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Abstract

Plant seed identification is routinely performed for seed certification in seed trade, phytosanitary cer-

tification for the import and export of agricultural commodities, and regulatory monitoring, surveillance,

and enforcement. Current identification is performed manually by seed analysts with limited aiding tools.

Extensive expertise and time is required, especially for small, morphologically similar seeds. Computers are,

however, especially good at recognizing subtle differences that humans find difficult to perceive. In this thesis,

a 2D, image-based computer-assisted approach is proposed.

The size of plant seeds is extremely small compared with daily objects. The microscopic images of plant

seeds are usually degraded by defocus blur due to the high magnification of the imaging equipment. It is

necessary and beneficial to differentiate the in-focus and blurred regions given that only sharp regions carry

distinctive information usually for identification. If the object of interest, the plant seed in this case, is in-

focus under a single image frame, the amount of defocus blur can be employed as a cue to separate the object

and the cluttered background. If the defocus blur is too strong to obscure the object itself, sharp regions

of multiple image frames acquired at different focal distance can be merged together to make an all-in-focus

image. This thesis describes a novel non-reference sharpness metric which exploits the distribution difference

of uniform LBP patterns in blurred and non-blurred image regions. It runs in realtime on a single core cpu

and responses much better on low contrast sharp regions than the competitor metrics. Its benefits are shown

both in defocus segmentation and focal stacking.

With the obtained all-in-focus seed image, a scale-wise pooling method is proposed to construct its feature

representation. Since the imaging settings in lab testing are well constrained, the seed objects in the acquired

image can be assumed to have measureable scale and controllable scale variance. The proposed method utilizes

real pixel scale information and allows for accurate comparison of seeds across scales. By cross-validation

on our high quality seed image dataset, better identification rate (95%) was achieved compared with pre-

trained convolutional-neural-network-based models (93.6%). It offers an alternative method for image based

identification with all-in-focus object images of limited scale variance.

The very first digital seed identification tool of its kind was built and deployed for test in the seed labo-

ratory of Canadian food inspection agency (CFIA). The proposed focal stacking algorithm was employed to

create all-in-focus images, whereas scale-wise pooling feature representation was used as the image signature.

Throughput, workload, and identification rate were evaluated and seed analysts reported significantly lower

mental demand (p = 0.00245) when using the provided tool compared with manual identification. Although

the identification rate in practical test is only around 50%, I have demonstrated common mistakes that have

been made in the imaging process and possible ways to deploy the tool to improve the recognition rate.
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Chapter 1

Introduction

1.1 Plant Seed Identification: An Important and Challenging Field

Invasion of plants into a new area, either local or across continents, are mainly accomplished by the dispersal

of plant seeds. The frequent commercial trade nowadays and other human activities substantially facilitate

this process, with a consequence of changing the distribution of non-native species in many regions [30]. Early

detection of the seeds of noxious weeds and invasive plants that contaminate agricultural products during

trade activities is the most cost-effective measures for weed and invasive plant control [72, 4]. In addition

to that, successful identification of seed could also provide valuable information in forensic science [20], food

science [157], archaeology [9], and ecology [189].

As a specialized area of botany, seed identification has a history of over a century [124]. The difficulty of

the identification varies and is strongly dependent on the specificity of the task. Normal people without any

training would have no problem differentiating a corn seed and sunflower seed. But down to species level,

there are many cases where seeds of one species may closely resemble the other [111]. Problem arises when

one of these may be a crop plant and the other an undesirable noxious weed. Inability to screen weed seeds

out could result in crop yield reduction because weeds can compete with desirable crop plants for water,

light, and nutrients. For example, green foxtail (Setaria italica viridis) is considered as a regional noxious

weed in British Columbia. Giant foxtail (Setaria faberi) is another noxious weed reduces crop yields by

13–14% on average plant distributions [60]. Foxtail millet (Setaria italica italica) is a food crop and is mainly

consumed in Northern China [195]. These three seed species share very similar morphological features with

example images shown in Figure 1.1. The trained seed analyst must be able to analyze and evaluate the

morphologically similar seed structures of such seeds and make decisions with limited evidence provided by

the seed alone [124]. Despite the importance of accurately identifying invasive or noxious weed seeds, it can

be very challenging to identify morphologically similar species especially when they have a typical size of

only a grain of salt.

Therefore, in this thesis we study the problem of identification of morphological similar

seeds.
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(a) Giant foxtail (Setaria faberi) (b) Green foxtail (Setaria italica viridis)(c) Foxtail millet (Setaria italica italica)

Figure 1.1: Morphologically similar seed examples shown in the left corner. Giant foxtail and green
foxtail are considered as noxious weeds whereas foxtail millet is a critical food crop. Figure (a) by
Kropsoq is licensed under CC BY-SA 3.0. Figure (b) by bastus917 is licensed under CC BY-SA 2.0.
Figure (c) by STRONGlk7 is licensed under CC BY-SA 3.0.

1.2 Botanical Nomenclature

In order to communicate among people form different regions of the world without involving language and

cultural difference, scientists have agreed upon a naming convention based primarily on Latin [3]. In this

thesis, all seeds will be referred with their scientific name (or the abbreviations) to prevent any confusion. In

the next paragraph I review some basic rules for the composition of scientific names.

“The Latin portion of the scientific name is italicized or underlined in print and underlined when hand-

written; the first letter of the genus name is always capitalized and all letters of the specific epithet are

lowercase” [3]. Genera names are monomials (e.g. Setaria), species names are binomials (a combination of

the genus plus a specific epithet, such as Setaria faberi), subspecies and botanical varieties are trinomials (e.g.

Setaria italica viridis). For detailed principles, rules and recommendations regarding scientific names, readers

are recommended to go to the International Code of Botanical Nomenclature [59] for more information.

1.3 Motivation for a Computerized Solution

Protection of the plant production base and plant health is the commission of The Canadian Food Inspection

Agency (CFIA). As a critical diagnostic test of agricultural products within CFIA, identifying seed especially

noxious weeds, is conducted routinely for seed trade and phytosanitary certification in both domestic and

international trade. Therefore, the capacity of accurately and rapidly identifying weed seeds directly affects

the monitoring, surveillance and enforcement of plant health related regulations and policies, such as Weed

Seed Order, Seed Act and Seed Regulations, and policies on Canada regulated plant species.

Currently the identification is performed by trained seed analysts through manual inspection of morpho-

logical features under a low magnification microscope. The inspection is mainly centred on assessment of

qualitative characteristics, including shape, colour and surface texture. The seed size is the only quantitative
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data that has been used for diagnosis. Texture patterns of seed are often complex and can be attributed

to many different reasons. For example, in the process of harvesting and cleaning, seeds can be deceased,

shriveled, and lost some of its accessory parts or even been damaged. Different origins, varieties, and even

the degree of maturity could also have altered its general appearance [124]. All these variations pose huge

identification challenges for seed analysts. Furthermore, if taking extensive interregional and international

movement of seeds into consideration, seed analysts are expect to have experiences on both the local and

worldwide seed species [124]. While the manual identification process works, it is usually time consuming

and depends on considerable worker proficiency. A certified seed analysts usually requires at least 1500 hours

of training to be eligible for real-world testing.

There are references that the seed analyst could resort to for further assistance, including known seed

specimens, written descriptions, taxonomic identification keys, and reference books. One literature worths

mentioning here is written by Jensen et al. [77]. It is a comprehensive review on seed morphology, covering

handbooks, monographs, and articles, and is considered to be very useful for seed identification. Whenever

a possible answer has been achieved, the test seed need to be compared against a known specimen for

confirmation. If the final determination exceeds the seed analyst’s level of confidence, the best practice is to

forward the specimen to a person with more diagnostic expertise [3].

As can be concluded from above, the problem facing plant seed identification is two-fold: classification is

labour intensive, and a huge amount of taxonomic work must be performed on a routine basis. Since plant

seed identification is of such importance to society, solutions should be explored to help overcome the issues

that CFIA faces today.

Developing machines to identify plant species from their DNA, also called DNA “barcoding” has been

proposed as an approach to conquer this problem [127]. Although the initiatives have caught the public’s

attention, the generality and reliability of this technology is still waiting to be further confirmed. In this

thesis, an alternative approach using 2D colour images is explored.

1.4 Image Based Identification

Image-based object class identification is a subroutine of object recognition. It is basically a multi-class

classification problem and serves as the basis for higher-level computer vision tasks, e.g. automatic image

captioning [179], autonomous driving [69]. While there have been many progresses in this field recently, it

still remains one of the most challenging problems in computer vision because of the innumerous combi-

nations of variations (clutter, occlusion, pose and scale changes, etc) that could possibly occur in a single

image [201]. The seed identification problem falls into the scope of fine-grained object identification, which

aims at distinguishing among subordinate categories of the same generic object class. Similar problems are

identifying specific types of birds, motorcycles, airplanes which are only recognizable by people with certain

amount of domain expertise.
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(a) Pollen [1] (b) Plant seed [148] (c) Microorganism [143]

Figure 1.2: Microscopy images of minute objects. Figure (a) by Australasian Pollen and Spore Atlas
is licensed under CC BY-SA 3.0. Figure (c) by Proyecto Agua is licensed under CC BY-SA 2.0.

Over the last decade, object identification has undergone rapid changes and progresses, with the advances

largely concentrated on distinguishing between basic-level objects that are easy for humans to recognize, e.g.

car, boat, chair, plane, etc. Challenges are hosted every year for evaluating object identification algorithms

proposed by researchers, such as the PASCAL VOC challenge (20 classes) and the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC, 1000 classes). Based on the recent ILSVRC results, fine-grained

identification is still the bottleneck of current identification methods [149].

Despite the recent high volume of research trying to solve this problem, the progress achieved has mostly

been for in-focus natural images (at least the object to be recognized is in-focus) [17, 18, 178, 107]. Major

sources of such images are point-and-shoot cameras and cell phones where large depth-of-field can be obtained

by focusing at the hyperfocal distance. In seed testing, however, samples are too small to be captured by

these portable devices. Dedicated equipment such as a microscope with high magnification is required to get

clear texture representation of the seed surface.

In fact, many other similar areas suffer from the same problem, such as pollen studies, environmental

monitoring, and microfossil identification in biostratigraphy, to name just a few. Some of them also have an

identification requirement on a research or work basis. For example, in pollen studies, the utility and structure

of pollen grains need to be analyzed to determine the plant relationships; in biostratigraphy, microfossil

samples are key to providing vital information in understanding prehistoric climate [54].

Figure 1.2 gives an example of images of these small objects. It can be clearly seen that such microscopy

images are always suffering from huge amount of defocus blur due to the optical limits. Another common

characteristic shared by these images is they all have the scale bar which tells the viewer the actual size of

the specimen. With these two distinctive image characteristics, it would be intuitive to ask:

1. How to robustly and reliably separate the in- and out-of-focus regions of the image given

that only in-focus regions carry image details that are useful for identification?

2. Can these scales be easily incorporated into the identification model and give a better

feature represenation?
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The first question is related to the fundamental image acquisition and the second question involves

the extension of the current identification model. Successful separation of in- and out-of-focus regions can

possibly lead to two approaches to manipulate the underlying image. One would be directly using a single

image frame if the seed sample is in-focus but use the defocus blur as a cue to separate the seed from the

potentially cluttered background. The other would be to use the in-focus regions of multiple image frames

acquired at different focal distance and fuse them together as the input for the identification.

1.5 Overview of Techniques and Contributions

The overall objective of this research is to find the software solutions to address these questions and apply

them to the plant seed identification problem. The contributions of the thesis can be summarized as follows:

1.5.1 Chapter 3: Defocus Blur Segmentation

In this chapter, I proposed a sharpness metric based on local binary patterns (LBP) and a robust segmen-

tation algorithm to separate in- and out-of-focus image regions. The proposed sharpness metric exploits the

observation that most local image patches in blurry regions have significantly fewer of certain local binary

patterns compared to those in sharp regions. It runs in realtime on a single core cpu and responses much

better on low contrast sharp regions. Moreover, it can not only be used for defocus blur segmentation, but

also can be used for online focal stacking to creating all-in-focus images. A defocus segmentation algorithm is

proposed based on this sharpness metric together with image matting and multi-scale inference. Hundreds of

partially blurred images are used to evaluate the proposed segmentation algorithm and five state-of-the-art

comparator methods. The results show that this algorithm achieves a higher precision at high levels of recall

than the comparators.

This novel metric has also been integrated into the proposed online focal stacking algorithm, which does

not require stacks of images been captured before hand. It has achieved comparable results with the state-

of-the-art under low noise condition but with less computation complexity.

The defocus blur segmentation method has already been published in IEEE Transaction on Image Pro-

cessing and the code can be downloaded in the project page 1.

1.5.2 Chapter 4: A New Mid-level Feature for Textured Objects of Known Scale

A scale-wise pooling representation was proposed as the extension of the currently popular spacial pyra-

mid matching scheme in the scale dimension by utilizing real pixel scale information. With representative

specimens, the proposed representation described herein can achieve a high recognition rate of 95% using

only texture features (no colour- or shape-based features) which is superior compared with the standard ob-

1 https://www.cs.usask.ca/faculty/eramian/defocusseg/
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ject recognition pipeline and pre-trained convolutional-neural-network-based models. It offers an alternative

method for image based identification with in-focus object images of limited variance in scale.

A part of this chapter was submitted to Machine Vision and Application and major revision was requested.

1.5.3 Chapter 5: User Study

This chapter focuses on the evaluation of the effectiveness of the above proposed techniques in practical seed

identification. The very first digital seed identification tool of its kind was built for plant seed identification

based on realtime focal stacking and scale-wise pooling representation mentioned in Chapter 3 and 4. This

tool was deployed for testing in a seed testing laboratory located in Saskatoon. Currently, seed analysts in

this lab recognize large amount of plant seeds on a daily basis manually with limited assistive tools. A user

study (ethics approval certificate #BEH-15-293) was conducted here to evaluate the impact of the aiding

tool in practice. Throughput, recognition rate, workload was evaluated. Participants reported significantly

lower mental demand by using this tool compared with conventional manual operations.

1.5.4 Chapter 6: Conclusions and Future Works

In the final chapter I conclude the thesis and discuss possible topics for future research.
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Chapter 2

Literature review

Given the long lasting problem of seed identification, there have been limited attempts trying to solve

it through computer vision. Granitto et al. [56, 57] conducted a series of work on seed identification using

image analysis and automatic identification. Their database contains 236 different weed species. Using 12

features that consisting of morphological, colour and texture information, and using a ANN (Artificial Neural

Network) classifier, their test image were assigned to the correct class at a rate of 92.5 ± 0.4%. Their 12

morphological features included measurements such as seed area, compactness, and moments of planar mass

distribution. These were found to be nearly optimal for their data set using the performance of a Naive

Bayes classifier as the feature selection criterion. They also stated that morphological features have the

largest discriminating power, that colour is not particularly good because many species are light to dark

brownish or black, and that texture characteristics are even less reliable as classification parameters.

However, texture has been shown to be much more promising than colour and shape for classifying the

morphological similar seeds according to the results of our pilot study [197]. In that study, the same set of

features as in [56, 57] were extracted and evaluated on a subset of images presented in this thesis (that is

all we have back then). Classification results demonstrate that their proposed features are not effective on

differentiating the morphological similar seeds, which implicitly shows the difficultly of our task and suggests

more discriminative texture descriptor has to be sort. As for the other seed identification works, they either

focused on one particular morphological pattern, e.g. position of the umbilical, or were tested on data sets

with very large inter-species variance [63, 113, 31, 204]. Therefore, in this thesis we only use surface textures

for the identification as similar to the other object recognition systems [17, 18, 178, 107]. Another observation

from the preliminary work is that, by only using texture feature, the confusion is only happened among seeds

that share similar morphological features. This finding motivate us to use the real scale information to build

more precise texture feature representation as will be discussed in Chapter 4.

Due to the restricted volume of work explicitly related to image based seed identification, the related works

reviewed in this chapter are mostly centred on general purpose techniques for object identification and only

techniques using image texture are considered. The following chapter is divided into three major sections.

Section 2.1 is an introduction to basic-level object identification. Section 2.2 discusses the traditional fine-

grained object identification. Finally, section 2.3 describes the recent deep neural network based approaches

where image representation and classifier are both learned in the training process.
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Figure 2.1: An example of a conventional visual identification model. Bike image is from ImageNet
dataset [150]. This Figure is a reproduction of a Figure by Chatfield et al. [32].

2.1 Basic-level Object Identification

The Bag-of-Words (BoW) model [37] that was borrowed from natural language processing [80, 171, 110, 36],

is commonly used in traditional object class identification systems. Although many variations of this model

exist, the fundamental structure remains the same which can be summarized by Figure 2.1.

1. Feature Extraction

First, local image descriptors are extracted from images equally chosen from each object class. These

descriptors can be either built on a dense spacial grid [100, 190] or sparsely on keypoints detected by

various kinds of detectors, e.g. Harris detector (corners) [61], Hessian detector (blobs) [121, 112], or

even randomly chosen [129]. An example is shown in Figure 2.2 where local descriptors are extracted.

These descriptors can either based on gradients, e.g. SIFT [112], GLOH [122], or wavelet coefficients,

e.g. SURF [13], or intensity orders, e.g. LIOP [187]. Among all these descriptors, SIFT is still the

most commonly used because of its balance between distinctiveness and computational efficiency. These

low-level descriptors transforms the raw pixel intensities into a representation, to some extent, invariant

to image variations, i.e. rotation, scale change, etc. If compared with the convolutional neural network

model as will be reviewed in section 2.3, these descriptors can be treated as hand-crafted stages in the
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Figure 2.2: Local features are extracted in the local neighbourhood of these highlighted red points.
In the left figure, points are aligned on a dense grid whereas in the right figure, points are extracted
by Harris corner detector and scattered sparsely and irregularly.

Figure 2.3: An illustration on how SIFT is built, a reproduction of Figure 7 of Lowe et al. [112].
The neighbourhood of the keypoint is divided into 4 × 4 = 16 spatial bins. The size of the spacial
bin is proportional to the scale of the keypoint. Inside each subregion is the histogram of gradient
orientations quantized into 8 bins. The final descriptor is the concatenation of histograms of each
subregion.

feed-forward architecture [95].

2. Vocabulary Building

Next, a visual vocabulary, also known as a dictionary/codebook, is learned through one of several

clustering methods, e.g. K-means or Gaussian Mixture Model (GMM) [147]. Each cluster centre is

referred as a visual word/code. By making an analogy to text document classification, each local

descriptor simply plays the role of a text word if we treat image as a text document.

3. Feature Encoding

Feature coding is then performed by encoding each local descriptor with the learned vocabulary into

a so-called mid-level representation (since it lies in the middle of low-level feature (e.g. SIFT) and

the final representation (sent to classifier)). In the basic model described in [37], each local descriptor

is quantized to the nearest word. In more recent works, in order to decrease the quantization errors,

many other encoding methods are proposed, such as super-vector encoding [207], Fisher encoding [138,
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Figure 2.4: Demonstration of encoding and pooling. Each word in the vocabulary has a dimension
size D. Green dots are words used to reconstruct the descriptor which are designated by encoding
methods. Red dots represent words that are not used. The brightness of green dot demonstrates the
weight of each corresponding word. Pooling methods decide how all encoded descriptors are aggregated
together. It is pooled on a row basis such that each row of the descriptors is pooled into a single value.
Note that in this figure I used sparse encoding as an example for the sake of visualization simplicity
since the dimension of fff in this case is the same as K. The actual dimension of fff varies from method to
method and does not necessarily need to be K (Fisher encoding produce a fff with dimension of 2DK).

76, 152], sparse coding [194], and locality-constrained linear encoding [185]. Based on experiments

in [33, 87, 186, 73], the best mid-level feature for basic-level object identification is Fisher coding since

the GMM used in Fisher coding is more robust given the learned density distribution. Moreover, Fisher

coding preserves much more information, e.g. the mean and the variance of clusters. These claims are

supported by its excellent performance in the ImageNet classification and localization challenge of

2012 [149].

4. Feature Pooling

A pooling step is carried out to aggregate mid-level features from an image into a final representation

with a fixed length vector as shown in Figure 2.4. Boureau et al. [25] have conducted a theoretical

analysis on average pooling and max pooling. The results indicated that max pooling is better fitted for

sparse features than average pooling. Furthermore, in [87], the author compared other more complex

pooling strategies, such as MaxExp, Gamma, AxMin, and ExaPro and showed that they improved the

performance over the baseline Max-pooling scheme but need more computations.

It can be noticed from the above summation that BoW model treats images as collections of indepen-

dent patches thus discards spatial arrangement information. To recover the lost spatial information between

patches, Lazebnik et al. proposed to pool across image subregions [97] which is known as pyramid match-

ing, whereas Russakovsky et al. proposed to pool in an object-centric way [151]. In the latter case, the

encoded features for object-of-interest and background are pooled separately and the final representation is

the concatenation of features for these two different subregions.
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The BoW model can not only be used for differentiating object classes but also for differentiating different

semantic attributes (attributes now serve as object classes in this case) which is critical for recognition of

subordinate categories of generic objects as will be seen in the next section.

2.2 Fine-grained Object Identification

Before fine-grained identifaction was recognized as a distinct problem from conventional basic-level identifi-

cation, many researchers already adopted the above conventional basic-level approach to solve fine-grained

recognition problems. For example, Larios et al. used three different region detectors and SIFT descriptor

to recognize stonefly larvae [96]. Nilsback et al. used bag-of-SIFT to describe the texture, bag-of-histogram-

of-gradients (HoG) [38] to describe shape of the boundary, bag-of-colour in HSV colour space to describe

colour, and a multi-kernel support vector machine (SVM) on top to recognize flower species [128]. But since

the difference among fine-grained objects is subtle, detecting and describing object attributes and parts have

become increasingly important. In the following, I will review the traditional approaches for identification of

fined-grained objects. They can be roughly categorized into the following four groups.

1. Incorporate Humans into the Loop

These kinds of systems are semi-automatic methods which require humans to provide extra information

to narrow down the possible answer space just like the classic 20 questions game but in a visualized

fashion [17, 182, 26]. For example, when classifying an image of a bird, the human might provide the

beak’s location via clicking, or providing the pattern of the wing via a binary question: “Is the wing

pattern striped?” [182]. An example workflow of bird species identification is shown in Figure 2.5. Such

systems do not require experts, e.g. ornithologists, to perform the task since an average human being

is capable of detecting and broadly categorizing objects or describing colour and shape, even if he/she

does not recognize the object’s identity.

2. Attribute-based Approaches

An attribute is, in general, a semantic connotation that can be shared among object categories, in-

stances, and parts, e.g. the greenness of a leaf or the sharpness of an edge. By characterizing objects

with attributes, we can focus on descriptive properties of objects rather than their compositional and

local traits [178]. Several authors have investigated attribute-based recognition [44, 91, 95]. They

learned discriminative models from suitable attribute-labeled training data as shown in Figure 2.6 and

subsequently applied the learned models to the test image to estimate the presented visual attributes.

Class labels are inferred by combining the predictions of many attributes via Bayes approaches. Since

visual attributes are human interpretable, successful detection of attributes would in the mean time

enable other interesting applications [178], such as automatic image descriptions generation [45] or

content-based image searching [16]. However, the richly-annotated data required for training is not
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Indigo
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Question 1:
Is the crown colour blue?
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p(c|x)

Question 2:
Is the wing pattern striped?
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Figure 2.5: One example of the workflow of human involved fine-grained recognition system, a
reproduction of Figure 10 of Branson et al. [26]. p(c|x) is the possibility of image x assigned to class
c. Input image is from dataset Caltech-UCSD Birds-200-2011 [183].

Figure 2.6: Exemplar images annotated in detail for training attribute detectors. Image is from
dataset Caltech-UCSD Birds-200-2011 [183].

always available.

3. Parts and Poses-based Approaches

Distinctive features for fine-grained objects sometimes come from object parts. Pictorial structure [52,

47], constellation models [49] and discriminatively trained deformable part models [46] are examples

of the many methods that detect discriminative parts. With parts detected, articulated objects can

be aligned so that corresponding parts can be compared. Parkhi et al. used a face detector to detect

the face of a cat/dog and then use a head + body layout as the final image representation [107, 134].

Asma et al. [155] detected landmark regions of plants (petal, sepal, labellum) and only built descriptors

around these vantage parts.

Beyond object parts, a particular part of the object pose under a given viewpoint can be detected
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by poselet detectors [24, 202]. The output of such detectors can also be thought of as a mid-level

feature, on top of which one can run a layer of classification or regression. Instead of directly detecting

individual parts of the object, Gavves et al. showed that roughly aligning the objects as a whole also

allows for successful recognition of fine-grained objects [53].

4. Learning based Approaches

Bangpeng et al. [196] proposed a vocabulary and annotation-free method in which image representation

is acquired by high-throughput template-matching, with each template being randomly sampled on

the images. Berg et al. argued that the conventional ways of constructing mid-level representations

out of the standard low-level features are unlikely to be optimal for any particular problem. The best

approach should be varied from task to task, i.e. the approach of constructing mid-level representations

for recognizing birds should be different from recognizing cars. Therefore they proposed a framework

to learn mid-level level features which called Part-based One-vs-One Features (POOFs) from a large

richly-annotated dataset [17].

2.3 Deep Neural Network based Methods

Recently, deep learning has been shown to exhibit superior performance on many standard recognition bench-

marks, both in speech [58] and visual recognition [145]. The breakthrough is mainly due to the large public

image repositories and high-performance computing systems, such as GPUs or large-scale distributed clus-

ters [39] or specialized hardware [93]. Convolutional neural networks (CNN) [99] has been adopted in many

visual recognition systems nowadays but the original concept can be traced back to 1980s. It was inspired by

the finding that cells in the visual cortex are sensitive to different size of receptive fields which are essentially

a two-dimensional subregion in visual space [74]. The major characteristic of this architecture is the local

connectivity and shared weights among neighbouring neurons. Features with hierarchical levels of abstraction

can be learned directly from the training process with a minimum amount of domain-knowledge. CNNs have

been adopted to solve many other vision problems such as non-reference image quality assessment [82], depth

map estimation [43, 42, 106], visual saliency detection [103], and edge detection [19].

Figure 2.7 demonstrates a typical architecture of CNN that is composed of two stages [99], with each

stage composed of three layers: one convolution layer, one nonlinearity layer and one pooling layer.

Convolution Layer: the input is a 3D array with n3 2D feature maps of size n1 × n2 (e.g. for the

very first layer, input is a colour image with 3 channels R, G, B, thus n1 and n2 are the image width and

height and n3 = 3). Each component in the array is denoted xijk, and each feature map is denoted xxxk, where

k ∈ [0, n3]. The output is also a 3D array yyy which is composed of m3 feature maps of size m1 ×m2. The

mapping of the input feature map xxxk to output feature map yyyk is accomplished by a trainable filter (kernel)

a with the relation being expressed as

yyyk = aaa⊗ xxxk + bbbk
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where ⊗ is the 2D discrete convolution operator and bk is a trainable bias vector as illustrated in Figure 2.8.

Note that, in practice, this convolution can span more than one feature map.

Nonlinearity Layer: A nonlinear activation function is then applied to each component (xijk), e.g.

most commonly the rectified hyperbolic tangent (ReLU) [125]:

f(x) = max(0, x),

to impose sparsity and reduce the likelihood of a vanishing gradient.

Feature Pooling Layer: The term “pooling” here has exactly the same meaning as in BoW model.

Features in the local spatial neighbourhood around each component are pooled to a single value, which results

into a series of reduced-resolution feature maps. Doing this not only makes the feature robust to small spatial

translations but also makes the computation tractable. The most common used pooling methods are average

pooling and max pooling because of their simplicity. Traditionally, pooling is performed on each feature map

separately, however, recently, pooling has also been been done across feature maps [84].

Practical models can be much deeper and more complicated than simply stacking these primitive layers

together. For example, winner of ILSVRC-2014 employs a 19-layer model [160] and the residual network that

won the 2015 ImageNet classification task has a depth of 152 and introduced shortcut connections between

layers for residual learning [66]. Furthermore, there are other additional layers that can be inserted in-between

for efficient training. To name a few, batch normalization layer [75] is proposed to force the activations to take

on a unit gaussian distribution. Dropout layer [162] is proposed to only keep a neuron activate at a certain

probability during the training and served as another regularization on the network. The parameters can be

trained via simple stochastic gradient descent with sufficient labeled training data (ILSVRC has roughly 1.2

million labeled training images with the help of Amazon’s Mechanical Turk crowd-sourcing tool). Recently,

more sophisticated learning methods like Adam [86], Adagrad [41], AdaDelta [199], RMSprop [168] have been

proposed and shown to have a faster convergence.

Training a deep network with millions of parameters from scratch requires a huge amount of labelled

data and computational resources. For labeled datasets that is fairly small (on the order of thousands),

which are most commonly seen in the medical imaging domain, fine tuning a pre-trained network tends

to work reasonably well [165]. Moreover, recent researches [71, 14, 118, 70, 15] have also shown that

unsupervised learning can be used to train each stage one after the other using only unlabelled data for a

better initialization of the network parameters. But the small size of seed dataset prohibits effective training

of a deep network, no matter it is for a full training, fine tuning, or layer-wise pre-training. Fortunately, it is

found that a pre-trained CNN on ImageNet can be used directly as a feature extractor or as a baseline for

transfer learning1 [145, 135, 10, 172]. As such, in Chapter 4, a pre-trained CNN will be employed to serve as

a baseline for the performance evaluation of the proposed seed identification method.

1Improvement of learning in one task by leveraging related knowledge learned from another task
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Figure 2.7: LeNet used for digital character recognition, a reproduction of Figure 2 of LeCun et
al. [98]. It is a typical CNN architecture with two feature extraction stages. Nonlinear operation is
applied right after convolution thus is not shown in this diagram.

input xxxk

kernel aaa

output yyyk

yyyk = aaa⊗ xxxk + bbbk

Figure 2.8: Image convolution with kernel. For simplicity, the depth of the kernel is set to 1. In
practice, the depth of both the feature map and the kernel is almost always larger than one. Thus the
convolution is performed between two 3 dimensional tensors. A nonlinear function is instantly applied
element-wisely on the convolved results.
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Chapter 3

Defocus blur segmentation

The defocus blur segmentation method has already been published in IEEE Transaction on Image Pro-

cessing (TIP) with Xin Yi as the lead author.

Copyright Notice

c©2016 IEEE. Reprinted, with permission, from Xin Yi, Mark Eramian, LBP-Based Segmentation of Defocus

Blur, Transaction on Image Processing, February 2016.

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does

not endorse any of University of Saskatchewan’s products or services. Internal or personal use of this

material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertis-

ing or promotional purposes or for creating new collective works for resale or redistribution, please go to

http://www.ieee.org/publications standards/publications/rights/rights link.html to learn how to obtain a

License from RightsLink.

3.1 Introduction

Defocus blur in an image is the result of an out-of-focus optical imaging system. In the image formation

process, light radiating from points on the focus plane are mapped to a point on the sensor, but light from

a point outside the focus plane illuminates a non-point region on the sensor known as a circle of confusion.

Defocus blur occurs when this circle becomes large enough to be perceived by humans.

In digital photography, defocus blur is employed to blur background and “pop out” the main subject

using large-aperture lenses. However, this inhibits computational image understanding since blurring of the

background suppresses details beneficial to global scene interpretation. In microscopic imaging of opaque 3D

specimens, e.g. plant seeds, this effect could have both good and bad influences. One one hand, if the seed

sample is in-focus within a single image frame, the defocus blur can be served as a cue to separate the seed

from the potentially cluttered background. On the other hand if the seed is under high magnification where

the depth-of-field is so narrow that only a small portion can be in focus as already shown in Figure 1.2,

multiple image frames acquired at different focal distance would be required for focal stacking to create an

all-in-focus image. The reason is that the blurring of large portion of the seeds will make certain species
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indistinguishable since usually similar seed species would look the same under large amount of blur. Encoding

features from the blurred areas would degrade the image descriptors. Both cases would require efficient and

accurate detection of blurred or non-blurred regions.

Moreover, several other contexts could also benefit from accurate blur detection including: 1) in avoiding

expensive post-processing of non-blurred regions (e.g. deconvolution); 2) in computational photography to

identify a blurred background and further blur it to achieve the artistic bokeh effect [11, 159], particularly

for high-depth-of-field cellular phone cameras.

Herein, I treated the defocus blur detection problem as a binary segmentation problem where 1 denotes

the sharp region and 0 denotes the blur region. I proposed a novel sharpness metric based on Local Binary

Patterns (LBP) that is able to run in real-time and can be adopted not only for defocus segmentation but

also for focal stacking.

3.2 Related works

The most common approach to defocus segmentation is local sharpness measurement. There are many works

in this area in the past two decades and most of them can be found in the image quality assessment field where

images are rated by a single sharpness score that should conform to the human visual perception. These

applications only require a single sharpness value to be reported for a single image, thus most of the measures

only rely on sharpness around local edges [50, 126, 119] or some distinctive image structures determined in

the complex wavelet transform domain [64]. Similarly, the line spread profile has been adopted for edge

blurriness measurement in image recapture detection [167]. Since most of these metrics are measured around

edges, they cannot readily characterize sharpness of any given local image content unless using interpolation

as was done in [11, 210].

Measures such as higher order statistics [85], variance of wavelet coefficients [184], and local variance image

field [191] have been used directly in segmentation of objects of interest in low-depth-of-field images. These

local sharpness metrics are based on local image energy which means that the measures will not only decrease

if the energy of the point spread function (PSF) decreases (becomes more blurry), but also decreases if the

energy of the image content drops. Thus, a blurry, high-contrast edge region could have a higher sharpness

score than an in-focus, low-contrast one. These metrics are suitable for relative sharpness measures, e.g. in

focal stacking, but do not behave very well for local sharpness measure across various image contents. This

deficiency has already been pointed out in [208].

Recently, the authors of [159, 108] proposed a set of novel local sharpness features, e.g. gradient his-

togram span, kurtosis, for training of a näıve Bayes classifier for blur classification of local image regions.

The sharpness is interpreted as the likelihood of being classified as sharp patch. Su et al. used singular

value decomposition (SVD) of image features to characterize blur and simple thresholding for blurred region

detection [163]. Vu et al. used local power spectrum slope and local total variation to measure sharpness in
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both the spectral and spatial domains. The final sharpness is the geometric mean of the two measures [181].

Instead of measuring sharpness only based on local information, Shi et al. proposed to learn a sparse

dictionary based on a large external set of defocus images and then use it to build a sparse representation of

the test image patch. The final measure was the number of non-zero elements of the corresponding words [79].

Depth map estimation is another approach that can also be used for defocus blur segmentation. Zhuo

et al. used edge width as a reference for depth measurement under the assumption that edges in blurred

regions are wider than those in sharp regions [210]. They obtained a continuous defocus map by propagating

the sharpness measures at edges to the rest of the image using image matting [101]. Bae and Durand’s work

is similar, but they computed edge width differently by finding the distance of second derivative extrema of

opposite sign in the gradient direction [11]. These methods tend to highlight edges in places where the blur

measure is actually smooth.

Zhu et al. tried to explicitly estimate the space-variant PSF by analyzing the localized frequency spectrum

of the gradient field [209]. The defocus blur kernel is parameterized as a function of a single variable (e.g.

radius for a disc kernel or variance for Gaussian kernel) and is estimated via MAPk estimation [102]. Similar

work can be found in [29] but the blur kernel is restricted to a finite number of candidates. Khosro et al.

estimate the blur kernel locally using blind image deconvolution by assuming the kernel is invariant inside

the local block. But instead of fitting the estimated kernel to a parameterized model, they quantified the

sharpness through reblurring [12]. Florent et al. treat the blur kernel estimation as a multi-label energy

minimization problem by combining learned local blur evidence with global smoothness constraints [35].

These methods are inherently slow because of their iterative nature.

Unlike [11, 209, 210], I do not intend to construct a depth map. My goal is only to separate in-focus

regions from regions of defocus blur. Also, unlike [79], I do not rely on external defocus images; in this respect

my work is most similar to [163, 108, 159, 181] but with better runtime and segmentation performance. I

postulate that local-based defocus blur segmentation methods to date have been limited by the quality of

the sharpness measures which they employ.

Local metrics of image sharpness that have been recently introduced for the segmentation of blurred

regions are now reviewed in the following section. Generally, they fall into one of three categories: gradient

domain metrics, intensity domain metrics, and frequency domain metrics.

3.3 Commonly used Sharpness Metrics

3.3.1 Gradient Domain Metrics

1. Gradient Histogram Span [203, 163]

The gradient magnitude of sharp images exhibits a heavy-tailed distribution [48, 156, 102, 88] and can
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be modelled with a two-component Gaussian mixture model (GMM):

G = a1e
− (g−µ1)2

σ1 + a2e
− (g−µ2)2

σ2 , (3.1)

where means µ1 = µ2 = 0, variance σ1 > σ2, g is the gradient magnitude, and G is the gradient mag-

nitude distribution in a local region. The component with larger variance is believed to be responsible

for the heavy-tailed property. Thus the local sharpness metric is:

mGHS = σ1. (3.2)

2. Kurtosis [159]

Kurtosis, which captures the “peakedness” of a distribution, also characterizes the gradient magnitude

distribution difference. It is defined as:

K =
E[(g − µ)4]

E2[(g − µ)2]
− 3, (3.3)

where the first term is the fourth moment around the mean divided by the square of the second moment

around the mean. The offset of 3 is to cause the peakedness measure of a normal distribution to be 0.

The derived local sharpness metric is:

mK = min(ln(K(gx) + 3), ln(K(gy) + 3)), (3.4)

where gx, gy are gradient magnitudes along x and y axis respectively.

3.3.2 Intensity Domain Metrics

1. Singular Value Decomposition (SVD) [108]

An image patch PPP can be decomposed by SVD:

PPP = UUUΛΛΛVVVT =

n∑
i=1

λiuuuivvv
T
i , (3.5)

where UUU,VVV are orthogonal matrices, ΛΛΛ is a diagonal matrix whose diagonal entries are singular values

arranged in descending order, uuui and vvvi are the column vectors of UUU and VVV respectively, and λi are the

singular values of ΛΛΛ. It is claimed that large singular values correspond to the rough shape of the patch

whereas small singular values correspond to details. The sharpness metric is:

mSVD(k) = 1−
∑k
i=1 λi∑n
i=1 λi

, (3.6)

where the numerator is the sum of the k largest singular values.

2. Linear Discriminant Analysis (LDA) [159]
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By sampling a set of blurred and non-blurred patches, this method finds a transform WWW that maximizes

the ratio of the between-class variance Sb to the within-class variance Sw of the projected data with

each variance:

SSSb =

2∑
j=1

(µµµj −µµµ)T (µµµj −µµµ),

SSSw =

2∑
j=1

Nj∑
i=1

(xxxij −µµµj)T (xxxij −µµµj),

(3.7)

where j = 1 represents the blurred class, j = 2 represents the sharp class, xxxij is the vectorized pixel

intensity of the i-th sample of class j, µµµj is the mean of image intensity in class j, µµµ is the mean across

all classes and Nj is the number of samples in the corresponding class (see also Section 2.3 of [159]).

This is solved by maximizing the ratio det|SSSb|
det|SSSw| and the resulting column vectors of the projection matrix

WWW are the eigenvectors of SSS−1
w SSSb. The final metric can be expressed as:

mLDA(i) = wwwT
i PPP, (3.8)

where wwwi is the i-th column vector of matrix WWW, and PPP is the vectorized patch intensity.

3. Sparsity [79]

This measure is based on sparse representation. Each patch is decomposed according to a learned

over-complete dictionary which expressed as

argmin
uuu
||PPP−DDDuuu||2 + λ||uuu||1 (3.9)

where DDD is the learned dictionary on a set of blurred image patches. PPP is the vectorized patch intensity

and uuu is the coeficients vector, each item of which is the weight used for the reconstruction. The

reconstruction of a sharp patch requires more words than blurred patches. Thus the sharpness measure

is defined as the number of non-zero elements in uuu, i.e., the L0 norm of uuu.

mS = ||uuu||0 (3.10)

4. Total variation [181]

This metric is defined as

mTV =
1

4
max
ξ∈P

TV (ξ)

with TV (ξ) =
1

255

∑
i,j

|xi − xj |
(3.11)

which is the maximum of the total variation of smaller blocks ξ (set as 2 × 2 in the original paper)

inside the local patch P . The coefficient 1
4 is a normalization factor since the largest TV of a 2 × 2

block is 4. The author argued that a non-probabilistic application of TV can be used as a measure of

local sharpness due to its ability to take into account the degree of local contrast.

20



3.3.3 Frequency Domain Metrics

1. Power Spectrum [108, 159, 181]

The average of the power spectrum for frequency ω of an image patch is:

J(ω) =
1

n

∑
θ

J(ω, θ) ' A

ωα
(3.12)

where J(ω, θ) is the squared magnitude of the discrete Fourier transform of the image patch in the polar

coordinate system, n is the number of quantizations of θ, and A is an amplitude scaling factor. It was

shown that α = 2 for sharp, natural images [176, 51, 28]. Since blurred images contain less energy in

the high frequency components, the magnitude of their power spectra tend to fall off much faster with

increasing ω, and the value of α is larger for such images. Rather than fitting a linear model to obtain

α, the average of the power spectrum can be used instead as an indicator since the power spectra of

blurred regions tend to have a steeper slope than for sharp regions, thus have a smaller average power.

The metric is:

mAPS =
1

n

∑
ω

∑
θ

J(ω, θ). (3.13)

In [181, 108], the authors directly use the fitted spectrum slope α as the measure. However, the author

in [159] claimed that the average power spectrum is more robust to outliers and overfitting, thus I only

evaluate mAPS .

3.4 Drawbacks of current sharpness metrics

Given the sharpness metrics reviewed in section 3.3, I conducted a preliminary study to observe how they

respond to different local image textures to see if they are limiting progress in blur detection as previously pos-

tulated. Since the proposed work is centred on local sharpness measures, this experiment excludes measures

that rely on external information, e.g. mLDA and mS .

Following the same methodology in [34], I assumed there are four common types of textures that appear

in natural scenes, a random texture such as grass, a man-made texture, a smooth texture such as sky or

fruit surface, and an almost smooth texture such as areas on the road sign (its texture is of low contrast and

has more detail than pure smooth regions). Four such exemplar textures are shown in Figure 3.1. Gaussian

blur of varying severity (σ ∈ [0.1, 10.0]) was applied to these image patches and each metric was computed

for each texture and blur level. For the SVD-based metric, I tested with k = 6, that is, mSVD(6), but the

response is similar for most values of k. The size of image patches were 21× 21 pixels for all metrics.

Figure 3.2 shows the response of each metric to each of the four exemplar textures in Figure 3.1 over

the tested range of σ. In addition, by evaluating 8000 sharp patches covering different scenes, an aggregate

performance of these measures is also shown in Figure 3.2. The thick red curve shows the mean response over

the 8000 patches and the dashed red curves show higher and lower quartiles (75th and 25th percentile). It
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man-made texture
smooth texture

random texture almost smooth texture

Figure 3.1: Four commonly appeared textures in natural scenes.
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Figure 3.2: Responses of different measures. The thick red curve shows the mean performance over
8000 patches and the dashed red line shows the higher and lower quartile. The responses to 4 exemplar
patches are shown in blur, cyan, green, grey curves respectively.
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mK = 0.9507 mK = 1.0915

σ=0.1 σ=1.1

Figure 3.3: An example of the non-monotonicity of the sharpness measure mK . The patches showing
here are the almost smooth patch under two levels of Gaussian blur as marked by black dots in mK

response in Figure 3.2.

can be seen from this figure that, in an aggregate manner, all measures decreases when blur extent increases

(one exception is that mK shows a slight increase after σ approaches 5). However, the aggregate data hides

responses that are very different from the aggregate with mGHS and mK exhibiting minor to moderate non-

monotonicity on some specific textures. Two patches are shown in Figure 3.3 with two levels of blur. The

one with larger σ has larger mK .

A smooth texture should elicit a constant, yet weak response to the sharpness metrics since its appearance

does not change with varying degrees of defocus blur, but the yellow curve shows big differences in responses

for most of the sharpness metrics, with mGHS , mTV and mSVD exhibiting the least variation. One would

also expect that blurry regions would have smaller responses than sharp regions, but that is not the case for

all metrics. At a given σ, for example 1.5, the region formed by the higher and lower quartiles has a large

intersection with the quartiles for σ = 0. In this respect, mAPS has the worst performance. Finally, none

of the metrics are well-suited for measuring low contrast sharp regions, such as the almost smooth region in

the example. This is because the low contrast region has very small intensity variance which leads to low

gradient and low frequency response. The green and grey curve are almost inseparable for mGHS ,mSVD and

mTV . This drawback is further shown in Figure 3.11. The low contrast yellow region of the road sign does

not have a correct response for all measures even if it is in focus.

In the next section I proposed a new sharpness metric based on local binary patterns which has a monotonic

response to blur. The range of response values for blur patches has less intersection with sharp regions and

it has a more appropriate response to low contrast region.
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Figure 3.4: 8-bit LBP with P = 8, R = 1.

3.5 Proposed LBP based blur metric

Local Binary Patterns (LBP) [131] have been successful for computer vision problems such as texture segmen-

tation [130], face recognition [8], background subtraction [68] and recognition of 3D textured surfaces [141].

The LBP code of a pixel (xc, yc) is defined as:

LBPP,R(xc, yc) =

P−1∑
p=0

S(np − nc)× 2p with S(x) =

1 |x| ≥ TLBP

0 |x| < TLBP

(3.14)

where nc is the intensity of the central pixel (xc, yc), np corresponds to the intensities of the P neighbouring

pixels located on a circle of radius R centered at nc, and TLBP > 0 is a small, positive threshold in order to

achieve robustness for flat image regions as in [68]. Figure 3.4 shows the locations of the neighbouring pixels

np for P = 8 and R = 1. In general, the points np do not fall in the center of image pixels, so the intensity

of np is obtained with bilinear interpolation.

A rotation invariant version of LBP can be achieved by performing the circular bitwise right shift that

minimizes the value of the LBP code when it is interpreted as a binary number [132]. In this way, number of

unique patterns is reduced to 36. Ojala et al. found that not all rotation invariant patterns sustain rotation

equally well [132], and so proposed using only uniform patterns which are a subset of the rotation invariant

patterns. A pattern is uniform if the circular sequence of bits contains no more than two transitions from

one to zero, or zero to one. The non-uniform patterns are then all treated as one single pattern.

This further reduces the number of unique patterns to 10 (for 8-bit LBP), that is, 9 uniform patterns,

and the category of non-uniform patterns. The uniform patterns are shown in Figure 3.5. In this figure,

neighbouring pixels are coloured blue if their intensity difference from centre pixel is larger than TLBP , and

I say that it has been “triggered”, otherwise, the neighbours are coloured red.

Figure 3.6 shows the normalized histogram of the nine uniform LBP patterns appearing in the blurred and

non-blurred regions of 100 images randomly selected from a publicly available dataset of 704 partially blurred

images [28], each of which is provided with a hand-segmented groundtruth image denoting the blurred and

non-blurred regions. Bin 9 is the number of non-uniform patterns. The frequency of patterns 6, 7, 8, and 9
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Figure 3.5: The uniform rotationally invariant LBP. Red dots represent pixels that have a intensity
difference to the centre pixel less than designated threshold whereas blue dots are the opposite or here
interpreted as activated.
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Figure 3.6: LBP code distribution in blurred and sharp regions. Bins 0–8 are the counts of the
uniform patterns; bin 9 is the count of non-uniform patterns. Data is sampled from 100 partial blurred
images from [158].
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Figure 3.7: Histogram of LBP patterns in three different patches which are sampled from blurred
(A), sharp (B), and transitive (C) areas respectively. In the ground truth image, white denotes the
sharp region and black the blurred region.

in blurred regions is noticeably less than that for sharp regions. The intuitive explanation for this is that in

smoother areas, most neighbouring pixels will be similar in intensity to nc, and the chance of a neighbour

being triggered is lower, making the lower-numbered uniform patterns with fewer triggered neighbours more

likely. Examples of the LBP histograms of specific sharp and blurred patches is given in Figure 3.7 which

also exhibit this expected behaviour.

My proposed sharpness metric:

mLBP =
1

N

9∑
i=6

n(LBP riu2
8,1 i) (3.15)

exploits these observations where n(LBP riu2
8,1 i) is the number of rotation invariant uniform 8-bit LBP pattern

of type i, and N is the total number of pixels in the selected local region which serves to normalize the metric

so that mLBP ∈ [0, 1]. One of the advantages of measuring sharpness in the LBP domain is that LBP features

are robust to monotonic illumination changes which occur frequently in natural images.

The threshold TLBP in Equation 3.14 controls the proposed metric’s sensitivity to sharpness. As shown

in Figure 3.8, by increasing TLBP , the metric becomes less sensitive to sharpness. However, there is a

tradeoff between sharpness sensitivity and noise robustness, as shown in Figure 3.9. In situations where

high sensitivity to sharpness is needed, a discontinuity-preserving noise reduction filter such as non-local

means [27] should be employed.

Figure 3.10 shows my metric’s response to various levels of blur (TLBP = 0.016). There is a sharp fall-

off between σ = 0.2 and σ = 1.0 which facilitates segmentation of blurred and sharp regions by simple

thresholding.

Moreover, the metric response is nearly monotonic, decreasing with increasing blur, which should allow

such regions to be distinguished with greater accuracy and consistency. Figure 3.11 shows maps of the local

response of my metric and comparators for a sample image. My metric has the most coherent response and

responds the most consistently to the road sign with respect to the given ground truth.

Table 3.1 shows a comparison of the runtime of mLBP and comparator metrics. Where available, author-
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original image TLBP = 0.004 TLBP = 0.012

TLBP = 0.020 TLBP = 0.028 TLBP = 0.036

Figure 3.8: Response of mLBP (Equation 3.15) for various values of threshold TLBP . TLBP determines
the cutoff for the magnitude of intensity change that is considered an “edge”, regardless of edge
sharpness.

original image PSNR = 29.98dB PSNR = 20.22dB

Figure 3.9: Response of mLBP in the presence of noise. Top: the original image and two copies
corrupted by Gaussian noise; bottom: the corresponding sharpness maps. TLBP = 0.016.
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Figure 3.10: My metrics’ response to the sample patches shown in Figure 3.1. As the same as in
Figure 3.2, an aggregate response on 8000 sharp patches is also shown with the thick red curve showing
the mean response and the dashed red curve showing the higher and lower quartile.
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avg. power spectrum (mAPS ) local binary pattern hist. (mLBP )

Figure 3.11: Metric responses for a sample image for different sharpness metrics. Only the proposed
metric has the correct responses on the local contrast yellow road sign.
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Sharpness Metric Avg. Runtime

gradient histogram span (mGHS ) [159, 108] 273.19s

kurtosis (mK) [159] 11.57s

singular value decomposition (mSVD) [163] *38.66s

total variation (mTV ) [181] 50.00s

average power spectrum slope (mAPS ) [159] 22.89s

my LBP-based metric (mLBP ) *3.55s

my LBP-based metric (mLBP , mex imp.) *26.5ms

Table 3.1: Runtime comparison of various metrics. Note that the speed of my metric can be boosted
by using integral image which makes the complexity independent of the size of local region. Those
marked by * are from my own implementation. Mex implementation is a C++ implementation that
is callable from MATLAB.

supplied code for calculating the metrics was used, otherwise my own implementations were used (marked

with *). All implementations were in MATLAB. 10 randomly selected images with approximate size of

640× 480 pixels were tested on a Mac with 2.66 GHz intel core i5 and 8 GB memory. The average runtimes

are reported in Table 3.1.

The sharpness maps, response curves, and runtimes provide strong qualitative and quantitative evidence

that the proposed metric is superior. In the next section I present a blur segmentation method that achieves

the state-of-the-art results by employing this metric.

3.6 New Blur Segmentation Algorithm

This section presents my algorithm for segmenting blurred/sharp regions with the proposed LBP-based

sharpness metric; it is summarized in Figure 3.12. The algorithm has four main steps: multi-scale sharpness

map generation, alpha matting initialization, alpha map computation, and multi-scale sharpness inference.

3.6.1 Multi-scale Sharpness Map Generation

In the first step, multi-scale sharpness maps are generated using mLBP . The sharpness metric is computed

for a local patch about each image pixel. Sharpness maps are constructed at three scales where scale refers

to local patch size. By using an integral image [180], sharpness maps may be computed in constant time per

pixel for a fixed P and R1.

1P is the number of neighbouring pixels used to compute the LBP code around each pixel. R is the Manhattan distance
between the neighbouring pixels to the centre pixel.
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Input

sharpness map

alpha matting
initialization

alpha map

multi-scale
inference inference

output

Input image

scale1

scale2

scale3

sharpness 1 sharpness 2 sharpness 3

mask1 mask2 mask3

α1 α2 α3

h1 h2 h3

Figure 3.12: My blur segmentation algorithm. The main steps are shown on the left; the right shows
each image generated and its role in the algorithm. The output of the algorithm is h1.
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3.6.2 Alpha Matting Initialization

Alpha matting is the process of decomposing an image into foreground and background. The image formation

model can be expressed as:

I(x, y) = αx,yF (x, y) + (1− αx,y)B(x, y), (3.16)

where the alpha matte, αx,y, is the opacity value on pixel position (x, y) and takes a value between 0 and 1

(unlike segmentation which only takes discrete value 0 or 1). It can be interpreted as the confidence that a

pixel is in the foreground. Typically, alpha matting requires a user to interactively mark known foreground

and background pixels, initializing those pixels with α = 1 and α = 0, repectively.

Interpreting “foreground” as “sharp” and background as “blurred”, I initialized the alpha matting process

automatically by applying a double threshold to the sharpness maps computed using the proposed sharpness

metric to produce an initial value of α for each pixel:

masks(x, y) =


1, if mLBP (x, y) > Tm1 .

0, if mLBP (x, y) < Tm2
.

I(x, y), otherwise.

(3.17)

where s indexes the scale, that is, masks(x, y) is the initial α-map at the s-th scale.

3.6.3 Alpha Map Computation

The α-map will be solved by minimizing the following cost function as proposed by Levin [101]:

E(α) = αTLLLα+ λ(α− α̂)T (α− α̂), (3.18)

where α is the vectorized α-map, α̂ = maski(x, y) is one of the vectorized initialization alpha maps from the

previous step, and LLL is the matting Laplacian matrix. The first term is the regularization term that ensures

smoothness, and the second term is the data fitting term that encourages similarity to α̂. For more details

on Equation 3.18, readers are referred to [101].

The alpha matting will be applied at each scale as shown in Figure 3.12. The final alpha map at each scale

is denoted as αs, s = 1, 2, 3. The underlying assumption of alpha matting is that patches of similar colour

have similar alpha value. By doing this, some smooth sharp regions that do not respond to the sharpness

metric can be recovered to some extent.

3.6.4 Multi-scale Inference

The values of the neighbouring pixels are correlated in natural images thus here I chose to regularize the

obtained sharpness map (alpha map in the last step) with a conditional random field (CRF) [94] as similarly

performed in [159].
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To be more specific, a CRF was employed. I maximize the following probability to regularize ĥs returned

by the alpha map:

p(hs; ĥs) ∝
3∏

i,j∈Ni,s=1

ψ(ĥsi |h
s
i )Ψ(hsi , h

s
j)

2∏
s=1

Ψ(hsi , h
s+1
i ), (3.19)

where ĥsi = αsi is the alpha map for scale s at pixel location i that is computed in the previous step, and hsi

is the sharpness to be inferred. Ni denotes the neighborhood of i, ψ is the observation model and Ψ is the

neighborhood potential, each of which is defined as:

ψ(ĥsi |h
s
i ) ∝ exp

(
−|ĥ

s
i − hsi |
2σ1

)

Ψ(hsi , h
s
j) ∝ exp

(
−
|hsi − hsj |

2σ2

)
.

(3.20)

Note that σ1 and σ2 were set to be equal in the following. The neighborhood in this setting not only refers

to nearby pixels in the same scale (spacial domain) but also across scales.

By computing the negative log likelihood of equation 3.19, maximizing the probability is equivalent to

minimizing the total energy which can be expressed as:

E(h) =

3∑
s=1

∑
i

|hsi − ĥsi |+ β

 3∑
s=1

∑
i

∑
j∈Nsi

|hsi − hsj |+
2∑
s=1

∑
i

|hsi − hs+1
i |

 . (3.21)

In this form, the first term on the right hand side is the unary term which is the cost of assigning sharpness

value hsi to pixel i in scale s. The second is the pairwise term which enforces smoothness in the same scale

and across different scales. The weight β regulates the relative importance of these two terms. Optimization

of Equation 3.21 was performed using loopy belief propagation [123].

The output of the algorithm is h1 which is the inferred sharpness map at the smallest scale. This is a

grayscale image, where higher intensity indicates greater sharpness.

3.7 Dataset

This blur segmentation algorithm was tested using a public blurred image dataset [158] consisting of 704

partially blurred images and their accompanying hand-segmented ground truth images2. In addition, since

the algorithm is proposed to segment microscopy images such as the seed images, 11 microscopy images were

collected for qualitative evaluation.

3.8 Blur Segmentation Algorithm Evaluation

Each image in the dataset was segmented into sharp and blurred regions using the process described in

Section 3.6. Sharpness metric mLBP was computed with TLBP = 0.016. The sharpness map scales were

2The blurred images and ground truth are both from the Image & Visual Computing Lab, Chinese University of Hong Kong.
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square local regions of 11 × 11, 15 × 15, and 21 × 21 pixels. The thresholds used in the alpha matting step

were Tm1 = 0.3 and Tm2 = 0.01. Weight β = 0.5 was used in the multi-scale inferencing step.

I compared my algorithm to six comparator methods briefly mentioned in Section 3.2 of which I now

remind the reader. Su et al. simply calculated a sharpness map using mSVD [163]; Vu et al. combined

both spectral and spatial sharpness (S1 and S2 in their original paper) using a geometric mean [181]. Shi et

al.(14) used all of mGHS ,mK ,mLDA,mAPS together with a näıve Bayes classifier and multi-scale inference

model [159]. Shi et al.(15) formed a sparse representation of image patches using a learned dictionary for the

detection of slight perceivable blur [79]. Zhuo and Sim computed a depth map based on edge width [210].

Zhu et al. estimated the space-variant PSF by statistical modelling of the localized frequency spectrum of

the gradient field [209].

All the outputs of these methods are grayscale images where greater intensity indicates greater sharpness,

and all (except for Zhu et al.) use a simple threshold, Tseg , as a final step to produce a segmentation, as in

my own algorithm. The parameters for the comparator algorithms were set to the defaults as in their original

code. Since I was unable to get the original code for Zhu et al.’s algorithm [209], which belongs to Adobe

Systems Inc., the results shown here were produced by my own implementation of the algorithm as described

in the published paper. The depth map was normalized by a factor of 1/8 (since the coherence labels are in

the range of [0, 8]) and inverted to get the sharpness map.

3.8.1 Precision and Recall

Precision and recall curves were generated for each algorithm by varying the threshold used to produce a

segmentation of the final sharpness maps (i.e. similar to [159]).

precision =
|R ∩Rg|
|R|

, recall =
|R ∩Rg|
|Rg|

(3.22)

where R is the set of pixels in the segmented blurred region and Rg is the set of pixels in the ground

truth blurred region. Figure 3.13 shows the precision and recall curves for each method with the threshold

Tseg sampled at every integer within the interval [0, 255]. My algorithm achieves higher precision than the

comparator algorithms when recall is above 0.8. Moreover, the proposed sharpness metric alone achieves

results comparable to Shi et al.(15).

Figure 3.14 shows the sharpness maps (prior to final thresholding) for each algorithm for a few sample

images. My method is superior than the others under various background and blurs. I attribute errors mainly

to the shortcomings of the sharpness metrics used by local based methods–Shi et al.(14), Vu et al., Su et

al. (Section 3.2). Moreover, my detection maps contain mostly high- or low-confidence values which can be

more correctly thresholded.
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Figure 3.13: Precision and recall curves for different methods on the blur dataset. The curves were
obtained by thresholding the sharpness maps with threshold varying in the range of [0, 255]. Note
that our method achieves the highest precision when recall is larger than 0.8. This comparison might
be unfair for Zhu et al. since their segmentation is based on graph cut rather than thresholding of the
depth map. Therefore we compared their graph cut segmented binary map in section 3.8.2.

3.8.2 F -measure

In another experiment, I used an image-dependent adaptive threshold, proposed in [6], for the segmentation

with the threshold defined as:

Tseg =
2

W ×H

W∑
x=1

H∑
y=1

I(x, y) (3.23)

where, W,H are the width and height of the final sharpness map I. Then, similar to [137], the weighted

harmonic mean measure of precision and recall or F -measure was computed for comparison. The definition

is as follows:

Fβ =
(1 + β2)× precision× recall
β2 × precision+ recall

(3.24)

Here, β2 was set to 0.3 as in [137, 6].

Note that, the segmentation map of Zhu et al. was produced by graph cut instead of simple thresholding

of the depth map. The parameters I used were the same as suggested in their paper which are λ0 = 1000,

σλ = 0.04, τ = 2. Exemplar segmentation maps of images in Figure 3.14 is shown in Figure 3.16. Because

my sharpness map contains mostly high confidence values, the F-measure computed for mine was calculated

with Tseg = 0.3. F-measure of all methods can be found in Figure 3.15.
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Original images
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Mine
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Figure 3.14: Results achieved by different blur detection methods. Final sharpness maps, prior to
thresholding for segmentation, are shown.
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Figure 3.15: Precision, Recall and F -measure for adaptive thresholds. The result of Zhu et al. is
achieved by using graph cut instead of simple thresholding as suggested in their paper. Note that
because my sharpness map contains mostly high confidence values, the F-measure computed for mine
was calculated with Tseg = 0.3.

Mine

Zhu et al. [209]

Figure 3.16: Binary segmentation map comparison with Zhu et al.
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Blur segmentation Avg. Runtime

Shi et al.(14) [159] 705.27s

Zhu et al. [209] 387.17s

Shi et al.(15) [79] 38.36s

Su et al. [163] 37s

Mine 27.75s

Zhuo and Sim [210] 20.59s

Vu et al. [181] 19.18s

mLBP 40ms

Table 3.2: Run time comparison of different blur segmentation methods. The time for our method
is based on a mex implementation of mLBP .

(a) Plant seed (b) Microorganism

Figure 3.17: My algorithm applied to microscopy images. Top row: original images; bottom row:
final sharpness maps.
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3.8.3 Runtime

A run time comparison of the complete segmentation algorithms is shown in Table 3.2. The same setup was

used for the measurement of runtime as in Table 3.1. Compared with the other comparators that has similar

precision and recall performance, mLBP has a significant advantage. The time for the complete segmentation

algorithm proposed is mostly spent on the matting and multi-scale inference. Although it ranks the fourth

among all these methods, its speed is one order of magnitude faster than that of Zhu et al., which is the only

algorithm that can match its performance. Since the algorithm of Zhu et al. is implemented by myself, herein

I also analyzed its time complexity as opposed to mine for a fair comparison. The worst case complexity

of Zhu et al.3 is O((r2 + a)N + MN2|C|) and the time complexity of mine4 is O(N). Furthermore, it also

surpasses Shi et al.(15) which is my next strongest competitor.

Finally, I give some examples of my algorithm applied to images other than those in our evaluation data

set. Microscopy optics often have low depth of field and form an important class of images for blur detection

as was shown in Chapter 1. Figure 3.17 shows examples of my algorithm applied to such images. The first

is a plant seed [148] whose roughly spherical shape results in a ring-shaped in-focus region. The other image

is a microorganism [143] in fresh water. The threshold TLBP for the sharpness metric was set to 0.012 and

0.04 respectively. Note how well my segmentation results conformed to the visual perception of the image

sharpness. Additional results can be seen in the appendix.

3.9 Discussion

When there is a distinctive discontinuity between the foreground and background, there is a jagged boundary

of my segmentation map, e.g. the cup in Figure 3.14. This is because the sharpness is measured locally.

It is inevitable to incorporate regions with various extents of sharpness by using a local window, especially

around edges where the depth discontinuity occurs. Therefore, the sharp area is enlarged in the alpha matting

initialization step (step B). Zhu et al. solved this problem by taking smoothness and color edge information

into consideration in the coherence labeling step but would also fail in cases where depth changes gradually.

There are certain situations that can cause my method to fail. My method has difficulty differentiating

an in-focus smooth region and a blurred smooth region since only a limited small size of local neighbour is

considered, but this is a problem that will be inherently challenging for any algorithm. If the noise level in

the image is low, this problem can be overcome to some extent by reducing the TLBP threshold. In addition,

for object recognition purposes, this drawback would not weaken the feature representation too much since

smooth regions contain little to no useful discriminating texture. An example of this type of failure case and

3The local frequency analysis of Zhu et al. has a complexity of O(r2N); the local probability estimation has a complexity of
O(aN); the graphcut used in coherent labeling has a worst case complexity of O(MN2|C|). a is the number of iteration and C
is the cost of the minimum cut. N is the number of nodes and M is the number of edges in the formed graph.

4O(N) for sharpness metric, O(N) for the close form matting (solved by using the large kernel matting Laplacian matri-
ces [65]). O(N) for the multi-scale inference.
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(a) failure due to ambiguity of smooth regions

Our result Lower TLBP

Figure 3.18: Blur segmentation algorithm failure cases and mitigation.

the proposed remedy can be seen in Figure 3.18(a).

Another failure case occurs due to image noise, but it can be mitigated by applying a noise reducing

filter as mentioned in section 3.5. An example of this type of failure and the proposed remedy is shown in

Figure 3.18(b).

The selection of TLBP is essential for obtaining a satisfactory segmentation. It controls how much sharp

area would appear in the final segmentation result. For a image with little to no noise, TLBP 0.016 should

produce a reasonable result. Lowering the value would cause the inclusion of more low contrast sharp regions.

For a image corrupted by noise, a noise reduction procedure should be employed.

3.10 Application: Focal Stacking

Earlier I have proposed a novel no-reference sharpness metric which exploits the distribution difference of

uniform LBP patterns in blurred and non-blurred image regions. It runs in realtime on a single core cpu and

has a better response on low contrast sharp regions. A single-image-based defocus segmentation algorithm

was developed on top of it and achieved state-of-the-art performance. This is beneficial when the seed under

microscope is all-in-focus so that we can use the defocus blur as a cue to separate the seed and the potential

cluttered background. However, if the seed is unable to be fully observed under the current image setting,

then multiple image frames, each of which focuses at different focal distance is required so that sharp regions
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of each frame can be merged together. This process is called focal stacking and is a common technique in

macro-photography when the surface profile of the observed object is beyond the focal range. The sharpness

measures commonly employed in this case are inherently different from those reviewed in Section 3.3 because

the sharpness measured is with respect to the same underlying image structure. Measures as simple as

variance can perform pretty well in a noise-free condition.

In this section, I applied my proposed metric to the focal stacking problem and conducted a series of

experiments to prove its effectiveness. For the sake of simplicity, all the image frames used here are assumed

to be perfectly aligned or in other words, there is no image shift due to parallax or magnification change.

Most non-parametric focal stacking methods (that do not model the defocus kernel) more or less follow

the same scheme [7]:

1. Stack Acquisition

Acquiring an image stack, Ik(x, y) where k denoting the index of frame at a certain focal distance and

x, y denotes the spatial coordinates.

2. Building a Decision Map

A sharpness map is constructed for each frame. the one with the maximum response at each pixel

location (x, y) is the focused pixel to be selected. It can be expressed in the following mathematical

form:

d(x, y) = argmax
k

(Isk(x, y)) (3.25)

where Isk is the sharpness map of the k-th image frame Ik(x, y). The decision map d(x, y) is generated

to keep track of the frame number for each pixel so that image fusion can be performed accordingly.

Tenenbaum Gradient (Tenengrad) was one of the very first focus measures that was proposed. It is

defined as the sum of square of the gradient along the x, and y axes [90]. Since then, more complex

measures have been introduced, such as the norm of the image gradient, norm of the image Laplacian

[11], energy of the Fourier spectrum [12], and image moments [13]. An extensive review of the popular

reference sharpness measures can be found in [174, 139].

Another set of focal stacking methods are based on multi-resolution transforms. It decomposes the

original image slices into several scaled and oriented sub-bands where the saliency of features are mea-

sured. Coefficients with the highest responses are selected to build the decision map. Multi-resolution

transforms such as Laplacian pyramid, contrast pyramid [170], gradient pyramid, morphological pyra-

mid [133], ratio-of-low-pass pyramid [169] and wavelet decomposition have been used. However, no one

has emerged superior.

3. Output Rendering

Rendering the all-in-focus image by selecting the corresponding pixels in the decision map.
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This conventional scheme requires a focal stack (at least two frames) to be captured before-

hand given that the focus measures it adopts are only capable of comparing in-between frames.

Now that we have a sharpness measure that can efficiently detect sharp regions with a single

image, the focal stacking process can be performed on the fly without referring to frames

before or after it. The proposed focal stacking algorithm has a very simple mathematical form which can

be expressed as:

S(x, y) =
∑
k

(αγk ∗ Ik(x, y))/
∑
k

αγk (3.26)

where αk is the sharpness value computed from k-th frame Ik at spatial location (x, y). γ is used to “increase

the contrast” of the sharpness values. In practice, γ = 3 works for most cases. Unlike traditional method

that select the pixel with the maximum sharpness response, proposed one does a weighted average over all

image slices. The traditional scheme is a special case of equation 3.26 when γ = 1 and αk only takes discrete

values 0 and 1. Averaging multiple frames inevitably result in blurriness in the final fused image. However,

in my case, this problem is not as server as the others. As already shown in Figure 3.10, one property of

the proposed sharpness metric is that it falls off rapidly with increasing blurriness. A consequence of which

is that the weight of the pixel in the sharpest frame approaches 1. Conversely, the weights for the pixels in

the blurry frame would be near 0 which makes the impact of these frames on the final fuse image negligible.

However, as has already been pointed out in section 3.5, the proposed sharpness map can be disrupted by

noise. Moreover, the proposed stacking method operates “on-the-fly” which means there are no additional

images from which to build a noise model at every single spacial location as was done in [140]. As such, in

order to mitigate the effects of noise, the acquired images have to undergo noise suppression before fusion in

high noise condition5.

One of the seminal denoising methods is the non-local means filter (NLM) [27]. It utilizes redundant

information in the image by assuming that a single image always contains patches of similar appearance, and

averages these image patches across different spatial locations. A wide variety of work has since then been

motivated using nonlocal self-similarity priors, such as BM3D [83], LSSC [117], and EPLL [211]. Although

good results can be achieved, the computation cost is high for these methods which makes it unsuitable for

use in real-time. An edge-preserving smoothing method called guided image filtering is thus adopted here

for noise suppression. The noise estimation algorithm proposed in [109] is adopted to control the degree of

smoothing in guided filtering. This estimation can performed in the very beginning of imaging thus can be

treated as constant time. The complexity of guided filter is O(N) where N is the total number of image

pixels.

5This is unlikely to happen under laboratory image settings with high-end microscope and sufficient ambient light
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3.10.1 Data for Focal Stacking Evaluation

A simulated and real-data experiment were carried out to test the performance of this algorithm for both

quantitive and qualitative evaluation.

• Simulated Data

The simulation process is adopted from [139]. A defocused image Id(x, y) of a 2D planar scene can be

simulated as a convolution of the all-in-focus image I(x, y) of the scene with the blur kernel k:

Id(x, y) = I(x, y)⊗ k (3.27)

where k is constant across the image plane and usually referred as Point Spread Function (PSF) given

that it is the shape of blur formed by a point source. For an ideal lens with circular aperture, this

shape is known as the Airy disc and can be approximated by a Gaussian function [136, 164, 192] in

diffraction limited optics with polychromatic incoherent illumination. The σ of the Gaussian function

controls the amount of defocus. The relation of σ and the depth of the scene u was derived [142, 175]

as

σk = γ
|u− uf |
u(uf − f)

with γ =
κf2

F
(3.28)

where uf is the depth of the scene that is in-focus at current camera settings and f is the focal length;

γ is a camera-dependent constant and is fully determined by the current camera settings; F here stands

for the F -number which is computed as the ratio of f and lens diameter d; κ is the pixel density of the

sensor. By grouping the effects of the physical parameters of the lens in a single constant γ, this model

simply expresses the blur radius as a function of the target position u and the focal length f .

For a 3D scene, the image formation model looks different from the one in equation ( 3.27) because

the PSF varies in the image plane with regard to the depth of the scene. For every scene point at

coordinate (x, y), the response on the sensor can be expressed as

B = a⊗ k(x,y) (3.29)

where a is the radiance of the scene point and k(x,y) is the depth-related PSF. The defocused image in

this case thus can be obtained by adding up every point’s contribution in the 3D scene.

Id(x, y) =

W−1∑
i=0

H−1∑
j=0

B(i− x, j − y) (3.30)

W and H are the width and height of the imaged scene. In the implementation, the response of a

particular scene point (x0, y0) can be simplified by only summing over neighbouring points that are

3σk away from x0, y0. Figure 3.19 shows the blur sequence simulated for a lens with f = 50mm, F/2.0,

κ = 1.6e5 (Canon EOS 5D Mark III, full frame sensor size with 5760×3840 pixels). The simulated scene

has a cone shape with the depth spanning from 1m to 1.05m. In order to test the general applicability
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(a) (b)

Figure 3.19: (a) shows the simulated cone shaped object and the corresponding setting of the image
equipment. (b) shows the simulated blur image sequences.

of the algorithm on a variety of scene textures, the underlying all-in-focus images, shown in Figure 3.21,

were selected from Brotaz texture dataset [2].

• Real Data

Real world image sequences are adopted for qualitative evaluation. All of the image sequences are from

the seed dataset as will be shown in chapter 4.

3.10.2 Evaluation conditions

The following two conditions were applied to simulated data as did similarly in [140].

• Varying Noise Level

A CCD camera has several primary noise sources, such as fixed pattern noise, dark current noise, shot

noise, amplifier noise and quantization noise [67], and can be categorized into two groups, irradiance-

dependent and irradiance-independent sources. As such, a noisy image can be modelled as

I(x, y)n = f(I(x, y) + ns + nc) + nq (3.31)

where I(x, y) is the original image, f() is the camera response function (CRF, the image brightness as

a function of scene irradiance). ns is the irradiance-dependent noise component, nc is the irradiance-

independent noise, and nq is the additional quantization and amplification noise [105, 173]. Because

most cameras now can achieve very low nq, it is neglected in this noise model [105], ns and nc are

assumed to have zero mean and variances V ar(ns) = Iσ2
s and V ar(nc) = σ2

c , respectively. As found

in [105], σs = 0.16 and σc = 0.06 result in very high noise, so these two values are set as the maximum

of the two parameters. I sampled σs from 0.00 to 0.16 with step size 0.016 and sampled σc from 0.01
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to 0.06 with step size 0.006. It can be mathematically expressed as:

σs = 0.16/10 ∗NLevel

σc = 0.06/10 ∗NLevel
,NLevel = 0, . . . , 10 (3.32)

In the upper portion of Figure 3.20, I selected one natural image and added varying degrees of noise so

that the reader can have a good comprehension of the noise levels differences.

• Varying Contrast Level

Image contrast is another common factor that could modify the image content, which in turn can affect

the performance of sharpness measures. Lowing the contrast of images will make it harder to measure

the relative degree of focus because of the smoothing of edges. In order to assess the robustness of

the proposed metric to reductions of image contrast, sequences of images with the same content but

decreasing contrast were generated. In particular, for every image sequence, contrast was reduced by

performing the following operation:

Ic(x, y) =
Clevel

10
(I(x, y)− 128) + 128,CLevel = 0, . . . , 10 (3.33)

where I(x, y) is the intensity of the original image and Ic(x, y) is the generated low contrast version.

The same natural image was chosen and the above contrast transform was applied to it for visual

comprehension (lower portion of Figure 3.20).

3.10.3 Evaluation Metric

The quality metrics employed for the evaluation of the focal stacking quality are gray-scale structural similar-

ity [188] (SSIM) and peak signal-to-noise ratio (PSNR). PSNR, along with its related quantity mean square

error (MSE), are commonly used to objectively quantify the difference between the distorted image and the

reference. SSIM, on the other hand, measures the perceived changes in structural information and is deemed

to be better conform to the human visual system (HVS). The mathematical definition for each metric is:

PSNR = 10log10

(
peakval2

MSE

)
(3.34)

where peakval is the maximum value in the current range of the image datatype or can be specified by the

user, and MSE = 1
N

∑
x,y(I(x, y)− Î(x, y))2

SSIM =
(2µIµÎ + C1)(2σIÎ + C2)

(µ2
I + µ2

Î
+ C1)(σ2

I + σ2
Î

+ C2)
(3.35)

where µI , µÎ , σI , σÎ , σIÎ are the means, standard deviations, and cross-covariance for images I, Î. In

practice, the SSIM index is computed locally rather than globally to account for the spatially non-stationary

property of natural images and the mean SSIM index is reported instead.
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Nlevel = 0 Nlevel = 1 Nlevel = 2 Nlevel = 3

Nlevel = 4 Nlevel = 5 Nlevel = 6 Nlevel = 7

Nlevel = 8 Nlevel = 9 Nlevel = 10

Clevel = 0 Clevel = 1 Clevel = 2 Clevel = 3

Clevel = 4 Clevel = 5 Clevel = 6 Clevel = 7

Clevel = 8 Clevel = 9 Clevel = 10

Figure 3.20: Visual examples for different noise and contrast levels. Note that Nlevel = 0 and Clevel
= 0 corresponds to the original image. This flower image used here is solely for illustration. The
underlying image by Johnson Cameraface is licensed under CC BY-NC-SA 2.0.
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...
Figure 3.21: Texture variations in the Brotaz texture dataset. Only 10 images are shown. A complete
view can be found in [2].
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Figure 3.22: Focal stacking performance under different level of noise.
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Figure 3.23: Focal stacking performance under different level of contrast. level 0 corresponding to
the original contrast whereas level 9 corresponding to 90% contrast reduction
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Figure 3.24: Visual results for stacking at different noise levels on simulated image sequences. Images
in the red dashed box (top two rows) are created by Said et al. [140], whereas those in the blur dashed
box (bottom two rows) are created by the proposed method. Zooming on digital version of this paper
for better comprehension.
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Figure 3.25: Visual results for stacking at different contrast levels on simulated image sequences.
Images in the red dashed box (top two rows) are created by Said et al. [140], whereas those in the
blur dashed box (bottom two rows) are created by the proposed method. Zooming on digital version
of this paper for better comprehension.
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3.11 Results and Discussion

As can be seen from Figure 3.22, the proposed method behaves almost the same compared with the state-

of-the-art at low noise level (< 3). We see the same trends in the performance under different contrast levels

shown in Figure 3.23. At high noise level (>= 3), the performance starts to deteriorate which is not surprising

because unlike traditional method that select the pixel with the maximum sharpness response, proposed one

does a weighted average over all image slices. In high noise level cases, blurry parts start to have larger

weights which makes the fused image blurry. However, these high level of noises would be unlikely to occur in

the laboratory settings given the high-end imaging equipment and sufficient ambient light. Figure 3.24 and

3.25 give a visual demonstration of what the stacked images look like under the specified noise and contrast

level.

In addition, I also attached some visual results for qualitative evaluation on those raw seed image sequences

that used to produce Figure 3.26. There is virtually no visually detectable difference on these results. The

colour difference between these two groups of images is because of the white balance correction that is

performed manually by the image technician given the constant shown red hue of the raw image slices. A big

advantage of the proposed method is that the complexity is much lower which allows for realtime stacking.

The proposed method has a complexity of O(KN) where Said et al. has O(KNr2). K is the number of

image frames; N is the number of pixels in the image and r is the radius of the window for the evaluation of

the sharpness.

3.12 Conclusion

I have proposed a very simple yet effective no-reference sharpness metric of time complexity of O(N) that

is capable of run in realtime on a single core cpu. It better measures the sharpness on low contrast sharp

regions and behaves monotonically to the increased extents of defocus blur. A single-image-based defocus

segmentation algorithm that is also of time complexity of O(N) was developed on top and achieved state-of-

the-art performance. The segmentation algorithm is not only suitable for defocused microscopic images but

also for complex natural scenes.

I used this proposed metric also for online focal stacking and achieved results comparable with state-of-

the-art under low noise conditions. The performance is also robust to varying contrast and it behaves almost

the same as that of Said et al.. It does not require a stack of images to be captured in-prior and the complexity

is O(KN) as opposed to O(KNr2) of Said et al. In the user study that will be discussed in chapter 5, I

applied the proposed focal stacking method to create all-in-focus images instead of defocus segmentation

because of the extreme shallow depth-of-field of the used microscope. Now that we have efficient method to

produce all-in-focus seed images, we can proceed to the next chapter to discuss the proposed discriminative

image representation.
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Figure 3.26: Visual comparison of focal stacked seed images. Images with yellow boundaries (odd
columns) are those that will be used in Chapter 4. They are stacked with Nikon’s proprietary software
– NIS-Elements, whereas those with blue boundaries (even columns) are from the proposed method.
Zooming on digital version of this paper for better comprehension. Note that yellow boxed images are
colour corrected by the image technician.
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Chapter 4

A new mid-level feature for textured objects of

known scale

A part of this chapter was submitted to Machine Vision and Application (MVAP) with Xin Yi as the

lead author.

4.1 Introduction

From the discussion from Chapter 2 we can see that for fine-grained identification tasks, researchers have

tried to incorporate object-specific prior information into the identification model, e.g. landmark points on

plants are priors only known by botanists; object parts’ locations (birds’ head, airplanes’ propeller, etc) are

priors annotated by outsourced person. This information is useful but requires extra human labor and is not

available for other datasets. In this chapter, we explore using accurate scale information given by a calibrated

microscope as an alternate prior.

The representations of images are categorized into two levels for the traditional BoW identification model;

the low-level representations (a set of local descriptors that extract information in the pixel domain), and

the mid-level representations that manipulate the low-level descriptors and produce a fixed length feature

vector as the image signature. This model is usually referred as shallow representation because it only has

two levels of abstractions. In contrast, CNN-based representation are often referred as deep representation

because of its larger number of hidden layers. Hierarchical levels of abstraction have been shown by some

visualization literatures [200, 116, 198]. The learned weights in the first layer are always image edges in

various orientations and weights in deeper layers have increasingly semantic meanings such as car wheels or

human eyes.

In this Chapter I have proposed an image representation for plant seeds based on the BoW model. The

method used can be considered an extension of pyramid matching at the scale level. Pyramid matching is

widely used in identification tasks where images share the same configuration, for example, natural scenes

that are all upright. Seed images do not possess this property, but the pyramid can be formed in the scale

dimension instead of the spatial dimension when images from the same class have limited scale variance.

The details of the method can be found in Sect. 4.2. This model is validated experimentally on the task of

discriminating 30 seed species (Sect. 4.4). It is shown that the proposed method produces better classification
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results compared to pre-trained CNN-based methods.

4.2 Multi-scale Image Representation

Seed identification is expected to be conducted by seed analysts inside a laboratory, where imaging systems

can be pre-calibrated to give accurate scale information (pixel size). Due to the well-constrained imaging

setup, all the seed samples’ surface textures can be clearly rendered. A direct outcome of this setup is that

we can image samples of the same species at the same scale. In this section I describe the mid-level feature

used for representation of this kind of seed images and how real pixel-scale information is incorporated.

4.2.1 Multi-scale vs. Single Scale

Multi-scale representations have been exploited in many different tasks. For example, Bertasius et al. detect

edges in increasing window sizes [19]. Li et al. extract features on three nested windows with increasing size

for salient region detection [103]. Zheng et al. partition images with three different rectangular grid sizes and

extract features on them to represent global and regional context for the task of image retrieval [205]. Shi

et al. compute a sharpness measure on three overlapped localized windows and combined them to produce

a single sharpness score with a multi-scale graphical model [159]. A conclusion that can be made from these

works is that analysis at multiple scales is generally superior to analysis at a single scale.

In object identification, features are usually extracted on different sizes of local windows and then encoded

and pooled into a single feature vector to achieve scale invariance. It is uncommon to see representations

from different spatial sizes concatenated except for cases where spatial arrangement of features is important.

Spatial pyramid matching works effectively on datasets like SUN [193], and MIT Indoor [144] because scenes

in these datasets have coherent “canonical composition” [97] (ground at the bottom of the image and sky

on top). In this context, “multi-scale” refers to a nested pyramid of regions. The multi-scale framework

introduced by Gong et al. [55] uses spatial pyramids but with CNN features. They achieved state-of-the-art

results on scene classification tasks but not on the general classification task (ILSVRC 2012). The author

claimed that this might be due to the underlying implementation of neural nets. I would also argue that this

could also result from the large pose and scale variations of objects in the dataset which makes concatenation

in the spatial domain less effective.

Since, multi-scale is beneficial for all kinds of tasks, herein I also extract features at different scales but

instead of pooling them all together, I scale-normalize the feature representation by using actual pixel scale

information and concatenate them to conduct a scale-wise comparison of the objects in the classification

phase.
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4.2.2 Fixed Scale vs. Detected Characteristic Scale of the Keypoint

One of the fundamental problems in analyzing real-world images is that objects may have different appearance

depending on the scale of observation. In most cases, the scale information required to represent the image

features at an appropriate scale is unknown. If so, the only reasonable approach is scale estimation. Indeed,

many modern computer vision systems are now equipped with automatic scale estimation mechanisms. The

most commonly adopted framework for performing scale estimation is detection of local extrema over scale

through γ-normalized derivative expressions [104]. For example, SIFT detects scale via local extrema over

a scale-normalized difference of Gaussian (DoG) pyramid. Unless otherwise mentioned, we use the same

definition as in [13, 112, 120], which is that scale is the standard deviation of the Gaussian function and is

related to the bin size of the support region that descriptor is built upon by a magnification factor. The

measurement unit is pixels. Scale invariance is useful in situations where large variations in scale exist.

However, Mikolajczyk reported that, “under a scale change factor of 4.4, the percentage of pixels for which

a scale is detected is as little as 38% for the DoG detector and only 10.6% of the detected scales were

correct” [120]. In light of this, I matched four pairs of same-species seed images using locally detected

keypoints computed using the same matching scheme used by Lowe [112]. One would expect that matched

keypoints would be of the same scale. However, it was found that most of the matched local structures do

not have the same scale, as shown in Figure 4.1.

Probably due to this unstable scale estimation, some studies have found that the dense version of SIFT

(DSIFT) is better than the sparse version in classification tasks [22, 23]. DSIFT descriptors are computed from

keypoints on a regular grid with a spacing of G pixels and the scale of the points are explicitly selected instead

of estimated as in Lowe’s method. This approach was proven successful by the results of the OXFORD VGG

system of the 2012 ImageNet challenge [5]. It is a good fit for the seed identification problem since dense

keypoints of constant scale will capture structure in texture coherently given that there are limited scale

changes across the same seed species.

4.2.3 Multi-scale Concatenation

We propose a multi-scale representation of image descriptors to incorporate real image scales (measured in

µm). On each densely sampled pixel, the descriptors are computed over M circular support patches with

different radii (which are predetermined, as mentioned in the previous section). The final image representation

is the concatenation of pooled feature vectors across these M different scales as shown in Figure 4.2.

The final image representation uses the same Fisher encoding method described in [138]. In Fisher

encoding, statistics of feature descriptors are learned by Gaussian mixture model (GMM) with K components:
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Figure 4.1: Keypoint matching of four pairs of seed images of the same species (B. napus, S. faberi ,
C. megalocarpa, and C. diffusa). This scatter plot of the estimated scales of the matched keypoints
shows that matched keypoints often have different estimated scales. A log-scale was used on the axes
to compress the dynamic range of scales.

grid interval G

Fisher encoding

scale 1

Concatenation

F 1
XXX

scale 2

+

F 2
XXX

scale 3

+

F 3
XXX

representations from 3 different scales concatenated together

Figure 4.2: Seed representation. Dense SIFT descriptors extracted on M (here M = 3) different
scales with grid spacing 10 pixels. For each scale, the corresponding representation is achieved by
maxpooling of Fisher-encoded descriptors. Let F iX denote the Fisher-encoding of vector X at scale i.
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p(xxx|θθθ) =

K∑
k=1

p(xxx|vvvk,ΣΣΣk)πk

with p(xxx|vvvk,ΣΣΣk) =
1√

(2π)Ddet(ΣΣΣk)
e−

1
2 (xxx−vvvk)>ΣΣΣ−1

k (xxx−vvvk),

(4.1)

where θθθ = (π1,vvv1,ΣΣΣ1, . . . , πK ,vvvK ,ΣΣΣK) is the vector of parameters of the model, and det(·) is the matrix

determinant. To be more specific, πk are the weights for each distribution; vvvk is the mean of the k-th

cluster and ΣΣΣk is the covariance matrix of the k-th cluster. Fisher encoding computes the derivative of the

log-likelihood function with respect to the various model parameters:

∇θθθ log p(xxx|θθθ). (4.2)

To ensure that the resulting vectors can be meaningfully compared, Eq. (4.2) is whitened by multiplying

with the inverse of the square root of the Fisher information matrix HHH [177]. The encoded descriptor can be

expressed as:

Φ(xxx) = HHH−
1
2∇θθθ log p(xxx|θθθ). (4.3)

Note that the GMM was fitted to descriptors from all scales. In my case, descriptors come from M different

scales {s1, s2, · · · , sm}. Suppose descriptor xxx is computed from support region with scale sm, in my encoded

feature vector Φ(xxx)′, only the part of encoded descriptors that are related to a corresponding scale are the

same as in equation 4.3, and the others are set to 0:

Φ(xxx)′ = [000, · · · ,HHH− 1
2∇θθθ log p(xxx|θθθ), · · · ,000]. (4.4)

The dimension of the final representation is thus 2∗N ∗K ∗M in which N is the dimension of the descriptor,

K is the size of the vocabulary and M is the number of chosen scales.

Note that the proposed multi-scale representation differs from those commonly described, e.g. in [33], in

that their representation is a pooling of all multi-scale descriptors whereas the one proposed here pools de-

scriptors in a scale-wise manner and concatenates pooled descriptors from different scales together. Moreover,

the scale used in the above representation is a real scale which measured in µm.

4.2.4 Extension of Pyramid Match Kernel

The authors of [97] note that matching images from different spatial resolutions has proven to be efficient

and has been adopted by many computer vision systems in which the images have a coherent composition.

However, for objects like seeds, which lack a fixed orientation, this technique can not be directly utilized.

Recall that an image can have multi-scale representation created by recursive convolution with a Gaussian

filter (by subsampling the filtered image successively, resulting in the pyramid representation). Since seed

images were captured with a calibrated microscope, the image comparison can be conducted in a scale-wise

manner. Let XXX and YYY be two sets of vectors extracted on support regions with a sequence of M scales
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that reside in a d-dimensional feature space. Let FmXXX and FmYYY denote the Fisher-encoded vector at scale

m,m = 1, · · · ,M . Then the distance between subsets of XXX and YYY that have the same scale m is given by the

linear kernel I:

I(XXXm,YYYm) = (FmXXX )TFmYYY (4.5)

where (·)T denotes the matrix transpose. The difference here from [97] is that they used a histogram

intersection kernel to measure the hard assignment encoded feature vector as the distance, whereas I used a

linear kernel to measure the Fisher-encoded feature vector as the distance.

Since a larger image patch conveys different information from a small image patch centred around the

same pixel (compositional information vs. fine detail), the weight associated with every scale is set equally

to 1. The intuition here is that seeds from the same species should have the same appearance at arbitrary

scales. Putting all the pieces together, the pyramid match kernel can be expressed as:

KM (XXX,YYY) =

M∑
m=1

I(XXXm,YYYm) (4.6)

It can be implemented in practice as a long vector formed by concatenating the equally weighted Fisher

vectors at all scales.

4.3 Dataset and Experimental Protocol

4.3.1 Dataset

The eleven Brassica species and small mustards of Brassicaceae family (group 1 + group 2B) were selected

to represent small round seeds with surface texture patterns and hilum1 position; the four Centaurea species

of Asteraceae family (Group 2A) were selected to represent longer seeds with shape variation and special

feature–pappus; the five Setaria species of the Poaceae family (Group 3) were selected to represent dual

sided seeds with surface texture; the five Amaranthus species of Amaranthaceae (Group 5) were selected

to represent seeds that have very limited surface features to be distinguished to species level; and the five

Cuscuta species of Convolvulaceae family (Group 4) were added in response to a recent regulation change

requiring differentiation of species which imposes identification challenges. All species chosen for image

analysis of computer vision are difficult and time consuming species in routine diagnostic testing for seed

or phytosanitary certification, and it poses much more trouble to discriminate seeds inside each group than

between groups. Seed examples can be seen in Figure 4.3. The seed species names and their abbreviations

used in this document are given in Table 4.1.

The images were provided by the Canadian National Seed Herbarium of CFIA. The identity of seed

specimens were verified by a taxonomist. To ensure sufficient representation of a species, multiple samples

(10 per species) were carefully selected to represent the typical range of feature variations within a population.

1The scar on a seed marking the point of attachment to its seed vessel
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Figure 4.3: Example all-in-focus images from my seed dataset. Each one is composed from multiple
image sequences as seen in the lower-right corner. Sub-captions are the short names of seed species
used in this paper; the corresponding full names are in Table 4.1. Proposed feature representation of
these seed images are visualized in 2D in Figure 4.7
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This sample selection process differs from the one of other similar researches where seeds specimens are either

unidentified or unrepresentative [63, 113, 31, 204, 56, 57]. Images with multi-focus stacking were acquired

using a AZ100M motorized Multi-Purpose Zoom Microscope (Nikon, Tokyo, Japan). Seeds were placed on a

glass slide next to a colour map so any colour corrections during editing can be clearly seen. After acquisition,

colour correction was performed manually by a technician. Colour editing was restricted to correcting the

colour balance of the seed and to making the image have a uniform background. By pre-calibration of the

microscope with a stage micrometer, a measurement scale was also included. The final image therefore has

the seed, two colour maps (one corrected and the other as the image was taken) and a measurement scale.

Each image in the data set is a composite of 50–120 (determined by the size of the seed) image slices taken at

different focus points so that the entire seed is in focus. These all-in-focus images were produced by Nikon’s

proprietary software. The final images have a resolution of 300ppi and a size of 1280× 1600 pixels.

4.3.2 Preprocessing

All images were cropped to omit the colour map and scaled down to 640× 700 pixels using bicubic interpola-

tion. The uniform gray background allowed segmentation of the seed from the images by thresholding of the S

(saturation) channel from the HSV colour model. The resulting segmentations, represented as binary images,

then underwent a morphological opening to remove small connected components (resulting from noise) with

less than 10,000 pixels. Texture features were extracted from the segmented region of the S channel since it

gives the best visual distinction.

The size of pixel in each image was calculated from the length of scale bar. Hough transform was

employed to detect the scale bar and the detected scales are listed in Table 4.1. Note that images were

captured incrementally at different times. Thus only one size for each species is reported to give a basic

comprehension of the seed size. In the real testing case, this information can be entered manually by the

analyst who conducts the test.

Dense SIFT features involve two parameters: the grid interval G and radius of the support region R which

is related to the chosen scale of the region. A third parameter associated with proposed representation is the

set of scales (µm) to pool. Well-performing values of the parameters were selected via a series of experiments,

described below.

4.3.3 Experiments

1. Training and Testing Methodology

The following process was used for each classification test made in the course of conducting experiments

2 and 3 (described in subsequent sections). Following standard procedures, the dataset was split into 9

training images (chosen randomly) per seed species (class), and 1 for testing – disjoint from the training

images. The classification process was repeated 10 times (ten-fold cross-validation). Features were

extracted from each image using the parameters under investigation during a given classification test.
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Groups Seed species Abbr. Px. Size

Group 1

Brassica carinata B. carinata 3.2 µm

Brassica junceai B. junceai 3.1 µm

Brassica napus B. napus 3.4 µm

Sinapis arvensis S. arvensis 3.0 µm

Brassica rapa, yellow seed type B. rapa(y) 3.1 µm

Brassica rapa, brown seed type B. rapa(b) 3.1 µm

Brassica rapa, subsp. chinensis B. rapa(c) 3.3 µm

Brassica rapa, subsp. pekinensis B. rapa(p) 3.4 µm

Group 2A

Centaurea diffusa C. diffusa 6.5 µm

Centaurea melitensis C. melitensis 10.6 µm

Centaurea solstitialis C. solstitialis 12.4 µm

Centaurea stoebe C. stoebe 7.0 µm

Group 2B

Sisymbrium loeselii S. loeselii 2.1 µm

Capsella bursa pastoris C. bursa-pastoris 2.1 µm

Descurainia sophia D. sophia 2.1 µm

Group 3

Cuscuta campestris C. campestris 3.0 µm

Cuscuta chinensis C. chinensis 2.5 µm

Cuscuta gronovii C. gronovii 3.2 µm

Cuscuta megalocarpa C. megalocarpa 3.0 µm

Cuscuta pentagona C. pentagona 2.4 µm

Group 4

Setaria faberi S. faberi 4.7 µm

Setaria italica, subsp. italica S. italica(i) 5.1 µm

Setaria italica, subsp. viridis S. italica(v) 4.5 µm

Setaria pumila S. pumila 5.3 µm

Setaria verticilata S. verticilata 3.2 µm

Group 5

Amaranthus hybridus A. hybridus 2.5 µm

Amaranthus palmeri amaranth A. palmeri(a) 2.7 µm

Amaranthus palmeri rennselaer A. palmeri(r) 2.2 µm

Amaranthus powellii A. powellii 2.3 µm

Amaranthus retroflexus A. retroflexus 2.3 µm

Table 4.1: Seed dataset composition. 30 species categorized into 5 groups based on the visual
similarity, 10 samples per species. The second column shows the binomial name of each seed species.
Third column shows the corresponding abbreviation used in the paper. The fourth column shows the
size of each pixel in the image. As the sample images are obtained in different time period which result
in slight scale change across images. Only the scale for the first set of images are shown. Horizontal
divisions separate species in different genera.
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A performance score was computed as the average per-class recognition rate which is the proportion of

correctly classified images for each of the classes.

2. Baseline

I have compared my proposed method with two baseline methods. The first is multi-scale DSIFT-FV

where mutli-scale DSIFT descriptors (pixel size of spatial bins are 4, 6, 8, 10 and grid spacing is 10) are

extracted and encoded using Fisher vectors. I used two variants of this method. In the first, denoted

as DSIFT-FV-noncat, representations from different scales are pooled into a single Fisher vector (as

in [33]). In the second, denoted DSIFT-FV-cat, representations are concatenated. Note that in both

variants, the orientations of the support regions are detected, instead of fixed, to achieve rotation

invariance.

The second baseline uses features extracted with a pre-trained deep convolutional neural network

(CNN). Two variants of CNN architecture are adopted. The first one is BVLC Reference CaffeNet [89]

that was originally trained on ILSVRC 2012 and the other one is VGG-19 [160]. VGG-19 has more

layers and uses a smaller convolution kernel than the BVLC Reference CaffeNet. Both networks were

obtained from the Caffe model zoo [78]. It might seem inappropriate to use a CNN not trained on

seed images because the deeper layers of a CNN are normally domain-specific. But recent works have

shown that the deep features work surprisingly well and have surpassed the traditional hand-crafted

features on many recognition datasets [145]. The deep feature I use is from fc6 for both BVLC Ref-

erence CaffeNet and VGG-19. The feature representation has 4096 dimensions and is L2-normalized

before sending to the classifier. The bounding box of the seed was first found, and the image was then

cropped and resized to 256× 256 pixels so that it can be fed into the network.

Linear SVM was trained on top of these feature representations for classification with parameter C

(regularization-loss trade off) searched in the range of [2−4, 24] and only the best results are reported

from ten-fold cross validation.

3. Experiment 1: Scale Selection

The purpose of this experiment was to determine which set of scales are effective. Descriptors were

extracted on a grid with a spatial interval of 10 pixels for all 10 image samples of each class. Rather

than fixing the rotation of the SIFT descriptors to a constant value, I computed dominant orientations

for each local patch to achieve rotation invariance. A series of scales ranging from 1 to 50 µm were

examined. The selection was conducted by determining the number of descriptors extracted under

each scale. We would expect that more appropriate scales should lead to larger numbers of dominant

gradient orientations since multiple orientations would be helpful for describing the patches.

4. Experiment 2: Selection of Scales to Pool

In the proposed representation, the scale of seeds are explicitly incorporated, a consequence of which is
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that only seeds from the same species can have the same representation as the training samples of a given

species no matter what set of keypoint scales are chosen. Even if some seed species happen to share the

same appearance at one scale, when more scales are chosen, the chance of misclassification decreases,

because the number of scales at which the appearance differs will increase. Thus, I investigated various

combinations of scales in the range of 6 to 20 µm; the restriction to this range, and the specific subsets

chosen were based on the outcome of experiment 1. Each subset of scales was tested using the training

and testing methodology from Sect. 4.3.3.

5. Experiment 3: Grid Spacing Selection

Using the most promising combination of scales from experiment 2, I tested grid spacings of 5, 10, and

15 pixels. Each test was performed using the training and testing methodology from Sect. 1.

4.4 Results and Discussion

4.4.1 Experiment 1: Scale Selection

Subfigures (a), (b), (c), (d) and (e) in Figure 4.4, demonstrate that the number of descriptors at first increases

with increasing scale, peaks, and begins to decrease once again. The number of grid points is fixed since grid

interval is predetermined. Since dominant gradient orientations were detected around these grid points, the

changing number of descriptors results from multiple dominant orientations detected by SIFT.

Computing multiple orientations of a patch is beneficial for image matching [112]. For object identifica-

tion, my experiments have also shown that using multiple orientations can help increase the identification

performance of these randomly oriented seeds. In general, large numbers occur for scales between 6 and 20

µm. Reduction of the scale will shrink the support region to that of a single pixel (for large seeds like C.

melitensis) which is inappropriate for descriptor extraction. Increasing the scale will introduce too much

Gaussian blur which will decrease the distinctiveness of the patch. The ideal range of scales has been shaded

in red in the plots in Fig. 4.4, and only these scales were used in experiment 2.

4.4.2 Experiment 2: Selection of Scales to Pool

Fig. 4.5 shows the results of pooling features from multiple scales in the range of 6 through 20 µm which

were the most promising scales identified by experiment 1. Four combinations of scales were tested over a

range of vocabulary sizes.

Generally, the more scales used, the better the results. From a single scale of 6 µm to a pooling of scales

6 and 9 µm, the improvement is large. However, with the pooling of more and larger scales, the degree

of improvement decreases. This may be because smaller scale support regions capture fine details that are

useful to discriminate morphological similar seeds, but larger scale support regions encode only large scale

compositional information which is ambiguous.
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Figure 4.4: Average number of descriptors extracted on a regular grid for all 10 image samples of
each class. Subfigures (a), (b), (c), (d) and (e) show results for seed groups 1, 2, 3, 4 and 5 from
Figure 4.3, respectively. Note that number of grid points is fixed when grid interval is predetermined.
Thus the changing number of descriptors is caused by the detection of multiple dominant orientations
at a given grid point by SIFT. The selected scale range is shaded in red.
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Scale set {6, 9, 12} gets the best recognition rate at vocabulary size 4, thus I selected pooling of the set

of scales {6, 9, 12} for experiment 3.

4.4.3 Experiment 3: Grid Spacing Selection

The effect of grid interval on the classification performance when using the set of pooled scales {6, 9, 12} is

shown in Fig. 4.6 for a range of vocabulary sizes. It can be seen that using a finer grid interval leads to

better performance for all vocabulary sizes tested. This is because smaller intervals cause a larger area of the

seed to be covered by patches. However, the tradeoff is a greater computational burden due to the increased

number of keypoints, and the consequential requirement of larger vocabulary size.

4.4.4 Discussion

The classification performance generally increases for denser grids and pooling of a larger number of scales.

However, this also increases the computational costs. Therefore, to make a compromise between the accuracy

and computation efficiency, the final parameters selected were a grid spacing of G = 10, and combination of

scales {6, 9, 12}. Using these parameters, the classification accuracy was 0.95, or 285 out of 300 seed images

correctly classified.

Instead of just comparing vertically, I have also included the result of BVLC reference net, VGG-19,

DSIFT-FV-noncat, DSIFT-FV-cat for horizontal comparison. The baseline results were shown in Fig-

ure 4.5, 4.6 as dashed line. It can be clearly seen that the proposed method surpasses these baselines.

This suggests that for identification conducted in a controlled experiment, incorporating real scales can be
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Figure 4.6: Effect of grid interval on the classification results. The set of pooled scales {6, 9, 12}
was used for these results. Note that results from BVLC and VGG-19 are overlapped.

beneficial.

Comparing DSIFT-FV-noncat with DSIFT-FV-cat, one finds that even though the latter has a repre-

sentation dimensionality four times the size of the non-concatenated one, the performance is worse when

vocabulary size exceeds 8. This suggests that simple feature concatenation from various sizes of local regions

is not working for object identification even when objects have small scale variance. However, if one can

relate the size of the local region to the real world scale, feature concatenation across scale becomes beneficial

because the scale-wise matching kernel compares the objects in a scale-normalized fashion.

The CNN feature is more discriminative than the traditional hand-crafted baseline features even for

identifying seeds that have never been seen by the trained network. It can easily achieve a average recognition

rate of 0.936 (VGG-19 and BVLC reference net got the same performance) without any parameter tweaking.

However, by incorporating real scale information, the proposed method can surpass it. One of the problems

with these pre-trained CNN is that the feature at the last stage is domain-specific and needs fine tuning when

used with a dataset other than ILSVRC 2012. Another problem associated with CNN is that the input size

of the network has a small spatial support. Therefore when resizing seed images to this small size, critical

high frequency details for separation of look-alike seed might be lost. In the future when the a larger seed

dataset is available, it might be of interest to fine-tune the higher-level portion of the network to further

improve the CNN’s performance.

Given its superior performance, it would be helpful to see what kind of information my feature repre-

sentation captures. Therefore, I visualized the proposed feature representation with t-sne [115], a manifold

learning approach for non-linear dimensionality reduction. The feature representations for all 300 seed images
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were reduced to 2D as shown in Figure 4.7. This technique retains probabilities rather than distances be-

tween neighbouring points in the high dimensional feature space. The aim of this visualization is to show the

underlying structure in the representation and see how it correlates with prior knowledge about the existing

seed species (subspecies or seed types).

Generally speaking, seeds from the same groups (share similar morphological features) are more likely to

stay together which suggests the effectiveness of this representation. More specifically, it can be seen that,

samples from group 2A (No. 7, 8, 9, 13), 2B (No. 10, 11, 14), 3 (No. 16, 17, 18, 19, 20), 5 (No. 26, 27, 28,

29, 30) tend to form their own clusters lying far way from each other. This means that the probability of

confusion between these groups is much smaller than confusion within groups. As for group 1, B. rapa(c),

B. rapa(p) tend to stay much closer to each other which can be explained by the fact that they are all

subspecies from the same species Brassica rapa. A similar phenomenon was observed for group 4 where S.

italica(i) and S. italica(v) are more similar to each other than that of S. faberi , S. pumila, S. verticilata. One

interesting finding is that B. rapa(y) is more likely to stay with B. carinata rather than its same species peers

(B. rapa(b), B. rapa(c), B. rapa(p)). Group 5 is difficult for humans because of the lack of visible surface

features. But as shown in the visualization, the feature representation is pretty consistent as compared to

Group 4 which has strong texture but varies a lot.

In addition, I have selected 5 species that scatter much more widely and mapped the visualized 2D points

of them back to its original images.

1. B. rapa(y) (5)

There are two points that lie far away from the remaining eight points. The ten samples were shown in

Figure 4.9 with the two outliers coloured with a red and blue rectangular box. The outlier of sample

index 8 could result from the hilum texture. The outlier of sample index 4 could result from both the

hilum and the visually distinguishable surface texture.

2. S. italica(v) (18)

These samples are generally splitted into two parts, five of them stays with S. italica(i) (16); the other

five form another cluster. If we look at the original images, the two sets of species were actually sampled

at different times. The second batch of samples are intended to have a different sample variation.

This variation is successfully captured by the proposed feature representation. Similar happens for S.

verticilata (20) and A. palmeri(a) (27) as shown in Figure 4.11 and Figure 4.12.

3. S. italica(i) (17)

This species also forms two clusters as shown in Figure 4.13. It can be easily seen that, the separation

is mainly due to the surface reflectance.

4. B. rapa(c) (12) and B. rapa(p) (15)
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Figure 4.8: Visualization for the VGG-19 feature.
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Figure 4.9: The original images of B. rapa(y) (5). Number below each image shows the seed sample
index. Number also marked up for each point in the top left visualization. Distinctive images are
outlined with colour boundary for easy read.
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Figure 4.10: The original images of S. italica(v) (18). Number below each image shows the seed
sample index. Number also marked up for each point in the top left visualization. Distinctive images
are outlined with colour boundary for easy read.
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Figure 4.11: The original images of S. verticilata (20). Number below each image shows the seed
sample index. Number also marked up for each point in the top left visualization. Distinctive images
are outlined with colour boundary for easy read.
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Figure 4.12: The original images of A. palmeri(a) (27). Number below each image shows the seed
sample index. Number also marked up for each point in the top left visualization. Distinctive images
are outlined with colour boundary for easy read.
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Figure 4.13: The original images of S. italica(i) (17). Number below each image shows the seed
sample index. Number also marked up for each point in the top left visualization. Distinctive images
are outlined with colour boundary for easy read.
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Figure 4.14: The original images of B. rapa(c) (12). Number below each image shows the seed
sample index. Number also marked up for each point in the top left visualization.
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Figure 4.15: The original images of B. rapa(p) (15). Number below each image shows the seed
sample index. Number also marked up for each point in the top left visualization. Distinctive images
are outlined with colour boundary for easy read.

For this two subspecies, the scatter of the sample points is mainly due to changes in viewpoint. As

shown in Figure 4.14 and Figure 4.15, not all samples has the hilum shown in the image. This implicitly

informs us that the hilum actually is a critical feature for identification.

Visualization of the VGG-19 representation is shown in Figure 4.8. If comparing it with the visualization

of the proposed method, you can notice that VGG-19 is good at differentiating round seeds that could have

various poses, e.g. seeds that are in group 1 and 4. In contrast, the proposed method is good at picking up

the subtle differences for the other flat seed groups that could have much less variation in pose.

4.5 Conclusion

In this chapter, I have proposed a mid-level feature representation using scale-wise pooling. It normalizes

the local image patches with physical pixel size and can be treated as an extension of the commonly adopted

71



pyramid matching technique. I have proven with experiments that utilizing information from real scales

can lead to improvement in the identification rate achieved on the seed dataset. The accuracy achieved

(95%) with only texture features is higher than the threshold (> 90%) that is expected from a trained seed

analyst [154].

This feature representation is suitable for image datasets that have limited scale changes. Otherwise the

scales selected as demonstrated in Figure 4.4 would not be appropriate for all the object classes. For example,

if some seeds were imaged very small, the number of grid points would decrease accordingly. The size of the

support region of the local descriptors would also shrink in this case. In extreme cases, the support region

size would be a single pixels and no texture information could be extracted.

The successful application of this proposed method would require the seed in the image to have similar

size and sharpness as the one in the training set. Any blurriness introduced would violate the underlying

assumption that images are of limited scale changes. The reason for this is that blur attenuates high frequency

information. Thus it alters the information local descriptor extracts. In the next chapter, I have incorporated

both the techniques proposed in chapter 3 and 4 into a seed identification tool. We will see identification

performance degradation as resulted by blur in the acquired image.
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Chapter 5

User Study

This chapter describes the evaluation of the practical usage our seed identification system by human

specialists in seed identification. A digital tool was built for seed identification based on the real-time

focus-stacking method described in Chapter 3 and the scale-pooling representation from Chapter 4. Our

system was tested by professional seed analysts working in actual laboratory conditions at the CFIA seed

testing laboratory in Saskatoon using specimens from the Canadian National Seed Herbarium. Currently,

seed analysts in this lab must identify large numbers of plant seeds on a daily basis, manually, with limited

assistive tools. It would be beneficial for them if our seed identification system can accomplish the task in

an accurate and proficient manner. The design of the user experiment was to investigate two conditions:

1) current practice of seed identification and 2) computer assisted identification with our tool, and whether

there are observable significant differences between workload, average time per sample, and recognition rate.

5.1 Experiment Setup

In this experiment, we recruited experienced seed analysts from CFIA because they are the target users of

the built identification system. There are around 100 professional seed analysts in total across the country

of Canada and we manage to recruit six of them directly from the Saskatoon laboratory of CFIA. These

participants were divided into 3 groups based on the level of expertise with level 1 corresponding to the novice

group (1-2 years), level 2 corresponding to intermediate proficiency (2-10 years) and level 3 corresponding to

expert group (more than 10 years of experience).

5.1.1 Conditions

The objective of this study is to evaluate whether the provided identification tool can be beneficial for the

seed identification. The two conditions involved are straightforward and are described below:

1. Computer-assisted

In this condition, participants are provided with the digital aiding tool that is designed to automatically

identify plant seeds (a detailed description of this tool can be found in Section 5.2.1). The tool reports

what it thinks are the three most likely species for a given sample in descending order of its confidence

in each such potential decision.
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2. Manual

This condition resembles the current workflow of seed identification task carried out in the seed labora-

tory. Usually professionals are equipped with an optical microscope and some reference books. Samples

in the seed herbarium can be resorted to when needed.

In practice, seed samples are classified mainly based on morphological features and their similarities.

The identification involves comparison of certain characteristics and then assigning a particular seed

to a known taxonomic group, ultimately arriving at a species [161]. Knowledge of seed structures

is critical to achieving an accurate determination of unknown samples. Sometimes creating table of

characteristics, including as many morphological features as possible, is desirable, such that all available

features can be examined thoroughly [3]. Table 5.1 shows morphological characters of five Trifolium

species which is illustrated in seed technologist training manual [3].

Species T. fragiferum L. T.hybridum L. T. pratense L. T. repens L. T. vesiculosum Savi

General Shape broadly ovate
oval to

heart-shaped

triangular to

mitten-shaped

oval to

heart-shaped
round to oval

Radicle

Compared to

Cotyledon Lobe

equal to or

longer

equal or slightly

shorter

>1/2 the length

of the cotyledon

lobe

equal to or

slightly shorter
equal to or longer

Radicle

Divergent from

Cotyledon Lobe

no yes yes yes slightly

Surface Texture smooth smooth smooth smooth tuberculate

Color

yellow to

terracotta with

dark motting

yellow to green

with purple,

blue-green, or

black motting

yellow with red

and purple

tinge to entirely

purple

yellow to terra

cotta some with

green tinge

terra cotta to red

Luster lustrous dull dull dull to lustrous dull

Table 5.1: Comparision of seed characters of five Trifolium species.

5.1.2 Dependent Variables

Three dependent variables are measured in this study:

1. Workload

Participants undertook the NASA Task Load Index (NASA-TLX) measure which consists of a set of

6 scales and 15 pairwise comparisons for subjective workload measurement. These 6 scales are mental

demand (wment), physical demand (wphyc), temporal demand (wtemp), performance (wperf ), effort
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Figure 5.1: Example of NASA Task Load Index measure. It measures the subjective workload in
6 scales and using 15 pairwise comparisons between each two to assign weights for each scales for
normalization. In practice, I used the paper version for easy management of the data.

(wefft), frustration (wfrst). The overall task load index is a weighted score range from 0 to 100, with

higher numbers indicating higher workload. A screen shot is provided in Figure 5.1. The workload

under two conditions are denoted as w1, w2.

2. Time per Sample

It is defined as the time that consumed for processing each test sample. The mean time per sample

under the two conditions described in Section 5.1.1 are denoted as µt1 , µt2 .

3. Recognition Rate

Recognition rate is defined as the percentage of samples that are correctly identified to the species

level (subspecies or seed types if applicable). One measure of accuracy per participant per condition

was computed. The mean accuracy under two conditions are denoted as µa1 , µa2 . For the computer

assisted condition, I used top-3 recognition rate as the measurement. The test sample is treated as

successfully identified as long as the correct species name is among the top-3 candidates recommended

by the algorithm.

Competing with professionals in the current setup poses a big challenge to the proposed identification

system since the computer is generally considered as inferior at the high-level vision tasks than human

beings [21], despite the ongoing efforts trying to bridge the gap between each other.

5.1.3 Hypothesis

In this study, the participants in both groups are the same which makes the samples paired. Also, because

of the number of limited samples, the underlying distribution can not be treated as normal distribution.

Therefore, Wilcoxon signed-rank test was adopted for the statistical test to compare the matched samples to
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assess whether there is any improvement of using the provided identification tool. Three pairwise comparisons

were carried out among these two conditions.

The hypotheses to be tested are (null hypothesis is denoted as H0 and alternative hypothesis is denoted

as H1):

1. Hypotheses for Workload

(a) H0: difference between the workload under condition 1 and 2 follows a symmetric distribution

around zero. In mathematically form, they can be expressed as median(w1 − w2) = 0.

(b) H1: the median of the difference between the mean workload under condition 1 and 2 is less than

zero. In mathematically form, they can be expressed as median(w1 − w2) < 0.

Rather than only comparing the aggregated score, workload in each individual dimension of the NASA

TLX questionnaries was also compared. The alternative hypotheses for them are median(wment1 −

wment2) < 0, median(wphyc1−wphyc2) < 0, median(wtemp1−wtemp2) < 0, median(wpref1−wpref2) < 0,

median(wefft1 − wefft2) < 0, median(wfrst1 − wfrst2) < 0

2. Hypotheses for Time per sample

(a) H0: difference between the time per sample under condition 1 and 2 follows a symmetric distri-

bution around zero. In mathematically form, they can be expressed as median(µt1 − µt2) = 0.

(b) H1: the median of the difference between the mean time under condition 1 and 2 is less than zero.

In mathematically form, they can be expressed as median(µt1 − µt2) < 0.

3. Hypotheses for Recognition Rate

(a) H0: difference between the mean recognition rate under condition 1 and 2 follows a symmetric

distribution around zero. In mathematically form, they can be expressed as median(µrr1−µrr2) =

0.

(b) H1: the median of the difference between the mean recognition rate under condition 1 and 2 is

larger than zero. In mathematically form, they can be expressed as median(µrr1 − µrr2) > 0.

5.2 Overview of the Identification System

5.2.1 Software

The interface of the seed identification tool was implemented using Qt 5.5.1 with C++ and a screen shot of

it is provided in Figure 5.2. This tool can be operated with two modes: a static image mode which suitable

for external image sources; or a live image mode which directly obtains from the image sensor.
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Figure 5.2: Overview of the seed identification tool with each functionality highlighted by numbers.
Detailed descriptions can be found below and the usage instruction can be found in section 5.2.1.

1 Length of the scale bar.

It is set to be 1mm by default as we
used a stage micrometer in the ex-
periment. The user is expected to
calibrate the system in the very be-
ginning of each test.

2 Current scale.

The size of each pixel in the im-
age/video frame, measured in µm.

3 Input source: image.

This mode loads any static image
from the local hard drive.

4 Input source: camera.

live image from the sensor (default).

5 Frame mode.

Only working with source from cam-
era. Only the current live image
frame will be processed.

6 Stack mode.

Only working with source from cam-
era. Live images aggregated to cre-
ate focal stack and the user is ex-
pected to adjust the focus knob dur-

ing this mode. The proposed sharp-
ness metric in chapter 3 is employed
here for the stacking.

7 Segment.

Isolate the test seed from its sur-
rounding background. Region grow-
ing is employed for the segmentation
with the initial seeds chosen as the
pixels on the image boundary.

8 Brush.

Used to repaint the segmented im-
age if automatic segmentation gives
unsatisfactory result.

9 BK/FG.

Toggled to change the brush stroke
type used in repainting. BK: back-
ground stroke subtracting the back-
ground. FG: foreground stroke
bringing back erroneous subtracted
foreground.

10 Region similarity.

Range of variation of the back-
ground pixels. Increase this value
to cope with complex background
resulted by unexpected lighting
changes.

11 Filter blob size.

Filter out scattered unconnected
background regions.

12 Recognize.

Let the tool make the decision of
which species the tested sample be-
longs to. Only works when image
system is calibrated and background
is subtracted.

13 Record the tool’s identification re-
sult.

14 List of seed species that can be iden-
tified by the identification tool.

15 Record participant’s identification
result. Should be always used with
14.

16 Click to start the experiment.

17 Click to stop the experiment.

18 LCD indicator used to show the
number of samples user has already
processed.
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3 4

(a)

(b)

(c)

Figure 5.3: An overview of the hardware system. (a) is the NIKON stereoscopic microscope. (b)
shows a close up view of the stage. The fine-tuning knob ( 1 ) is used to adjust the focal point. A
diffusor ( 2 ) is placed on the stage to get even lighting and two external light sources ( 3 4 ) are
positioned on both sides pointing in oppsoit direction. (c) is the digital eyepiece where the live image
frame is coming from.

5.2.2 Hardware

In this study, the same microscope used in chapter 4 is employed for the seed imaging. However, the live image

frames are acquired from a digital eye piece manufactured by Celestron instead of from its internal image

sensor. The reason is that this NIKON microscope (AZ100M Motorised Multi-Purpose Zoom Microscope)

comes with its own proprietary imaging software (NIS-elements) and does not provide an SDK for easy

customization to third party developers. Thus for the concern of easy customization and future improvement,

the digital eye piece is adopted to act as a bridge between the microscope and the software. An overview of

the hardware system is given in Figure 5.3.
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5.2.3 Operation Pipeline

The operation of this whole system for identification of seed samples can be divided into this four steps:

Step 1:

Put the test seed sample on the

stage micrometer and adjust the

zoom and focus knob to get clear

view of the seed. Make sure the

seed lies in the centre of the view

finder and does not touch the

boundary. Also make the seed

sample as large as possible

so that the textures on the

seed surface can be clearly

rendered. Once a satisfactory

view of the seed is obtained, keep

the zoom knob untouched until

the next sample.

Step 2:

Slide the stage micrometer over

and adjust the focus knob to get

a clear view of the micrometer.

The imaging system is calibrated

by left clicking on both ends of

the micrometer as shown in the

above image.

first click
second click

Step 3:
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Slide the stage micrometer back

to the seed sample. Switch

to stack mode to create focal

stack. The seed sample in

the viewfinder should become

sharper gradually. When there

is visually no change on the sam-

ple’s apperance, proceed to the

next step to segment the seed out

from the white background.

1.click here to switch to stack mode

Step 4:

Segment the image by clicking

the segment button. Better re-

sults can be achieved by adjust-

ing the two slider marked in the

top image. If automatic segmen-

tation does not produce satisfac-

tory result, brush can be used

for manual refinement as shown

in the below image. Since this

retouch is not for artistic pur-

pose, a coarse segmentation is

sufficient for the recognition.

1.click here to segment the image

2.adjust these two parameters to get good segmentation

3.click here for retouching

4.click here to toggle brush stroke type BK/FG
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5.3 Experiment results

5.3.1 Results for workload

Figure 5.4 shows the aggregated TLX score for both conditions. For the computer assisted condition, the

workload generally decreases with the increase of level of expertise. This is contrary to our intuition since one

might think the novice participants would get the lowest workload score because they might be the ones that

benefit most from this tool. For the traditional method, the greatest workload was observed for participants

with the middle level of expertise. The most reasonable interpretation of this is that, they are actually the

one that spend the most effort on this task given its correlation to the trend of the average time per sample

as shown in Figure 5.6. Novice analysts might guess whenever come across hard samples whereas senior

analysts can fully rely their own experience without going for the references. The mid-level analysts actually

need more time to confirm their choice with the references. Although on average µw1 < µw2, there is no

statistical significant difference between these two group of samples by Wilcoxon sign ranked t test. The null

hypothesis cannot be rejected. This could be owing to the insufficient number of participants.

In addition to the aggregated TLX score, here I also plot the score individually for each dimension after

normalization with its corresponding weights, as shown in Figure 5.5. A statistical test for each individual

dimension was conducted. The mental demand for traditional method is statistical significant higher than

computer assisted method with p = 0.00245. This is due to the fact that, with the software, the operator is

not required to memorize all the features or rules used for identification. The physical demand on average

is higher as for computer assisted method although with no statistical significance. This is not surprising if

you consider how humans identify objects. Some seeds are inherently easy for human to identify with naked

eye. However, in order to have the computer analyze the sample, it has to be always taken out from the vial,

and placed on the glass slide at the right spot. Because the microscope used have very large magnification,

it sometimes hard to position the seed in the field of view, and to set the best magnification. Even if the

participants are proficient enough with operating the seed samples, the method requires scale recalibration

whenever the objective distance is changed. This can be mitigated if I can have access to the control module

of the hardware but with current setup and implementation, it has to be done manually and is tedious from

my observation. Afterwards, the image needs to be segmented which also requires some effort from the user.

Another solution to avoid the repetitive scale calibration is to preprocess the test seed sample with a seed

sorter to ensure that the seed samples identified in contiguous are homogeneous in size.

5.3.2 Results for Average Time per Sample

As for the throughput results shown in Figure 5.6, it can be seen that for the computer-assisted condition,

the average time spent is fairly consistent across the levels of expertise. A possible explanation for this is that

the majority of time in the computer-assisted condition is spent acquiring the image, which is an independent
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skill from expertise in seed identification. For the traditional condition, the level of expertise correlates with

the workload and effort measure which suggests that these group of analysts need more time to confirm

their results. Even though there is no statistical evidence to reject the null hypothesis due to the insufficient

number of participants, it is still worth highlighting that there is potential to increase the throughput by

as much as 100% with sufficient advances in the imaging technology and the image acquisition procedure

coupled with my feature representation and enough data to produce a well-trained classifier.

5.3.3 Results for Recognition Rate

The recognition rates shown in Figure 5.7 are around 50%, which is much lower than those reported in

chapter 3 which is 95% in the cross validation. If compared with the traditional method, the recognition rate

is even lower with the seed identification system. Before I start to investigate the underlying causes of the

modest performance, one has to be noted that the manual identification was performed by the experienced

seed analysts. Unlike ordinary people, they are well-trained specialists and are highly proficient at their

job, which makes the baseline of the comparison much higher than just recruiting people from the general

population.

Bearing this in mind, the underlying reason I think is twofold. First, the deployed model was trained on the

high quality data and the hyperparameters used for training were selected based on the cross-validation on the

same dataset, therefore, the performance degradation could be partially resulted by the overfitting. Second,

the distribution differences of the training and testing data could also affect the identification performance.

The common practice for training and testing scheme is that one splits the obtained data into training,

validation and testing sets. The hyperparameters of the model are selected based on the validation error

and the final performance of the model is measured by the testing error. In small-scale datasets where it

is impractical to obtain a separate validation sets, people use cross validation to leverage the problem. The

key part in this scheme is that data in these sets must come from the same data manifold. However, in my

case, the testing data and the training data exhibit a very different distribution as visualized in Figure 5.12

and 5.13. The testing data as denoted by the triangles do not lie close to the cluster centres formed by the

training data, which implies that images of the training and testing dataset actually come from different data

manifold. The test data distribution is altered by the following reasons:

1. Varying Illumination

There are two external light sources that are used to light the surface of the seed, pointing in different

directions as can be seen from Figure 5.3 (b). A diffuser is used to distribute the light evenly on the

seed surface to prevent harsh light and dead spots. However, since the position of the seed can vary

a lot and the participants do not have much experience to adjust the lighting in an optimal way, the

obtained images sometime have either a saturated colour or a shadow, both of which obscure surface

texture. Some examples are shown in Figure 5.8.
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Figure 5.4: Raw TLX score for each level of expertise (the lower the score, the higher the workload).
Red is the workload pretending to use everyday, whereas blue is the workload for manual traditional
method.

2. Shifting in the Image Plane

When rotating the fine adjusting knob, as shown in 5.3, towards the end, the seed in the viewfinder

gets slightly shifted due to an artifact of the microscope. Since the image frames are not fully aligned,

the obtained all-in-focus image appear motion blurred as shown in Figure 5.9. This happens mostly

when the knob is rotated to the end position.

3. Operational Errors

In the focal stacking phase, the focus range should cover the entire visible part of the seed ranging

from the top to the peripheral. This is achieved by rotating the coarse and fine adjusting focus knobs.

Ideally, the coarse knob is initially adjusted to focusing on the centre of the seed sample and the fine

knob for subtle focus tweaking. However, in practice, this was sometimes not conducted correctly such

that when rotating the fine adjust knob, the focus point did not cover certain parts of the sample and

sometimes was not moved at all. This often resulted in a partially blurred image as can be seen in

Figure 5.10.

This error can be partially resolved by extending the participant training phase and can be completely

mitigated with the right hardware. If I could have software-level access to the control system of the

microscope, the manual focus stacking would be eliminated. The focus-stacking procedure could be

completely automated, and done in real-time.

5.4 Discussion

The training images I have are of very high quality. Although for each species (subspecies, seed types),

there are 10 samples carefully selected to cover the biological variation, these images do not contain image
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Figure 5.5: Raw TLX score of each dimension after normalization for each level of expertise. Red is
the workload for the computer assisted method, whereas blue is the workload for manual traditional
method.
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Figure 5.6: Average time spent per sample for each level of expertise.
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Figure 5.7: The percentage of seed samples correctly identified for level of expertise. For computer
assisted and VGG-19, top-3 recognition rate was shown. The seed sample is considered as correctly
identified as long as the correct result is among the top-3 candidates shown on the screen.

Figure 5.8: Examples of bad illumination. It leaves strong shadows on the seed surface which prevents
the correct rendering of the surface texture.
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Figure 5.9: Examples of plane shifting where image frames not fully aligned with each other. Here
shows the stacked image.

Figure 5.10: Examples of operation errors. The stacked images are still blurry due to failing change
of the focus.

Figure 5.11: Examples of correctly identified sample.
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Figure 5.12: The same visualization as in chapter 3. Difference is that in this graph the test sample
and the training sample are plotted altogether. The test samples come from participant 6 because its
best performance (performance of each participant is shown in the appendix.) among the others and
are denoted as triangles rather than circles for distinction.
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Figure 5.13: The same visualization as in Figure 5.12 using VGG-19 to extract the mid-level feature
representation. Training samples are shown in circles and test samples are shown in triangles.
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variations that might occur in the real testing conditions, for example, shadows, reflections, noise, blur, etc.

That is one reason for the modest identification rate in the live testing. In order to make the proposed method

to work, the image has to possess certain characteristics: sharp, even lighting and visibility of the hilum. I

have shown some test images in Figure 5.11 that fulfill these requirements and were correctly identified.

With the raw test images, I also conducted a post-analysis with the VGG-19 network to see how CNN

performs with these low quality images. The result is shown in Figure 5.7. We can see that the Top-

3 identification rate is better than the my proposed method in Chapter 3, which implicitly demonstrates

its ability of better robustness to the image degradation. But the performance is still worse than the one

reported in chapter 4 because of the image variations. Visualization is also shown in Figure 5.13 to highlight

this problem.

Therefore, in practice, if similar high quality images with real scale information is available, the proposed

scale-pooling representation should be used for accurate identification. In contrast, if the input is some low

quality images, it is better to switch to CNN-based method as an alternative to narrow down the number of

possibilities. Moreover, from the user study, we can see that the time required for computer is pretty constant

regardless of the difficulty of the seed and the level of expertise participants have. The reason behind this is

that every seed sample has to undergo the same imaging pipeline. In contrast, analysts gain their expertise

over time.

Seeds are inherently of different levels of difficulty for analysts. In other words, analysts can probably

recognize certain seeds with a single glance but have to go through the seed specimens in the herbarium

for assistance for others. Therefore the potential approach to best use the developed computer model is to

combine the strength of both computer and analyst, that is asking analyst to do a pre-examination to filter

out seeds that they are confident and easy to recognize. As for those left, they can be imaged with the

help of an experienced photographer and then sent to the software for identification. This objective score

form the computer would be beneficial for the seed regulation, not only for seed regulation agencies, but also

companies that conduct import and export seed businesses. Further, if the operator can be well trained, this

tool can then be used as a dedicated tool for efficient all-in-focus image capturing. This ability of quickly

expanding the seed image dataset would enable the fine-tuning of the CNN.

5.5 Conclusion

In this chapter I designed a seed identification tool and conducted a user study for the evaluation of its

effectiveness, with the users being highly trained human experts in seed identification. Results have shown

significantly lower mental demand by using this tool. The identification rate was compromised by the input

image quality degradation due to shadows, blur, and operation errors. This suggests a much longer training

phase for the participants is necessary for the successful application of image-based identification (currently

training phase takes only 15 minutes which is not sufficient for users to get familiar with the tool). A
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tradeoff can be made between throughput and identification rate by switching between the scale-pooling

representation and the CNN-based representation. The first one requires more time for image acquisition but

has higher identification rate and the latter one can operate on low quality images and gives more accurate

recommendations. In addition, this tool can be used as a dedicated imaging tool for efficient all-in-focus

seed image capturing if we want to further expand the seed dataset. If 10 times as much or more data were

ready for us to ensure proper training of the neural network (either fine-tuning or training from scratch), the

CNN-based approach would likely be preferable due to its multi-scale nature and test-timed efficiency (one

forward pass).

In this experiment, the identification system is compared with highly trained human experts. Although

only modest results are achieved, we do see the potential of computer vision based identification methods.

In the next chapter, several directions for future research are discussed.
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Chapter 6

Conclusions and Future study

This thesis investigated new ideas to address the plant seed identification problem. I mainly concentrated

on differentiating morphological similar plant seeds that is difficult for seed analysts to identify. The challenges

of this problem are high-quality all-in-focus image acquisition and effective feature representation of seed

images. Shallow depth of field is problematic for the observation of seed specimens in 2D images.

This thesis proposed software solutions to address a few aspects of these challenges. Chapter 3 intro-

duced a sharpness metric with linear time complexity by exploiting the distribution difference of uniform

LBP patterns in blurred and non-blurred image regions. It better measures the sharpness on low contrast

sharp regions and behaves monotonically to the extents of defocus blur. A single-image-based defocus seg-

mentation algorithm that also has linear time complexity was developed on top and achieved state-of-the-art

performance. This metric has enabled the very first online focal stacking algorithm to my knowledge that

does not require focal stacks to be captured before hand. Comparable results with state-of-the-art were

achieved under low noise condition. Chapter 4 introduced a scale-pooling-based feature representation by

using the commonly available pixel scale information for all-in-focus images with limited scale variations.

I have found a series of pixel scales that better describes local image region and compute representations

under these real scales for scale invariance. Multi-scale representations were concatenated for a scale-wise

comparison in the classifier. A superior identification rate (95%) with all-in-focus images was achieved by just

using the proposed representation and a linear SVM. In chapter 5, I designed the very first seed identification

tool based on the proposed techniques and tested its effectiveness with a human study. I evaluated workload,

throughput, and identification rate under computer-assisted condition and manual conditions. Significantly

less mental demand is needed when using the tool. Although the identification rate in these tests is not as

good as those reported in chapter 3, I have identified common mistakes that were made during the imaging

capture step and possible ways to correct and avoid the problems.

Beyond this thesis, avenues for further work on plant seed identification can be divided into three cat-

egories: those that involve the acquisition of seed images, those that involve using 3D information rather

than just 2D, and those that relate to the improvement of the blur segmentation algorithm, in particular the

sharpness metric. These avenues are discussed in the following sections.
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6.1 Image Acquisition

The training images are high quality images post-processed by professional imaging technician. For each

species (subspecies, seed types), there are 10 samples to cover the biological variation. These images, however,

do not contain image variations that could possiblly occur in real testing scenarios, for example, variable

lighting, reflections, noise, scale variance etc. One remedy is by synthesizing these effects with parameterized

variances on the high quality all-in-focus images (1000 images per species would be reasonable to generate

by proper sampling in the parameterized space). Although this data augmentation technique can solve this

problem to some extent, imaging more test samples would enable the full harnessing of the power of CNNs.

Taking high quality all-in-focus images of many more seed samples (double the sample size would be more

practical under current situation) under different view points would be beneficial to further boost the size

of training data and ensure proper training of the CNNs. This should be assigned higher priority for future

improvements. When data get expanded, it may be helpful to perform a statistical test to quantify the

inherent difficulties of our different subsets of seeds as similar to Doddington et al.’s work [40].

Further more, due to the time-consuming nature of physical archival, retrieval, and equipment setup,

imaging physical seed samples becomes a tedious job. Our use of off-the-shelf hardware components put some

restrictions on the possible image operations. The proprietary software shipping with digital microscopes

often do not have much flexibility for customization. In the future, customized accessory hardware can be

designed and incorporated to facilitate the image acquisition. One such example would be using motorized

stages which can move freely in the x, y, z axes for automatic microscope calibration and focal stacking. This

can not only free users from manual glass slide moving but also make possible other digital representations

of microscopic specimens, e.g. the virtual reflected-light microscopy (VRLM) representation [62]. Another

hardware that could be employed is a seed sorter to preprocess the test seed sample to ensure that the

seed samples identified in contiguous are homogeneous in size, therefore avoiding frequent scale calibration

operation.

6.2 Exploring 3D information

In this thesis, the main focus is on software solutions for seed identification. We are currently dealing with

2D colour images that are projected from 3D world. The discarded 3D shape information (depth) could be

useful for identification but has not been explored. Therefore, another direction worth exploring would be

recovering depth cues from imaging and extracting features from 3D surfaces, either from focal stacks or

stereo image pairs [7, 153].
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6.3 Improving the Blur Segmentation Method

The proposed metric was inspired by the statistical difference of local binary patterns of a set of partial

blurred images. Since the source of blurriness is mainly defocus blur, my metric currently is only capable of

detecting defocus blur. Given that there are other type of blurriness such as those introduced by low qualities

of lens and materials in imaging systems and motion blur, it would be worth studying the blur model due

to the properties of optical devices [92] and at the same time exploring properties of different patterns such

as the non-uniform binary patterns and local ternary pattern (LTP) [166] on blur regions of different types.

Moreover, the ideas used in noise-resistant LBP (NRLBP) [146], which treats pixels susceptible to noise as

having uncertain state and then determines the corresponding bit value based on the other bits of the LBP

code, might worth borrowing if explicit handling of noise in blur detection is desired.

Alternatively, since CNN is particularly good at extracting cascading abstraction features, it might be

useful to use CNN to learn the sharpness feature directly from the training data in an end-to-end fashion. The

input can be a image patch that is manually blurred by a pre-defined blur kernel, e.g. the Gaussian kernel.

Then the output of this network should be the parameter σ. This could be formed as a regression problem

by using the L2 loss as the loss function and back propagation to learn the weights automatically. One

advantage of doing this is that the training data is unlimited. Basically any sharp image patches can be used

for the training so we do not have to worry about the size of the training data. More interestingly, Felix et al.

found that LBP can be generalized and implemented as local binary convolution as an efficient alternative to

convolutional layers [81]. It would be worthwhile to research how such kinds of network architectures can be

explored to learn an optimal sharpness metric and such metrics correlate with my proposed hand-engineered

metric. In the meantime, instead of using CNN to lean local sharpness features, they can also be used to

directly generate defocus maps by utilizing the high-level information in the deeper layers of CNN. These

high-level semantics are claimed to be important to solve the ambiguity of smooth regions [114].

Finally, the conditional random field used to combine sharpness information from multiple scales could

be also formulated as a Recurrent Neural Network (RNN) [206]. Thus the whole segmentation method could

be formulated in a way so that only CNNs are used.
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Appendix A

Raw results for the user experiment

A.1 Raw TLX score for each participant

Figure A.1 shows the aggregated TLX score for each participant.
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Figure A.1: Raw TLX score for each participant. Red is the workload pretending to use everyday,
whereas blur is the workload for manual traditional method.

A.2 TLX score in each dimension

Figure A.2 A.3 shows the TLX score in the six dimension respectively.

A.3 User feedback

Following shows the feedback of the participants by using the questionnaire.

• What do you like the best of the tool?

– p1: The fact that it could possibly be used to confirm an identification. It may be used instead of
consulting another analyst, i.e. provide a 2nd opinion.

– p2: Easy to use

– p3: Easy to operate. Gives results quickly.

– p4: It can give me some clue in finding the family/Genus of the unknown sample.

– p5: Stacked (3-D) image. provides 3 best matches for seed ID.

– p6: How easy it is to use.

• Which part do you think can be improved?

– p1: It is hard to orientate the seeds correctly-hard to get into the field of view. (the computer
program is simple and user friendly though)

– p2: It would be nice to set seed specific so does not roll or move.
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Figure A.2: TLX score in each dimension for each participant. Red is the workload pretending to
use everyday, whereas blur is the workload for manual traditional method.
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Figure A.3: Continue of the above Figure. TLX score in each dimension for each participant. Red is
the workload pretending to use everyday, whereas blur is the workload for manual traditional method.

108



p1 p2 p3 p4 p5 p6 average
0

100

200

300
T

im
e

(s
)

Computer assisted

Traditional

Figure A.4: Average time spent on one sample for each participant.

– p3: Sometimes can not focus all parts of the seed completely.

– p4: Camera/Monitor Quality? Ringlighting instead of the swan neck lighting?

– p5: Somehow have slide/surface that prevents very round seeds from rolling away so easily.

– p6: Incorporate more species if use on greater scale. Right now it is pretty good.

• What extra features do you like to be incorporated into the tool?

– p1: Perhaps the light diffuser could be permanently attached to the stage. It would be better if
the computer could calibrate the size of the seed automatically.

– p2: Have a ruler or measure to compare size of seed. Be able to not have as much zoom on seed.

– p3: Being able to hold a seed in a certain position

– p4: None

– p5: None

– p6: Can not think of anything right now.

A.4 Throughput

Figure A.4 shows the throughput for both two conditions.

A.5 Recognition rate

Figure A.5 shows the recognition rate for both two conditions.
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Figure A.5: Recognition rate for each participant. For computer assisted and VGG-19, if the correct
result is in the top-3 candidates, it is counted as correctly identified.
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