1,178 research outputs found

    Aggregate Cost Model for Scalability in Manufacturing Systems

    Get PDF
    Manufacturing continues to face escalated cost challenges on a global scale. To gain a competitive advantage among their rivals, manufacturing firms continuously strive to lower their manufacturing costs than their competitors. This dissertation introduces mathematical optimization model based on an Activity-Based Costing (ABC) method, which considers the relationship between hourly rates and annual hours on each machine/workcentre. Several constraints are considered in the proposed models, such as the cost of reconfiguration, capacity, available machining hours, a decision on facility expansion and a cost-benefit analysis on industry 4.0 implementation. The model outputs are the optimum hourly rates, deciding which jobs to accept or reject, and determining reconfiguration\u27s financial feasibility. Reconfiguration in this dissertation describes system-level reconfiguration (investing in additional equipment/machinery) and/or machine-level reconfiguration (extra module to a piece of existing equipment) as well as factory-level (in terms of expanding additional factory segments to the existing facility). The model will be applied to a real-life case study of a global original equipment manufacturer (OEM) of machinery. The mathematical models proposed in this dissertation are developed based on a multinational hydraulic-press manufacturing company. The company owns a local machine shop (one of the sister companies in North America) for building hydraulic presses meant to be delivered to companies producing engineered wood products (such as OSB (oriented Strand Board), PB (Particle Board), and MDF Board (Medium-Density Fibre) …etc.). The sister company in North America occupies a footprint of 5,000 meters squared with a number of capabilities such as machining (turning and machining centres, welding, assembly, material handling…etc.). Several aspects of the model proposed in this dissertation had been implemented in the company such as the bi-directional relationship between total hours and hourly rates which assisted the company in gaining more jobs and projects. In addition, connectivity between strategic suppliers and company branched has been established (enabler of Industry 4.0). The proposed model\u27s novelty incorporates the bi-directional relationship between hourly rates and annual hours in each workcentre. It provides a managerial decision-making tool for the investment level required to pursue new business and gaining a competitive advantage over rivals. Furthermore, a cost-benefit analysis is performed on the implementation of Industry 4.0. The primary aspect considered in industry 4.0 is Information Communication Technology (ICT) infrastructure with strategic suppliers to intensify interconnection between the manufacturing firm and the strategic suppliers. This research\u27s significance is focused on cost analysis and provides managers in manufacturing facilities with the required decision-making tools to decide on orders to accept or decline, as well as investing in additional production equipment, facility expansion, as well as Industry 4.0. In addition, this research will also help manufacturing companies achieve a competitive edge among rivals by reducing hourly rates within their facility. Furthermore, the implementation of the model reduced hourly rates for workcentres by up to 25% as a result of accepting more jobs (and accordingly, machining hours) on the available workcentres, and hence, reducing the hourly rates. This implementation has helped the company gain a competitive advantage among rivals since pricing of products submitted to customer was reduced. Additional benefits and significance are (1) providing manufacturing companies with a method to quantify the decision-making process for right-sizing their manufacturing space, (2) the ability to justify growing a scalable system (machine level, system-level and factory level) using costing (not customer demand), (3) expanding market share and, (4) reducing operational cost and allowing companies a numerical model to justify scaling the manufacturing system

    "The Shift from Belt Conveyor Line to Work-cell Based Assembly Systems to Cope with Increasing Demand Variation and Fluctuation in The Japanese Electronics Industries"

    Get PDF
    As consumption patterns become increasingly sophisticated and manufacturers strive to improve their competitiveness, not only offering higher quality at competitive costs, but also by providing broader mix of products, and keeping it attractive by launching successively new products, the turbulence in the markets has intensified. This has impelled leading manufacturers to search the development of alternative production systems supposed to enable them operate more responsively. This paper discusses the trend of abandoning the strategy of relying on factory automation technologies and conveyor-based assembly lines, and shifting towards more human-centered production systems based on autonomous work-cells, observed in some industries in Japan (e.g. consumer electronics, computers, printers) since mid-1990s. The purpose of this study is to investigate this trend which is seemingly uneconomic to manufacturers established in a country where labor costs are among the highest in the world, so as to contribute in the elucidation of its background and rationality. This work starts with a theoretical review linking the need to cope with nowadays' market turbulence with the issue of nurturing more agile organizations. Then, a general view of the diffusion trend of work-cell based assembly systems in Japanese electronics industries is presented, and some empirical facts gathered in field studies conducted in Japan are discussed. It is worthy mentioning that the abandonment of short cycle-time tasks performed along conveyor lines and the organization of workforce around work-cells do not imply a rejection of the lean production paradigm and its distinctive process improvement approach. High man-hour productivity is realized as a key goal to justify the implementation of work-cells usually devised to run in longer cycle-time, and the moves towards this direction has been strikingly influenced by the kaizen philosophy and techniques that underline typical initiatives of lean production system implementation. Finally, it speculates that even though the subject trend is finding wide diffusion in the considered industries, it should not be regarded as a panacea. In industries such as manufacturing of autoparts, despite the notable product diversification observed in the automobile market, its circumstances have still allowed the firms to rely on capital-intensive process, and this has sustained the development of advanced manufacturing technologies that enable the agile implementation and re-configuration of highly automated assembly lines.

    A framework for understanding cellular manufacturing systems

    Get PDF
    Many practical benefits, such as superior quality of products and short manufacturing lead times, are usually associated with Cellular Manufacturing. These and other benefits can lead to important competitive advantages of companies. However, to fully achieve these benefits there is a need for an evolution from the traditional concept of CM to the more comprehensive one, which we call Product Oriented Manufacturing. Here systems are dynamically reconfigured for total manufacturing of complete products, not parts only. In this paper, we make a contribution to better understand the nature of cells and POM Systems. Thus a classification framework is presented of the different types of cells that might be formed and seen as building blocks for POMS

    Dynamic Facility Layout for Cellular and Reconfigurable Manufacturing using Dynamic Programming and Multi-Objective Metaheuristics

    Get PDF
    The facility layout problem is one of the most classical yet influential problems in the planning of production systems. A well-designed layout minimizes the material handling costs (MHC), personnel flow distances, work in process, and improves the performance of these systems in terms of operating costs and time. Because of this importance, facility layout has a rich literature in industrial engineering and operations research. Facility layout problems (FLPs) are generally concerned with positioning a set of facilities to satisfy some criteria or objectives under certain constraints. Traditional FLPs try to put facilities with the high material flow as close as possible to minimize the MHC. In static facility layout problems (SFLP), the product demands and mixes are considered deterministic parameters with constant values. The material flow between facilities is fixed over the planning horizon. However, in today’s market, manufacturing systems are constantly facing changes in product demands and mixes. These changes make it necessary to change the layout from one period to the other to be adapted to the changes. Consequently, there is a need for dynamic approaches of FLP that aim to generate layouts with high adaptation concerning changes in product demand and mix. This thesis focuses on studying the layout problems, with an emphasis on the changing environment of manufacturing systems. Despite the fact that designing layouts within the dynamic environment context is more realistic, the SFLP is observed to have been remained worthy to be analyzed. Hence, a math-heuristic approach is developed to solve an SFLP. To this aim, first, the facilities are grouped into many possible vertical clusters, second, the best combination of the generated clusters to be in the final layout are selected by solving a linear programming model, and finally, the selected clusters are sequenced within the shop floor. Although the presented math-heuristic approach is effective in solving SFLP, applying approaches to cope with the changing manufacturing environment is required. One of the most well-known approaches to deal with the changing manufacturing environment is the dynamic facility layout problem (DFLP). DFLP suits reconfigurable manufacturing systems since their machinery and material handling devices are reconfigurable to encounter the new necessities for the variations of product mix and demand. In DFLP, the planning horizon is divided into some periods. The goal is to find a layout for each period to minimize the total MHC for all periods and the total rearrangement costs between the periods. Dynamic programming (DP) has been known as one of the effective methods to optimize DFLP. In the DP method, all the possible layouts for every single period are generated and given to DP as its state-space. However, by increasing the number of facilities, it is impossible to give all the possible layouts to DP and only a restricted number of layouts should be fed to DP. This leads to ignoring some layouts and losing the optimality; to deal with this difficulty, an improved DP approach is proposed. It uses a hybrid metaheuristic algorithm to select the initial layouts for DP that lead to the best solution of DP for DFLP. The proposed approach includes two phases. In the first phase, a large set of layouts are generated through a heuristic method. In the second phase, a genetic algorithm (GA) is applied to search for the best subset of layouts to be given to DP. DP, improved by starting with the most promising initial layouts, is applied to find the multi-period layout. Finally, a tabu search algorithm is utilized for further improvement of the solution obtained by improved DP. Computational experiments show that improved DP provides more efficient solutions than DP approaches in the literature. The improved DP can efficiently solve DFLP and find the best layout for each period considering both material handling and layout rearrangement costs. However, rearrangement costs may include some unpredictable costs concerning interruption in production or moving of facilities. Therefore, in some cases, managerial decisions tend to avoid any rearrangements. To this aim, a semi-robust approach is developed to optimize an FLP in a cellular manufacturing system (CMS). In this approach, the pick-up/drop-off (P/D) points of the cells are changed to adapt the layout with changes in product demand and mix. This approach suits more a cellular flexible manufacturing system or a conventional system. A multi-objective nonlinear mixed-integer programming model is proposed to simultaneously search for the optimum number of cells, optimum allocation of facilities to cells, optimum intra- and inter-cellular layout design, and the optimum locations of the P/D points of the cells in each period. A modified non-dominated sorting genetic algorithm (MNSGA-II) enhanced by an improved non-dominated sorting strategy and a modified dynamic crowding distance procedure is used to find Pareto-optimal solutions. The computational experiments are carried out to show the effectiveness of the proposed MNSGA-II against other popular metaheuristic algorithms

    Decomposition of Manufacturing Processes: A Review

    Get PDF
    Manufacturing is a global activity that started during the industrial revolution in the late 19th century to cater for the large-scale production of products. Since then, manufacturing has changed tremendously through the innovations of technology, processes, materials, communication and transportation. The major challenge facing manufacturing is to produce more products using less material, less energy and less involvement of labour. To face these challenges, manufacturing companies must have a strategy and competitive priority in order for them to compete in a dynamic market. A review of the literature on the decomposition of manufacturing processes outlines three main processes, namely: high volume, medium volume and low volume. The decomposition shows that each sub process has its own characteristics and depends on the nature of the firm’s business. Two extreme processes are continuous line production (fast extreme) and project shop (slow extreme). Other processes are in between these two extremes of the manufacturing spectrum. Process flow patterns become less complex with cellular, line and continuous flow compared with jobbing and project. The review also indicates that when the product is high variety and low volume, project or functional production is applied

    Bio-inspired multi-agent systems for reconfigurable manufacturing systems

    Get PDF
    The current market’s demand for customization and responsiveness is a major challenge for producing intelligent, adaptive manufacturing systems. The Multi-Agent System (MAS) paradigm offers an alternative way to design this kind of system based on decentralized control using distributed, autonomous agents, thus replacing the traditional centralized control approach. The MAS solutions provide modularity, flexibility and robustness, thus addressing the responsiveness property, but usually do not consider true adaptation and re-configuration. Understanding how, in nature, complex things are performed in a simple and effective way allows us to mimic nature’s insights and develop powerful adaptive systems that able to evolve, thus dealing with the current challenges imposed on manufactur- ing systems. The paper provides an overview of some of the principles found in nature and biology and analyses the effectiveness of bio-inspired methods, which are used to enhance multi-agent systems to solve complex engineering problems, especially in the manufacturing field. An industrial automation case study is used to illustrate a bio-inspired method based on potential fields to dynamically route pallets

    Decomposition of manufacturing processes: a review

    Get PDF
    YesManufacturing is a global activity that started during the industrial revolution in the late 19th century to cater for the large-scale production of products. Since then, manufacturing has changed tremendously through the innovations of technology, processes, materials, communication and transportation. The major challenge facing manufacturing is to produce more products using less material, less energy and less involvement of labour. To face these challenges, manufacturing companies must have a strategy and competitive priority in order for them to compete in a dynamic market. A review of the literature on the decomposition of manufacturing processes outlines three main processes, namely: high volume, medium volume and low volume. The decomposition shows that each sub process has its own characteristics and depends on the nature of the firm’s business. Two extreme processes are continuous line production (fast extreme) and project shop (slow extreme). Other processes are in between these two extremes of the manufacturing spectrum. Process flow patterns become less complex with cellular, line and continuous flow compared with jobbing and project. The review also indicates that when the product is high variety and low volume, project or functional production is applied.The financial support by the Malaysian Government, Universiti Malaysia Pahang and Bradford University for this research is gratefully acknowledged
    • …
    corecore