2,615 research outputs found

    Reconstruction of eye movements during blinks

    Full text link
    In eye movement research in reading, the amount of data plays a crucial role for the validation of results. A methodological problem for the analysis of the eye movement in reading are blinks, when readers close their eyes. Blinking rate increases with increasing reading time, resulting in high data losses, especially for older adults or reading impaired subjects. We present a method, based on the symbolic sequence dynamics of the eye movements, that reconstructs the horizontal position of the eyes while the reader blinks. The method makes use of an observed fact that the movements of the eyes before closing or after opening contain information about the eyes movements during blinks. Test results indicate that our reconstruction method is superior to methods that use simpler interpolation approaches. In addition, analyses of the reconstructed data show no significant deviation from the usual behavior observed in readers

    Dynamic Construction of Stimulus Values in the Ventromedial Prefrontal Cortex

    Get PDF
    Signals representing the value assigned to stimuli at the time of choice have been repeatedly observed in ventromedial prefrontal cortex (vmPFC). Yet it remains unknown how these value representations are computed from sensory and memory representations in more posterior brain regions. We used electroencephalography (EEG) while subjects evaluated appetitive and aversive food items to study how event-related responses modulated by stimulus value evolve over time. We found that value-related activity shifted from posterior to anterior, and from parietal to central to frontal sensors, across three major time windows after stimulus onset: 150–250 ms, 400–550 ms, and 700–800 ms. Exploratory localization of the EEG signal revealed a shifting network of activity moving from sensory and memory structures to areas associated with value coding, with stimulus value activity localized to vmPFC only from 400 ms onwards. Consistent with these results, functional connectivity analyses also showed a causal flow of information from temporal cortex to vmPFC. Thus, although value signals are present as early as 150 ms after stimulus onset, the value signals in vmPFC appear relatively late in the choice process, and seem to reflect the integration of incoming information from sensory and memory related regions

    Eye blink characterization from frontal EEG electrodes using source separation and pattern recognition algorithms

    Get PDF
    Due to its major safety applications, including safe driving, mental fatigue estimation is a rapidly growing research topic in the engineering ïŹeld. Most current mental fatigue monitoring systems analyze brain activity through electroencephalography (EEG). Yet eye blink analysis can also be added to help characterize fatigue states. It usually requires the use of additional devices, such as EOG electrodes, uncomfortable to wear, or more expensive eye trackers. However, in this article, a method is proposed to evaluate eye blink parameters using frontal EEG electrodes only. EEG signals, which are generally corrupted by ocular artifacts, are decomposed into sources by means of a source separation algorithm. Sources are then automatically classiïŹed into ocular or non-ocular sources using temporal, spatial and frequency features. The selected ocular source is back propagated in the signal space and used to localize blinks by means of an adaptive threshold, and then to characterize detected blinks. The method, validated on 11 different subjects, does not require any prior tuning when applied to a new subject, which makes it subject-independent. The vertical EOG signal was recorded during an experiment lasting 90 min in which the participants’ mental fatigue increased. The blinks extracted from this signal were compared to those extracted using frontal EEG electrodes. Very good performances were obtained with a true detection rate of 89% and a false alarm rate of 3%. The correlation between the blink parameters extracted from both recording modalities was 0.81 in average

    Multidimensional en-face OCT imaging of the retina.

    Get PDF
    Fast T-scanning (transverse scanning, en-face) was used to build B-scan or C-scan optical coherence tomography (OCT) images of the retina. Several unique signature patterns of en-face (coronal) are reviewed in conjunction with associated confocal images of the fundus and B-scan OCT images. Benefits in combining T-scan OCT with confocal imaging to generate pairs of OCT and confocal images similar to those generated by scanning laser ophthalmoscopy (SLO) are discussed in comparison with the spectral OCT systems. The multichannel potential of the OCT/SLO system is demonstrated with the addition of a third hardware channel which acquires and generates indocyanine green (ICG) fluorescence images. The OCT, confocal SLO and ICG fluorescence images are simultaneously presented in a two or a three screen format. A fourth channel which displays a live mix of frames of the ICG sequence superimposed on the corresponding coronal OCT slices for immediate multidimensional comparison, is also included. OSA ISP software is employed to illustrate the synergy between the simultaneously provided perspectives. This synergy promotes interpretation of information by enhancing diagnostic comparisons and facilitates internal correction of movement artifacts within C-scan and B-scan OCT images using information provided by the SLO channel

    Optimization of a hardware/software coprocessing platform for EEG eyeblink detection and removal

    Get PDF
    The feasibility of implementing a real-time system for removing eyeblink artifacts from electroencephalogram (EEG) recordings utilizing a hardware/software coprocessing platform was investigated. A software based wavelet and independent component analysis (ICA) eyeblink detection and removal process was extended to enable variation in its processing parameters. Exploiting the efficiency of hardware and the reconfigurability of software, it was ported to a field programmable gate array (FPGA) development platform which was found to be capable of implementing the revised algorithm, although not in real-time. The implemented hardware and software solution was applied to a collection of both simulated and clinically acquired EEG data with known artifact and waveform characteristics to assess its speed and accuracy. Configured for optimal accuracy in terms of minimal false positives and negatives as well as maintaining the integrity of the underlying EEG, especially when encountering EEG waveform patterns with an appearance similar to eyeblink artifacts, the system was capable of processing a 10 second EEG epoch in an average of 123 seconds. Configured for efficiency, but with diminished accuracy, the system required an average of 34 seconds. Varying the ICA contrast function showed that the gaussian nonlinearity provided the best combination of reliability and accuracy, albeit with a long execution time. The cubic nonlinearity was fast, but unreliable, while the hyperbolic tangent contrast function frequently diverged. It is believed that the utilization of programmable logic with increased logic capacity and processing speed may enable this approach to achieve the objective of real-time operation
    • 

    corecore