46 research outputs found

    Stereo facial image matching to aid in Fetal Alcohol Syndrome screening

    Get PDF
    Includes abstract. Includes bibliographical references

    L’impact de la stéréoscopie dans la reconnaissance, la perception et la constance de forme 3D

    Get PDF
    Les buts des recherches présentées dans cette thèse étaient d’évaluer le rôle de la stéréoscopie dans la reconnaissance de forme, dans la perception du relief et dans la constance de forme. La première étude a examiné le rôle de la stéréoscopie dans la perception des formes visuelles en utilisant une tâche de reconnaissance de formes. Les stimuli pouvaient être présentés en 2D, avec disparité normale (3D) ou avec disparité inversée. La performance de reconnaissance était meilleure avec les modes de présentation 2D et 3D qu’avec la 3D inversée. Cela indique que la stéréoscopie contribue à la reconnaissance de forme. La deuxième étude s’est intéressée à la contribution conjointe de l’ombrage et de la stéréoscopie dans la perception du relief des formes. Les stimuli étaient des images d’une forme 3D convexe synthétique présentée sous un point de vue menant à une ambigüité quant à sa convexité. L’illumination pouvait provenir du haut ou du bas et de la gauche ou de la droite, et les stimuli étaient présentés dichoptiquement avec soit de la disparité binoculaire normale, de la disparité inversée ou sans disparité entre les vues. Les participants ont répondu que les formes étaient convexes plus souvent lorsque la lumière provenait du haut que du bas, plus souvent avec la disparité normale qu’en 2D, et plus souvent avec absence de disparité qu’avec disparité inversée. Les effets de direction d’illumination et du mode de présentation étaient additifs, c’est-à-dire qu’ils n’interagissaient pas. Cela indique que l’ombrage et la stéréoscopie contribuent indépendamment à la perception du relief des formes. La troisième étude a évalué la contribution de la stéréoscopie à la constance de forme, et son interaction avec l’expertise perceptuelle. Elle a utilisé trois tâches de discrimination séquentielle de trombones tordus ayant subi des rotations en profondeur. Les stimuli pouvaient être présentés sans stéréoscopie, avec stéréoscopie normale ou avec stéréoscopie inversée. Dans la première moitié de l’Exp. 1, dans laquelle les variations du mode de présentation étaient intra-sujets, les performances étaient meilleures en 3D qu’en 2D et qu’en 3D inversée. Ces effets ont été renversés dans la seconde moitié de l’expérience, et les coûts de rotation sont devenus plus faibles pour la 2D et la 3D inversée que pour la 3D. Dans les Exps. 2 (variations intra-sujets du mode de présentation, avec un changement de stimuli au milieu de l’expérience) et 3 (variations inter-sujets du mode de présentation), les effets de rotation étaient en tout temps plus faibles avec stéréoscopie qu’avec stéréoscopie inversée et qu’en 2D, et plus faibles avec stéréoscopie inversée que sans stéréoscopie. Ces résultats indiquent que la stéréoscopie contribue à la constance de forme. Toutefois, cela demande qu’elle soit valide avec un niveau minimal de consistance, sinon elle devient stratégiquement ignorée. En bref, les trois études présentées dans cette thèse ont permis de montrer que la stéréoscopie contribue à la reconnaissance de forme, à la perception du relief et à la constance de forme. De plus, l’ombrage et la stéréoscopie sont intégrés linéairement.The goals of the researches presented in this thesis were to evaluate the role of stereopsis in shape recognition, in relief perception, and in shape constancy. The first study examined the role of stereopsis in visual shape perception using a recognition task. The stimuli were presented with null binocular disparity (i.e. 2D), normal binocular disparity (3D) or reversed disparity. Recognition performance was better with 2D and 3D displays than with reversed 3D. This indicates that stereopsis contributes to shape recognition. The second study examined the joint contribution of shading and stereopsis to the relief perception of shape. The stimuli were the images of a synthetic convex 3D shape seen from viewpoints leading to ambiguity as to its convexity. Illumination either came from above, or below and from the right or the left, and stimuli were presented dichoptically with either normal binocular disparity, reversed disparity, or no disparity between the views presented at each eye. Participants responded “convex” more often when the lighting came from above than from below. Also, participants responded that the shape was convex more often with normal than with zero disparity, and more often with 2D than with reversed stereopsis. The effects of lighting direction and display mode were additive; i.e. they did not interact. This indicates that shading and stereopsis contribute independently to shape perception. The third study assessed the contribution of stereopsis to shape constancy and how it interacts with perceptual expertise using three sequential matching tasks with bent paperclips rotated in depth. Stimuli were presented without stereopsis, or with normal or reversed stereopsis. In the first half of Exp. 1, where display mode variations were within-subject, the performances were better with stereoscopic displays than with 2D or reversed stereoscopic presentations. In the second half of the experiment, the rotation costs became weaker for the 2D and reversed 3D display modes than for the 3D one. In Exps. 2 (display mode within-subject, with stimuli switched halfway into the experiment) and 3, (display mode between-subjects) the rotation effect was consistently weaker with normal stereo than with either 2D or reversed stereoscopic displays. These experiments also demonstrate an advantage of reversed stereo over 2D presentations. This indicates that stereo may contribute to shape constancy. This, however, requires stereoscopic information to be valid with a minimal degree of consistency. Otherwise, stereo may become strategically ignored. In a nutshell, the three studies presented in this thesis showed that stereo contributes to shape recognition, relief perception and shape constancy. Furthermore stereopsis and shading are integrated independently

    Geometric Structure Extraction and Reconstruction

    Get PDF
    Geometric structure extraction and reconstruction is a long-standing problem in research communities including computer graphics, computer vision, and machine learning. Within different communities, it can be interpreted as different subproblems such as skeleton extraction from the point cloud, surface reconstruction from multi-view images, or manifold learning from high dimensional data. All these subproblems are building blocks of many modern applications, such as scene reconstruction for AR/VR, object recognition for robotic vision and structural analysis for big data. Despite its importance, the extraction and reconstruction of a geometric structure from real-world data are ill-posed, where the main challenges lie in the incompleteness, noise, and inconsistency of the raw input data. To address these challenges, three studies are conducted in this thesis: i) a new point set representation for shape completion, ii) a structure-aware data consolidation method, and iii) a data-driven deep learning technique for multi-view consistency. In addition to theoretical contributions, the algorithms we proposed significantly improve the performance of several state-of-the-art geometric structure extraction and reconstruction approaches, validated by extensive experimental results

    Reconstructing plant architecture from 3D laser scanner data

    Full text link
    En infographie, les modèles virtuels de plantes sont de plus en plus réalistes visuellement. Cependant, dans le contexte de la biologie et l'agronomie, l'acquisition de modèles précis de plantes réelles reste un problème majeur pour la construction de modèles quantitatifs du développement des plantes. Récemment, des scanners laser 3D permettent d'acquérir des images 3D avec pour chaque pixel une profondeur correspondant à la distance entre le scanner et la surface de l'objet visé. Cependant, une plante est généralement un ensemble important de petites surfaces sur lesquelles les méthodes classiques de reconstruction échouent. Dans cette thèse, nous présentons une méthode pour reconstruire des modèles virtuels de plantes à partir de scans laser. Mesurer des plantes avec un scanner laser produit des données avec différents niveaux de précision. Les scans sont généralement denses sur la surface des branches principales mais recouvrent avec peu de points les branches fines. Le cur de notre méthode est de créer itérativement un squelette de la structure de la plante en fonction de la densité locale de points. Pour cela, une méthode localement adaptative a été développée qui combine une phase de contraction et un algorithme de suivi de points. Nous présentons également une procédure d'évaluation quantitative pour comparer nos reconstructions avec des structures reconstruites par des experts de plantes réelles. Pour cela, nous explorons d'abord l'utilisation d'une distance d'édition entre arborescence. Finalement, nous formalisons la comparaison sous forme d'un problème d'assignation pour trouver le meilleur appariement entre deux structures et quantifier leurs différences. (Résumé d'auteur

    State of the Art in Dense Monocular Non-Rigid 3D Reconstruction

    Full text link
    3D reconstruction of deformable (or non-rigid) scenes from a set of monocular 2D image observations is a long-standing and actively researched area of computer vision and graphics. It is an ill-posed inverse problem, since--without additional prior assumptions--it permits infinitely many solutions leading to accurate projection to the input 2D images. Non-rigid reconstruction is a foundational building block for downstream applications like robotics, AR/VR, or visual content creation. The key advantage of using monocular cameras is their omnipresence and availability to the end users as well as their ease of use compared to more sophisticated camera set-ups such as stereo or multi-view systems. This survey focuses on state-of-the-art methods for dense non-rigid 3D reconstruction of various deformable objects and composite scenes from monocular videos or sets of monocular views. It reviews the fundamentals of 3D reconstruction and deformation modeling from 2D image observations. We then start from general methods--that handle arbitrary scenes and make only a few prior assumptions--and proceed towards techniques making stronger assumptions about the observed objects and types of deformations (e.g. human faces, bodies, hands, and animals). A significant part of this STAR is also devoted to classification and a high-level comparison of the methods, as well as an overview of the datasets for training and evaluation of the discussed techniques. We conclude by discussing open challenges in the field and the social aspects associated with the usage of the reviewed methods.Comment: 25 page

    State of the Art in Dense Monocular Non-Rigid 3D Reconstruction

    Get PDF
    3D reconstruction of deformable (or non-rigid) scenes from a set of monocular2D image observations is a long-standing and actively researched area ofcomputer vision and graphics. It is an ill-posed inverse problem,since--without additional prior assumptions--it permits infinitely manysolutions leading to accurate projection to the input 2D images. Non-rigidreconstruction is a foundational building block for downstream applicationslike robotics, AR/VR, or visual content creation. The key advantage of usingmonocular cameras is their omnipresence and availability to the end users aswell as their ease of use compared to more sophisticated camera set-ups such asstereo or multi-view systems. This survey focuses on state-of-the-art methodsfor dense non-rigid 3D reconstruction of various deformable objects andcomposite scenes from monocular videos or sets of monocular views. It reviewsthe fundamentals of 3D reconstruction and deformation modeling from 2D imageobservations. We then start from general methods--that handle arbitrary scenesand make only a few prior assumptions--and proceed towards techniques makingstronger assumptions about the observed objects and types of deformations (e.g.human faces, bodies, hands, and animals). A significant part of this STAR isalso devoted to classification and a high-level comparison of the methods, aswell as an overview of the datasets for training and evaluation of thediscussed techniques. We conclude by discussing open challenges in the fieldand the social aspects associated with the usage of the reviewed methods.<br

    3D reconstruction of coronary arteries from angiographic sequences for interventional assistance

    Get PDF
    Introduction -- Review of literature -- Research hypothesis and objectives -- Methodology -- Results and discussion -- Conclusion and future perspectives

    Higher-order Losses and Optimization for Low-level and Deep Segmentation

    Get PDF
    Regularized objectives are common in low-level and deep segmentation. Regularization incorporates prior knowledge into objectives or losses. It represents constraints necessary to address ill-posedness, data noise, outliers, lack of supervision, etc. However, such constraints come at significant costs. First, regularization priors may lead to unintended biases, known or unknown. Since these can adversely affect specific applications, it is important to understand the causes & effects of these biases and to develop their solutions. Second, common regularized objectives are highly non-convex and present challenges for optimization. As known in low-level vision, first-order approaches like gradient descent are significantly weaker than more advanced algorithms. Yet, variants of the gradient descent dominate optimization of the loss functions for deep neural networks due to their size and complexity. Hence, standard segmentation networks still require an overwhelming amount of precise pixel-level supervision for training. This thesis addresses three related problems concerning higher-order objectives and higher-order optimizers. First, we focus on a challenging application—unsupervised vascular tree extraction in large 3D volumes containing complex ``entanglements" of near-capillary vessels. In the context of vasculature with unrestricted topology, we propose a new general curvature-regularizing model for arbitrarily complex one-dimensional curvilinear structures. In contrast, the standard surface regularization methods are impractical for thin vessels due to strong shrinking bias or the complexity of Gaussian/min curvature modeling for two-dimensional manifolds. In general, the shrinking bias is one well-known example of bias in the standard regularization methods. The second contribution of this thesis is a characterization of other new forms of biases in classical segmentation models that were not understood in the past. We develop new theories establishing data density biases in common pair-wise or graph-based clustering objectives, such as kernel K-means and normalized cut. This theoretical understanding inspires our new segmentation algorithms avoiding such biases. The third contribution of the thesis is a new optimization algorithm addressing the limitations of gradient descent in the context of regularized losses for deep learning. Our general trust-region algorithm can be seen as a high-order chain rule for network training. It can use many standard low-level regularizers and their powerful solvers. We improve the state-of-the-art in weakly-supervised semantic segmentation using a well-motivated low-level regularization model and its graph-cut solver
    corecore