustering

for texture flow estimation. Our texture flow estimation process was formulated into a discrete

labeling problem of a pairwise MRF. The optimal solution was found using belief propagation.

The effectiveness of our algorithm is demonstrated through experimental evaluation. Our re-

sults are compared with results of Paris et al. [82] and Hays et al. [48] in real images. We also

compared with ground truth in synthetic examples. Both comparisons showed superior results.

Chapter 4 proposed an approach for image/video deblurring using a hybrid camera. Our

work formulated the deblurring process as a maximum likelihood (ML) problem, which is a

special case of the Bayesian formulation where the prior probability is assumed to be uniform.

An iterative method that incorporates optical flow, back-projection, kernel refinement, and

frame coherency was used to find a local optimal solution. This approach effectively combined

the benefits of both deconvolution and super-resolution, in which ringing artifacts in deblurring

process were significantly reduced. We have also extended our approach for spatial varying

motion blur and video deblurring. We demonstrated that this approach can produce results that

are sharper and clearer than existing state-of-the-art techniques.
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5.2 Discussions on Bayesian methods

Having presented three different problems solved using a Bayesian framework and their associ-

ated likelihood and prior probabilities, one can realize that the likelihood and prior probabilities

are uniquely defined for each problem. In fact, this is one of the advantage of using a Bayesian

formulation – it allows researchers to define their own likelihood and prior probabilities based

on their understanding on the problem. There are several steps that one can follow to help

formulate a problem into a Bayesian framework. These are itemized as follows:

(i) Identify the problem and formulate the goal you want to achieve.

(ii) Understand what observations are obtained from the problem and what assumptions you

can made about the problem.

(iii) Define the variables in the problem.

(iv) Write down the Bayesian equations based on the causal relationships between the defined

variables.

(v) Define the likelihood probabilities from observations and define the prior probabilities

from assumptions. Note that new parameters may need to be introduced in this step.

(vi) Understand the nature of your objective functions and choose a proper method to solve

the problem. Some common techniques for solving Bayesian objective functions were

described in chapter 1.3.

(vii) Evaluate the results you obtained. If the results are different from your expectations, you

may need to reformulate the problem itself, or reconsider your prior probabilities.

The Bayesian method is a mathematical tool to help formulate a problem into a well defined

objective function. It is a probabilistic model that describes a problem in terms of beliefs and
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degrees of uncertainty. In many situations, the success of a Bayesian model relies on the

definition of prior probabilities. As discussed in chapter 1, for the image denoising problem,

without prior probabilities the solution would be a trivial solution with I = IN . In many

situations, obtaining observations are easy; however, observing the hidden phenomenons or

hidden relationships between observations can be challenging. These hidden phenomenons or

hidden relationships usually play an important role in the success of an algorithm. To define

proper priors for a problem often requires experience and careful thinking. Although there

are techniques to help extract these hidden relationships [31, 49], these techniques are mostly

based on statistical reasoning in which sufficient amounts of observations are necessary.

5.3 Future Research Directions

There are several future research directions for the work presented in this thesis. One major

direction for future work is to consider incorporating better priors into our existing Bayesian

formulation of each problem.

For example, in soft color segmentation problem, we can include priors that consider tex-

ture pattern or other high level description about the images. Our current approach produces

segmentation results without semantic meaning while in many pattern recognition problems,

segmentations with semantic meaning are favored.

In texture flow estimation, we can include priors about the changes of color under shadows

or shadings. Our current approach assumes the observed “distorted” texture has been normal-

ized with these shadow or shadings effects removed. Through incorporating knowledge about

shadows or shadings, our approach would be more reliable in real world scenarios. We can also

investigate the possibility of using our proposed texture representation for texture classification.

In the image/video deblurring problem, our current approach is a maximum likelihood

approach that does not exploit any prior probability. In the future, we shall investigate how

to included priors such such as the natural image statistics/sparisity prior, which are recently
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proposed priors for image deblurring. We believe that with these priors included we may

produce better results. In addition, we note that the performance of our current approaches

is limited by the use of the Richard-Lucy deblurring algorithm [96, 72]. Newer deblurring

algorithm, (e.g. [131]) have been recently proposed that could be incorporated into our system

to potentially produce better results.

Last but not least, we continue to examine interesting computer vision research problems

to see where a Bayesian formulation and optimization can be used to produce good solutions.

Current examples under consideration include photometric stereo and optical flow computa-

tion.
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