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RESUME 

Les maladies cardiovasculaires sont la premiere cause de deces en Amerique du nord. 

Ces maladies impliquent generalement des depots lipidiques et de calcium sur les parois 

internes des arteres coronariennes entrainant ainsi une des plus communes maladies 

connue sous le nom d'atherosclerose. Une plaque d'atherome se fixe progressivement 

sur les parois internes des arteres et peut entrainer un blocage partiel ou total du flux 

sanguin a travers l'artere. L'angiographic par rayons-X est la technique de premiere 

ligne pour le diagnostic et le traitement des anomalies morphologiques du reseau 

coronarien. 

Les differentes institutions hospitalieres sont souvent equipees de systemes 

monoplans ce qui a conduit a une acquisition sequentielle de deux sequences monoplans 

synchronisers sur l'electrocardiogramme pour permettre 1'application des techniques de 

reconstruction 3D biplan. Ainsi, la precision des reconstructions 3D obtenues reste 

limitee a cause des inevitables artefacts de mouvement dus aux acquisitions non 

simultanees des sequences d'images. Cependant, les procedures d'angioplastie se font en 

utilisant seulement une vue en maintenant un angle d'incidence fixe tout au long de 

1'intervention. 

L'objectif general de la programmation de recherche proposee est de developper 

et valider des algorithmes innovateurs qui permettront de concevoir un outil clinique 

pour assister les cardiologues pendant les procedures d'angioplastie. La technologie 

principale utilisee dans les salles fluoroscopiques est l'imagerie a rayons-X, done il est 

imperatif d'exploiter toute l'information disponible contenue dans les images 

angiographiques afin de faciliter 1'intervention du cardiologue et de reduire le temps de 

diagnostique et de decision pendant les chirurgies. Afin de repondre a cet objectif, deux 

hypotheses de recherche ont ete formulees. La premiere consiste a reconstruire l'artere 

coronaire en 3D. Une reconstruction fiable est directement liee aux points de 

correspondance choisis et a la robustesse de leur appariement entre les deux vues. Et la 
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deuxieme consiste a formuler des concepts pour developper un algorithme monoplanaire 

pour la reconstruction 3D des arteres. 

Lors d'une premiere etape, l'image angiographique representant la diastole est 

extraite en calculant 1'ecart-type de la difference entre deux images consecutives. 

Deuxiemement, l'image diastolique est filtree par quatre filtres differents: 

homomorphique, anisotropique, choc et morphologique. Ces filtres sont utilises pour la 

restauration et le rehaussement des images angiographiques. En effet, les images 

angiographiques sont fortement bruitees et un flou local est souvent present a cause des 

artefacts de mouvement et des variations d'intensite dues a l'avancement de 1'agent de 

contraste dans le sang. Etant interesses par la reconstruction de la ligne centrale des 

vaisseaux ou des catheters utilises lors des interventions, nous avons utilise une methode 

du Fast Marching Method (FMM). Cette methode offre a l'utilisateur la possibilite de 

selectionner deux points sur une artere specifique et d'extraire automatiquement la ligne 

centrale qui relie ces deux. 

Le suivi automatique de la ligne centrale a travers la sequence d'images est 

effectue en utilisant une procedure basee sur le flot optique multi-echelle et des contours 

actifs Gradient Vector Flow (GVF). Le flux optique multi-echelle permet de calculer les 

mouvements d'arteres sachant qu'elles peuvent effectuer de grands deplacements entre 

deux images consecutives. Ces estimations de deplacements en pixels, sont additionnees 

aux positions de la ligne centrale dans la premiere image pour obtenir les coordonnees 

approximatives de la ligne centrale dans la deuxieme image. Ces coordonnees sont 

utilisees pour parameter le contour actif. Une fois les lignes centrales des structures 

d'interets segmentees et suivies sur une sequence monoplan d'images angiographiques, 

une procedure d'auto-calibrage est developpee afin de reconstruire ces lignes centrales 

en 3D. Nous ajoutons une contrainte sur la courbure 2D/3D des arteres pour filtrer les 

correspondances trouvees par la methode geometrique epipolaire. Le choix de la 

procedure d'auto-calibrage monoplanaire a ete fortement motivee par le fait suivant: il 

est techniquement faisable de determiner les parametres intrinseques et extrinseques 

d'un systeme a rayons-X a partir du contenu naturel des images si un modele 3D a priori 
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des arteres a un instant donne est disponible. De plus, il a ete clairement demontre que le 

contenu temporel des sequences peut etre exploite afin de completer 1'information 

spatiale. 

Pour repondre a la premiere hypothese, en ajoutant une contrainte d'optimisation 

de la procedure de correspondance, qui specifie la relation entre la courbure 2D des 

reperes dans les images et la courbure de Frenet-Serret en 3D, les resultats de 

reconstruction ont ete ameliores. En utilisant cinq paires d'images consecutives, pour 

une configuration antero-posterieur l'erreur 3D RMS a diminue de 2.8mm a 1.1mm, et 

pour une configuration oblique anterieure droite/oblique anterieure gauche l'erreur a 

diminue de 3.1mm a 1.9mm. 

Pour repondre a la deuxieme hypothese, nous proposons la strategic suivante 

pour la reconstruction 3D monoplanaire des arteres (ou catheter). En supposant que nous 

disposions du modele 3D de la structure d'interet a un instant donne, il est possible 

d'estimer la geometrie 3D de la structure en utilisant un minimum de trois images a 

rayons-X consecutives. De plus, la methodologie devient plus precise en exploitant les 

sections de structures comportant des mouvements strictement rigides, tel les 

bifurcations ou electrodes du catheter. Une etude clinique a ete effectuee pour 

1'estimation de la profondeur d'une electrode sur trois images consecutives. Pour une 

configuration antero-posterieur l'erreur 3D moyenne et maximale de la profondeur est 

de 2.68mm et 7.05mm respectivement, et pour une configuration oblique anterieure 

droite/oblique anterieure gauche l'erreur moyenne est de 2.34mm et l'erreur maximale 

est de 5.84mm. De futures etudes doivent mettre l'emphase sur des contraintes de non-

rigidite pour tenir compte du mouvement local du coeur, des structures anatomiques et 

des instruments. 

La recherche proposee ici etablira les bases scientifiques d'outils de visualisation 

qui visent a faciliter l'intervention et d'assister les cardiologues dans ces procedures. 

Deux hypotheses ont ete verifiees. La premiere hypothese a permis de montrer qu'une 

contrainte geometrique a permis de raffiner toutes les correspondances possibles pour la 

reconstruction, et par consequent, a ameliore la precision de cette reconstruction. On 
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vise des segments d'arteres ou des catheters qui subissent seulement des mouvements 

rigides afin d'exploiter la non-contractilite de ces structures et d'assurer un appariement 

plus robuste en considerant la courbure en 2D et en 3D. La deuxieme hypothese a permi 

de demontrer qu'il y a possibilite de reconstruire des structures en 3D en utilisant 

seulement une sequence angiographique et un modele 3D a priori a un instant donne. 
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ABSTRACT 

Cardiovascular disease is still the leading cause of death in North America today. One of 

its forms, atherosclerosis, is manifested from the build-up of plaque inside the coronary 

artery walls which may lead to stenosis, a partial or complete blockage inside the artery. 

In the most urgent cases, an angioplasty procedure is performed in order to crush the 

plaque, using a balloon catheter, or reestablish normal blood flow by fixating a stent 

inside the artery. 

Angioplasty procedures are performed in sterile rooms called fluoroscopy labs. 

X-ray fluoroscopic imaging remains the method of choice of cardiologists for proper 

coronary heart disease diagnosis and for interventional procedures. Acquiring a pair of 

monoplane X-ray fluoroscopic images, over a cardiac phase, facilitates three 

dimensional reconstruction of the coronary arteries and enables the cardiologist to look 

at the volume and make a proper diagnostic. However, in most cases, the C-arm 

fluoroscope is fixed at a specific inclination angle during the procedure for intervention 

guidance purposes. 

The main objective of this work is to implement novel techniques necessary to 

extract and use the information contained in single plane angiographic sequences in 

order to develop a potential tool to assist the cardiologist concurrently during the 

procedure. Two specific hypotheses will need to be verified to justify our main research 

objectives. The first hypothesis states that the integration of a geometrical curvature 

constraint improves the precision of the point correspondence and improves 

reconstruction accuracy whereas the second hypothesis states that it is possible to 

recuperate the 3D geometry across a single plain angiographic sequence, for clinical 

assistance, by using an a priori 3D model of the structure of interest. 

We implemented a novel automatic 2D segmentation algorithm to enhance healthy or 

diseased (stenosis) coronary arteries in a first image representing the diastolic cardiac phase. A 

4-step filter, that included a homomorphic, anisotropic, shock filter and morphological 

component systematically suppressed the background and enhanced only the arteries. Then, we 
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provide the cardiologist with the ability to target a specific coronary artery and investigate its 

motion by extracting its 2D centerline and automatically temporal tracking it across all the 

angiographic images in a cardiac cycle. A two click Fast Marching Method for the centerline 

extraction phase, whereas a gradient vector flow (GVF) active contour model coupled with a 

pyramidal Optical Flow approach is used for the temporal tracking procedure. These tools lead 

towards the reconstruction process of a targeted coronary artery. Valid 3D reconstruction 

relies on the successful correspondence of appropriate landmarks obtained from the 

arteries through a set of angiographic images. By introducing a novel curvature 

constraint that relates 2D-3D coronary curvature, we aim at reconstructing structures 

that undergo mainly rigid motion, since if this is the case, the structure would not 

undergo contractility and hence would have similar curvature between its 3D geometry 

and its projected shape in the 2D images. The proposed algorithms were validated by 

using 5 consecutive biplane image pairs, we obtain the following research results: for a 

posterior/anterior view, the 3D RMS improves from 2.8mm to 1.1mm, whereas for a 

left-right anterior oblique setup the 3D RMS improves from 3.1mm to 1.9mm using our 

geometric curvature constraint. 

Recalling that the cardiologist usually makes use of a single plane angiographic 

view by looking at the X-ray fluoroscopy monitor during interventions, it would be 

advantageous to reconstruct the arteries in 3D using one view. Thus, we suppose that an 

a priori 3D model of the arteries is obtained and available at a first time instant. The 

model can be obtained from a biplane reconstruction before the intervention, or from 

preoperative data, such as an MRI or MDCT dataset, which are the registered thereafter 

in the coordinate frame of the fluoroscope during a procedure. The monoplane equations 

developed optimize for the unknown 3D displacements in subsequent time instants of 

the angiographic dataset. A clinical experiment was performed using arrhythmia data. 

The aim is to estimate the depth of the tip electrode of the ablation catheter in 20 distinct 

datasets. For a posterior/anterior view, the 3D mean and maximum depth errors were 

2.68mm and 7.05mm, whereas for a left-right anterior oblique setup the 3D mean and 

maximal errors were 2.34mm and 5.84mm respectively. 
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In conclusion, our research work helped verify the two hypotheses outlined 

above. In order to develop a potential tool to assist the cardiologist during angioplasty 

procedures primarily (i.e. catheter ablation procedures may be targeted as well), we 

developed solutions that consider and extract the spatio-temporal information from X-

ray images acquired by the fluoroscope. We implemented a two-click process that 

extracts the coronary artery centerline in the diastolic image and that is tracked 

temporally using all images representing an entire cardiac cycle. The 3D reconstruction 

obtained using a biplane setup was optimized by considering a novel geometric 

curvature constraint when choosing point correspondences. Single plane reconstruction 

is made possible if an a priori 3D model of the targeted structure is available at a 1st 

time instant in the angiographic images. Subsequent estimates of the 3D structure are 

obtained by considering the spatial coordinates and displacements of the arteries as well. 

Future work should focus on including non-rigid constraint equations to consider the 

inherent movement of the heart. Other geometrical constraints such as length 

preservation terms and 3D perpendicularity constraints between normals and tangents 

could be exploited to improve results using a single view. 
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CONDENSE 

Introduction 

Les maladies cardiovasculaires sont la premiere cause de deces en Amerique du nord. 

Environ deux fois plus de personnes decedent d'une telle maladie que de toutes les autres 

formes de cancer. Ces maladies impliquent generalement des depots lipidiques et de 

calcium sur les parois internes des arteres coronariennes entrainant ainsi une des plus 

communes maladies connue sous le nom d'atherosclerose. Une plaque d'atherome se 

fixe progressivement sur les parois internes des arteres et peut entrainer un blocage 

partiel ou total du flux sanguin a travers l'artere. 

Durant les 30 dernieres annees, l'angiographie par rayons-X a ete la technique de 

premiere ligne pour le diagnostic et le traitement des anomalies morphologiques du 

reseau coronarien. Les images 2D obtenues sont analysees manuellement ou 

automatiquement afin de mesurer la severite de cette maladie, qui est aussi appelee 

stenose, a partir du retrecissement des vaisseaux entrame par la formation de la plaque. 

Cependant, les mesures obtenues sont intimement liees a Tangle d'incidence de la vue 

obtenue sachant que la plaque ne se forme pas de facon symetrique sur les parois 

internes. En effet, une sous-estimation de la severite de la maladie est souvent obtenue 

car un vaisseau peut paraitre sain selon une vue bien que souffrant d'une stenose dont la 

severite peut atteindre jusqu'a 50%. 

Durant ces dernieres annees, la disponibilite des systemes d'angiographic biplan 

a permis la reconstruction 3D de l'arbre coronarien pendant quelques cycles cardiaques. 

Ceci permet une evaluation plus objective de la severite de la stenose. Par contre, la 

procedure de calibrage requise pour la reconstruction 3D se base sur les points de 

bifurcations car ils sont plus faciles a mettre en correspondance sur les deux images. En 

revanche, le nombre de points de bifurcations peut etre limite dans les regions d'interet 

ce qui implique la necessite d'extraire d'autres points de correspondance des arteres 

coronaires. D'autre part, le calibrage du systeme biplan est essentiel pour effectuer une 

reconstruction precise. La procedure de calibrage permet d'estimer les parametres 

geometriques des sources a rayons-X tels que les angles d'inclinaison, la distance focale 
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et les points principaux. Cependant, les differentes institutions hospitalieres sont souvent 

equipees de systemes monoplans ce qui conduit a une acquisition sequentielle de deux 

sequences monoplans synchronisers sur l'electrocardiogramme pour permettre 

1'application des techniques de reconstruction 3D biplan. Ainsi, la precision des 

reconstructions 3D obtenues reste limitee a cause des inevitables artefacts de 

mouvement dus aux acquisitions non simultanees des sequences d'images. 

L'objectif general du projet de these est de developper et valider des algorithmes 

innovateurs qui permettront de developper un outil clinique pour assister les 

cardiologues pendant les procedures d'angioplastie. L'outil clinique envisage permettra 

aux cardiologues de visualiser en 2D et en 3D les arteres coronaires pendant la chirurgie. 

Sachant que la modalite principale utilisee dans les salles fluoroscopiques est l'imagerie 

a rayons-X, il est imperatif d'exploiter toute l'information disponible dans les images 

angiographiques afin de faciliter l'intervention du cardiologue et de reduire le temps de 

diagnostique et de decision pendant les chirurgies. 

Les deux contributions principales de ce projet de these sont liees directement a 

l'obtention d'une reconstruction 3D de l'artere coronaire. Premierement, un calibrage 

fiable et precis du systeme d'acquisition d'images est directement associe aux points de 

correspondance choisis et a la robustesse de leur appariement entre les deux vues. On 

propose done un algorithme optimal et innovateur pour raffiner et choisir seulement les 

points de correspondances fiables entre deux images angiographiques. Ainsi, un 

calibrage precis du systeme permettra une reconstruction 3D plus precise des structures 

d'interet a partir d'une paire de vues non simultanees. Deuxiemement, la contribution 

majeure de ce projet et de fournir une reconstruction 3D des arteres coronaires aux 

cardiologues en utilisant seulement une vue angiographique monoplanaire acquise 

durant l'intervention et un modele 3D des structures obtenu avant l'intervention soit par 

reconstruction 3D a partir d'une paire de vues non simultanees soit a partir d'une autre 

modalite d'imagerie. A notre connaissance, aucune technique de ce genre n'a ete 

presentement propose dans la communaute scientifique. 
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Pour realiser ces deux contributions principales 4 objectifs specifiques a 

considerer sont: 

1. Developpement d'un filtre permettant de rehausser les contours des arteres 
angiographiques tout en supprimant l'arriere plan de l'image. 

2. Conception d'un algorithme semi-automatique permettant a l'utilisateur de 
selectionner deux points de reperes sur une artere specifique et d'extraire sa ligne 
centrale automatiquement. Ceci permettra le developpement d'un algorithme 
automatique de contour actif permettant de suivre temporellement une artere 
coronaire a travers un cycle cardiaque. 

3. Integration d'une contrainte 2D/3D permettant le raffinement du processus de 
selection de points correspondants sur deux vues non simultanees, pour la 
reconstruction 3D optimale des arteres. 

4. Effectuer une reconstruction monoplanaire de structures rigides presentes dans 
des images angiographiques. Les structures rigides sont ciblees car on vise des 
structures qui ne se contractent pas, et done, qui auront une courbure semblable 
dans les images et leurs projections en 3D. 

Etat de 1'art 

Techniques de rehaussement d'images 

Appliques a 1'analyse d'images, les filtres de Lorenz et al. [6] et Frangi et al. [7] utilisent 

la matrice Hessienne permettant de decrire les variations locales d'intensites autour d'un 

point specifique. La matrice Hessienne est un tenseur compose des sorties d'operateurs 

derivatifs du deuxieme ordre. Une des difficultes de l'utilisation des derivees secondes 

est leur forte sensibilite au bruit present dans les images angiographiques. C'est pourquoi 

une convolution Gaussienne est combinee avec la deuxieme derivee de la matrice 

Hessienne pour effectuer un lissage de l'image et ainsi diminuer le niveau du bruit. 

L'orientation locale est donnee par le minimum de la derivee seconde. Ce probleme se 

ramene a la diagonalisation de la matrice Hessienne. Chaque valeur propre indique alors 

la variation locale d'intensite selon le vecteur propre correspondant. Une des limites de 

cette approche est que l'utilisateur doit selectionner judicieusement l'echelle a, 

appropriee pour le calcul des derivees secondes. Plus l'echelle est grande, plus le 
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rehaussement des arteres est prononce au detriment du rehaussement des petits 

vaisseaux. Lorenz utilise seulement la plus grande valeur propre pour le rehaussement 

d'images tandis que Frangi va considerer les deux premieres valeurs propres. 

Contours actifs 

La representation implicite des contours actifs (les «level sets »), presente moins de 

contraintes quant a la geometrie des objets qui peuvent etre irreguliers et dont la 

topologie peut changer en cours de convergence. Caselles et al. [24] ont introduit un 

modele geometrique des contours actifs formule par des equations aux derivees 

partielles (EDPs) devolution de courbes. Chaque point de la courbe se deplace dans la 

direction de son vecteur normal a une vitesse proportionnelle a la courbure. Cette 

approche est une alternative a la minimisation d'energie qui peut etre vue comme la 

recherche de la solution d'une equation de Hamilton-Jacobi, et etre ainsi resolue de 

facon efficace par l'utilisation de la methode des courbes de niveaux d'Osher [26] et de 

Sethian [27]. L'utilisation de cette representation implicite explique tout le succes de 

cette approche. 

Les contours actifs explicites utilisent classiquement l'information de courbure 

pour completer la mesure ambigue du gradient d'intensite en chaque point de l'image, 

en penalisant le developpement de courbures elevees dans le contour actif. Une telle 

courbure peut par exemple se developper autour du bruit local, creant des gradients forts 

mais ne correspondant pas aux frontieres d'un objet d'interet. Malheureusement, cette 

approche est legerement limitee. Le contour actif doit en effet etre parametrise par un 

ensemble de particules devant etre supprimees, rajoutees, et redistributes pour maintenir 

la stabilite numerique pendant revolution du contour. Cette strategic de calcul est 

rarement intuitive et evidente a developper. 
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Suivi temporel de structures vasculaires a travers une sequence d 'images 

Le suivi automatique de structures vasculaires a travers une sequence angiographique 

presente aussi plusieurs d6fis dus aux variations d'intensites a travers la sequence. En 

effet, l'utilisation d'un agent de contraste pour visualiser les arteres implique des 

variations d'intensites dues a l'avancement de l'agent de contraste dans le sang des 

arteres. D'autre part, les mouvements complexes des structures d'interets peuvent 

facilement induire en erreur les algorithmes de suivi bases sur le contenu fluoroscopique 

des images. 

Plusieurs travaux ont ete aussi proposes pour le suivi temporel des arteres 

coronaires. Les approches basees sur la mise en correspondance telles que le filtre de 

Kalman, propose par Curwen et al. [41], sont probablement les plus applicables dans le 

contexte de mise en correspondance temporelle d'un ensemble de primitives qui doivent 

etre suivies a travers la sequence. Par contre, la supposition que le niveau de bruit des 

images soit connu a priori rend la technique difficile a implemented Dans la classe 

d'approches de suivi de contours, Meunier et al. [39] utilisent le flux optique; une 

methode qui utilise une m6trique basee sur l'intensite de l'image pour suivre une region 

d'interet. Une contrainte de lissage sur les champs de vitesse pour les pixels appartenant 

a la region d'interet est utilisee pour ameliorer le suivi. Par contre, le flux optique 

classique se deteriore quand les mouvements d'objets ont un tres grand deplacement 

entre les images (>10pixels). Des methodes par fenetres de correlations ont ete 

proposees par Bellemare et al. [49] pour suivre les deplacements des bifurcations 

d'arteres. Cependant, l'intensite ne doit pas varier enormement entre deux images 

consecutives afin que la fenetre de correlation puisse retrouver la position des 

bifurcations dans une image subsequente. 

Calibrage et reconstruction 3D biplan 

La methodologie a suivre pour obtenir une reconstruction tridimensionnelle peut etre 

decomposed en quatre etapes: (i) une calibration permettant de recuperer la 

transformation pour passer du systeme de coordonnees d'une camera a une autre, (ii) la 

mise en correspondance dans chaque image entre les pixels et les points reels (iii) une 
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projection inverse pour retrouver le point 3D a partir des deux points 2D et (iv) une 

interpolation afin de reconstruire les points 3D manquants si la mise en correspondance 

est eparse. Cependant, la plupart des algorithmes de reconstruction biplanaires s'appuient 

sur le concept de geometrie epipolaire pour la mise en correspondance des reperes dans 

les images 2D. Pour chaque point de 1'image de reference le point correspondant dans 

F autre image se trouve sur la droite epipolaire. Lorsque cette droite ne rencontre aucun 

point, le point le plus proche de la droite epipolaire est choisi comme point de 

correspondance. 

Les travaux de Cheriet et al. [101] ont demontre que la reconstruction 3D 

biplanaire peut egalement etre realisee en utilisant une methode de correspondance 

temporelle s'appuyant sur cinq paires d'images angiographiques consecutives. Les points 

reconstruits sont les bifurcations des arteres visibles dans les images et le nombre de 

points necessaires minimal est de six sur chaque pake. Ainsi une mise en 

correspondance temporelle des six points de bifurcation a travers la sequence permet 

d'assurer une stabilite de Falgorithme meme si le nombre de correspondances 

stereoscopiques est insuffisant. Neanmoins, la possibility de detecter d'autres reperes 

sur les contours ou Faxe centrale des arteres est necessaire car selon Fangle d'incidence 

du systeme a rayons-X, nous ne pouvons garantir la presence de plusieurs bifurcations 

dans les images. 

Reconstruction 3D monoplanaire 

Dans le domaine de la vision, la plupart des algorithmes proposes pour la reconstruction 

d'une scene ou d'un objet prennent en consideration que le mouvement reel est 

strictement rigide. Neanmoins, les concepts de reconstruction pour une sequence 

monoplanaire restent sensiblement les memes que pour Fanalyse de deux vues. Nous 

supposons aussi que les parametres de la camera ne changent pas et que les points 

correspondants entre deux images consecutives peuvent etre tries par une methode 

appelee RANSAC (random sampling consensus algorithm). En appliquant les concepts 

de la matrice fondamentale caracterisant F information contenue dans la scene, nous 
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pouvons deduire que deux images monoplanaires consecutives peuvent etre representees 

par deux cameras distinctes. Nous faisons pour cela les hypotheses que l'objet de la 

scene est reste fixe et que nous avons bouge la camera a deux occasions. 

Dans un contexte clinique, Sherknies et al. [117] ont propose un algorithme de 

reconstruction monoplanaire d'un transducteur au bout d'un catheter IVUS 

(intravascular ultrasound) tenant compte de la vitesse de retrogradation du catheter. Ceci 

permet de connaitre correctement le deplacement 3D du transducteur entre deux images 

consecutives de la sequence d'angiographie. La reconstruction 3D du transducteur peut 

alors etre estimee assez precisement. Finalement, Fallavollita et al. [119] ont developpe 

une methode d'estimation de la profondeur d'une electrode sur une seule image. Us 

calculent la largeur en pixels de l'electrode et utilisent les valeurs de la distance focale et 

de Tangle du systeme a rayons-X pour estimer la profondeur. 

Les rares methodes proposees pour la reconstruction monoplanaire ou un 

mouvement non-rigide a ete considere utilisent des hypotheses sur la geometrie de 

l'objet ou son positionnement a certains instants pour reconstruire correctement l'objet 

en 3D. 

Methodologie 

Lors d'une premiere etape, 1'image angiographique representant la diastole est extraite 

en calculant l'ecart-type de la difference entre deux images consecutives. L'ecart-type 

minimal correspond au minimum de mouvement possible entre deux images et done, 

peut etre caracterise par la phase diastolique du cycle cardiaque. 

Deuxiemement, 1'image diastolique est filtree par quatre filtres differents: 

homomorphique, anisotropique, choc et morphologique. Ces filtres sont utilises pour la 

restauration et le rehaussement des images angiographiques. En effet, les images 

angiographiques sont fortement bruitees et un flou local est souvent present a cause des 

artefacts de mouvement et des variations d'intensite dues a l'avancement de l'agent de 

contraste dans le sang. Ces quatre filtres ont le meme effet que le filtre propose par 

Frangi. Cependant, pour notre application ces filtres doivent etre implementes sans avoir 
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a changer leurs parametres continuellement (filtre automatique). Etant interesses par la 

reconstruction de la ligne centrale des vaisseaux ou des catheters utilises lors des 

interventions, nous utilisons une methode du « Fast Marching Method » . Cette methode 

offre a l'utilisateur le choix de la selection de deux points sur une artere specifique et 

d'extraire automatiquement la ligne centrale entre les deux. 

Le suivi automatique de la ligne centrale a travers la sequence d'images est 

effectue en utilisant une procedure basee sur le flot optique multi-echelle et des contours 

actifs « Gradient Vector Flow ». Le flux optique multi-echelle permet de calculer les 

mouvements d'arteres sachant qu'ils peuvent effectuer de grands deplacements entre 

deux images consecutives. Ces estimations de deplacements en pixels, sont additionnees 

aux positions de la ligne centrale dans la premiere image pour obtenir les coordonnees 

approximatives de la ligne centrale dans la deuxieme image. Ces coordonnees sont 

utilisees pour parametrer le contour actif. Ces etapes sont repetees sur toutes les images 

angiographiques representant le cycle cardiaque. 

Enfin, l'etape de segmentation doit etre faite en temps reel afin d'assurer un 

guidage interactif durant 1'intervention. Une fois les lignes centrales des structures 

d'interet segmentees et suivies sur une sequence monoplan d'images angiographiques, 

une procedure d'auto-calibrage est developpee afin de reconstruire ces lignes centrales 

en 3D. Premierement, la reconstruction est realisee en utilisant la methode biplanaire 

proposee par Cheriet et al. Nous ajoutons une contrainte sur la courbure 2D/3D des 

arteres pour filtrer les correspondances trouvees par la methode geometrique epipolaire. 

Le choix de la procedure d'auto-calibrage monoplanaire est ensuite fortement motive par 

le fait suivant: il est techniquement faisable de determiner les parametres intrinseques et 

extrinseques d'un systeme a rayons-X a partir du contenu naturel des images si un 

modele 3D a priori des arteres a un instant donne est disponible. De plus, il a ete 

clairement demontre que le contenu temporel des sequences peut etre exploite afin de 

completer l'information spatiale. L'auto-calibrage du systeme d'angiographie est done 

base sur un appariement temporel de primitives geometriques extraites de fa?on 
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automatique a partir des sequences monoplan d'images. Les parametres intrinseques et 

extrinseques du systeme sont fixes pour cette premiere analyse. 

Resultats et Discussion 

Les resultats du filtrage des images angiographiques dependent fortement des valeurs 

des divers parametres associes aux quatre filtres choisis. Nous avons determine tous les 

parametres empiriquement sur la base de nombreuses experiences. Le rehaussement 

automatique de l'artere principale, dans les sept images angiographiques utilisees, a ete 

tres satisfaisant. De plus, la methode du FMM a permis d'extraire correctement la ligne 

centrale entre deux points selectionnes par l'utilisateur. En calculant la distance entre les 

coordonnees obtenues par le FMM et la ligne tracee manuellement par un observateur 

nous avons observe que notre filtre fonctionne aussi bien que celui de Frangin en etant 

automatique. 

La methode de suivi temporel a ete evaluee sur 38 images angiographiques, 

provenant de trois differents ensembles de donnees d'images. Premierement, nous avons 

remarque une nette amelioration de l'estimation des displacements par la methode du flot 

optique multi-echelle comparativement a la methode traditionnelle. Ceci est tres 

avantageux car les coordonnees du contour actif estimees dans les images successives 

sont proches de la ligne centrale reelle de l'artere coronaire. L'optimisation permet au 

contour de converger avec succes dans 92% des images. Dans les trois cas negatifs, le 

contour a converge vers d'autres structures adjacentes a 1'artere choisie. 

La reconstruction 3D des arteres en utilisant la methode biplanaire donne des 

resultats de precision de 1mm a 2mm. Cette precision est directement liee a l'exactitude 

des correspondances entre les deux vues. En ajoutant une contrainte de triage pour la 

correspondance, qui specifie la relation entre la courbure 2D des reperes dans les images 

et la courbure de Frenet-Serret en 3D, les resultats de reconstruction ont ete ameliores. 

En utilisant cinq paires d'images consecutives, pour une configuration antero-

posterieure l'erreur 3D RMS a diminue de 2.8mm a 1.1mm, et pour une configuration 
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oblique anterieure droite/oblique anterieure gauche l'erreur a diminue de 3.1mm a 

1.9mm. 

Finalement, nous proposons la strategie suivante pour la reconstruction 3D 

monoplanaire des arteres (ou catheter). En supposant que nous disposions du modele 3D 

de la structure d'interet a un instant donne, il est possible d'estimer la geometrie 3D de 

la structure en utilisant un minimum de trois images rayons-X consecutives. De plus, la 

methodologie devient plus precise en exploitant les sections de structure comportant des 

mouvements strictement rigides, tel les bifurcations ou electrodes du catheter. Une etude 

clinique a ete effectuee pour l'estimation de la profondeur d'une electrode sur trois 

images consecutives. Pour une configuration antero-posterieure l'erreur 3D moyenne et 

l'erreur maximale sur la profondeur est de 2.68mm et 7.05mm respectivement, et pour 

une configuration oblique anterieure droite/oblique anterieure gauche l'erreur moyenne 

est de 2.34mm et l'erreur maximale est de 5.84mm. De futures etudes doivent mettre 

l'emphase sur des contraintes de non-rigidite pour tenir compte de la contractilite 

epicardique en plus du mouvement global du coeur, des structures anatomiques et des 

instruments. 

Conclusion 

La recherche proposee ici etablira les bases scientifiques d'outils de visualisation 2D et 

3D qui visent a faciliter 1'intervention et d'assister les cardiologues dans ces procedures. 

Les deux contributions principales de ce travail de recherche ont ete verifiees par des 

experimentations synthetiques et ont ete validees sur des donnees reelles. Nous pouvons 

done conclure que nous avons repondu aux objectifs de recherche etablis au debut de ce 

travail. 

La premiere contribution a permis de montrer qu'une contrainte geometrique a 

permis de raffiner la mise en correspondance de points sur une paire de vues non 

simulatanees pour ameliorer la precision de la reconstruction 3D des arteres. Dans le 

cadre des experimentations synthetiques, on a ajoute du bruit simule d'un ordre de 5 

pixels d'ecart-type sur les coordonnees 2D des structures projetees et les resultats 
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prouvent que la contrainte geometrique de courbure ameliore la precision de la 

reconstruction des arteres. En raffinant les correspondances obtenues par la methode de 

RANSAC, nous reduisons les erreurs 3D RMS de 1.61mm a 1.44mm en utilisant la paire 

de vue postero-anterieure et laterale et de 2.35mm a 1.86mm en utilisant la paire de vue 

oblique anterieure droite et gauche. 

La deuxieme contribution a permi de demontrer qu'il y a possibilite de 

reconstruire des structures en utilisant seulement une sequence angiographique et un 

modele 3D a priori a un instant donne des structures d'interet. Cette innovation a 

demontre que nos equations developpees pour recuperer la structure 3D a travers des 

sequences d'images monoplanaires vise des segments d'arteres ou des catheters qui 

subissent seulement des mouvements rigides afin d'exploiter la non-contractilite de ces 

structures. En utilisant un minimum de trois images consecutives jusqu'a un total de six 

images, notre technique obtient des erreurs 3D RMS qui varient de 1mm a 2.5mm pour 

des mouvements rigides et de 2.5mm a 5.5mm pour des mouvements non-rigide sur des 

experimentations synthetiques. Par contre, la precision obtenue par nos equations 

monoplanaires se degradent a 8mm si les approximations initiales des deplacements en 

3D a travers la sequence sont irrealistes au debut du processus d'optimisation. En 

revanche, la force de notre algorithme monoplanaire repose sur le fait qu'un modele a 

priori 3D des arteres peut facilement etre calcule a partir de deux rotations du 

fluoroscope avant que la chirurgie commence. II suffit ensuite d'exploiter seulement les 

postions spatiales des arteres contenues directement dans les images monoplanaires pour 

estimer les coordonnees 3D de celle-ci a travers la sequence. 

Dans une phase ulterieure le modele geometrique en 3D obtenu pourrait etre 

transforme en modele biomecanique en integrant les proprietes mecaniques des tissus et 

des instruments utilises lors des interventions chirurgicales. La planification rationnelle 

de 1'intervention chirurgicale par 1'utilisation de techniques de modelisation permettra 

de decider, a l'avance, de determiner les parametres optimaux de cette intervention 

(proprietes mecaniques d'un «stent» a utiliser dans le cadre d'une intervention 

d'angioplastie, procedure optimale de reconstruction ou de remplacement d'une aorte 
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affectee, etc.). Ceci aura pour effet de diminuer le temps operatoire, de convalescence 

ou de readaptation par une intervention plus ciblee et un personnel operatoire mieux 

prepare, de diminuer les risques de complications chirurgicales (pertes sanguines, 

infections,...) associees a la prolongation du temps operatoire. De meme dans le cas 

d'une intervention d'ablation d'un site d'arythmie cardiaque la diminution du temps 

operatoire entraine aussi une diminution du temps d'exposition aux radiations etant 

donne que le guidage de 1'intervention est effectue par 1'acquisition d'images a rayons-X 

tout au long de 1'intervention. 

En termes de travaux futurs, certaines recommandations importantes sur ce 

travail peuvent etre formulees. D'abord, l'extraction complete des contours d'arteres 

coronaires doit etre consideree afin de bien representer la geometrie de l'artere. Les 

techniques des «level sets » peuvent etre utilisees comme algorithme de depart pour cet 

objectif. II serait aussi interessant d'introduire de l'information complementaire des 

contours d'instruments ou d'arteres en utilisant des modalites CT ou IRM. En effet, la 

technique de recalage elastique spatiotemporelle des images IRM du patient, qui peuvent 

etre acquises avant 1'intervention, permettra d'obtenir un modele 4D du coeur avec une 

resolution temporelle equivalente a la resolution des images fluoroscopiques. De futures 

etudes doivent mettre l'emphase sur des contraintes de non-rigidite pour tenir compte du 

mouvement general du coeur, des structures anatomiques, et des instruments afin que la 

reconstruction 3D monoplanaire puisse devenir une realite dans les applications 

cliniques. 
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Chapter 1- Introduction 

Cardiovascular disease (CVD) is the single leading cause of death in America today. It 

accounted for 452,327 of all deaths in the United States in 2004 and 72,338 in Canada 

that same year [1]. Cardiovascular disease is defined as an injury or lesion within the 

heart that affects blood vessels, veins and coronary arteries. It is manifested in different 

forms such as heart attack, angina, or atherosclerosis. Since the risk factors seem to be 

very much related, it is rather difficult to determine where the damage really begins. One 

area to focus on is atherosclerosis, which results from the buildup of plaque in the 

arteries when fatty substances (lipids) gradually accumulate within the inner walls of the 

arteries. Eventually, the accumulation grows large enough to harden the plaque and 

almost completely block the blood flow within the artery. The partial or complete 

blockage within the artery is also known as stenosis that creates drastic complications to 

a patient's health and leads to one of the possible forms of CVD mentioned above. 

Possible remedies for individuals diagnosed with heavy arterial blocking include 

medication (anticoagulants); and quite frequently balloon or stent procedures are applied 

in order to re-establish normal blood flow in the blocked artery. Balloons comprise the 

majority of interventional procedures. These devices are inflated to compress the plaque 

against the artery wall, in a procedure known as angioplasty. In many other 

interventions, a stent is also used, usually following a balloon angioplasty. Although the 

stent is utilized as the primary device, the process still involves a balloon, for the stent 

itself is mounted on an angioplasty balloon so that it can be delivered and deployed at 

the focus area. The balloon is inflated, and so is the stent. When the balloon is deflated 

and withdrawn, the stent remains in place, serving as permanent scaffolding for the 

newly widened artery. Within a few weeks, the natural lining of the artery, called the 

endothelium, grows over the metallic surface of the stent [2]. 

Angioplasty procedures are generally performed in sterile rooms called 

fluoroscopic laboratories with the use of an X-ray fluoroscope. The patient is lightly 
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sedated for comfort, but remains awake in order to respond to various instructions from 

the interventionist. The first task involves the acquisition of a diagnostic image known 

as a coronary angiogram. The procedure involves a catheter that is inserted through the 

femoral vein and is brought to the main artery of the heart, the aorta, up and around the 

opening of either the left or right coronary artery. A contrast agent is released in order to 

enhance the visualization of the various coronary arteries on the angiographic images. 

When viewed under the X-ray fluoroscope, in a majority of cases the angiogram will 

reveal the possible location of the obstruction located in the coronary artery. However, 

there is a possibility that an under-estimation of the severity of stenosis is obtained since 

a coronary vessel wall may appear healthy in a particular viewing angle even though it 

may contain a substantial amount of plaque. 

This is the primary reason why a complete three dimensional representation of 

the coronary artery tree is essential to assist the cardiologist in making a proper 

diagnostic during interventional procedures. It is to note that other imaging modality 

technologies exist, such as computerized tomography (CT) and magnetic resonance 

imaging (MRI); however, these are used primarily for pre-operative or post-operative 

assessment purposes and are never used during interventional assistance procedures. It is 

the fluoroscopic X-ray imaging modality that is commonly used in routine clinical 

procedures in order to guide interventions such as angioplasty or catheter ablation to 

name a few. 

Three dimensional reconstructions of the coronary arteries can be achieved by 

acquiring two images using either a biplane or a single C-arm X-ray fluoroscope. 

Biplane systems are seldom deployed in hospitals due to their relatively high cost. Also, 

if they are available in clinical institutions they are generally used for diagnostic 

purposes but never used in assisting the cardiologist during angiographic interventions. 

Regarding the single C-arm fluoroscopes, these are the more typical systems found in 

hospital intervention rooms and are primarily used to aid the cardiologist in making 

proper decision but are not used during interventions for the 3D reconstruction as they 

must be rotated twice in order to acquire the two images. The acquisition of these two 
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non-simultaneous images causes certain problems when considering performing 3D 

reconstruction. They more notably include misalignment artifacts which will produce 

imprecise 3D results. But more importantly, establishing point correspondence between 

non-simultaneous views is a difficult task. Knowing that point matches between the 

coronary arteries in the two views is a requirement in performing 3D reconstruction, the 

following questions are raised: 

a) Is there a way to restrict additional error to the resulting reconstruction by 

making the point correspondence between the images more precise and 

optimal? 

Furthermore, recalling that rotating the C-arm fluoroscope twice or using a biplane 

fluoroscope is clinically infeasible to assist the cardiologist during the interventions, a 

second problem is raised: 

b) Can 3D reconstruction be performed using only a single X-ray angiographic 

acquisition from the C-arm fluoroscope in order to assist cardiologists? 

The questions raised above describe two important facets when considering treating 

coronary heart disease. The first facet revolves around the successful diagnosis of 

stenosis by the cardiologist whereas the second facet focuses on providing a visual aid to 

the cardiologist in guiding angioplasty procedures. The major contributions of the 

following research work will intend to answer the previous two questions by focusing on 

novel methods that will: (i) allow accurate point correspondences between angiographic 

images in order to arrive at an accurate 3D reconstruction of the coronary arteries, and 

(ii) provide a 3D reconstruction of the coronary arteries using only a single angiographic 

view. If this is a possibility then a few advantages would arise in that the overall 

intervention time would be diminished, since only one image sequence would be 

acquired concurrently to assist the cardiologist during the intervention. Second, the 

amount of X-ray dosage from the source towards the patient would be diminished by at 

least half the amount when compared to the biplane and C-arm two-rotation procedures. 
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To arrive at a suitable 3D reconstruction using only a single view the 

implementation of the following steps are required: (a) calibration of the X-ray system in 

order to determine accurately its geometric gantry parameters, (b) angiographic X-ray 

image enhancement in order to improve image quality and reduce possible artifacts 

present in the images, (c) image segmentation to extract coronary artery centerlines for 

coronary point correspondence, and (d) track the coronary artery centerlines temporally 

across the single plain acquisition. These four steps become a requirement to improve 

the correspondence of coronary points for the eventual reconstruction phase using a two 

view setup and a novel monoplane setup. 

1.1 Cardiac Physiology 

The heart is made up of four chambers: two upper atria and two lower ventricles, 

separated by a wall and valves. When a chamber is relaxed, or expanded, it is in 

diastole, whereas a chamber that is in contraction is said to be in systole. The heart's 

electrical rhythms begin as impulses emitted from the sinus node (SA node), the heart's 

"natural pacemaker." The SA node is a small cluster of specialized cells located in the 

right atrium, the upper right chamber of the heart. From the sinus node, the electrical 

impulses travel across a specific route, or pathway, through the atrioventricular node 

(AV node) and into the lower chambers of the heart (ventricles). Once they reach the 

ventricles, the impulses serve as a set of instructions, causing the chambers to contract in 

a routine and consistent manner. The AV node then sends the signals out to the walls of 

the ventricles (Figure 1.1- left). 
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Figure 1.1-right illustrates a normal electrocardiogram (ECG) composed of a P wave, a 

"QRS complex", and a T wave. At the onset of the heart cycle, impulses from the SA 

node induce the right atrium to depolarize. This depolarization spreads across the atrial 

muscle causing atrial contraction, increasing atrial pressure and forcing blood into the 

ventricles. The ventricular contraction phase of the heart cycle is brought about by 

depolarization of the ventricles via the atrioventricular (AV) node, Bundle of His and the 

Purkinje fibers. The AV node provides a delay time allowing the atria to pump blood 

into the ventricles before ventricular contraction. The Bundle of His and Purkinje fibers 

allow the ventricles to be depolarized rather instantly. Both the P wave and the 

components of the QRS complex are depolarization waves. The T wave is caused by 

currents generated as the ventricles recover from the state of depolarization. This process 

occurs in the ventricular muscle about 0.25 sec after depolarization and this wave is 

known as a repolarisation wave. Thus, the electrocardiogram is essentially a 

representation of depolarization and repolarization waves. 

The heartbeats that can be felt at one's pulse rate are formed by the heart's 

regular rhythmic contractions. When individuals maintain a healthy habit by exercising, 

eating properly and avoiding tobacco use, they automatically decrease the chances of 
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developing heart disease. An unhealthy lifestyle or eating habit may lead to a blockage 

in one or more of the coronary arteries that would require stent or balloon therapy 

(Figure 1.2). 

Fig 1.2. {Left) The coronary arteries 
are responsible for directly supplying 
the heart muscle with fresh blood and 
nutrients it needs to perform correctly. 
(Center) Coronary artery disease 
(CAD) begins when hard cholesterol 
substances (plaques) are deposited 
within a coronary artery. (Right) 
Catheter balloons are inflated in order 
to crush the plaque or stents are 
positioned to re-establish blood flow 
[3]. 

1.2 Diagnostic Imaging 

In the last 30 years, X-ray angiography has become the method of choice in the 

diagnosis of coronary heart disease [4]. The 2D angiographic images obtained are either 

analyzed manually or automatically by algorithms in order to assess the severity of the 

stenosis, by quantifying the amount that the vessel wall has diminished in width due to 

the build-up of plaque inside of it (Figure 1.3-left). This implies obtaining an X-ray 

image from a patient. The X-rays pass through the patient and strike a fluorescent plate 

(intensifier) that is scanned by a television monitor (Figure 1.3- right). The cardiologist 

can observe what is happening on the fluoroscopy monitors. One major problem lies 

with the amount of radiation exposure, both to the patient and to the cardiologist. By 

minimizing radiation exposure, we in turn diminish the risk of skin injury. In one study, 

it was estimated that each hour of radiation exposure was associated with an increase in 

lifetime risk of fatal cancer of 0.1 percent. 
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Once the heart structure is visible on the monitors a contrast agent is inserted inside the 

diseased coronary artery so as to enhance its contours. The low signal-to-noise ratios of 

the 2D angiographic images yields very noisy images that may include artifacts such as 

motion blur. 

1.3 Monoplane X-Ray Fluoroscopy 

To guide angioplasty procedures, the cardiologist always uses a monoplane X-ray 

fluoroscope that is present inside the interventional lab. Depending on the angle of 

inclination of the C-arm fluoroscope during the procedure, the cardiologist may be 

looking at an angiographic image that may not fully show a diseased coronary artery. 

The X-ray dose may pass through the artery in such a way that the severity of the 
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stenosis may be severely underestimated by the cardiologist. This would result in a false 

diagnosis. 

Another problem arises when guiding the balloon catheter or stent towards the 

position of the artery blockage. Seeing how imperative it is to position correctly the 

balloon or stent inside the artery, then how does the cardiologist determine the depth 

position of the catheter by only making use of the 2D fluoroscopic monitors? Let us take 

for example the case of another type of intervention that makes use of X-ray 

fluoroscopy: catheter ablation procedures. A patient that has an arrhythmia will have the 

electrical activity begin somewhere else inside the heart. A rather severe form of 

tachyarrhythmia occurs when the heart's electrical signals originate from one of the 

ventricles, instead of the correct location in the S-A node (Figure 1.4). This causes a 

type of arrhythmia called ventricular tachycardia (VT) with very fast heartbeats typically 

between 150 to 200 beats/min. 

Tachycardia 

mm 
Fig 1.4. Catheter ablation procedures. Patients with sever arrhythmias, such as 
ventricular tachycardia, have the electrical pathway of the heart begin 
somewhere inside the ventricles mainly due to diseased heart tissue. An 
ablation catheter is inserted towards the diseased tissue in order to burn it off 
and reestablish proper electrical conduction. 

Since its initial successful application, RF ablation has become the most common 

technique for treating cardiac arrhythmias. RF ablation is a technique whereby a 

physician inserts a catheter through a blood vessel and directs it into a specific location 



9 

within the heart. At the tip of the tube is a small electrode, which can deliver 

radiofrequency energy to burn away the abnormal tissues of the heart that are the root 

cause of arrhythmia. Once again, the depth of the catheter is of utmost importance for 

this particular intervention. However, by only making use of the 2D images obtained 

from the fluoroscope it becomes difficult to determine the exact position of the catheter. 

This places importance on providing a 3D visual aid to the cardiologist when 

performing these types of interventions. In order to reconstruct the ventricle or the 

diseased coronary artery in three dimensions, a minimum of two views is required. 

Traditionally, reconstruction is performed using angiographic images that show the 

diastolic cardiac phase since in this phase there is the least motion experienced by the 

heart and hence accurate reconstruction will not be hindered by possible artifacts such as 

motion blur. To verify which angiographic image represents the diastolic cardiac phase 

an electrocardiogram needs to be acquired concurrently and matched with the images. 

1.4 Two x Monoplane X-Ray Fluoroscopy 

Most clinical centers have acquired a monoplane C-arm fluoroscope which leads to a 

sequential acquisition of two non-simultaneous angiographic images synchronized over 

the electrocardiogram of the patient, in order to use the same two-view reconstruction 

techniques as the ones applied to the biplane case (Figure 1.5). An example of a C-arm 

fluoroscope is the Integris Allura, from Philips Medical Solutions [5]. This said the 

precision of the 3D reconstruction obtained is limited due to the different artifacts 

present during acquisition such as the motion artifacts encountered when turning the C-

arm fluoroscope to acquire the second set of images, or the movement artifacts by the 

patient's respiration. However, a significant problem results in the point correspondence 

between coronary arteries visible in the two images since these are non simultaneous to 

one another. 
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1.5 Biplane X-Ray Fluoroscopy 

Biplane angiographic systems also exist and have made it possible to reconstruct the 

coronary arteries in 3D over a few cardiac cycles (Figure 1.6). They allow the 

acquisition of two quasi-simultaneous images. However the complexity of such biplane 

systems makes its use in clinical interventions non existent and they are primarily used 

for clinical research. Lastly, the availability of biplane systems in hospitals is reduced 

due to the high costs associated with the purchasing of these medical devices. 
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Fig 1.6. Drawing of a biplane X-ray system that provides two 
perpendicular images quasi-simultaneously at a specific incidence 
orientation. 

1.6 Overall Objective 

Vascular imaging has seen many breakthroughs in the detection of coronary disease, in 

its planning and evaluation for the treatment of this type of pathology. Moreover, the 

arteries can even be used as minimally invasive conduits for the injection of a specific 

treatment in the heart. Thus, new interventional applications impose new constraints and 

methods that need to be developed in order to better treat atherosclerosis by maximizing 

fluoroscopic image analysis during the clinical procedure. The global objective of the 

proposed research is to elaborate and validate a method that aims to develop such a 

clinical tool for the 2D and 3D visualization and interactive manipulation of the 

coronary arteries, in the angiographic images, for diagnosis and interventional purposes. 

This potential clinical tool should better equip the cardiologists during their 

angiographic interventions. 

We focus on implementing novel techniques that aim at providing a 3D 

reconstruction of the coronary arteries for the cardiologist concurrently during 

interventional procedures. This will produce a visual aid that automatically provides the 

depth position of the cardiac structure of interest. Thus, we will handle the problem of 
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point correspondence between two angiographic images acquired by rotating the C-arm 

fluoroscope twice. Further, seeing how the cardiologist makes use of only a single view 

to guide interventions, we will propose a novel algorithm to reconstruct the coronary 

arteries in three dimensions using a single plane approach. 

The algorithms developed in our study will provide assistance to cardiologists by 

also allowing them to load angiographic datasets, select and visualize a healthy or 

diseased coronary artery in a fluoroscopic image, automatically track a targeted coronary 

artery during a cardiac cycle, and perform 3D reconstruction in order to allow a 

visualization during the interventional procedure. It is indispensable to ameliorate the 

automation, feasibility and reproducibility of all the algorithmic steps proposed in this 

work in order to provide them to clinical institutions for immediate use. By providing 

clinical assistance to the cardiologist the methods will subsequently diminish overall 

interventional time and reduce the risk of interventional complications. Lastly, the 

methods proposed for angioplasty assistance will immediately benefit other types of 

interventions such as catheter ablation procedures in treating arrhythmias. Similarly to 

angiography procedures, reducing the overall operating time will also reduce the 

exposure to radiation since interventional guidance of the ablation catheters is performed 

by the constant acquisition of X-ray images throughout the procedure. 
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1.7 Thesis Outline 

In Chapter 2 we will focus on a literary review regarding the following topics: i) cardiac 

image segmentation, ii) temporal tracking, iii) traditional 3D biplane reconstruction 

algorithms, and iv) 3D monoplane reconstruction algorithms. A critique will follow at 

the end of each topic description illustrating the possible disadvantages that each one 

may have. 

In Chapter 3, the specific objectives and research hypothesis will be outlined. Here, we 

will include the solutions and strategies we propose to remedy the outlined problems. 

In Chapter 4 an outline of the methodology required to meet the research objectives will 

be presented. The first half of the chapter will focus on the tools required to perform 3D 

reconstruction. Hence, theoretical aspects and equations will be developed for the 

segmentation, centerline extraction and temporal tracking algorithms we propose. The 

last part of the chapter will deal with the 3D reconstruction of the coronary arteries using 

the classical biplane algorithms and a novel monoplane algorithm will be described in 

detail. 

Chapter 5 will be dedicated to the presentation of synthetic and clinical results for the 

image segmentation, centerline extraction, biplane reconstruction and monoplane 

reconstruction topics. A discussion will follow each section in order to interpret the 

findings obtained from our experimental simulations. 

Finally, a conclusion is presented that will summarize the various results obtained in our 

doctoral research and critique their pertinence with respect to the clinical setting. We 

will discuss the future perspectives regarding our work and their economic and social 

impact on society, and we will outline possible strategies to tackle the monoplane 

reconstruction problem in order to make it viable in the near future. 
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Chapter 2- Review of Literature 

This chapter will examine the current literature, while focusing on the contributions of 

authors in the computer vision field and that of cardiology, more specifically on the 

geometrical quantification and analysis of coronary arteries. The chapter will be divided 

into five sections, each related to the overall research objectives outlined in the previous 

chapter: (i) enhancement of X-ray images, (ii) segmentation of structures in 2D images, 

(iii) temporal tracking methods, (iv) calibration and biplane reconstruction, and (iv) 

single view (monoplane) reconstruction. 

2.1 Multiscale Enhancement Filters 

X-ray fluoroscopy images are characterized by their low signal-to-noise ratio, and 

therefore image artifacts are certainly present when looking at angiographic images. 

Therefore, it has become mandatory to improve image quality before performing 

segmentation. Enhancement filters are used to upgrade image quality as a first step 

before extracting targeted structures, such as the coronary arteries, within the image. 

2.1.1 Lorenz and Frangi Enhancement Filters 

In recent years, multi-scale enhancement filtering has been the method of choice for 

researchers exploring ways to enhance coronary artery contours on fluoroscopic images. 

Most popular methods are the Hessian-based vessel enhancement filters that have been 

proposed by Lorenz et al. [6], and Frangi et al. [7]. They both start from the definition of 

the scale-space representation L: R x R+ —»R 

L(x,y;t) = g(x,y;t)*f(x,y) (2.1) 

where g(x, y; t) is a Gaussian function with variance t, f is an image, (x, y) is a pixel 

location, and * represents the convolution operation. The Hessian of an intensity image 

in scale space can be obtained at each point by computing 
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H(x,y) = 

d2L d2L 

dxdy 
a^L 

dydx dy2 

dx2 

d2L L L 
yx >•>• 

(2.2) 

The partial derivatives are computed by convolving the image / with a derivative-of-

Gaussian kernel. Frangi proposed computing the ratio of the eigenvalues | fa I < I fa I of 

the Hessian, as a ridgeness score RB = fa/fa, computing the Frobenius norm, S, of the 

Hessian to measure overall strength, and combining these into a "vesselness" measure. 

This measure, specialized to 2D images where vessels are darker than the background, is 

^ 0 = ^ 

fa >0 

exp((- B „ )(1 - exp( —)) otherwise 
2/32 2c2 

(2.3) 

with parameters /? = 0.5 and c equal to half of the maximum Frobenius norm of the 

Hessian. The difference between the Lorenz and Frangi vessel enhancement algorithms 

is that Frangi takes into account all eigenvalues for the response of the filter calculation 

(Figure 2.1) whereas Lorenz takes into account only the predominant one. This is 

important as Lorenz's method will only enhance arteries with larger vessel diameters. 

Fig 2.1. The Frangi vessel enhancement filter. The first four images show examples of images 
obtained by increasing the value of the scale. The last image is the combination of these 
multiscale measurements by using a scale selection procedure. Image taken from [7]. 
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2.1.2 Vessel Enhancement Limitations 

The method of choice in literature for image enhancement is the vessel enhancement 

filter of Frangi et al. The advantage of the filter is that tubular structures such as 

coronaries will be enhanced with respect to the background of the image. The 

mathematical formulation is also simple to implement. However, a major disadvantage 

of the filter is that the scale a, needs to be chosen adequately in order to enhance the 

artery of choice. Inadequate selection of the scale values will lead to missing contour 

information for smaller and larger arteries in the angiographic images. The selection of 

the scale factors depends on the number of larger or smaller vessels present in the 

images. A larger scale factor will influence a positive response to the larger sized 

arteries. Usually the algorithm will run for various values of the scale (i.e. scales 

between 0.5-2 pixels) and the final output will reflect the maximum response of the 

scales used at a given pixel location. Ideally, a segmentation tool should be provided to 

the interventionist in which an angiographic image is loaded and the major coronary 

arteries or arteries having a stenosis would be automatically enhanced without the 

selection of scale factors. 

2.2 Segmentation of Angiographic Images 

We survey current image segmentation methods, covering both early and recent 

literature related to vessel segmentation algorithms and techniques. We will elaborate on 

the following six subcategories: (i) skeleton-based approaches, (ii) region growing 

approaches, (iii) ridge-based approaches, (iv) mathematical morphology techniques, (v) 

geometric deformable models and (vi) active contour models. We will end by 

highlighting a few limitations for this particular procedure. 

2.2.1 Skeleton-Based Approaches 

These methods target the extraction of vessel centerlines. By connecting together every 

single extracted centerline we can arrive at a complete two dimensional vessel 
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representation. This is important as the final vessel coordinates will be used for an 

eventual three dimensional reconstruction. We first present the 2D skeleton-based 

approaches as these are the ones that interest us as we are dealing with two dimensional 

X-ray images, however, we will also briefly highlight relevant techniques applied to the 

3D case. 

An automatic 2D algorithm is proposed for centerline extraction of coronary 

arterial tree in X-ray angiographic images. First of all, a Hessian enhancement method is 

applied, followed by thinning the extracted coronary tree to obtain the skeletons. By 

applying a centerline correction algorithm, based on Gabor filters, the authors manage to 

extract both the centerline and diameter of the artery [8]. A multi-features measure that 

is based on a probability tracking model to extract the blood vessel tree is implemented 

in [9]. A centerline operator to optimize the vessel skeleton-line is applied to extract the 

vessel coordinates. Meunier and Bellmore [10] assumed that a coronary bifurcation can 

be represented by a simple Y geometric structure. Therefore a Fuzzy C-means algorithm 

is first used to segment the coronary bifurcations. Then the segmented bifurcation is 

skeletonized to produce the expected Y shape geometry. To define the Y shape 

geometrically, its center and the branch angles are computed. An algorithm for the 

automated extraction of the 2D skeletons and borders of coronary arteries in digitized 

angiograms is proposed by [11]. Initially, the approximate skeleton and borders of the 

coronary artery tree are extracted through a template analysis. The skeleton and borders 

of each artery segment are then used for constructing its enclosing area where the 

defined skeleton and border curves are considered as markers. These markers are used to 

construct a gradient image where all pixels inside the enclosed area, except skeleton 

ones, are assigned the gradient magnitude of the original image. An optimization method 

is applied for extracting the artery segment borders. Lastly, [12] describe techniques to 

determine the skeleton of coronary arteries in cineangiograms. The technique starts with 

the detection of skeleton points from a local ridge detector using density profiles of the 

arteries. Local orientations of skeleton points are obtained directly from the ridge 

detection or from local edge directions. Boundaries of the arteries are computed from the 
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density profile along a straight line perpendicular to the skeleton. From this, a sequential 

and raster-scan tracking procedure is applied to obtain segments of the arteries from two 

scanning directions. The final 2D vessel skeleton is generated by merging all the 

segments. 

Regarding the 3D skeleton-based methods, Tozaki et al. extract bronchus and 

blood vessels from thin slice CT images of the lung for 3D visualization and analysis. 

First, a threshold is used to segment the images. Then, blood vessels and bronchus are 

differentiated by using their anatomical character. Finally, a 3D thinning algorithm is 

applied to extract the vessel centerlines. The resulting centerline structure is used to 

analyze and classify the blood vessels [13]. Kawata et al. analyze blood vessel structures 

and detect blood vessel diseases from cone-beam CT images. X-ray digital angiograms 

are collected using rotational angiography. 3D image reconstruction is performed by a 

short scan cone-beam filtered backprojection algorithm based on the short injection time 

of the contrast medium. First, a graph description procedure extracts the curvilinear 

centerline structures of the vessel tree using thresholding, elimination of the small 

connected components, and 3D fusion processes. Then, a 3D surface representation 

procedure extracts the characteristics of convex and concave shapes on blood vessel 

surface [14]. Niki et al. describe a 3D blood vessel reconstruction and analysis method. 

Vessel reconstruction is achieved on short scan cone-beam filtered back-propagation 

reconstruction algorithm. A 3D thresholding and 3D object connectivity procedure are 

applied to the resulting reconstructed images for the visualization and analysis process. 

A 3D graph description of blood vessels is used to represent the vessel anatomical 

structure [15]. Sorantin et al. uses a 3D skeleton method in the assessment of tracheal 

stenosis on spiral CT images. The system extracts the trachea as a single object starting 

from a user specified seed point. A 3D dilation is employed to handle the uncertain 

boundary points due to partial volume effect. Via linear interpolation, the 3D volume is 

converted into cubic voxels. Lastly, the centerline axis is separated from the extracted 

skeleton using a shortest path-searching algorithm. This step requires the user to mark 

beginning and end points on the central path [16]. 
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2.2.2 Ridge Based Approaches 

These methods will treat a grayscale image as a three dimensional elevation map in 

which intensity ridges approximate the skeleton of the tubular object in question. After 

creating the intensity map, ridge points are targeted as local peaks in the direction of 

maximal surface gradient, and can be obtained by tracing the intensity map from an 

arbitrary point, along the steepest ascent direction. 

Aylward et al. approximate the center axes of tubular objects such as vessels in 

an angiogram as "intensity ridges". Ridges are tracked by estimating the local vessel 

directions. First, image intensity is mapped to height to create intensity height surface. 

Second, from a user-supplied starting point an initial ridge point is found using a 

conjugate directions search with respect to the Hessian matrix. Third, the ridge is 

tracked. Finally, the vessel widths are estimated using points on the ridges [17]. The 

authors show results of a vascular tree extracted from a MR angiogram in Figure 2.2. 

This required a fair amount of user intervention (105 mouse clicks in all). The method 

was completed by Bullitt and Aylward by having the final segmented 3D vessel tree be 

represented by a graph where each individual vessel structure retains information about 

its relationship to its neighboring vessels [18]. 

Guo and Richardson propose a ridge extraction method that treats digitized 

angiograms as height maps and the centerlines of the vessels as ridges. The image is 

preprocessed using a median filter and then smoothed by an anisotropic diffusion 

method. Second, a region of interest is selected by adaptive thresholding. This process 

reduces false ridges introduced by noise. Third, the ridge detection process is applied to 

extract the vessel centerlines. Finally, the candidate vessel centerlines are connected 

using a curve relaxation process [19]. 



20 

2.2.3 Region Growing Approaches 

Starting from some user defined seed points, region growing techniques segment images 

by incrementally recruiting pixels to a region based on some predefined criteria. Two of 

the more important ones are value similarity and spatial proximity. Both assume that 2D 

pixels that lie close to one another and that display similar intensity values are likely to 

belong to the same vessel. The main disadvantage of region growing approach is that it 

often requires many user-supplied seed points. Further, due to the variations in image 

intensities and noise, region growing can result in holes and over-segmentation. Thus, it 

requires post-processing of the segmentation result. 

Schmitt et al. determine contrast agent propagation in 3D rotational X-ray 

angiography (XRA) image volumes. They combine thresholding with a region growing 

technique to segment vessel tree in 3D. After the segmentation, propagation information 

is mapped from the 2D projections to the 3D image data [20]. 
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O'Brien and Ezquerra develop a method to automatically segment coronary 

vessels in angiograms based on spatial and structural constraints. Like most algorithms a 

preprocessing step is applied to the image using a low pass filtering. The initial 

segmentation process begins with the user selecting a single seed point. A region 

growing process is initialized to extract the initial approximation of the vessel structure 

from the selected seed point. Using this approximation, a skeleton process starts to 

extract the centerlines of the structure by employing the following test: a disk is 

expanded outward until a pixel is encountered which is not part of the extracted region. 

This case is called a hit. If a hit occurs on opposite sides of the structure having the same 

distance, then this point is selected as a centerline. Lastly, undetected vessel segments 

are located by a spatial expansion algorithm. At this stage, images are divided into two 

categories: background and vessel structures [21]. Figure 2.3 shows the result of their 

method applied to an angiogram image. 

Yim et al. present a grayscale skeleton method for the segmentation of vessel 

tree structures using magnetic resonance angiography (MRA). Their method is based on 

the ordered region growing (ORG) algorithm which uses the connectivity between all 

the voxels in the image and transforms it into a graph. A distinctive feature that 

separates this method from other graph-based methods is that the path used has minimal 

dependence on initial seed location. Here, the skeleton process is performed in two 
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ways. First, a user explicitly selects the origin of the vessel tree and endpoints of every 

vessel. Then, vessel segments are extracted by tracing the path from each endpoint to the 

origin of the graph. The second method is a pruning process based on the branch length 

to discard false vessel branches [22]. 

2.2.4 Morphological Techniques 

Morphology relates to the study of object forms or shapes. Morphological operators 

apply structuring elements to images. These elements are matrices containing ones and 

zeros and may have different shapes such as disks, rectangular, or diamond to name a 

few. Dilation and erosion are the two main operators. Dilation expands objects if they lie 

inside the defined structuring element, filling holes and connecting disjoint regions. 

Erosion shrinks objects if they lie outside the structuring element. 

Eiho and Qian propose a method based on pure morphological operators for the 

detection of the entire coronary artery tree visible in two dimensional cineangiograms. 

First, a "Top-hat operator", which is able to detect the local elevations on arbitrary 

backgrounds, is applied to enhance the shape of the vessels. Second, morphological 

erosion followed by half-thresholding operations are applied to remove the background 

areas. A user then selects a point anywhere on the artery tree. Following that, the system 

extracts the entire artery tree using neighbor checking according to the average grayscale 

intensities between them. Finally, the edges are extracted by applying a watershed 

transformation on the binary image obtained from a dilation operation [23]. 

2.2.5 Geometric & Parametric Deformable Models 

Deformable methods apply specific vessel derived models to extract either the vessel 

medial axis or contour perimeter. There are two categories of deformable models: (i) 

geometric deformable models or front propagation methods, and (ii) parametric 

deformable models, also known as active contours. 
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2.2.5.1 Geometric Models 

Caselles et al. [24] and Malladi et al. [25] use propagating interfaces under a 

curvature dependent speed function to model anatomical shapes. They used the Level 

Set Method approach developed by Osher et al. [26] and adapted it for shape recognition 

processes. The main idea behind the Level Set Method is to represent propagating 

curves as the zero level set of a higher dimensional function which is given in the 

Eulerian coordinate system. Hence, a moving front is captured implicitly by the level set 

function. It can handle complex interfaces which develop sharp corners and change its 

topology during the development. Since the level set function is given in the Eulerian 

coordinate system, discrete grids can be used together with finite differences methods to 

obtain a numerical approximation to the solution. The propagation of the front through a 

vessel in an angiogram image is shown in Figure 2.4. 

Sethian also developed another noteworthy technique, called the Fast Marching 

Method [27], which uses a wave propagation approach for specialized front problems. 

Fast Marching Methods are used in the problems where the front advances 
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monotonically with a speed that does not change its sign. The Fast Marching Method's 

advantage over the Level Set Methods is that it is more computationally efficient. 

Several methods have been described [28-29] for the segmentation of the central 

axis of an artery. In terms of the Fast Marching Method (FMM) approaches, defining a 

speed function is crucial in path extraction, since the extracted path is a minimum-cost 

path of the specific cost selected. For a non-trivial path extraction problem, such a cost is 

often difficult to define. In [29], the cost image was defined as the reciprocal of the 

vessel-enhanced image. When extracting guidewires or line-like objects, enhancing the 

X-ray image using non-maximum suppression and a salience distance transform 

produced a successful cost image [30]. However, some discrepancies between the 

segmentation and the real vessel tree still persist. A major difficulty is that vessels can 

be broken into several disconnected components and that discontinuities may occur at 

bifurcation or stenosis points. 

2.2.5.2 Active Contour Models 

These models are model based techniques employed for finding object contours or 

center axis using parametric curves that deform under the influence of internal and 

external forces. First introduced by Terzopoulos et al., active contour models or snakes 

are a special case of a more general technique of matching a deformable model by 

means of energy minimization [31]. Physically, a snake is a set of control points, called 

snaxels, in an image that are connected to each other. Each snaxel has an energy 

associated with it. This energy either rises or falls depending upon the forces that act on 

that snaxel. These forces are known as snake's internal and external forces, respectively. 

Historically, all active contour models proposed today in 3D vision or medical 

image analysis have emanated from the classical snakes algorithm. The snake is 

represented by a curve, v(s), which usually requires user interaction to select many 

control points defining the initial curve. In this case, the 1st derivative term of the 

parametric equation is related to the bendedness of the snake, whereas, the second 
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derivative of the curve relates to the rigidity of the snake. The classical Snakes equation 

is as follows: 

i i 

Energy = $E{v(s))ds = \[Eint (v(s)) + Eexl (v(s))]dS (2.4) 
o o 

where the internal energy is defined as: 

Eint=(a\vs(4
2+P\vj42)/2 (2-5) 

The internal energy reflects the bending and stiffness of the parametric curve. The 

external energy always comes from some specific image feature (external force) and it is 

defined as: 

Eext=y* Intensity (2.6) 

That is, the force will be proportional to the feature image pixel intensities and the snake 

will move from a higher to a lower intensity field. By varying the parameters a, fi, y, the 

snake can eventually converge on a given boundary or landmark. Another way of 

defining the internal energy is by taking into account the total length of the initial curve. 

The internal energy will be defined as a curvature: 

V \v (s)xv (s)\ 
K=ll ' K>]ds (2.7) 

o ^ 

where the variable L denotes the length of the curve 

L = \v\s)\ (2.8) 
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This energy term takes into account the total length of the snake curve. This is important 

as it allows the user to fine tune the parameters a, /?, y such that the final optimized curve 

will be roughly the same length as it was prior to the optimization step. 

Molina et al. use 3D snakes to reconstruct 3D catheter paths from biplane 

angiograms. The 3D snake used in this method is represented by B-splines and is 

initialized interactively. Using a snake facilitates the merging information from both 

projections simultaneously during the energy minimization process [32]. 

Klein et al. describe an approach to extract vessels from X-ray angiograms using 

deformable snakes. The user provides an initial estimate of the location of the vascular 

entity, and the algorithm refines the estimate by deforming a snake to minimize some 

energy function. A B-spline model is used in their snake implementation. They use a 

Gabor filter to determine the image (or edge) energy term to attract the snake. The 

approach is most suitable for the accurate extraction of vascular segments. However, the 

amount of user interaction and computation required makes it impractical for extracting 

entire vascular structures [33]. 

2.2.6 Segmentation Limitations 

Tubular cores requires a fair amount of intervention by selection numerous seed points 

to activate the algorithm. Morphological operators coupled with binary filtering have 

strict disadvantages in that the image background will be suppressed with the detriment 

of losing artery contour information if a proper threshold is not selected adequately. The 

level set methods have become increasingly popular to extract the entire contour of 

anatomical structures; however most methods have propagating wave fronts that 

experience "leakage" near artery perimeters if a regularization term is not chosen 

appropriately. 

Various image details must be taken into account for successful implementation 

of deformable model segmentation. These details include: (i) the amount of noise 

present in the image as well as visible external structures such as catheters or spinal cord 

that may attract the curve during the convergence process, (ii) the complexity of the 
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defined parametric curve in terms of the number of control points defining it and the 

amount of parameters that need to be optimized in order to minimize a given energy 

function, and (iii) whether the capture range (the distance between coronary arteries 

between two consecutive frames) is significant enough to hinder the snake from 

converging correctly to the exact coronary location at a subsequent time instant. 

Primitive active contour methods required user initialization of many control points to 

define the deforming parametric curve. In the case where the curve did not converge 

well in a specific image, the user would reinitialize the deformable model by reselecting 

the control points. This methodology is tedious and inefficient in a clinical context. 

2.3 Temporal Tracking Techniques 

We highlight relevant tracking concepts in both the computer vision and the clinical 

field in order to provide the reader with a broader perspective on the limitations that one 

has with respect to the other. 

2.3.1 Computer Vision Tracking Methods 

Object tracking is an important task within the field of computer vision. In its simplest 

form, tracking can be defined as the problem of estimating the trajectory of an object in 

the image plane as it moves around a scene. One can simplify tracking by imposing 

constraints on the motion and/or appearance of objects. For example, almost all tracking 

algorithms assume that the object motion is smooth with no abrupt changes. One can 

further constrain the object motion to be of constant velocity or constant acceleration 

based on a priori information. The aim of an object tracker is to generate the trajectory 

of an object over time by locating its position in every frame of the video [34]. 

The main tracking categories: point tracking, kernel tracking and silhouette 

tracking. Objects detected in consecutive frames are represented by points, and the 

association of the points is based on the previous object state which can include object 

position and motion. This approach requires an external mechanism to detect the objects 
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in every frame. An example of such a tracker is the Kalman filter [35]. Kernel refers to 

the object shape and appearance. For example, the kernel can be a rectangular template 

or an elliptical shape with an associated histogram. Objects are tracked by computing the 

motion of the kernel in consecutive frames. The Kanade-Lucas tracker by [36], is an 

example of a template kernel approach. Silhouette tracking methods use the information 

encoded inside the object region. This information can be in the form of appearance 

density and shape models which are usually in the form of edge maps. Given the object 

models, silhouettes are tracked by either shape matching or contour evolution. Some 

examples include the Hausdorff distance [37] or the Hough transforms [38]. 

Significant progress has been made in object tracking during the last few years. 

Several robust trackers have been developed which can track objects in real time in 

simple scenarios. However, it is clear that many assumptions are used to make the 

tracking problem tractable, for example, smoothness of motion, minimal amount of 

occlusion, illumination constancy, high contrast with respect to background, etc., are 

violated in many realistic computer vision scenarios and therefore limit a tracker's 

usefulness in applications like automated surveillance, human computer interaction, 

video retrieval, traffic monitoring, vehicle navigation, or even clinical applications [34]. 

The clear distinction between the computer vision applications with respect to the 

clinical applications is that the latter involves structures that undergo primarily non-rigid 

movement, and thus, some of the above assumptions must be applied to deal with the 

problem of tracking the coronary arteries. 

2.3.2 Clinical Tracking Methods 

The classical method for recovering the motion of the coronaries is to track the motion 

of the arterial centerlines in the two dimensional (2D) projection images. Optical flow 

[39], binary image elastic registration [40], Kalman snakes [41], and local space search 

and graph minimization techniques [42] are some of the methods that have been 

proposed for 2D vessel tracking. However, tracking the vessels in the projection image 

space has significant limitations. Multiple vessel overlap is common due to the 
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projective nature of the imaging modality. Correctly tracking arteries through these 

regions is a difficult problem, which can only be solved with additional knowledge and 

regularizing constraints. 

The authors in [43] developed an epipolar tracking method that tracked the 

arteries in six consecutive 2D X-ray images. The proposed method involves three major 

steps. First, vessel centerlines are detected using segmentation and each vessel is 

labeled. Second, the epipolar lines for the leading edges in each vessel in the RAO (or 

LAO) view image are drawn on the LAO (or RAO) view image, and the distance 

between the epipolar lines and the leading edges of vessels are measured. In this case, 

six frames are selected for searching for vessel correspondence. Lastly, the measured 

distances in six frames are summed and tabulated. The vessel correspondence with 

minimum total distance is most suitable. The authors in [44, 45] describe a knowledge 

based system that interprets three dimensional coronary artery movement, using data 

from digital subtraction 2D angiography image sequences. Dynamic information 

obtained from artery centerline 3D reconstruction and optical flow estimation, is 

classified according to experimental evidence indicating that artery displacements are 

quasi homogeneous by a segment analysis. These facts are then related and interpreted 

using anatomical functional knowledge provided by a specialist, as well as spatial and 

temporal knowledge, applying spatio temporal reasoning schemes. Applied knowledge 

is mainly geometrical, kinetic, temporal and anatomic. Displacement data is analyzed by 

means of a carefully selected group of dynamic features, which are intended to detect 

significant events, related to anatomical regions through time. These events are 

represented as homogeneous segments that provide a detailed description of the arteries 

centerlines dynamic behavior. Such a representation is original in the sense that 

identified dynamic features can be, at a reasoning level, related in multiple ways, and the 

amount of features is not limited by the mechanical model that associates the detected 

observations. Numerical information contained in the homogeneous segment 

representation is transformed into symbolic labels, which allow an efficient knowledge-

based interpretation using rule-based queries. 
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Other vessel tracking approaches, starting from an initial point, detect vessel 

centerlines or contours by analyzing the pixels orthogonal to the tracking direction. 

Different methods are employed in determining vessel contours or centerlines. Edge 

detection operation followed by sequential tracing incorporating connectivity 

information is a straightforward approach. Aylward et al. [17, 18] utilize intensity ridges 

to approximate the medial axes of tubular objects such as vessels. Some applications 

achieve sequential contour tracing by incorporating the features, the searching direction, 

and the search range, detected from previous step into the next step [46]. The initial 

values of the features are supplied by the user. Fuzzy clustering is another approach to 

identify vessel segments [47]. After the initial segmentation of the pixels into different 

regions, a fuzzy tracking algorithm is applied to each candidate vessel region. False 

candidate vessels are rejected by the algorithm within two or three iterations. Some 

methods utilize a model in the tracking process and incrementally segment the vessels. 

A more sophisticated approach on vessel tracking is the use of graph representation [48]. 

The segmentation process is, then, reduced to finding the optimum path in a graph 

representation of the image. 

Template matching tries to recognize a structural model (template) in an image. 

The matching method uses the template as a context, which is a priori model. In a 2D 

framework, the authors in [49] provided a template matching technique to track the 

bifurcation points along consecutive images (Figure 2.5a) whereas the authors in [50] 

presented a method combining active contours and image template matching techniques 

for tracking the coronary arteries. The active contour is modeled as a string of templates 

and is no longer a simple curve. In [51], a method is presented to extract and track the 

position of a guide wire during endovascular interventions. A rough estimate of the 

displacement of the guidewires is obtained using a template matching procedure and the 

position of the guide wire is determined by fitting a B-spline to a feature image using 4-

5 control points. In these methods, large deformations may hinder the reliability of the 

template position estimates. The calculation of velocity fields was performed using 

correlation in a small region of interest in [52] to track the targeted cardiac structure. To 
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improve tracking speed, the authors in [53] extended the formulation of active contours 

by including an additional force, derived from the optical flow field. In both studies, the 

traditional optical flow methods (block correlation by Horn and Schunk) worked well 

since the overall inter-frame movement of the cardiac surface was small. 

Fig 2.5a. Bifurcation tracking using template approach. Correlation 
templates are solved for in order to estimate subsequent bifurcation 
positions. The right image shows a correlation box that 
misrepresents a bifurcation position due to the sensitive nature to 
image noise when considering correlation methods. Image taken 
from [26]. 

Fig 2.5b. 3D Tracking across biplane images. A 3D model is extracted at a first instant and is 
modeled using B-Splines. Transformation matrices are registered between the 3D model and 
the biplane images. Subsequent 3D reconstructions are obtained by solving a coarse to fine 
energy model which takes into account affine, rigid and non rigid transformation matrices. 
Image taken from [56]. 

Making the transition to 3D tracking algorithms, in [54], the authors propose combining 

optical flow derived displacement information from two projection images to displace an 
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existing a priori 3D coronary tree model. A deformable model approach for segmenting 

objects using parametric curves was applied to segmenting the coronary arteries with 3D 

B-spline curves in [55]. In [56], a registration framework recovers the motion one 

angiogram at a time, using a set of coarse-to-fine motion models. This 3D approach 

requires an a priori 3D model of the coronary tree at the first time instant before tracking 

begins (Figure 2.5b). The main objective of these methods is to evaluate the 

functionality of the overall coronary motion in three dimensions. 

2.3.3 Temporal Tracking Limitations 

Template matching techniques and conventional optical flow methods fail when the 

intensity variations between images fluctuate enormously or when the overall 

displacements of the object of interest between consecutive images are significant 

(larger than 10 pixels). Three dimensional tracking methods are more robust than the 

two dimensional case since an initial 3D model of the arteries is obtained from MRI or 

CT images. However, these models require many 3D control point initializations and the 

complexity of the algorithms increase due to the extrapolation errors from local 

deformations. The mean average time for one time frame was about 155 minutes in [56]. 

The ideal tracking algorithm will make use of only 2D angiographic sequences, since 

this is the principal modality for diagnosis, and will limit user interaction for the 

definition of the deformable model. Ideally it will automatically track the artery in 

consecutive images regardless of the magnitude of interframe artery displacement. 

2.4 Biplane 3D Reconstruction 

2.4.1 Biplane X-ray Fluoroscopy Reconstruction Overview 

In biplane angiography two prospective projection views of the coronary arteries are 

acquired using a biplane fluoroscope. The two X-ray sources in a biplane system are 

related to each other through a rigid body transformation. It can be defined either by the 

transformation of each single-plane X-ray source relative to a fixed world coordinate 
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system [57], or by the transformation relating the two single-plane sources [58, 59]. The 

biplane apparatus consists of two X-ray sources and image intensifiers, at opposite ends 

of the gantry. Magnification depends on the source-to-object distance (SOD), source-to-

intensifier distance (SID), and the intensifier size (IS). In clinical procedures, the patient 

would be considered the object in this case and so his/her distance from the X-ray source 

is termed SOD. The SID is also termed as the focal length. Moreover, both X-ray 

sources rotate around a common isocenter. Images are acquired on the two systems 

nearly simultaneously (At ~10ms). The rotations are described by two angles, a primary 

(PA) and secondary angle (SA). These inclinations are respect to the patient's location 

on the intervention table. The PA defines a left-right rotation with respect to the patient 

whereas the SA defines a cranial-caudal rotation. 

To determine the 3D geometry of the coronary arteries using the two 

perpendicular images following steps are taken: (i) the imaging geometry is determined 

and calibrated for, (ii) corresponding points in the two systems are determined (iii) 

vessel profiles are extracted along epipolar lines and then reconstructed. The imaging 

geometry can be determined using calibration objects or by self-calibrating, that is, 

optimizing the X-ray parameters using only 2D points contained in both images. Once 

the geometry is determined, the corresponding points and regions along the coronary 

arteries are determined. In general, the correspondence is not apparent, such as with 

bifurcation points; therefore, the correspondence is usually determined using epipolar 

lines. These concepts will be defined in more detail in the upcoming sections. 

2.4.2 Offline and Online Calibration Methods 

2.4.2.1 Computer Vision Community 

Camera calibration is a necessary step in 3D computer vision in order to extract metric 

information from 2D images. According to the dimension of the calibration objects, we 

can classify those techniques roughly into three categories: (i) 3D calibration objects, (ii) 

2D plane based calibration, and (iii) self-calibration. 
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3D Calibration Objects: Camera calibration is performed by observing a calibration 

object whose geometry in 3D space is known with very good precision. Calibration can 

be done very efficiently [60]. The calibration object usually consists of two or three 

planes orthogonal to each other. Sometimes, a plane undergoing a precisely known 

translation is also used [61], which equivalently provides 3D reference points. This 

approach requires an expensive calibration apparatus and an elaborate setup. Some 

existing techniques are Faugeras et al. [62], Weng et al. [63], Wilson [64], and Lenz et 

al. [65]. 

2D plane based calibration: Techniques in this category requires observing a planar 

pattern shown at a few different orientations [66, 67]. Different from Tsai's technique 

[68, 69], the knowledge of the plane motion is not necessary. Because almost anyone 

can make such a calibration pattern by him/her-self, the setup is easier for camera 

calibration. 

Self-calibration: Techniques in this category do not use any calibration object, and can 

be considered as 0D approach because only image point correspondences are required. If 

images are taken by the same camera with fixed internal parameters, correspondences 

between three images are sufficient to recover both the internal and external parameters 

which allow us to reconstruct 3-D structure up to a similarity [70]. Although no 

calibration objects are necessary, a large number of parameters need to be estimated, 

resulting in a much harder mathematical problem. Some researchers in the computer 

vision field proposed specific self-calibration algorithms for restricted motions. In 

several cases it turns out that simpler algorithms can be obtained. However, the price to 

pay is that the ambiguity can often not be restricted to metric. Some interesting 

approaches were proposed by Moons et al. [71] for pure translation, Hartley [72] for 

pure rotations and by Armstrong et al. [73] for planar motion. Recently some methods 

were proposed to combine self-calibration with scene constraints. A specific 
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combination was proposed in [74] to resolve a case with minimal information. 

Bondyfalat et al. [75] proposed a method of elimination to impose the scene constraints. 

Liebowitz et al. [76] on the other hand formulate both the scene constraints and the self-

calibration constraints as constraints on the absolute conic so that a combined approach 

is achieved. Another important aspect of the self-calibration problem is that of critical 

motion sequences. In some cases the motion of the camera is not general enough to 

allow for self-calibration and an ambiguity remains regarding reconstruction. A first 

complete analysis for constant camera parameters was given by Sturm [77]. 

2.4.2.2 Clinical Community 

Similar to the computer vision community, an offline and online approach are proposed 

in order to calibrate the biplane fluoroscopy systems. In the off-line approach, the 

calibration parameters are computed for a fixed set of C-arm orientations before the 

surgery begins. The off-line approach allows for larger calibration phantoms, denser 

grids, and produces images which are simpler to analyze, since only fiducial markers are 

present in the image. In the on-line approach, the C-arm gantry parameters are computed 

anew using the angiographic images acquired concurrently during surgery and require a 

more sophisticated image processing algorithm. It presents trade-offs between 

calibration phantom size, grid density, and accessibility on the one hand, and robustness 

and accuracy on the other. 

An example of a 3D calibration object used in the clinical community is shown 

in Figure 2.6. The calibration object usually consists of two or three planes orthogonal to 

each other and its 3D geometry and lengths are known in order to obtain a precise scale 

factor when dealing with image pixels and world coordinates. 
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The online calibration approach presents some advantages in that: 

1. No calibration object is required to be imaged after the clinical intervention is 

performed. 

2. Only need rotate the X-ray source to acquire two views. 

3. Use angiographic image point correspondences to recover both the internal and 

external gantry parameters. 

More recently, techniques have been developed for determining the imaging geometry 

from the patient image data alone [57-58, 78-81, 82-84]. The basic principles of some of 

these more recent approaches will be discussed below. In each of the techniques, which 

do not require a calibration object, the SID (source-to-object distance), the pixel sizes, a 

scale factor, and corresponding points in the two images must be known. The approach 

presented in [57, 58] can approximate the values of the source-to-intensifier distance as 

well if a sufficient number of corresponding points is available. The scale factor is 

necessary for measurement of absolute distances and can be determined either by 

measurement of the distance between focal spots or by measurement on a calibration 

object (e.g., catheter markers or ball) imaged along with the patient or separately at the 

same gantry (imaging geometry) settings. The bifurcation points, i.e., the point of 

intersection of the centerlines of parent and branch vessels, are usually employed as the 
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points in the images, because their correspondence can be established uniquely from the 

hierarchical relationships in the vascular tree. Each of the proposed methods requires a 

minimum number of points (2 [57, 58], 5 [82], 8 [80, 81]). The iterative techniques, 

although different from one another, use the 2D image data for calculating the rotation 

and translation that minimize the differences between the input image data and the 

projections of the calculated 3D points into the image plane in a non-linear manner. 

2.4.3 Feature Correspondence 

Correspondence algorithms generally consist of two parts: a similarity measure and a 

cost function. The similarity measure is used to compare two points or regions in 

different images. The cost function analyzes the values produced by the similarity 

measure after a point or region in one image has been compared to many points or 

regions in the other image. In general, correspondences are found by choosing the point 

with the optimum similarity value, but this can give unsatisfactory correspondences. For 

example, in a grayscale image, a point in the middle of a region of texture is likely to 

match well to a large area, but may have as its optimum values, a point near the 

boundary of the region, rather than near the middle as would be expected. As a result, 

neighboring points will often have correspondences that are not close to each other. 

Some authors attempt to overcome these problems by smoothing the calculated 

correspondences so that the resulting displacement vectors all point in approximately the 

same direction [85], or detect and discard unreliable correspondences [86]; others grow 

correspondences from a distinctive point [87, 88]. Methods that involve segmentation 

often have reliable and robust correspondence algorithms [89-91], but apart from the 

difficulties of reliable segmentation, these methods cannot directly calculate 

correspondences for all the points in the image, and must interpolate correspondences 

for points not included in the segmentation. 
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2.4.3.1 Stereo Disparity Maps & Correspondence 

Stereo matching is one of the most active research areas in computer vision and it serves 

as an important step in many applications (e.g., view synthesis, image based rendering, 

etc). The goal of stereo matching is to determine the disparity map between an image 

pair taken from the same scene. Disparity describes the difference in location of the 

corresponding pixels and it is often considered as a synonym for inverse depth (Figure 

2.7). Due to the ill-posed nature of the stereo matching problem, the recovery of accurate 

disparity still remains challenging, especially in textureless regions, disparity 

discontinuous boundaries and occluded areas. 

In general, stereo algorithms can be categorized into two major classes. The first 

class is local (window-based) algorithms, where the disparity at a given pixel depends 

only on intensity values within a finite neighboring window. Local methods can easily 

capture accurate disparity in highly textured regions, however they often tend to produce 

noisy disparities in textureless regions, blur the disparity discontinuous boundaries and 

fail at occluded areas. The second class is global algorithms, which make explicit 

smoothness assumptions of the disparity map and solve it through various minimization 

techniques. Recently, global methods such as graph cuts have attracted much attention 

due to their excellent experimental results. 
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2.4.3.2 Epipolar Geometry Correspondence 

A fundamental geometric correspondence method in the computer vision field relies on 

the epipolar geometry concepts. The epipolar geometry between two views is essentially 

the geometry of the intersection of the image planes. The baseline is the line joining the 

camera centers. The search for corresponding points between both images usually crafts 

this geometry. Suppose a 3D point X is imaged in two views, at x in the first, and x" in 

the second. This begs the question- what is the relation between the corresponding 

image points x and xl To answer this, from (Figure 2.8 -left) we define the epipoles (e, 

e 0 as the points of intersection of the line joining the camera centers (the baseline) with 

the image plane. Equivalently, the epipole is the image in one view of the camera centre 

of the other view. An epipolar line is the intersection of an epipolar plane with the image 

plane. All epipolar lines (xe and x'e*) intersect at the epipole. An epipolar plane 

intersects the left and right image planes at epipolar lines that define the corresponding 

points. The fundamental matrix, F, is the algebraic representation of epipolar geometry. 

Given a pair of images, it is noted that for each point x in one image, there exists a 
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corresponding epipolar line {x'e*) in the other image. Any point x' in the second image 

matching the point x must lie on the epipolar line (x 'e 0-

epipolar plane 

. outlier 

• inlier 

epipolar line 

Fig 2.8. (Left) Epipolar Geometry. The two cameras are indicated by their centers C and C" and 
image planes. The camera centers, 3D point X, and its projected images x and x' lie in a common 
epipolar plane. (Right) Corresponding point matches between the two views can be classified as 
either outliers (mismatches) or inliers (correct matches), depending on their distance from the 
epipolar line. 

The epipolar line is the projection in the second image of the ray from the point x 

through the camera centre C of the first camera. Thus, there is a map from a point in one 

image to its corresponding epipolar line in the other image. It will turn out that this 

mapping is a projective mapping from points to lines, which is represented by the 

fundamental matrix. In order to calculate the fundamental matrix, a normalized 8-point 

algorithm is used as described by Hartley [93]. If we define point x in the left image as 

[nv l ] and point x'in the right image as [u" v' 1] we then obtain the fundamental matrix 

using: 

[u v l]F 0 (2.9) 

The fundamental matrix encompasses the geometrical information of the two camera 

setup. The effect of noise generates two potential types of errors during correspondence: 

an incorrect location of a pair (inlier error) match, and incorrect pairing (outlier error). 
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(Figure 2.8-right) shows these two types of errors. Inlier errors are assumed to display a 

Gaussian distribution. This means that most errors will be small and within one or two 

pixels. 

Typically, if more than eight corresponding points are available, a least mean 

square minimization is often used. Hartley showed that to make the resulting 

fundamental matrix satisfy the rank two requirements, the singularity enforcement is 

performed [93]. Its simplicity of implementation is advantageous. Also, it is noted that 

after outlier (false matches) rejection, the eight point algorithm performs comparably 

with other nonlinear optimization techniques. One of these techniques relies on cross 

correlation, however false matches are unavoidable in this case. A more intricate 

nonlinear iterative optimization method was therefore proposed in [94]. To guide the 

optimization process, these nonlinear techniques use objective functions, such as the 

distance between points and their corresponding epipolar lines. Despite the increased 

robustness of these methods, nonlinear optimization methods require somewhat careful 

initialization for early convergence of the cost function. Torr and Murray [95] proposed 

RANSAC (random sample consensus), which randomly samples a minimum subset with 

seven pairs of matching points for parameter estimation. The candidate subset that 

maximizes the number of points and minimizes the residual represents the solution. 

Nevertheless, it is computationally infeasible to consider all possible subsets, which tend 

to be exponential in number. Therefore, additional statistical measures are needed to 

derive the minimum number of sample subsets. RANSAC is considered to be one of the 

most robust methods for this. 

In the clinical community, common practice for biplane point correspondence 

relies heavily on the epipolar constraint. Schechter et al. relates the matching problem to 

finding the optimal path through a correspondence matrix representing all possible 

correspondences between the two images used [96]. In [97-99], the authors again rely on 

the epipolar planes and epipolar lines in order to trace corresponding coronary vessel 

segments, but with a slight difference in that an additional third image is used (i.e. three 
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view reconstruction), since among the several matching candidates given by the epipolar 

constraint, only one will be coherent with the additional view in most cases [99]. 

2.4.4 3D Reconstruction 

Spatial reconstructions from biplane angiograms evolved as important tools for 

morphological analyses of vessel trees in both cardiology and neurology domains [94-

99]. From the known imaging geometry and based on the epipolar constraint, any point 

visible in both projections can be spatially reconstructed by retracing the projection rays 

back to the point of their intersection. This can be achieved after successful calibration 

of the X-ray system. Since the reconstructed rays often miss this point due to slight 

reconstruction or calibration errors, usually their closest location is estimated as 

approximation. This is known as a stereo triangulation procedure (Figure 2.9). 

More than two views may be used as well for the reconstruction process. For example, 

Venaille proposed acquiring a third projection to reduce the number of consistent 
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matches between arterial segments [100]. This means that the first two images are used 

to obtain a 3D structure. Then, the 3D structure is reprojected back onto the third image. 

Only those image points that are compatible with the reprojection are used as 

correspondences between the three views. 

2.4.5 Biplane Reconstruction Limitations 

All biplane algorithms developed in the clinical context for the 3D reconstruction of 

coronary arteries published 3D reconstruction root mean square errors (RMS) which are 

less than 2 mm using a single pair of perpendicular views. To self calibrate the biplane 

systems initial methods used a calibration object imaged at the end of the angiographic 

acquisition. Later, methods exploited the corresponding landmarks between a single pair 

of biplane images to estimate the X-ray gantry parameters in order to reduce 

reconstruction errors. Cheriet et al. [101] demonstrated that self-calibration and 3D 

reconstruction of the coronary arteries becomes possible using a spatio-temporal 

technique that uses as landmarks the coronary bifurcation points. For a minimal number 

of point matches, approximately 30 corresponding bifurcation points across 5 

consecutive images, the root mean square error remains stable. However, the study also 

demonstrated that the 3D RMS error will rise as the total number of images increases 

since we are systematically introducing spatial errors for reconstruction purposes. 

Lastly, we cannot rely on bifurcation point correspondence as these may be limited in 

number in the angiographic images. Therefore, it is essential to extract other coronary 

landmarks to perform calibration and reconstruction. 

In computer vision literature, the RANSAC method is primarily used for point 

correspondence of rigid moving objects, more specifically for those that have line-like 

structures or lie on dominant planes in the computer vision context. The method 

randomly selects which point matches to use when performing 3D reconstruction of a 

scene. To use the RANSAC method to filter out all possible point matches when 

considering the coronary arteries would be a mistake since these undergo non rigid 

movements during the heart contractions. Therefore, another method should be 
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considered to select those point matches that undergo non rigid motion and that would 

yield acceptable reconstruction errors. 

2.5 Single View (Monoplane) Reconstruction 

Monocular 3D reconstruction is inherently an ambiguous problem, but using prior 

knowledge about a domain, it is often possible to recover distances and spatial 

configurations from a single image or a set of monoplane images. We survey the 

pertinent algorithms in the fields of computer vision and in the clinical context. 

2.5.1 3D Vision Community 

Most reconstructions are only determined up to an arbitrary projective transformation. 

This might be sufficient for some robotics applications, but certainly not for 

visualization. Hence, a method is needed to upgrade the reconstruction to a metric one 

(i.e. determined up to an arbitrary Euclidean transformation and a scale factor). In 

general three types of constraints can be applied to achieve this: scene constraints, 

camera motion constraints and constraints on the camera intrinsic parameters. All of 

these have been tried separately or in conjunction. In the case of a hand-held camera and 

an unknown scene, only the last type of constraints can be used. Reducing the ambiguity 

on the reconstruction by imposing restrictions on the intrinsic camera parameters is 

termed self-calibration (in the area of computer vision) [102]. 

For long monoplane video sequences, the accumulation error in the projective 

reconstruction may ultimately cause the self calibration to fail. When obtaining a 3D 

reconstruction from long image sequences, a subset of frames should be selected that are 

most suitable for the estimation of the epipolar geometry between views. This is 

advantageous since it is impractical to use all image frames contained in a sequence. The 

frames belonging to this subset are called keyframes. In order to accurately estimate the 

camera motion between single view image frames, key-frames should be selected with a 

sufficient baseline (disparity or distance) between them. If two consecutive key-frames 
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are too close to each other some of the degrees of freedom of the epipolar geometry are 

hard to estimate which leads to problems in motion estimation and in identifying suitable 

feature points [102]. 

The second issue that needs to be addressed when processing long image 

sequences is the mitigation of projective drift. Temporal structure and motion recovery 

is incrementally constructed by orienting additional views using the 3D positions of 

common features. Inaccuracies in the 3D positions of feature points due to noise and 

approximation errors accumulate over the course of the sequence and have a detrimental 

effect on the overall reconstruction. What this means is that as the number of images are 

added towards the reconstruction process, we inherently add additional possible errors 

related to the spatial configuration of the image coordinates and 3D structure. Projective 

drift is most problematic for self-calibration methods over long sequences, but has little 

effect over short sequences [102]. 

Pollefey and al. present an approach that is able to reconstruct 3D models from 

extended video sequences captured with an uncalibrated hand-held camera [102]. The 

focus is on two specific issues: (i) key-frame selection, and (ii) projective drift. Given a 

long video sequence it is often not practical to work with all video frames. In addition, to 

allow for effective outlier rejection and motion estimation it is necessary to have a 

sufficient baseline between frames. For this purpose, the authors propose a key-frame 

selection procedure based on a robust model selection criterion. The approach 

guarantees that the camera motion can be estimated reliably by analyzing the feature 

correspondences between three consecutive views. After self calibration, triplets of key

frames are aligned using absolute orientation and hierarchically merged into a complete 

metric reconstruction. A detailed 3D surface model using stereo matching is constructed 

in the last step. 

The Geometric Robust Information Criterion (GRIC) model selection approach 

is useful in key-frame selection. The GRIC computes a score based on the feature 

correspondences between images and a model. The key-frame criterion proposed by the 

authors selects three views where the GRIC score of the epipolar model (F) is lower than 
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the score of the homography (H) model. The frames are processed sequentially, and the 

first view in the sequence is selected as the first key-frame. Subsequent views are 

selected as the keyframe if the fundamental matrix between it and the last keyframe 

view yields a GRIC(F) score that is smaller than the GRIC(//) score of the homography 

between the two views. The features used in computing the GRIC are those from the 

current view that are found in the previous two key-frames. By using features found in 

the current view and the previous two key-frame views, the authors ensure that the three-

view geometry can be estimated reliably for each selected triplet of views [102]. Figure 

2.10 shows the reconstruction process developed by Pollefey. 
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mm 1 - An input sequence of images is selected and the 
GRIC scores permit to select the first three images 

• for reconstruction. 
1 2- The next step attempts to match all image pixels 

of an image with pixels in neighboring images, so 
that these points can also be reconstructed. 
3- This task is greatly facilitated by the knowledge of 
all the camera parameters that were obtained in the 
previous stage. Since a pixel in the image 
corresponds to a ray in space and the projection of 
this ray in other images can be predicted from the 
recovered pose and calibration, the search of a 
corresponding pixel in other images can be restricted 
to a single line. 
4- A depth estimate (i.e. the distance from the camera 
to the object surface) for almost every pixel of an 

^A image can be obtained. A complete dense 3D surface 
jBfcfr model is obtained by fusing the results of all the 
Wmf depth images together. 
^ 5- The images used for the reconstruction can also be 

used for texture mapping so that a final photo
realistic result is achieved. 

In [103], the authors present a method for object-based rigid 3D motion estimation from 

monoscopic image sequences. Initial 2D vectors are available at the projections of the 

3D nodes on all the image planes for multiview camera geometry. The rigid 3D motion 
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of each articulated object in the scene is estimated using a neural network based on the 

available 2D motion information on the image planes of the multiview camera geometry. 

The weights of the neural network are updated using nonlinear error minimization 

techniques. The technique develops a novel approach for flexible 3D motion estimation 

of each node of the object model. The performance of the rigid and non-rigid 3D motion 

estimation techniques is evaluated experimentally on both synthetic and real 3D object 

motion. For the monocular case, only the rigid motion is recovered with the supposition 

that the 3D coordinates are known at each time instant. It has as objective to recuperate 

the camera parameters accurately and then to perform 3D reconstruction using the 

optimal parameters. Monoplane reconstruction results showed that for the first two time 

instants, the mean displacement error for the 3D rigid motion was 8.1%. 

In [104], authors showed how a mild assumption about an indoor scenes' 

geometry and efficient floor boundary detection can be used to recover fairly accurately 

3D information from a single image. The approach encodes prior knowledge about the 

environment such that the floor is flat and that walls are vertical, and is based on 

recognizing the floor and the wall regions in the image. 

Methods for single image reconstruction commonly use cues such as shading, 

silhouette shapes, texture, and vanishing points [105-109]. These methods restrict the 

allowable reconstructions by placing constraints on the properties of reconstructed 

objects (e.g., reflectance properties, viewing conditions, and symmetry). A few 

approaches explicitly use examples to guide the reconstruction process. One approach 

[110, 111] reconstructs outdoor scenes assuming they can be labeled as "ground," "sky," 

and "vertical" billboards. A second notable approach makes the assumption that all 3D 

objects in the class being modeled lie in a linear space spanned using a few basis objects 

(e.g., [112-115]). This approach is applicable to faces, but it is less clear how to extend it 

to more variable classes because it requires dense correspondences between surface 

points across examples. In [116], the researchers use a database of objects from single 

class (e.g. hands, human figures) containing example patches of feasible mappings from 

the appearance to the depth of each object. Given an image of a novel object, they 
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combine the known depths of patches from similar objects to produce a plausible depth 

estimate. This is achieved by optimizing a global target function representing the 

likelihood of the candidate depth. They demonstrate how the variability of 3D shapes 

and their poses can be handled by updating the example database instantly. 

2.5.2 Clinical Community 

Only two single view algorithms are proposed in the cardiology clinical setting 

worldwide that do not rely on registration. The clinical domains targeted are the 

intravascular ultrasound interventions (IVUS) and the catheter ablation procedures. The 

mathematical formulations for both will be presented below. 

2.5.2.1 IVUS Transducer Single Plane Reconstruction 

During an IVUS intervention, a catheter with an ultrasound transducer is introduced in 

the body through a blood vessel and then pulled back to image a sequence of vessel 

cross-sections. Unfortunately, there is no 3D information about the position and 

orientation of these cross-section planes. To position the IVUS images in space, some 

researchers have proposed complex stereoscopic procedures relying on biplane 

angiography to get two X-ray image sequences of the IVUS transducer trajectory along 

the catheter. Sherknies et al. [117] and Jourdain et al. [118] have elaborated a much 

simpler algorithm to recover the transducer 3D trajectory with only a single view X-ray 

image sequence. The known pullback distance of the transducer (0.1 cm/sec) during the 

IVUS intervention is used as an a priori to perform this task. The pullback value gives 

the true 3D displacement of the transducer in the world coordinate system. Considering 

that biplane systems are difficult to operate and rather expensive and uncommon in 

hospitals, this simple pose estimation algorithm could lead to an affordable and useful 

tool to better assess the 3D shape of vessels investigated with IVUS. 

Sherknies et al. first introduced the concept of a monoplane approach when 

projecting the 2D image position of the transducer back into 3D spatial coordinates. Two 
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types of projection geometry were analyzed: a weak-perspective and full-perspective 

model (Figure 2.11). 

By defining a 3D spatial point asPt= [Z,.,1^.,Z.], and similarly a 2D image point 

as/?, = [x(,y(], the relationship between these points in a pin hole camera model is 

given by: 

*,= f^- (2-10) 

y,= f\ (2.1D 

where / is the focal distance. The authors assume that the projection plane is 

perpendicular to the Z axis and centered on it. By using the equation of the Euclidean 

distance between two points d = ^{X^X,)1 + (Y2-Ylf +{Z2-Z{f and rewriting 

equation (2.10) we have: 
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Z 2 = f ^ (2.12) 
X2 

We can now substitute equation (2.12) into equation (2.11) to arrive at: 

y2^ (2.13) 
x2 

Substituting the above two equations into the Euclidean distance formula and solving for 

X2, we obtain: 

where 

x = x2a±^x2
2(a+bc) 

b 

a = x2X] + y2Yx + f Z, 

b= f2+x2
2+y2

2 

c= d2-Xf-Y2-Zf 

Knowing the location of two projected image points, pi and p2, the location of a 3-D 

point Pi and the distance d between the two 3-D points, 3-D coordinates of P2 can be 

calculated. The abscissa is found using equation (2.14), and by substituting this equation 

in equations (2.12) and (2.13) the depth coordinates are found. However, there are two 

possible solutions for the depth as a square root term is involved. The authors use an a 

priori knowledge of the experimental setup to resolve this issue. In weak-perspective 

projection geometry, the catheter path can be reconstructed without prior transducer 

depth information. The projection of each 3-D point is not affected by their respective 

depth coordinates but rather by the average scene depth. Hence, a 2D image point is 

related to its 3D spatial point by the following: 

x,= f'Xi (2.15) 

y,= fX (2.16) 
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f — 1 " 
where f'= (-L) and Z = ( - ) Y z . , and n is the number of points. Using the two 

above equations we can rewrite the Euclidean distance equation as: 

Z2= Z , ± l 2 - [ ( * - * ) 2 + ( y 2 ~ y i ) 2 (2.17) 

which gives the depth coordinate of point P2. Results showed that for the weak 

perspective projection model, an average error of 5.4 mm was obtained for the depth 

estimation with a maximum error of 9 mm, whereas for the full perspective model the 

average depth estimation was 2.3 mm with a maximum depth of 5.7 mm. 

Jourdain et al. continued the work of Sherknies in order to prune the two possible 

solutions for the depth estimation [118]. To prune the trajectories as much as possible 

during the depth estimation process, the authors have elaborated a cost function that 

gives a smaller weight to the smoothest solutions considering the number of undulations 

in the trajectory (Figure 2.12). The results of the method showed that the maximum 

RMS error in all the reconstructions for both phantoms is 3 mm, and the minimum RMS 

error was 0.1 mm depending of the amount of noise in the 2D transducer positions. 
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Fig 2.12. (Top left) Trajectory pruning based on curvature. The dashed trajectory can 
be rejected. (Top right) Here both solutions are acceptable. (Bottom) The cost 
function used will most likely favor the solid line configuration and reject the dashed 
line configuration for the transducer path that is reconstructed. Image taken from 
[118]. 

2.5.2.2 Catheter Ablation Single Plane Depth Estimation 

Severe disorders of the heart rhythm that can cause syncope or sudden cardiac death 

(SCD), can be treated by radio-frequency (RF) catheter ablation. Fast cardiac rhythm, 

called tachycardia, is a common form of SCD. The precise localization of the 

arrhythmogenic site and the positioning of the RF catheter over that site are problematic: 

they can impair the efficiency of the procedure and are time consuming. Radio-

frequency catheter ablation (RF ablation) consists of inserting a catheter inside the heart, 

near the area from which originates the abnormal cardiac electrical activity, and 

delivering RF currents (500 kHz, 10-25 W) through the catheter tip so as to ablate the 

arrhythmogenic area. This procedure is guided by X-ray images of the catheters 

obtained with a fluoroscopic system. Several commercial systems that provide a 3D 

color display of the cardiac electrical activation sequence have been applied in recent 

years to facilitate the mapping of complex arrhythmias however they are expensive. 

Fallavollita and al. [119] have been the first to elaborate an algorithm to estimate the 

depth of the ablation catheter using a single X-ray image. 
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The authors deduced that the inverse of the projection width of the ablation 

catheter tip is proportional to the depth of the catheter. The width of the catheter tip was 

determined by projecting the grayscale image along a line perpendicular to the electrode 

tip. This projection results in a bell-shaped curve (Figure 2.13) from which the tip 

electrode width can be measured. 
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Fig 2.13. {Left) Cropped image of the ablation catheter obtained after image processing. 
{Right) The image was projected along a line perpendicular to the electrode tip yielding a 
bell shaped curve from which the width was approximated at the half way point. Image 
taken from [120]. 

Results showed that by using an orthographic projection model (image pixel coordinates 

backprojected perpendicularly onto the world frame) the error in depth estimation was 

about 10 mm. Further, the correlation coefficient was statistically significant (r = 0.66) 

when relating the depth to the inverse of the catheter width. 

2.5.3 Monoplane 3D Reconstruction Limitations 

The survey of single plane reconstruction algorithms in the computer vision community 

demonstrate again that objects of interest must be of rigid nature, or undergo rigid 

motion. The implementation of 2D stereo maps fails if the objects undergo large motion 

or are occluded by other objects in the scene. Other techniques make assumptions of the 
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scene geometry in order to arrive at a correct reconstruction. Shading, silhouette shapes, 

texture are a few of these cues used to infer depth estimation. 

When considering the IVUS monoplane reconstruction algorithm, the points 

which are projected back into 3D space are the transducer positions. It is noted that the 

transducer is tracked at each image frame. Sherknies et al. analyzed a total of 821 and 

818 image frames respectively when experimenting on synthetic images. Jourdain et al. 

made no mention of the amount of frames used to analyze the procedure. The authors 

used a priori information which was the pullback speed of the transducer (0.1 cm/sec). 

This is extremely valuable when optimizing and solving for the estimated depth 

positions as the true 3D distances travelled by the transducer between image frames are 

known. When considering the arrhythmia ablation case, only a single image is 

considered for the catheter tip depth estimation. Fallavollita et al. use as information the 

width of the catheter tip, which is proportional to the unknown depth. However this 

value may be inaccurate due to the amount of noise present in an X-ray image and will 

lead to severe estimates with respect to the true depth value. Further, the actual 2D 

spatial image position of the catheter tip may be such that it is not fully flat but inclined 

to the viewer if not positioned properly on the arrhythmogenic site. This inclination will 

undervalue the width calculated and can produce incorrect depth estimates. 

The authors above use only the focal length as the only C-arm parameter which 

is still considered an approximation when recovering 3D structure. Therefore a more 

complete calibration technique must be considered that relates the projection of the 3D 

structure onto the 2D images. 
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Chapter 3- Research Hypothesis and Objectives 

Our research study will investigate the feasibility of incorporating image processing and 

reconstruction techniques using only a single monoplane angiographic image and a 3D a 

priori model for the sole purpose of clinical interventional assistance. We deem this 

important as these angiographic images are acquired using the primary imaging modality 

when treating cardiovascular disease such as atherosclerosis. The techniques developed 

can be immediately adapted to a secondary application for treating electrophysiological 

defects inherent with arrhythmias. 

Interventional assistance signifies providing the cardiologist with some sort of 

additional information and help that will enable them to quicken diagnostic, quicken 

surgical methodology during the intervention, diminish overall acquisition and 

procedure time which in turn reduces X-ray dosage for both the patient and clinician 

(Figure 3.1). Before outlining our research hypothesis and specific objectives, we will 

first present the necessary tools required to meet our major research contributions. 

3.1 Angiographic Image Segmentation and Temporal Tracking 

This section describes the ideas required to arrive at a visual geometrical reconstruction 

of the arteries. The goal here is to target a method that requires no change or continuous 

selection in algorithmic parameters for the extraction of coronary arteries, like the Frangi 

filter. Ideally, we would want the clinician to provide a specific angiographic image, one 

that describes the diastolic cardiac cycle phase, and the algorithm would automatically 

enhance the principal coronary arteries with no fine tuning of parameters. Hence, we 

propose to develop a novel automatic filter that has all its parameters fixed and would 

run smoothly on any given angiographic image as seen on the fluoroscopy screens 

during intervention. To minimize user interaction, a two-click technique to select and 

extract the centerline of a coronary artery that is being investigated by the clinician will 

be proposed. This is important as it assists the interventionist by providing a smaller 
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Fig 3.1. Flow chart illustrating the significance of interventional assistance in the context of 
single plane angiographic interventions. Overall intervention time will decrease by providing the 
cardiologist accurate 3D reconstructions of the coronary arteries concurrently during the 
procedure. 

region of interest to analyze instead of surveying the entire angiographic image when 

trying to detect where a possible stenosis lies. 

3.2 Optimal Point Correspondence for Non Simultaneous Images 

Traditionally the potential corresponding points are chosen if they lie closer to their 

epipolar lines. To improve the overall selection process and refinement of point matches 

between two biplane images (Figure 3.2), we will introduce a geometric curvature 

criterion that takes into consideration the 2D and 3D curvature of the artery centerlines. 
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Fig 3.2. Biplane correspondence of 
coronary arteries becomes complicated 
when matching points, other than the 
bifurcations, between two views (line 
2). When considering coronary 
bifurcation points as possible matches, 
the correspondence problem becomes 
elementary (lines 1 & 3). Image taken 
and adapted from [101]. 

Furthermore, the novel geometric constraint has several advantages. First, it allows us to 

target coronary image points that undergo only rigid motion. This particular constraint 

suggests that a coronary point that has undergone only rigid movement (non-

contractility) will have the same Frenet-Serret curvature in both the 2D and 3D case. 

Moreover, since most relevant computer vision algorithms recover structure from 

motion by targeting only rigid structures, it would be appropriate to use the proposed 

curvature constraint in the cardiac context. Secondly, the curvature constraint will have 

the advantage of refining all possible point matches when considering a single view 

acquisition. This leads us to define our first research hypothesis. 

Research Hypothesis 3.1: The integration of a geometrical curvature constraint 

improves the precision of the point correspondence and improves reconstruction 

accuracy. 

Our proposition is inspired by the work in [101], however different in that every point 

on the principal coronary centerline will be attempted to be matched instead of using 

only the bifurcations points. This is important during a clinical intervention as a 

particular viewing angle of the X-ray fluoroscope may provide angiographic images that 

lack sufficiently in bifurcations. 
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3.3 Monoplane 3D Reconstruction 

To assist the cardiologist in interventional procedures, we cannot make use of a two 

view setup if a single plane reconstruction algorithm can be developed. The point 

matching curvature criteria described above is primordial for monoplane reconstruction 

since optimal correspondences must be temporally tracked in a single angiographic 

sequence. By relating the 3D and 2D Frenet curvature information for this point, one can 

determine if it is a potential match before performing 3D reconstruction. 

We propose to use a priori 3D information from pre-operative images in order to 

obtain a 3D representation of the coronary arteries at a first time instant. This 3D 

information is readily available to us before a specific angiographic operation. It can be 

obtained either by segmenting CT or MRI images before an intervention or it can be 

obtained by first acquiring two C-arm non-simultaneous images to retrieve the 3D 

information. We believe this initial information will allow the estimation of the 3D 

structure in subsequent X-ray images. This leads us to define our second research 

hypothesis. 

Research Hypothesis 3.2: It is possible to recuperate the 3D geometry across a single 

plane angiographic sequence, for clinical assistance, by using an a priori 3D model of 

the structure of interest and tracking the artery centerlines across the sequence. 

The strategy proposed here will primarily target the self-calibration of the gantry settings 

of the C-arm fluoroscope. Once the gantry parameters are self-calibrated to new optimal 

values, we will eventually target the 3D reconstruction of coronary artery segments that 

undergo strict non-contraction (rigid motion), such as the bifurcation points of parent 

coronary branches. Since estimating the 3D structure at later time instants involves 

optimizing a certain number of unknown variables and equations, we will consider 

analyzing a minimum number of X-ray images in order to estimate their 3D geometries. 

The method can be extended to reconstructing medical instruments such as ablation 

catheters for radio-frequency image guidance procedures as well. 
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The specific objectives addressed to meet the above hypothesis are as follows: 

Research Hypothesis 3.1 

3.1.1 Improve self calibration algorithms by introducing a novel curvature 

constraint that will help select valid 2D corresponding points between the 

images and make the reconstruction more precise. 

3.1.2 Validate constraint on biplane images first to prove the necessity of refining 

the point matches in a single view sequence. 

Research Hypothesis 3.2 

3.2.1 Develop a novel automatic 2D segmentation algorithm to enhance healthy or 

diseased (stenosis) coronary arteries in a first image representing the 

diastolic phase. 

3.2.2 Provide the interventionist with the ability to select a specific coronary artery 

and investigate its motion by extracting its 2D centerline and automatically 

temporal tracking it across all the angiographic images in a cardiac cycle. 

3.2.3 Perform monoplane 3D reconstruction by implementing a novel self 

calibration algorithm using a single angiographic view and an a priori 3D 

model. 

We conclude by re-emphasizing that our overall objective is to provide a clinical 

tool in order to assist the cardiologist throughout a specific intervention. The cardiologist 

uses an X-ray fluoroscope that is the primary modality in surgical rooms, and looks at 

fluoroscopy screens for guidance in angioplasty procedures. To help quicken the 

intervention, only specific optimal coronary points will be extracted and temporally 

tracked. We will exploit the rigid movement of these points to recover structure from 

motion. The optimal correspondences will provide a more accurate reconstruction for 

the artery being investigated and will lead to the development of a novel monoplane 

algorithm. The monoplane procedure makes use of a 3D model that reflects a specific 

time instant (i.e. diastolic cardiac phase). This a priori model serves as additional 
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information in order to estimate the 3D structure at later time instants in the X-ray 

fluoroscopy images. 
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Chapter 4- Methodology 

The following chapter will highlight the necessary algorithms and tools that we propose 

in order to meet the specific objectives outlined in Chapter 3. The methods are to be 

applied using the X-ray angiographic images that are readily viewed on the fluoroscopy 

monitors. The sections described in this chapter include image segmentation, temporal 

tracking and ending with biplane and monoplane 3D reconstruction. 

Shown in Figure 4.1, is a step by step depiction of the various algorithmic 

processes required in order to verify our two research hypotheses: optimal point 

correspondence and monoplane 3D reconstruction. 

4.1 Automatic Image Extraction 

In [120], an algorithm was developed to detect an optimal cardiac phase image frame. 

By calculating the standard deviation of the differences between all the pixels of two 

successive frames, we were able to determine that the frame showing the smallest 

standard deviation also had the least motion blur. This is to say that if we were to 

perform biplane 3D reconstruction, for example, the results would be more accurate if 

we analyze image frames where motion artifacts are minimal. This would occur when 

the heart motion is minimal and consequently when blurring is almost non-significant. 
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Fig 4.1. Flow chart representing the image processing and segmentation requirements for 
successfully tracking coronary arteries using monoplane angiographic images. 
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4.2 Image Preprocessing 

Following is a brief description of the 4-step filter implemented in order to enhance the 

principal coronary arteries and suppress the background of the image. 

4.2.1 Homomorphic Filtering 

Frequency Domain involves the computation of the Fourier Transform of the image to 

be enhanced, multiply the result by a filter transfer function and take the inverse 

transform to produce the enhanced image [121]. 

4.2.1.1 High Pass Filtering 

Edges and other abrupt changes in gray levels being associated with high frequency 

components, image sharpening can be achieved in the frequency domain by a high pass 

filtering process, which attenuates the low frequency components without disturbing 

high frequency information in the Fourier transform. 

4.2.1.2 Low Pass Filtering 

Edges and other sharp transitions (such as noise) in the gray levels of an image 

contribute significantly to the high frequency content of its Fourier Transform. Hence 

blurring is achieved in the frequency domain by attenuating a specified range of high 

frequency components in the transform of a given image. Given F(u,v), the Fourier 

transform of the image to be smoothed, we need to find a transfer function H(u,v) that 

yields G(u,v) by attenuating the high frequency components of F(u,v), in the equation, 

G(u,v)= H{u,v)*F(u,v) (4.1) 

The illumination-reflectance model can be used as the basis for a frequency domain 

procedure that is used for improving the appearance of an image by simultaneous 

brightness range compression and contrast enhancement. An image f(x,y) can be 
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expressed in terms of its illumination and reflectance components by means of the 

relation: 

f{x,y) = i(x,y)r(x,y) (4.2) 

The illumination component of an image is characterized by slow spatial variations, 

while the reflectance component tends to vary abruptly, particularly at the junctions of 

dissimilar objects. These characteristics lead to associating the low frequencies of the 

Fourier transform of the logarithm of an image with illumination and the high 

frequencies with reflectance. A good deal of control can be gained over the illumination 

and reflectance components with the homomorphic filter. This control requires 

specification of a filter function H(u,v) that affects the low and high frequency 

components of the Fourier transform in different ways. If the parameters % and jn are 

chosen so that % < 1 and ?fr > 1, the filter function shown tends to decrease the low 

frequencies and amplify the high frequencies [121]. The net result is simultaneous 

dynamic range compression and contrast enhancement. In conclusion, the homomorphic 

filter is given by: 

H(u,v) = (yH-rL)(\-e-«D2{u<v)/n>>)+rL (4.3) 

The coefficient c controls the sharpness of the slope at the transition between high and 

low frequencies, whereas D0 is a constant that controls the shape of the filter and D(u,v) 

is the distance in pixels from the origin of the filter [121]. 

4.2.2. Anisotropic Diffusion 

Anisotropic systems are those that exhibit a preferential spreading direction while 

isotropic systems are those that have no preferences. The Perona-Malik anisotropic 

diffusion method [122] was implemented here in order to reduce and remove both noise 

and texture from the image, as well as, to preserve and enhance structures. The diffusion 

equation is given by 
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^ = div{c(x,y,t)Vl) (4.4) 
dt 

Where / is the input image and c(x, y, t), the diffusion coefficient, will control the degree 

of smoothing at each pixel point in the image. The diffusion coefficient is a 

monotonically decreasing function of the image gradient magnitude. It allows for locally 

adaptive diffusion strengths; edges are selectively smoothed or enhanced based on the 

evaluation of the diffusion function. Although any monotonically decreasing continuous 

function of the gradient would suffice as a diffusion function, two functions have been 

suggested: 

N 2 
c t(x,y;r) = exp(- (—) ) 

< rt
 X ( 4 - 5 ) 

c2(x,y;t) = 
l + ( — ) H a 

K 

The variable K is referred to as the diffusion constant or the flow constant. The variable 

a, controls the speed of diffusion and takes on a value greater than zero. Obviously, the 

behavior of the filter depends on K. The greatest flow is produced when the image 

gradient magnitude is close to the value of K. Therefore, by choosing K to correspond to 

gradient magnitudes produced by noise, the diffusion process can be used to reduce 

noise in images. Assuming an image contains no discontinuities, object edges can be 

enhanced by choosing a value of K slightly less than the gradient magnitude of the 

edges. 

4.2.3. Complex Shock Filtering 

Gilboa et al. have recently developed a filter coupling shock and linear diffusion in the 

discrete domain, showing that the process converges to a trivial constant steady state. To 

regularize the shock filter, the authors suggest adding a complex diffusion term and 

using the imaginary value as the controller for the direction of the flow instead of the 

second derivative. The complex shock filter is given by 
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/, = - - arctan (a Im(-)) |V/| + XI m + XI ̂  (4.6) 

where a is a parameter that controls the sharpness of the slope, X= rei0 is a complex 

scalar, X is a real scalar, £ is the direction perpendicular to the gradient and r\ is the 

direction of the gradient. The complex shock filter results in a robust and stable 

deblurring process that can still be effective in noisy environments, such as in 

fluoroscopy, due to the low signal to noise ratio of these images. The complex filter is an 

elegant way to avoid the need of convolving the signal in each iteration and still get 

smoothed estimations. The time dependency of the process is inherent, without the need 

to explicitly use the evolution time t. Moreover, the imaginary value receives feedback -

it is smoothed by the diffusion and enhanced at sharp transitions by the shock, thus can 

serve better for controlling the process than a simple second derivative. A complete 

derivation is found in [123]. 

4.2.4. Morphological Operation 

Morphological filtering was applied as a final image processing step in order to 

eliminate background elements around the primary coronary arteries. The structuring 

element consists of a pattern specified as the coordinates of a number of discrete points 

relative to a defined origin. Normally Cartesian coordinates are used and so a convenient 

way of representing the element is as a small image on a rectangular grid. We chose a 

disk structuring element that has a radius of a few pixels, since the contours of the 

coronary arteries can be modeled as a collection of disks varying slowly at a certain 

radius, and its centerline is the union of the centers of these disks. Figure 4.2 shows an 

example of such a structuring element. The origin is marked by a circle around that 

point. The structuring element will suppress the background (black) and enhance the 

arteries (grayscale). When a morphological operation is carried out, the origin of the 

structuring element is typically translated to each pixel position in the image in turn, and 
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then the points within the translated structuring element are compared with the 

underlying image pixel values [124]. 
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Fig 4.2. Shown is an example 
of a disk structuring element 
of radius 3 pixels. The origin 
pixel is circled and all other 
vacant pixel values are set to 
zero. 

4.3 Centerline Extraction 

In order to perform temporal tracking and 3D reconstruction of the obstructed coronary 

arteries, we need to extract its centerline in a first image representing the diastolic phase. 

A two-click centerline extraction approach will be introduced in the following section. 

4.3.1 Fast Marching Method 

The proposed method for extracting the centerline of the artery is the Fast Marching 

Method. The isotropic form of the fast marching method algorithm is inspired by 

Qingfen Lin's thesis [30]. In Cartesian coordinates, the goal is to find the shortest path 

between two points that minimizes a cost function. If the cost r is only a function of the 

location x in the image domain, then the cost function is called isotropic. Hence, if the 

cost function is isotropic, the arrival time map U satisfies the Eikonal equation 

\NU \ = (4.7) 
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The discrete values of the above equation are of interest. On a 2D Cartesian grid with 

coordinates i and j , it was shown by previous authors that the solution to the following 

equation will give the correct solution u^ for U at (i, j): 

max k . ; - MM,, > ",-,;• - UMJ.o)2 + max(w,. _, - «,,_,_,, K,. , - «,._,+,,o)2 = T^ (4.8) 

We recall that a single-pass algorithm to solve equation (4.7) was proposed 

independently by Sethian [27] who named it Fast Marching. The principal strategy of 

this algorithm is to introduce an order in the selection of the grid points of a 2D 

coordinate system, in a way similar to the well-known Dijkstra algorithm. This order is 

based on the fact that the arrival time u at any point depends only on neighbors that have 

smaller values. Thus, one-sided differences in equation (4.8) that look in the "upwind 

direction of the moving front" are sufficient when solving equation (4.7). In the 2D 

Cartesian space shown in Figure 4.3, the cost function is defined at the cross-positions in 

the center of each pixel. Assume that towards the point C, a planar wave is arriving in 

the northwest quadrant as in Figure 4.3c. 

* - - # 

- * -

^ F T T % 

- * -
(a) (b) 

&*%" 
%^^"^ 

(c) 

Fig 4.3. (a) 2D Cartesian grid. The arrival time at point C is to be computed from point A and B. (b) 
The arrival time at point C is approximated as the summation of the arrival time at point D and the 
time of traveling from D to C. (c) Alternative interpretation of (b) given by the direction cosines. 
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Since the farthest way in traveling in the isotropic case always occurs along the direction 

that is perpendicular to the wave front, the arrival time uc at point C satisfies: 

ur-uA = Trcos^v 
(4.9) 

uc-uB = Tccos</>x 

Since <j>x and Qy are complementary angles, we have 

{uc-uAf+(uc-uBf = T2
C (4.10) 

which is one of the solutions to the quadratic formula of equation (4.8). The fast 

marching method is illustrated in Figure 4.4 and summarized in Outline 4.3.1. The 

method resembles Dijkstra's shortest path algorithm and is described as follows. Since 

u(xm) is the smallest among the not yet accepted points, and w-values only depend on 

points that have smaller w-values than itself, u(xm) will not be changed further and can be 

moved to the Accepted set. The updating step after accepting point xm is given in Lin's 

thesis and omitted here for brevity [30]. In the updating scheme given inside the box, 

new values are only computed from already accepted points. This is an efficient 

implementation since unnecessary calculations are excluded. To determine the 

minimum-cost path after the end point is reached, a back-propagation from the end point 

to the starting point is carried out. This proposed method for centerline extraction limits 

user interactivity with the image by clicking only 2 points for initialization (start and end 

point) [30]. To initialize the algorithm we chose as a cost function the inverse of the 

image obtained by the 4-step filter. 
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Fig 4.4. The Fast Marching Method. The point xm has the minimum arrival time among all 
the Trial points. It will be moved to the Accepted set and the arrival times of its neighbors 
are to be updated. 

Outline 4.3.1: Fast Marching Algorithm 

Definition: 
1. Accepted is the set of all grid points at which the w-value will not be changed. 
2. Trial is the set of grid points to be examined. Their w-values have been 
computed. 
3. Far is the set of all the other grid points. Their w-values have never been 
computed. 
4. The cost function t(x) is the cost of traveling at each grid point. 

Initialization: 
5. Trial set is the starting point xO, with u(x0) = 0; 
6. Far set is all the other grid points with u(x) = 1; 

Loop: 
7. Let xm be the Trial point with the smallest w-value; 
8. Move it from the Trial set to the Accepted set; 
9. Update neighbors of xm 
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4.4 Single View Tracking Algorithm 

Following the centerline extraction procedure, we are now ready to temporally estimate 

the positions of the artery centerlines in subsequent image frames. The tools required to 

perform such a task are described below. 

4.4.1 Pyramidal Lucas-Kanade Optical Flow 

The traditional Lucas-Kanade optic flow technique proposes to solve the brightness 

constant constraint equation by assuming constant flow over a fixed neighborhood 

region, w: 

_E w / A 5>7>2 

Typically, the optical flow solution is solved by defining a small [5x5] window region, 

w and assigning a high weight to the center pixel. The gradients of the image Ix, Iy, as 

well as, the temporal gradient between consecutive images /,, are needed to solve for the 

flow values. Each frame is convolved in x, y, and t with a 1 x 5 kernel to compute Ix, Iy, 

and It, for each pixel. The kernel used in the implementation is shown in Figure 4.5 

along with calculations of Ix and Iy using a sample set of image values. Gradients in x 

and y can be computed within the current frame, however It must be computed using 

consecutive temporal images. 

flow 

V flow J 

(4.11) 
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Fig 4.5. Estimation of spatial gradients. (Left) Sample gradient calculation in the x-direction of an 
image and (Right) in the y-direction of the image. 

The solution obtained (uflow, VJJOW) is valid for objects experiencing small deformations. A 

modification proposed to remedy this problem is known as multi-resolution optical flow 

[125]. This consists of the following three steps: a) construction of Gaussian pyramids 

for each image, b) computation of optical flow at a coarse scale, and c) propagation of 

that optical flow to the next level of the pyramid. The first step is to create a Gaussian 

pyramid containing images at different scales. Each level of the pyramid should contain 

images scaled by a factor of two (and anti-aliased by virtue of the Gaussian filtering). 

Iteration over each level in the pyramid follows, and the optical flow is updated at each 

step. Once the optical flow is computed at a given resolution, it can be propagated to the 

next resolution by interpolation (Figure 4.6). 

run iterative L-K <_ 

I warp & upsample 

run iterative L-K • • 

II~10 pixels. 

Fig 4.6. Coarse to fine optical flow estimation. (Left pair) The iterative refinement process 
begins with the estimation of the image velocities at each pixel by solving Lucas-Kanade 
equations. Then, image H is warped towards image / using the estimated flow field by using 
conventional image warping techniques. (Right pair) Ideal values obtained for deformations of 
about 10 pixels in the x pixel components. Image taken from [125]. 
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The flow values also need to be scaled to account for resizing. The objective is to find 

the corresponding pixel location in a second image, /, from a pixel position in the first 

image, H. We achieve this by using the pyramidal approach and calculating the final 

optical flow vector, d, yielding H= I + d. The complete Pseudocode is presented in 

Figure 4.7. 

Goal: Let u be a point on image I, Find its corresponding location v on image J 

Build pyramid rfynywentaizoiis oj'I and J: {I }&rr*\...*&-«* arid { J }£:r^,. , .x.m 

IniHaikaUmi of pyramidal guess: g^™ = [|^m $£ ' m | r = [0 0]^ 

for L — 1,^ down t o 0 with s t ep of -1 

Loeatum of point u mi image !**; ulj — \px p^ ™ u / 2 £ 

„ . »,.f . , , , , TL(x+l.v)~IL(x-i.,v) 
Uertmtwe ofl. vnm msspeet to si tI\xly) •= • " ^-^ 

„ rTf . . /•''(tf.u + l ) I^'S'K.W 1) 
Dermmhve w/.i ?ium resped: to y: .i^x.y) ~ — — - '•—• *-

Spahal S-«i«e «»'«.' (*= )_ 2 - I /,(*.„)/„(*.„) /f(*.y) I 

IniliaHxatitm of iterative L-K: F° = [0 0]1 

for k = 1 t o K with s t e p of 1 (or until | j ! ^ ij < accuracy threshold) 

Image difference. SIk{x.p) = IL(x,y) - JL[x + gl + t'J'~l,«/ + s J + " J ~ I ) 

Image mitmiat&h vechtr: I& = \^ V ^ 

Opiiad fkm (I/uces-Kanade): tj = (?""' && 

G«£,s.*s / o r rceatf iiemiiom l^1 — i ^ " 1 -+- ff^ 

ewd of far^loop on h 

Final optical flow ai level L< d = i* 

Guess for nest, level I - 1: g 6 " 1 - [<?£"» s j - ' f = 2 (g1' + d £ ) 

end ol° fbr-kiop on L 

Final optical ffaw vector: d — g -f d 

Lwafaon. of point an J: v = u + d 

Solution; The corresponding j»int, is at location v on image J 

Fig 4.7. Pseudocode of the displacement estimation of structures between images 
using a pyramid optical flow approach [125]. 
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4.4.2 Gradient Vector Flow & Snakes 

Active contour models have been vastly used in many tracking and segmentation 

problems and they are represented by a parametric curve x = [x(s), y(s)] that deforms 

through the image domain to minimize an energy function. They minimize the following 

Euler equation: 

ax"-/3x"-VEaa=0 (4.12) 

The first two parameters a and /? are weights explicitly used for the internal bending 

energy and V is a gradient operator. The gradient vector flow field (GVF) is not 

formulated using the standard energy minimization framework, but is constructed by a 

force balance condition. As developed in [126], the GVF is a vector field that minimizes 

the energy function: 

a 2, 2. 
E = JjO^Vur + Vv ) + V / ^ V - V f p d x d y (4.13) 

where (u,v) is the vector field and/is the edge map of the input image with fj being a 

parameter controlling the smoothness of the GVF field. Traditional edge maps are 

computed using Gaussian convolutions at a specified scale, a. The external energy term 

in (4.12) is replaced by (4.13) to yield the final active contour formulation: 

ax"-fix"" + v = 0 (4.14) 

where x is the active contour curve. Lastly, we introduce a third and final parameter, r, 

which is defined as the iteration time step. By normalizing the external force, each 

contour point will move at most x pixels per iteration (example: 0.1 pixel time steps). 

Figure 4.8 illustrates the major advantage of the gradient vector flow formulation. The 

active contour has a larger capture range for it to converge properly towards the targeted 

structure. 
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The concavity capture range is imperative when dealing with coronary arteries that have 

a stenosis. The inherent U-shape of the stenosis reaffirms the necessity of implementing 

a GVF formulation for the segmentation and tracking procedures. The optical flow 

deformation values (uflow, Vflow) will "boost" our centerline deformable contour much 

closer to the true position of the artery in the subsequent frame, in hopes of decreasing 

the capture range of the snake and having it successfully converge during the 

optimization step. 

4.5 Camera Coordinate System and Projection Matrices 

Figure 4.9 shows the full perspective camera model that will be used for the 3D 

reconstruction problem. If we define a three dimensional point Pworid= [X Y Z 1 ] in the 

world coordinate system, then its 2D projection in an image, m= [u v 1]T, is achieved by 

constructing a projection matrix: 
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(4.15) 

The intrinsic matrix of size [3x3], contains pixel coordinates of the image center, also 

known as the principal points (u0, v0), the scaling factor k, which defines the number of 

pixels per unit distance in image coordinates, and the focal length / of the camera (in 

meters). The extrinsic matrix of size [3x4] is identified by the transformation needed to 

align the world coordinate system to the camera coordinate system. This means that a 

translation vector, t, and a rotation matrix, R, needs to be found between the positions of 

the origins and in order to align the corresponding axis of the two reference frames 

respectively. 

Iraai^f? plane ^ 
coordinates 

V 

% 

s -• 
coordmat** 

*••*-»?' Optical 

' ^ _ I ^ ^ 

/ World frame 
jf coordi-iA-teas 

_____ 

Fig 4.9. The perspective camera model. Any 3D world point can be projected 
onto a 2D plane and its coordinates would be (u, v) pixels. The camera model 
is taken from the Epipolar Geometry Toolbox [127]. 
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4.5.1 Orthographic and Weak Perspective Camera Models 

An orthographic camera is one that uses parallel projection to generate a two 

dimensional image of a three dimensional object. The image plane is perpendicular to 

the viewing direction. Parallel projections are less realistic than full perspective 

projections, however they have the advantage that parallel lines remain parallel in the 

projection, and distances are not distorted by perspective foreshortening. The 

orthographic projection matrix is given by 

orlho 

k*rn k*rx2 k*rn (k*tx) + u0 

k*r2l k*r22 k*r23 (k*ty) + v0 

0 0 0 1 

(4.16) 

The weak perspective camera is approximately the full perspective camera with 

individual depth points Z, replaced by an average depth Zavg. We define the average 

depth, Zavg as being located at the centroid of the cloud of 3D points in the world 

coordinate system. The weak perspective projection matrix is given by 

weak 

f*k*rn f*k*rn f*k*rn (f*k*tx) + (u„*Zavf!) 

f*k*ru f*k*r22 f*k*r23 (f*k*ty) + (v0*Zmg) 

0 0 0 ^avg 

where Zavg ([r31 r32 r33] x centroid) +1, 

(4.17) 

Derivations are omitted here for the sake of brevity. Figure 4.10 shows a depiction of the 

approximate camera models. 
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Fig 4.10. (Left) Orthographic camera model. It is described by a projection of a 3D object onto a 
plane by a set of parallel rays orthogonal to the image plane. (Right) Weak Perspective camera 
model. It is equivalent to a scaled orthographic projection where the projection of each 3-D point 
is not affected by their respective depth coordinates but rather by the average scene depth. 

In the clinical setting, the monoplane C-arm fluoroscope parameters are usually given in 

a header file that comes included with the angiographic datasets (Figure 4.11). Thus, the 

focal length described above would be equivalent to the SID variable of the C-arm, and 

the rotation matrices above would need to be calculated using the PA and SA values. 

RAO LAO Cranial Caudal 

f /X\ 
/VY 

^J z? 
f 'V" " 

Primary Angle Secondary Angle 

Fig 4.11. Gantry parameters for a typical monoplane C-arm fluoroscope. (Left) The rotation 
angles with respect to a patient can be decomposed to primary and secondary angle of rotations. 
(Right) the intensifier size determines the size of pixels with respect to world coordinates, and the 
source to object distance will be defined as half the value of the source to intensifier distance. 
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4.6 Optimal Correspondence for Biplane 3D Reconstruction 

4.6.1 3D Biplane Reconstruction 

The biplane algorithm used is a standard algorithm where both projection matrices are 

known a priori, due to the availability of the gantry parameters from the dataset header 

files for both images, and the 3D world points are determined by solving an over 

determined set of equations, as in the following: 

PUZMXYZY? PUIWXYZI? 
PLn&)*(XYZl)T P l ( ^ ) x ( I F Z l ) r 

P J , 2 ( 6 ) x ( X r Z l ) r Pm
2

a ,2(£)x(XFZl)7 

(4.18) 

^2(^,)x(iyzi)r p ^ ) x ( x y z i ) ' 

The above four equations with three unknowns (X, Y, Z) are governed by the 6 gantry 

parameters <̂ = [SID, SOD, PA, SA, u0, v0] for i=l, 2 image views. Further, PJ
mat, for j=\, 

2, 3 signifies t he / line of the projection matrix. 

4.6.2 RANSAC & Geometric Curvature Constraint 

As stated in the previous chapter, a major problem encountered when performing 3D 

reconstruction using multiple view algorithms is the matching of the feature points 

between the images. 

Recalling that the fundamental matrix, F, is the algebraic representation of the 

epipolar geometry, its precision is affected by outlier errors, and robust methods need to 

be employed when calculating it. RANSAC estimates F by randomly selecting the 

minimum required number of correspondences. Given a number of points k needed to 

estimate the RANSAC model, S subsets of samples of k points are first extracted from 
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the data and used to estimate an initial set of S hypotheses. If the minimal number of 

data points k needed to estimate the model and the fraction of the outliers e, are known, 

we can compute the confidence p that given s samples, at least one of the samples is 

outlier free as: 

p = l-(l-(l-e)k)s (4.19) 

To achieve a desired confidence p we can compute from the above equation the required 

number of samples as follows: 

s = 
ln(l-/P) 

ln ( l - ( l - c )* ) 
(4.20) 

For each F computed, the set of inliers is calculated. The fundamental matrix with the 

highest consensus of inliers is selected to be the final computed F. This computation is 

repeated iteratively until a certain threshold is achieved. This threshold is equivalent to 

the inlier pixel distance with respect to the epipolar line. It is equal to the Sampson 

distance (geometric error) of the fit of a fundamental matrix with respect to a subset of 

corresponding points: 

(xTFx- )2 

Sampson error = ———-, -,— (4.21) 
(Fjxrf + (FjXi)l + (FjTxt )? + (F/jc,. ) \ 

As RANSAC is a robust method used primarily in the 3D vision environment where 

rigid motion of objects is predominant, we cannot rely on its solutions to obtain a final 

set of matching correspondences. Hence, we will rely on a method that will filter out the 

RANSAC optimum matches by taking into consideration the 2D information of the 

points, as well as their 3D geometrical reprojected curvature. 

Li et al. [128] relate the 3D differential geometry of curves in space to the 2D 

differential geometry of the planar curves obtained on 2D images. This relationship can 

then be used to solve the stereo-correspondence problem. The local behavior of a 3D 



81 

curve can be determined by a third-order Taylor expansion given that we know the 

tangent, normal, binormal, curvature and torsion (T, TV, B, K, Z) at that point. In projective 

geometry, a 3D point will project onto the left image and right images of a stereo image 

pair. We define 0 as the orientation of a tangent to a 2D point in the image. 

Corresponding 2D curve points are represented by their pixel positions, tangent 

orientation and curvature, that is, (xi, yi, Q\, KI) and (xr, yr, 6r, Kr) in the left and right 

image respectively. These are called image corresponding pairs. Li shows that by using 

projective properties of a unit sphere centered at the camera, that the 3D normal N and 

the curvature K can be recovered. Hence, given image corresponding pairs taken from 

specific X-ray gantry settings, the 3D position X and the 3D tangent T can be computed 

using standard methods (epipolar geometry and Frenet-Serret equations respectively). 

Then in order to solve for the 3D normal, TV, and curvature, K, we need to know the 

normalized vector pointing towards the projection, p, the focal length / that is assumed 

to be the same for both cameras, the distance between 3D point and camera center, X, 

and the 2D tangent and curvature in the image (Figure 4.12). The following equations 

are used to relate 2D/3D curvature. 

,_/(l-OvD2)3/2 

Ml-(Prh)2) 
fV-(pr-T)2f2 

4a-OvO2) 
T•NK=0 

(PIXT)-NJC= \ \ \Fl [2\n fc; {leftimage) 

(prxT)-NJC = J^—, / 2 \ n K r (rightimage) (4.22) 

This is a linear system with four unknowns subject to the constraint that ll/VII =1, which 

will be treated as three unknowns NK = [NXK, N},K, NZK]. The optimized three 

dimensional curvature, K, can be solved for as it is equal to WNKW. Corresponding points 

in images that reproject into the 3D world coordinate system and that have a K similar to 

the 3D Frenet-Serret curvature values of the coronary arteries will be retained as 

potential candidates. 
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The derivation of the above constraints is as follows. We first assume that a smooth 3D 

curve with non-vanishing curvature is constructed in three dimensions. We denote its 

position by the vector r(s) in the world coordinate system, and its spherical projection to 

the unit radius image sphere with center c by a vector u in the camera coordinate system 

(Figure 4.13). 
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Fig 4.13. 3D space curve, its 
spherical projection to unit sphere, 
and its perspective projection to 
image plane. Image taken from 
[128]. 

Assume the world and the camera coordinate systems have the same orientation, that is, 

there is only translation (no rotations between them. Then the space curve can be 

described as: r(s) = c + A,(s)u(s), where c is the vector pointing to the camera center in 

the world coordinate system, X is the Euclidean distance of r(s) to the camera coordinate 

system origin, and u is the vector pointing to its spherical projection in the camera 

coordinate system. 

Previous work [129, 130] shows that the relationship of image geodesic 

curvature and the 3D space curve geometry under perspective projection is: 

Ks = 
Aic(uxT)-N 

( 1 - O - r ) 2 ) 3 7 2 (4.23) 

where K* is the image geodesic curvature at the image spherical projection u of the space 

point being studied, T and N are the space tangent and normal at that point, K is the 

curvature at the space point r(s). We now calculate the relationship between 3D space 

curve properties and their (measurable) perspective projection image plane properties. 

Consider the 2D image plane curve formed by r(s) through perspective 

projection, with p the vector pointing to the projection in the image plane (u = p/llpll), 

and f the vector pointing to the image center, both in the camera coordinate system. 
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Since we choose the camera and image coordinate systems such that they are aligned, 

two dimensional vectors tangent and normal in the image coordinate system can be lifted 

to R3, the camera coordinate system, to t and n, with the third component being zero. 

Note that this construction will form the same spherical projection as r(s). Furthermore, 

although for a plane curve the curvature is defined as the signed curvature KF, and the 

normal is defined such that the tangent-normal basis has the same orientation as the 

coordinate axis basis, the quantity /ĉ n is still the same if we study this curve as a 3D 

curve. The binormal at any point on this curve is b = t x n = f/llfll. The relationship 

between the perspective projection image curvature and the geodesic curvature is thus 

given by: 

\p\Kp (uxt) • n ||/?||jfp(w-(/xn) 

~ ( l - ( w r ) 2 ) 3 / 2 ~ (l-(u-t)2)V2 

f 1 
\\P\\K U II . 1 1 II , 1 1 K P J 

( l - ( M - f ) 2 ) 3 / 2 ( l - ( « - f ) 2 ) 3 / 2 
(4.24) 

( l - ( « - 0 2 ) 3 ' 2 ( l - ( « - 0 2 ) 3 / 2 

with f=llfll the focal length obtained from the camera calibration. Using the geodesic 

curvature as the bridge, we can now connect the above two equations to formulate the 

relationship of the 3D space curve curvature and its perspective projection image 

curvature: 

MuXT)N * = l ^ K > (4.25) 
( i - ( « - D 2 ) 3 / 2 (]-(u-t)2)V2 

This final equation gives the first two constraint equations for both views in the non 

simultaneous image setup. 
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4.7 Three Dimensional Reconstruction using Monoplane Angiographic Images 

In order to test the feasibility of reconstructing the coronary arteries in three dimensions 

using only a single view, we need to take advantage of the information readily available 

to us. First, we know that the X-ray gantry parameter settings remain unchanged for a 

given angiographic dataset. This is important as we can create a projection matrix from 

the given parameter values in the header file. An example of such values are illustrated 

in (Figure 4.14-right). 

Distance Source to Detector (mm) "1080" 

Intensifier Size (mm) "178" 

Imager Pixel Spacing (mm/pixel) "0.3704 " 

Positioner Primary Angle (degrees) "-34.0 " 

Positioner Secondary Angle (degrees) " 30 " 

Rows (pixels) "512" 

Columns (pixels) "512" 

Window Center (pixels) "128 " 

Window Width (pixels) "255 " 

Fig 4.14. {Left) Monoplane coronary angiogram. Regions of potential rigid motion, such as the 
coronary bifurcation points, are shown circled. (Right) The self calibration of a monoplane C-arm 
fluoroscope involves estimating the gantry parameter values. 

Secondly, we can make use of pre-operative volume information by either making use of 

computed tomography (CT), magnetic resonance imaging (MRI), or by using rotational 

X-ray images (3 or more projections at different angulations). In the CT and MRI case, 

by applying manual segmentation or advanced segmentation techniques such as level 

sets for example, we can obtain a 3D volume of the coronary arteries that are being 

investigated. On the other hand, if we are provided with images from a rotational X-ray 

system, then applying a three view reconstruction algorithm can yield a suitable 3D 
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volume. Lastly, we see no disadvantage of reconstructing a cardiac structure using the 

biplane reconstruction algorithm. In fact, it may be advantageous pursuing this path as 

the X-ray fluoroscope is already located in the intervention room, hence there is no need 

to rely on pre-operative data coming from another modality technology. 

The strategy of our proposed monoplane reconstruction algorithm is as follows. 

Our first hypothesis is that we can exploit the rigid movements experienced by certain 

regions of the coronary arteries as they deform through the cardiac cycle. As an example 

of such rigid regions, the bifurcation points may be considered or we can concentrate on 

a section of the artery where a stent may have been implanted to restore blood flow. 

These regions technically experience movements of a non-contractive nature when 

compared to other parts of the coronary arteries (Figure 4.14-left). 

Therefore, if we suppose that we have at our disposal a set of n 3D points (X0n, 

Y0n, Z0n) at time t = 0 with the use of the pre-operative data, then we are able to optimize 

the gantry parameters of the X-ray system by using a standard direct linear 

transformation (DLT) algorithm. Figure 4.15 demonstrates the 2D/3D registration 

procedure between the two different modalities. As the registration scope is beyond the 

thesis objectives, we focus on implementing the DLT calibration to obtain the projection 

matrix. Having optimized the gantry system parameters we can now solve for the 3D 

displacements (dxn, dy„, dzn) between subsequent X-ray image frames. 
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Fig 4.15. Visualization of the 2D/3D 
scenario. The 3D vasculature obtained 
from either MRI or CT scans is to be 
deformably registered to the 2D X-ray 
projection image. Image taken from 
[131]. 

4.7.1 Minimum of Three Images for Monoplane 3D reconstruction 

Expanding equations (4.18) and using an additional angiographic image at time t = 1, we 

obtain our first two equations as follows, 

u 
mx (X 0 + dxx) + m2 (YO + dyx) + m3 (ZO + dzx) + m. 4 

v\ 

m,(IO + dxx) + ml0 (YO + dyl) + mn (ZO + dzx) + mn 

(4.26) 
m5 (X 0 + dxx) + mb (YO + dyx) + m7 (ZO + dz{) + m8 

m9 (XO + dxx) + m10 (YO + dyx) + mxx (ZO + dzx) + mx2 

Both equations describe the pixel coordinates in an image (u, v) and the twelve 

coefficients mi=i:ii are the values of the projection matrix components. By adding an 

additional X-ray image frame at time t = 2 we obtain two new equations with three 

additional unknowns in 3D 
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ml(XO-\-dxl + dx2) + rn2(YO+dy] + dy2) + m3(Z0 +di\ Jrdz1) + mA 
U o ~ 

m9(X0 + dxl + dx2) + mw(YO+dyl + dy 2) + mn(ZO + dzy + dz2) + ml2 

(4.27 
m5 (X0 + dxx + dx2) + m6 (F0 + dyx + dy2) + m7 (Z0 + dz\ + dz2) + m% 

v2 — 
m9(X0 + dx{ + dx2) + mm{Y0 + dyx +dy2) + mii(Z0 + dzi + dz2) + mn 

These first four equations take into account the spatial positions of a projected 3D world 

point on the X-ray images. We can extract two additional equations on the basis that we 

know the euclidean distances, d, between image points in two consecutive images. 

1 \ 7 9 

<̂ oi = V( M i - M o) + ( v i - v o ) using images at t = 0 and t = 1 
(4.28) 

dl2 =yj(u2 -Hi) 2 +(v2 -Vj)2 using images at t = 1 and t = 2 

The equations defined over a set of three angiographic images are the strict minimum in 

order to solve for the three dimensional displacements. A Levenberg-Marquardt 

optimization scheme [132] can be used here in order to solve for the unknown 

displacements. For the optimization scheme, initial approximations are a requirement to 

initialize the process. Hence, a suitable approximation for the displacements dx and dy 

can be obtained if we consider an orthographic back projection of the 2D image points. 

As for the displacement dz, two possible scenarios arise when back projecting an image 

point to the world reference frame (Figure 4.16). We expect that a mean displacement of 

the depth, using a weak perspective model, is a suitable approximation for dz. If we 

assume that the average depth of the coronary artery remains relatively constant in 

consecutive time frames, then we can readily calculate the average depth of the 3D 

points (XO, YO, ZO) at time t = 0. The mean depth calculated will be equal at time instants 

t=\, 2, etc., signifying that dzi and di2 will be set to zero for the optimization scheme. 

However, for the sake of a more exhaustive analysis, we will also consider depth 

displacements dz € [1, 2] millimeters as well. The reason for this is to provide 
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reasonable comparisons within a range of suitable approximations to validate the 

monoplane algorithm. For example, we deem depth displacements ranging between [5-

10] mm unrealistic and thus settled for the three possible values we proposed as a logical 

starting point for our algorithm. 

\ 

y 

9 

I * Fig 4.16. When considering 
- ^ | backprojection of a 2D point to a 3D 

~*-*~\*-, world point, two solutions might be 
"̂*"*»~««̂  fo possible when estimating the depth of a 

---^ J ^ point. Here, we will assume an average 
_y^ depth of the coronaries, dz, and an 

j p F * orthographic projection approximation 
for dx and dy. Image taken from [118]. 

In the worst case, comparing the full perspective camera model to the weak perspective 

model gives the same angular variation as when an initial 3D point location is 

misestimated, using full perspective geometry alone. This can be a valid hypothesis 

when temporally tracking artery corresponding points that lie close to one another but 

would degenerate if we temporally tracked individual bifurcation points as they can lie 

very far from one another in the X-ray image. 

We conclude by stating that the monoplane reconstruction algorithm proposed 

can be extrapolated by considering more than three consecutive images and that any 

other cardiac structures or objects (i.e. aorta, catheters) may be considered for 

reconstruction purposes. 
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4.8 Algorithm Validations 

We present a brief overview of the validation process for each algorithm proposed 

previously. The choice for algorithmic parameters will be justified in each section of the 

following chapter. 

4.8.1 Automatic Image Extraction Validation 

The proposed extraction algorithm will be tested on six single view coronary datasets. 

As we did not have simultaneous electrocardiogram data to strengthen our validation, we 

simply looked at the image frame that displayed the smallest standard deviation obtained 

from our algorithm. The visual inspection should conclude that the image frame presents 

the least movement when compared to the subsequent images representing the cardiac 

cycle. 

4.8.2 Angiographic Image Enhancement Validation 

Our 4-step filter was applied to seven distinct angiographic datasets. Most of the 

parameters in our filter were left to the optimal values as designed by the respective 

authors who developed the homomorphic, anisotropic, and shock filters. The remaining 

parameters were empirically determined by running tests on the images in order to 

obtain images that enhanced the most prominent arteries present in the 2D images. The 

Lorenz and Frangi filters were also implemented as a comparison. For both these 

multiscale filters, we chose ten optimal scale values ranging between [0.25-2.5] pixels to 

provide the best chance in obtaining a high quality enhanced image in terms of 

background suppression and vessel enhancement. 
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4.8.3 Centerline Extraction Validation 

The fast inarching method was applied using our 4-step filtered image. This cost image 

served as a cost function to extract the centerline. To validate the accuracy of our two-

click extracted centerline coordinates, we manually traced the medial axis on the 

targeted centerline and compared the manual 2D coordinates with those obtained by the 

FMM. The mean distance between the two coordinate sets was used for general quality 

assessment. Furthermore, we tested the extraction process on three different cost images. 

These three images were obtained by applying only: (i) the homomorphic filter, (ii) both 

the homomorphic and anisotropic filters and (iii) the homomorphic, anisotropic and 

shock filters. These cost images were used to verify the importance of applying all four 

filters to obtain a valid cost function in order to extract the artery centerlines. 

4.8.4 Temporal Tracking Validation 

Our tracking algorithm was tested on three different angiographic datasets on a total of 

38 images. Two of the datasets showed a potential stenosis whereas the last dataset 

showed a healthy coronary tree. Validation was performed on both the pyramidal optical 

flow approach and the GVF external image fields. We compared the classical optical 

flow formulation to the pyramidal Lucas Kanade implementation by illustrating the 

estimated centerlines obtained in preceding images. The GVF fields were calculated 

using our 4-step filtered image and compared to the traditional edge images used in its 

formulation. Lastly, the active contour parameters were chosen to be the optimal ones 

provided by the authors who developed the GVF technique. Visual inspection was used 

to categorize a successful convergence of the active contour towards the centerline of the 

artery. 
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4.8.5 Optimal Point Correspondence Validation 

Synthetic and clinical validation was performed to verify our novel curvature constraint. 

First, two traditional gantry setups were chosen when performing synthetic 

experimentation. These were the LAO/RAO and posterior/anterior viewing angles. We 

created a set of 3D coronary coordinates at a first time instant and deformed them 

through time and reprojected their points in a minimum of 5 sets of biplane images. We 

then obtained possible point matches using the RANSAC method. Lastly, we performed 

3D reconstruction using those matches and the refined matches from the curvature 

constraint and compared the 3D RMS values. Clinical validation was performed using 

two distinct non simultaneous datasets by first self calibrating the gantry parameters 

using the curvature constraint point matches and then performing 3D reconstruction. 

4.8.6 Monoplane 3D Reconstruction Validation 

To validate our proposed monoplane algorithm we performed first rigid and non-rigid 

synthetic experimentation of structures. Since a centerline can be represented by a helix, 

we created a 3D helix in space and applied only rigid movement to it in a temporal 

fashion. The 3D points were reprojected in only single view 2D images. We also had at 

our disposal 13 ventricle markers of a sheep with their temporal 3D coordinates. These 

markers represent well the inherent non-rigid movement of the heart. We again 

reprojected these 3D markers on single plane synthetic images. Our monoplane 

algorithm was tested on the two types of movements. 

Clinical validation was performed using 20 sets of biplane images showing 

ablation catheters in the left ventricle of a dog. One biplane image represented the left 

lateral view, whereas the second image represented the posterior/anterior view. The 

objective was to estimate the depth of the tip electrode of the ablation catheter using our 

proposed monoplane procedure. Therefore, for each biplane dataset, we first 

reconstructed the catheter in 3D using the two view algorithm, and then we used this a 

priori 3D reconstruction to estimate the 3D geometry on one of the views above. The 
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estimation of the 3D geometry was performed using three consecutive X-ray images and 

five consecutive X-ray images. Results were presented in terms of 3D RMS errors 

obtained between our monoplane algorithm and the reconstruction from the 20 biplane 

datasets. 
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Chapter 5- Results & Discussion 

In this chapter, we will present the results obtained from the outlined methodology. 

First, we will show results for the different tools required to meet the two research 

hypothesis. These include: (i) extraction of the diastolic cardiac phase image, (ii) 

angiographic image segmentation, (iii) centerline extraction and (iv) temporal tracking. 

Then, we detail results for both hypotheses. These include the biplane matching process 

as well as the monoplane reconstruction algorithm. A general discussion will follow at 

the end of the chapter that will include the limitations of our methods and results. 

5.1 Automatic Image Extraction 

We tested the results on six angiographic datasets obtained from the Royal Victoria 

Hospital. Each dataset had an acquisition frame rate of 30 frames per second. This was 

equivalent to about 2 seconds of the cardiac cycle. We extracted a total of 65 image 

frames for each dataset and then calculated the standard deviation of the difference 

between consecutive image frames. In Figure 5.1, we can visualize the results obtained 

using the automatic extraction algorithm. It is to note that two apparent phase curves are 

visible before and after the 1 second time instant. In theory, two minimums can possibly 

be determined, one for each cardiac phase. The minimum peak corresponded to the 

smallest standard deviation, and hence the smallest heart motion, and by visualizing the 

actual angiographic image frame and its neighborhood, we confirmed that the image 

corresponded to the diastolic phase. 

We then investigated the quality of the images. Visual inspection of the diastolic 

images confirmed that the image also had the least motion blur. However, the method 

assumes that we can actually see the contrast enhanced coronary artery in the 

angiographic image displaying the diastolic cardiac phase. If this was not the case, the 

diastolic image frame was selected as the first standard deviation minimum located just 
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after the 1 second time instant, which is also the beginning of the second cardiac cycle 

(see 2nd image in second column of Figure 5.1). The main contribution of such a method 

is that it can potentially be used instead of acquiring simultaneous electrocardiograms 

(ECG) in order to extract the relevant images. 
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5.2 Angiographic X-ray Image Segmentation 

We added another angiographic dataset to bring the total to 7 different sets of images for 

image segmentation validation. The 4-step filter implementation first relies on a 

homomorphic filter to enhance contrast. This form of filter sharpens image features and 

flattens lighting variations in the X-ray image. The cutoff frequency of the filter was set 

to 0.5 and the ratio that high frequency values are boosted relative to the low frequency 

values was fixed to 2. These values were chosen so as to have a balance between visual 

contrasts and avoid losing contour information with respect to the principal coronary 

arteries. These two filter parameter values are to be unchanged when implementing the 

4-step filter as they were determined empirically in order to arrive at a final image that 

will lead to positive results when extracting the artery centerline. 

The Perona-Malik anisotropic diffusion filter was next implemented to enhance 

the quality of texture present in the image. It eliminates aliasing and introduces less blur 

thus preserving more detail. There are two parameters that need to be fixed. The 

parameter kappa, K, is fixed to 25 as it controls conduction as a function of the image 

gradient. If K is low then small intensity gradients are able to block conduction and 

hence diffusion across step edges (artery contours). A large value reduces the influence 

of intensity gradients on conduction. The parameter lambda controls speed of diffusion 

and we want it to be maximum so as to be time efficient. This parameter was set to 0.25. 

The number of iterations performed by the anisotropic filter was equal to 5. The 

parameter values, K and lambda, were chosen to be the same ones as optimized by 

Perona-Malik when smoothing any input image. 

The complex shock filter was then applied. The parameters chosen here were the 

same optimal ones as described by Gilboa et al. The complex scalar A = 0.1, the real 

scalar was fixed to X = 0.2, the parameter that controls the sharpness of the slope at the 

zero crossings of an artery edge is a= 0.3, and lastly the phase angle of complex part is 

fixed to 0= pi/1000. It was important to implement the complex shock filter because it 

not only smoothes texture perpendicular to the gradient, but also normal to it. Ideally, 
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the filter can be implemented at different phase angles in order to sweep the image in 

every direction in order to enhance all the arteries present in the X-ray image, regardless 

of their positions and angular configurations. The number of iterations for the complex 

shock filter was equal to 10. The shock filter parameters X, X, a, 9, were chosen to be the 

same as developed by Gilboa as they were optimized for noisy images such as 

angiography datasets. Had we increased the number of iterations drastically, the 

diffusion process would extend onto the coronary artery pixels and we would lose 

valuable perimeter information for the centerline extraction process. The same would be 

true when implementing the anisotropic diffusion process. 

Lastly, the morphological operator had a structuring element the shape of a disk 

with a total diameter of 10 pixels, which is roughly the size of the diameter of the 

principal coronary arteries present in the X-ray images. In essence, the morphological 

filter will enhance objects of size 10 pixels in the image and suppress their background. 

In Figure 5.2, we show the results of the Lorenz, Frangi and 4-step filter images 

applied to the four of the seven datasets. The response at different scales for the vessel 

enhancement filters can be combined by taking the maximum response over a range of 

scales. Hence, ten scales were used, a e [0.25, 2.5] pixels. These were the scales that 

provided the best visual images as shown in Figure 5.2. Had we selected other ranges for 

the Gaussian scales, the Lorenz and Frangi images would have degraded in quality. This 

is a disadvantage of the vessel enhancement method. The main contribution of our 

method was to develop a filter that behaved in the same manner as the vessel 

enhancement filters- by suppressing the image background and enhancing the artery 

contours. Further, we wanted to implement a filter that had all of its parameters fixed for 

the user in hopes of diminishing user interaction for the selection of parameter 

processes. In clinical practice, we do not want to impose on the cardiologist any further 

time consuming steps such as "fine tuning" of algorithmic parameters when enhancing 

angiographic images. Ultimately, this was the goal we wanted to achieve in the end. The 
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results in Figure 5.2 show that our filter visually performed as well as the Lorenz and 

Frangi filters. 

Fig 5.2. Vessel Enhancement Filters. {Left column) The Lorenz filter uses only the most 
predominant eigenvalues of the Hessian matrix in order to enhance the coronary arteries. 
{Center column) The Frangi filter uses all eigenvalues when enhancing the arteries. {Right 
column) Our proposed 4-step filter which is a combination of a homomorphic filter, anisotropic 
and shock filter and a morphological operator. The 4-step filter parameters remain constant, 
whereas the Gaussian scale used for the Lorenz and Frangi filters was set to 0.25 in this case. 
Had the Gaussian scale been larger in value, the filtered images would contain stronger artifacts. 
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5.3 Coronary Artery Centerline Extraction 

The speed or cost function used to initialize the fast marching method (FMM) will be 

equivalent to the reciprocal of our vessel-enhanced image using our 4-step filter. It is the 

fourth step of the filter (morphological) that will permit the cost image to have a high 

cost for background pixels, and a low cost for coronary artery vessel pixels. To initialize 

the centerline extraction process, the user clicks two points equal to the principal 

coronary artery extremities. Results are evaluated based on an error measure 

corresponding to the distance D(t) between all points in the centerline path extracted by 

the fast marching method, FMM(t), and a reference path drawn by an observer 

representing the true centerline position of the artery, Ref(s). The error measure is 

computed as follows: 

D(t)= min |FMM(t) - Ref(s)| (5.1) 
s 

The mean distance is used for general quality assessment. In Figure 5.3, some examples 

of coronary artery centerlines are shown on four of the seven datasets. The 

interventionist would select the coronary artery of interest to be investigated and then 

click its two extremities. The cost images worked satisfactorily considering the amount 

of noise present in the images. 
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Fig 5.3. Centerline extraction results on angiographic images using our proposed 4-step filter 
and FMM method. The centerlines are superimposed on the original diastolic fluoroscopic 
images. 

To justify the importance of the four preprocessing steps for our 4-step filter, we 

attempted to extract the centerlines using as a cost image: (i) only the homomorphic 

filtered image, (ii) the homomorphic and anisotropic filtered image, and (iii) the 

homomorphic filter coupled with shock and anisotropic diffusion image. In Figure 5.4, 

we note that the FMM was unable to cope with the cost images since an inaccurate path 
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was extracted between the extremities of the coronary artery. It is essential to include all 

four steps when using our empirically found parameter values. 

Lastly, Table 5.1 shows the results obtained in the study when comparing the automated 

centerline coordinates to those obtained manually. The Lorenz filter proved the more 

precise in 3 of the 7 images. The Frangi and 4-step filters had better average distance 

values in the remaining 4 images. Assuming a C- arm fluoroscope intensifier size of 178 

mm, each pixel width was about 0.695mm. In all filters, the average distance errors were 

less than 0.58mm (that is the 0.83 pixel mean distance in the Lorenz filter). We were 

fortunate not to have many neighboring structures adjacent to our arteries during the 

vessel enhancement phase. If this were the case it might well lead to wrong trajectories 

in the FMM due to possible strong filter responses. 
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Table 5.1 Mean distances and STD's from FMM to Reference centerlines 
Lorenz Filter Frangi Filter 4-Step Filter 

Image # mean std mean std mean std 

1 
2 
3 
4 
5 
6 
7 

0.5 
0.83 
0.37 
0.48 
0.64 
0.41 
0.37 

0.31 
0.54 
0.25 
0.27 
0.83 
0.3 

0.34 

0.42 
0.81 
0.31 
0.63 
0.77 
0.44 
0.45 

0.29 
0.52 
0.25 
0.43 
0.76 
0.36 
0.3 

0.58 
0.62 
0.56 
0.7 

0.55 
0.57 
0.6 

0.41 
0.4 

0.27 
0.6 

0.34 
0.41 
0.46 

The main contribution to our centerline extraction procedure is that the cost image to 

initialize the algorithm is obtained automatically via the 4-step filter. Although the 

interventionist is required to select two points to obtain the artery centerline, the method 

proved rigorous and robust on all seven datasets. Also, cost image was designed 

indirectly by the 4-step filter to take into account the stenosis positions, if present, on a 

given artery. The algorithm had no problem passing over a stenosis position, which 

sometimes appears as an empty hole or space on the artery perimeter. 

5.4 Temporal tracking of the Coronary Arteries 

As this was primarily a feasibility study, we had two datasets available where a stenosis 

was visible. Therefore it was decided to add a third dataset having no stenosis visible 

and perform the study with our proposed algorithm. Three angiographic datasets of 

different patients and 38 total image frames were used for evaluation of the tracking 

procedure. For each individual dataset, we extracted 15, 10, and 13 frames respectively 

that spanned one cardiac cycle. We first implemented our 4-step filter to the diastolic 

images and then extracted the principal coronary artery centerline using a two-click 

FMM approach. The centerline coordinates obtained in this first frame will be used to 

estimate the centerline positions in subsequent frames by using the multi-resolution 

optical flow method. A window region of 10 pixels was selected for the optical flow 

estimations to account for possible large deformations of the arteries, and 4 pyramid 
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levels were used for interpolation purposes to obtain a reliable flow estimate. Inside the 

windowed region we assume a constant flow hypothesis where all pixel values are 

assigned an equal weight of 1. For these centerlines to converge to their true positions, 

the GVF was implemented for all experiments using a regularization coefficient factor 

fixed at /J = 0.2, as proposed by Xu et al., and the number of iterations equaled 15 so as 

to produce desired field vectors pointing toward the center of the artery (instead of 

pointing towards the artery wall contour, as in the traditional GVF formulation). The 

active contour parameters were empirically determined to be a = 1, /? = 0.5, and r = 0.1 

as they yielded stable convergence of the coronary centerline throughout the total 

number of images tracked. In fact, we chose the same optimized parameter values as 

determined by Xu et al. when implementing their GVF active contour formulation. 

The pyramidal optical flow approach took an average 14 minutes/frame, using 

MatLab, to obtain estimated centerlines when using two consecutive images. The mean 

displacement (+ standard deviation) of the principal coronary artery between successive 

frames was: 7.57 (±2.44), 12.66 (± 6.42) and 10.54 (± 3.88) pixels. Figure 5.5 illustrates 

the difference between the traditional and pyramid Lucas Kanade optical flow 

approaches. In both (Figure 5.5a, b top rows), the traditional implementation for the 

optical flow fails to produce reliable centerline estimates due to large deformities of the 

artery. If deformations are larger than 10 pixels, the pyramidal optical flow produces 

reliable centerline position estimates but also shows signs of unreliability as seen by the 

elliptical region of interest in (Figure 5.5b -bottom). It is the pyramidal formulation 

which takes into account these large displacements since the optical flow values are 

calculated on a coarse-to-scale manner. 

We have also proposed to change the initial image used for the GVF field 

calculations. This affects as well the external energy formulation for the active contour 

approach. In (Figure 5.6- top left), it is important to select an appropriate scale, a, when 

applying a Gaussian filter to the input image, otherwise the GVF vector fields will show 

some discrepancies near the distal part of the artery as pointed by the arrow in the figure. 



Fig 5.5a. (Top row) Results for traditional Lucas-Kanade Optical Flow applied to 
frame number 2, 3 and 4 of the first angiographic database. The technique fails 
when large deformations are experienced by the object being tracked. (Bottom row) 
The pyramidal implementation of Lucas-Kanade rectifies the problem for this 
particular angiographic sequence. 
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Fig 5.5b. (Top row) Results for traditional Lucas-Kanade Optical How applied to 
frame number 2, 3 and 4 of the first angiographic database. (Bottom row) The 
pyramidal implementation of Lucas-Kanade performs relatively well; however, it 
begins to falter for deformations larger than 10 pixels as shown by the elliptical 
region. 
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This might be tricky as the scale can change value depending on the amount of noise 

present in the dataset. Therefore, we found that by choosing our 4- step filter over all 

experiments (Figure 5.6- bottom left), we avoid having to determine a suitable scale for 

the edge map computation. The computation becomes automatic, thereby reducing 

simulation time. An example of the active contour convergence using the two different 

edge maps is shown in (Figure 5.6- right). The active contour coordinates converged 

properly at the distal end of the artery when using our proposed edge map versus the 

Gaussian convolution edge map. 
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Our algorithm correctly tracks the principal coronary arteries in 35 out of 38 images. 

Figure 5.7 shows typical tracking results. 

Fig 5.7. Tracking results for three X-ray angiographic databases. (Left to right columns) 
Respectively the 2nd, 5th and 8th image frame number. 

As presented in Table 5.2, the average number of iterations for convergence using our 

empirically determined parameters was 12, 28 and 196 respectively for the three 

datasets. The last three image frames from the third dataset yielded incorrect centerline 

convergence as some contour coordinates were "attached" to an external structure (rib 

cage) and hence were not attracted to the actual coronary artery centerline. Prior to these 
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three images, the estimated contour coordinates were slowly being attracted to the rib 

cage and hence farther away from the coronary artery center axis. This is reflected in the 

large number of average iterations (196.1) calculated for this dataset. We noticed as well 

that by increasing gradually the value of the iteration step r e [0.1, 1], the number of 

iterations decreased significantly by almost half. A larger t accelerates the convergence 

process, however at the cost of instability. 

Table 5.2 Number of Iterations required for Interframe Convergence 
Dataset 

# Tracked Frames 
Average number of 

iterations/frame 

1 
2 
3 

15 
10 
13 

12.2 ±3.23 
27.6 ± 8.44 

196.1 ±262.57 

We have proposed two improvements to traditional single view tracking algorithms. 

First, we have applied a multi-resolution optical flow formulation to take into 

consideration possible large deformations of the arteries; and second, we have modified 

the edge map used for the GVF calculation in order to obtain correct flow fields pointing 

inward towards the coronary artery center axis. When compared to the previous works, 

our technique is also advantageous as it only requires a two click initialization step in the 

first image and is completely user interaction free the rest of the procedure. 

5.5 Optimal Point Matching & Curvature Constraint 

To validate our proposed improvement to the biplane reconstruction process we first 

decided to test the method on synthetic images. Therefore, we generated two common 

coronary cineangiography gantry setups. The first setup represents the posterior-anterior 

and left lateral views (PA-LAT), defined as <5M-MT= (SID: 100cm, SOD: 50cm, PA:90°, 

SA:0°, u0: 256 pixels, v0: 256 pixels), £PA-IAT= (SID: 100 cm, SOD: 50 cm, PA: 0°, SA: 0°, 

u0: 256 pixels, v0: 256 pixels). Whereas the second setup represents the left anterior and 

right anterior oblique views (LAO/RAO), defined as £IAO-RAO= (SID: 100 cm, SOD: 
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50cm, PA: 60°, SA: 30°, u0: 256 pixels, v0: 256 pixels) and CIAO-RAO= (SID: 100cm, SOD: 

50cm, PA: 150°, SA: 30°, «0: 256pixels, v0: 256pixels). We constructed artificial 3D 

coronary artery points and backprojected them using the above gantry parameters. This 

provided a pair of biplane images. We created a total of 5 biplane image pairs for the 

analysis. Although Cheriet et al. proved that a minimum number of bifurcation points 

were needed for self calibration (a total of 30 points across 5 sets of biplane images), we 

had the luxury of not relying only on bifurcation points but on the artery centerline 

coordinates. Therefore, it is possible that in our experimentation the minimum number 

of 30 point matches could be obtained by using only a single pair of images. We 

introduced motion onto the 3D coronary points in terms of random twist angles between 

(-2°, +2°), as well as, random translation factors equivalent to (-0.5 cm, +0.5 cm). This 

motion resulted in a minimum euclidean distance of 0.488 pixels and a maximum 

euclidean distance of 6.19 pixels between 2D image points across consecutive images. 

These values were chosen so as to best represent the spatial configuration of arteries as 

seen in real angiographic images. Depending on the acquisition rate of the fluoroscope, 

the maximal interframe distance we observed between arteries in some of our coronary 

clinical datasets is roughly 10 pixels. Hence, we believe that the motion parameters used 

for the experimentation represented well the general interframe displacement of the 

arteries. Lastly, following the addition of this motion, we further added some normally 

distributed white noise n~ N(0,20d) to our 2D image points with a magnitude equal to 20 

times the smallest difference between projected points, d. The above motion and noise 

should reflect fairly well the amount of artifacts present in real clinical data. 

We now have 5 biplane image pairs which is the minimum required for proper 

temporal 3D reconstruction as shown by Cheriet et al. The 2D biplane points were given 

as input to the RANSAC method in order to obtain a first set of potential corresponding 

points. The outlier probability was fixed at £=0.7 and the probability of choosing at least 

one sample free from outliers was set to p=0.99. These values are typical in literature for 

the RANSAC approach. 
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To determine whether a feature is an inlier or not, we set the inlier distance 

threshold, between a data point and the model used, to three sets of values: [1, 1.5, 2] 

pixels. Once a subset of inliers (2D correspondences) is obtained, we filter the points 

using the geometric curvature constraint using the curvature equations (equation 4.22) 

presented in the preceding chapter and solved for NK. The optimized three dimensional 

curvatures, K, were extracted accordingly for each possible corresponding pairs of 

matches. The above procedure is performed for each image, on a temporal basis. Lastly, 

we perform self calibration on the 5 biplane angiographic images using the total of the 

final corresponding matches. The Levenberg-Marquardt algorithm is used for 

optimization, iterating until the correction to the geometric parameters becomes 

negligible. The set of parameters and projection matrices is therefore regenerated. 

Final results will focus on the number of candidates, RANSAC residual error and 

Sampson errors before and after the geometric constraint is applied to the potential 

matches. We also present the residual norm error for the self calibration procedure 

obtained using potential matches before and after the geometric constraint is applied. 

The function to be minimized is the distance between the known and optimized 2D 

image coordinates. 

Tables 5.3 and 5.4 show the results obtained for the two synthetic simulation 

setups. The first column defines the biplane image pair number with the thresholds used 

for the inlier estimation. The following three columns present the final candidate 

numbers obtained, residual error and Sampson errors without having refined the final 

subset of correspondences obtained using RANSAC. The final three columns present 

results obtained after geometrical curvature constraint is applied. In both setups, a total 

of 1472 coordinate matches are possible. The final number of candidate points after the 

application of the RANSAC procedure was relatively similar for both gantry setups. We 

observe that the number of candidates increases as the inlier distance threshold increases 

from 1 pixel to 2 pixels. This is natural as more corresponding points become available 

as the distance increases from the epipolar lines. Further, if this is true, then the number 

of samples in RANSAC should increase as well. However, increasing the number of 
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samples comes at a cost as the residual and Sampson errors also increase. The maximum 

residual errors and Sampson errors ranged respectively between [2.24-2.53] and [0.55-

0.63] pixels for the PA/LAT views and [2.31-2.41] and [0.58-0.60] pixels for the 

LAO/RAO views. 

The final subset of candidates was chosen for an inlier distance threshold of 1 

pixel. We then applied the geometric curvature constraint to these candidates in order to 

refine the final amount of corresponding points. We calculated the Frenet-Serret 2D 

tangents and curvature on these points, and in the same fashion, the values in 3D using 

the gantry information. Figure 5.8 shows an example of the observed and optimized 3D 

curvature after solving equation (4.19) when using biplane image pair #2. We note that 

the circles represent the 3D Frenet-Serret curvature, whereas the points represent the 

optimized values from the constraint equations. Similar 3D curvature is represented by a 

circle and a point being within the vicinity of one another. If this is not seen, then the 

corresponding points lie in a cusp or zero-curvature region of the coronary artery. 
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Table 5.3 Point Correspondence Results: PA/LAT Simulation 

RANSAC CURVATURE CONSTRAINT 

# of candidates Residual Sampson error # of candidates Residual Sampson error 

Image Pair #1 

Inlier distance: 1 pixel 390 0.561 0.140 60 0.399 0.098 

Inlier distance: 1.5 pixels 548 1.270 0.316 62 0.955 0.236 

Inlier distance: 2 pixels 695 2.268 0.565 97 2.142 0.533 

Image Pair #2 

Inlier distance: 1 pixel 422 0.609 0.151 46 0.406 0.101 

Inlier distance: 1.5 pixels 572 1.370 0.341 72 1.292 0.321 

Inlier distance: 2 pixels 655 2.240 0.554 112 2.015 0.500 

Image Pair #3 

Inlier distance: 1 pixel 424 0.654 0.163 49 0.624 0.154 

Inlier distance: 1.5 pixels 528 1.451 0.362 76 1.275 0.317 

Inlier distance: 2 pixels 736 2.288 0.569 82 2.037 0.505 

Image Pair #4 

Inlier distance: 1 pixel 402 0.603 0.150 51 0.444 0.111 

Inlier distance: 1.5 pixels 565 1.407 0.350 81 1.009 0.249 

Inlier distance: 2 pixels 697 2.338 0.583 100 1.963 0.487 

Image Pair #5 
Inlier distance: 1 pixel 385 0.651 0.162 41 0.520 0.129 

Inlier distance: 1.5 pixels 559 1.458 0.363 70 0.830 0.207 

Inlier distance: 2 pixels 675 2.527 0.626 86 1.738 0.430 



112 

Table 5.4 Point Correspondence Results: LAO/RAO Simulation 

RANSAC CURVATURE CONSTRAINT 

# of candidates Residual Sampson error # of candidates Residual Sampson error 

Image Pair #1 

Inlier distance: 1 pixel 414 0.624 0.155 30 0.502 0.125 

Inlier distance: 1.5 pixels 569 1.427 0.355 40 0.602 0.150 

Inlier distance: 2 pixels 686 2.325 0.577 44 1.377 0.341 

Image Pair #2 

Inlier distance: 1 pixel 399 0.648 0.161 39 0.555 0.138 

Inlier distance: 1.5 pixels 568 1.327 0.331 47 0.997 0.247 

Inlier distance: 2 pixels 675 2.351 0.582 58 1.927 0.479 

Image Pair #3 

Inlier distance: 1 pixel 416 0.670 0.167 34 0.529 0.132 

Inlier distance: 1.5 pixels 546 1.364 0.340 39 1.301 0.324 

Inlier distance: 2 pixels 712 2.313 0.575 46 1.200 0.298 

Image Pair #4 

Inlier distance: 1 pixel 383 0.644 0.160 41 0.479 0.119 

Inlier distance: 1.5 pixels 556 1.424 0.355 45 0.895 0.223 

Inlier distance: 2 pixels 727 2.410 0.599 57 1.839 0.454 

Image Pair #5 

Inlier distance: 1 pixel 412 0.578 0.144 34 0.424 0.105 

Inlier distance: 1.5 pixels 555 1.446 0.360 46 1.055 0.263 

Inlier distance: 2 pixels 700 2.344 0.583 50 1.628 0.405 
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The similarity measure was chosen arbitrarily to be equal to less than 0.5 units of the 

absolute difference between observed and optimized 3D curvatures. This threshold value 

was dependant on the amount of noise added to the simulations. Lastly, the value also 

yielded a sufficient amount of point matches required for the 3D reconstruction phase. 

The final number of correspondences was filtered considerably using the geometric 

constraint when compared to final number of RANSAC candidates. There were slightly 

more correspondences in the PA/LAT than the LAO/RAO simulations. One can 

conclude that the point of visualization of the coronary arteries will vary the number of 

cusps and zero-curvature points on the 2D centerlines. The maximum residual errors and 

Sampson errors were reduced after application of the geometric constraint and ranged 

respectively as [1.74-2.14] and [0.43-0.53J pixels for the PA/LAT views and [1.74-1.93] 

and [0.30-0.48] pixels for the LAO/RAO views. 

The self-calibration of the gantry settings was then performed using the final 

correspondences. We introduced considerable errors in magnitude of ±6°, ±10cm and 
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+10 pixels to the initial values of the gantry angles, distances and image principal points. 

These substantial errors in approximation should represent well, and perhaps more, the 

mechanical and electronic errors in X-ray fluoroscopy systems found in the clinical 

context. Using the erroneous gantry parameters we calculated the new projection 

matrices for the setups and estimated the 3D coordinates using the final 2D 

correspondences. These approximation values were used to initiate the self-calibration 

process and the Levenberg-Marquardt optimization scheme was used to estimate the 

optimal gantry parameters. The threshold for convergence was set to 0.001. Results for 

the residuals are presented in Table 5.5. In both gantry setups, the residuals are smaller 

when considering the coronary correspondences that have been refined using the 

geometric curvature constraint. These results are clinically acceptable (~2mm) if we 

were to present reliable 3D reconstructions of the coronary artery centerlines and 

therefore we believe that the added curvature constraint is a good add-on tool for the 

RANSAC algorithm in the context of point matching. 

Table 5.5 Results for self-calibration using final correspondences (in cm) 
LAO/RAO Setup PA/LAT Setup 

Norm of residual 0.262 0.159 
Norm of residual using constraint 0.218 0.098 
Residual 0.512 0.399 
Residual using constraint 0.467 0.314 

A last analysis was performed by introducing Gaussian noise to the 2D image pixels in 

order to calculate the 3D errors of the coronary arteries. In Figure 5.9a, we observe that 

as the amount of noise increases, the 3D root mean square errors (RMS) increase as 

well. Further, by introducing the curvature constraint for the selection of corresponding 

points, the RMS error decreases when compared with the RANSAC method for both 

gantry setups. For the LAO/RAO setup, the 3D error on average is approximately 

2.8mm, whereas the average error is approximately 1.1mm for the PA/LAT setup. We 
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also simulated combinations of positive and negative errors in the 2D coordinates of the 

image coordinates for both setups. Figure 5.9b shows that errors of up to 5 pixel 

standard deviations do not affect noticeably the accuracy of the reconstruction process. 

The overall results can be explained by noting that an error of a = 3 pixels in the image 

plane corresponds to approximately 2.8 mm and 1.1mm in 3D for the LAO/RAO setup 

and PA/LAT setup respectively. These 3D errors were generated by making use of the 

clinical datasets which will be presented in the following section. Further, for this same 

error of a = 3 pixels, the curvature constraint method reduced the 2D retroprojection 

errors by a difference of A = 0.308 pixels and A = 0.031 pixels respectively when 

compared to the RANSAC method, using the LAO/RAO setup and PA/LAT 

respectively. From Figure 5.9a, these 2D pixel improvements correspond to an 

approximate 3D gain of 0.27 mm and 0.86 mm for the two views. Similarly, if the noise 

increased to a = 5 pixels, then our method reduced the 2D retroprojection errors by a 

difference of A = 1 pixel and A = 0.05 pixels respectively when compared to the 

RANSAC method. These correspond to improvements in the 3D error of approximately 

0.3mm and 0.83 mm respectively for the two gantry setting views. 

Two datasets of coronary angiograms were selected for clinical validation. Image 

sizes were 512x512 taken from a Phillips Integris Allura Fluoroscope. The first dataset 

had the following gantry settings: (PA: -44.5°, SA: -1.3°, SID: 94.7 cm, u0: 256 pixels, 

v0: 256 pixels) and (PA: 45.1°, SA: -1.3°, SID: 94.7 cm, u0: 256 pixels, v0: 256 pixels), 

whereas the second dataset had the following settings: (PA: -43.8°, SA: -1.3°, SID: 93.9 

cm, u0: 256 pixels, v0: 256 pixels) and (PA: 43.8°, SA: -1.3°, SID: 96.5 cm, u0: 256 

pixels, v0: 256 pixels). 
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3D Root mean square errors for synthetic simulations. (Top) Gantry 
setting representing the LAO/RAO view and {bottom) the PA/LAT view. 
Results show that the curvature constraint yields lower 3D errors in both 
setups. 

Principal coronary artery centerlines were first extracted for 5 biplane image pairs for 

each of the datasets. Our method was then implemented to globally self calibrate the 

system. 3D reconstruction errors using our method on the datasets are presented in Table 

5.6. Mean results show amelioration in residual errors when using the curvature 

constraint criterion for the point correspondence refinement. After bundle adjustment the 

errors were 1.44 mm and 1.86 mm respectively for the two datasets. 
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Fig 5.9b. 2D Back projection errors for clinical datasets. (Top) Gantry setting 
representing the LAO/RAO view and (bottom) the PA/LAT view. Results 
show that the curvature constraint yields lower 3D errors in both setups. 

In Figure 5.10 and Figure 5.11, we provide an example on how the point 

correspondences were refined using our method. Using an inlier distance of 1 pixel for 

the RANSAC analysis, 268 candidate matches were obtained from a potential of 616. 

These were refined to 49 matches using the curvature constraint as seen in (Figure 5.10 -

bottom). Similarly, 212 candidate matches were obtained from a potential of 753 in the 

image pair example of (Figure 5.11 -top). These were refined down to 36 in number 

after the constraint was applied. Results are promising for global self calibration of the 

gantry setting parameters. Temporal tracking of coronary landmarks is not a requirement 

in this case as point matching between individual image pairs is sufficient. The 

mathematical implementation is elegant and low in complexity and we believe that the 

method has great potential for future development. 
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Table 5.6 Results (average) for 2D self-calibration using clinical data 

Norm of residual 
Norm of residual using constraint 
Residual (cm) 
Residua] using constraint (cm) 

ataset 1 

0.026 
0.021 
0.161 
0.144 

Dataset 2 

0.055 
0.034 
0.235 
0.186 

Fig 5.10. Example results for clinical dataset #1. (Top) RANSAC method applied on an image 
pair. 268 out of 616 candidates were matched. (Bottom) Outliers removed and curvature 
constraint applied to reduce the potential matches. 
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results for clinical dataset #2. (Top) RANSAC method applied on an 
image pair. (Bottom) Outliers removed and curvature constraint 
potential matches in number. 

applied to reduce the 

To our knowledge, we are the first to incorporate the above tasks in the reconstruction 

framework of coronary artery vessels. We have segmented the coronary artery 

centerlines and used the centerline coordinates between biplane image pairs as potential 

matches. These matches were given to RANSAC and the outliers were filtered by 

applying an inlier distance threshold of 1 pixel with respect to epipolar lines. Results are 
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deemed promising and the mathematical concepts are not difficult to implement. In a 

clinical setting, the importance of successful 3D reconstruction is crucial for the 

diagnosis of coronary pathologies such as atherosclerosis, and we believe that by 

introducing the geometric curvature constraint the final corresponding matches will be 

accurate enough to provide correct 3D representations of the coronary artery centerlines. 

5.6 Monoplane 3D Reconstruction 

5.6.1 Helix Simulations: Rigid Motion 

In order to test the feasibility of our proposed single plane reconstruction method, we 

performed 20 different simulations on a helix that undergoes random motion across the 

minimum of three consecutive images and up to a maximum of six images. We chose a 

helix configuration as it can reflect accurately the shape of a coronary artery centerline. 

The random motion was chosen to incorporate possible rotation along the three axes 

(bending, twist or flexion) of the 3D curve and also possible translation. Recalling that 

rigid motion of a 3D point can be written as: 

1 

o
 

y0 

_zo_ 

+ 
~TX~ 

Ty 
Tz 

The angles used for the simulations 6x=6y=9z e [0.5°, 1°, 1.5°, 2°]. The translations used 

for the simulations were Tx= Ty=Tz e [0.5, 0.75, 1, 1.25, 1.5] millimeters. Thus we have 

20 simulations for each possible scenario. Once again, these parameter values were 

chosen to reflect as best as possible the amount of interframe displacement observed 

from arteries in typical coronary angiograms (i.e. worse case scenario of 10 interframe 

pixel displacements). 

The gantry setup used for this simulation will be a typical left lateral-

posterior/anterior view having the same parameter values as the ones proposed in the 
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preceding section for the biplane reconstruction evaluation. The reason for this choice of 

gantry setting will become evident when we perform clinical validation. The hypothesis 

we make here is that we have available to us the true 3D coordinates of the helix points 

at a first time instant. The unknowns we need to optimize are the n-3D displacements in 

subsequent frames [dxn, dy„, dzn]- Figure 5.12 shows an example of the 2D projections of 

the helix using the specified gantry settings. The displacement between each image 

frame for the left lateral view was on average 6.5 pixels, whereas the displacement 

between each image frame for the posterior/anterior view was 5 and 7 pixels 

respectively. Using orthographic projections for the approximations of dx and dy to 

solve our monoplane equations we obtain approximations in the range of [1.7-2.4] 

millimeters using the intensifier size and image size values. 

As for the depth approximation dz, we can use a weak perspective projection 

assuming that the average depth at the first time instant will be approximately the 

average depth for the subsequent time instants. Thus, the Zavg for the weak perspective 

camera model will come into play and the dz will be zero in this case. Equivalently, this 

can be interpreted as having the depth coordinates of the helix points in subsequent 

frames to be equal to the depth at the first time instant for each point. This is false as 

each point moves temporally, however, we rely on the theory that the average depth is a 

close enough approximation to initialize the optimization of our monoplane equations in 

hopes of converging correctly to the true 3D coordinates at subsequent time instants. We 

have also simulated cases in which dz had a non zero value and hence the 

approximations used for the depth were in the range of [0-2] millimeters. 
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Fig 5.12. Two dimensional coordinates 
across six images using a 3D helix. In 
this case, three dimensional rotations 
across the three axis was set to 0.5 
degrees, whereas 3D translations were 
set to 1.5mm in the X, Y and Z 
directions. 

(Top) Left Lateral view projections 
across six temporal images. The 
average interframe pixel distance was 
6.5 pixels in both the x and y 
directions. (Bottom) Posterior/Anterior 
view projections. Interframe pixel 
displacements were on average 5 and 7 
pixels in the x and y directions 
respectively. 
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Table 5.7 presents results for the case where the motion helix underwent motion having 

a magnitude of 2° for the spatial angles and with a translation varying in distance. Our 

first observation is that the 3D root mean square results for our reconstruction were 

inaccurate if the depth approximation was equal to 2mm for both gantry setups. By 

assuming the average depth hypothesis results become interesting as the mean 3D 

reconstruction errors ranged between n.8- 3.8] millimeters for the left lateral view and 

[1.3-4.0] millimeters for the posterior/anterior view. These mean values were the 

average results when tracking several points across the images. In total, we tracked 30 

landmarks of the helix on a temporal basis. 
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We also present results for the minimum, mean and maximum errors of 3D depth 

estimation for the overall number of points tracked temporally. Let us take for example 

the left lateral view setup and a motion configuration of [2°, lmm]. If we look at the 

table section that has as depth an initial estimation dz = lmm, we notice that the average 

minimum error over the 30 landmarks tracked was 1.269 mm, whereas the maximum 

depth error estimated was 6.093 mm. 

Before presenting results for the reconstruction process using more than three 

consecutive images, we will evaluate our method by using clinical data from the 

contraction of a left ventricle. 

Table 5.7 Average results for 5 simulations using helix model (Angle: 2 degrees, Translation: 0.5-1.5 millimeters, Number of Views: 3) 

Left Lateral View 

Angle Translation 
C) (mm) 

2 0.5 

2 0.75 

2 1 

2 1.25 

2 1.5 

2mm depth initial error 

3D Min Mean Max 
RMS Error Error Error 

6.341 2.360 5.844 9.784 

5.804 2.177 5.274 8.91 

5.162 1.885 4.699 8.027 

4.524 1.616 4.115 7.141 

3.888 1.373 3.535 6.252 

lmm depth initial error 

3D Min Mean Max 
RMS EiTor Error Error 

5.055 1.750 4.611 7.840 

4.446 1.509 4.054 6.971 

3.835 1.269 3.494 6.093 

3.238 1.049 2.935 5.211 

2.66 0.8 2.382 4.483 

0mm depth initial error 

3D Min Mean Max 
RMS Error Error Error 

3.806 1.147 3.451 6.040 

3.251 0.938 2.919 5.412 

2.716 0.765 2.393 4.838 

2.223 0.509 1.89 4.374 

1.8 0.325 1.458 3.856 

Posterior/Anterior View 

Angle Translation 
0 (mm) 

2 0.5 

2 0.75 

2 1 

2 1.25 

2 1.5 

2mm depth initial error 

3D Min Mean Max 
RMS Error Error Error 

7.069 3.618 6.647 9.473 

6.361 3.201 5.976 8.564 

5.628 2.751 5.275 7.6.38 

4.913 2.326 4.592 6.721 

4.184 1.891 3.895 5.786 

lmm depth initial error 

3D Min Mean Max 
RMS Error Error Error 

5.536 2.640 5.178 7.524 

4.834 2.226 4.51 6.619 

4.111 1.808 3.816 5.698 

3.406 1.465 3.155 4.785 

2.695 1.1 2.495 3.857 

0mm depth initial error 

3D Min Mean Max 
RMS Error Error Error 

4.016 1.764 3.727 5.577 

3.326 1.418 3.085 4.674 

2.624 1.073 2.434 3.757 

1.952 0.754 1.812 2.851 

1.303 0.409 1.195 2.121 
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5.6.2 Left Ventricle Simulations: Non Rigid Motion 

The clinical data for the ventricle of a sheep was obtained from [133]. In (Figure 5.13a) 

we can visualize 13 sonomicrometry crystals in the mitral valve and left ventricle of a 

sheep. Figure 5.13b represents the 2D projections of six consecutive real time instants 

of the contracting ventricle using the previous gantry parameters for the helix 

simulations. We will perform monoplane reconstruction across the six image frames and 

we will compare the results for this type of non rigid motion of the ventricle to the 

motion simulated for the helix. 

wire-frame image 
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Fig 5.13a. Thirteen sonomicrometry crystals in the mitral valve and left 
ventricle of a sheep. Image taken from [133]. 



125 

<? \ !-°j. 
o ! i i 

„- ij--o--f- 6f-- i-p 
: o : : 

700 

600 

500 

400 

300 

200 a^-.. 

700 

600 

600 

400 

300 

200 s<ri* °° 
150 200 250 300 350 400 150 200 250 300 350 400 150 200 250 300 350 400 

4 \ L».i 
<? i I 

6-oj-0-;—op-ot 
o 

....£ J L*i 

o 
150 200 250 300 350 400 150 200 250 300 350 400 150 200 250 300 350 400 

: o : 

. ..<$> i .e . id 

i ! ! 

• O ; \ 

! I 8 i° 

D 

<s> 

;% 
1 ° 

O 

O 

.0 o! 
j 

° 1° 

1 

« i.a.fil. i 
i l l * 

._j<h.J i i 
i ° ; ; i 

-•r'o[g-r-j 

150 200 250 300 350 400 150 200 250 300 350 400 150 200 250 300 350 400 

: ; o : 
•i |-C-oi 

i : i < 
:<fc : ; 

o i 

"1 °T«""L 

CD 

Oo 

o 

o 

o 

8 

c 

o 

o> 

Cfc 

o 

o 

o 

0 0 

s 

0 

o 

150 200 250 300 350 150 200 250 300 350 150 200 250 300 350 

Fig 5.13b. Two dimensional projections of 13 ventricle 3D crystal coordinates across 
six consecutive images representing (top) anterior/posterior and (bottom) left lateral 
X-ray gantry configurations. 

Figure 5.14a shows the best result obtained of the 20 simulations for the helix motion 

compared to the general simulations on the left ventricle data as shown in Figure 5.14b. 
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The first observation we make is that the 3D RMS error increases as we increase the 

number of images used for the temporal tracking of specific landmarks on either the 

helix curve or the sonomicrometry crystals. For an initial guess of dz = Omm, the 

average 3D RMS increases from about 1 mm to 2.5 mm when tracking 29 helix 

landmarks across six images. However, a displacement approximation of dz = 1 mm 

yielded the better results when investigating rigid motion. Hence, we decided that for 

clinical validation we would set the depth to a 1 mm approximation for the optimization 

scheme. The average 3D RMS remained stable at 1 mm when tracking the 13 crystals 

across six images. It is to note however that since the interframe pixel distances were at 

most 3 pixels in the x and y directions, then the orthographic projections yielded roughly 

dx = dy = 1 mm approximations. 
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This said, the clinical database from [133] confirmed that 8 consecutive images 

represented 1 cardiac cycle, and that the displacement was approximately 10 mm at most 

for one of the crystals through the eight images. Hence, this is equivalent to an average 

true 3D displacement of 10 mm / 8 images = 1.25 mm/image, which is close to the 

orthographic projection approximations we made. Nevertheless, the non rigid movement 

of the crystals was not recovered by the monoplane equations we proposed for the 

reconstruction process. This is evident when considering a depth approximation of dz= 

lmm. The average 3D RMS increased from 2.5 mm to 5 mm when tracking 13 crystals 

across six images. We believe that twelve landmarks are sufficient in number for 

analysis as it presented stable reconstruction errors for the non rigid simulations. 

Regarding the rigid simulations, for the dz = lmm case, twelve landmarks was close to 

the maximum 3D RMS error obtained. 
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Figure 5.15 and Figure 5.16 present results on the ability of our monoplane 

algorithm to recover the actual displacements [dxm dyn, dzn] between consecutive 

images. When analyzing the minimum number of images for monoplane reconstruction, 

the optimization process for the helix experimentation yielded average absolute 

displacement errors of 0.64 mm, 0.31 mm and 1.26 mm for each of the depth 

approximations. As for the left ventricle analysis, the average absolute displacement 

errors were approximately 0.6 mm, 1.4 mm and 2.25 mm. When analyzing six 

consecutive images for the monoplane reconstruction process, the optimization process 

for the helix experimentation yielded average absolute displacement errors of 0.68, 0.29 

and 1.24 mm whereas for the left ventricle analysis, the average absolute displacement 

errors were approximately 0.7 mm, 1.5 mm and 2.5 mm. The major conclusion is that 

our proposed monoplane reconstruction algorithm can indeed recover regions of motion 

that undergo rigid motion. Further, according to the results in Figure 5.15 and Figure 

5.16, having an initial depth approximation of dz ^ 0 may improve recovery of the true 

3D displacements. 
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Fig 5.15. Optimized deltas, dz, for monoplane three view analysis in both rigid and non rigid 
experiments. The average absolute errors were approximately 0.64, 0.31 and 1.26 mm for the rigid 
motion analysis, whereas the optimized delta results were less accurate when considering global 
non rigid motion. 
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Figure 5.17 shows the 3D coordinates recovered by our proposed algorithm when using 

the left ventricle data. We observe that as the number of images increases, the reliability 

of the optimized results decreases significantly. This is normal as we are adding 

additional 3D spatial information and uncertainty to our monoplane equations. This 

leads us to believe that additional constraints need to be added to our equations for 

future analysis, if the inherent non rigid motion of the cardiac structures be recovered in 

its totality. Seeing how the algorithm performs generally well for rigid movements, we 

can target for reconstruction coronary segments such as the bifurcations, as they undergo 
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non-contractility type movement (rigid motion). Furthermore, we can extend our 

monoplane reconstruction procedure to clinical instruments such as arrhythmia ablation 

catheter tips as they are rigid objects. 
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Fig 5.17. True and estimated 3D reconstruction 
of thirteen crystals across three images. As the 
ventricle deforms through the cardiac cycle, the 
optimized 3D positions become less accurate 
since we increase the amount of uncertainty 
regarding the true 3D configuration of the 
ventricle. {Left column) Three subsequent 
images following the first time instant and 
(right column) the last two image frames. 
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5.6.3 Clinical Validation - Ablation Catheter Rigid Motion 

An animal experiment was carried out at Sacre Coeur Hospital [120]. Our experimental 

protocol met the institutional requirements of animal experimentation. A mongrel dog 

was anesthetized and laid on its right side on a fluoroscopy table (Integris Allura, Philips 

Inc.). A reference catheter and a pacing catheter were inserted into the right ventricle, 

close to the septal wall (Figure 5.18). The role of the reference catheter was to define an 

origin for our 3D coordinate system that is not affected by the displacement of the heart 

due to respiration or by the displacement of the animal or the x-ray system. The role of 

the pacing catheter was to produce a simple electrical activation sequence so as to 

validate the isochronal maps. Finally, a standard 7-French RF ablation catheter was 

inserted from the femoral vein into the left ventricle of the mongrel dog. During the 

course of the experiment, this mapping catheter was moved to 20 different sites (point-

by-point) within the ventricle in order to obtain electrical and geometrical data from 

sufficient sites to map the activation sequence. In the end, the data collected totaled 

twenty posterior/anterior view biplane images, twenty left lateral view biplane images 

and twenty electrocardiograms. 

Our monoplane reconstruction algorithm functions with the hypothesis that we 

have at our disposal the 3D points of cardiac objects at a first time instant t = 0. 

Therefore, we extracted the diastolic images in each gantry setting and performed 

biplane reconstruction using triangulation to obtain 3D points at a first time instant. 

Then we extracted the necessary images for the three view analysis and we also 

performed a five view analysis monoplane reconstruction for result comparisons. The 

displacement approximations in dx and dy ranged approximately between [0.5-3.5] 

millimeters in consequence with the interframe pixel displacements in the X-ray images. 

We optimized the equations using a depth estimate dz = 1 as initialization. We tracked 

twelve electrode positions from the three catheters present in the images. 



133 

Fig 5.18. The ablation mapping catheter in the posterior/anterior view (left) and in the left lateral 
view (right). The catheter tip remains fixed in these diastole image frames and experience rigid 
motion, and hence, no twisting or bending occurs as in the non rigid case. 

Table 5.8 presents the values for the 3D monoplane analysis using three consecutive 

images. Over the 20 datasets, we first estimated the depth for the ablation catheter tip 

and then calculated statistical values over the twelve electrodes used for the 

reconstruction process. In the posterior/anterior view, eight of the twenty datasets 

yielded depth errors larger than 2 mm for the catheter tip, whereas for the left lateral 

view six out of the twenty datasets had depth errors larger than 2 mm. Overall, the 

monoplane reconstruction process worked well as the average depth estimation of the 

catheter tip was 2.14 mm and 1.49 mm for the posterior/anterior view and left lateral 

views. The average maximum reconstruction error for a given electrode was 4.51 mm 

and 3.38 mm for both gantry setups respectively. 

Table 5.9 shows the results for the five view reconstruction process. Thirteen out 

of twenty datasets for the posterior/anterior view produced depth estimations larger than 

the clinically symbolic value of 2 mm. Eleven out of the twenty datasets had depth 

errors larger than 2 mm for the left lateral experimentation. Overall, the monoplane 

reconstruction process worked well as the average depth estimation of the catheter tip 

was 2.68 mm and 2.34 mm for the posterior/anterior view and left lateral views. The 
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average maximum reconstruction error for a given electrode was 7.05 mm and 5.84 mm 

for both gantry setups respectively. These values reconfirm that the more images we use 

for the optimization process the less robust our 3D reconstruction becomes. However, it 

is to note that our results are about five times better than our analysis in [120] where we 

obtained 15 mm and 10 mm depth errors for the ablation catheter tip by using a single 

view. This is a substantial gain in terms of achieving a clinically valid algorithm. 

Figure 5.19 and Figure 5.20 show the fusion results of the electrophysiological 

data and the 2D spatial positions of the ablation catheter. The left image in both figures 

shows the true 2D data whereas the right image shows the fusion information when 

estimating the 3D ablation catheter tip positions. We note that the electrophysiological 

data does not change significantly between the true and estimated depth analysis. For 

instance, Figure 5.19 shows that two electrophysiological inaccurate time values appear 

on the right image whereas in Figure 5.20 only one invalid time value appears. 
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Table 5.8 Three View Monoplane Reconstruction of Ablation Catheter 

Post/Ant Post/Ant Left Lat 
Catheter tip depth Avg. Max Catheter tip depth 

error (mm) Error Error error (mm) 
Dataset 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Average error 
(mm) 

1.163 
2.824 
3.283 
1.582 
0.957 
1.697 
0.277 
4.094 
1.420 
0.162 
5.365 
1.038 
2.830 
1.595 
1.401 
4.352 
0.981 
2.099 
3.936 
1.642 

1.896 
3.945 
5.718 
2.282 
2.338 
2.058 
0.517 
6.337 
2.052 
1.209 
6.806 
0.985 
4.342 
2.388 
1.980 
5.789 
1.197 
3.066 
5.763 
2.534 

2.934 
5.147 
8.403 
3.224 
4.304 
2.836 
0.950 
8.550 
3.264 
2.522 
8.573 
1.174 
6.410 
3.834 
2.758 
7.333 
1.689 
4.556 
8.074 
3.742 

1.218 
0.140 
4.125 
0.267 
0.466 
3.534 
0.326 
0.901 
0.768 
0.608 
0.287 
2.262 
1.349 
1.339 
1.416 
4.586 
0.110 
2.480 
3.563 
0.129 

Left Lat 
Avg. Max 
Error Error 

1.493 
0.591 
6.090 
0.520 
0.342 
5.045 
1.718 
1.026 
1.344 
0.571 
1.429 
3.769 
1.849 
2.032 
1.675 
6.227 
0.354 
3.887 
5.312 
0.184 

2.351 
1.179 
8.230 
1.018 
0.942 
6.789 
3.386 
1.456 
2.089 
0.873 
3.045 
5.419 
2.688 
3.553 
2.558 
8.053 
0.769 
5.421 
7.364 

0.442 

2.273 3.381 2.135 3.160 4.514 1.494 
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Table 5.9 Five View Monoplane Reconstruction of Ablation Catheter 

Dataset 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Post/Ant 
Catheter tip depth 

error (mm) 

0.333 
0.715 
3.802 
2.219 
1.498 
2.354 
1.005 
4.612 
2.025 
1.301 
6.580 
3.474 
3.328 
2.355 
2.481 
6.125 
0.921 
3.372 
4.474 
0.685 

Post/Ant 
Avg Max 

Error Error 

0.958 2.218 
2.913 8.312 
10.641 17.025 
5.351 9.588 
5.379 8.841 
7.484 12.354 
5.717 11.205 
11.486 18.210 
5.433 9.367 
5.879 10.643 
12.283 19.630 
11.257 18.458 
7.013 10.140 
6.065 10.663 
6.096 10.425 
11.874 19.149 
4.012 7.986 
7.885 12.664 
12.175 20.975 
1.079 1.665 

Left Lat 
Catheter tip depth 

error (mm) 

0.416 
3.421 
4.681 
1.406 
0.824 
3.487 
1.147 
3.306 
1.111 
1.908 
5.803 
3.348 
0.373 
2.275 
2.572 
3.875 
2.212 
0.090 
3.832 
0.735 

Left Lat 
Avg Max 

Error Error 

0.790 2.472 
7.651 11.668 
11.015 17.860 
3.837 6.980 
3.804 6.703 
7.714 11.584 
1.615 3.166 
7.732 12.698 
3.797 7.798 
4.715 8.557 
10.953 16.797 
9.803 15.290 
1.492 2.683 
5.984 10.675 
5.988 10.360 
9.281 16.079 
5.265 8.640 
2.407 6.478 
10.476 18.314 
2.541 5.065 

Average error 
(mm) 2.683 7.049 2.341 5.843 
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Fig 5.19. Fusion of electrophysiology on left lateral images of a mongrel dog. (Left) 
Visible electrophysiological data on exact depth coordinates of the ablation catheter. 
(Right) Erroneous electrophysiological data on estimated depth coordinates using our 
monoplane three view analysis. 

Fig 5.20. Fusion of electrophysiology on posterior/anterior images of a mongrel dog. 
(Left) Visible electrophysiological data on exact depth coordinates of the ablation 
catheter. (Right) Erroneous electrophysiological data on estimated depth coordinates 
using our monoplane three view analysis. 
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5.7 General Discussion 

5.7.1 Coronary Artery Segmentation and Temporal Tracking 

We developed a quick technique that selects the diastolic image given an angiographic 

dataset. Results confirmed that the smallest standard deviation of the difference between 

two X-ray images represented the diastolic phase by visually investigating the images. 

However, additional validation needs to be performed in order to make this method 

robust as we cannot simply rely on a visual inspection during clinical intervention. This 

is imperative as the diastolic cardiac phase would display the least motion blur and 

hence allow the reconstruction of a more precise coronary model. 

Second, we proposed a novel 4-step filter. It would have been simple for us to 

use the existing Frangi et al. filter, however the challenge was to develop an automatic 

user friendly algorithm that would enable the interventionist to extract the diseased 

coronary artery without having to worry about which scales a to select for the Gaussian 

convolution, in order to enhance the arteries and suppress the background by calculating 

the second order derivatives of the Hessian matrix. The 4-step filter enhanced the 

principal coronary arteries in a given angiographic image. Results showed that the filter 

parameters were kept constant throughout the process and all 7 principal coronary 

arteries were enhanced sufficiently when compared to the Lorenz and Frangi filters. 

However, the filter parameters have been chosen empirically and a thorough study needs 

to be performed to optimize them. 

The resulting filtered image served as a cost image to initialize the centerline 

extraction process. We implemented the Fast Marching Method for its extraction. The 

filter parameters were fine-tuned in a way to allow the centerline extraction method to 

pass over possible stenosis positions (i.e. seen as a gap between the artery segment), and 

thus allow for a correct extraction of the centerline. We compared the cost images to 

those of Lorenz and Frangi and results showed that the 4-step filter performed just as 

well as the Frangi filter. The Lorenz filter showed a more accurate centerline in Table 

5.1, however we must make mention that this result may be misrepresentative as the 
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artery enhanced by the Lorenz filter was much smaller in size than the Frangi and 4-step 

filters, since only the major eigenvalues were retained for enhancement purposes. Hence 

the centerline extracted using the Lorenz cost image was much closer to the actual 

reference centerline since the width of the artery was smaller in size. 

We tracked successfully the arteries in 92% of the cases as shown in Figure 5.7. 

The cardiologist is required to select two extremity points of the targeted artery, in the 

diastolic image, and then the artery is automatically tracked in a single pass for one 

cardiac phase. We quantified a successful convergence if we noted the active contour at 

the center axis of the targeted artery. Our method incorporates a pyramidal Lucas 

Kanade optical flow approach that calculates the large deformations experienced by the 

arteries between consecutive image frames. The starting control points for the "snake" 

were automatically determined from the centerline coordinates. When compared to 

conventional tracking algorithms, our method has reduced significantly user 

intervention, and it does not rely on the acquisition of a 3D a priori model of the arteries 

as shown in [56]. Future work needs to focus on implementing the algorithms in C++ in 

order to reduce processing time as our main objective focused on providing the 

cardiologist with immediate assistance during interventions; hence the overall temporal 

tracking processing time needs to be decreased for this particular algorithm. 

5.7.2 Optimal Point Correspondence 

An accurate 3D model relies heavily on the successful point matching between 

correspondences of the structure being reconstructed. As a first analysis in this work, we 

believed that the centerlines well described the geometrical configuration of the arteries. 

The simplest manner to match the arteries in the biplane format was to locate the 

bifurcation points of parent branches and then perform reconstruction. Computer vision 

problems rely on the RANSAC method to extract relevant point correspondences in the 

epipolar geometry setting. We proved that these RANSAC correspondences can be 

further refined by taking into account the 2D/3D relationships of the landmarks. We 
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have added a curvature constraint that relates the 2D artery centerline curvature to its 3D 

Frenet-Serret curvature. The addition of such a constraint also proved to optimize the 

reconstruction accuracy as the potential point correspondences obtained from RANSAC 

were systematically filtered into an optimal subset of points. The 3D RMS errors were 

hence reduced when considering the biplane case. We have clinically validated our 

method on two angiographic clinical datasets and obtained residual result values of 

1.44mm and 1.86mm for 3D reconstruction. However, it is worth noting that the 

RANSAC method requires a majority (-40-50%) of the data to be correct. If both false 

matches and severe object motion exist, RANSAC may fail, or become less attractive 

since many matching points due to motion are discarded as outliers. However, RANSAC 

yields very good results when we have a known percentage of outliers existing in the 

dataset. If the number of points in the dataset is unknown then the results are obtained by 

hit and trial or by iterating the algorithm a large number of times. Nevertheless, the final 

fundamental matrix estimated by RANSAC will exclude most if not all the outliers. The 

accuracy of the final subset of matches refined by the curvature constraint relies heavily 

on the accuracy of the initial pool of potential candidates acquired by RANSAC. 

5.7.3 Monoplane Reconstruction 

We performed both synthetic and clinical validation on our proposed single view 

approach. We supposed that an a priori 3D model of the cardiac structure or 

instrumentation being investigated at a first time instant was readily available. This 

signifies the following: (i) that a 2D/3D registration process was previously performed 

in order to align the 3D volume, obtained from either a CT or MRI dataset, to the 

corresponding anatomical structure on the 2D X-ray image or (ii) a 3D representation 

was first acquired using the biplane methodology and no registration be performed. 

As we had no angiographic dataset at our disposal, we tested the single view approach 

on catheter ablation electrodes. We proved that if we track temporally a specific amount 

of landmarks across three angiographic X-ray images then we were able to recover most 

of the rigid movement of the electrodes in question. Through significant synthetic 
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experimentation we showed that an orthogonal or weak perspective model would be 

sufficient enough to initialize all 3d displacements [dxn, dyn, dzn] for the optimization 

process. Figure 5.14 showed that under rigid motion 3D reconstruction errors were in the 

order of 2-3mm for our monoplane algorithm. We successfully reduced by more than 

50% the overall depth estimation of the ablation catheter tip from 10mm to about 2mm 

using three images. However, we still encountered problems recovering the 3D 

displacements under non rigid motion. Figure 5.15 showed that the average absolute 

displacement errors were 0.64mm and 0.31mm for a dz= 0mm and dz= lmm 

respectively. Compared to the computer vision field where much work has been done on 

single plane reconstruction, the results we obtain are encouraging. In [103], authors 

performed a single plane analysis on 3D rigid motion. The error obtained when 

calculating the optimized 3D displacements was in the range of 8%. However, the 

authors had more than one a priori 3D model unlike our case. In conclusion, we 

observed that by adding more image frames in the analysis, and thus more landmark 

spatial 2D information, we substantially decreased the accuracy for the 3D 

reconstruction phase. 

The following question was posed: is single view reconstruction possible with no 

a priori 3D volume? With respect to our proposed monoplane equations, this signifies 

that the three dimensional world points (X0, Y0, Iff) at a first time instant are unknown. 

Therefore, we systematically increase the number of unknown variables from nine 3D 

displacements to twelve in total. Hence, other equations need be considered to solve the 

non linear optimization process. A first attempt was made but not outlined in Chapter 4. 

We exploited the two dimensional motion fields of the images calculated by the 

multiresolution Lucas Kanade approach. In [134], the authors derived a method for 

estimating 3D motion parameters of the moving object as well as the depth of the 

environment (Figure 5.21 and equation (5.3)). Since there are six unknowns reflecting 

the trans!ational and rotational velocities on a 3D point, it is impossible to recover the 

3D motion parameters given only a single image point. Thus, image velocity 

measurements at 5 or more image locations are the minimum requirement to solve 
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equation (5.3). By adding these additional equations to our proposed monoplane 

procedure, we thought we would arrive at a more feasible and robust method that would 

take into consideration the inherent non-rigid motion of the coronary arteries. 

Fig 5.21. Ego Motion that states the 2D 
velocity of a point is related to the 
angular and translation motion of its 3D 
configurations. The coordinate system (X, 
Y, Z) is attached to the camera and the 
corresponding image coordinates (x, y) 
on the image plane are located at Z = fc. 
T= (Tx, TY, Tz) and Q= (Q„ Qy, £?,) 
represent the relative translation and 
rotation of the camera in the scene. 

2D motion 

2D motion 

•- + fily-yQ.z——-£- + — H. 
z f f y 

-filx +xQ.z + 
xyQ. 

(5.3) 
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If the object is stationary and the camera moves, then the signs of the linear and angular 

velocities are reversed in equation (5.3) and, consequently, the signs of all the terms in 

the image motion equations are reversed as well. Preliminary results showed that 

equation (5.3) is a gross estimation of the movement of the coronary arteries. As 

mentioned, since there are initially six unknowns T and Q, we must solve for these by 

using a minimum number of image pixel points. Therefore, if we define a window size 

surrounding a few artery pixel positions in the 2D image, then we can estimate the 

translation and rotational velocities within this region. The process is repeated for other 

window patches in order to account for all the artery pixel positions. One can conclude 

that an initial hypothesis was made in that within a window sized region, the artery 



143 

coordinates move with the same angular and translational velocities. This may not be the 

case. A first analysis was made supposing that we had an average depth Z=Zavg of the 

arteries and results were much larger than the ones described by our 3 consecutive image 

single plane analysis. Further hypothesis must be made to consider adding equation (5.3) 

to our monoplane equations. 

5.8 Research Methodology Limitations 

We designed methods to meet our research hypotheses and answer the specific 

objectives outlined in Chapter 3. However, we must outline the limitations of the 

proposed algorithms presented in this work. Here are some of the limitations that need to 

be considered when improving the proposed methodology: 

1. Automatic diastolic image extraction validation was not performed using 

simultaneous electrocardiogram data. 

2. Some of the 4-step filter parameters were determined empirically and were not 

fully tested to optimize their values. 

3. Image segmentation was focused on the centerline geometry of the arteries 

instead of considering the entire vessel perimeter. 

4. Monoplane 3D reconstruction was performed only on points or segments that 

underwent rigid motion. The non-rigid movement must be captured as well in 

future tests. 
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Chapter 6- Conclusion & Future Perspectives 

This research work presented two original contributions to the scientific community. 

First, we proposed an optimal solution to the point correspondence problem between two 

non simultaneous angiographic views. Secondly, a novel single plane algorithm was 

introduced in order to estimate the 3D geometry of the coronary arteries, from temporal 

matching, across monoplane angiographic images. 

The global objective of the proposed research was to elaborate and validate a 

method aimed at developing a potential clinical tool for the visualization and interactive 

manipulation of the coronary arteries, directly from the 2D X-ray angiographic images, 

for diagnosis and interventional purposes. This clinical tool's main purpose is to assist 

cardiologists in guiding them during angioplasty interventions. The goal was to develop 

algorithms that can be easily reproduced and applied in similar clinical procedures, such 

as for arrhythmia ablations, since the primary imaging modality here is the X-ray 

fluoroscope. Furthermore, the methodologies developed in this work are advantageous 

in a sense that all algorithmic parameters were selected with the intent that they remain 

fixed throughout the 3D reconstruction procedures. User interaction is also limited to 

two initial clicks by the cardiologist to extract the coronary artery centerline in the image 

representing the diastolic cardiac phase. Image enhancement, temporal tracking, optimal 

point correspondence and monoplane 3D reconstruction are achieved automatically 

thereafter. 

We formulated two hypotheses that needed to be verified by proposing specific 

objectives to meet them. The first hypothesis and its specific objectives were: 
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Hypothesis #1: The integration of a geometrical curvature constraint improves the 

precision of the point correspondence and improves reconstruction accuracy. 

Specific Objectives: 

• Improve self calibration algorithms by introducing a novel curvature constraint that will 

help select valid 2D corresponding points between the non simultaneous images and 

make the reconstruction more precise. 

• Validate constraint on biplane images first to prove the necessity of refining the point 

matches in a single view sequence. 

Depending on the incidence angle of the fluoroscope we cannot assume that a minimum 

number of bifurcations would be visible in the 2D images for the point matching 

process. Therefore it was imperative to find other matches along the coronary artery 

centerline. To meet the specific objectives and validate our first hypothesis we 

performed both synthetic and clinical validation using centerline correspondences. 

Results show that for synthetic experimentation, with added gaussian noise of up to 5 

pixels standard deviations, using the left-right anterior oblique (LAO/RAO) and 

posterior-anterior lateral (PA/LAT) viewing angles, the average 3D RMS errors are 

respectively 3.1 mm and 1.9 mm for the RANSAC method, and decreased to 2.8 mm 

and 1.1 mm by using our curvature constraint methodology. Similarly, clinical 

validation was performed on two angiographic datasets. By using our novel curvature 

constraint to refine the point correspondences between both views, the 3D RMS errors 

decreased from 1.61mm to 1.44mm in the first dataset and from 2.35mm to 1.86mm in 

the second dataset. 
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The second research hypothesis and its specific objectives were: 

Hypothesis #2: It is possible to recuperate the 3D geometry across a single plain 

angiographic sequence, for clinical assistance, by using an a priori 3D model of the 

structure of interest. 

Specific Objectives: 

• Develop a novel automatic 2D segmentation algorithm to enhance healthy or diseased 

(stenosis) coronary arteries in a first image representing the diastolic phase. 

• Provide the interventionist with the ability to select a specific coronary artery and 

investigate its motion by extracting its 2D centerline and automatically temporal 

tracking it across all the angiographic images in a cardiac cycle. 

• Perform monoplane 3D reconstruction by implementing a novel self calibration 

algorithm using a single angiographic view and an a priori 3D model. 

In order to achieve monoplane reconstruction, the first two specific objectives needed to 

be developed. A two-click method to extract the artery centerline was implemented and 

its position was temporally tracked automatically across a monoplane angiographic 

sequence. We proposed that the required a priori 3D model of the coronary arteries be 

obtained using the diastolic images from the two views obtained by rotating the C-arm 

fluoroscope on two occasions. The minimum number of single plane temporal images 

required for monoplane 3D reconstruction is three. Considering that monoplane 3D 

reconstruction has never been performed previously we developed equations that would 

lead to the estimation of the 3D geometry of the arteries across the minimum number of 

X-ray images. To meet the specific objectives and validate the second hypotheses we 

once again performed synthetic experimentation and clinical validation. 

We constructed a 3D helix in space and applied rigid motion to it across six 

different time instants. We then reprojected those six sets of 3D points on 2D images 
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using projection matrices that represented the posterior-anterior view. To experiment on 

non-rigid moving objects, we used 3D landmarks from a sheep's ventricle and 

reprojected those coordinates onto six 2D images. We then optimized our monoplane 

equations and estimated the 3D geometry of the helix and ventricle landmarks across the 

six time instants. Results showed that by assuming depth errors of at most dz= 1 mm, the 

3D RMS errors for the helix increased from about 1mm to 2.5mm if we systematically 

increase the number of X-ray images from three to six. Similarly, by assuming depth 

errors of at most dz= 1mm, the 3D RMS errors for the ventricle landmarks increased 

from about 2.5mm to 5.5mm if we increase the number of X-ray images from three to 

six. These experiments showed that the monoplane equations developed recuperate well 

the 3D coordinates of objects that undergo only rigid movement. Also, by using depth 

approximations of dz=2mm, the optimization begins to decrease in precision since 3D 

RMS results are about 4mm and 8mm when using the helix and ventricle landmarks 

respectively. We clinically validated the monoplane approach on catheter electrode 

datasets to treat arrhythmia. The average 3D depth error, across the 20 datasets, when 

estimating the depth of the tip electrode of the ablation catheter was 2.14mm and 

1.49mm when using a minimum of three X-ray images, posterior-anterior view and left 

lateral view respectively. 

We believe that we have met our research objectives by performing sufficient 

experimentation to validate our proposed methodologies. As there is room for 

improvement in certain aspects of our research work, we follow by outlining possible 

solutions to remedy the various problems that still need to be addressed in our research. 

In terms of future work regarding two view reconstruction there are two avenues that 

need to be further investigated. First, we should consider matching the artery contour 

coordinates instead of using only the centerline points. This is important for modeling 

purposes if an eventual biomechanics study were to be performed for pre and post

operative studies. Having the dynamic information of the artery walls would provide a 
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more complete evaluation of the progression of stenosis and follow-up of stent 

placement near the obstructed site. Nevertheless, performing point correspondence 

between vessel contours remains problematic due to the difficulties of having multiple 

matches for multiple perimeters (Figure 6.1). 

Therefore, we can possibly consider modeling the 3D centerlines of arteries by 

implementing a NURBS (Non Uniform Rational Basis Spline) formulation on both the 

centerlines in the 3D space and in the 2D images. The advantage of considering NURBS 

is that they remain invariant to perspective projection. Hence, there may be a possibility 

of facilitating point correspondence. Furthermore, since our method only reconstructed 

rigid segments, we can complete the full scale 3D model by passing a NURBS through 

the monoplane reconstructed rigid points in order to fill the missing centerline 

information. Also, length preservation can now be achieved if the artery is modeled as a 

spline since one can easily calculate the 3D length of the reconstructed artery and 

correlate it to those coordinates in the 2D images to determine the 2D length of the 

artery. 
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Nevertheless, the filter parameters were determined empirically and a more thorough 

analysis must be made to optimize the parameters for the 4 filters used. We suggest 

adaptive image fine tuning of the parameters. If local characteristics of the data can be 

extracted and correlated with the filter parameters then we can deem these optimal for 

algorithmic validation. Regarding the automatic diastolic image frame extraction, 

acquiring ECG's and synchronizing them with the images is an essential validation step 

to our proposed methodology. Recalling that our technique chose the diastolic image 

frame number that had the smallest standard deviation assigned to it, it would be 

imperative to verify that the actual frame number falls directly on the ECG segment 

representing the diastolic cardiac phase. 
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Furthermore, there is great potential to automatically extract the coronary artery 

contours by implementing a novel level set method introduced in [135]. Figure 6.2 

shows the potential of such a method. Nevertheless the level set formulation relies 

greatly on the initial image quality and background uniformity. By extracting the 

contours of the arteries, we can then re-apply our tracking algorithm throughout a 

cardiac cycle and this will lead to a more complete reconstruction of the coronary artery 

geometry. 

Fig 6.2. Implicit Active Contours Driven 
by Local Binary Fitting Energy by [135]. 
Level set method uses a kernel to extract 
local image information for the 
segmentation process. 

Lastly, the GVF formulation failed when the active contour was far from the desired 

center position of the targeted artery. Although one of the advantages of the GVF 

technique is its large capture range, it would fail in some cases. The future improvement 

of our tracking algorithm should revolve around the implementation of a vector field 

convolution (VFC) algorithm. The VFC external force can be broken down into two 

independent steps: the formation of edge map from the image, and the computation of 

the external force from the edge map. This novel external force for active models is 

calculated by convolving a vector field with the edge map derived from the image. Like 



151 

the GVF technique, instead of being formulated using the standard energy minimization 

framework, VFC snakes are constructed by way of a force balance condition. The novel 

static external force has not only a larger capture range and ability to capture 

concavities, but also reduced computational cost, superior robustness to noise and 

initialization, and flexibility of changing the force field. 

Regarding monoplane reconstruction, this problem is an original one to tackle in 

the medical field. The economic and social impact of such a breakthrough would be 

significant. Most hospital settings are equipped with a monoplane C-arm fluoroscope 

that needs to be rotated twice in order to acquire orthogonal views for 3D reconstruction. 

However, during clinical interventions the cardiologist more often relies only on a single 

view provided by a specified incidence angle of the X-ray fluoroscope. The reason for 

this is that the acquisition time is reduced in half by avoiding rotating the fluoroscope a 

second time. Also, clinical intervention time is diminished and radiation exposure is 

reduced. It is our obligation to provide robust clinical tools to assist the cardiologist 

during these interventions to facilitate navigation of catheters and guidewires and 

quicken diagnosis as well. 

Our proposed monoplane algorithm can be improved in a number of ways. First, 

the addition of constraints to our equations needs to be considered. Since we modeled 

the coronary arteries as a spatial 2D and 3D curve during the optimization phase, then in 

theory each reconstructed 3D point must have its 3D tangent perpendicular to the 3D 

normal (Figure 6.3). 

Fig 6.3. A Frenet-Serret constraint that 
defines orthogonality between the 3D 
normal and tangent. 
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Another additional constraint might be a length preservation criterion in which the 3D 

artery centerline lengths remain relatively similar to its 2D projections. This is vital 

when considering a registration framework between a 3D volume and its 2D image 

projection. If CT or MRI technology is available, then a last possible solution would be 

to acquire a second volume, perhaps at the systolic cardiac phase, in order to calculate 

approximately the amount of 3D deformation experienced by the coronary structure 

between diastole and systole. For example, if there are a total of 10 angiographic images 

representing the cardiac cycle and we determined that the 3D points moved a total of 5 

millimeters when subtracting both volumes, then in consequence we can assign more 

precise estimations for the displacements in three dimensions (dx, dy, dz), instead of 

assuming orthographic or weak perspective projection camera models. 

In this 21st century, there is a continuing necessity for academic researchers to 

work in conjunction with clinical cardiologists in order to continually improve existing 

technologies and establish higher standards of cardiac medical interventions (i.e. bypass 

surgery, angioplasty, and arrhythmia ablations to name a few) with respect to quality and 

time. By reducing overall intervention time with the aid of an accurate monoplane 

reconstruction approach, we will also reduce the stress on patients and their exposure to 

radiation from the fluoroscopy X-ray system. Also, a quick and efficient cardiac 

intervention usually means that the patient may leave the hospital sooner and this is 

beneficial in reducing backlog of cardiac interventions and waiting time for patients to 

be hospitalized. We conclude this work by stating that technological assistance to 

clinical interventions may be facilitated by ongoing development of robust mathematical 

and image processing formulations that describe motion analysis and geometrical spatial 

configurations. 
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