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Abstract

Computational photography refers to a wide range of image capture and processing
techniques that extend the capabilities of digital photography and allow users to
take photographs that could not have been taken by a traditional camera. Since
its inception less than a decade ago, the field today encompasses a wide range of
techniques including high dynamic range (HDR) imaging, low light enhancement,
panorama stitching, image deblurring and light field photography.

These techniques have so far been software based, which leads to high energy
consumption and typically no support for real-time processing. This work focuses on
hardware architectures for two algorithms - (a) bilateral filtering which is commonly
used in computational photography applications such as HDR imaging, low light
enhancement and glare reduction and (b) image deblurring.

In the first part of this work, digital circuits for three components of a multi-
application bilateral filtering processor are implemented - the grid interpolation block,
the HDR image creation and contrast adjustment blocks, and the shadow correction
block. An on-chip implementation of the complete processor, designed with other
team members, performs HDR imaging, low light enhancement and glare reduction.
The 40 nm CMOS test chip operates from 98 MHz at 0.9 V to 25 MHz at 0.9 V and
processes 13 megapixels/s while consuming 17.8 mW at 98 MHz and 0.9 V, achieving
significant energy reduction compared to previous CPU/GPU implementations.

In the second part of this work, a complete system architecture for blind image
deblurring is proposed. Digital circuits for the component modules are implemented
using Bluespec SystemVerilog and verified to be bit accurate with a reference software
implementation. Techniques to reduce power and area cost are investigated and
synthesis results in 40nm CMOS technology are presented.

Thesis Supervisor: Anantha P. Chandrakasan
Title: Joseph F. and Nancy P. Keithley Professor of Electrical Engineering
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Chapter 1

Introduction

The world of photography has seen a drastic transformation in the last 23 years with

the advent of digital cameras. They have made photography accessible to all, with

images ready for viewing the moment they are captured. In February, 2012, Facebook

announced that they were getting 3000 pictures uploaded to their servers every sec-

ond - that is 250 million pictures every day. The field of computational photography

takes this to the next level. It refers to a wide range of image capture and processing

techniques that enhance or extend the capabilities of digital photography and allow

users to take photographs that could not have been taken by a traditional digital

camera. Since its inception less than a decade ago, the field today encompasses a

wide range of techniques such as high dynamic range (HDR) imaging [1], low-light

enhancement [2, 3], panorama stitching [4], image deblurring [5] and light field pho-

tography [6], which allow users to not just capture a scene flawlessly, but also reveal

details that could otherwise not be seen. However, most of these techniques have

high computational complexity which necessitates fast hardware implementations to

enable real-time applications. In addition, energy-efficient operation is a critical con-

cern when running these applications on battery-powered hand-held devices such as

phones, cameras and tablets.

Computational photography applications have so far been software based, which

leads to high energy consumption and typically no support for real-time processing.

This work identifies the challenges in hardware implementation of these techniques

15
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Figure 1-1: System block diagram for reconfigurable bilateral filtering processor. The
blocks in red highlight the key contributions of this work. (Courtesy R.Rithe)

and investigates ways to reduce their power and area cost. This involves algorithmic

optimizations to reduce computational complexity and memory bandwidth, paral-

lelized architecture design to enable high throughput while operating at low frequen-

cies and circuit optimizations for low voltage operation. This work focuses on hard-

ware architectures for two algorithms - (a) bilateral filtering, which is commonly used

in applications such as HDR imaging, low light enhancement and glare reduction and

(b) image deblurring. The next section gives a brief overview of the two algorithms

and highlights the key contributions of this work. The following two chapters describe

the proposed architectures for bilateral filtering and image deblurring in more detail

and the last chapter summarizes the results.

1.1 Contributions of this work

Bilateral Filtering

A bilateral filter is an edge-preserving smoothing filter, which is a commonly used

filter in computational photography applications. In the first part of this work, digital

circuits for the following three components of a multi-application bilateral filtering

16
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Figure 1-2: System block diagram for image deblurring processor.

processor are designed and implemented - the grid interpolation block, the HDR

image creation and contrast adjustment blocks, and the shadow correction block.

These components are put together along with others as shown in Figure 1-1 into

a reconfigurable multi-application processor with two bilateral filtering engines at its

core. The processor, designed with other team members, can be configured to perform

HDR imaging, low light enhancement and glare reduction. The filtering engine can

also be accessed from off-chip and used with other applications. The input images are

preprocessed for the specific functions and fed into the filter engines which operate

in parallel and decompose an image into into a low frequency base layer and a high

frequency detail layer. The filtered images are post processed to generate outputs for

the specific functions.

The processor is implemented in 40 nm CMOS technology and achieves 15 x

reduction in run-time compared to a CPU implementation, while consuming 1.4

mJ/megapixel energy, a significant reduction compared to CPU or GPU implementa-

tions. This energy scalable implementation can be efficiently integrated into portable

multimedia devices for real time computational photography.

17



Image Deblurring

Image deblurring seeks to recover a sharp image from its blurred version, given no

knowledge about the camera motion when the image was captured. Blur can be

caused due to a variety of reasons; the second part of this work focuses on recovering

images that are blurred due to camera shake during exposure. Deblurring algorithms

existing in literature are computationally intensive and take on the order of minutes

to run for HD images, when implemented in software.

This work proposes a hardware architecture based on the deblurring algorithm

presented in [5]. Figure 1-2 shows the system architecture. The major challenges

are the high computation cost and memory requirements for the image and kernel

estimation blocks. These are addressed in this work by designing an architecture

which minimizes off chip memory accesses by effective caching using on-chip SRAMs

and maximizes data reuse through parallel processing. The system is designed us-

ing Bluespec SystemVerilog (BSV) as the hardware description language and verified

to be bit accurate with the reference software implementation. Synthesis results in

TSMC 40nm CMOS technology are presented.

The next two chapters describe the algorithms and the proposed architectures in

detail.

18



Chapter 2

Bilateral Filtering

A bilateral filter is a non-linear filter which smoothes an image while preserving edges

in the image [7]. For an image I, at position p, it is defined by:

IBFp = 1 Ga,(| p - q |)Gr(IIp - I|I)q (2.1)
P qeN(p)

Wp = 5 G,,| - q ||)G,,(|Ip - Iq|) (2.2)
qeN(p)

The output value at each pixel in the image is a weighted average of the values in a

neighborhood, where the weight is the product of a Gaussian on the spatial distance

(G.,) and a Gaussian on the pixel value/range difference (G,,). In linear Gaussian

filtering, on the other hand, the weights are determined solely by the spatial term.

The inclusion of the range term makes bilateral filter effective in respecting strong

edges, because pixels across an edge are very different in the range dimension, even

though they are close in the spatial dimension, and get low weights. Figure 2-1

compares the effectiveness of a bilateral filter and a linear Gaussian filter in reducing

noise in an image while preserving scene details.

A direct implementation of a bilateral filter, however, is computationally expen-

sive since the kernel (weights array) used for filtering has to be updated at every pixel

according to the values of neighboring pixels, and it can take on the order of several

minutes to process HD images [8]. Faster approaches for bilateral filtering have been

19



Linear Gaussian Filtering: Non-Linear Bilateral Filtering:

Figure 2-1: Comparison of Gaussian filtering and bilateral filtering. Bilateral filtering
effectively reduces noise while preserving scene details. (Courtesy R.Rithe)

proposed that reduce processing time by using a piece-wise linear approximation in

the intensity domain and appropriate sub-sampling [1]. [9] uses a higher dimensional

space and formulates the bilateral filter as a convolution followed by simple nonlinear-

ities. A fast approach to bilateral based on a box spatial kernel, which can be iterated

to yield smooth spatial fall-off is proposed in [10]. However, real-time processing of

HD images requires further speed-up.

2.1 Bilateral Grid

A software-based bilateral grid data structure proposed in [8] enables fast bilateral

filtering. In this approach, a 2-D input image is partitioned into blocks (of size o-. x U-)

as shown in Figure 2-2 and a histogram of pixel intensity values (with 256/o, bins) is

generated for each block. These block level histograms, when put together for all the

blocks in the image, create a 3-D representation of the 2-D image, called a bilateral

grid, where each grid cell stores the number of pixels in the corresponding histogram

bin of the block and their summed intensity. A bilateral grid has two key advantages:

e Aggressive down-sampling The size of the blocks used while creating the grid

and the number of intensity bins determine the amount by which the image is

down-sampled. Aggressive down-sampling reduces the number of computations

required for processing as well as the amount of memory required for storing

the grid.

20
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Figure 2-2: Construction of a 3-D bilateral grid from a 2-D image. (Courtesy R.Rithe)

* Built-in edge awareness Two pixels that are spatially adjacent but have

very different intensities end up far apart in the grid in the intensity dimension.

When linear filtering is performed on the grid using a 3-D Gaussian kernel, only

nearby intensity levels influence the result whereas levels that are farther away

do not contribute to the result. Therefore, linear Gaussian filtering on the grid

followed by slicing to generate a 2-D image is equivalent to performing bilateral

filtering on the 2-D image.

2.2 Bilateral Filter Engine

Bilateral filter engine using a bilateral grid is implemented as shown in Figure 2-3. It

consists of three components - grid assignment engine, grid filtering engine and grid

interpolation engine. Grid assignment and filtering engines are briefly described next

for completeness. The contribution of this work is the design of grid interpolation

engine described later in this section.

2.2.1 Grid Assignment

The input image is scanned pixel by pixel in a block-wise manner and fed into 16, 8 or

4 grid assignment engines operating in parallel (depending on the number of intensity

bins being used). The number of pixels in a block is scalable from 16 x 16 pixels to

128 x 128. Each grid assignment engine compares the intensity of the input pixel with

the boundaries of the intensity bin assigned to it and if the pixel intensity lies in the

21



Figure 2-3: Architecture of the bilateral filtering engine. Grid scalability is achieved
by gating processing engines and SRAM banks. (Courtesy R.Rithe)

aS

U *

~L

* r

Figure 2-4: Architecture of grid assignment engine. (Courtesy R.Rithe)

range, it is accumulated into the intensity bin and a weight counter is incremented.

Figure 2-4 shows the architecture of grid assignment engine. Both summed intensity

and weight are stored for each bin in on-chip memory.

2.2.2 Grid Filtering

Convolution (Conv) engine, shown in Figure 2-5, convolves the grid intensities and

weights with a 3 x 3 x 3 Gaussian kernel and returns the normalized intensity. The

convolution is performed by multiplying the 27 coefficients of the filter kernel with the

27 grid cells and adding them using a 3-stage adder tree. The intensity and weight

22
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Figure 2-5: Architecture of convolution engine for grid filtering. (Courtesy R.Rithe)

are convolved in parallel and the convolved intensity is normalized with the convolved

weight by using a fixed point divider to make sure that there is no intensity scaling

during filtering. The hardware has 16 convolution engines that can operate in parallel

to filter a grid with 16 intensity levels, but 4 or 8 of them can be activated if fewer

intensity levels are used.

2.2.3 Grid Interpolation

Interpolation engine constructs the output 2-D image from the filtered grid. To obtain

the output intensity value at pixel (x, y), its intensity value in the input image Ixy is

read from the DRAM. So, the number of interpolation engines that can be activated

in parallel is limited by the number of pixels that can be read from the memory per

cycle. The output intensity value is obtained by trilinear interpolation of 2 x 2 x 2

neighborhood of filtered grid values. Trilinear interpolation is implemented as three

successive pipelined linear interpolations as shown in Figure 2-6.

Figure 2-7 shows the architecture of the linear interpolator, which basically con-

23
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Figure 2-6: Architecture of the interpolation engine. Tri-linear interpolation is im-
plemented as three pipelined stages of linear interpolations.

sists of performing a weighted average of the two inputs, where weights are determined

by the distance to the output pixel along the dimension in which the interpolation is

being performed. The division by o-, at the end reduces to a shift because o-, values

used in the system are powers of 2. The output value F is calculated from filtered

F +1 F. r+1 F r+1a, -x, i +1+1 ,i+1,j+1

Fr+1 * Filtered Grid Cells
Fi; X e Interpolated values

F. r+1F F "1l+ >> Fr FF+1,1 along x dimension
r Interpolated values

Fr'X F ' >F. 1 along y dimension
i+1,j ]g092 F' '+1,j+1 e Interpolated values

x d along I dimension
d

Figure 2-7: Architecture of the linear interpolator.
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grid values F using four parallel linear interpolations along the x dimension:

= (Fj * (o- - Xd) + F~ij * Xd)/o, (2.3)

Fj1 = (F+* (U - xd) + Fr 1 ,j 1 * xd)/a, (2.4)

(Fr=l * (O-, - Xd) + F f j * xa)/o- (2.5)

F'+1 = (F1 +1*(o~s - Xd) + F r+ + 1 * Xd)/os (2.6)

followed of two parallel interpolations along the y dimension:

F7= (Fjr * (U- - Yd) + Fjrl * Yd)/Us (2.7)

F -+ (Fjrl * (o- - Yd) + F'+1 * Yd)/Us (2.8)

followed by a final interpolation along the r dimension:

F = (F, * (ar - Id) + F,+ 1 * Id)/or (2.9)

where i = Lx/uJ, j = Ly/-,J and r = LIxy/-,J, and Xd = x - U *i, yd = y - - * j,
and Id = Ixy - or * r. The interpolated output is fed into the downstream application-

specific processing blocks.

2.2.4 Memory Management

The bilateral filtering engine does not store the complete bilateral grid on chip. Since

the kernel size is 3 x 3 x 3 and since the processing happens in row major order,

only 2 complete grid rows and 4 grid blocks of the next row are required to be

stored locally. As soon as the grid assignment engines assign 3 x 3 x 3 blocks, the

convolution engines can start filtering the grid. Once the grid cells have been filtered

they are replaced by newly assigned cells. The interpolation engine also processes

in row major order and therefore, requires one complete row and 3 blocks of the

next row of the filtered grid to be stored on chip. The interpolation engine starts as

soon as 2 x 2 filtered grid blocks become available. This scheduling scheme shown in

25



Assigned Grid
2 3 4 5 60 1

0

2K

Temporary Buffer

0 2

0 | fe

Temporary Buffer

Filtered Grid
3 4 5 6

W-3 W-2 W-1

Stored in
SRAM

A Block being assigned
Block being filtered

Blocks used for filtering

W-3 W-2 W-1

Stored in
I_ _II_ I_ SRAM

Block being filtered

Block being interpolated

Filtered Blocks used for interpolation

Figure 2-8: Memory management by task scheduling. (Courtesy R.Rithe)

Figure 2-8 allows processing without storing the entire grid and reduces the memory

requirement to 21.5 kB from more than 65 MB (for a software implementation) for

processing a 10 megapixel image and allows processing grids of arbitrary height using

the same amount of on-chip memory. The test chip has two bilateral filter engines,

each processing 4 pixels/cycle.

2.3 Applications

The processor performs high dynamic range (HDR) imaging, low light enhancement

and glare reduction using the two bilateral filter engines. The contribution of this

work is the design of the application specific modules required for performing these

algorithms. HDRI creation, contrast adjustment and shadow correction modules

are implemented to enable these applications. The following subsections describe the

architecture of each of these modules in detail and how they interact with the bilateral

filtering engines to produce the desired output.
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2.3.1 High Dynamic Range Imaging

High dynamic range (HDR) imaging is a technique for capturing a greater dynamic

range between the brightest and darkest regions of an image than a traditional digital

camera. It is done by capturing multiple images of the same scene with varying

exposure levels, such that the low exposure images capture the bright regions of

the scene well without loss of detail and the high exposure images capture the dark

regions of the scene. These differently exposed images are then combined together into

a high dynamic range image, which more faithfully represents the brightness values

in the scene. Displaying HDR images on low dynamic range (LDR) devices, such as

a computer monitor and photographic prints, requires dynamic range compression

without loss of detail. This is achieved by performing tone mapping using a bilateral

filter which reduces the dynamic range or contrast of the entire image, while retaining

local contrast.

HDRI Creation

The first step in HDR imaging is to create a composite HDR image from multiple

differently exposed images which represents the true scene radiance value at each

pixel of the image. To recover the true scene radiance value at each pixel from its

recorded intensity values and the exposure time, the algorithm presented in [11] is

used, which is briefly described below:

The exposure E is defined as the product of sensor irradiance R (which is the

amount of light hitting the camera sensor and is proportional to the scene radiance)

and the exposure time At. After the digitization process, we obtain a number I

(intensity) which is a non-linear function of the initial exposure E. Let us call this

function f. The non-linearity of this function becomes particularly significant at the

saturation point, because any point in the scene with a radiance value above a certain

level is mapped to the same maximum intensity value in the image. Let us assume

that we have a number of different images with known exposure times Atj. The pixel
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Figure 2-9: HDRI creation module.

intensity values are given by

Is = f(R Atj) (2.10)

where i is the spatial index and j indexes over exposure times Atj. We then have the

log of the irradiance values given by:

ln(Ri) = g(Iij) - ln(Atj) (2.11)

where nf-1 is denoted by g. The mapping g is called the camera curve, and can be

obtained by the procedure described in [11]. Once g is known, the true scene radi-

ance values can be recovered from image pixel intensity values using the relationship

described above.

The HDRI creation block, shown in Figure 2-9 takes values of a pixel from three

different exposures (IE1, IE2, IE3) and generates an output pixel which represents the

true scene radiance value at that location. Since we are working with a finite range of

discrete pixel values (8 bits per color), the camera curves are stored as combinational

look-up tables to enable fast access. The camera curves are looked up to get the true

(log) exposure values followed by exposure time correction to obtain (log) radiance.
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Figure 2-10: Input low-dynamic range images: -1 EV (under exposed image), 0 EV

(normally exposed image) and 1 EV (over exposed image). Output image: tone
mapped HDR image. (Courtesy R.Rithe)

The three resulting (log) radiance values obtained from the three images represent

the radiance values of the same location in the scene. A weighted average of these

three values is taken to obtain the final (log) radiance value. The weighting function,

shown in Figure 2-9 gives a higher weight to the exposures in which pixel value is

closer to the middle of the response function (thus avoiding the high contributions

from images where the pixel value is saturated). In the end an exponentiation is

performed to get the final radiance value (16 bits per pixel per color).

Tone Mapping

To perform tone mapping, the 16 bits per pixel per color HDR image is split into

intensity and color channels. A low frequency base layer and a high frequency detail

layer are created by bilateral filtering the HDR image in the log domain. The dynamic

range of the base layer is compressed by a scaling factor in the log domain. The detail

layer is untouched to preserve details and the colors are scaled linearly to 8 bits per

pixel per color. Merging the compressed base layer, the detail layer and the color

channels results in a tone mapped HDR image (ITM). In HDR mode both bilateral

29

-1 EV 0 FV

-A

.1 EV lonerrapp(--'d HJDR-

n:



Combine Color Exponentiation
Channels

Color Data LUT

Intensity Range
Adjustment +EXP Output

LUT Image
log I

Adjustment LUT
Factor 

U

Figure 2-11: Contrast adjustment module. Contrast is increased or decreased de-
pending on the adjustment factor.

grids are configured to perform filtering in an interleaved manner, where each grid

processes alternate pixel blocks in parallel. Figure 2-10 shows a set of input low

dynamic range exposures and the tone mapped HDR output image.

2.3.2 Glare Reduction

Glare reduction is similar to performing single image HDR tone mapping. The pro-

cessing flow is shown in Figure 2-13(a). The input image is split into intensity and

color channels. A low frequency base layer and a high frequency detail layer are

obtained the bilateral filtering the intensity. The contrast layer of the base layer is

enhanced using the contrast adjustment module shown in Figure 2-11 which is also

used in HDR tone mapping. The contrast can be increased or decreased depending

on the adjustment factor.

Figure 2-12 shows an input image with glare and the glare reduced output image.

Glare reduction recovers details that are white-washed in the original image and

enhances the image colors and contrast.
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(a) (b)

Figure 2-12: Input images: (a) image with glare. Output image: (b) image with
reduced glare. (Courtesy R.Rithe)

2.3.3 Low Light Enhancement

Low light enhancement (LLE) is performed by merging two images captured in quick

succession, one taken without flash (INF) and one with flash (IF), as shown in Fig-

ure 2-13(b). The bilateral grid is used to decompose both images into base and detail

layers. In this mode, one grid is configured to perform bilateral filtering on the non-

flash image and the other to perform cross-bilateral filtering, given by Equation 2.12,

on the flash image using the non-flash image. The location of the grid cell is de-

termined by the non-flash image and the intensity value is determined by the flash

image.

__1

ICBFp = S GO,(|| p - q ||)Gar(IFp ~ IFq )INFq (2.12)
qeN(p)

Wp = ( Ga,(|| p - q II)Gr(IIFp - IFql) (2.13)
qeN(p)

The scene ambience is captured in the base layer of the non-flash image and details

are captured in the detail layer of the flash image.

The image taken with flash contains shadows that are not present in the non-flash

image. A novel shadow correction module is implemented which merges the details

from the flash image with base layer of the cross-bilateral filtered non-flash image

and corrects for the flash shadows to avoid artifacts in the output image. A mask
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Figure 2-13: Processing flow for (a) glare reduction and (b) low light enhancement
by merging flash and non-flash images. (Courtesy R.Rithe)

representing regions with high details in the filtered non-flash image is created, as

shown in Figure 2-14. Gradients are computed at each pixel for blocks of 4 x 4

pixels. If the gradient at a pixel is higher than the average gradient for that block,

the pixel is labeled as an edge pixel. This results in a binary mask that highlights all

the strong edges in the scene but no false edges due to the flash shadows. The details

from the flash image are added to the filtered non-flash image only in the regions

represented by the mask. A linear filter is used to smooth the mask to ensure that

that the resulting image does not have discontinuities. This implementation of the

filt

NF

**
4x4 block
No-Flash

Base Layer

Gradient Binary
Mask

4

Mask

Figure 2-14: Mask creation for shadow correction.
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(a) (b)(c

Figure 2-15: Input images: (a) image with flash, (b) image without flash. Output
image: (c) low-light enhanced image. (Courtesy R.Rithe)

LLE Output

(a) (b) (c)

Figure 2-16: Input images: (a) image with flash, (b) image without flash. Output

image: (c) low-light enhanced image. (Courtesy R.Rithe)

shadow correction module handles shadows effectively to produce enhanced images

without artifacts.

Figure 2-15 shows a set of input flash and non-flash images and the low-light en-

hanced output image. The enhanced output effectively reduces noise while preserving

details. Another set of images is shown in Figure 2-16. The flash image has shadows

that are not present in the non-flash image. The bilateral filtered non-flash image re-

duces the noise but lacks details. The enhanced output, created by adding the details

from the flash image, effectively reduces noise while preserving details and corrects

for flash shadows without creating artifacts.
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E
E

Chip Features

Technology 40 nm CMOS

Core Area 1.1 mm x 1.1 mm

Transistor 1.94 million
Count
SRAM 21.5 kB

Core Supply 0.5 V to 0.9 V
Voltage
1/O Supply 1.8 V to 2.5 V
Voltage
Frequency 25 - 98 MHz

Core Power 17.8 mW (0.9 V)

Figure 2-17: Die photo of test-chip with its features. Highlighted boxes indicate
SRAMs. HDR, CR and SC refer to HDRI creation, contrast reduction and shadow
correction modules respectively. (Courtesy R.Rithe)

2.4 Results

The test chip, shown in Figure 2-17, is implemented in 40 nm CMOS technology and

verified to be operational from 25 MHz at 0.5 V to 98 MHz at 0.9 V with SRAMs

operating at 0.9 V. This chip is designed to function as an accelerator core as part of

a larger microprocessor system, utilizing the systems existing DRAM resources.

For standalone testing of this chip a 32 bit wide 266 MHz DDR2 memory controller

was implemented using a Xilinx XC5VLX50 FPGA shown in Figure 2-19.

64b Preprocessing
Host USB US emory

PC Interface Interface
64b Bilateral Filter

USB
DDR2 Memory DDR2 Memory E
256 MB, 32b Controller Postproessing

Camera

Figure 2-18: Block diagram of demo setup for the processor. (Courtesy R.Rithe)
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The energy consumption and frequency of the test-chip is shown in Figure 2-20(b)

for a range of VDD. The processor is able to operate from 25 MHz at 0.5 V with 2.3

mW power consumption to 98 MHz at 0.9 V with 17.8 mW power consumption.

The run-time scales linearly with the image size, as shown in Figure 2-20(a), with 13

megapixel/s throughput. Table 2.1 shows a comparison of the processor performance

with other CPU/GPU implementations. The processor achieves significant energy

reduction compared to other software implementations.

Voltage Regulators

USB I/F

FPGA
XC5VLX50

DRAM

ASIC

Figure 2-19: Demo board and setup integrated with camera and display. (Courtesy
N.Ickes)

Processor Runtime
NVIDIA G80 209 ms

NVIDIA NV40 674 ms
Intel Core i5 Dual Core (2.5 GHz) 12240 ms

This work (98 MHz) 771 ms

Table 2.1: Run-time comparison with CPU/GPU implementations.

The processor is integrated, as shown in Figure 2-18, with a camera and a display

through a host PC using the USB interface. A software application, running on the

host PC, is developed for processor configuration, image capture, processing and result

display. The system provides a portable platform for live computational photography.
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Figure 2-20: (a) Processing run-time for different
operation and energy consumption for varying VDD.

image sizes. (b) Frequency of
(Courtesy R.Rithe)
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Chapter 3

Image Deblurring

When we use a camera to take a picture, we want the recorded image to be a faithful

representation of the scene. However, more often than not, the recorded image is

blurred and thus unusable. Blur can be caused due to a variety of reasons such

as camera shake, object motion, defocus and lens defects and directly affects image

quality. This work focuses on recovering a sharp image from a blurred one when blur

is caused due to camera shake and there is no prior information about the camera

motion during exposure.

3.1 MAPk Blind Deconvolution

For blur caused due to camera shake, an observed blurred image y can be modeled

as a convolution of an unknown sharp image x with an unknown blur kernel k (hence

blind), corrupted by measurement noise n:

y = k 0 x + n (3.1)

This problem is severely ill-posed and there is an infinite set of pairs (x, k) that can

explain an observed blurred image y. For example, an undesirable solution is the

no-blur explanation where k is the delta kernel and x = y. So, in order to obtain

the true sharp image, additional assumptions are required. A common approach is to
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put the problem into a probabilistic framework and utilize prior knowledge about the

statistics of natural images and the blur kernel to solve for the latent sharp image.

To summarize, we have the following three sources of information:

1. The reconstruction constraint (y = k ox+n). This is expressed as the likelihood

of observing a blurred image y, given some estimates for the latent sharp image

x and the blur kernel k and the noise variance T2:

p(ylx, k) = IN(y(i)Ik o X(i), 272) (3.2)

2. A prior on the sharp image. A common natural prior is to assume that the

image derivatives are sparse [12, 13, 14, 15]. The sparse prior can be expressed

as a mixture of J Gaussians (MOG):

J

p(x) = Z 7rj N(fi,,(x),of) (3.3)
iY j=1

3. A sparse or a uniform prior on the kernel p(k) which enforces all kernel entries

to be non-negative and to sum to one.

The common approach [14, 15, 16] is to search for the MAPx,k solution which

maximizes the posterior probability of the estimates for the kernel k and the sharp

image x given the observed blurred image y:

(, ) = arg max p(x, kly) = arg max p(ylx, k)p(x)p(k) (3.4)

However, [17] shows that this approach does not provide the expected solution and

favors the no-blur explanation. Instead, since the kernel size is much smaller than the

image size, MAP estimation of the kernel alone marginalizing over all latent images

gives a much more accurate estimate of the kernel:

k = arg max p(kly) = arg max p(ylk) = arg max p(, ylk)dx (3.5)
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where we consider a uniform prior on k. However, calculating the above integral over

latent images is hard. [5] proposes an algorithm which approximates the solution

using an Expectation-Maximization (EM) framework, which is used as the baseline

algorithm in this work.

3.2 EM Optimization

The EM algorithm takes as inputs a blurred image and a guess for the blur kernel.

It alternates between two steps. In the E-step, it solves a non-blind deconvolution

problem to estimate the mean sharp image and the covariance around it given the

current estimate for the blur kernel. In the M-step, the kernel estimate is refined given

the mean and covariance sharp image estimates from the E-step and the process is

iterated.

Since convolution is a linear operator, the optimization can be done in the image

derivative space rather than in the image space. In practice, the derivative space

approach gives better results as shown in [5] and is therefore adopted in this work.

In the following sections, we assume that k is an m x m kernel, and M = m 2 is the

number of unknowns in k. yy and x, denote the blurred and sharp images derivatives

where -y = 0 refers to the horizontal derivative and -y = 1 refers to the vertical

derivative. x, is an n x n image and N = n 2 is the number of unknowns in x,.

3.2.1 E-step

For a sparse prior, the mean image and the covariance around it cannot be computed

in closed form. The mean latent image p,, is estimated using iterative re-weighted

least squares given the kernel estimate and the blurred image, where in each iteration

an N x N linear system is solved to get py:

Axy = bx (3.6)

/= 1/ 2 T[Tk + W, (3.7)

2= 1/7 2TTyy (3.8)
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The solution to this linear system minimizes the convolution error plus a weighted

regularization term on the image derivatives. The weights are selected to provide a

quadratic upper bound on the MOG negative log likelihood based on previous y,,

solution:

E[Ix |] E[||x 112]

w, = e 2 - 2"0 (3.9)

Here i indexes over image pixels and the expectation is computed using:

E[l Ix,i 112] = p2 + cYi (3.10)

W, is a diagonal matrix with:

W (i, i) = w'i'j (3.11)

The N x N covariance matrix Cy around the mean image is approximated with a

diagonal matrix and is given by:

1
C,(ii) = (3.12)

Ax(i, i)

Only the diagonal elements of this matrix are stored as an n x n covariance image

cy. The E-step is run independently on the two derivative components, and for each

component it is iterated three times before proceeding to the M-step.
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3.2.2 M-step

In the M-step, given the mean image and covariance around it obtained from the

E-step, a quadratic programing problem is solved to get the kernel:

Ak,,(ii, i2 ) = 13/y(i -+ ii)ty(i + i 2 ) + C-(i + ii, i + i 2 ) (3.13)

bk,,y (ii) = iy (i + i)yy (i) (3.14)

1

Ak = ZAk,y (3.15)
-y

bk =ZEb,,, (3.16)
^Y

I = arg min k TAk + bk s.t. k > 0 (3.17)

Here i sums over image pixels and i1 and i 2 are kernel indices. These are 2-D indices

but the expression uses the 1-D vectorized version of the image and the kernel.

The algorithm assumes that the noise variance r2 is known, and is taken as an

input. To speed convergence of EM algorithm, the initial noise variance is assumed

to be high and it is gradually reduced during optimization by dividing by a factor of

1.15 till the desired noise variance value of reached.

3.3 System Architecture

Figure 3-1 shows the top level flow for the deblurring algorithm. The input blurred

image is preprocessed to remove gamma correction since deblurring is performed in

the linear domain. If the blur kernel is expected to be large, the blurred image is

down-sampled. This is followed by selecting a window of pixels from the blurred

image from which the blur kernel is estimated using blind deconvolution. Using a

window of pixels rather than the whole image reduces the size of the problem, and

hence the time taken by the algorithm, while giving a fairly accurate representation

of the kernel if the blur is spatially uniform. A maximum window size of 128 x 128

pixels is used, which is found to work well in practice. A smaller window size results
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Figure 3-1: Top level flow for deblurring algorithm.

in an inaccurate representation of the kernel which produces ringing artifacts after

final deconvolution.

To estimate the kernel, a multi-resolution approach is adopted. The blurred image

is down-sampled and passed through the EM optimizer to obtain a coarse estimate

of the kernel. The coarse kernel estimate is then up-sampled and used as the initial

guess for the finer resolutions. In the current implementation, the coarser resolutions

are created by down-sampling by a factor of 2 at each scale. The final full resolu-

tion kernel is up-sampled (if the blurred image was down-sampled initially) and non

blind deconvolution is performed on the full image for each color channel to get the

deblurred image.

Figure 3-2 shows a block diagram of the system architecture. It consists of inde-

pendent modules which execute different parts of deblurring algorithm, controlled by

a centralized scheduling engine.

3.3.1 Memory

The processor has 4 SRAMs each having 4 banks that can be accessed in parallel,

which are used as scratch memory by the modules. The access to the SRAMs is

arbitrated through centralized SRAM arbiters, one for each bank. Each bank is 32

bits wide and contains 4096 entries. The processor is connected to an external DRAM

through a DRAM controller. The access to the DRAM is arbitrated through a DRAM
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Figure 3-2: System block diagram for image deblurring processor.

arbiter. All data communication between the modules happens through the scratch

memory and the DRAM.

3.3.2 Scheduling Engine

The scheduling engine schedules the modules to execute different parts of the deblur-

ring algorithm based on the data dependencies between them. At the start of each

resolution, the blurred image is read in from the DRAM and down-sampled to the

scale of operation. The scheduler starts the transform engine, which computes the

horizontal and vertical gradients of the blurred image and their 2-D discrete Fourier

transform and writes them back to the DRAM. At any given resolution, for each EM

iteration, the convolution engine is enabled, which computes the kernel transform and

uses it to convolve the gradient images with the kernel. The result of the convolution

engine is used downstream in the E-step of the EM iteration.

To perform the E-step, a conjugate gradient solver is used to solve the system

given by Equation 3.6, given the current kernel estimate, noise variance and weights.

The solution to this system is the mean gradient image y. The covariance estimator

then estimates the covariance image cy given the current kernel and the weights.

Covariance and mean image estimation can be potentially done in parallel as they
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do not have data dependencies but limited memory bandwidth and limited on-chip

memory size do not allow it. Instead, covariance estimation is done in parallel with

the weight computation for the next iteration. The E-step is performed for both

horizontal and vertical components of the gradient, and for each component it is

iterated three times before performing the M-step.

To perform the M-step, the mean image and the covariance image generated by the

E-step are used by the correlator to generate the coefficients matrix Ak and vector

bk for the kernel quadratic program. A gradient projection solver is then used to

solve the quadratic program subject to the constraint that all kernel entries are non-

negative. The solution is a refined estimate of the blur kernel which is fed back into

the E-step for the next iteration of the EM algorithm. The number of EM iterations

is configurable and can be set before the processing starts. Once EM iterations for

the current resolution complete, the kernel estimate at the end is up-sampled and

used as the initial guess for the next finer resolution.

3.3.3 Configurability

The architecture allows several parameters to be configured at runtime by the user.

The kernel size can be varied from 7 x 7 pixels to 31 x 31 pixels. For larger kernel

sizes, the image can be down-sampled for kernel estimation and the resulting kernel

estimates can be scaled up to get the full resolution blur estimate. The number of

EM iterations and the number of iterations and convergence tolerance for conjugate

gradient and gradient projection solvers can be configured to achieve energy scalability

at runtime.

Setting parameters aggressively results in a very accurate kernel estimate, which

takes longer to compute and consumes more energy. In an energy constrained sce-

nario, less aggressive parameter settings result in a reasonably accurate kernel while

taking less time to compute and consuming lower energy.
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3.3.4 Precision Requirements

The algorithm requires all the arithmetic to be done with high precision, to get an

accurate estimate of the kernel. An inaccurate kernel estimate results in undesir-

able ringing artifacts in the deconvolved image which makes the image unusable. A

32 bit fixed point implementation of the algorithm was developed in software but

the resulting kernel was far from accurate due to very large dynamic range of the

intermediates.

For example, to set up the kernel quadratic program, the coefficients matrix is

computed using an auto-correlation of the estimated sharp image. For an image of

size 128 x 128 with b bit pixels, the auto-correlation result requires 2 * b + 14 bits

to be represented accurately. This coefficient matrix is then multiplied with b bit

vectors of size m 2 where m x m is the size of the kernel while solving the kernel

quadratic program, resulting is an output which requires 3 * b + 14 + 10 bits for

accurate representation. If b is 32 this intermediate needs 120 bits.

Also, since the algorithm is iterative, the magnitude of the errors keeps growing

with successive iterations. Moreover, a static scaling schedule is not feasible because

the dynamic range of the intermediates is highly dependent on the input data. There-

fore, the complete datapath is implemented for 32 bit single precision floating point

numbers and all arithmetic units (including the FFT butterfly engines) are imple-

mented using Synopsys Designware floating point modules to handle the required

dynamic range.

The following sections detail the architecture of the component modules.

3.4 Fast Fourier Transform

Discrete Fourier Transform (DFT) computation is required in the transform engine,

the convolution engine and the conjugate gradient solver, and it is implemented using

a shared FFT engine. The FFT engine computes the DFT using Cooley-Tukey FFT

algorithm. It supports run-time configurable point sizes of 128, 64 and 32. For an N-

point FFT, the input and output data are vectors of N complex samples represented as
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Figure 3-3: Architecture of the FFT engine.

dual 32-bit floating-point numbers in natural order. Figure 3-3 shows the architecture

of the FFT engine. It has the following key components:

3.4.1 Register Banks

The FFT engine is fully pipelined and provides streaming I/O for continuous data

processing. This is enabled by 2 register banks each of which can store up to 128

single-precision complex samples. The interface to the FFT engine consists of 2

sample wide input and output FIFOs. To enable continuous data processing, the

engine simultaneously performs transform calculations on the current frame of data

(stored in one of the two register banks), and loads the input data for the next frame

of data and unloads the results of the previous frame of data (using the other register

bank). At the end of each frame, the register bank being used for processing and the

register bank being used for I/O are toggled. The client module can continuously

stream in data into the input FIFO at a rate of two samples per cycle and after

the calculation latency (of N cycles for an N-point FFT) unload the results from

the output FIFO. Since the higher level modules accessing the FFT engine use it to
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Figure 3-4: Architecture of the radix-2 butterfly module.

perform 2-D transforms of N x N arrays, the latency of the FFT engine to compute

a single N-point transform is amortized over N transforms.

3.4.2 Radix-2 Butterfly

The core of the engine has 8 radix-2 butterfly modules operating in parallel. This

number (of butterfly modules) has been selected to minimize the amount of hardware

required to support a throughput of 2 samples per cycle. This is the maximum

achievable throughput given the system memory bandwidth of 64-bits read and write

per cycle. Figure 3-4 shows the block diagram of a single butterfly module. The

floating point arithmetic units in the butterfly module have been implemented using

Synopsys Designware floating point library components. Each butterfly module is

divided into 2 pipeline stages (not shown in Figure 3-4) to meet timing specifications.

3.4.3 Schedule

An N-point FFT is computed in log2N stages, and each stage is further sub-divided

into N/16 micro-stages. Each micro-stage takes 2 cycles and consists of operating

8 butterfly modules in parallel on 16 consecutive input/intermediate samples, how-

ever, since the butterfly modules are pipelined, the data for the next micro-stage

can be fed into the butterfly modules when they are operating on the data from

the current micro-stage. So, an N-point FFT takes log2N * (N/16 + 1) cycles (i.e.
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63, 30 and 15 cycles for 128, 64 and 32 point FFTs). The twiddle factors fed into

the butterfly modules are stored in a look-up table implemented as combinational

logic. A controller FSM generates the control signals to MUX/DeMUX the correct

input/intermediate samples and twiddle factors to the butterfly modules and the reg-

ister banks depending upon the stage and micro-stage registers. A permute engine

permutes the intermediates at the end of each stage before they get written to the

register bank.

3.4.4 Inverse FFT

The FFT engine can also be used to take inverse transform since inverse transform

can be expressed simply in terms of forward transform. To take the inverse transform,

the FFT client must flip the real and imaginary parts of the input vector and the

output vector, and scale the output by a factor of 1/N.

3.5 2-D Transform Engine

At the start of every resolution, the 2-D transform engine reads in the (down-sampled)

blurred image y from the DRAM and computes the horizontal (yo) and vertical (yi)

gradient images and their 2-D DFTs which are used downstream by the convolution

engine. 2-D DFT of the gradient image is computed by performing 1-D FFT along all

rows of the gradient image to get an intermediate row transformed matrix, followed

by performing 1-D FFT along all columns of the intermediate matrix to get the 2-D

DFT of the gradient image. Both row and column transform is performed using a

shared 1-D FFT engine as shown in Figure 3-5.

3.5.1 Transpose Memory

Two 64 kB transpose memories are required for the largest transform size of 128 x 128

to store the real and imaginary parts of the row transform intermediate. This is

prohibitively large to store in registers. Therefore, two shared SRAMs, each having 4

48



* 1-D FFT 2-D DFT
Input --+ Engine of Input

Row/Column
Select

Figure 3-5: Architecture of the 2-D transform engine.

single-port banks of 4096 32-bit wide entries are used for this purpose. The pixels are

mapped to locations in the 4 SRAM banks as shown in Figure 3-6(a). By ensuring

that 2 adjacent pixels in any row or column sit in different SRAM banks, it is possible

to write along rows and read along columns by supplying different addresses to the

4 banks. It is possible to achieve the transpose using only two SRAM banks having

two times the number of entries for a throughput of 2 pixels per cycle using the

mapping shown in Figure 3-6(b). However, this approach is not adopted because 4

bank SRAMs are required in downstream modules for processing consecutive rows or

columns concurrently.

This scheme of mapping a matrix to SRAM banks is used in downstream modules

as well. Using this mapping, the elements of a matrix having even row index and even

column index, even row index and odd column index, odd row index and even column

index and odd row index and odd column index are mapped to different SRAM banks.

This allows access of two consecutive elements in along a row or a column in parallel.

This also allows concurrent access of consecutive rows or columns from the SRAM.

For ease of representation, the following notation is used to describe which SRAM

banks store which elements of a matrix: [Bank# for even-row even-column elements,

Bank# for even-row odd-column elements, Bank# for odd-row even-column elements,

Bank# for odd-row odd-column elements].
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Figure 3-6: Mapping 128 x 128 matrix to (a) 4 SRAM banks or (b) 2 SRAM banks
for transpose operation. Color of the pixel indicates the SRAM bank and the number
denotes the bank address.

3.5.2 Schedule

The 2-D transform engine performs the following steps sequentially. Figure 3-7 shows

the sequencing of steps, the resources used in each step and the state of the shared

SRAMs before and after each step. The 2-D transform engine has has 4 floating point

subtractors for computing 2 horizontal and vertical gradient pixels in parallel every

cycle. It uses the shared FFT engine for computing the 2-D DFT of the gradient

images. The sequencing is a result of either data dependencies between successive

steps or limited DRAM bandwidth.

1. Two pixels from the down-sampled image (y) are read from the DRAM every

cycle in row-major order. Two horizontal gradient (yo) pixels are computed

and are fed into the FFT engine for row transform (RT) and written to the

DRAM. The results of row transform appear after a number of cycles equal to

the latency of the FFT engine. These are written into SRAMs 2 (real part) and

3 (imaginary part) in banks [0 1 2 3]. The latency penalty applies only in the

beginning since the FFT engine is fully pipelined.

In parallel, the current image pixels (y) are written to SRAM 1 banks [0 1 2 3]
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Figure 3-7: Schedule for the 2-D transform engine shows the blocks executing in
parallel during each step/phase and state of the 4 SRAMs before the after each

phase.

and previous row of image pixels is read from SRAM 1 banks [2 3 0 1]. These

are used to compute two vertical gradient (y1) pixels which are written into

SRAM 0 banks [0 1 2 3]. The vertical gradient computation can start only after

an entire row of image pixels has been read in.

2. Once row transform of yo completes, the column transform (CT) of the row

transform intermediate is computed (Yo) and the real part of the result is written

to DRAM and imaginary part to SRAM 1 banks [0 1 2 3].

3. Next, the row transform (RT) of yi is computed and the real part of the result

is written into SRAM 2 and the imaginary part of the results is written into

SRAM 3 banks [0 1 2 3]. In parallel, the imaginary part of column transform

of Yo, Yom, is written to DRAM.
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4. The column transform of row transform intermediate of y1 is computed (Y1) and

the real part is written to DRAM and the imaginary part to SRAM 1 banks [0

1 2 3].

5. The imaginary part of column transform of yi, Yl" , is written from SRAM 1

to DRAM.

The processing is limited by the memory bandwidth - write bandwidth in this

case, and using two FFT engines to process the horizontal and vertical gradients in

parallel does not help reduce the overall processing time, as the module would still

have to wait for all the results to be written to the DRAM.

3.6 Convolution Engine

The convolution engine runs once at the start of every EM iteration and first computes

the 2-D DFT of the kernel, and then uses it to convolve the blurred gradient images

y, with the kernel. The 2-D DFTs of the gradient images, which are computed by

the transform engine, are read in from the DRAM. The convolution engine uses the

shared FFT engine for DFT computation. It consists of a set of FSMs which execute

the following steps, shown in Figure 3-8 and Figure 3-9, sequentially. It should be

noted that the time axis on the figures is not uniformly spaced.

1. The kernel (k) is read form the DRAM and written to SRAM 1 banks [0 1 2 3].

2. Once the kernel (k) is loaded, it is read row major from SRAM 1 banks [0 1 2 3]

and fed into the FFT engine for computing row transform (RT). The transform

results from the FFT engine are written back to SRAMs 0 and 1 banks [2 3 0

1]. In parallel, if it is the first iteration for the current resolution, y1 is read

from SRAM 0 banks [0 1 2 3] and written to the DRAM. Also in parallel, 2-D

DFT of yo, Y, is read from DRAM and its real part is written into SRAM 2

banks [0 1 2 3] and the imaginary part to SRAM 3 banks [0 1 2 3].
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Figure 3-8: Schedule for convolution engine shows the blocks executing in parallel

during each phase and state of the 4 SRAMs before the after each phase. The numbers

in blue indicate the fraction of the matrix in the SRAM.

3. After the row transform completes, the row transform intermediates for k are

read column major from SRAMs 0 and 1 banks [2 3 0 1] and fed into the FFT

engine for column transform. The column transform (K) is written back into

SRAMs 0 and 1 banks [3 2 1 0] and squared magnitude of the kernel DFT,

|K| 12, is computed and written to the DRAM. If there are no stalls in reading

DRAM data, 2-D DFT of yo, Y, will be loaded completely into SRAMs 2 and

3 by the time the column transform of the kernel completes.

4. To perform convolution, the kernel transform (K) is read from SRAMs 0 and 1

banks [3 2 1 0] and yo transform (Yo) is read from SRAMs 2 and 3 banks [0 1 2
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Figure 3-9: Schedule for convolution engine shows the blocks executing in parallel
during each phase and state of the 4 SRAMs before the after each phase. The numbers
in blue indicate the fraction of the matrix in the SRAM.

3]. These are multiplied using complex multipliers and fed into FFT engine to

compute column inverse transform (CT-1 ) and the results are stored back into

SRAMs 2 and 3 banks [1 0 3 2].

5. Column inverse transform intermediate is read in row major order from SRAMs

[1 0 3 2] and fed in to the FFT engine to compute row inverse transform (RT-').

The real part of the result is the convolved matrix b;" which is written to the

DRAM. The imaginary part is discarded. In parallel, 2-D DFT of y1, Y1, is

read from the DRAM and written to SRAM 2. The real and imaginary parts

of Y are stored interleaved at a column level (a column of real part followed by

a column of imaginary part) in the DRAM. The real part is written to banks

0 and 2 and the imaginary part is written to banks 1 and 3, to allow parallel

access. However, for an n x n image, it takes n 2 cycles to read Y from the

memory, whereas it takes n 2 /2 cycles to compute the row inverse transform.

So, by the time the FFT engine finishes computing the row inverse transform
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and only half of the columns of Y are loaded.

6. This partially loaded Y matrix is read in column major order from SRAM 2

(the real part is read from banks 0 and 2 and the imaginary part is read from

banks 1 and 3) and multiplied with the kernel transform K read from SRAMs 0

and 1 banks [3 2 1 0]. The multiplication result is fed in to the FFT engine for

column inverse transform. The results of the FFT engine are written to SRAMs

0 and 1 banks [2 3 0 1]. In parallel, by the time 1/2 of Y matrix is processed,

the next 1/4 columns are loaded into SRAM 3 (the real part is written to banks

0 and 2 and the imaginary part is written to banks 1 and 3) since SRAM 2 is

being accessed for inverse transform computation.

7. The roles of SRAMs 2 and 3 are then flipped and SRAM 3 is used for FFT

processing while 2 is loaded with the next 1/8 columns and so on. This allows

computation of column inverse transform without stalling for the matrix Y to

be read completely from the memory.

8. Once column inverse transform is complete, it is read in row major order from

SRAMs 0 and 1 banks [2 3 0 1] and fed into the FFT engine to compute the

row inverse transform. The real part of the result b re is written to the DRAM

and the imaginary part is discarded.

3.7 Conjugate Gradient Solver

The first part of E-step is to solve for the mean sharp image given the kernel from

the previous EM iteration. The sharp image can be obtained by solving the following

linear system for p. For simplifying the representation, the -y subscript is dropped in

the rest of the section.

A = bx (3.18)

A = TkTTk + r 2 W (3.19)

bX =TkTy (3.20)
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Figure 3-10: Flow diagram for conjugate gradient solver.

3.7.1 Algorithm

The linear system of equations in pL is solved numerically using a conjugate gradient

(CG) solver. Starting with an initial guess for the solution, the CG solver iteratively

improves the solution by taking steps in search directions that are conjugate to all

previous search directions, thus ensuring fast convergence. The negative gradient

direction at the initial guess is used as the starting search direction. Figure 3-10

shows the flow diagram for the CG solver. The major steps in the algorithm are

outlined below.

" Initialize: Initialize pL to blurred image y. Initialize the residual r and the

initial search direction p to the negative of the gradient at the initial guess

(b. - AfMp). Compute the squared magnitude of the residual p = rTr.

" Iterate till convergence:

1. Multiply matrix A, with the search direction p to get Amp.

2. Compute the step size for solution update a = p/pT Ap.

3. Update the solution p = p +ap, the residual r = r -aAp, and the squared

magnitude of the residual p = rTr.
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4. Compute the step size for search direction update # = p/piast

5. Update the search direction p = r + 3p and loop.

3.7.2 Optimizations

It can be seen that, in this algorithm, multiplication with the matrix A, has the

highest computational complexity, and involves multiplication with an N x N matrix

for a flattened n x n image p, where N = n2. However, the structure of the matrix

A, makes it amenable to the following optimizations:

" It can be observed that the first component involves multiplication with the

kernel Toeplitz matrix Tk which is equivalent to a convolution with the kernel.

Convolution can be implemented efficiently in the frequency domain using FFT

which makes the matrix multiply operation O(NlogN) instead of O(N 2 ).

" The second component involves multiplication with W which is a diagonal ma-

trix. So, multiplication with N x N W is the same as element by element

multiplication with a n x n weights matrix w comprising the diagonal elements

of W.

Therefore, to apply matrix A. on a flattened n x n image x, the following steps are

involved:

1. First, the 2-D DFT of x is computed by performing row transform followed by

column transform using the shared FFT engine.

2. The squared magnitude of 2-D DFT of kernel I IK 2 (computed by the convolu-

tion engine) is read from the memory, and multiplied with 2-D DFT of x. 2-D

inverse DFT of the result is computed by performing column inverse transform

followed by row inverse transform using the FFT engine.

3. The weights matrix is read in from the memory and multiplied element by

element with x and the result is added to the inverse row transform obtained

in 2 to get the matrix multiplication result.
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Figure 3-11: Schedule for initialization phase of CG solver.

3.7.3 Architecture

We now describe the architecture of the CG solver in detail. The CG solver consists

of an FSM for each step of the conjugate gradient algorithm outlined earlier. The

FSMs execute sequentially and the FSM/step boundaries are determined by the data

dependencies in the algorithm, for example, the solution and residual update in step

3 cannot happen before the step length is computed in step 2. Each step has a

throughput of 2 pixels/cycle.

The CG solver uses shared SRAMs as scratch memory to store intermediate vari-

ables. This minimizes memory accesses and enables maximum parallelism. The inter-

mediate matrices are mapped to SRAM banks using the mapping shown in Figure 3-6.

The solver runs in two phases: initialization and iteration.
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Initialization

The initialization phase initializes y = y and r = p = b, - Ap,, in SRAMs as shown

in Figure 3-11. The matrix multiplication is performed using the method described

previously.

1. p is initialized by reading y from the DRAM and writing it in to SRAM 0

banks [0 1 2 3]. In parallel, it is also fed into the FFT engine for computing

row transform. After a delay equal to the latency of the FFT engine, the row

transform intermediate results are written in parallel to SRAMs. The real part

is stored in SRAM 2 banks [0 1 2 3] and the imaginary part is stored in SRAM

3 banks [0 1 2 3].

2. Squared magnitude of 2-D DFT of the kernel is read from DRAM and written

into SRAM 1 banks [1 0 3 2]. In parallel, row transform intermediate computed

in 1 is read column major from SRAM 2 banks [0 1 2 3] and SRAM 3 banks [0

1 2 3] and fed into the FFT engine for column transform. As FFT results start

coming out, they are written to the same SRAMs but with a bank ordering of

[1 0 3 2] to maximize concurrency. So, when a column from banks 0 and 2 is

being read and fed into the FFT engine, the column transform coming out of

the FFT engine is being written to banks 1 and 3 and vice versa.

3. Once the column transform is complete, it is read column major from SRAMs 2

and 3 banks [1 0 2 3] and multiplied with ||K1| 2 read from SRAM 1 banks [1 0 2

3]. The result (Q) is fed into the FFT engine for inverse column transform. The

column inverse transform intermediates are written back into SRAMs 2 and 3

banks [0 1 2 3]. In parallel, if it is not the first iteration, the weights matrix

72w is read from the DRAM and written to SRAM 1 banks [0 1 2 3].

4. The column inverse transform intermediate of Q is read from SRAMs 2 and

3 banks [0 1 2 3] in row major order and fed into FFT engine for row inverse

transform. The real part of the result coming out of the FFT engine q = TjTkP.

Weights q 2w and initial y are read from SRAMs 1 and 0 and b_ is read from
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Figure 3-12: Schedule for iteration phase of CG solver.

the DRAM. The residual (r) and the search direction (p) are initialized with

bx-q - wp in SRAMs 2 and 3 banks [2 3 0 1]. This computation is pipelined,

such that only one floating point operation happens in a cycle. Also, as residual

gets computed it is squared and accumulated into p.

Iteration

The iteration phase, shown in Figure 3-12 and Figure 3-13 starts with a search di-

rection and computes a step length along it. It then updates the solution and the

residual and computes the search step length from the updated residual. This is then

used to update the search direction, and the process is iterated over.

1. The search direction (p) is read from SRAM 3 banks [2 3 0 1] in row major order
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Figure 3-13: Schedule for the iteration phase of CG solver (continued).

and fed into FFT engine for row transform. The row transform intermediates

are written to SRAMs 0 and 1 banks [0 1 2 3].

2. The row transform intermediates are read from SRAMs 0 and 1 banks [0 1 2

3] in column major order and fed into FFT engine for column transform. The

column transform results (P) are written back into SRAMs 0 and 1 banks [1 0

3 2].

3. The column transform of p, P, is read from SRAMs 0 and 1 banks [1 0 3 2]

and multiplied with KI 12 which is read form the DRAM. The result is fed into

the FFT engine in column major order for column inverse transform which is

written back into SRAMs 0 and 1 banks [0 1 2 3].

4. The column inverse transform is read in row major order form SRAMs 0 and 1

banks [0 1 2 3] and fed into FFT engine for row inverse transform. In parallel,
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weights r'w are read from the DRAM and multiplied with p read from SRAM

3 banks [2 3 0 1]. The result is added to the real part of the results from the

FFT engine qre to give Amp which is written to SRAM 0 banks [2 3 0 1]. Ap

elements are also multiplied with p and accumulated into pTAxp.

5. Step length a is computed using p and pTAxp computed in the last step (a =

ppTAxp).

6. Once the step length is computed, p is read from the DRAM and Axp, r and p

are read from SRAMs. Updates to the solution (t = p + ap) and the residual

(r = r - aAxp) are computed in parallel. Updated yL is written back to the

DRAM. Updated r is written to SRAM 1 banks [2 3 0 1] and its elements are

squared and accumulated as well to get p.

7. Updated p and its value from the previous iteration are used to compute the

factor # used in search direction update.

8. Search direction p is read from SRAM 3 banks [2 3 0 1] and updated residual r

is read from SRAM 1 banks [2 3 0 1] and updated search direction is computed

using p = r + 13p and written to SRAM 0 banks [2 3 0 1].

9. The FSM loops after the search direction is updated. However, during the

iteration, the SRAMs in which the updated search direction and residuals are

written are different from the ones from which the original values are read

(because SRAMs are single port). In order to avoid copying these intermediates

back to the original SRAMs, in the odd numbered iterations, p is accessed from

SRAM 0, its transform is written to and read from SRAMs 2 and 3, Axp is

written to SRAM 3, updated r is written to SRAM 2 and updated p is written

to SRAM 3, returning the intermediates back to their original locations.
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Figure 3-14: Computation of dai matrix is expressed as convolution of n x n mask

with the squared kernel.

3.8 Covariance Estimator

The second part of the E-step involves estimating the covariance around the mean

sharp image. For a mean image with dimensions n x n (or n 2 x 1 when flattened), the

covariance matrix is an n2 x n 2 matrix. The covariance estimator module computes

this matrix using a diagonal approximation by inverting the diagonal elements of

the weighted deconvolution system A,. This makes the time taken to compute the

covariance matrix linear rather than quadratic in the number of pixels in the mean

image. Only the diagonal elements of the covariance matrix are stored as an n x n

covariance image.

The matrix A. has two components: a kernel-dependent component T[Tk and a

weights-dependent component W. For simplifying the representation, the subscript

-y has been dropped.

AX = 1|r2 T[Tk + W (3.21)

Since the matrix Ax is not explicitly computed while solving for the mean image, the

diagonal entries of TkjTk, denoted by dai, and the diagonal entries of r/2 W, denoted
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Figure 3-15: Schedule for covariance estimator.

by da2, are computed and the covariance image entries are set using r 2/(da1 + da2).

3.8.1 Optimizations

The diagonal entries of T[Tk or dai can be obtained by convolving the mask shown

in Figure 3-14 with the kernel squared element by element. This requires O(n 2 * m 2 )

operations. However, it can be seen from Figure 3-14 that the structure of the mask

allows the convolution to be computed simply from the integral image of the squared

kernel. The integral image (cs) can be computed in 0(m 2 ) operations, followed by a

look-up into cs for each element of dai, which results in only 0(n 2) operations.

3.8.2 Architecture

Figure 3-15 shows the scheduling of different arithmetic units to compute the covari-

ance image. First, the kernel (k) is read from the DRAM and written flipped (kfg,)

along both axes into SRAM 0 banks [0 1 2 3]. The kernel is read in the normal
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Figure 3-16: Relationship between dai matrix entries and integral image cs entries.
Indices i and j index over rows and columns of dai and p and q denote the corre-
sponding row and column index into cs matrix.

row-major order, and flipping is achieved by manipulating the SRAM bank addresses

while writing it into SRAMs.

Computing dai

Once the kernel is read from the DRAM the cumulative sum of squared kernel entries

is computed along rows and the intermediate (CSr) is stored into SRAM 1 banks

[0 1 2 3], which serves as a transpose memory. Two rows are processed in parallel

because they lie in different SRAM banks. Once the row cumulative sum is complete,

the intermediate is read from SRAM 1 and cumulative sum along columns (csci) is

computed and flipped to get the integral image (cs) which is stored in SRAM 0. Two

columns are processed in parallel because they lie in different SRAM banks. Flipping

is achieved by manipulating SRAM write addresses. The final sum is stored in a

register. In parallel, r/2w or da2 matrix is read from DRAM and written to SRAM 3

banks [0 1 2 3].
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Figure 3-17: The first row of the integral image is copied and written at the end of
the matrix to allow conflict free SRAM access (shown here for a 5 x 5 kernel).

Next, the entries of dai matrix are computed using the integral image cs entries

using the piece-wise linear relationship shown in Figure 3-16, where (i, j) are the row

and column indices for dai matrix and (p, q) and row and column indices for the cs

matrix. The blocks in the figure represent the dai entries where the same relationship

holds. Since the covariance matrix entries have to be written back to the DRAM at

a rate of 2 pixels/cycle, we require 2 dai entries to be computed in parallel every

cycle. However, it can be seen that computation of one dai entry can require up to

4 cs entries which cannot be accessed in parallel from the single port SRAM which

stores the cs matrix. So a naive implementation would not meet the throughput

requirement.

Optimizations The following optimizations allow us to meet the 2 pixels/cycle

throughput:

" A large part of dai is simply the cs value at 00, this value is stored in a register

to an avoid SRAM access.

" The dai matrix is computed in row-major order, and for a particular dai row

index i, the row index p into cs matrix remains constant. So, p0 is read and
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Figure 3-18: Architecture of the weights engine (shown without the pipeline registers)
for a throughput of 1 pixel per cycle.

registered at the beginning of each row avoiding 1 read per column.

e The previous two optimizations remove all SRAM access conflicts except when

both Oq and pq entries are required. These will conflict when p is even, because

Oq and pq would then be stored in the same SRAM. In order to resolve this

conflict, the first row of cs matrix is copied and written at the end of the matrix

as shown in Figure 3-17 and instead of accessing Oq, kq is accessed when p is

even. This does not lead to any conflicts since k is odd. This allows a throughput

of 1 pixel per cycle.

e A throughput of two pixels per cycles can be achieved simply by computing dai

entries for two columns in parallel for any row. This can be done easily because

adjacent cs columns fall in different banks because of the SRAM mapping policy.

Computing covariance and weights

In parallel, da2 is read from SRAM 3 and both dai and da2 are used to compute

covariance image in a pipelined manner which is written to the DRAM. The resulting

covariance image is used along with the mean image to refine the weights for the

next iteration. This is performed using a fully pipelined weights engine. Figure 3-18
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shows the architecture of the weights engine without the pipeline stage registers which

implements weights computation given by:

E [(1|x ||2] E [||x -||2]

=ij /O 1: H2e 3 (3.22)

where E[I| xi |1] = pt + ci and W is diagonal matrix with:

W(i, i) = Z ~(3.23)
j

The weights engine computes the contributions of the three prior mixture components

in parallel. The exponentiation is carried out using a combinational look-up table

which stores output values for a sub-sampled version of the input, and only the most

significant 16 bits (excluding the sign bit) are used for the look-up. It should be noted

that normalization of the three mixture component contributions but subtracting

the maximum contribution is performed before taking the exponential. Therefore,

the inputs to the exponentiation lookup table are always non-positive. This further

restricts the number of entries stored in the look-up table since exponential quickly

decays to zero as the input becomes large negative.

Only the diagonal entries of W are computed and written to SRAM 1 as an

n x n weights matrix w. A throughput of 2 pixels/cycle is achieved by operating

two weights engine in parallel. The E-step is iterated three times before proceeding

on to the M-step. In the last E-step iteration, the weight computation for the next

iteration is not performed and the covariance image is written to SRAM 1 instead of

the weights matrix.

3.9 Correlator

After completion of the'E-step, we have the mean image (p,,) and the covariance (C,)

around it for the both horizontal and vertical gradient components (-y = 0, 1). These

are used in the M-step to refine the kernel estimate by solving the following quadratic
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programming problem for the kernel:

Ak,,(i1,i2) = iy(i + il) 1u-(i + i 2 ) + Cy(i + ii,i + i 2 ) (3.24)

bk,,(ii) = ( p(i-+-ii)y (i) (3.25)

Ak =ZAk,-y (3.26)

bk = Zbk,-y (3.27)

= arg min k TAk +bTk s.t. k > 0 (3.28)

Here i sums over image pixels and i1 and i2 are kernel indices. These are 2-D indices

but the expression uses the 1-D vectorized version of the image and the kernel. The

first part of the M-step is executed by the correlator module which computes the

coefficients matrix Ak and the vector bk from the mean and covariance images and

sets up the quadratic program (QP). Once the QP is set up, the gradient projection

solver solves for the kernel subject to non-negativity constraints.

3.9.1 Optimizations

For an m x m kernel, Ak,, is an M x M matrix, where M = m2 , representing the

covariance of all m x m windows in py and bk,y is an M x 1 vector representing

the correlation with y,. The correlator module first computes the auto-correlation

E py (i + i 1 )p /-t(i + i 2 ), which is required for computing Ak,<).

The naive way to compute autocorrelation would be to multiply and accumulate

two shifted versions of py, pY-(i + ii, j + ji) and py(i + i 2 , j + j 2 ) for all possible shift

values with ii, j1, i2 and j2 varying from 0 to m. For computing each element of the

M x M matrix, this approach requires O(n x n) operations where n x n is the size

of the mean image.

Let us consider two cases, one where both (ii, ji) and (i 2, j2 ) are (0,0) and the

other where both shifts are (1, 1). In both cases, the relative shift between the two

images is (0, 0), and the same corresponding elements will get multiplied. So, for all
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Figure 3-19: Auto-correlation matrix for a 3 x 3 kernel. The axes represent the
absolute shifts of the image with respect to the reference.

absolute shift pairs which have the same relative shift between them, the multiply

accumulate result can be computed using the result for the case when the absolute

shift pair is same as the relative shift pair. This makes the correlation operation

O(M * N) compared to O(M 2 * N) for the naive case. This is achieved by computing

the integral image of multiplication of the shifted version of the image with an un-

shifted version and then using the integral image to obtain the results for all absolute

shifts for a given relative shift.

Figure 3-19 shows the 32 x 32 auto-correlation matrix for a 3 x 3 kernel. The

gray boxes represent the location of the unshifted base image. The red and the

blue boxes represent the shifted images shifted by the absolute shifts on the vertical

and horizontal axes with respect to the base image. The value at each location of

the matrix is calculated by multiplying the shifted red and blue boxes element by
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element and accumulating them in the region which is the intersection of the red,

blue and gray boxes. It can be observed that, the elements along the diagonal solid

lines of any color can be computed using the integral image of top left box along the

diagonal line. A second pass is required to compute the elements along the dashed

lines. The matrix is symmetric, therefore only the lower triangular part is computed

and written to two locations into the DRAM (except for the diagonal elements which

are written once).

3.9.2 Architecture

An architecture based on this optimized algorithm has been developed, but it has not

been completely written and tested yet, and is therefore not described in detail.

3.10 Gradient Projection Solver

Once the quadratic program given by Equation 3.24 is set up by the correlator, the

second part of the M-step involves solving it to estimate the blur kernel. Since the

constraints in the problem are simple bounds, the most straightforward approach to

solving this problem is the gradient projection method which minimizes:

J(x) = -xT Ax + bTx s.t. X > 0 (3.29)
2

For the kernel estimation problem, A is the M x M matrix Ak and b is the M x 1

vector bk which are generated by the correlator and x is M x 1 flattened version of

the kernel k. The matrix A is accessed directly from the DRAM. The vectors x and

b are accessed from the DRAM in the first iteration, and are cached in SRAMs for

accessing in subsequent iterations. The gradient projection (GP) solver also uses the

4 shared SRAMs with 4 banks each as temporary work space, however unlike other

modules which store one matrix spliced across 4 banks in each SRAM, the GP solver

uses each bank independently to store a different vector variable.
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3.10.1 Algorithm

Gradient projection method alternates between two different types of solution refine-

ment in its outer iteration until convergence:

1. Find the Cauchy point xe, which is the first local minimum along the gradient

projected onto the search space. This approach allows activation of multiple

constraints per outer iteration, significantly reducing the number of iterations

needed when the solution is highly constrained.

2. Use the conjugate gradient method to find a solution Xcg improving on

the Cauchy point (J(xcg) < J(xc)), without violating any constraints. This

accelerates convergence compared to simply repeating the Cauchy point com-

putation. The conjugate gradient method finds a solution more quickly than

gradient descent by generating a sequence of search directions that are mutually

conjugate (orthogonal with respect to A), avoiding repeated updates along any

one direction.

3. Check convergence by evaluating the cost J = xTAx - bTx and seeing how

much it has changed since the last iteration. If the difference is larger than the

tolerance (e.g. 10-12), return to step 1 and repeat. Otherwise, set x = xcg, the

most recent result from conjugate gradient refinement, and exit.

Each outer iteration of the gradient projection algorithm finds a Cauchy point

and then refines this solution using the conjugate gradient method.

Cauchy point computation

The Cauchy point computation step can be elaborated as follows:

1. Compute the gradient: g = 6J/6x = Ax + b

2. Let x(t) = x - gt (the line through the current solution along the gradient

direction). Compute the set of break-points t where x(t) crosses any constraint

boundary. With our constant bound at zero, there is one breakpoint per di-

mension: t' = x/g' where the superscript i is a vector index.
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3. Remove the negative breakpoints (since we are concerned only with the negative

gradient direction) and sort the remaining breakpoints in ascending order. For

each distinct pair of breakpoints t' and t'+1 in this sorted list:

(a) Compute xz = max(x(t'), 0), which is x(t') projected onto the search space.

(b) Compute pj element-wise as

.9 -g when 4 > 0

0 when x' =0

which is the gradient projected onto any constraints that are active at xz.

(c) Compute the 1-D quadratic coefficients of the objective function along the

line segment between xj and the next breakpoint (the constant coefficient

fo = J(xj) is not needed):

J (t - ts) = fo + fi(t - t) + f 2 (t - t,) 2  (3.30)

fi = bTp3 + xTAp3 (3.31)

f2 = pfApj (3.32)

(d) Compute the parameter of the local minimum: t* = t - fi/f2 . If t < t+1,

then the local minimum lies on the current segment; set xc = xj + (t* -ti)pj

and proceed to conjugate gradient refinement. Otherwise, return to step

(a) and examine the next pair of breakpoints.

Conjugate gradient refinement

The conjugate gradient refinement step then runs for one or more iterations. Usually

only one iteration is needed during the early stages of optimization; in the final steps,

once the active set is stable, typically 10 - 30 are required to zero in on the global

minimum. The steps involved are the same as performed by the CG solver described

previously, however, the matrix multiplication in this case is a direct one and is not
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implemented through convolution. Also, there is extra condition checking to restrict

the step length in case the resultant solution violates any constraints.

1. Initialize the solution xcg = xc and the residual and the search direction rcg =

Pg = -Axeg - b. Also, initialize the residual norm p = T

2. Repeat the following steps until convergence or until a new constraint is acti-

vated:

(a) Compute a step size: a = p/pT Apcg

(b) Determine the maximum allowable step size in each dimension based on

the constraints: ax = -Xig/pg

(c) Select a step size: a* = mina, minimax(O, aiax)]

(d) Update the solution: xcg = Xcg + a*pcg

(e) Compute a new residual: rcg = rcg - a*Apcg

(f) Check for convergence by comparing the norm of the new residual p =

rTcgrcg with the norm of the last residual Plast. If this difference is smaller

than the tolerance (e.g. 1012), exit the loop.

(g) Compute a step size for the search direction update: 3 = P/Plast

(h) Update the search direction: pcg = rcg + fpcg.

(i) Return to step (a).

Optimizations

The gradient projection algorithm employs primarily numerical operations including

matrix/vector products, dot products, comparisons, and sorting. Considering that

the problem sizes will be on the order of 1,000 variables, matrix/vector multiplications

are the most time-consuming part. A reference implementation of the algorithm in C

is developed and modified to reduce matrix/vector operations in the following ways:

e The conjugate gradient refinement ignores the dimensions that have active con-

straints; the solution values on these dimensions are held at zero until the next
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outer iteration. If the solution is sparse (as it usually is) and all but 100 of the

constraints are active, then matrix and vector operations within the conjugate

gradient loop deal with a 100 x 100 matrix instead of 1,000 x 1,000.

* The matrix-vector product Apj is updated incrementally during Cauchy point

computation. This is possible since the values of pj start out as -g and change

irreversibly to zero as more of the constraints are activated. Hence the complete

product is only evaluated once per outer iteration.

* The gradient g is updated incrementally throughout both major steps, based

on the incremental changes that are being made to x. This allows initialization

of the conjugate gradient residual as rcg = -g instead of evaluating rc, =

-Axe, - b.

" At the end of each conjugate gradient refinement, the cost is recalculated using

the updated gradient:

1
J = xT Ax + xTb (3.33)

2
__1

- (xT(Ax + b) + xTb) (3.34)
2
1T T- -(Tg + xT b) (3.35)
2

This lets us avoid explicitly computing the Ax product once per outer iteration.

These optimizations provide a constant-factor improvement in performance. Con-

sider solving a particular problem that takes N0 outer iterations, with an average of

Nb breakpoints checked while finding the Cauchy point and Neg conjugate gradient

iterations per outer iteration. The direct implementation of the gradient projection

method required N,(2 + Nb + Ncg) matrix/vector multiplications. This implementa-

tion requires 1+ N,(2 + Ncg), counting a partial product to update the gradient along

the constrained dimensions.
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Figure 3-20: Block diagram for gradient projection solver.

3.10.2 Architecture

Figure 3-20 shows a block diagram for the gradient projection solver. The architec-

ture has been implemented in Bluespec SystemVerilog by labmates, Michael Price

and Rahul Rithe. The algorithm requires iterative execution of Cauchy point com-

putation and conjugate gradient. The results of Cauchy point computation are used

in conjugate gradient and the results of conjugate gradient are used in the next it-

eration of Cauchy point computation. To optimize the computation resources, the

non-concurrency of these modules is exploited. This allows sharing of the matrix

multiplier, sort and floating point arithmetic units among these two modules. The

Cauchy point computation and conjugate gradient modules implement the control to

access these resources and the SRAMs. The module is also connected to the memory

interface arbiter which allows it to access the coefficients matrix A from the external

DRAM.

Matrix Multiplier

The algorithm performs matrix multiplication at several steps in both Cauchy point

computation as well as conjugate gradient. In order to maximize hardware sharing

and simplify the control logic, the matrix multiplier is implemented as a separate unit

that can be accessed through an arbiter by both modules.
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The multiplication is performed in column major order, that is for performing

Ax = b a complete column of A is read in from the DRAM and multiplied with one

element of x and a temporary vector is generated which has the contribution of the

element of x to all the entries in the final product. When the second column of A

is read in and multiplied with the second element of x, the resultant is added to the

previous product and so on. This allows us to incrementally update of the product

when only a few elements of the vector x change.

The matrix multiplier can also handle partial matrix multiply when not all rows

and columns of the matrix A are active. It should be noted that the matrix A is

symmetric, so column major access of the coefficients is done by reading A along

rows. This minimizes DRAM access latency since A is stored in row major order in

the DRAM. The available DRAM bandwidth allows two coefficients to be accessed

in parallel, so the matrix multiplier is also designed to support the same amount of

parallelism.

Sort

Determination of the Cauchy point requires sorting an array of breakpoints so that

the number of active constraints increases monotonically during the search. The

sort is implemented using a merge sort approach that requires a single floating-point

comparator. A simplified block diagram of this module is shown in Figure 3-21

This merge sort needs two SRAMs. Given a list of N input values starting in one

of those SRAMs, the merge sort will copy data back and forth between the SRAMs

a total of log2N iterations. During iteration i, the N/2i batches of 2i sorted values

will be merged into N/2 +1 batches of 2i+1 sorted values. At the beginning, the list is

not sorted; after the first iteration, batches of 2 values in the list will be sorted, then

batches of 4, and so on until the entire list is sorted.

Within each output batch, the sequencer reads the first value from the input batch

and stores it in the reference value register. Each subsequent value coming from the

input SRAM will be compared to this register. The smaller of the two values is saved

in the output SRAM. The larger of the two values is stored in the reference value
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Comparator

Figure 3-21: Architecture of sort module. (Courtesy M.Price)

register. This ensures that the values written to the output SRAM are in ascending

order. At the end of the batch, the reference value (which must be the largest in the

input batch) is saved as the last entry in the output batch. The sequencer determines

which element to read from the input SRAM based on internal counters and the

comparison result.

After each iteration, the interfaces for SRAMs #1 and #2 are swapped. If the

number of iterations is odd the data is copied back to the original SRAM once it is

fully sorted.

Floating point unit (FPU)

The floating point adder/subtractors, multipliers (except those needed for matrix

multiplication) and a divider are implemented in the FPU. All the floating point

operators can be accessed in parallel by both Cauchy point computation and the

conjugate gradient modules through an arbiter.

The control logic within each of the two major modules - the Cauchy point com-

putation unit and the conjugate gradient solver is a state machine that sequences

the external operators as well as any internal operators. Each state corresponds to
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Figure 3-22: Architecture of Cauchy point computation module.

a discrete step of the algorithm, in which as many operations as possible are evalu-

ated concurrently. The steps are partitioned such that the outputs of each step are

required for the inputs of the next step (otherwise they could be run at the same

time).

The schedule of computation steps, including their input data sources and result

data destinations, are shown in the following tables. Each vector variable is mapped

to an SRAM; some SRAMs are reused for multiple variables when it is safe. Some

variables are moved between SRAMs in order to avoid reading and writing the same

SRAM during any given operation.

Before first iteration

The cost function and gradient need to be initialized using the full matrix/vector

product before the Cauchy point module can be started.
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Solution Step a Solution Residual
Computation Update Update

Figure 3-23: Architecture of conjugate gradient module.

Source

Inputs

Name

Outputs

Destination

Matrix/vector DRAM A SRAM 3 Ax

multiplication SRAM 0 x

Cost and gradient

evaluation

SRAM 0

SRAM 1

SRAM 3

x

b

Ax

SRAM 7

Register

Cauchy point computation

Figure 3-22 illustrates the implementation of Cauchy point computation. The fol-

lowing is the schedule for the Cauchy point module. The steps bracketed by double

horizontal lines make up a loop that is executed for each sorted breakpoint.

Inputs

Source Name

Outputs

Destination

80

Step Name

g

J

Step

Detect convergence Register J Terminate outer iteration

Register Jast Register Jast

Name



Compute and clamp SRAM 0 x SRAM 2 t

breakpoints SRAM 7 g

Sort breakpoints SRAM 2 t SRAM 8 tsorted

SRAM 5 tscratch

Initialize Ap DRAM A SRAM 4 Ap

SRAM 7 g SRAM 11 gnext

Register p-changed

Determine start and SRAM 8 tsorted Register ti

end of segment Register ti+1

Skip to next segment

Determine location Register ti SRAM 5 xi

and gradient SRAM 0 x SRAM 6 pi

SRAM 2 t Register p-changed

SRAM 11 gnext SRAM 9 gnext

SRAM 7 g

Compute a partial Register p.changed SRAM 3 AAp

update of Ap DRAM A SRAM 10 Ap

product SRAM 7 g

SRAM 4 Ap

Update Ap product SRAM 3 AAp SRAM 4 Ap

SRAM 10 Ap

Fit objective SRAM 5 x Register fi

function SRAM 1 b Register f2

SRAM 4 Ap

SRAM 6 pi

Find local minimum Register fi Register t

Register f2 Cauchy point found
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Evaluate Cauchy Register * SRAM 2 xc

point SRAM 4 Ap SRAM 11 gnext

SRAM 5 xi Register inds-inactive

SRAM 9 gnext Register inds-inactive

SRAM 6 pi

Update gradient Register ti SRAM 11 gnext

Register ti+1

SRAM 9 gnext

SRAM 4 Ap

Conjugate gradient refinement

Figure 3-23 illustrates how conjugate gradient refinement is implemented. The fol-

lowing is the schedule for the CG module. The steps bracketed by double horizontal

lines make up a loop that is executed until the solution has converged or activated a

new constraint.

Inputs Outputs

Step Source Name Destination Name

Initialize Register inds-inactive SRAM 3 Pcg

variables SRAM 11 gnext SRAM 4 Aginactive

SRAM 2 xc SRAM 7 rcg

SRAM 9 gext

SRAM 8 xclast

Weight search Register inds-inactive SRAM 0 APcg

direction DRAM A SRAM 5 Pcg

SRAM 3 Pcg
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Accumulate dot SRAM 0 Apcg Register p

products SRAM 5 Pcg Register Plast

SRAM 7 rcg

Evaluate target Register p Register a*

step size Register Plast

Determine Register a* Register amax

maximum step SRAM 2 Xcg Register constraint-hit

size SRAM 5 Pcg

Update solution Register amax SRAM 10 Xcg

and residual SRAM 0 Apcg SRAM 11 Aginactive

SRAM 2 Xcg SRAM 6 rcg,ast

SRAM 4 Aginactive SRAM 12 rcg

SRAM 5 Pcg Register Irca
SRAM 7 rcg

Check Register r, Whether to terminate

convergence Register constraint-hit

Accumulate dot SRAM 6 rcgast Register p

products SRAM 12 rcg Register Plast

SRAM 7 rcg

Evaluate update Register p Register

size Register Plast

Update search Register p SRAM 3 Pcg

direction SRAM 5 Pcg SRAM 2 Xcg

SRAM 7 rcg SRAM 4 Aginactive

SRAM 10 Xcg

SRAM 11 Aginactive
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Before next iteration

After conjugate gradient refinement, the gradient and cost estimates (this time using

partial matrix/vector products) are updated before starting the next outer iteration.

Inputs Outputs

Step Source Name Destination Name

Copy results SRAM 10 xcg SRAM 2 xcg

SRAM 11 Aginactive SRAM 4 Aginactive

Calculate gradient Register inds-inactive SRAM 3 Agactive

update DRAM A

SRAM 2 xcg

SRAM 8 xcjast

Update gradient, Register inds-inactive SRAM 0 x

cost and solution SRAM 3 Agactive SRAM 7 g

SRAM 1 b Register J

SRAM 2 xcg

SRAM 4 Aginactive

SRAM 9 gnext

3.11 Results

The complete system is implemented using Bluespec SystemVerilog as the hardware

description language, and verified to be bit accurate with the reference software im-

plementation. Figure 3-24 shows an input blurred image and the output deblurred

image and the estimated kernel.

The component modules are synthesized in TSMC 40 nm CMOS technology for a

clock frequency of 200MHz and VDD of 0.9V. The following tables show the synthesis
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Figure 3-24: Results for image deblurring. The image on the left is the blurred input
image. The image on the right is the deblurred image along with the estimated kernel.

area breakdown of different modules.

3.11.1 2-D Transform Engine

Table 3.4 shows the area breakdown of the 2-D transform engine. The SRAM interface

FIFOs dominate the area.

Module Logic Area (kgates)
Total Area 42.45
FIFOs 27.04
Arithmetic Units 7.61

Subtractor (4) 1.90
Scheduling and state 7.80

Table 3.4: Area breakdown for 2-D transform engine.

3.11.2 Convolution Engine

Table 3.5 shows the area breakdown of the convolution engine. A significant portion

of the area is taken by the floating point arithmetic units as well as by the state

machine for scheduling the conjugate gradient steps. The floating point area comes

as a result of 2 complex multipliers each of which use 4 parallel multipliers followed

by one adder and one subtractor, and two squared magnitude computation unit each

of which use 2 multipliers and one adder. About 20% of the area is taken up by
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scheduling logic and state registers because of the complicated control flow in the

convolution engine, however, meeting timing is not difficult.

Module Logic Area (kgates)
Total Area 115.06
FIFOs 26.48
Arithmetic Units 80.24

AddSub (6) 1.87
Multiplier (12) 4.62

Scheduling and state 21.93

Table 3.5: Area breakdown for convolution engine.

3.11.3 Conjugate Gradient Solver

Table 3.6 shows the area breakdown of the conjugate gradient solver. The FIFO area

is similar to the transform engine, because the two modules have similar interfaces

to SRAMs, DRAM and FFT engine. A significant portion of the area is taken by

the floating point arithmetic units as well as by the state machine for scheduling the

conjugate gradient steps.

It should be noted that the current implementation of CG solver has the minimum

number of floating point arithmetic units required to sustain the throughput and avoid

stalling because of conflicts on the arithmetic units. Therefore, most of the arithmetic

units are shared, which contributes to significant muxing logic that adds to the critical

path. It is apparent that floating point modules with higher drive strength are being

used to meet timing specifications (for example, the area of AddSub unit can be

compared to Subtractor from transform engine). It would be interesting to observe

how the area would change if the amount of sharing is reduced. On one hand, reducing

sharing would reduce the area by reducing the muxing logic and reducing the size of

individual arithmetic units (as they would see a larger effective clock period). On the

other hand, it would add to the number of floating point units in the module.
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Module Logic Area (kgates)
Total Area 142.74
FIFOs 27.04
Arithmetic Units 80.24

AddSub (4) 3.27
Multiplier (6) 4.83
Divider 29.89
Sum3 8.28

Scheduling and state 35.19

Table 3.6: Area breakdown for conjugate gradient solver.
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Chapter 4

Conclusion

In the first part of this work, circuit implementations for three components of a multi-

application bilateral filtering processor have been described - the grid interpolation

block, the HDR image creation and contrast adjustment blocks, and the shadow

correction block. These modules have been integrated into a reconfigurable multi-

application bilateral filtering processor which has been implemented in 40 nm CMOS

technology. The processor achieves 15 x reduction in run-time compared to a CPU

implementation, while consuming 1.4 mJ/megapixel energy, a significant reduction

compared to CPU or GPU implementations. This energy scalable implementation can

be efficiently integrated into portable multimedia devices for real time computational

photography.

In the second part of this work, complete system architecture for hardware im-

age deblurring has been proposed. The system has been designed using Bluespec

SystemVerilog (BSV) as the hardware description language and verified to be bit ac-

curate with the reference software implementation. Synthesis results in 40nm CMOS

technology have been presented.

4.1 Key Challenges

The following points describe the key challenges in the design and how they were

addressed:
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" Complex data dependencies: The deblurring algorithm is iterative in nature

at multiple levels. The estimation is run at different resolutions, for each reso-

lution, EM optimizer is run for several iterations, and inside each EM iteration,

the image and kernel are estimated iteratively using gradient solvers. This leads

to complex data dependencies and severely limits the amount of parallelism at

a macro level. The challenge here is to identify ways to extract parallelism at a

micro level while respecting data dependencies and resource constraints.

" Working set size denotes the number of pixels on which the output at a given

pixel depends. The worst case working set for image deblurring is the entire

window of 128 x 128 pixels from which the kernel is estimated. This translates

to a large on-chip memory requirement to minimize DRAM accesses and allow

parallel operations. The challenge then is to identify ways to use the on-chip

scratch memory effectively and maximize data reuse.

These challenges were addressed by

1. Reducing the computational complexity of the algorithms by identifying steps

where computation can be either reused or avoided entirely. The optimizations

section in the description of each component module highlights this. These opti-

mizations, in most cases, benefit both software and hardware implementations.

2. Devising a processing pipeline that takes into account the data dependencies in

the algorithm and the available resources (including arithmetic units, scratch

memory and DRAM bandwidth). This step identifies which parts of the com-

putation can be parallelized, which parts have to be sequential, and which

sequential steps can be pipelined. This also involves identifying the best way

to map data to on and off chip memory to minimize latency and achieve the

desired throughput.

3. Reducing area cost of the implementation by identifying which modules offer

the maximum gain in terms of area when shared without introducing too much

control overhead. This trade-off has been explored in the current design by
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sharing modules such as the FFT engine and the SRAMs at the macro level

and the floating point arithmetic modules at the micro level.

The image deblurring system is still work in progress. Immediate future work

includes design of the correlator engine and integration of all the component modules,

followed by FPGA evaluation and implementation in 40 nm CMOS technology.

4.2 Future Work

Future work on bilateral filtering could explore several directions:

" New applications An interesting direction to explore would be use the bilat-

eral filtering processor to accelerate other applications that require edge aware

filtering, for example video denoising [18], abstraction and stylization [19] and

optical flow estimation and occlusion detection [20].

" Increasing configurability The current implementation uses a fixed size Gaus-

sian kernel to perform the filtering. Extending the hardware to support different

kernel sizes and types of kernels would allow support for a wider range of ap-

plications.

" Higher dimensional grids The concept of bilateral grid can be extended to

higher dimensions. The current implementation supports 3 dimensions and can

be used for filtering only gray-scale images, but having say a 5-D grid would

allow filtering color images. Future work could explore hardware implemen-

tation of higher dimensional grids or even grids with configurable number of

dimensions.

Future work on image deblurring could explore several directions:

o Power Gating Since not all modules in the deblurring processor are active

at any given time, this architecture presents an opportunity to save power by

turning off idle processing blocks. Moreover, when a block is active or inactive

can be determined based on configuration parameters for most of the modules
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and is not data dependent, which can be taken advantage of for power gating.

This direction can be explored in future work.

e Spatially variant blur This work addresses camera shake blur which can be

modeled as a convolution with a spatially invariant blur kernel. In a lot of

real life situations, the blur kernel is spatially variant. This can potentially

be addressed by using the proposed deblurring system to infer different kernels

from multiple windows in the image and then use them to deconvolve parts of

the image. Addressing motion blur and defocus blur can also be explored in

future work.
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