337 research outputs found

    The Milli-Motein: A self-folding chain of programmable matter with a one centimeter module pitch

    Get PDF
    The Milli-Motein (Millimeter-Scale Motorized Protein) is ca chain of programmable matter with a 1 cm pitch. It can fold itself into digitized approximations of arbitrary three-dimensional shapes. The small size of the Milli-Motein segments is enabled by the use of our new electropermanent wobble stepper motors, described in this paper, and by a highly integrated electronic and mechanical design. The chain is an interlocked series of connected motor rotors and stators, wrapped with a continuous flex circuit to provide communications, control, and power transmission capabilities. The Milli-Motein uses off-the-shelf electronic components and fasteners, and custom parts fabricated by conventional and electric discharge machining, assembled with screws, glue, and solder using tweezers under a microscope. We perform shape reconfiguration experiments using a four-segment Milli-Motein. It can switch from a straight line to a prescribed shape in 5 seconds, consuming 2.6 W power during reconfiguration. It can hold its shape indefinitely without power. During reconfiguration, a segment can lift the weight of one but not two segments as a horizontal cantilever.United States. Defense Advanced Research Projects Agency. Programmable Matter ProgramUnited States. Defense Advanced Research Projects Agency. Maximum Mobility and Manipulation (M3) ProgramUnited States. Army Research Office (Grant W911NF-08-1-0254)United States. Army Research Office (Grant W911NF-11-1-0096)Massachusetts Institute of Technology. Center for Bits and Atom

    Architectures for computational photography

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 93-94).Computational photography refers to a wide range of image capture and processing techniques that extend the capabilities of digital photography and allow users to take photographs that could not have been taken by a traditional camera. Since its inception less than a decade ago, the field today encompasses a wide range of techniques including high dynamic range (HDR) imaging, low light enhancement, panorama stitching, image deblurring and light field photography. These techniques have so far been software based, which leads to high energy consumption and typically no support for real-time processing. This work focuses on hardware architectures for two algorithms - (a) bilateral filtering which is commonly used in computational photography applications such as HDR imaging, low light enhancement and glare reduction and (b) image deblurring. In the first part of this work, digital circuits for three components of a multi-application bilateral filtering processor are implemented - the grid interpolation block, the HDR image creation and contrast adjustment blocks, and the shadow correction block. An on-chip implementation of the complete processor, designed with other team members, performs HDR imaging, low light enhancement and glare reduction. The 40 nm CMOS test chip operates from 98 MHz at 0.9 V to 25 MHz at 0.9 V and processes 13 megapixels/s while consuming 17.8 mW at 98 MHz and 0.9 V, achieving significant energy reduction compared to previous CPU/GPU implementations. In the second part of this work, a complete system architecture for blind image deblurring is proposed. Digital circuits for the component modules are implemented using Bluespec SystemVerilog and verified to be bit accurate with a reference software implementation. Techniques to reduce power and area cost are investigated and synthesis results in 40nm CMOS technology are presentedby Priyanka Raina.S.M

    Approximate Computing Survey, Part II: Application-Specific & Architectural Approximation Techniques and Applications

    Full text link
    The challenging deployment of compute-intensive applications from domains such Artificial Intelligence (AI) and Digital Signal Processing (DSP), forces the community of computing systems to explore new design approaches. Approximate Computing appears as an emerging solution, allowing to tune the quality of results in the design of a system in order to improve the energy efficiency and/or performance. This radical paradigm shift has attracted interest from both academia and industry, resulting in significant research on approximation techniques and methodologies at different design layers (from system down to integrated circuits). Motivated by the wide appeal of Approximate Computing over the last 10 years, we conduct a two-part survey to cover key aspects (e.g., terminology and applications) and review the state-of-the art approximation techniques from all layers of the traditional computing stack. In Part II of our survey, we classify and present the technical details of application-specific and architectural approximation techniques, which both target the design of resource-efficient processors/accelerators & systems. Moreover, we present a detailed analysis of the application spectrum of Approximate Computing and discuss open challenges and future directions.Comment: Under Review at ACM Computing Survey

    The physics of optical computing

    Full text link
    There has been a resurgence of interest in optical computing over the past decade, both in academia and in industry, with much of the excitement centered around special-purpose optical computers for neural-network processing. Optical computing has been a topic of periodic study for over 50 years, including for neural networks three decades ago, and a wide variety of optical-computing schemes and architectures have been proposed. In this paper we provide a systematic explanation of why and how optics might be able to give speed or energy-efficiency benefits over electronics for computing, enumerating 11 features of optics that can be harnessed when designing an optical computer. One often-mentioned motivation for optical computing -- that the speed of light cc is fast -- is not a key differentiating physical property of optics for computing; understanding where an advantage could come from is more subtle. We discuss how gaining an advantage over state-of-the-art electronic processors will likely only be achievable by careful design that harnesses more than one of the 11 features, while avoiding a number of pitfalls that we describe.Comment: 31 pages; 11 figure

    Architectures for Adaptive Low-Power Embedded Multimedia Systems

    Get PDF
    This Ph.D. thesis describes novel hardware/software architectures for adaptive low-power embedded multimedia systems. Novel techniques for run-time adaptive energy management are proposed, such that both HW & SW adapt together to react to the unpredictable scenarios. A complete power-aware H.264 video encoder was developed. Comparison with state-of-the-art demonstrates significant energy savings while meeting the performance constraint and keeping the video quality degradation unnoticeable

    Broadband nonlinear modulation of incoherent light using a transparent optoelectronic neuron array

    Full text link
    Nonlinear optical processing of ambient natural light is highly desired in computational imaging and sensing applications. A strong optical nonlinear response that can work under weak broadband incoherent light is essential for this purpose. Here we introduce an optoelectronic nonlinear filter array that can address this emerging need. By merging 2D transparent phototransistors (TPTs) with liquid crystal (LC) modulators, we create an optoelectronic neuron array that allows self-amplitude modulation of spatially incoherent light, achieving a large nonlinear contrast over a broad spectrum at orders-of-magnitude lower intensity than what is achievable in most optical nonlinear materials. For a proof-of-concept demonstration, we fabricated a 10,000-pixel array of optoelectronic neurons, each serving as a nonlinear filter, and experimentally demonstrated an intelligent imaging system that uses the nonlinear response to instantly reduce input glares while retaining the weaker-intensity objects within the field of view of a cellphone camera. This intelligent glare-reduction capability is important for various imaging applications, including autonomous driving, machine vision, and security cameras. Beyond imaging and sensing, this optoelectronic neuron array, with its rapid nonlinear modulation for processing incoherent broadband light, might also find applications in optical computing, where nonlinear activation functions that can work under ambient light conditions are highly sought.Comment: 20 Pages, 5 Figure

    Design and management of image processing pipelines within CPS : Acquired experience towards the end of the FitOptiVis ECSEL Project

    Get PDF
    Cyber-Physical Systems (CPSs) are dynamic and reactive systems interacting with processes, environment and, sometimes, humans. They are often distributed with sensors and actuators, characterized for being smart, adaptive, predictive and react in real-time. Indeed, image- and video-processing pipelines are a prime source for environmental information for systems allowing them to take better decisions according to what they see. Therefore, in FitOptiVis, we are developing novel methods and tools to integrate complex image- and video-processing pipelines. FitOptiVis aims to deliver a reference architecture for describing and optimizing quality and resource management for imaging and video pipelines in CPSs both at design- and run-time. The architecture is concretized in low-power, high-performance, smart components, and in methods and tools for combined design-time and run-time multi-objective optimization and adaptation within system and environment constraints.Peer reviewe
    • …
    corecore