18,992 research outputs found

    3D particle tracking velocimetry using dynamic discrete tomography

    Get PDF
    Particle tracking velocimetry in 3D is becoming an increasingly important imaging tool in the study of fluid dynamics, combustion as well as plasmas. We introduce a dynamic discrete tomography algorithm for reconstructing particle trajectories from projections. The algorithm is efficient for data from two projection directions and exact in the sense that it finds a solution consistent with the experimental data. Non-uniqueness of solutions can be detected and solutions can be tracked individually

    Fast Mojette Transform for Discrete Tomography

    Full text link
    A new algorithm for reconstructing a two dimensional object from a set of one dimensional projected views is presented that is both computationally exact and experimentally practical. The algorithm has a computational complexity of O(n log2 n) with n = N^2 for an NxN image, is robust in the presence of noise and produces no artefacts in the reconstruction process, as is the case with conventional tomographic methods. The reconstruction process is approximation free because the object is assumed to be discrete and utilizes fully discrete Radon transforms. Noise in the projection data can be suppressed further by introducing redundancy in the reconstruction. The number of projections required for exact reconstruction and the response to noise can be controlled without comprising the digital nature of the algorithm. The digital projections are those of the Mojette Transform, a form of discrete linogram. A simple analytical mapping is developed that compacts these projections exactly into symmetric periodic slices within the Discrete Fourier Transform. A new digital angle set is constructed that allows the periodic slices to completely fill all of the objects Discrete Fourier space. Techniques are proposed to acquire these digital projections experimentally to enable fast and robust two dimensional reconstructions.Comment: 22 pages, 13 figures, Submitted to Elsevier Signal Processin

    The smallest sets of points not determined by their X-rays

    Get PDF
    Let FF be an nn-point set in Kd\mathbb{K}^d with K∈{R,Z}\mathbb{K}\in\{\mathbb{R},\mathbb{Z}\} and d≄2d\geq 2. A (discrete) X-ray of FF in direction ss gives the number of points of FF on each line parallel to ss. We define ψKd(m)\psi_{\mathbb{K}^d}(m) as the minimum number nn for which there exist mm directions s1,...,sms_1,...,s_m (pairwise linearly independent and spanning Rd\mathbb{R}^d) such that two nn-point sets in Kd\mathbb{K}^d exist that have the same X-rays in these directions. The bound ψZd(m)≀2m−1\psi_{\mathbb{Z}^d}(m)\leq 2^{m-1} has been observed many times in the literature. In this note we show ψKd(m)=O(md+1+Δ)\psi_{\mathbb{K}^d}(m)=O(m^{d+1+\varepsilon}) for Δ>0\varepsilon>0. For the cases Kd=Zd\mathbb{K}^d=\mathbb{Z}^d and Kd=Rd\mathbb{K}^d=\mathbb{R}^d, d>2d>2, this represents the first upper bound on ψKd(m)\psi_{\mathbb{K}^d}(m) that is polynomial in mm. As a corollary we derive bounds on the sizes of solutions to both the classical and two-dimensional Prouhet-Tarry-Escott problem. Additionally, we establish lower bounds on ψKd\psi_{\mathbb{K}^d} that enable us to prove a strengthened version of R\'enyi's theorem for points in Z2\mathbb{Z}^2

    Geometric reconstruction methods for electron tomography

    Get PDF
    Electron tomography is becoming an increasingly important tool in materials science for studying the three-dimensional morphologies and chemical compositions of nanostructures. The image quality obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts and nonlinear projection intensities due to diffraction effects. The former refers to the fact that data cannot be acquired over the full 180∘180^\circ tilt range; the latter implies that for some orientations, crystalline structures can show strong contrast changes. To overcome these problems we introduce and discuss several algorithms from the mathematical fields of geometric and discrete tomography. The algorithms incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle considerably reduces the number of tilt angles required. Results are discussed for the reconstruction of an InAs nanowire

    Three dimensional structure from intensity correlations

    Full text link
    We develop the analysis of x-ray intensity correlations from dilute ensembles of identical particles in a number of ways. First, we show that the 3D particle structure can be determined if the particles can be aligned with respect to a single axis having a known angle with respect to the incident beam. Second, we clarify the phase problem in this setting and introduce a data reduction scheme that assesses the integrity of the data even before the particle reconstruction is attempted. Finally, we describe an algorithm that reconstructs intensity and particle density simultaneously, thereby making maximal use of the available constraints.Comment: 17 pages, 9 figure

    Numerical methods for coupled reconstruction and registration in digital breast tomosynthesis.

    Get PDF
    Digital Breast Tomosynthesis (DBT) provides an insight into the fine details of normal fibroglandular tissues and abnormal lesions by reconstructing a pseudo-3D image of the breast. In this respect, DBT overcomes a major limitation of conventional X-ray mam- mography by reducing the confounding effects caused by the superposition of breast tissue. In a breast cancer screening or diagnostic context, a radiologist is interested in detecting change, which might be indicative of malignant disease. To help automate this task image registration is required to establish spatial correspondence between time points. Typically, images, such as MRI or CT, are first reconstructed and then registered. This approach can be effective if reconstructing using a complete set of data. However, for ill-posed, limited-angle problems such as DBT, estimating the deformation is com- plicated by the significant artefacts associated with the reconstruction, leading to severe inaccuracies in the registration. This paper presents a mathematical framework, which couples the two tasks and jointly estimates both image intensities and the parameters of a transformation. Under this framework, we compare an iterative method and a simultaneous method, both of which tackle the problem of comparing DBT data by combining reconstruction of a pair of temporal volumes with their registration. We evaluate our methods using various computational digital phantoms, uncom- pressed breast MR images, and in-vivo DBT simulations. Firstly, we compare both iter- ative and simultaneous methods to the conventional, sequential method using an affine transformation model. We show that jointly estimating image intensities and parametric transformations gives superior results with respect to reconstruction fidelity and regis- tration accuracy. Also, we incorporate a non-rigid B-spline transformation model into our simultaneous method. The results demonstrate a visually plausible recovery of the deformation with preservation of the reconstruction fidelity

    Identikit 2: An Algorithm for Reconstructing Galactic Collisions

    Full text link
    Using a combination of self-consistent and test-particle techniques, Identikit 1 provided a way to vary the initial geometry of a galactic collision and instantly visualize the outcome. Identikit 2 uses the same techniques to define a mapping from the current morphology and kinematics of a tidal encounter back to the initial conditions. By requiring that various regions along a tidal feature all originate from a single disc with a unique orientation, this mapping can be used to derive the initial collision geometry. In addition, Identikit 2 offers a robust way to measure how well a particular model reproduces the morphology and kinematics of a pair of interacting galaxies. A set of eight self-consistent simulations is used to demonstrate the algorithm's ability to search a ten-dimensional parameter space and find near-optimal matches; all eight systems are successfully reconstructed.Comment: 14 pages, 8 figures. Accepted for publication in MNRAS. To get a copy with high-resolution figures, use the web interface, or download the Identikit software, visit http://www.ifa.hawaii.edu/faculty/barnes/research/identikit
    • 

    corecore