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a b s t r a c t

Electron tomography is becoming an increasingly important tool in materials science for studying the

three-dimensional morphologies and chemical compositions of nanostructures. The image quality

obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts

and non-linear projection intensities due to diffraction effects. The former refers to the fact that data

cannot be acquired over the full 1801 tilt range; the latter implies that for some orientations, crystalline

structures can show strong contrast changes. To overcome these problems we introduce and discuss

several algorithms from the mathematical fields of geometric and discrete tomography. The algorithms

incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle

considerably reduces the number of tilt angles required. Results are discussed for the reconstruction of

an InAs nanowire.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Missing wedge artefacts and non-linear projection intensities
due to diffraction effects are known to cause severe difficulties in
electron tomography (ET) reconstructions obtained by standard
methods. This has been reported, e.g., in [1–8]. Nevertheless,
standard methods, such as filtered backprojection, algebraic
reconstruction techniques, and simultaneous iterative reconstruc-
tion techniques [9,10], are still widely used due to an apparent
lack of alternatives [11,12].

However, alternatives exist in the mathematical literature.
Geometric tomography [13], for instance, is concerned in part with
the tomographic reconstruction of homogeneous (i.e., geometric)
objects. Similarly, discrete tomography [14,15] usually deals with
objects for which atomicity is a constraint or objects that exhibit a
small number of attenuation coefficients. In many applications,
certain prior knowledge about the shape of the structure of
interest is available. For example, when reconstructing nanorods,
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nanowires or certain types of nanoparticles, one can typically
assume that the structures are convex. (A subset K of points in the
plane is convex if for any two points in K the line segment join-
ing these two points lies completely within K; see Fig. 2.)
In particular, in our experimental application of reconstructing
an InAs nanowire from high-angle annular dark-field scanning
transmission electron microscopy (HAADF STEM) data, it is
known that the object is comprised of cross-sections that are
mostly close to regular hexagons; see [16,17].

Here we demonstrate the use of geometric prior knowledge to
overcome the problems of missing wedge and non-linear projec-
tion intensities due to diffraction effects by introducing four
algorithms. For now, we use their abbreviated names; they are
introduced in the next section. One of the algorithms (2n-GON)
appears here for the first time and uses the strongest geometric
prior knowledge available in our setup, namely that the slices
contain nearly regular hexagons. Two algorithms, GKXR and
MPW, are introduced here for the first time in the ET context
and another algorithm (DART) is applied here for the first time to
the reconstruction of a nanowire. As a fifth method, we discuss
the BART algorithm, which was introduced in the 1970s and
performs very well on homogeneous objects. BART has been
implemented in the open-source software SNARK09 [18] and
we provide commands and parameters that yield high quality
reconstructions in our context.

The idea of using geometric prior knowledge in ET appears
already in [19,20]. In particular, [20] is, to the best of our
knowledge, the only paper in ET that discusses geometric 2D
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Table 1
Overview of algorithms.

Algorithm Tomographic data Prior knowledge

Projection Shadow Convexity Other

SIRT | – – –

BART | – – Homogeneity

DART | – – Homogeneity

GKXR | – | Homogeneity

U-FBP – | | Homogeneity

MPW – | | Homogeneity

2n-GON – | | Close to a regular 2n-gon
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slice-by-slice reconstruction methods, all of which are variants of
the unfiltered backprojection (U-FBP) algorithm. Our work takes
these investigations a step further and introduces alternative
reconstruction methods, some of which are mathematically
proven to converge towards the solution as the number of noisy
measurements tends to infinity. We compare these methods
(including U-FBP and the standard method SIRT as sixth and
seventh algorithms, respectively) and show that these methods
perform differently depending on the experimental setup and
type of noise present in the data.

The geometric reconstruction algorithms use prior knowledge
to address the problem of the missing wedge and non-linear
projection intensities. We show that reconstructions that are
accurate (mean of the reconstructions is close to the true object)
and precise (reconstructions have small variance) can be obtained
by using data from considerably fewer tilt angles than in conven-
tional tomography. This has practical consequences, because
rapid data acquisition allows time resolved studies and imaging
of beam-sensitive samples.

As already mentioned, we investigate here only the use of
geometric prior knowledge. Other types of prior knowledge might
be related to the sparsity of the signal that represents the image
gradient [21,22], or it might be assumed that the object is a
realization of a random process with a given probability distribu-
tion [23,24]. For further applications of special-purpose recon-
struction methods in a crystallographic context, see [15,23,25,26].
2. Algorithms

In this section we briefly describe the simultaneous iterative
reconstruction technique (SIRT), the binary algebraic reconstruc-
tion technique (BART), the discrete algebraic reconstruction tech-
nique (DART), the Gardner–Kiderlen X-ray (GKXR) algorithm,
unfiltered backprojection (U-FBP), the modified Prince–Willsky
algorithm (MPW), and 2n-GON. Further details on SIRT, BART,
DART, GKXR, and MPW can be found in [20,27–31]. Our results
are based on Matlab implementations of these algorithms; BART
is part of the open-source software SNARK09 [18].

We consider only 2D versions of each algorithm, so that 3D
reconstructions are obtained by 2D slice-by-slice reconstructions.
Alternative reconstruction principles exist. For 3D and 2.5D
approaches employing generalized Kaiser–Bessel window func-
tions (blobs) for not necessarily homogeneous or convex objects,
see [32,33]. We assume in this paper an acquisition geometry
with a single tilt axis and a limited angular range.

The algorithms require different input data. While SIRT, BART,
DART, and GKXR take the projections as input, only the shadows
are used in U-FBP, MPW, and 2n-GON. Note that following (non-
mathematical) standard convention, projection refers to the mea-
sured intensity data (i.e., line integrals), while shadow denotes
their support (i.e., the detector pixel locations that record non-
zero intensities). It can therefore be expected that U-FBP, MPW,
and 2n-GON are rather insensitive to intensity-affecting noise if
the signal can still be distinguished from the background. Also
note that the object’s shadows represent binary data, which
initially need to be extracted from the projection data. In this
paper we achieve this by applying a suitable threshold and filter
to the projection data; see Sections 3.2 and 4.2. For more
advanced variants, such as edge enhancement, see [20].

Another difference between the algorithms is that they use
different types of prior knowledge. Most of the algorithms exploit
the object’s convexity or homogeneity. However, 2n-GON uses
the additional assumption that the object is nearly a regular 2n-
gon. A summary is given in Table 1.
2.1. Pixel-based reconstruction methods

The first three methods discussed in this paper aim to
reconstruct the individual pixel values of an image representing
the object.
2.1.1. Simultaneous iterative reconstruction technique (SIRT)

In this paper we describe and employ an additive variant of
SIRT [10, Section 7]. The additive SIRT algorithm (from now on
referred to as the SIRT algorithm) is a standard technique for
reconstructing grayscale images from tomographic data. When
reconstructing homogeneous objects, an additional segmentation
step is required that yields a binary image. We recall that SIRT is
an iterative reconstruction algorithm that computes an approx-
imate solution of the linear system Ax¼b, where the vector xARn

contains the gray level (also referred to as pixel value) for each
pixel, the vector bARm contains the measured projection data,
and the matrix A¼ ðaijÞARm�n represents the projection operation
(i.e., computing the product Ax yields the projections correspond-
ing to the image x). If no exact solution of this system exists, SIRT
computes a solution for which the norm of the difference JAx�bJ

(referred to as projection error) between the computed projection
and the measured data is minimal with respect to a weighted L2

norm, i.e., a weighted least-squares solution (see [27,34] for
details). In contrast to other popular iterative algorithms, such
as ART (algebraic reconstruction technique [9, Chapter 11]), the
SIRT algorithm computes the projections for all angles in each
iteration. Then the difference between these projections and the
measured projection data is computed. Subsequently, each image
pixel value is updated by adding a weighted average of the
projection difference for all lines that intersect this pixel. In other
words:

xðkþ1Þ ¼ xðkÞ�lCAT DðAxðkÞ�bÞ,

where C ¼ diagð1=c1, . . . ,1=cnÞARn�n with cj ¼
Pm

i ¼ 1 aij and
D¼ diag ð1=d1, . . . ,1=dmÞARm�m with di ¼

Pn
j ¼ 1 aij; the para-

meter lAR is the relaxation parameter of the algorithm (for
our particular choice, see Sections 3.2 and 4.2).
2.1.2. Binary algebraic reconstruction technique (BART)

The BART algorithm was introduced by Herman [28]. Along
with other methods, BART is implemented in the open-source
software SNARK09 [18]. The general idea is to enforce binary
constraints on the solution x during the iterations of a chosen ART
routine. In a second step, the solution is filtered to exclude
isolated pixels. A complete code that can be read into SNARK09
(either manually or as an input file) to obtain the BART recon-
structions discussed in this paper is provided in Appendix A
(Table A1).



Fig. 1. Illustration showing the basic principles behind the GKXR algorithm.
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2.1.3. Discrete algebraic reconstruction technique (DART)

The DART algorithm, which has recently been proposed
as a reconstruction algorithm for electron tomography [26,29]
is another algebraic method, in which a set of fixed pixels is
updated in each iteration, reflecting the position of the boun-
dary in the current reconstruction. The variant described here
does not apply any subsequent filtering. For simplicity, we
describe the DART algorithm for the specific purpose of recon-
structing a binary image. The general algorithm can deal with
more than two gray levels. More on DART can be found in
[35–38].

Here, we focus on reconstructing a single object of homo-
geneous composition, resulting in a binary image reconstruction
problem. The DART algorithm uses a continuous algebraic recon-
struction method, such as SIRT, as a subroutine. From this point
on, we will refer to this continuous method as the algebraic
reconstruction method (ARM). After an initial gray level recon-
struction has been computed using the ARM, this gray level
reconstruction is segmented by global thresholding with thresh-
old r=2, where the gray level r of the object is assumed to be
prior knowledge. In practice, an appropriate value of r can often
be obtained by first computing a SIRT reconstruction and then
taking the average gray level over a region deeply in the interior
of the object. One of the principal assumptions behind the DART
algorithm is that errors in this segmentation are typically located
near the boundary of the structure of interest. Indeed, when
reconstructing a homogeneous object that is large with respect to
the image pixel size, pixels that are deeply inside the interior of
the object (e.g., a nanoparticle) are usually segmented correctly,
while the segmentation of the boundary can be highly inaccurate,
in particular when the ARM reconstruction suffers from missing
wedge artefacts. The boundary can be computed from the initial
segmentation as the set of pixels for which not all neighboring
pixels belong to the same segmentation class. After the segmen-
tation step, the set of pixels is separated into three subsets: the
interior pixels I, the background pixels B, and the boundary pixels
F. Prior knowledge about the gray level r of the object and of the
gray level of the background (here assumed to be 0) is now
incorporated by solving the following constrained reconstruction
problem, again using the ARM:

solve Ax¼ b,

subject to

xi ¼ 0 for iAB,

xi ¼ r for iA I:

In this reconstruction problem, all interior pixels and background
pixels are fixed to their respective gray levels and pixel values are
only allowed to change for boundary pixels. This constraint strongly
reduces the number of unknowns in the equation system, while the
number of equations (i.e., the number of entries in b) remains
unaltered. If the initial segmentation is of sufficient quality, the
reconstruction of the boundary will significantly improve compared
to the initial ARM reconstruction.

The resulting reconstruction is again segmented, resulting in a
new partition of the image into interior, background, and bound-
ary pixels. As new pixels can be added to the boundary, pixels
whose values were fixed in the previous step can now become
boundary pixels and vice versa. The procedure of alternating
segmentation and reconstruction steps is then iterated until a
pre-defined convergence criterion is reached.

A well-known limitation of DART is that the result can depend
sensitively on the choice of gray levels and this choice may not be
correct based on the first SIRT iterations. Sophisticated algorithms
for choosing the correct gray levels can be found in [39,40].
2.2. Object-based reconstruction methods

The second category of reconstruction methods that we con-
sider in this paper is object based in the sense that the routines
aim to determine a small number of parameters that completely
describe the object (in our case, the vertices of polytopes).
2.2.1. Gardner-Kiderlen X-ray (GKXR)

The Gardner–Kiderlen X-ray algorithm [30] is a recent devel-
opment from the field of geometric tomography. It arose from
theoretical work [41] in which it was shown that there are certain
sets of four directions in 2D such that the exact projections of a
2D convex object in these directions determine it uniquely among
all 2D convex shapes. For example, directions specified by the
four vectors (0,1), (1,0), (2,1), and (�1,2) constitute such a set
[42]. The GKXR algorithm is based on the simple observation that
given a sufficiently dense set of lines meeting a convex set K, the
convex hull of all the points at which the lines intersect the
boundary of K will form a convex polygon that approximates K

well. The algorithm attempts to find this polygon for the set of
projection measurement lines.

Fig. 1 shows a schematic diagram of the basis of the algorithm.
The unknown object is the oval K, assumed to lie inside the circle.
For clarity, only a single projection, taken in the direction u, is
considered in Fig. 1, although in practice projections in four
different directions are used. For each projection direction u,
detector pixels are located at the equally spaced points t1, . . . ,tk

on the axis in the orthogonal direction v. The dotted lines through
these points represent measurement lines. A pair of points (in
Fig. 1, one red and one blue, shown in purple if they coincide; for
interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.) is placed
randomly on each of the 4k measurement lines. Since the
geometry of the measurement lines is known, the position of
each point can be described by a single real variable giving the
location of the point on the measurement line. Therefore the
position of all of the points can be described by a single vector
variable z with 8k real components.

An initial guess for K is obtained by forming the convex hull of
all 8k points, except those for which a pair coincides, i.e., the
purple points. This is the convex polygon labeled P½z� in Fig. 1. The
convex hull is computed using a standard algorithm as a sub-
routine. The reason for ignoring the purple points in taking the
convex hull is that if a measurement line does not meet K, there
must be some mechanism to eliminate the pair of points that lies
on that line. In practice, a threshold is set so that a pair of points is



Fig. 2. Left to right: A convex set K in the plane; a set L which is not convex; the support function of K in one direction u; support function values in many directions

describing the convex set K.

Fig. 3. Left: A convex set K and three exact measurements of its support function. Middle: An incorrect support function measurement leading to inconsistent data. Right:

An incorrect support function measurement cutting away a big part of K.
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eliminated if they become too close in the iterative optimization
procedure to be described next.

In order to improve the initial guess, the positions of the pairs
of points on the measurement lines must be adjusted. This is
effected by computing the sum, over all measurement lines, of the
squares of the differences between the measured projection value
for K and the corresponding projection value of P½z�. This least
squares sum is the objective function in an optimization problem
with 8k real variables and an optimization routine is used to drive
the value of the objective function down to a minimum. The
output of the algorithm is the convex polygon Pk ¼ P½z� corre-
sponding to the optimal vector z of these real variables.

In [30] it is shown that for any finite set of directions for which
the corresponding exact projections determine a convex object
uniquely, the output Pk converges to K as k-1, even when the
measurements are affected by Gaussian noise of fixed variance.
Moreover, this remains true even if the optimization problem is
not solved exactly, but only within an error ek40, provided ek-0
as k-1; see [30, p. 337]. In practice, the optimization problem
involved is heavily non-linear. The fmincon function from
Matlab’s Optimization Toolbox was used, along with simulated
annealing to improve performance.
2.2.2. Unfiltered backprojection (U-FBP)

U-FBP, as described here, can be viewed as a geometric
method. The idea is to backproject the object’s shadows (yielding
a strip for each shadow) and to return the intersection of all of
these strips. The returned object is then necessarily a convex
polygon. This, in general, cannot be guaranteed for other common
U-FBP variants that backproject projections instead of shadows.
2.2.3. Modified Prince–Willsky (MPW)

The modified Prince–Willsky algorithm [31], a modification of
the algorithm in [43], reconstructs a convex object K from its
support function hK. The function hK takes a direction (unit vector
u) as input and returns a number that corresponds to the extent of
K in direction u. To be precise

hK ðuÞ ¼max
xAK

uT x,

where uTx denotes the inner product of u and x.
Fig. 2 also indicates that K is completely determined by its

support function values in all directions (this can be shown
mathematically; see [13, Section 0.6]). Good approximations can
already be obtained using a finite number of (suitably chosen)
directions.

The support function values of K in the two directions
perpendicular to the projection direction can be easily deter-
mined from the data, because they correspond to the minimal
(respectively, maximal) coordinates of the pixels in the data that
record non-zero intensities. As data are available for many tilt
angles, support function measurements are collected for different
u vectors. These serve as input to the algorithm.

So far, the algorithm is very similar to U-FBP. However, U-FBP
tries to find an object that fits the noisy measurements perfectly.
As with most inverse problems, this is usually not the best
strategy. Fig. 3 illustrates the fact that noise may lead to incon-
sistencies in the data.

The MPW algorithm is designed to deal with noise. More
precisely, for (Gaussian) noise affected measurements h1, . . . ,hn of
the support function of K in a finite number of directions
u1, . . . ,un, the MPW algorithm solves a (linearly) constrained
least-squares problem to obtain values y1, . . . ,yn, which are the
support function values of the best-approximating set Kn.

With mild restrictions, the output of the algorithm converges
as the number of shadows, affected by Gaussian noise of fixed
variance, approaches infinity [44]. The implementation of MPW is
somewhat more demanding than U-FBP, because a subroutine for
solving quadratic programs is required (we use the Xpress solver).
The set Kn, in our implementation, is obtained as an intersection
of halfspaces Kn

¼
Tn

i ¼ 1fx : uT
i xryig via U-FBP. Additional MPW

variants are discussed in [31].
2.2.4. 2n-GON

Again, shadows are taken as input data. We aim to reconstruct
an object K that is known to be close to a regular 2n-gon, where
nZ3 is known in advance. (In our experimental application,
n¼3.) If the assumptions are not fulfilled then the algorithm
should exit without reconstruction.

The length of the shadow of K for a given tilt angle y is
commonly referred to as the width of K orthogonal to y. Of course,
this quantity can easily be computed from the input data. It is
easy to see that if K is a regular 2n-gon, then the width of K, as a
function of yA ½01,1801Þ, has exactly n local minima, correspond-
ing to the tilt angles that project K along an edge direction of K.
These n minima are thus (180/n)1 apart and if they can be
determined, then unfiltered backprojection (as implemented
in U-FBP) from the corresponding n directions yields the regular
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2n-gon K. Note that the shadows from two such edge directions of
a regular 2n-gon K determine the minimum width and center of K

and hence K itself. Also note that two such shadows are typically
available from the data, because standard electron microscopes
allow [01,1201) tilt ranges.

The procedure also works when K is only close to a regular
2n-gon, as follows. Again, the idea is to apply unfiltered back-
projection for the directions orthogonal to the tilt angles deter-
mined by some n minima of the width function of K that are only
approximately (180/n)1 apart. As before, some of the data for edge
projecting directions might not be available if the data are not
acquired over the full [01,1801) tilt range. If this is the case, then
one needs to impose some assumptions on the missing data; see
Fig. 4(a), in which the hexagon and the parallelogram are indis-
tinguishable from data in the (very limited) [01,701) tilt range
shown. Another limitation of the 2n-GON approach is that we
need to assume that the noise level in the (shadow) data is
sufficiently low to allow determination of the minima of the
width function.

Here is a precise description of our implementation. We
assume that data are available over a ½01,o1Þ tilt range, where o
is fixed (typically o� 140). We initially determine the local
minima in ½01,o1Þ of a polynomial curve of degree at least
kZ2n that best fits (in the least-squares sense) the measured
widths. We found in simulations that values of k around 2nþ5
give good and stable results. Fig. 4(b) shows measured widths of a
hexagon together with its best fitting polynomial curve.

Suppose there are mZ2 minima t1rt2r � � �rtm, in degrees,
within the ½01,o1Þ range (otherwise, we stop without reconstruc-
tion). Unfiltered backprojection from S¼ ft1, . . . ,tmg yields a (pos-
sibly degenerate) 2m-gon, which, for o¼ 180, approximates K. If
oo180, we proceed as follows. Let

R¼ fiAf1, . . . ,m�1g : 180=n�10r9tiþ1�ti9r180=nþ10g:

If R¼ |, we stop without reconstruction. If 9R9¼ n�1, we recon-
struct from the angles in R. Otherwise, 1r9R9¼ ron�1 and we
define a¼maxfRg, b¼ aþ1, and T ¼ ft01, . . . ,t0n�rg, where
t0i ¼ tbþ180i=n, i¼ 1, . . . ,n�r. If there is an angle in T that is not
in the [01,1801) range, we exit without reconstruction. Otherwise,
we reconstruct from S [ T. Here if t0i is outside the tilt range, we
use unfiltered backprojection of the shadows for the angles ta and
tb to obtain a parallelogram and set the shadow for t0i to be equal
in length to that for tb, using the center of the parallelogram to
position it correctly.

We remark that this implementation reduces in the regular
2n-gon case to the method described at the beginning of this
subsection. Note that 2n-gon can also be applied to data from a
Fig. 4. (a) A regular hexagon (lightly shaded) and the parallelogram determined by wid

the HAADF STEM data (red) and best fitting (in the least-squares sense) polynomial cur

legend, the reader is referred to the web version of this article.)
small number of tilt angles, since the best fitting polynomial
curve may still approximate the local minima, although these
minima might not be present in the data. We test this, among
other things, in the next two sections. A theoretical analysis,
however, remains outside the scope of this paper, as tolerable
deviations from a regular 2n-gon depend on several parameters
such as the relative position of the missing wedge, the amount of
noise in the data, the number of available projections, and the
diameter of the 2n-gon.

It is worth mentioning that as well as measuring widths
orthogonal to y, we can also measure widths parallel to y,
provided that projection data (and not only shadows) are avail-
able. We shall not discuss the performance of this variant here.
3. Experimental application

We consider the task of reconstructing a nanowire from
HAADF STEM data. Nanowires, small wires that are tens of
nanometers in diameter and micrometers in length, are promising
building blocks for future electronic and optical devices; see
[45,46]. They are typically grown from a substrate and much
research effort is being focused on understanding and controlling
their growth mechanisms [16]. Electron tomography, as in var-
ious materials science applications, is rapidly developing into a
powerful 3D imaging tool for studying these effects at the
nanoscale [47,48].

With current technology, the tomographic data acquisition
time for 140 projections of a single nanowire is about 2 h when
performed manually. This is currently a bottleneck preventing
many in situ experiments on short time scales and the imaging of
multiple nanowires. Automated acquisition can lower this time,
but a further reduction, which could be achieved if the required
number of tilt angles can be reduced, is of paramount importance.
Computation times for the reconstruction of a single 512�512
slice range from a few seconds to 3 min (for GKXR) on a
standard PC.

The particular nanowire in our experimental application is
grown from pure InAs. Such nanowires are usually convex, or
nearly so, in cross-sections perpendicular to the growth direction.
In fact, most of these cross-sections for InAs nanowires are close
to regular hexagons [17].

3.1. Experiment

An HAADF STEM image series of an InAs nanowire was
acquired using a probe-aberration-corrected FEI Titan 80–300
microscope operated at 300 kV with a probe convergence
th data from angles indicated by the arrows; (b) measured width as obtained from

ve of degree 11 (black). (For interpretation of the references to color in this figure
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semi-angle of 18 mrad and an inner detector semi-angle of
100 mrad. The images were acquired over a total angular range
of 1391 with a 11 tilt increment. The original 2048�2048 pixel
images, representing the projections for 2048 slices, were then
binned by a factor of 4 to reduce noise in the reconstruction. The
resolution after binning corresponds to a pixel size of 0.84 nm
�0.84 nm.

Fig. 5(a–c) shows a bright-field transmission electron micro-
scopy (TEM) image and two HAADF STEM images, respectively, of
the InAs nanowire specimen. An effect of non-linear projection
intensities within a particular slice is visible in Fig. 5(d,e), as the
measured projections (red graphs) do not exactly match the
projections of the best-fitting shapes of the nanowire for this
slice (black graphs). Twinning in the growth direction produces
the ‘‘bee stripe’’ patterns visible in Fig. 5(b,c).

3.2. Parameters for the algorithms

The relaxation parameter l for SIRT and DART was set to 1. The
SIRT algorithm was run for 50 iterations, based directly on the
measured intensity values in the projection data. Afterwards, the
reconstruction was thresholded at a value of 0.5, where 0 repre-
sents the background and 1 represents the gray level of the
nanowire. Each run of the DART algorithm consisted of 25 SIRT
iterations to compute the starting solution, followed by 25 DART
iterations, each of which included 10 SIRT iterations on the set of
free pixels (i.e., the pixels near the boundary). The SIRT iterations
within each DART iteration only take a fraction of the time of a
complete SIRT iteration, as they are only applied to the free pixels.
As for SIRT, DART employs a threshold at 0.5. A fixed fraction of
0.85 was used, meaning that 85% of all non-boundary pixels
(selected randomly) are kept fixed in each DART step; the fixed
fraction can be adapted to a specific noise level for more accurate
results. We refer to [29] for details.

The BART parameters, along with the code, are provided in
Appendix A, Table A1.

For reconstructions with GKXR, the projection in each direc-
tion was measured at 40 equally spaced positions along an axis
orthogonal to the direction and passing through the center of a
Fig. 5. Nanowire data: (a) bright-field TEM image of the InAs nanowire specimen used f

of the wire at angles of 101 and 401, respectively (slice 220 is indicated by the white li

measured projections of slice 220 (non-linear projection intensities) shown in red and id

of 101 and 401, respectively. (The ideal projections were estimated from our reconstruct

is referred to the web version of this article.)
circular window known to contain the object to be reconstructed
(i.e., k¼40 in Fig. 1). Simulated annealing was used, with a fixed
cooling schedule. The projection data was pre-processed by a
simple smoothing algorithm from digital signal processing, an
averaging filter based on the IIR (infinite impulse response)
design (see, for example, [49, Chapter 8]). More specifically, if
the non-zero 512 projection measurements for a certain direction
are y1, . . . ,ym, a smoothed set of measurements y01, . . . ,y0m is
produced by recursively defining

y0i ¼ ðyiþy0i�1Þ=2

for i¼ 1, . . . ,m, where we set y0 ¼ 0. This smoothing procedure
was iterated 50 times to obtain the smoothed data for input into
the algorithm.

The algorithms U-FBP, MPW, and 2n-GON require shadows as
input. Let My denote the 512�512 matrix containing (row-wise)
the projections of the nanowire slices for viewing angle y. For this
particular data set, we binarize the median filtered My (with a
1�3 window) using threshold T¼0, which is followed by a
morphological opening [50, Chapter 15] with Matlab’s structuring
element strel(’diamond’, 2). This morphological opening
takes neighboring slices into account; the reconstruction of the
object, however, proceeds slice by slice.

3.3. Experimental results

A full discussion of our results is only possible in connection
with the simulations presented in the next section, particularly
because there are no data for this nanowire obtained by an
independent imaging method. However, we can make some
general remarks.
(i)
or tom

ne; th
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ions.)
It appears that the nanowire consists of two parts, the top
part slightly narrower and rotated by about 301 around the
axis of the bottom part. The bottom part seems to consist of
alternating twins, each around 40 nm thick, while one twin
orientation dominates the top 80 nm. Except for the twinning
(much less visible in GKXR and 2n-GON), these structures can
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Fig. 6. Reconstruction of the nanowire using different algorithms. Top-to-bottom and frontal views are shown in the first and second row, respectively. GKXR requires only four

projections; U-FBP, MPW, and 2n-GON reconstruct from shadows. A few of the top slices of the BART reconstruction are missing, because we put no effort into recovering the

correct factor that relates the line integrals and the actual measured intensities. Slices are missing in the 2n-GON reconstruction if the algorithm detects that there is no

hexagon in the corresponding slice. Nanowire orientations and their top-to-bottom views might vary as the 3D viewing points for the individual images have been manually

selected. The 301 rotation of the end of the wire relative to the main part is more readily discernible in the frontal views (lower row) than in the top-to-bottom views (upper

row). Images have been rendered using the Amira software with the isosurface operation and the compactify option, but no explicit smoothing was applied.
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be found in each of the seven reconstructions. However, the
region around the frontal vertical edge of the reconstructions
lies in the missing wedge and so might contain artefacts.
Perhaps the most reliable indication of the presence of
twinning is the fine periodic structure that appears along
the left- and right-most vertical edges of the reconstructions.
This periodic structure is too fine to be resolved by our
current implementation of GKXR.
(ii)
 BART and DART, followed by SIRT, appear to give the best
(most accurate and precise) results. Note, however, that the
software (Amira) that renders the 3D images in Fig. 6
smooths out isolated pixels due to the surface mesh that is
built into the isosurface operation. Therefore these images
might look smoother than those produced by these three
algorithms without this post-processing. This is not the case
for the other four algorithms, because they do not return
objects containing isolated pixels. An explanation for the
fuzzy boundary returned by GKXR is given in Section 4.3.
(iii)
 It seems possible to infer useful geometric parameters about
the facet structure (diameters, angles, etc.) from GKXR,
U-FBP, MPW, and 2n-GON, which use fewer data (shadows
or fewer projections, as appropriate). See also Section 4.4.
(iv)
 Algorithms U-FBP, MPW, and 2n-GON need segmentation of
the shadows, while SIRT, BART, and DART need segmentation of
the reconstruction. Depending on the reliability of the mea-
sured intensities, one type of segmentation (possibly involving
filtering and thresholding) might be favorable over another.
(v)
 It should be possible to improve the performance of GKXR by
replacing the pre-processing via IIR with a least-squares fit to
the projection data of a piecewise linear concave curve.
Further improvement of the reconstruction quality of each
of the presented algorithms might be achieved by incorpor-
ating the fact that the slices of the object are not independent
from each other. The reconstruction from GKXR, for instance,
might benefit from post-processing, such as a simple aver-
aging process to smooth out the differences between con-
secutive slices.
4. Computer simulations

We tested the algorithms with four phantoms (i.e., simulated
objects) under varying magnitudes of noise. As phantoms we used
two regular hexagons, a slightly irregular hexagon, and a regular
octagon. They are shown in Fig. 7 and henceforth are referred to
as Phantoms 1–4.

To compare phantoms and reconstructions we need to
quantify the degree to which two shapes differ. (This is a
central problem in computer vision.) Here we use two metrics
that are frequently encountered in the literature, the sym-

metric difference metric and the Hausdorff metric. The sym-

metric difference distance between finite sets A and B of pixels
(in our case, subsets of f1, . . . ,512g � f1, . . . ,512g) is defined by

dSðA,BÞ ¼ 9ðA\BÞ [ ðB\AÞ9,

i.e., dSðA,BÞ counts the number of mismatching pixels. The
corresponding Hausdorff distance is defined by

dHðA,BÞ ¼maxðdðA,BÞ,dðB,AÞÞ,

where

dðA,BÞ ¼max
aAA

min
bAB

Ja�bJ1 ¼ max
ða1 ,a2ÞAA

min
ðb1 ,b2ÞAB

maxð9a1�b19,9a2�b29Þ

and 9 � 9 denotes the usual absolute value of a real number. (We
chose the L1 norm for computational convenience; other
choices are possible.) In other words, for dðA,BÞ we identify
the pixel aAA that is farthest from any pixel in B and return
the distance from a to its nearest neighbor in B. Taking the
maximum of dðA,BÞ and dðB,AÞ makes dH symmetric in its
arguments. Thus, roughly speaking, dHðA,BÞ measures the
extent to which each pixel of A lies near some pixel of B and
vice versa.

Now, let P denote the set of pixels of a phantom and R the set
of pixels of a reconstruction. We refer to dSðP,RÞ and dHðP,RÞ, or dS

and dH for short, as reconstruction errors (measured in the
symmetric difference metric and Hausdorff metric, respectively).

The Hausdorff and symmetric difference metrics have different
and somewhat complementary characters. While the Hausdorff
metric is sensitive to single pixel outliers but robust to boundary
perturbations, the symmetric difference metric is robust to single
pixel outliers but sensitive to boundary perturbations (cf. Fig. 7,
particularly the DART reconstructions). However, as for any
metric, two sets are equal if and only if they have zero distance.



Fig. 8. Simulation results presented as mean reconstruction errors measured in the symmetric difference metric: (a) S180,1, (b) S140,1, (c) S180,10, (d) S140,10. Bar colors

indicate noise level, green for 0- and yellow for 50-noise. Black error bars represent standard deviation. GKXR requires only four projections; U-FBP, MPW, and 2n-GON

reconstruct from shadows. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Phantoms and reconstructions I. Column 1: Phantoms 1–4 (from top to bottom). Subsequent columns show difference images between a phantom and a typical

reconstruction with S140,10 at 50-noise obtained by SIRT (Column 2), BART (Column 3), DART (Column 4), GKXR (Column 5), U-FBP (Column 6), MPW (Column 7),

and 2n-GON (Column 8). Color scheme for difference images: White pixels belong to the phantom (P) and the reconstruction (R), red pixels to R\P, and blue pixels to P\R.

These are 192�192 pixel images in which the 160 pixel boundary has been cropped. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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Fig. 9. Simulation results presented as mean reconstruction errors measured in the Hausdorff metric: (a) S180,1, (b) S140,1, (c) S180,10, (d) S140,10. Bar colors indicate noise

level, green for 0- and yellow for 50-noise. Black error bars represent standard deviation. GKXR requires only four projections; U-FBP, MPW, and 2n-GON reconstruct from

shadows. (For clarity, we do not show the bars of the SIRT and DART results for S140,10 with 50-noise if they extend beyond the value 15; their actual values range between

20 and 160.) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.1. Data generation

To avoid the ‘‘inverse crime’’ [51, Section 5.3] of using the
same model for generating the data for testing the algorithms as
the one used in their design, we generate the projections from
higher resolution versions of the phantoms (cf. [52,53]). More
specifically, from 2048�2048 pixel versions of the phantoms we
generate the projections and bin them by a factor of 4. We thus
aim at reconstructing the 512�512 pixel versions of the phan-
toms as shown in Fig. 7. No further scaling of the projection
values is introduced, i.e., the projection values give the number of
pixels of the phantom that lie on the corresponding line. (Our
implementation employs the Matlab command imrotate using
the bilinear and crop option.) Comparing our results to those
obtained from projection data generated by SNARK09 [18], we
could not find significant differences. This could be expected,
because our projections (before binning) are generated from
suitably high resolution phantoms. The noise model that is
described next is applied to the projections generated from the
high resolution phantoms.

Taking a simplistic approach, we simulate Gaussian noise.
Hence, we specify noise by one parameter s. We draw indepen-
dent and identically distributed zero-mean, s2-variance normal
random variables pði,jÞ for each projection angle i and projection
pixel j that has non-zero intensity. The pði,jÞ’s are added to the
intensities of the corresponding projection pixels; negative inten-
sities are set to zero. This approach simulates additive Gaussian
noise on the non-zero intensities. The underlying assumption in
our noise model of adding noise only to pixels with non-negative
intensities is that statistical noise effects affect the recorded
signal but still allow detection of the object’s shadows. At least
for our HAADF STEM data of the nanowire, this seems to be a
plausible model. In our simulations we consider the 0-noise (i.e.,
s¼ 0, noise-free) and 50-noise (s¼ 50) cases. Here 50-noise
seems to be in agreement with the intensity variations present
in the experimental data in Section 3.

4.2. Parameters for the algorithms

For our algorithms, the parameters used for all simulations
were the same as for the nanowire slice reconstruction described
in Section 3.2. The pre-processing of the data was simplified in
the sense that for GKXR the pre-processing procedure to smooth
the data was not used in the 0-noise case and for U-FBP, MPW,
and 2n-GON the input shadows were obtained directly by thresh-
olding the projections with T¼0.



Fig. 10. Simulation results for Phantom 2 with S140,1 including 200-noise, presented as mean reconstruction errors measured in (a) the symmetric difference metric and

(b) the Hausdorff metric. Bar colors indicate noise level, green for 0-, yellow for 50-, and red for 200-noise. Black error bars represent standard deviation. GKXR requires

only four projections; U-FBP, MPW, and 2n-GON reconstruct from shadows. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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4.3. Simulation results

We employed the following four sets of tilt angles:
S180,1 ¼ f11,21,31, . . . ,1801g, S140,1 ¼ f11,21,31, . . . ,1401g, S180,10 ¼

f11,111,211, . . . ,1711g, and S140,10 ¼ f11,111,211, . . . ,1311g. Here a
tilt angle y corresponds to a clockwise rotation of angle y around
the vertical (0,1)-direction. While S140,1 corresponds to our
experimental setting, we included the other sets of tilt angles to
compare the performances of the algorithms with respect to the
missing wedge and the total number of available tilt angles. For
the main simulations reported in Figs. 8 and 9, reconstructions
with GKXR were always performed using the four angles {11, 281,
911, 1181}, chosen to be nearest to a theoretically ideal set within
the range 1–1401, namely angles corresponding to the vectors
(0,1), (1,2), (1,0), and (2,�1) (cf. Section 2.2.1).

For each algorithm, each set of tilt angles, and each noise level
we performed 100 reconstructions. The mean reconstruction
errors dS and dH together with their standard deviations are
shown in Figs. 8 and 9, respectively.

We first discuss typical difference images of reconstructions of
each phantom, shown in Columns 2–8 of Fig. 7, obtained from
SIRT, BART, DART, GKXR, U-FBP, MPW, and 2n-GON with tilt
angles S140,10 at 50-noise. Note that this means reconstruction
from only 14 projections, 10 times fewer than is typically
employed in ET (the S140,1 case). White pixels in the color scheme
of our difference images correspond to correctly reconstructed
pixels, red pixels belong to the reconstruction but not the
phantom, and blue pixels belong to the phantom but have not
been reconstructed. The reconstruction errors (dS;dH) for Phan-
toms 1–4, respectively, are:
SIRT:
 (1,482;13)
 (1,562;15)
 (1,367;13)
 (1,594;16);

BART:
 (523;3)
 (513;3)
 (491;4)
 (494;4);

DART:
 (873;16)
 (697;14)
 (843;7)
 (955;8);

GKXR:
 (693;4)
 (1,174;7)
 (933;6)
 (670;5);

U-FBP:
 (1,285;12)
 (922;10)
 (1,258;11)
 (1,022;10);

MPW:
 (1,282;12)
 (905;10)
 (1,227;11)
 (948;10);

2n-GON:
 (215;2)
 (386;3)
 (653;4)
 (146;1).
The difference images illustrate several characteristics of the
different algorithms. For instance, the algorithms that are
specifically designed to reconstruct from only a few directions,
GKXR and 2n-GON, yield small errors, both in the symmetric
difference metric and the Hausdorff metric. (Recall that GKXR
uses only four projections.) On the other hand, the effect of the
missing wedge can be seen in the 2n-GON and MPW recon-
structions, as these algorithms reconstruct from shadows. The
2n-GON algorithm cannot fully compensate for the missing
wedge, because Phantom 3 deviates from a regular structure.
The fuzziness of the object boundary in the BART and, particu-
larly, the DART reconstruction is a common phenomenon for
pixel-based reconstruction methods that do not employ filters.

We now turn to a discussion of Figs. 8–10. We refer to 0-noise
and 50-noise as moderate noise levels, while x-noise with xZ200
is a high noise level. At high noise levels, the reconstruction
quality, except perhaps for MPW and 2n-GON, becomes very
poor. Therefore Figs. 8 and 9 only display results for moderate
noise levels. Typical results for high noise levels are presented in
Fig. 10 and discussed in (viii) below.

The simulations for S140,1 at 50-noise resemble the experi-
mental conditions of the nanowire reconstruction presented in
the previous section; the corresponding simulation results are
depicted by the yellow bars in Figs. 8(b) and 9(b). Experimental
conditions with a reduced number of tilt angles would be
represented by S140,10 at 50-noise. The key inferences from the
simulations can be summarized as follows.
(i)
 For available projections over the whole 1801 tilt range (as
in the S180,1 and S180,10-case) and moderate noise levels, we
find that all algorithms yield good (accurate and precise)
results (usually with dH r5 and dSr1000).
(ii)
 BART, DART, and 2n-GON give the best results in the S140,1

case at moderate noise levels (the 50-noise case resembles
the experimental setup).
(iii)
 2n-GON performs well, even with missing wedge and few
available projection directions. However, the object needs
to be close to a regular 2n-gon, otherwise caution is
required (see the results for Phantom 3).
(iv)
 In many cases, BART and DART give the best results.
Particularly with DART, the quality of the reconstruction
deteriorates significantly if fewer projections are available
and if the noise level increases.
(v)
 According to the simulations, the GKXR algorithm is among
the better-performing algorithms in the missing wedge case
at moderate noise (see Figs. 8(d) and 9(d)) and its out-
standing feature is that it requires projection data only from
four directions. To test the effect of changing the four
directions used, we performed the same simulations with
angles {211,411,611,811}, all contained in a narrow 601 range.
The results were worse, but not dramatically so. For
example, for Phantom 1 at 50-noise, the mean ðdS; dHÞ errors
rose to (1,227.83;8.48), compared to (925.84;6.94) for
angles {11,281,911,1181}. However, the nanowire reconstruc-
tion in Fig. 6 seems the worst produced by the algorithms
used. To some extent, this is due to the fuzzy nature of the
boundary depicted there. In fact, while the mean and
standard deviations of the errors reported for GKXR in
Figs. 8(b) and 9(b) are fairly small, the distance between
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neighboring slices of the nanowire reconstruction can be
significant. This is caused by the inherent stochastic nature
of the algorithm, which uses simulated annealing. Possible
improvements have been discussed in Section 3.2.
(vi)
 The problems for MPW and U-FBP are caused by the missing
wedge, because data are simply missing from the shadows
(see Fig. 4(a)). If essential object features do not lie in the
missing wedge, then good reconstruction results can be
obtained even at high noise levels. In fact, MPW is among
the better-performing algorithms if data are acquired over a
1801 angular range. The U-FBP algorithm never outperforms
MPW by a significant margin and in most cases the results
for MPW are clearly superior to those reported for U-FBP.
Inspection of the reconstructions shows that U-FBP tends to
cut off the corners of the object, while MPW returns the
correct shape up to a systematic overestimation. See also
(viii).
(vii)
 SIRT is known for its noise suppressing features. It performs
much better in highly limited data scenarios than transfor-
mation based techniques such as filtered backprojection [10,
Chapter 7]. These findings are confirmed in our simulations.
To avoid overloading the figures, however, we chose not to
present the corresponding poorer results for those scenarios
that we obtained by filtered backprojection. While SIRT
gives rather good results as measured by the Hausdorff
metric for 1801 angular range (S180,1, S180,10) at moderate
noise levels, we observe from Figs. 8 and 9 that the
algorithm is typically outperformed by the other algorithms
in the missing wedge case (S140,1, S140,10).
(viii)
 The reconstruction quality of all of the algorithms deterio-
rates at high noise levels. Fig. 10 indicates that U-FBP, MPW,
and 2n-GON seem to be less affected. (We show only results
for Phantom 2 and S140,1; the other cases are similar.) This
finding is somewhat expected, since these algorithms work
with shadow data.
(ix)
 There is a notable discrepancy between the performance of
2n-GON and GKXR in the S140,1 simulations with 50-noise
and their performance, much worse in the case of GKXR, in
the nanowire reconstructions shown in Fig. 6. Possible
reasons for this discrepancy were given in (iii) and (v).
A detailed assessment, however, remains for future
research.
4.4. Determination of faceting

A typical experimental aim when imaging geometric objects is
to determine their faceting including minor facets and surface
protrusion and roughness. Fig. 11 shows two more complex
phantoms along with reconstructions obtained by SIRT, BART,
. Phantoms and reconstructions II. Column 1: Phantoms 5 (top) and 6 (bottom)

se obtained by SIRT (Column 2), BART (Column 3), DART (Column 4), GKXR (Colum

erence images: White pixels belong to the phantom (P) and the reconstruction

the 160 pixel boundary has been cropped. (For interpretation of the references to
DART, GKXR, U-FBP, MPW, and 2n-GON, respectively. We refer to
these as Phantoms 5 and 6; reconstructions for demonstration
purposes have been performed for S140,10 at 50-noise (the data
generation was described in Section 4.1).

The reconstruction errors ðdS;dHÞ for Phantoms 5 and 6 are,
respectively: For SIRT, (1,501;13) and (1,742;12); for BART,
(460;3) and (692;9); for DART, (842;11) and (769;14); for GKXR,
(934;5) and (1,744;11); for U-FBP, (852;10) and (1,199;8); for
MPW, (791;10) and (1,243;8); and for 2n-GON, (379;5), and
(1,443;12).

The results in Fig. 11 can be summarized as follows.
�

. Dif

n 5

(R),

col
SIRT: Minor facets of Phantom 6 are not reconstructed; the
boundaries are very fuzzy; additional imaging tools for edge
extraction are required to evaluate facet angles; the inner
angles of the major facets are reconstructed with an accuracy
of about 121.

�
 BART: All minor facets are reconstructed; artefacts in the

missing wedge region might be misclassified as minor facets;
additional imaging tools for edge extraction are required to
evaluate facet angles; the inner angles of the major facets are
reconstructed with an accuracy of about 21.

�
 DART: Several minor facets are reconstructed; a few minor

facets in the missing wedge region are not resolved; bound-
aries can be fuzzy and additional imaging tools for edge
extraction are required to evaluate facet angles; assuming that
only isolated pixels are removed, we find that the inner angles
of the major facets are reconstructed with an accuracy of about
61.

�
 GKXR: Few minor facets are reconstructed; the inner angles of

the major facets are reconstructed with an accuracy of about
81 (cf. Fig. 7).

�
 U-FBP and MPW: Minor facets of Phantom 6 are not recon-

structed; the inner angles of the major facets outside the
missing wedge are reconstructed with an accuracy of about 21;
artificial major facets appear in the missing wedge of
Phantom 5.

�
 2n-GON: Minor facets of Phantom 6 and two minor facets of

Phantom 5, are not reconstructed; the inner angles of the
major facets are reconstructed with an accuracy of about 1.51.

These results demonstrate the potential of the geometric
approach. A detailed study, however, must be left for future
research, since the reconstruction quality depends on several
parameters, such as the particular type of noise, the misalignment
of the projections, and the relative position of the object and the
missing wedge.

As a final comment, we remark that a large L2-norm of the
residual Ax�b can be seen as an indicator that the reconstruction
ferent images between a phantom and a typical reconstruction with S140,10 at

), U-FBP (Column 6), MPW (Column 7), and 2n-GON (Column 8). Color scheme

red pixels to R\P, and blue pixels to P\R. These are 192�192 pixel images in

or in this figure legend, the reader is referred to the web version of this article.)
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cannot be trusted (notation as in Section 2.1.1). For the GKXR,
MPW, and 2n-GON reconstructions in Fig. 11, for instance, we find
that JAx�bJ is at least three times larger for Phantom 6 than for
Phantom 5.
5. Conclusion

We have applied five algorithms from the mathematical fields
of geometric and discrete tomography to reconstruct homoge-
neous objects from electron tomography data. Our results demon-
strate that the choice of reconstruction algorithm should be based
on the specific reconstruction task at hand. None of the algo-
rithms considered is better for all reconstruction tasks than
the others. The main features of the algorithms that we intro-
duced here in the ET context can be summarized as follows: BART
and DART reconstruct homogeneous objects from projections;
GKXR reconstructs convex objects from only four projections;
MPW reconstructs convex objects from shadows and compen-
sates for noise; and 2n-GON reconstructs objects that are close to
regular 2n-gons from (possibly few) noisy shadows.
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Appendix A. SNARK09 commands for BART

See Table A1.
Table A1
SNARK09 code (input file) for the BART algorithm. Left: main routine. Right:

filtering routine. Seven copies of the filtering routine should be placed between

the ‘‘ * ’’ and ‘‘END’’ of the main routine.

PICTURE TEST PROJECTION REAL STOP ITERATION 1

MODE LOWER¼0.0 BASIS PIXEL

MODE UPPER¼1.0 EXECUTE CONTINUE ALP1 SMOOTH

STOP ITERATION 5 Smoothing of BART recon

EXECUTE AVERAGE ART CONTOUR 2 1 1 1

BART on hexagon image 1

0.5 0 1 BASIS BLOBS

1 EXECUTE CONTINUE ALB1 CONTOUR

ART3 relaxation constant 0.3 Contouring of smooth BART recon

CONSTRAINT BART 0.5 0 1 0

* 1

END
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