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Abstract 

Manufacturing systems are traditionally organised hierarchically. The hierarchy works well for 

systems with simple and static organisation of manufacturing resources, where management 

layers and predetermined rules provide effective production. However, new demands for 

customised products with rapid delivery, have led to the rise and pervasion of smart 

manufacturing, where intelligent objects interact in a Cyber-Physical System. In these 

systems, the organisation of resources and the manufacturing environment tend to be highly 

complex and volatile. Consequently, centralised and hierarchical systems have exhibited 

shortcomings as the result of their being too rigid.  

This thesis proposes the ‘anarchic manufacturing system’ as a viable alternative for such 

scenarios. A manufacturing system is defined as ‘anarchic’ if the production planning and 

control system is decentralised and underpinned by emergent synthesis, utilising a free 

market structure without central control, coordination or monitoring.  Such systems were 

compared to centralised and hierarchical systems in multi-agent simulation experiments 

covering three scenarios: simple discrete manufacture, assembly and product transition to 

identify the affordances of the proposed system over the existing planning and control 

approaches. 

The main contributions of this research are the methodology to model a manufacturing 

system as a distributed free market system, including advanced assembly and product 

transition scenarios which were previously unfulfilled, additionally the design principles for 

anarchic manufacturing and the associated system characteristics. The manufacturing 

systems were modelled within an agent based modelling environment, enabling advanced 

individual decision making capabilities that could operate within a free market based system. 

The design principles outline and justify the free market system and its mechanics, thereby 

defining how distributed anarchic manufacturing systems create an effective emergent 

outcome. Anarchic system’s effective deployment to assembly and production transition 

scenarios is the first of any purely distributed system and demonstrates the retention of 

distributed characteristics in these scenarios; most notably self-organisation and flexibility. 

The experimental results in the thesis demonstrate that centralised and hierarchical systems 

are not inherently better than distributed systems, and that complexity and volatility can 

effectively be managed through distributed systems. This thesis replaces the traditional 

‘simplify to improve’ mantra in production systems, with ‘embrace complexity to achieve 

flexibility’ through the anarchic manufacturing system.  



 

iv 

 

 

  



 

v 

 

Acknowledgements 

Without the diligent guidance and thorough appraisal of my work by my supervisor Aydin 

Nassehi, I would not have been able complete this PhD. I sincerely thank Aydin for this 

opportunity to research an exciting topic and how throughout he has robustly evaluated my 

arguments and driven me to achieve more.  

I would also like to thank Chris Snider for his supervision and enthusiasm. The support he 

has provided, and our discussions have ensured my work meets very high standards. 

I also thank all my colleagues with whom I have enjoyed all discussions that range from big 

questions to those that are very subtle. The working culture has made it a pleasure in the 

office and enabled me to indulge in research. I wish them all the best. 

Without the love and support of my parents I would have fallen far short of my potential, I 

would like to thank them for a fantastic education that goes beyond the classroom. 

Finally, I would like to thank Frankie Talbot for her encouragement and love throughout the 

PhD, she ensures all days are much brighter and our future adventures are incredibly exciting. 

  



 

vi 

 

  



 

vii 

 

 Author’s declaration 

 

“I declare that the work in this dissertation was carried out in accordance with the 

requirements of the University’s Regulations and Code of Practice for Research Degree 

Programmes and that it has not been submitted for any other academic award. Except where 

indicated by specific reference in the text, the work is the candidate’s own work. Work done 

in collaboration with, or with the assistance of, others, is indicated as such. Any views 

expressed in the dissertation are those of the author.” 

SIGNED:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DATE: . . . . . . . . .. . . . . .   



 

viii 

 

Abbreviations and Acronyms 

Item Meaning 

AI Artificial Intelligence 

ABM Agent-Based Modelling 

AGV Automated Guided Vehicle 

BMS Biological Manufacturing Systems 

CAD Computer Aided Design 

CM Cloud Manufacturing 

CNC Computer Numerical Control 

CPS Cyber-Physical System 

DNA Deoxyribonucleic acid 

EANN Evolutionary Artificial Neural Networks  

EDD Earliest Due Date 

ERP Enterprise Resource Planning 

FIFO First In First Out 

FMS Flexible Manufacturing Systems 

I4.0 Industry 4.0 

IIRA Industrial Internet Reference Architecture 

IoT Internet of Things 

ISO International Organisation for Standardisation 

IT Information Technology 

MAS Multi Agent System 

MCDM Multiple Criteria Decision Matrix 

MES Manufacturing Execution System 

NP-hard Non-deterministic Polynomial-time hardness  

OTIF On Time In Full 

RAMI4.0 Reference Architecture Model for Industry 4.0 

RFID Radio Frequency Identification 

RMS Reconfigurable Manufacturing Systems 

TOPSIS  Technique for preference by similarity to the ideal solution 

 

 

  



 

ix 

 

Symbols 

Symbol Meaning 

J i c Job i of class c 

γ i (t)  Budget remaining for job i at time t 

Ψ i (t) Number of operations remaining for job i at time t 

n Bid round 

C j Capability j (operational capability required by a job’s operation and 
provided by a MT) 

M k Machine Tool k 

α i (t) Bidding cost threshold for job i at time t 

β k n (t) Bid for MT k for bid round n at time t 

ω k (t) Utilisation for MT k at time t 

Qe k (t) Queue length expected for MT k at time t 

Qc k (t) Current queue length for MT k at time t 

Op plan Number of operations within the planning horizon 

σ k (t) Change in bid cost for MT k at time t 

ρ i (t) Risk factor impacting the bidding threshold for job i at time t 

CF i (t) Cash factor impacting the bidding threshold for job i at time t 

LF i (t) Lateness factor impacting the bidding threshold for job i at time t 

CScr (t) Cash score (cash performance against objective) at time t 

D i (t) Due date for job i at time t 

E i (t) Expected due date for job i at time t 

κ i (t) Percentage complete for job i at time t 

Mdl p Model p (that a job or group of jobs can become to form a product) 

τ k (t) Bid success for resource k at time t 

Eff k p (t) Efficiency for MT k for model p at time t 

F k p (t) Failure rate for MT k for model p at time t 

  



 

x 

 

List of contents 
Abstract iii 

Acknowledgements v 

Author’s declaration vii 

Abbreviations and Acronyms viii 

Symbols ix 

List of figures xiii 

List of tables xv 

1 Introduction 1 

1.1 Research aim and objectives 4 

2 Literature review 6 

2.1 Introduction 6 

2.2 Smart manufacturing 6 

2.2.1 A short introduction to smart manufacturing 6 

2.2.2 Smart manufacturing trends 8 

2.2.3 New manufacturing production models 10 

2.2.4 Technologies driving smart manufacturing 16 

2.2.5 Smart manufacturing business objectives 21 

2.3 Planning and control problem 26 

2.3.1 Traditional and smart manufacturing 26 

2.3.2 Complexity and complicatedness 28 

2.3.3 Volatility and dynamic multiple objectives 29 

2.4 System architectures 30 

2.4.1 Introduction 30 

2.4.2 Hierarchical and centralised systems 31 

2.4.3 Hybrid systems 33 

2.4.4 Distributed and mediator systems 33 

2.5 Critique and research gap 46 

3 Research framework 49 

3.1 Introduction 49 

3.2 Research boundaries and scope 49 

3.2.1 Boundaries 49 

3.2.2 Scope 50 

3.3 Methodology and tools 51 

3.3.1 Research structure 51 

3.3.2 Literature review methodology 52 

3.3.3 Theoretical framework and prototype methodology 52 

3.3.4 Experimentation methodology and tools 53 

4 Anarchic manufacturing 61 

4.1 Introduction 61 



 

xi 

 

4.2 Hypothesis and definition of anarchic manufacturing 62 

4.3 Design principles and attributes of anarchic manufacturing 62 

4.3.1 Distributed decision-making authority and autonomy 62 

4.3.2 Free market structure and mechanisms 63 

4.3.3 Competitive and cooperative behaviour 65 

4.3.4 Ethical decisions and interactions 65 

4.4 System structure and core mechanics 66 

4.4.1 General structure 66 

4.4.2 Agent descriptions 67 

4.4.3 Negotiation structure 71 

4.5 Summary 72 

5 Application 1, simple discrete manufacture 74 

5.1 Introduction 74 

5.2 Scenario background 75 

5.3 Experimentation 76 

5.3.1 Mass customisation and scale 76 

5.3.2 Complicatedness and complexity 82 

5.3.3 Multiple conflicting objectives 89 

5.4 Summary 99 

6 Application 2, assembly manufacture 101 

6.1 Introduction 101 

6.2 Scenario background 102 

6.3 Experimentation 104 

6.3.1 System adaptation, anarchic manufacturing system 104 

6.3.2 System adaptation, central and hierarchical systems 112 

6.3.3 Balanced production 113 

6.3.4 Dynamic bottleneck production 119 

6.4 Discussion 122 

6.5 Summary 125 

7 Application 3, product transition 127 

7.1 Introduction 127 

7.2 Scenario background 128 

7.2.1 Transition 128 

7.2.2 Ramp-up 128 

7.2.3 Batch production 129 

7.2.4 Transition and ramp-up production structures 130 

7.3 Experimentation 131 

7.3.1 System adaptation, anarchic manufacturing system 131 

7.3.2 System adaptation, central and hierarchical systems 134 

7.3.3 Factors impacting experiments 135 

7.3.4 Learning rate 137 



 

xii 

 

7.3.5 Failure severity 139 

7.3.6 Structural flexibility 141 

7.3.7 Automotive case study 145 

7.4 Discussion 150 

7.5 Summary 150 

8 Discussion 152 

8.1 Introduction 152 

8.2 Evaluation of aim and objectives 152 

8.3 Realisation of theory 154 

8.4 Real-world impact 155 

8.5 Limitations 156 

8.6 Future work 158 

9 Conclusion 159 

9.1 Introduction 159 

9.2 Conclusions 159 

9.3 Contribution to knowledge 161 

10 References 163 

11 Appendices 177 

A Author publications 177 

 

  



 

xiii 

 

 List of figures 

Figure 1-1: Thesis organisation 3 

Figure 2-1: RAMI 4.0, layered model (Schweichhart, 2019) 8 

Figure 2-2: Decomposition of an automation hierarchy with distributed 
services  (Monostori et al., 2016a) 9 

Figure 2-3: Interoperability for global CNC machining (Newman et al., 2008) 10 

Figure 2-4: Flexible Manufacturing System loop layout (Fadzly, Saad and 
Shayfull, 2017) 11 

Figure 2-5: A practical reconfigurable manufacturing system (Koren and 
Shpitalni, 2010) 12 

Figure 2-6: Dedicated manufacturing lines, FMS and RMS capabilities  
(Koren and Shpitalni, 2010) 12 

Figure 2-7: Cyber-physical systems, the relationship between cyber and 
physical space (Nassehi, 2017) 15 

Figure 2-8: Digital twin model of a manufacturing process (Parrott and Lane, 
2017) 16 

Figure 2-9: Graphical representation of smart manufacturing technologies 17 

Figure 2-10: Simulation in manufacturing systems disturbance handling  
(Monostori et al., 2016a) 21 

Figure 2-11: Graphical representation of smart manufacturing business 
influences 22 

Figure 2-12: Production planning and control architectures 47 

Figure 3-1: Research boundaries for problem area and scenario 49 

Figure 3-2: Methods for evaluation manufacturing systems (Wang and 
Chatwin, 2005) 54 

Figure 3-3: AnyLogic statechart nomenclature 58 

Figure 3-4: Centralised and hierarchical systems 60 

Figure 4-1: Anarchic manufacturing system’s negotiation explanation 67 

Figure 4-2: Job agent's AnyLogic simplified statechart 68 

Figure 4-3: Machine Tool agent's AnyLogic simplified statechart, (a) 
operational (b) bidding 69 

Figure 4-4: Anarchic manufacturing negotiation framework 72 

Figure 5-1: Mass customisation and scale experiment summary 77 

Figure 5-2: Mass customisation and scale adjusted negotiation framework 78 

Figure 5-3: Mass customisation and scale WIP / MT results 81 

Figure 5-4: Mass customisation and scale waiting time results 82 

Figure 5-5: Complicatedness and complexity experiment summary 83 

Figure 5-6: Resource chain two stages negotiation 84 

Figure 5-7: Complicatedness and complexity WIP results 87 

Figure 5-8: Complicatedness and complexity lead time results 87 

Figure 5-9: Multiple conflicting objectives experiment summary 89 

Figure 5-10: Multiple conflicting objectives adjusted negotiation framework 90 

Figure 5-11: Multiple conflicting objectives experiment, hierarchical system 
structure 92 

Figure 5-12: Multiple conflicting objectives, cash/revenue objective results 95 



 

xiv 

 

Figure 5-13: Multiple conflicting objectives, on time objective results 96 

Figure 5-14: Multiple conflicting objectives, anarchic cash/revenue objective 
comparison 97 

Figure 5-15: Multiple conflicting objectives, hierarchical cash/revenue 
objective comparison 97 

Figure 5-16: Multiple conflicting objectives, anarchic on time objective 
comparison 98 

Figure 5-17: Multiple conflicting objectives, hierarchical on time objective 
comparison 98 

Figure 6-1: Example precedence graph 105 

Figure 6-2: Anarchic manufacturing for assembly job flow chart of processes 106 

Figure 6-3: Assembly job to resource negotiation adjusted framework 110 

Figure 6-4: Assembly centralised system structures 112 

Figure 6-5: Assembly balanced production experiment summary 113 

Figure 6-6: Assembly balanced production, structural drift precedence graphs 116 

Figure 6-7: Assembly balanced production WIP results 117 

Figure 6-8: Assembly balanced production, order lead time results 118 

Figure 6-9: Assembly dynamic bottleneck experiment summary 119 

Figure 6-10: Assembly dynamic bottleneck precedence graphs 120 

Figure 6-11: Assembly dynamic bottleneck, WIP results 121 

Figure 6-12: Assembly dynamic bottleneck production, order lead time 122 

Figure 7-1: Transition, anarchic system for transition with dynamic batching 132 

Figure 7-2: Transition adjusted negotiation framework 133 

Figure 7-3: Transition, illustrative centralised flexible flowshop structure 134 

Figure 7-4: Transition, illustrative centralised hierarchical cell structure 135 

Figure 7-5: Transition ramp-up curves, (a) gradual transition, (b) concurrent 
production and (c) direct changeover 136 

Figure 7-6: Transition learning rates experiment summary 137 

Figure 7-7: Transition learning rate, confidence interval backlog results 139 

Figure 7-8: Transition failure severity experiment summary 140 

Figure 7-9: Transition failure severity, confidence interval backlog results 141 

Figure 7-10: Transition structural flexibility experiment summary 142 

Figure 7-11: Transition, structural flexibility, confidence interval backlog 
results 144 

Figure 7-12: Transition structural flexibility, anarchic system confidence 
interval backlog results 145 

Figure 7-13: Transition structural flexibility, centralised cell system confidence 
interval backlog results 145 

Figure 7-14: Transition structural flexibility, centralised flexible system 
confidence interval backlog results 145 

Figure 7-15: Transition automotive case study experiment summary 146 

Figure 7-16: Transition automotive case study, confidence interval WIP 
results 149 

 



 

xv 

 

List of tables 

Table 2-1: List of heterarchical, mediator and hybrid structures 42 

Table 3-1: Platform comparison models 57 

Table 5-1: Additional anarchic system elements introduced in Chapter 5 75 

Table 5-2: Mass customisation and scale experiment fixed parameters 79 

Table 5-3: Mass customisation and scale experiment, operation 
customisation variable parameter 79 

Table 5-4: Mass customisation and scale experiment, scale variable 
parameter 80 

Table 5-5: Complicatedness and complexity experiment fixed parameters 85 

Table 5-6: Complicatedness and complexity variable parameters 86 

Table 5-7: Multiple conflicting objectives experiment, fixed parameters 93 

Table 5-8: Multiple conflicting objectives, variable parameters 94 

Table 6-1: Additional anarchic system elements introduced in Chapter 6 102 

Table 6-2: Anarchic assembly, job request connection criteria 109 

Table 6-3: Assembly balanced production fixed parameters 115 

Table 6-4: Assembly balanced production, order lead time population split 118 

Table 6-5: Assembly dynamic bottleneck fixed parameters 120 

Table 6-6: Assembly dynamic bottleneck variable parameter levels 121 

Table 6-7: Assembly dynamic bottleneck, order lead time population split 122 

Table 7-1: Additional anarchic system elements introduced in Chapter 7 127 

Table 7-2: Transition learning rate, variable parameter levels 137 

Table 7-3: Transition failure severity, variable parameter levels 141 

Table 7-4: Transition structural flexibility, variable parameter levels 143 

Table 7-5: Transition automotive case study, production facility data 
(Frantzén, 2013) 147 

Table 7-6: Transition automotive case study, variable parameter levels 148 





 

1 

 

1 Introduction 

Production systems are typically organised into centralised hierarchies, using simplification, 

predetermined rules and top-down management to achieve high productivity. A radical 

alternative uses a distributed structure, without any hierarchy or predetermined rules to follow. 

This thesis disposes of the ethos ‘simplify to improve’ and instead embraces complexity 

through a distributed system that adapts to the needs of production, using a free market 

structure and mechanisms aiming to improve flexibility and manage complexity. 

Smart manufacturing utilises state-of-the-art manufacturing production models and digital 

technologies to fulfil a vision for adaptive manufacturing systems, optimising the use of 

resources in response to disruption, in order to produce high-quality products. This thesis 

proposes the ‘anarchic manufacturing system’, a distributed production planning and control 

system, for smart manufacturing. It is evaluated through comparison to traditional centralised 

and hierarchical structures in three manufacturing scenarios. 

Smart manufacturing is the response to the current and projected environment, in which 

increasingly volatile and variable market demands are coupled with evolving business 

objectives. Mass customisation is a key market demand, resulting in highly variable products 

and manufacturing processes. Additionally, manufacturers must meet traditional objectives 

of profitability and growth as well as becoming environmentally and socially responsible 

producers. These factors place growing demand on the planning and control systems to 

manage complex products and manufacturing processes whilst flexibly adapting to increasing 

volatility. 

Traditional centralised and hierarchical structures have been criticised for being too rigid and 

inflexible for modern manufacturing demands; this is likely to be exacerbated by the trajectory 

of smart manufacturing. A fundamentally different production planning and control system, 

via distributed decision-making structures, naturally embraces the problem complexity and 

can adapt to volatile environments. It harnesses low-level technology proliferation to create 

‘intelligent objects’ that operate within a smart manufacturing environment. The anarchic 

manufacturing system uses a distributed architecture and employs profit maximising agents 

in direct competition with one another to achieve global objectives and improve efficiency, 

directly contrasting the traditional centralised method for managing manufacturing systems. 

Within an anarchic system the system elements can pursue individual objectives with 

independence and behave as anarchists, aligning to the following definition of anarchy: 
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‘Absence of government; a state of lawlessness due to the absence or inefficiency of the 

supreme power; political disorder. 

Or 

A theoretical social state in which there is no governing person or body of persons, but each 

individual has absolute liberty (without implication of disorder)’ (Oxford University Press, 

2019). 

There has been a resurgence in research into distributed structures for manufacturing; the 

previous phase did not develop these distributed systems and few were implemented. The 

renewed interest in distributed structures for smart manufacturing is a result of their 

applicability to new production models and modern enabling technologies, such as the 

Internet of Things, cloud computing and edge devices applied to cyber-physical systems and 

digital twins. The proposed benefits of distributed systems are highly desirable, given the 

direction of smart manufacturing; high adaptability, flexibility and robustness that do not have 

the rigidity and central communication reliance of centralised and hierarchical system. 

However, distributed production planning and control decision-making structures for smart 

manufacturing, in the current state of the art, are poorly evaluated by the research community. 

This is likely due to a lack of interest within industry to radically change effective existing 

systems and a prior inability to implement such systems, however, this is changing with the 

rise of IoT technologies and localised computational capabilities. 

The ultimate goal to evaluate the overall performance of distributed production planning and 

control systems is beyond the scope of this thesis. However, a hypothesis is proposed and 

evaluated, that the anarchic manufacturing system, a distributed production planning and 

control system, can be applied to a range of manufacturing scenarios and has beneficial 

affordances compared to centralised and hierarchical systems. This thesis presents the 

creation of a suitable methodology to model a manufacturing system in a distributed free 

market system and how to evaluate performance of these systems through simulation 

modelling experiments. Anarchic manufacturing is a distributed system using a free market 

structure in which independent agents, pursuing individual objectives, have complete 

decision-making authority and autonomy. An emergent productive system is realised through 

their low-level and local interactions. The hypothesis is tested through the observation and 

comparison of characteristics of anarchic against centralised and hierarchical systems in 

three manufacturing scenarios; simple discrete manufacture, assembly, and product 

transition scenarios. This extends knowledge of distributed systems which have not 

previously fulfilled the latter two manufacturing scenarios. 
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The overarching structure of this thesis, divided into chapters, is shown in Figure 1-1. The 

first chapter introduces the subject area and establishes the aim and objectives. This is 

followed by a review of existing literature, covering the broader subject area of smart 

manufacturing and a review of the production planning and control problem. Subsequently, 

an overview of different system architectures is provided, with a detailed explanation and a 

list of different distributed manufacturing systems. The literature review is concluded with a 

critique and research gap identification. The research framework determines the scope, 

boundaries and research methodologies of the thesis. In Chapter 4 the anarchic 

manufacturing system is proposed, explaining the design principles and attributes behind 

anarchic manufacturing and the core system structure and mechanics. Three experimental 

studies evaluate the anarchic system against centralised and hierarchical systems; using 

agent-based simulations on the AnyLogic platform. These scenarios are simple discrete 

manufacture in Chapter 5, assembly in Chapter 6 and product transition in Chapter 7. 

Theorised scenarios are evaluated throughout, supplemented by a validatory automotive 

case study in the product transition study in Chapter 7. A discussion on all research conducted 

in this thesis is provided in Chapter 8. Finally, research conclusions are drawn, and further 

research is identified in Chapter 9. 

 

Figure 1-1: Thesis organisation 



 

4 

 

1.1 Research aim and objectives 

In the evolving concept of smart manufacturing, the methods and systems for production 

planning and control are far from established. Meeting current business objectives in the 

smart manufacturing environment brings many different challenges that test the capabilities 

of traditional planning and control. Distributed systems are heralded as the future for smart 

manufacturing, emerging from increasingly complex and dynamic challenges and the creation 

of enabling technologies to realise these systems. The hypothesis, that distributed systems 

are best suited for smart manufacturing, is too broad for this thesis. However, a framework 

for a distributed system is created, its prototype developed and evaluated against centralised 

and hierarchical systems in three current manufacturing scenarios to determine its 

affordances. This thesis documents the process of applying a manufacturing system within 

the distributed system’s framework and testing through simulation experiments. This thesis 

aims to: 

Create and develop a new methodology that enables manufacturing systems to be modelled 

as distributed free market systems for production planning and control. 

In meeting this aim the following research objectives were realised: 

1) Review the state of the art of smart manufacturing, the production planning and control 

problem and existing solution architectures, within the boundaries and scope of the 

research, and identify research gaps and existing solutions 

2) Create a prototype distributed planning and control system (the anarchic 

manufacturing system), to be applied to manufacturing scenarios 

3) Apply the prototype system against a range of manufacturing scenarios using a 

suitable modelling method and document the process undertaken, these scenarios 

are: 

• Simple discrete manufacturing scenarios, for jobs that are independent of each 

other 

• Mixed-model assembly scenarios, jobs must join to complete a product 

• Product transition, a manufacturing system that has a prolonged transition 

between concurrently produced products 
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4) Evaluate the performance of the anarchic manufacturing system relative to centralised 

and hierarchical systems against the created scenarios through simulation 

experiments. 

  



 

6 

 

2 Literature review 

2.1 Introduction 

This chapter presents the state of the art in manufacturing production planning and control 

structures as a literature review, fulfilling the first research objective. First, a broad contextual 

understanding of smart manufacturing is provided; covering smart manufacturing trends, new 

manufacturing paradigms, driving technologies and business objectives including market 

conditions. These establish the context that manufacturing systems operate in and thereby 

informing experimental scenario creation. This is followed by a review of the production 

planning and control problem and the solutions provided in literature, highlighting the most 

significant characteristics of complexity and volatility that a manufacturing system must 

consider. Finally, an overview of available system structures is presented with a deeper 

evaluation of distributed system solutions. This overview highlights the benefits and 

drawbacks of existing systems and indicates where anarchic manufacturing sits relative to 

other manufacturing systems. This review, by covering smart manufacturing aspects that 

impact planning and control, alongside the planning and control problem and solution 

structures, enables research gaps identification; this is detailed in Section 2.5.  

A list of journal and conference publications by the author in this field is provided in Appendix 

11A. 

2.2 Smart manufacturing 

2.2.1 A short introduction to smart manufacturing 

Smart manufacturing is an emerging form of production that utilises the benefits of digital 

technologies in a collaborative manufacturing system that responds in real-time to meet 

changing demands and conditions (Kusiak, 2018). Manufacturing since the 1990s has 

predominately been focused on lean production, through eliminating non-value-add 

processes and simplification, which has improved productivity (Kolberg and Zühlke, 2015). 

However, with modern and near-future technology, a significantly more sophisticated 

manufacturing production model called smart manufacturing is expected to emerge. The 

definition of smart manufacturing within ISO and IEC, obtained at the SMCC meeting of 2018-

02/20 (ISO, 2018b) is: 

‘Manufacturing that improves its performance aspects with integrated and intelligent use of 

processes and resources in cyber, physical and human spheres to create and deliver 

products and services, which also collaborates with other domains within enterprises’ values 

chains.’  
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At a lower level, ‘Smart Factories’ envision highly efficient production systems, where 

intelligent objects and resources consider their own situation and subsequently communicate 

and make decisions based on local and global information (Bendul and Blunck, 2019). The 

associated smart manufacturing technologies are focused on information and communication 

that combine with features of preceding manufacturing production models. Digitising all 

aspects of manufacturing processes and enterprises improves interoperability and can 

facilitate greater productivity through connected devices and distributed intelligence. 

Smart manufacturing has trends of decentralisation, interoperability, and automation, 

resulting in advanced manufacturing production models that pursue greater flexibility and 

functionality such as Cyber-Physical Systems (CPS) and Cloud Manufacturing (CM). In 

general recent manufacturing system paradigms have shifted their focus, from production 

maximisation to cost reduction, from process standardisation to mass customisation and from 

production-centric to service-oriented (Lu, Xu and Xu, 2014). These manufacturing 

production models will be enabled by combining smart manufacturing and non-manufacturing 

technology, including Internet of Things (IoT), monitoring sensors, RFID (Radio Frequency 

Identification), robotics, modular and reconfigurable machine tools, additive manufacturing, 

Artificial Intelligence (AI), big data, machine learning, blockchain, cloud computing, data 

transfer, and cyber communications. 

There are two main reference models proposed to realise smart manufacturing and Industry 

4.0 (I4.0); I4.0 is an industry derived production model that closely aligns to smart 

manufacturing. A reference model is a domain-specific ontology that clearly links defined 

concepts for clear communication. The smart manufacturing reference models are the 

Industrial Internet Reference Architecture (IIRA) and Reference Architecture Model for I4.0 

(RAMI4.0) (Pedone and Mezgár, 2018). Both models cover similar concepts, although the 

IIRA represents stakeholder perspectives, covering business, usage, functional and 

implementation viewpoints (Cimini, Pinto and Cavalieri, 2017). Figure 2-1 depicts the layered 

RAMI4.0 model with three dimensions. The three dimensions are hierarchical layers of control 

system integration, product and service life cycle and value stream representing the life cycles 

of entities, layers is the vertical axis are the decomposition of entities (Pisching et al., 2018).  
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Figure 2-1: RAMI 4.0, layered model (Schweichhart, 2019) 

2.2.2 Smart manufacturing trends 

Recent technology trends both in manufacturing and other fields have been integral in the 

emergence of smart manufacturing, these include: 

Decentralisation 

Decentralisation is the movement from centralised administration and processing to local and 

distributed. It is a remerging research topic, particularly with Multi-Agent Systems (MAS) and 

holonic systems (Cantamessa, 1997; Shen and Norrie, 1999; Sousa and Ramos, 1999; 

Heragu et al., 2002; Scholz-Reiter and Freitag, 2007; Windt, Böse and Philipp, 2008; 

Monostori et al., 2016a; Srai et al., 2016; Tang et al., 2018), see section 2.4.4 for a review of 

decentralised decision-making systems. Decentralisation enables autonomous control by 

distributing decision-making functions to the system elements (Windt, Böse and Philipp, 

2008), and has the potential to create emergent benefits of self-organisation, self-regulation, 

and efficiency (Hofmann and Rüsch, 2017). Distributed control is an area with increasing 

interest for I4.0 and smart manufacturing applications, which improves logistics performance 

(Bendul and Blunck, 2019). Figure 2-2 depicts the transition from a traditional automation 

pyramid to a more decentralised structure (Monostori et al., 2016a). Decentralisation has 

commonly faced the criticism of creating global sub-optimal solutions (Shen and Norrie, 

1999), however, comparisons are often made ignoring real-world context, real-world context 

to the production planning and control problem is discussed in section 2.3. 
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Figure 2-2: Decomposition of an automation hierarchy with distributed services  

(Monostori et al., 2016a) 

Interoperability 

Interoperability is defined in ISO16300 as “the ability for two or more entities that can 

exchange or share certain items in order to perform their respective tasks” (ISO, 2018a); this 

is extended for this thesis to all types of resources and entities, although they may be 

facilitated through a digital portal or agent. Interoperability is viewed as a key enabler for 

manufacturing to realise operations across heterogenous digital systems (Liu, Wang, Y. 

Wang, et al., 2018), and is still a central problem to industrial implementation of new 

information and communication technologies (Pedone and Mezgár, 2018). Manufacturing 

systems that utilise diverse and distributed resources across enterprises will have different 

operating systems, interoperability entails unified ontology (Lu, Xu and Xu, 2014). Figure 2-3 

diagrammatically shows that interoperability is very important for global manufacturers, due 

to the number of distributed processes required to realise a product. Leitão et al. state 

interoperability in vertical and horizontal integrations, along with low-level control from MAS, 

is required to realise CPS. Standards addressing information exchange and interfaces with 

legacy systems must be considered for heterogenous interoperability (Leitão et al., 2015). 

Delaram and Valilai define an interoperability model that mirrors logistics providers, moving 

from machines that can interoperate with other systems, to enable integration as a service 

(Delaram and Valilai, 2017).  
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Figure 2-3: Interoperability for global CNC machining (Newman et al., 2008) 

Automation 

Oxford Dictionaries define automation as “the use or introduction of automatic equipment in 

a manufacturing or other process or facility” (Simpson and Weiner, 1989); this thesis includes 

all virtual and physical operations and processes across the whole supply chain. Leitão et al. 

state that traditional production models for industrial automation are becoming increasingly 

inadequate, with the need for flexibility, scalability, high product variations and cost-effective 

real-time reactivity (Leitão, Colombo and Karnouskos, 2016). Leitão et al. view CPS as the 

future for industrial automation, by combining MAS, service-oriented architectures and cloud 

computing. Kolberg and Zühlke observe an opportunity to improve lean production methods 

with smart manufacturing technologies, e.g. CPS, to provide a lean automation system 

(Kolberg and Zühlke, 2015). This still relies on Kanban systems and makes no references to 

fulfilling proposed smart manufacturing objectives beyond improving production 

incrementally, such as mass customisation, vertical integration and smart products. Smart 

manufacturing is viewed to provide both consumers and manufacturers with a much broader 

benefit, see section 2.2.5 which discusses the business objectives. 

2.2.3 New manufacturing production models 

Current and relevant production models, as a result of smart manufacturing trends, are 

explained in this subsection, the majority of these aim to increase flexibility by leveraging 

digital technologies. These production models indicate the operational vision for smart 

manufacturing and indicate the functional capabilities required of its manufacturing system. 
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Production models covered are Flexible Manufacturing Systems (FMS), Reconfigurable 

Manufacturing Systems (RMS), Cloud Manufacturing, Cyber-Physical Systems and digital 

twins. Further production models are not discussed as they do not feature manufacturing 

production planning and control aspects as part of their core functionality, these include; lean 

production, virtual enterprise, concurrent engineering (Bi et al., 2008). 

Flexible Manufacturing Systems 

Flexible Manufacturing Systems and Reconfigurable Manufacturing Systems are 

manufacturing models aiming to improve flexibility (Jovane, Koren and Boer, 2003; Koren 

and Shpitalni, 2010). FMS utilises mechanisation and low-level automation to improve 

flexibility and product variety (Jovane, Koren and Boer, 2003); however, high software 

complexity, investment and maintenance cost with low reconfigurability for structural changes 

have limited FMS take up (Mehrabi, Ulsoy and Koren, 2000; Haddou Benderbal, Dahane and 

Benyoucef, 2017). FMSs are typically a collection of machining centres connected by an 

autonomous guided vehicle, machining centres are autonomously fed jobs; as shown in 

Figure 2-4 machines are fed jobs by a loop-oriented conveyor. 

 

Figure 2-4: Flexible Manufacturing System loop layout (Fadzly, Saad and Shayfull, 2017) 

Reconfigurable Manufacturing Systems 

Reconfigurable Manufacturing Systems utilise reconfigurable and modular elements to 

significantly reduce ramp-up time whilst maintaining reliability and high throughput. There are 

conflicting RMS descriptions: an intermediate production model between mass production 

and FMS, an advanced production model that is more flexible than FMS, an extension or 

subset of FMS with little significant difference; the first description is the most widely accepted 

(Bi et al., 2008). RMS is defined as a manufacturing system allowing a rapid change in 

structure, of hardware and software components, to quickly adjust production capacity and 

functionality to respond to sudden market changes or regulatory requirements (Koren et al., 
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1999); Figure 2-5 depicts the layout of a practical reconfigurable manufacturing system. 

Koren et al. compare dedicated manufacturing lines, FMS and RMS showing their relative 

limitations and benefits, additionally, the enabling technologies and improvements for RMS 

are discussed (Koren et al., 1999); Figure 2-6 shows the capacity and functionality areas that 

dedicated lines, RMS and FMS ideally operate in. Recent research into RMS can be 

categorised into machining systems, fixturing systems, assembly systems, material handling, 

methodologies for architecture design (Bi et al., 2008). To realise RMS flexibility and 

responsiveness benefits, improvements in interrelated technologies and design for 

reconfigurability are required. FMS and RMS have focused on improving flexibility but have 

been cited as too complex to implement and realise benefits. 

 

Figure 2-5: A practical reconfigurable manufacturing system (Koren and Shpitalni, 2010) 

 

Figure 2-6: Dedicated manufacturing lines, FMS and RMS capabilities  

(Koren and Shpitalni, 2010) 

Recent work to realise RMS control architectures have included distributed control, most 

previous methods have approached reconfiguration from a hierarchical and centralised 

structure. RMS control should be autonomous, distributed, scalable and self-reconfigurable 

(Bi et al., 2008); these are all claimed by MAS and heterarchical systems, see section 2.4.4 

for an introduction to these systems. Reconfigurable resource elements have been modelled 

mathematically for a RMS to improve its adaptability to customised products, where 

production lines had distributed control and exchanged jobs or resources to fulfil demand (Li 
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et al., 2018). The author notes that the mathematical model created is intractable, due to the 

complexity of RMS operations for simultaneous optimisation allocations for increasingly 

diverse heterogeneous resources. To overcome the complexity, each production line 

searches for near-optimal solutions using a genetic algorithm. This solution method questions 

the true scalability of the proposed semi-distributed system; scalability is one of the most 

important characteristics for RMS (Koren, Wang and Gu, 2017). Decisions are made on a 

production line level which is synonymous to a cell structure. Holonic architectures have been 

proposed for RMS, see section 2.4.3 for an introduction to holonic systems, utilising a hybrid 

control approach with self-governing RMS stations utilising modular hardware mapped to 

autonomous holons that operate in defined boundaries (Hoffman and Basson, 2016). These 

hybrid holonic structures allow some degree of autonomy but are impeded by their bounded 

environments, global system reconfiguration is achieved through a hierarchical exchange of 

resources, which can limit the scalability of the system. 

Cloud Manufacturing 

Cloud manufacturing is a recent smart manufacturing production model, providing a 

differentiated offering of manufacturing as a service. This immature production model lacks a 

clear and agreed definition, it is still in the research and proof-of-concept stage (Zhong et al., 

2017) and has multiple purposes and resultant interpretations. In general, CM is a service-

oriented production model and operates on a cloud platform by providing access to a network 

of virtualised manufacturing capabilities as services, often described as a product-service 

system (Charro and Schaefer, 2018), which can be diverse and disparate in nature and 

location. This brief explanation hints at the proposed benefits of CM, which directly aligns to 

the smart manufacturing agenda, covered in section 2.2.1. Current CM research has been 

focused on the concept and resources, how to virtualise and encapsulate them into services 

and how to centrally search and combine resources for task fulfilment and their optimal 

solutions (Adamson et al., 2017).  

There is currently no single agreed clear definition of CM, this is representative of the 

immature production model but also of the multiple interpretations of what it is. The production 

model uses several versatile technologies that can be purposed in different configurations to 

solve different problems. One dominant definition is: 

“A customer centric manufacturing model that exploits on-demand access to a shared 

collection of diversified and distributed manufacturing resources to form temporary, 

reconfigurable production lines which enhance efficiency, reduce product lifecycle 

costs, and allow for optimal resource loading in response to variable-demand customer 
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generated tasking. From a share-to-gain philosophy as resources and expertise are 

shared” (Wu, Matthew J Greer, et al., 2013). 

CM is viewed as an example smart manufacturing production model, as it is enabled by many 

of the technologies and follows the trends of smart manufacturing to achieve the CM service 

offering. CPS will allow a cyber representation of manufacturing services to market their 

capabilities and credentials, as well as allocate tasks effectively in the cloud which utilises 

intelligent autonomous decision-making, which follows current smart manufacturing trends of 

decentralisation and automation. 

Cyber-Physical Systems  

Cyber-Physical Systems are seen as a key component of smart manufacturing, connecting 

physical entities to the cyber, world where decision-making and communications occur 

(Hermann, Pentek and Otto, 2016; Leitão, Colombo and Karnouskos, 2016; Monostori et al., 

2016a; Hofmann and Rüsch, 2017; Lu, 2017; Meissner, Ilsen and Aurich, 2017). CPS is often 

referenced alongside the Internet of Things and digital twins, which are overlapping and 

related technologies. There are currently a number of recent and on-going projects such as; 

SOCRADES (Colombo and Karnouskos, 1998), GRACE (Cristalli et al., 2013), IMC-AESOP 

(Colombo, Bangemann and Karnouskos, 2014), ARUM (Leitão et al., 2015). 

CPS represents the convergence of computer science and manufacturing science and 

technology, bringing the virtual and physical worlds within the field of manufacturing 

(Monostori et al., 2016a). Figure 2-7 diagrammatically shows a CPS system that links the 

physical and cyberspace, in cyberspace the entities communicate and make decisions whose 

actions are executable in the physical space (Nassehi, 2017). The key enablers from 

computer science have been the development of MAS, wireless communication and sensors, 

embedded systems and cloud computing; and from the physical world Computer Integrated 

Manufacturing (CIM), manufacturing track and trace to cloud services for manufacturing. CPS 

has three main characteristics; intelligence, connectedness and responsiveness (Monostori 

et al., 2016a). Current research into CPS discusses how and to what benefit a connected 

physical to the virtual world would bring, at a high level; there has, however, been few 

propositions on how this will be achieved and little verification of these claims. Leitão et al. 

detail the key challenges to CPS and outline the difficulty level, priority and likely timeframe 

of achieving technology readiness level 7 (achieve maturity) in these, which are up to 7-10+ 

years (from date of publishing in 2016) (Leitão, Colombo and Karnouskos, 2016).  
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Figure 2-7: Cyber-physical systems, the relationship between cyber and physical space 

(Nassehi, 2017) 

Digital twins 

Digital twins are viewed as a key tool to realising Cyber-Physical Systems and smart 

manufacturing, by creating a virtual copy of a physical resource, real-time monitoring and 

communications can be achieved in the virtual world; Figure 2-8 illustrates the role of a digital 

twin and its feedback to the physical domain. Smart machines use real-time sensing and can 

interact with each other, CPS smart machines are envisaged to capture real-time data in 

central cloud-based storage and for their digital twins to communicate with each other (Zhong 

et al., 2017). Digital twins are viewed as a prerequisite to CPS, allowing centralised analysis 

and control of production processes (Uhlemann, Lehmann and Steinhilper, 2017). There is a 

clear reliance on machine sensor networks, communications and data transfer for digital twins 

to be realised, this centralised system has significant cyber risk and heavy reliance on 

infrastructure. 
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Figure 2-8: Digital twin model of a manufacturing process (Parrott and Lane, 2017) 

2.2.4 Technologies driving smart manufacturing 

There are several related smart manufacturing technologies that could be used to realise 

anarchic manufacturing, these are briefly explained in this section and demonstrate that the 

required technology does currently exist. Figure 2-9 graphically displays how these smart 

manufacturing technologies relate to each other and the manufacturing environment. It 

depicts internet connectivity through the cloud, which may connect facilities and devices in 

other locations, as well as technologies that exist within the physical bounds of a 

manufacturing facility. Elements within the manufacturing facility are monitored by sensors 

that produce performance data, this data can be locally processed through edge devices or 

passed onwards (potentially through the internet or cloud computing infrastructure) for 

analysis using artificial intelligence techniques. 
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Figure 2-9: Graphical representation of smart manufacturing technologies 

Cloud computing 

Cloud computing is a computing service provision, where a shared pool of configurable 

computing resources can be rapidly scaled with minimal management effort or service 

provider interaction (Mell and Grance, 2011). Cloud computing offers on-demand and 

strategic outsourcing for Information Technology (IT) services and computing resources. 

Common services are Software-as-a-Service, Platform-as-a-Service and Infrastructure-as-a-

Service; these three core offerings have overlapping characteristics. These are used by 

manufacturers to support or outsource their IT systems, including planning, scheduling and 

control applications, such as Enterprise Resource Planning (ERP), Computer Aided Design 

(CAD), Manufacturing Executing System (MES). It can also provide the infrastructure for the 

internet of things communications and data storage. 
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Internet of things 

The Internet of Things is a smart manufacturing technology that integrates various devices 

equipped with sensors, identification, processing, communication and network capabilities; 

as well as connecting all parties along the supply chain (Lu, 2017). Within IoT, a digital 

representation of a physical element is used as a smart manufacturing object (Zhong et al., 

2017). This is similarly proposed by Cyber-Physical Systems which uses the internet for 

communication. This is likely to be facilitated by cloud computing infrastructure, where IoT 

enabled physical devices can collate information through monitoring sensors. 

Monitoring sensors and RFID 

Monitoring sensors are devices that read changes in physical stimulus informing the state of 

a physical object (Gao, 2014). Sensors have become increasingly important as the trend 

towards unsupervised machining centres with open architecture controllers has significantly 

changed the manufacturing environment (Kurada and Bradley, 1997), this has become even 

more important with the rise of automation and human-less manufacturing systems. 

Radio Frequency Identification (RFID) is an automatic identification technology, offering track 

and trace capabilities, RFID tags can be used to find objects without significant time or 

difficulty (Chongwatpol and Sharda, 2013). RFID is used heavily for track and trace purposes 

in factories and throughout the supply chain, and it can be used as part of IoT technologies 

for intelligent perception and connecting resources for real-time perception and scheduling 

(Liu, Wang, X. V. Wang, et al., 2018). 

Sensor information or RFID enabled tracking can be processed locally, this will be fulfilled by 

edge devices, either for a preliminary filter process or for security.  

Edge devices and computing 

Edge devices and computing conduct data processing at the ‘network edge’, i.e. locally at the 

data source, to address latency, security and bandwidth costs (Shi and Dustdar, 2016). 

Despite the rise of cloud computing and IoT devices, the need for edge and local computing 

is increasing to reduce the burden on centralised communication, particularly with high 

bandwidth costs, and ever-increasing data capture and processing demand. These edge 

devices are likely to capture sensor information for complex manufacturing machines and 

resources, the advanced robotics and modular machine tool fields are pushing the capabilities 

of complex manufacturing resources.  
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Advanced robotics  

An industrial robot is an automatically controlled, reprogrammable multipurpose manipulator 

that is programmable in three or more axes (Lien, 2014). Advanced robotics and smart 

machines are capable of accepting high-level mission-oriented commands, navigation and 

perform complex tasks in a semi-structure environment with a minimum of human intervention 

(Gray and Caldwell, 1996). Within manufacturing, advanced robots or smart machines can 

additionally communicate directly with manufacturing systems, solve problems and make 

decisions independent of humans. Modular machine tools provide an additional level of 

flexibility to advanced robotics through reconfigurability. 

Modular and reconfigurable machine tools 

Reconfigurable and modular machine tools are a part of reconfigurable manufacturing 

systems providing flexibility for manufacturing capabilities, some use smart building block 

systems of passive, smart and active modules (Uhlmann and Peukert, 2019). Conventional 

Computer Numerical Controlled (CNC) machines are general-purpose machines, 

reconfigurable machine tools are designed for a specific and customised range of operational 

requirements that can be converted cost-effectively as required (Landers and Koren, 2001). 

Many of the aforementioned smart manufacturing technologies provide flexible physical 

capabilities, however analytic tools are required to inform the decision-making process; which 

is the focus of this thesis. The remainder of this section, on technologies driving smart 

manufacturing, covers these analytic tools. 

Artificial intelligence 

Artificial Intelligence is “the science and engineering of making intelligent machines, 

especially intelligent computer programs that exhibit characteristics associated with 

intelligence in human behaviour including among other faculties of reasoning, learning, goal 

seeking, problem-solving, and adaptability” (Monostori, 2014). AI provides learning, 

reasoning and acting, thereby minimising human involvement in intelligent manufacturing 

systems through automation; these AI techniques include intelligent job scheduling (Zhong et 

al., 2017). AI intelligence and decision-making are informed by analytical techniques, these 

include machine learning statistical techniques, big data analytics and simulation methods. 

Machine Learning 

Machine learning methods are computational methods using experience to improve 

performance or to make accurate predictions (Mohri, Rostamizadeh and Talwakler, 2012). 

Multi-agent system with learning and coordination have been shown to improve a distributed 



 

20 

 

control system, clearly displaying the impact learning agents have (Vrabič et al., 2018). Vrabič 

additionally states that as it is difficult to predict global behaviour from local interactions only, 

learning is required for rationally bounded agents in a large complex system without prior 

knowledge of the system or its role. 

Big data and data analytics 

Big data is high-volume, high-velocity and high-variety information assets that require cost-

effective forms of processing for enhanced insight and decision-making, data analytics is the 

insight extraction process (Gandomi and Haider, 2015). For operational organisations and 

manufacturers, with a large amount of operational data that cannot be analysed 

conventionally, big data and advanced analytics are critical to uncovering hidden patterns, 

correlations, market trends and business information (Zhong et al., 2017). Advanced analytics 

through machine learning and big data aids decision-making by reflecting on past trends, this 

is complemented by simulation which evaluates potential future scenarios. 

Simulation 

Simulation is the dynamic observation of an abstract model of a system through time with 

particular attention to the system’s key attributes (Nassehi, 2014), it has largely been used in 

scheduling and supply chain management (Jahangirian et al., 2010). Simulation models are 

executable, when run they build a trajectory of the system’s state changes over time, they 

generally can handle service systems of any complexity and scale well (Borshchev, 2013). 

Simulation is increasingly used for different functionalities; to support off-line decision-making 

and sensitivity analysis of uncertainties, on-line proactive anticipation for plan deviations 

using simulation in advance for short-term actions, and on-line reactive analysis of actions 

after a disturbance (Monostori et al., 2016a). Agent-based simulation is a practical way of 

addressing issues of theoretical analysis and has become one of the standard tools to 

investigate long term MAS behaviour against a range of scenarios (Monostori et al., 2014). 

Figure 2-10 displays the role of simulation for on-line proactive and reactive applications for 

manufacturing systems decision support. 
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Figure 2-10: Simulation in manufacturing systems disturbance handling  

(Monostori et al., 2016a) 

2.2.5 Smart manufacturing business objectives 

New smart manufacturing production models are viewed as revolutionary and have been 

dubbed Industry 4.0 (Liu and Xu, 2016). To fully benefit from the reported upcoming industrial 

revolution, businesses must approach manufacturing differently by setting appropriate 

business objectives that align with the smart manufacturing vision. Current industry and 

business consulting thought leadership cannot clearly articulate the smart manufacturing 

vision. 

The likely business objectives, considering smart manufacturing, to fulfil market demands are; 

operating in a volatile and rapidly changing environment, mass customisation, broader non-

manufacturing concerns and vertical supply chain integration. These have created several 

manufacturing business production models and subsequent characteristics that will shape 

smart manufacturing. The anarchic manufacturing system has the potential to overcome 

many of these challenges through a radical approach. 

Figure 2-11 depicts the broader smart manufacturing business perspective, considering how 

end consumers and market demands influence manufacturers’ behaviour upstream. These 

market demands include rapid speed to market, volatile product demand leading to mass 

customisation and a broader range of demands for ethical business practice, and have 

increased vertical integration. These shape future manufacturing business objectives and 

resultant business characteristics. 



 

22 

 

 

Figure 2-11: Graphical representation of smart manufacturing business influences 

Industry and business consulting perspective 

The industry and business consulting perspective have lacked a clear vision of smart 

manufacturing and Industry 4.0, this has resulted in poor developmental progress and an 

inability to determine the value-add proposition to manufacturers and customers. From 

reviewing recent white paper publications of business consultancy thought leaders (BCG, 

McKinsey, and Deloitte), there is a clear lack of vision as to what smart manufacturing and 

Industry 4.0 would provide (Wee et al., 2015; Küpper et al., 2016; Parrott and Lane, 2017). 

What is evident is a myopic thought process, that focuses on short term incremental benefit, 

gained from implementing individual pieces of technology. The technologies and production 

models cited are those recently researched in the academic community, such as; smart 

robots, digital twins, factory digitisation, modular line setup, multidirectional factory layout, 

augmented reality, big data and decentralised production steering (Küpper et al., 2016). Wee 

et al. (McKinsey) report that there is a lot of potential for I4.0 and high expectations of its 

benefits, however, there is a lack of progression and only by a few manufacturers (Wee et 

al., 2016). From these publications there have been zero case studies or successful examples 

beyond data integration and analysis; this is contrary to normal consulting practice, leading 

to suspicion of any likely real-world success. All these factors have resulted in an inability to 
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articulate a value-add proposition to both manufacturers and customers; and a degree of 

disillusionment to the term ‘Industry 4.0’ (Wee et al., 2016). This indicates strong interest from 

industry, but few practicable means of development towards implementation. 

Demand volatility and manufacturer agility 

Dealing with volatile demand and rapid speed to market are current market demands, often 

referred to as a need for manufacturers to become agile and flexible (Elmoselhy, 2013). 

Volatile demand refers to rapidly transient customer expectations and values; speed to 

market refers to the time taken from order placement to a customer’s receipt of goods, 

applying to both consumer and business customers, and may include the design and 

manufacture of the product. Businesses view this agility as a source of competitive 

advantage, by navigating volatile demand (He, Zhang and Li, 2014) and to aid mass 

customisation (Gunasekaran et al., 2018). Colombo and Karnouskos state that due to the 

competitive nature of business, real-time information systems are being developed to become 

more agile and flexible, and businesses are trending toward service-oriented infrastructures 

(Colombo and Karnouskos, 1998). Dynamic and volatile environments are common for 

modern manufacturers, the ability to cope with these has become essential (Scholz-Reiter, 

Rekersbrink and Görges, 2010). 

Because of demand volatility, businesses are becoming customer-centric, they are focusing 

on customer relationships, recently Customer Relationship Management tools have been 

used. However, Bolton states this does not go far enough and business processes must 

become customer-centric to change the underlying culture (Bolton, 2004). Customer 

orientation has been shown to improve product innovativeness for manufacturers, through 

supplier collaboration and technological capability (Wang, Zhao and Voss, 2016). 

Demand has become increasingly volatile, however, an increasing need for personalisation 

and customisation has extended demand volatility for businesses. This new market demand 

calls for further flexibility than high demand volatility, as the product specification is unknown 

until order submission. 

Mass customisation 

Mass customisation aims to provide consumers with customised goods and services at prices 

consistent with mass production, but this has yet to be fully realised (Ferguson et al., 2018). 

Mass customisation aims to eliminate the ‘sacrifice gaps’ where average requirements are 

insufficient to individual customers’ needs, it will lead to very low batches sizes and increase 

the complexity of planning, scheduling and tracking (Lee, Rahimifard and Newman, 2004). 
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Platforming and modular design with late configuration are viewed as part of the mass 

customisation trend, as well as unique tailoring of components (Mikkola and Skjøtt-Larsen, 

2004; Ferguson et al., 2018). Whereas Lee et al. view mass customisation as increased 

demand and execution of make-to-order manufacturing, producing varied and individually 

customised products at the price of standardised, mass-produced alternatives. Zhang and 

Efstathiou state that inventory holding for mass customisation manufacturing systems depend 

on the point of customer influence, which acts as a decoupling point between stocking 

components to creating the product to match customer requirements (Zhang and Efstathiou, 

2006). As lean and total quality management increased, companies realised the increasing 

demands for customisation and subsequently they had become too lean and rigid and should 

focus on creating agile supply chains to adapt to changing demand (Stevens and Johnson, 

2015). 

The democratisation of design is a new trend that is as a result of mass customisation, where 

end consumers influence and participate in the design process directly. Tao et al. state that 

society is having a significant influence on manufacturing, from resource sharing to user 

participation in design and manufacture (Tao et al., 2017). Goudswaard et al. describe how 

users may modify existing models and products to tailor them to their needs (Goudswaard et 

al., 2017). Democratisation of design highlights the extent to how mass customisation is 

influencing the manufacturing process and that manufacturers should incorporate this trend 

into their own businesses. 

Given mass customisation, product variants have grown considerably. Vogel and Lasch state 

that variant management was the first step to complexity management for manufacturers; 

and that the term ‘complexity driver’ can be attributed to the term ‘variant driver’ (Vogel and 

Lasch, 2016). 

Mass customisation has significantly increased the diversity of product requirements and 

specification, this is extended further by a growing awareness of ethical business practices. 

This has pushed businesses to consider environmental and social concerns, as well as 

traditional economic profitability. 

Environmental and social concerns 

Markets, through both consumers and governing bodies, are demanding a wider range of 

manufacturing requirements, these include environmental and social concerns to ensure 

manufacturing has broader societal benefit. The triple bottom line (economic, environmental, 

social) highlights the importance of sustainability and the need for corporate social 

responsibility (Govindan, Khodaverdi and Jafarian, 2013) and is targeted at manufacturing 
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and production partly by changing perceptions of value creation for a sustainable society 

(Ueda et al., 2009; Kaihara et al., 2018). Rauch et al. envisage customer value will be realised 

through socially and environmentally responsible and economically efficient manufacturing, 

which encourages positive societal effects in addition to quality and cost of goods and 

services (Rauch, Dallasega and Matt, 2016). Rauch et al. view decentralised, adaptable and 

flexible mini-factories as a possible solution to sustainable manufacturing whilst supporting 

growth and development of regional economic cycles. Governing bodies have introduced a 

number of incentives and punishments to promote environmental and social concerns, the 

most well-known of these is the carbon emissions trading scheme (Smale et al., 2006). The 

broader range of market demands increases complexity, manufacturers will subsequently 

pursue multiple objectives to meet these demands. 

The growing diversity of demands on manufacturers has significantly increased the number 

of and types of business concerns, these concerns propagate throughout the supply chain. 

To improve both product quality and ethical business practice, vertical supply chain 

integration has increased; allowing OEMs to increase their influence and control over their 

suppliers and ensure increasingly individualised customer feedback can be enacted within 

the supply chain. 

Vertical supply chain integration 

Businesses have subsequently increased vertical integration with suppliers and customers to 

manage the associated complexity of increased customisation and improve agility. Supply 

chain integration is the alignment, linking and coordination of people, processes, information, 

knowledge, and strategies across the supply chain. This facilitates the efficient and effective 

flow of material, money, information, and knowledge in response to customer needs (Stevens 

and Johnson, 2015). Roh et al. define the key implementation practices of a successful 

responsive supply chain as sharing information with customers, collaboration with suppliers 

and the use of advanced manufacturing technology as part of a strategy for inter-

organisational integration of resources (Roh, Hong and Min, 2014). Supply chain integration 

was cited as the key to supply chain management, improving customer service, reducing 

inventory and operating costs in 1989 and is just as important today (Stevens and Johnson, 

2015). Stevens and Johnson suggest that supply chains are transitioning to devolved 

collaborative supply chain clusters, which are easier to manage; they use fashion brand Zara 

as an example, who has popularised a localised and collaborative cluster model, whilst within 

the automotive industry, lead suppliers (tier 1) coordinate clusters of upstream suppliers. This 

supply chain operating model is transitioning towards distributed control; although not 
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discussed explicitly in this thesis, the anarchic manufacturing system can be applied to supply 

chain structures and problems which is already evolving into a distributed structure. 

2.3 Planning and control problem 

2.3.1 Traditional and smart manufacturing  

The smart manufacturing scheduling and control problem extends traditional problems, by 

considering job allocation to smart resources, which have advanced digital capabilities. 

Modern industry and market demands extend the smart manufacturing problem through a 

more volatile environment and increasing customisation; however, complexity and managing 

volatility remain the most difficult characteristics. 

Traditional production planning and control problem characteristics have been derived from 

traditional problem formulations whilst considering real-world applications. Scheduling is 

defined as an optimisation process to allocate limited resources over time between parallel 

and sequential activities (Shen and Norrie, 1999). Production planning tasks are termed as 

the repetitive tasks for the management of value creation processes, spanning multiple time 

horizons from production network design to machine setup (Bendul and Blunck, 2019). 

Control is the dispatching, monitoring, diagnosis, error recovery and machine/device control 

of a factory typically on a short-term horizon (Leitão, 2009). Scheduling, planning and control 

have become increasingly difficult as businesses and manufacturing production models have 

vied for competitive advantage, for example FMS and RMS have increased flexibility but have 

increased difficulty in finding optimal solutions. This is likely to become more difficult as 

manufacturing trends tend toward mass customisation and small-batch production (Ferguson 

et al., 2018). Many of these traditional problems are seen as very complex, and some are 

known to be Non-deterministic Polynomial-time hardness (NP-hard) (Van Dyke Parunak, 

1991).  

General methods to deal with the scheduling and control problem are predominately 

associated with simplification or autonomous control. Allwood et al. state that increasing 

variety in a manufacturers’ product mix results in a decrease in productivity, subsequently the 

predominate response to managing complexity has been to design products in ‘families’ or 

‘platforms’ (Allwood et al., 2015). This reduces complexity through standardisation by creating 

structure and predetermined rules to follow. During their study, Allwood et al. found increased 

variety dramatically increased production time due to conflicting demands; increasing the 

complexity of the problem. 
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Scheduling and planning is traditionally completed offline, where decisions are made in 

advance of a given time period; allowing evaluation of ‘what-if’ scenarios through simulation 

(Monostori et al., 2016b) and static (near) optimised schedules through dedicated algorithms 

but these cannot be realised in real-time (Sahin et al., 2017). The majority of previous studies 

have only used offline methods, however, online methods are increasingly researched as 

means to deal with volatility by reacting in real-time to disruptions for dynamic scheduling 

(Sahin et al., 2017). 

Smart manufacturing production models, in turn, have planning and control problem 

characteristics that extend from the traditional problem. These problem characteristics can 

be best understood through weaving together how market demands and business objectives 

influence a manufacturer’s operations and their associated planning and control aspects. 

Smart manufacturing scheduling, planning and control are viewed as the highest layer for 

implementing intelligent manufacturing systems framework and as key research challenges 

(Zhong et al., 2017). 

Volatile market demands, from unpredictable customer requirements, dynamically changing 

orders and rapid lead times, have forced manufacturers to become more agile and flexible 

(Elmoselhy, 2013). Agile business processes matching volatile demands have created 

customer-centric business models and a dynamic scheduling, planning and control problem; 

due to inevitable unpredictable real-time events causing changes to scheduled plans 

(Ouelhadj and Petrovic, 2009). 

Mass customisation results in high product variety and the requirement for dynamic 

production capabilities, this increases complexity and requires flexibility. Mass customisation 

will result in a very high number of small batches that will increase the complexity of planning, 

scheduling and tracking (Lee, Rahimifard and Newman, 2004). The constant product turnover 

will lead to uncertain and inconsistent production durations and different resources required 

at any point in the production process; creating a complex manufacturing system with high 

uncertainty that must be flexible to meet the broad range of capability requirements. Diversity 

of individual customer requirements, going beyond the traditional demands of cost, quality 

and lead time, are increasing and can be treated similarly to individualised requirements of 

mass customisation. Distributed systems are more likely to be able to represent unique 

requirements through product-led manufacturing via intelligent products. Borangiu et al. 

implemented a distributed manufacturing control system using intelligent products which 

allowed each entity to retain its own objectives (Borangiu et al., 2014). 
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Manufacturers must balance dynamic multiple objectives to meet the smart manufacturing 

scheduling and control problem; which include overarching and traditional business 

objectives, for example: increase profits, improve the cash position and reduce supply chain 

risk. To fulfil smart manufacturing business objectives, as discussed in section 2.2.5, 

manufacturers need a wide range of capabilities, be responsive to market demands and have 

customer-centric business processes; all of these require resources that a business may not 

be able to fulfil whilst remaining profitable or cash positive, which results in multiple and 

conflicting objectives. 

2.3.2 Complexity and complicatedness 

Complexity and complicatedness are poorly defined concepts within manufacturing; however, 

they relate directly to smart manufacturing and the associated planning and control problem. 

Increasing complexity is often noted as a key challenge to future manufacturing (Papakostas 

et al., 2009), as predicting global behaviour becomes more difficult based on local interactions 

between the system’s constituents (Vrabič et al., 2018), and complexity is cited as one of the 

largest issues to manufacturers (Vogel and Lasch, 2016). Complexity is a resultant 

characteristic that manufacturers must face as a necessity (Váncza et al., 2011), Section 

2.2.5 discusses how increased market volatility, mass customisation, and additional market 

demands increase complexity. 

Definitions for manufacturing complexity attempt to classify types of complexity, such as 

dynamic and structural, or use entropy and heuristic approaches to quantify complexity 

(Kuzgunkaya and ElMaraghy, 2006; Elmaraghy et al., 2012). Structural complexity is 

described as the level of interference between different production paths (Vrabič, Husejnagic 

and Butala, 2012). Elmaraghy defines complexity as a sliding scale of uncertainty, 

transitioning from simple, to complicated, to complex and to chaos (Kuzgunkaya and 

ElMaraghy, 2006). Increasing constraints and reducing flexibility increases system 

complicatedness, Kuzgunkaya compares several manufacturing system configurations, 

arguing that reduced versatility and flexibility of resources increase complexity (Kuzgunkaya 

and ElMaraghy, 2006). Considering an entropic definition of complexity (Huaccho Huatuco et 

al., 2009), as the number of system elements or the number of non-coupled shared resources 

required per operation increases, the number of states the whole system can be in rises 

exponentially; this is denoted as O(aN) an exponential complexity problem. There are known 

NP-hard problems in manufacturing, such as job shop scheduling (Van Dyke Parunak, 1991). 

As the demands of smart manufacturing increase, notably mass customisation, speed to 

fulfilment and customer-centric business processes, the complexity of manufacturing 
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operations will also increase. Manufacturing has moved from simple mass production 

assembly lines to flexible networked manufacturing systems of shared resources producing 

complicated products. It is envisaged in smart manufacturing that highly differentiated and 

complex products will become common (Esmaeilian, Behdad and Wang, 2016). The 

associated uncertainty and highly dynamic marketplace for complex products require a broad 

and adaptable manufacturing capability; this is extended by representing the customer during 

manufacturing for customer-centric business processes. Complex products are currently 

fulfilled by complex supply chains of specialist manufacturers in disparate locations; however, 

this is unlikely to meet market expectations or competitive advantage in smart 

manufacturing’s demands for rapid order to fulfilment lead times. Therefore, manufacturing 

must become more versatile to deliver mass customisation at very low lead times, proposing 

a highly complex planning and control problem. 

2.3.3 Volatility and dynamic multiple objectives 

Complexity and multidimensionality are the only clear aspect of manufacturing flexibility (Sethi 

and Sethi, 1990), managing volatility and balancing dynamic multiple objectives are achieved 

through flexibility. Flexibility, with respects to production planning and control, is defined as 

the capacity of a system to adjust itself in response to changing requirements with significant 

cost with respects to time, effort, cost of performance (De Toni and Tonchia, 1998). There is 

a trade-off between flexibility and efficiency, where, from an organisational perspective, 

efficiency requires a bureaucratic form of organisation with high standardisation, 

specialisation and hierarchy, however, bureaucracy impedes flexibility (Adler, Goldoftas and 

Levine, 1999). Enterprises achieving organisation ambidexterity, where both adaptabilities to 

change and efficiency are realised, aim to use flexibility without the trade-off for efficiency 

(Raisch and Birkinshaw, 2008). Cantamessa describes manufacturing flexibility as; the ability 

in the short term for systems to adapt to changes in product mix, process plans, and machine 

status, and in the medium and long term the ability to sustain changes in demand, product 

characteristics, quantity and quality (Cantamessa, 1997). Chaudhuri et al. define flexibility as 

the ability to cope with variation without major time and cost implications, which does not 

necessarily affect the probability, but may reduce the impact of risk (Chaudhuri, Boer and 

Taran, 2018). Dynamic multiple objectives are many business and technical objectives that 

change over time, these may be conflicting and must be balanced to best achieve the current 

set of objectives. All manufacturers face multiple conflicting objectives, yet the majority of 

research has focused on single or static objectives. 

Flexibility, alongside agility, is often cited as a key aspect of smart manufacturing, bringing 

competitive advantage (Zhou, Liu and Zhou, 2016), however, it is unsure how this will be 



 

30 

 

fulfilled. Existing methods for production planning and control cannot handle the highly 

dynamic and subsequent complex conditions of modern manufacturing (Kim and Duffie, 

2004). Ivanov et al. state that the four major flexibility drives are: resilience to disruption and 

the ripple effect in the supply chain; digitisation and smart operations; sustainability and 

closed-loop supply chains; and supplier integration and behavioural flexibility (Ivanov, Das 

and Choi, 2018). Smart manufacturing production models are pursuing many of these cited 

flexibility drivers, as discussed in section 2.2.3, in response to recent increases in integration. 

And in response to rigid, centralised or hierarchical control architectures that cannot manage 

a volatile manufacturing environment (Monostori et al., 2014). 

Smart digital manufacturing requires a high degree of flexibility to quickly adapt and fulfil mass 

customisation (Tao et al., 2017), where there is high product variability and expected low lead 

time and speed to market (Elmoselhy, 2013). Borangiu et al. state that the need for 

robustness, due to unforeseen disruption and agility at market demand, requires solutions to 

switch from classical centralised to decentralised control, where each entity keeps its own 

objectives (Borangiu et al., 2014). Flexibility may be achieved more easily with distributed 

systems, particularly for large complex systems. 

Manufacturers have always faced multiple objectives, as all businesses do, traditionally their 

main objectives are cost reduction, quality, productivity, sustainability and flexibility 

maximisation (Malakooti, 2013). Multicriteria Decision-making (MCDM) approaches have 

been typically used in industry to resolve conflicting objectives for decision-making 

(Malakooti, 2013). Malakooti states that objectives are often conflicting and sophisticated 

multi-criteria methods, for many objectives with many alternatives, may not be helpful for 

solving realistic problems. TOPSIS (technique for preference by similarity to the ideal 

solution) is an established technique that aims to minimise the distance from an ideal point 

and maximises the distance from a nadir point (Olson, 2004). 

2.4 System architectures 

2.4.1 Introduction 

There are several proposed scheduling and control architectures, these range from 

hierarchical to anarchic (fully distributed). Duffie and Piper define three control architectures, 

a centralised controller (hierarchical), a hierarchical controller with dynamic scheduling (semi-

heterarchical) and fully distributed heterarchical structure with intelligent system elements 

(heterarchical/anarchic) (Duffie and Piper, 1987), this thesis extends these architectures by 

one to highlight the difference between mediator and truly distributed and anarchic structures. 
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Hierarchical architectures are those that have a layered management structure, with 

decreasing authority and autonomy. These hierarchical and centralised structures typically 

have a master/slave relationship, and traditionally use structure to handle complexity through 

decomposition and simplification (Heragu et al., 2002). They are the predominant 

management structure in industry, particularly for non-autonomous human-centred shop-

floors, which often use simple dispatch heuristics. There has been extensive research into 

advanced centralised methods, for example advanced search heuristics, to obtain optimal 

solutions. Centralised methods are criticised for being too rigid, very poor at reacting to 

dynamic situations and difficult to design control systems that encompass all 

interrelationships and failure modes (Heragu et al., 2002; He, Zhang and Li, 2014).  

Semi-heterarchical structures, also referred to as hybrid structures, allow low-level 

autonomous decision-making within certain bounds as established by the hierarchy above. 

These aim to merge the benefits of both hierarchical and heterarchical systems; by creating 

stability and reducing complexity from a hierarchical structure, whilst enabling an emergent 

outcome from low-level autonomy (Ryu and Jung, 2003). 

Heterarchical with mediator structures allow low-level decision-making and interaction, 

however, they use a mediator for conflict and deadlock resolution or to mediate 

communications (Shen and Norrie, 1999). The decision-making and influence by mediator 

agents are minimised whilst ensuring system stability, they control coordination between 

heterarchical resources to ensure global objectives can be achieved (He, Zhang and Li, 

2014). Mediators will monitor the system and typically adopt roles of; facilitator, broker or 

mediator. 

The anarchic manufacturing system is an extremely distributed heterarchical structure, where 

decision-making is made at the lowest level only. Anarchic manufacturing is the focus of this 

thesis and explores a Multi-Agent System that has no centralised mediator. All system 

elements, for example resources and jobs, have complete decision-making authority and 

autonomy. See section 2.4.4 for an introduction and relevant current literature for distributed 

systems, and Chapter 4 for a detailed explanation of the anarchic manufacturing system’s 

theoretical framework, including design principles and mechanisms used. 

2.4.2 Hierarchical and centralised systems 

Hierarchical and centralised systems fulfil the planning and control functions from a single 

point, which may cascade down management layers; heuristics, advanced search heuristics 

and simulation modelling methods are the main categories of hierarchical and centralised 

systems. Hierarchical structures have multiple control layers, with distributed decision-making 
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between layers, improving robustness, but disturbances significantly reduce performance 

(Leitão, 2009). Classical approaches to production planning and organisational structure 

have preferred function decomposition, resulting in a hierarchy of decision-makers that are 

coordinated through a bureaucratic structure (Malone and Crowston, 1994). Heuristics are a 

problem specific and rule-based scheduling and control method, it is unlikely to find an optimal 

solution but can find a reasonably good solution in a short time period (Ouelhadj and Petrovic, 

2009). Schedule repair methods, such as right-shift repair or match-up repair, and dispatch 

rules, e.g. First In First Out (FIFO) and Earliest Due Date (EDD), both fall into the heuristics 

category. 

Advanced search algorithms, such as meta-heuristics and genetic algorithms, improve on 

local search algorithms to escape local optima, by using efficient solution space search 

methods (Ouelhadj and Petrovic, 2009). As with all other hierarchical and centralised 

systems, these advanced search algorithms require all information at a single point. Their 

performance is suitable to find optimal solutions for small problem instances of few jobs, too 

slow for complex problems; for example, NP-hard flexible flow shops problems, where they 

struggle with large dynamic flows (Scholz-Reiter, Rekersbrink and Görges, 2010), due to 

computational complexity (Cantamessa, 1997). Therefore, advanced search heuristics are 

not suitable for a scenario where there is vast scale and complexity, as well as a highly 

dynamic environment. 

Simulation modelling methods for shop-floor scheduling, planning and control have recently 

increased to plan and forecast likely outcomes; using packages such as Simio. This provides 

the ability to model the whole complex manufacturing systems in detail and observe likely 

emergent outcomes, depending on how the system is modelled. Monostori et al. state the 

time taken to complete data acquisition and analysis, quick response and instantaneous 

feedback prevent simulation modelling techniques from becoming real-time control systems. 

Resultantly decision-makers apply simulation primarily as off-line decision support tools, e.g. 

in sensitivity analysis of schedules and disturbance handling, rather than critical on-line 

decision-making (Monostori et al., 2010). Yang and Takakuwa have connected a simulation 

scheduling tool (Simio) to the manufacturing execution system to schedule and reschedule a 

FMS in parallel to operation (Yang and Soemon, 2017). Simulation modelling methods are 

unsuitable for real-time and dynamic control methods, as they can only operate effectively 

off-line, predominately for high-level strategic decisions, rather than low-level operational 

decisions. 
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2.4.3 Hybrid systems 

Hybrid systems aim to combine benefits of structure from hierarchical systems and emergent 

outcomes from heterarchical systems; combining the benefits of distributed control 

architecture for short-term optimisation and centralised control for long-term optimisation 

(Trentesaux, 2009). Fractal manufacturing systems and Holonic manufacturing systems are 

example hybrid systems that can represent complex hierarchies of a manufacturing system 

(He, Zhang and Li, 2014). 

Fractal manufacturing systems are another agent-based method for distributed 

manufacturing systems, where each ‘fractal’ represents a part of a system at any level of 

abstraction (Ryu and Jung, 2003). Fractals pursue goals independently whilst resolving 

conflicts through cooperation, coordination and negotiation; agents within fractals have 

specific and differing functionalities. They combine hierarchical structure with distributed 

decision-making; any element or sub-system can be viewed as a fractal. The main reported 

characteristics of fractals are self-organisation, self-optimisation, goal-orientation, self-

similarity and dynamic responsivity. Fractal manufacturing systems cannot, however, 

produce globally optimal solutions due to local interactions based on the Contract Net 

Protocol or regroup flexibly between boundaries due to the rigid structure (He, Zhang and Li, 

2014). 

Holonic manufacturing systems are similarly hybrid in nature, utilising low-level autonomy 

within a high-level structure. Heragu et al. define a hybrid holonic structure that aims to 

combine the flexibility of distributed autonomous systems with a high-level structure to pursue 

system-wide objectives, by allowing low-level autonomous decision-making within boundary 

conditions prescribed by high-level holons (Heragu et al., 2002). Holonic manufacturing 

systems use multi-agent systems to model individual agents and their roles. But permit some 

distributed decision-making, these production models suggest some form of hierarchy will be 

required in future smart manufacturing (Leitão, 2009). 

Hybrid systems are currently a heavily researched solution, however, their design principles 

of merging the benefits of both hierarchical and distributed systems have not been proven or 

investigated in detail. 

2.4.4 Distributed and mediator systems 

Introduction 

Heterarchical distributed systems allow system elements to have low-level decision-making 

intelligence and autonomy, enabling them to coordinate and interact with each other and the 
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environment (Cantamessa, 1997). There is no active central decision-making or 

hierarchical/layered structure; many have loosely coupled temporary relationships rather than 

a predefined and fixed structure. Distributed systems solve problems through the entities 

assuming responsibility for generating and maintaining a solution over a decomposed part of 

the problem, i.e. the local problem (Tharumarajah, 2001). A central entity passively providing 

global information as a common repository point is not deemed to be a mediator. 

Heterarchical with mediator architectures enable low-level decision-making but have 

centralised agents with specialist roles, these are used to avoid conflict and ensure global 

objectives are met, these centralised agents have active roles. There are no clear guidelines 

for the design and control of distributed architectures (Bendul and Blunck, 2019), however, 

Shen and Norrie define Autonomous Agent systems which are heterarchical systems, stating 

they must have the following attributes (Shen and Norrie, 1999): 

1. Not controlled or managed by another software agent or human 

2. Communicates directly with other agents and external systems  

3. Knowledge of other agents and their environment 

4. It has its own goals and associated motivations 

Distributed systems have arisen from the reported rigidity of hierarchical centralised systems, 

offering benefits that align with the predicted future of smart manufacturing. Traditional 

centralised and hierarchical systems do not match modern emerging organisational models, 

based on decentralisation and autonomy (Cantamessa, 1997), and they are vulnerable from 

a single point of failure (Colombo et al., 2006). Rather decentralised structures have been 

developed for the scheduling, production planning and control problems, aiming to achieve 

flexibility and fault-tolerance that hierarchical systems lack (He, Zhang and Li, 2014); 

exploiting available operational flexibility in a system (Brennan and Norrie, 2003). Operational 

flexibility is the ability to produce a product mix in different ways (Chryssolouris et al., 2013). 

A purely distributed system arguably conducts no advanced scheduling, rather it is purely 

reactive by postponing allocation decisions to the time of execution (Bendul and Blunck, 

2019). Heterarchical structures aim to adapt to highly dynamic variations in product 

requirements (Shen and Norrie, 1999). These structures can foreseeably use intelligent 

products to represent a customer’s interests and align with customer-centric business 

processes. Distributed systems are the proposed solution for both high variety and high 

volume production systems (Cantamessa, 1997), which is commonly referred to as mass 

customisation. 
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It is envisaged that the role of system design will change, from detailed planning of material 

flows and resource utilisation to a designer deciding on the existence of intelligent objects 

and resources and the rules of the system to ‘orchestrate’ a competitive factory that has 

competitive emergent performance (Bendul and Blunck, 2019). This vision is premised on 

emergent synthesis as an underpinning design principle of distributed systems. Emergent 

synthesis is an observable phenomenon that arises from the local interactions of individual 

elements that collectively display an overall global direction; this contrasts with traditional top-

down analytical methods of decomposing systems (Ueda, Markus, et al., 2001; Váncza and 

Monostori, 2017). Emergent synthetic methods are suited to solving the scheduling and 

control problem in smart manufacturing; as there is a high degree of uncertainty in both 

system requirements and operational environment. The core mechanics utilise individual jobs 

that pursue local objectives, which are to fulfil operations via machines that act as service 

providers, the emergent outcome arises from jobs becoming finished products and the system 

becoming globally productive. As a result, heterarchical distributed systems tend to be more 

flexible with simpler and understandable programmes as they only relate to local data, rather 

the logic of centralised systems tends to be hidden in the program and global data structure, 

making modifications difficult (Duffie and Piper, 1987). Additionally, as interactions are on a 

low level, a system’s reorganisation with different agents/resources would still have the same 

negotiation process and interactions, making the distributed (and MAS) systems very robust 

to change (Leitão, 2009) and inherently scalable (Szer-Ming Lee, Harrison and West, 2005); 

which contrasts remapping hierarchical layers. 

There are several heterarchical distributed systems that do not use any sort of centralised 

decision-making or control. Examples include Biological Manufacturing Systems (Ueda, 

Vaario and Ohkura, 1997), Contract Net Protocol (Smith, 1980), and dispatch rules (Kouiss, 

Pierreval and Mebarki, 1997). 

The key benefits and criticisms of distributed systems are linked to their inherent structure 

and design principles. Proposed benefits for distributed systems are self-organisation, 

flexibility, and adaptability, fault-tolerance, real-time control, dealing with complex scenarios 

(Duffie and Piper, 1987; Cantamessa, 1997; Shen and Norrie, 1999; Tharumarajah, 2001; 

Ouelhadj and Petrovic, 2009; Scholz-Reiter, Görges and Philipp, 2009; Bendul and Blunck, 

2019). Additionally, distributed and typically agent-based systems are being increasingly 

researched to achieve real-time scheduling (Sahin et al., 2017). Distributed systems are a 

promising approach to manage the resultant dynamic and structurally complex production 

control problems. Aiming to dispose of the traditional trade-off between efficiency and 

flexibility (Adler, Goldoftas and Levine, 1999) by embracing complexity and managing through 
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local decision-making only. Increasing autonomous control, by increasing the number of 

agents managed through distributed control, was found to improve logistic performance 

especially as complexity increased (Scholz-Reiter, Görges and Philipp, 2009). 

Key criticisms for distributed systems are myopic decision-making, sub-optimal global 

solutions, chaotic and unpredictable outcomes, inability to represent complex hierarchical 

structures (Heragu et al., 2002; He, Zhang and Li, 2014; Monostori et al., 2014; Blunck and 

Bendul, 2016). As well as the issue of limited information and restricted computation capacity 

for distributed controllers (Bendul and Blunck, 2019); although distributed information 

structures are beyond the scope of this research, it is foreseeable for computational capacity 

to become a reduced issue as technology improves. Heterarchical with mediator structures 

aim to resolve some of these criticisms, agents representing central or global goals can 

influence a distributed system without having a rigid hierarchical structure, unlike hybrid 

systems. Mediator architectures overcome problems in providing globally optimised 

schedules and predictability in the presence of a large number of agents (Shen and Norrie, 

1999; Tharumarajah, 2001; Ouelhadj and Petrovic, 2009). 

Despite the existing research into distributed manufacturing systems, there have been few 

reported industrial or laboratory-based applications developed (Leitão, 2009). 

DaimlerChrysler implemented a self-organising flexible manufacturing system, based on 

MAS and job to machine negotiation. Although it achieved flexibility it was not widely 

implemented due to a poor economic business case and high cost of investment for a 

potential future benefit (Schild and Bussmann, 2007). In a non-manufacturing scenario, 

Maturana implemented a MAS distributed intelligent system to manage chilled water, 

ventilation and heating for US Navy Ships, reducing manning and improving readiness and 

survivability (Maturana et al., 2004). There have been very few implementations as suitable 

reconfigurable manufacturing systems are rare and slowly adopted, the cost of distributed 

systems is relatively high and the technology is relatively very immature compared to 

centralised systems (Leitão, 2009).  

Beyond technical reasoning for the low uptake of distributed systems, in the author’s opinion, 

there is a significant resistance from a commercial perspective. There is a very high 

associated risk with an unproven operating system that relinquishes control from 

management and delegates it to ‘intelligent objects’. Few business leaders would be willing 

to experiment with such systems, particularly as the proposed technical benefit is realised as 

volatility, complexity and size increase.  
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Looking forward many envisioned production systems of smart manufacturing are digitised 

and networked, e.g. Industry 4.0 and Internet of Things, but all have a common idea of 

assigning tasks of production control to intelligent objects (Bendul and Blunck, 2019).  

Rule-based systems 

Distributed rule-based systems allow decision-making and autonomy on the lowest level 

whilst using simple rule-based heuristics to determine actions. A simple example of these 

local information methods is a job selecting a capable machine with the shortest queue, this 

is known as the Queue Length Estimator (Scholz-Reiter, Rekersbrink and Görges, 2010). 

Pendharkar proposes a learning multi-agent system for dynamic scheduling using a genetic 

algorithm, where a knowledge base of rules is periodically updated (Pendharkar, 1999). 

Kanban systems are also rule-based heterarchical structures, where jobs are pulled along 

the production line according to demand from downstream,  the decision when to transfer a 

job to the next workstation is executed locally (Krishnamurthy, Suri and Vernon, 2004). 

Biological systems 

Biological Manufacturing Systems (BMS) are inspired by nature and biological systems, for 

example, ant colonies; many naturally lead to Machine Learning tools such as Artificial Neural 

Networks. Mak and Shu explain biomimetic design and how it is best utilised when one can 

abstract a strategy from biological phenomena (Mak and Shu, 2004). Emergent synthesis is 

the design principle behind BMS, which aims to employ biological features such as self-

organisation, learning, and evolution to solve complex class 2 & 3 synthesis problems (Ueda, 

Hatono, et al., 2001); BMSs have demonstrated self-organisation, adaptation and evolution 

traits (Monostori et al., 2016a). 

BMSs employ mechanisms to mimic biological behaviour and give rise to emergent 

outcomes; attraction fields and evolution are two examples discussed. To create a self-

organising shop-floor organisation, allocating jobs via Automated Guided Vehicles (AGVs) to 

machines, Ueda et al. use attraction fields to strengthen a machine’s desire for a particular 

type of job transported by AGVs (Ueda, Vaario and Fujii, 1998). Attraction fields are very 

similar to ant colony pheromone-based systems, these use a pheromone type mechanism to 

inform other agents of ‘success’ (Ueda, Kito and Fujii, 2006). BMS that mimic ant colony 

pheromone systems use agents that leave ‘traces’ of information about the performance at a 

location, which ‘evaporates’ using a moving average of pheromone data (Scholz-Reiter, 

Görges and Philipp, 2009). This can be used for jobs to plot successful routes dynamically 

through a manufacturing system, informing other job agents. Evolution is a commonly 

replicated mechanism from biological systems and has given rise to advanced machine 
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learning methods, the main adopted principle utilises a system and its elements that evolve 

through generations or over time. The two types of evolution are DNA based, passed through 

generations, and lifetime based, via experience acquired within an agent’s lifetime (Ueda et 

al., 2000).  

Further, biologically inspired systems go far beyond the organisational applications discussed 

in this thesis, computer science has adopted and successfully created machine learning 

methods, which have in turn been applied to BMS and other engineering applications. From 

the basis of evolution and learning, mechanisms such as Genetic Algorithms and Neural 

Networks are commonplace. Ueda et al. use an Evolutionary Artificial Neural Network (EANN) 

for conflict resolution in simultaneous process planning and scheduling to significantly 

improve decision-making (Ueda, Fujii and Inoue, 2007). Each machine is given an EANN to 

improve its decision-making strategy by selecting its next job given a changeover time for 

dissimilar jobs. 

Free market systems 

Free market systems incorporate free market principles to obtain a globally efficient and 

dynamic system, many low-level mechanisms have evolved from the Contract Net Protocol 

(Smith, 1980). Free market economies, unrestricted by centralised planning, have been 

praised for being globally efficient whilst developing and improving through innovation; 

despite all individuals pursuing individual selfish goals. Socialist and communist economies, 

on the other hand, suffer from the inability to transfer information, uncertainty in how to 

optimise and are unresponsive to a change in conditions (Dias and Stentz, 2000). The main 

motivation for evaluating the economics of complex systems is to study the self-organising 

driving forces that act within an economic system (Kaihara et al., 2018). Distributed and 

centralised manufacturing systems can be compared to free market and communist 

economies at a high abstraction level; the global efficiency and reactivity of free market 

economies is the basis for free market manufacturing systems. Constituent agents are 

regarded as suppliers and demanders in an artificial economy, these achieve Pareto optimal 

solutions in a perfectly competitive market (Kaihara et al., 2018). Dias and Stentz 

implemented a free market system in a robotic coordination and control problem, using a 

bidding mechanism for inter robot negotiation, and found traits of self-organisation, learning, 

and adaption as well as observing competitive and cooperative behaviour depending on the 

circumstances (Dias and Stentz, 2000). They found that complementary robots, with different 

skill sets, were cooperative, however, similar robots were competitive.  
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Free market systems, using a bidding negotiation mechanism, can apply game and team 

decision-making theories to improve or better understand system performance and 

behaviour. Lin and Solberg implemented a market-based distributed multi-agent system for 

manufacturing control, creating a highly adaptive framework for real-time shopfloor control 

(Lin and Solberg, 1992). Agents make decisions based on local incomplete knowledge, this 

is studied in game and team decision-making theories and can be applied to manufacturing 

scenarios (Cantamessa, 1997). Cantamessa also highlighted the trade-off between agent 

autonomy and external regulation of overall system behaviour, as well as the complexity of 

negotiation procedures and the cost of implementation. Pendharkar used game theory to 

design distributed wireless logistics networks in a MAS and relates them to a manufacturing 

job shop scenario. Pendharkar concludes that non-cooperative (competitive) MAS systems 

are best when there are no clear dominant strategies and a high degree of problem complexity 

(Pendharkar, 2012). Leitão reviewed MAS for manufacturing and covers many market-based 

systems developed (Leitão, 2009). 

Free market systems have a natural parallel to some manufacturing scenarios where there 

are many non-coupled machines offering differentiated services. CPSs use smart resources 

that each have intelligence and can interact with their environment autonomously (Monostori 

et al., 2016a), additionally supply chains are moving towards decentralised cluster structures 

(Stevens and Johnson, 2015). Each of these types of systems could use a free market 

distributed planning and control system that aligns with their distributed design philosophy. 

A key argument against market-based distributed systems was stated by Parunak, that the 

use of a single utility function reduces a multi-dimensional complex reality into a single scalar 

coupled to a fully-instantiated choice (a fully delivered service at a given price), this is a large 

loss of information of complex future commitments (Monostori et al., 2014). 

On a low level, most free market systems use a permutation of the Contract Net Protocol, 

often through a bidding mechanism. The Contract Net Protocol process involves task 

announcement, bid process, the award of a contract for the task (Smith, 1980). This 

framework requests services from service providers, e.g. machines, for a specific task 

announced by a job, the bidding process from multiple resources for the task mirrors the free 

market. There have been improvements to the Contract Net Protocol, for example, Kádár’s 

cost factor adaptation on the resource level changes a resource’s cost according to its local 

state variables (i.e. status) and previous observations (Kádár and Monostori, 2001), this 

improves the allocative efficiency of the whole system as it introduces load balancing and 

differentiation of machines and jobs. Váncza et al. improve agent coordination by using rolling 

horizon planning for supply networks, incorporating an improved negotiation and payment 



 

40 

 

mechanism that attributes costs to the supplier or consumers, against the accuracy of their 

forecasts (Váncza, Egri and Monostori, 2008). 

The anarchic manufacturing system uses a free market architecture with a low-level 

permutation of Kádár’s contract net with cost factor adaptation; a full explanation of the 

anarchic manufacturing system is detailed in Chapter 4. 

Mediator architectures 

Heterarchical with mediator architectures are similar to hybrid systems that combine low-level 

autonomy with some centralised functions, here the centralised functions are specialist as 

opposed to guiding boundaries in hybrid architectures; which are hierarchical in global 

structure. Mediator architectures have been developed by extending the functionality of 

distributed systems to overcome their criticisms, and have been reported to balance 

centralised and autonomous distributed control to enhance the performance of decision-

making networks (Blunck et al., 2018). Mediator agents operate concurrently to localised 

distributed agents, actively resolving conflict and representing global system objectives. 

Mediator agents can advise, impose or update decisions made by other agents to satisfy 

global objectives or resolve conflict (Ouelhadj and Petrovic, 2009). Architectures that use 

central agents to facilitate communication, conduct brokering or matchmaking services are 

often called mediator architectures (Shen, 2002); these, however, can limit the autonomy of 

local agents by defining their operational boundaries (hybrid systems) or conducting 

intelligent processes for a local agent. 

Several propositions have been made to combine robustness, optimality, and predictability 

for dynamic scheduling in complex environments (Ouelhadj and Petrovic, 2009). MetaMorph 

I and II use mediator architectures in multi-agent systems, mediator agents either passively 

represent the system or actively facilitate scheduling and control. The proposed benefits 

include knowledge capitalisation which is achieved at the mediator level, reducing 

communication requirements, improving allocative efficiency through direct low-level 

communications, and flexibility and scalability arising from the architecture (Shen, Maturana 

and Norrie, 2000). Sun and Xue created a mediator architecture to respond to unforeseen 

disturbances, such as machine breakdown or operator absence. This was a dynamic reactive 

production scheduling mechanism in a match-up and agent-based collaborative approach to 

modify schedules (Sun and Xue, 2001). Sahin et al. created a rule-based heterarchical with 

mediator multi-agent system, where mediators represent a class or group of agents, for 

scheduling and control of machines and automated guided vehicles, realising on-line real-

time control (Sahin et al., 2017). 
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Mediator architectures have been criticised for their inability to represent complex hierarchical 

manufacturing systems, as they can only operate on a single level (He, Zhang and Li, 2014). 

This comment is relevant for manufacturing systems or supply chains that have been 

structured in a hierarchical manner; which is currently the common method with dealing with 

complexity. 

List of heterarchical, mediator and hybrid manufacturing systems 

Heterarchical, heterarchical with mediator and hybrid architectures all have some low-level 

inter-element decision-making and interaction. A list of existing systems in literature, 

displayed in Table 2-1, highlights research gaps and similar systems to anarchic 

manufacturing. Categorising aspects considered are architecture, mechanisms, application 

area and functionality. Architecture considers the structure of the system and entity 

interactions, and whether there are any additional or higher-level entities are structures 

imposed. Mechanisms consider how the interactions are structured, how they make decisions 

and communicate if applicable. 
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Table 2-1: List of heterarchical, mediator and hybrid structures 

Architecture Mechanisms Reference Application area Functionality 

Heterarchical BMS (Tang et al., 2011, 2018) Job/flow shop Scheduling, Control 

Heterarchical BMS 

(Ueda, Vaario and Ohkura, 1997; 

Ueda et al., 2000; Ueda, Hatono, et 

al., 2001; Ueda, Kito and Fujii, 2006) Job/flow shop Scheduling, Control 

Heterarchical Contract net protocol (Smith, 1980) Factory Scheduling, Control 

Heterarchical Contract net protocol (Kádár and Monostori, 2001) Job/Flow shop 

Production planning, 

Scheduling, Control 

Heterarchical Contract net protocol (Kádár et al., 2018) CM 

Production planning, 

Scheduling 

Heterarchical 

Contract net protocol, game 

theory (Zhang et al., 2017) CM, job/flow shop Scheduling, Control 

Heterarchical 

Contract net protocol, game 

theory (Cantamessa, 1997) Job/flow shop 

Production planning, 

Scheduling, Control 

Heterarchical Free market (Dias and Stentz, 2002) Multirobot Scheduling, Control 

Heterarchical 

Free market, Contract net 

protocol 

(Bruccoleri, Amico and Perrone, 

2003) RMS Control 

Heterarchical 

Free market, Contract net 

protocol (Lin and Solberg, 1992) Factory Scheduling, Control 
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Architecture Mechanisms Reference Application area Functionality 

Heterarchical 

Free market, Contract net 

protocol (Kim, Song and Wang, 1997) Job/ flow shop Scheduling, Control 

Heterarchical 

Rule-based, rationally 

bounded learning agents (Vrabič et al., 2018) 

Factory (process 

industry) Control 

Heterarchical Rule-based (Freitag, Becker and Duffie, 2015) CM, job/flow shop 

Production planning, 

Scheduling, Control 

Heterarchical Rule-based (Duffie, Prabhu and Kaltjob, 2002) Factory Scheduling, Control 

Heterarchical Rule-based 

(Scholz-Reiter, Rekersbrink and 

Görges, 2010) Job/ flow shop Scheduling, Control 

Heterarchical Rule-based (Windt, Böse and Philipp, 2008) Job/ flow shop Control 

Heterarchical Rule-based 

(Rekersbrink, Makuschewitz and 

Scholz-Reiter, 2009) Logistics Scheduling, Control 

Heterarchical 

Rule-based, Contract net 

protocol (Kádár et al., 2018) CM, RMS 

Production planning, 

Scheduling 

Heterarchical 

Rule-based, Contract net 

protocol (Li et al., 2018) RMS 

Production planning, 

Control 

Heterarchical 

Rule-based, learning, Contract 

net protocol (Vrabič et al., 2018) Factory Control 

Heterarchical with 

mediator Contract net protocol (Schild and Bussmann, 2007) Factory Control 



 

44 

 

Architecture Mechanisms Reference Application area Functionality 

Heterarchical with 

mediator Contract net protocol (Colombo et al., 2006) Factory 

Production planning, 

Scheduling, Control 

Heterarchical with 

mediator Contract net protocol (Shen, Lang and Wang, 2005) Factory 

Production planning, 

Scheduling, Control 

Heterarchical with 

mediator Contract net protocol (Guo et al., 2015) CM 

Production planning, 

Scheduling 

Heterarchical with 

mediator Contract net protocol (Caridi and Sianesi, 2000) Assembly 

Production planning, 

Control 

Heterarchical with 

mediator Rule-based (Sun and Xue, 2001) Factory 

Production planning, 

Scheduling 

Heterarchical with 

mediator Rule-based (Maturana et al., 2004) Industrial systems Control 

Heterarchical with 

mediator Rule-based (Yang et al., 2016) CM Scheduling, Control 

Heterarchical with 

mediator Rule-based 

(Sacile, Paolucci and Boccalatte, 

2000) Factory 

Production planning, 

Scheduling, Control 

Heterarchical with 

mediator Rule-based (Pendharkar, 2007) Factory Scheduling, Control 

Heterarchical with 

mediator 

Rule-based, Contract net 

protocol (Sahin et al., 2017) Factory Scheduling, Control 
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Architecture Mechanisms Reference Application area Functionality 

Heterarchical with 

mediator 

Rule-based, Contract net 

protocol (Wang et al., 2015) CM 

Production planning, 

Scheduling, Control 

Hybrid 

Fuzzy rule-based, Contract net 

protocol (Brennan, Fletcher and Norrie, 2002) Factory Scheduling, Control 

Hybrid Rule-based (Cristalli et al., 2013) Factory Control 

Hybrid Rule-based (Cheng et al., 2010) CM Scheduling 

Hybrid Rule-based (Valckenaers et al., 1999) Factory Scheduling, Control 

Hybrid Rule-based (Maturana and Norrie, 1996) Factory 

Production planning, 

Scheduling, Control 

Hybrid 

Rule-based, Contract net 

protocol (Parunak, 1996) Factory Scheduling, Control 

Hybrid 

Rule-based, Contract net 

protocol (Sousa and Ramos, 1999) Factory 

Production, 

Scheduling, Control 

Hybrid 

Rule-based, Contract net 

protocol (Heragu et al., 2002) Factory Scheduling, Control 
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The anarchic manufacturing system is a heterarchical free market system, using a 

permutation of the contract net protocol, for production planning and control of manufacturing 

systems. It can be applied to a wide range of scenarios, including assembly and product 

transition these has not been covered specifically in literature by a distributed system, as 

displayed in Table 2-1. Additionally, the listed free market heterarchical systems all only have 

a single budget consideration, or they only consider one transaction at a time, this provides 

insufficient adaptability to scenarios beyond those listed. This thesis uses the distributed 

anarchic manufacturing system and applies it to three manufacturing scenarios for production 

planning and control; simple discrete manufacture, assembly and product transition 

scenarios. 

2.5 Critique and research gap 

Smart manufacturing is the response to market demands and business objectives, which are 

creating an increasingly volatile and complex environment. Traditional methods, using 

centralised and hierarchical decision-making structures, are used heavily in practice, 

however, they are rigid; as discussed in section 2.4. Rigidity can be exacerbated by using 

simplifying and hierarchical structures for complex problems; this is discussed in detail in 

Section 2.3.2. The extreme alternative uses distributed systems, the aforementioned 

literature review, most notably Section 2.4.4, proposes distributed system benefits in direct 

contrast to hierarchical systems; high flexibility, robustness, and adaptability in complex 

environments. Hybrid and mediator architectures, although a promising mixed alternative to 

hierarchical and fully distributed systems, have not been investigated as the thesis aims to 

extend the extremes of knowledge within distributed systems. Evaluating a purely distributed 

system will clearly determine the impact of distributed structures when it is void of any 

centralised structure or agents, avoiding the argument of whether an observable 

characteristic is attributable to the centralised or distributed aspect of a system. Figure 2-12 

graphically categorises the organisational structures for planning and control, of these a 

distributed ‘anarchic’ system is compared to hierarchical and centralised systems in this 

thesis. Removing all centralised authorities eliminates their role in decision-making, this 

enables a clear contribution to characterising distributed systems. 
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Figure 2-12: Production planning and control architectures 

Distributed systems are largely untested, most existing research has focused on simple 

discrete manufacture and particularly for highly theorised scenarios such as job shops and 

flowshop problems; this is evidenced by the broad review of distributed systems in Section 

2.4.4. These provide value in baselining performance but have little resemblance to real-world 

problems or significantly expand the realm of practicable knowledge. There is a significant 

research gap in understanding distributed system performance in more complex and 

advanced scenarios. Literature review Section 2.4.4 reveals that there are no distributed 

systems considered to solve assembly or transition scenarios. Further investigation into 

distributed systems is required to understand the behaviour and characteristics to remedy or 

avoid faults and exploit benefits. This will increase knowledge of distributed systems and 

subsequently improve understanding of where best to deploy them.  

The distributed systems reviewed are all underpinned by emergent synthesis (Váncza and 

Monostori, 2017) and have predominately been rule-based, biomimetic or free market; no 

system is significantly more researched than another. In economics, perfectly competitive 

free market systems, through the general equilibrium theory, guarantee a Pareto optimal 

solution (Kaihara et al., 2018). Although these systems consider a long-term static view, it is 

worthwhile to consider whether a free market system can be successfully applied to 

distributed manufacturing in a dynamic environment. Of the three logical solution 

architectures, in the author’s opinion and discussed in Section 4.3, free markets have the 

greatest opportunity due to its malleability and ability to form sophisticated mechanisms; 

improving the opportunity to counter criticisms of distributed systems, most notably myopic 

behaviour (Blunck and Bendul, 2016). Biologically inspired systems, forming biological 

manufacturing systems, have self-optimising traits and are not constrained within defined 

rule-based systems. However, they may suffer in highly dynamic and customised scenarios 

and are unable to create highly sophisticated mechanisms; this was found by Scholz-Retier 

et al. on comparing rule-based systems against a BMS based on ant colony pheromones 

(Scholz-Reiter, Görges and Philipp, 2009). This, in the author’s opinion, is due to the BMS 

using historic information, e.g. ant pheromone trails, to determine current decision-making. 
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However, the scenario may have changed, and recent past information is unsuitable for 

current decisions impacting near future actions, ultimately hindering decision-making due to 

a lack of adaptability to a scenario. Free market type systems should be well understood by 

the business community, as an agent’s profitability-oriented decisions reflect business 

management decisions. There is a large area of knowledge within economics and game 

theory that can be used to understand and develop the mechanics of anarchic manufacturing 

due to the free market architecture.  

A new distributed free market system was developed for anarchic manufacturing. Although 

anarchic manufacturing uses a free market architecture and the contract net protocol as other 

systems have, extensions have been required to improve flexibility, ability to manage 

complexity and adaptability to scenarios. This is due to existing free market systems only 

having one budget consideration or an even narrower view of a single transaction or 

operation. 
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3 Research framework 

3.1 Introduction 

This chapter outlines the research boundaries and scope, followed by the methodology and 

tools used. The research boundaries and scope present the manufacturing problem, scenario 

and solution structures investigated and outline the remit of work conducted to achieve the 

research objectives. Finally, the research methodology and tools used are presented and 

justified. 

3.2 Research boundaries and scope 

3.2.1 Boundaries 

The research conducted applied a distributed decision-making structure, using the anarchic 

manufacturing system, to production planning and control problems. The three manufacturing 

scenarios considered were simple discrete manufacturing, assembly and product transition; 

the intersection of these aspects are summarised in Figure 3-1. The decision-making 

structures considered are hierarchical, centralised and distributed (anarchic), the focus on 

anarchic manufacturing is justified in Section 2.5 and the hierarchical and central systems are 

detailed in Section 3.3.2. 

 

Figure 3-1: Research boundaries for problem area and scenario 
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The manufacturing problems considered were selected to best represent the benefits for 

distributed systems, as well as simplifying the problem area so that there were no non-

decision-making factors that would overshadow the functionality of the decision-making 

system. The feasibility of distributed systems for production planning and control, on 

considering the boundaries as the four walls of a factory, is feasible given smart 

manufacturing technologies, as discussed in Section 2.2. However, contextual considerations 

for manufacturing processes, maintenance repair and overhaul and quality manufacturing 

problems may overshadow any benefit and generalised conclusions are more difficult to 

ascertain. Similarly, business strategy and supply chain management aspects could have 

external and uncontrollable factors that significantly impact operations.  

Distributed systems are proposed to be highly flexible and self-organising when faced with 

dynamic environments, subsequently highly volatile and complex scenarios were selected to 

evaluate the system against. The future application of anarchic manufacturing is likely to be 

within smart manufacturing, given the required enabling technologies and proposed operating 

models. However, the anarchic system is evaluated against existing manufacturing 

scenarios, rather than theoretically proposed  smart manufacturing scenarios, as it is likely 

that these scenarios and their fundamental planning and control problem characteristics will 

still exist in the smart manufacturing era. 

The manufacturing scenario initially selected, simple discrete manufacturing, was used to 

baseline the performance of the anarchic manufacturing system as well as showcase the 

most relevant scenario for the proposed benefits of distributed systems; as discussed in 

Section 2.4.4. These initial experiments focus on significant planning and control problem 

characteristics, as directed by the literature review above. Subsequently, two further 

scenarios were selected to significantly extend the knowledge of distributed systems by 

applying anarchic manufacturing to scenarios that are similarly complex but more difficult to 

apply distributed structures to; the selection of these is discussed in detail with additional 

background literature at the beginning of Chapters 6 and 7. Alternate manufacturing 

scenarios could have been selected, however, evaluating three is sufficient to demonstrate 

the capabilities of the anarchic manufacturing system. 

3.2.2 Scope 

The scope of research, informed by the literature review, focuses on building a theoretical 

model of free market structures in production control and conducting simulation-based 

experiments based on this theory. The methodology is explored in detail in section 3.3.  

Analytical methods for evaluation have not been considered, as for the complicated and 
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complex manufacturing scenarios that are of interest to this thesis, the techniques are 

underdeveloped and detract from the focus of the work. 

Functional areas beyond production planning and control are excluded; these are 

summarised as management decisions, human decision-making and manufacturing 

processes. Management decisions vital to operating a factory are excluded, these consider 

the strategic and long-term decisions, for example capital expenditure and resourcing 

decisions. Human decision-making is assumed to conform to agent decision-making models, 

as defined within anarchic manufacturing, and not exhibit irrational behaviour. Manufacturing 

processes are outside of the scope, this covers process planning and the specific operations 

and activities conducted. Process planning is assumed to be predefined; operations are 

defined by the resources required and duration. The breakdown of constituent parts and the 

optimisation of these manufacturing processes, for example speeds and feeds, are not 

considered and are assumed to be encapsulated within the duration of an operation; an 

operation is only considered as either completed, in progress or outstanding. 

Smart manufacturing and associated implementation considerations are beyond the scope of 

this thesis and are not expected to impact decision-making systems; these include smart 

manufacturing technologies, information systems and communication protocols. Smart 

manufacturing technologies that provide enabling infrastructure, for example Internet of 

Things and edge devices, are not specified or considered in this research; they are assumed 

to provide appropriate functionality. The implementation of the anarchic manufacturing 

system may be considered in future work. Information systems for data handling and 

recording are beyond the scope of this thesis, for example Enterprise Resource Planning 

systems. Similarly, communication protocols are expected to function appropriately, all agent 

messages are simple and are expected to be fulfilled by communication protocols. 

3.3 Methodology and tools 

3.3.1 Research structure 

The literature review in Chapter 2 identified existing knowledge and research gaps, by 

highlighting the greatest concerns within the academic community for smart manufacturing 

and distributed planning and control structures. Through an informed understanding of 

distributed systems, the theoretical framework for anarchic manufacturing was created as a 

suitable distributed planning and control system; a full and detailed explanation is provided in 

Chapter 4. Subsequently, this distributed system was tested relative to centralised and 

hierarchical systems using simulation experiments. Simulation experiments provide an 

efficient way to evaluate decision-making logic and structures for manufacturing scenarios 
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that would elicit complex behaviours; an explanation as to why simulation was selected, the 

type of simulation and simulation platform was selected is detailed in section 3.3.2. Multiple 

experiments were conducted for three different general application scenarios, evaluating 

different important factors to provide a more rounded characterisation of distributed systems; 

these experiments are detailed in Chapters 5 to 7. 

3.3.2 Literature review methodology 

There are three parts to the literature review: smart manufacturing background, the planning 

and control problem and solution architectures. The first two help establish the context of the 

research and the last area informs the methodology. The review identified significant interest 

in smart manufacturing production planning and control as well as the strengths and 

weaknesses of existing and previously researched distributed systems. The review was seen 

as the most effective method to ascertain this knowledge and guide subsequent theoretical 

and experimental research, as smart manufacturing is still an immature concept and there 

are very few distributed systems in industry. Therefore, there would likely be little gained 

through observing and evaluating current industrial practice for a future problem area yet to 

be encountered. Rather the proposed environment within smart manufacturing and 

documentation of problems and proposed solutions provided greater insight. 

3.3.3 Theoretical framework and prototype methodology 

 In order to address the gap identified in the literature review, the theoretical framework for 

anarchic manufacturing has been developed based on free market distributed systems as 

reported in Section 4.2. The justification for selecting a free market architecture is provided in 

the literature review critique in Section 2.5. Free markets have not been reported to have a 

significant advantage over other solutions (rule-based and biological), however, existing 

research distinguishes its promising adaptable nature (Cantamessa, 1997; Dias and Stentz, 

2000; Kaihara et al., 2018); the affordances of free markets are provided in Section 4.3.2. 

This selection process focused on development and adaptability of the distributed 

architecture for complex problems and scenarios, this was most suitable for the thesis aim 

and objectives which concerns adapting for a range of manufacturing scenarios. 

The theoretical framework determines anarchic manufacturing system’s stance on several 

important factors, these factors were identified to ensure the free market architecture would 

function appropriately given the manufacturing problem and scenario context. These 

underlying principles of the theoretical framework, detailed in Section 4.2, enable the 

development of a prototype system and all subsequent adaptations. 
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The embodiment of the theoretical framework through a prototype system is outlined in 

Section 4.4, the core structure and mechanics were adapted as appropriate for each 

manufacturing scenario in Chapters 5 to 7. Negotiation, using a permutation of the contract 

net protocol (Smith, 1980), was selected over alternative methods such as auctions. The use 

of direct agent to agent negotiation maintains agent independence. An agent can easily baulk, 

i.e. resist or refuse an offer, through direct negotiation and maintains independence on 

offering a price. Rather auction methods rely on competitive bidding from a game theoretic 

perspective (Lorentziadis, 2016), where agents directly influence each other’s bids. The need 

to employ game theoretic devices was avoided to reduce unnecessary system complexity 

and to follow on from the existing body of research using negotiation methods. Adapting the 

core system to a given manufacturing scenario, in accordance with the theoretical framework, 

demonstrates the system’s adaptability. 

3.3.4 Experimentation methodology and tools 

Chapters 5 to 7 of this thesis experimentally evaluate the proposed theoretical framework for 

anarchic manufacturing detailed in Chapter 4. The experimental methodology selected 

simulations over analytical methods, subsequently agent-based modelling was selected as 

the simulation method and the AnyLogic simulation modelling platform was chosen, as 

discussed below. 

Experimental method selection 

There are a few ways to evaluate manufacturing systems, this is depicted in a tree structure 

in Figure 3-2 by Wang and Chatwin, it conveys that the most practicable methods use 

mathematical models employing analytical or simulation methods as the alternatives are 

either too costly or are relatively very inefficient to evaluate new systems. Simulation 

experiments were used to analyse anarchic manufacturing system’s behaviour and 

performance, this method was preferred over analytical methods. Analytical methods 

employing queuing theory models, based on Markov processes, consider the stochastic 

arrival and service processing and can predict logistic performance (Nyhuis et al., 2005). 

Nyhuis et al. note from practical experience the predictive performance from queuing models 

does not reflect reality, most likely due to violations of model premises, which render system 

behaviour unable to be modelled by standard distribution functions; these violations include 

incomplete information and dynamic system behaviour. Wang and Chatwin state it is widely 

accepted that mathematical or analytical modelling techniques are insufficient for detailed 

analysis of complex manufacturing systems. This is due to an inability to accurately describe 

stochastic elements and dynamic systems behaviour, futhermore optimisation is not possible 

through simplifying assumptions (Wang and Chatwin, 2005). 
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Figure 3-2: Methods for evaluation manufacturing systems (Wang and Chatwin, 2005) 

Simulation is a widely used technique for the exploration, design and optimisation of complex 

production systems (Nyhuis et al., 2005). Nhyuis et al. state that many authors hold the 

opinion that using simulation exclusively can provide the means to evaluate the effects of 

system load variants, disturbances, changes in logistic routing rules, structure variants or 

alternative resources sufficiently accurately. Additionally, simulations have a unique 

advantage that enables the analysis of (real) systems that cannot be described by means of 

deductive models, as they are too complex and have a low cost on initial model construction 

in comparison to deductive models (Nyhuis et al., 2005).  

The broad range of manufacturing scenarios explored in this thesis all evaluated different 

decision-making structures in a dynamic environment with many inter-dependent system 

elements which cumulate into a complex manufacturing system. Given the dynamic and 

complex nature of the manufacturing scenarios, simulation is reported to be the most effective 

and suitable means for evaluating the different systems. Although for simulation no general 

validation is possible, analytic models only provide validity in steady operating states (Nyhuis 

et al., 2005), therefore validity through analytical models cannot be extended to the dynamic 

scenarios investigated. The reduced modelling effort (Nyhuis et al., 2005) is an additional 

benefit and has allowed the author to investigate the broad range of scenarios. 
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Simulation method selection 

Simulation experiments evaluated simplified real-world problems, with a view that 

increasingly realistic factors can be added; therefore, experiments must have the ability to 

include stochastic factors, such as operation duration and resource failure rates. There are 

three main simulation methods: system dynamics, discrete event and agent-based modelling. 

System dynamics represent resources and dynamics within a system as a set of stocks and 

flows between them, it captures feedback and delay processes to model system behaviour 

using stocks to aggregate representations of entities (Swinerd and McNaught, 2012). Discrete 

event simulation is a modelling technique where only changes in the system states are 

represented, a queue of events that affect the system state are modelled based on their 

timings (Alrabghi and Tiwari, 2016). ABM systems comprised of autonomous and interacting 

agents can augment traditional deductive and inductive reasoning as discovery methods 

(Macal and North, 2008). ABM is widely used in social sciences and economics, it provides 

each agent with its own thread of control and macro behaviour is not modelled, rather it 

emerges from micro-decisions of individual agents (Siebers et al., 2010). 

The three simulation methods have differing strengths, however, the most important 

difference for this research is the model’s level of abstraction. Low levels of abstraction are 

required as each modelled entity or system element must be able to store information locally 

and execute its own decision-making procedures, as such the most appropriate simulation 

method for this functionality is ABM (Borshchev, 2013). This low level of decision-making is 

possible with discrete event simulation; however, ABM is the most suited modelling 

architecture as its structure relies on distributed decisions and interactions. The social 

sciences and economics research communities have embraced ABM, as they can leverage 

the agent interaction aspects to create emergent outcomes (Siebers et al., 2010). 

Simulation platform selection 

The AnyLogic platform was selected as the most appropriate ABM platform after a study 

comparing three ABM platforms; AnyLogic, MATLAB and NetLogo. The study incrementally 

advanced the model functionality until there were observable differences. AnyLogic was 

selected due to the reliance of synchronous time models for NetLogo and MATLAB and 

greater real-world representation during simulations with respects to executing events. 

The ABM platform selected must have the following capabilities: sensing and interacting with 

its environment, making decisions, messaging and interacting with other agents, pursue local 

objectives and best reflect real-world environments. Key features of the three systems are 

summarised below. 
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AnyLogic 

• Java based platform with Unified Modelling Language 

• Agent-based modelling, discrete event, system dynamics modelling and 

simulation 

• Preferentially an asynchronous model, synchronisation can be achieved 

• FIFO / LIFO / random event scheduling and execution for simultaneous events 

MATLAB 

• Bespoke MATLAB modelling language 

• Cell arrays were used to model agents, effectively by storing agent data and 

variables, all methods/functions were global 

• Synchronisation on time steps and loops required for inter-agent dependent 

decision-making, iterate for all agents, update their state by observing other 

agents – agents call functions and ask other agents to call functions 

NetLogo 

• Bespoke NetLogo high-level modelling language – limited capabilities and 

basic structure of code 

• Purpose built agent-based modelling tool by an academic 

• Agents cannot message each other or change each other’s parameters, only 

read each other’s parameters, a lot of data is stored in the central global agent 

that all can change and read 

• Synchronous time stepped simulation, stepping through all agents 

sequentially or in a random sequence. Like MATLAB, need to cycle through 

decision-making multiple times due to inter-agent dependent decision-making 

The experimental setup incrementally advanced the models until the first observable 

difference was encountered; this modelled a distributed system which advanced towards the 

anarchic manufacturing system used in this thesis. The three models created are summarised 

in Table 3-1. 
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Table 3-1: Platform comparison models 

Model Features 

M1 Heuristic dispatch rule, next available MT by queue length 

Single op / job, same duration and 1 capability 

4 MTs, kept at 94% MT utilisation, 3 jobs / batch 

M2 Simple tendering process 

MT cost based on queue length, bid reduction on tenders since last 
win 

Job threshold is budget / ops remaining, increment on tenders since 
last win 

M3 2 ops / job, same duration and capability required 

MT bid on utilisation and queue length, reduction on bid success 

Observable differences started at model 3 where synchronisation and event firing sequence 

created a small noticeable difference between AnyLogic versus MATLAB and NetLogo. As 

MATLAB and NetLogo have a sequential and synchronous event firing system, each agent 

evaluates its state and executes decision-making in sequence. AnyLogic follows 

asynchronous event firing, scheduling is determined by the order the event was created and 

queued to the discrete event engine.  

The noticeable difference occurred when one operation has finished and the agent tenders 

its next operation, but simultaneously a new batch of jobs are created and tenders; however, 

as the create jobs event is queued first this action is executed and subsequently the tendering 

of new jobs occurs before the retendering of the older job. For NetLogo and MATLAB, each 

job would sequentially evaluate its state and decision-making, i.e. tendering, by job number; 

therefore, the older job always has precedence.  

The AnyLogic platform was selected based on synchronisation and the ability to reflect real-

world manufacturing. Time step synchronisation constrains the simulation to run on a discrete 

time basis, and repeated decision-making loops within a timestep are required but can create 

an infinite loop or an incorrect model if not enough are run. Agents are interdependent within 

a timestep, this poses an issue for more complex and intertwined models as to whether 

enough decision-making loops have been run. AnyLogic’s asynchronous modelling allows all 
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subsequent events to be executed ‘as they occur’. Real-world discrete part manufacturing 

has several differences to typical models; there are few simultaneous events, events occur 

on a continuous time basis, and decision-making, information transfer and almost all events 

are not instantaneous. 

AnyLogic nomenclature 

The AnyLogic platform uses statecharts within agents to determine actions and processes, 

Chapter 4 provides a detailed explanation of anarchic manufacturing and how it uses agent-

based statecharts. Figure 3-3 below details the nomenclature for statecharts, how an agent 

can transition between states. AnyLogic can operate on both a discrete and continuous time 

basis, using a continuous time basis is preferred to avoid simulation modelling issues 

associated with concurrent activities; such as deadlocking.  

 

Figure 3-3: AnyLogic statechart nomenclature 

Prototype system development 

The anarchic manufacturing system is proposed in Chapter 4 and developed throughout the 

thesis on application to a specific manufacturing scenario. The design principles of the system 

are discussed and stated in Chapter 4, and these are adhered to throughout the system’s 

development. The basic negotiation protocol is defined in Section 4.4, this is retained 

throughout the system development. The factors that contribute to decision making and feed 

into the negotiation protocol are developed to consider the specific scenario. This most 

notably has developed the profitability calculations and the decision whether to collaborate 

with other similar agents. The specific adaptations are documented in the experimentation 

chapters next to the contextual considerations for the specific manufacturing scenario. 
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Experimental structure and metrics 

Simulation experiments were used to evaluate system behaviour in given scenarios, allowing 

emergent behaviour. Due to the current immaturity of the research field into distributed 

systems, general and theorised scenarios and experiments were used rather than any 

industry specific scenario. This minimised noise within experimentation and enabled clear 

evaluation of the anarchic manufacturing system against specific problem characteristics. To 

gain confidence, multiple iterations were run for each set of experimental parameters which 

had stochastic variables within them. For high-level comparative evaluation, between 

distributed and centralised systems, a characteristic was embodied and varied as an 

experimental parameter; for example, to change complexity, scale could be varied. The rate 

of change in performance was analysed to understand the system’s behaviour against an 

experimental parameter, which infers the behaviour against the characteristic the parameter 

embodies and enables a relative characterisation. The lack of direct absolute performance 

comparison, unless the scenario allowed it, reduced the need for equivalence between tested 

systems. Thereby allowing different system maturities, and mechanisms of varying 

sophistication, to be used for this high-level comparison. 

As the majority of experimentation contained the manufacturing system within the four factory 

walls, traditional manufacturing metrics were used for consistency with other studies. Most 

experiments, to maintain steady state stability, determined an expected system utilisation 

(through a fixed arrival rate of orders/jobs). Therefore, metrics for Work In Progress (WIP), 

backlog, Time In System (TIS) and waiting time were most appropriate to evaluate 

performance; scenario specific metrics were also used, as appropriate. Where possible plots 

displayed the 95% confidence interval of the mean to provide statistical confidence in 

analysing the results and conclusions drawn. These were shown as areas around the mean 

and could not be aggregated to a single value due to the dynamic nature of the systems and 

scenarios. 

All experiments undertaken, including those with a very large number of agents (>1,000 

agents) were all conducted on a computer locally and did not use more than 8Gb of memory. 

The simulations, created on the AnyLogic platform, all took at most a few minutes to run, with 

a full suite of simulations for a particular experiment, including 50 iteration runs for each 

parameter set, took at most two days to complete and save all results. 

Comparative centralised and hierarchical system 

To compare the anarchic manufacturing system, simple but representative centralised and 

hierarchical systems were used. Both used dispatch heuristics to manage a dynamic 
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environment effectively (Ouelhadj and Petrovic, 2009) and have master/slave relationships 

between tiers of management layers. The two systems are depicted diagrammatically in 

Figure 3-4, the centralised system considered all resources simultaneously and allocated a 

job accordingly; e.g. by allocating to the next available resource according to the Earliest Due 

Date (EDD) heuristic and prioritisation. The hierarchical system had a predefined structure 

that allocated jobs to the tier below; this is representative of simplification strategies that use 

structure to reduce the complexity of problems. At first a job, at the global and highest tier, is 

allocated to the next layer, for example a cell, all subsequent layers allocated downwards 

until a job is allocated to a specific resource (machine). These tiered allocation processes 

followed a dispatch heuristic similar to the centralised system. A job, on completion of an 

operation, reported back to the cell and if that cell had the correct capability for its next 

operation it is retained. However, if the cell did not contain the correct capability the job 

reported to the next tier upwards until the tier contained the capability to complete the next 

operation, the job is subsequently allocated downwards. 

 

Figure 3-4: Centralised and hierarchical systems 

  



 

61 

 

4 Anarchic manufacturing 

4.1 Introduction 

Production planning and control is currently achieved through centralised decision-making 

structures, simplification and creating hierarchies have been the traditional methods for 

dealing with complexity (Heragu et al., 2002). Creating a flat distributed system to embrace 

complexity directly opposes traditional methods and is a bold proposal.  

The distinguished engineer W. E. Deming clearly identified the need for central management 

and avoidance of competition in systems. 

‘A system must be managed. It will not manage itself. Left to themselves components become 

selfish independent profit centres and thus destroy the system. The secret is cooperation 

between components toward the aim of the organization. We cannot afford the destructive 

effect of competition’ (Deming, 2000). 

Despite these assertions, centralised and hierarchical structures have been criticised for 

being too rigid and inflexible for modern manufacturing demands. This is likely to be 

exacerbated by the trajectory of smart manufacturing. Distributed systems reject Deming’s 

systems thinking, they propose highly adaptive and flexible production systems. These 

systems are void of centralised system management and leave the components to become 

selfish and competitive profit-centres, but they create emergent globally effective production 

systems as discussed in Section 2.4.4. 

Free market structures for distributed systems apply free market principles for global 

efficiency, agents representing suppliers and demanders in an artificial economy achieve 

Pareto optimal solutions in a perfectly competitive market (Kaihara et al., 2018). A hypothesis 

is proposed that free markets can be applied to dynamic production planning and control for 

manufacturing as a feasible solution, which may bring benefits associated with distributed 

systems.  

The research motivation for this chapter is to detail the hypothesis and underlying principles 

of anarchic manufacturing, create the theoretical framework and outline the structure and 

main mechanisms as a prototype system. This chapter fulfils the second and third research 

objectives outlined in Section 1.1.  

This chapter proposes that applying free markets to dynamic production planning and control 

manufacturing problems will be effective. Subsequently, anarchic manufacturing system’s 
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design principles and attributes are argued for covering structure, type of mechanisms used 

and its position for competitive and cooperative behaviour and ethical decision-making. 

Following this the core structure and negotiation process are detailed for anarchic 

manufacturing; this is the basis for the system and adapted as required for experiments in 

Chapters 5 to 7. 

4.2 Hypothesis and definition of anarchic manufacturing 

In economics, perfectly competitive free market systems, through the general equilibrium 

theory, guarantee a Pareto optimal solution (Kaihara et al., 2018); this is for a long term 

perspective that can be viewed as static. Mapping suppliers to manufacturing resource 

providers and consumers to jobs requiring operations to a free market structure, this thesis 

proposes the hypothesis below: 

Free markets provide an effective distributed structure to solve dynamic production planning 

and control problems for manufacturing. 

It is conceivable that free market structures in a distributed system for dynamic manufacturing 

scenarios will be effective, however, Pareto optimality, through stabilising negative feedback 

(Kaihara et al., 2018), cannot be guaranteed as the dynamic nature suggests there is no long 

term or final state. The anarchic manufacturing system is used to evaluate this hypothesis 

and is defined as a distributed system that through independent agents, which all have 

decision-making authority and autonomy, participate in a free market environment to solve 

manufacturing problems. This distributed system is likely to bring reported benefits of 

distributed systems, as documented in Section 2.4.4. 

4.3 Design principles and attributes of anarchic manufacturing 

Clarifying the theory behind anarchic manufacturing provides insight into the purpose and 

idealised functionality of the free market distributed production planning and control system. 

Aspects beyond system structure and mechanics are considered, fundamental issues 

associated with distributed and multi-agent systems are discussed; these cover competitive 

and cooperative behaviour and ethical decision-making.  

4.3.1 Distributed decision-making authority and autonomy 

A distributed system that provides absolute delegated decision-making authority and 

autonomy enables system elements to act and make decisions as they choose to (Shen et 

al., 2006), behaving as anarchists. As defined in Section 2.4, any nominally distributed system 

with centralised decision-makers or active influencers are considered to have hybrid 
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structures or mediator architectures. This subsection discusses how independent decision-

making authority and autonomy enables emergent synthesis, adaptive traits, directly 

individually customisable decisions and removes some drawbacks of centralised systems 

such as central communication reliance and single points of failure. 

Emergent synthesis (Ueda, Markus, et al., 2001), as discussed in Section 2.4.4, utilises 

individual decision-making to locally solve problems, this in turn influences global behaviour 

to resolve system imbalances. The anarchic manufacturing system uses a free market 

architecture where agents pursue profit driven decision-making; this localised action results 

in a global emergent synthetic outcome. As a consequence distributed systems exhibit traits 

of self-organising, self-healing and adaptive behaviour (Shen et al., 2006; Scholz-Reiter, 

Görges and Philipp, 2009; Bendul and Blunck, 2019). 

Due to independence, individually customisable decision-making is available, therefore 

customising system elements is easily achieved. This allows resources to adapt to individual 

variations in performance and for highly dynamic variations in product requirements (Shen 

and Norrie, 1999). 

Decision-making authority and autonomy removes the reliance on centralised communication 

and removes single points of failure (Colombo et al., 2006). Independence, with direct agent 

communication removes any communication or structure centrally and single points of failure 

improving robustness. 

4.3.2 Free market structure and mechanisms  

Free market structures use free market principles for global efficiency, agents representing 

suppliers and demanders in an artificial economy achieve Pareto optimal solutions in a 

perfectly competitive market (Kaihara et al., 2018). Resource agents represent suppliers, 

offering their services for a fee, job agents represent consumers (demanders) and require 

services to complete necessary operations and have currency to pay for services. This 

translation between a distributed manufacturing system and free markets allows the 

distributed system to benefit from free market attributes, most notably an ‘invisible hand’, 

introduced by Adam Smith, that guides the demand and supply of goods to a free market 

equilibrium (Samuelson, 1997). This is observed as an allocatively efficient system and a 

global emergent synthetic outcome. Anarchic manufacturing uses ‘artificial’ agents as the 

predominate decision-makers, as well as humans as appropriate, and assume these agents 

are all selfish and profit maximising. 



 

64 

 

Direct agent to agent negotiation based on Smith’s contract net protocol (Smith, 1980), 

explained in detail in Section 4.4 below, maintains agent independence. Negotiation is the 

mechanism for agreeing to a transaction within the free market, trading a service (to be 

performed in the future) at a cost (to be transferred on successful completion of the service). 

The determination of whether to accept the proposed price of a service is governed by a 

profitability assessment. Many of the distributed systems reviewed in Section 2.4.4, and as 

listed in Table 2-1, use permutations of the contract net protocol negotiation methods rather 

than alternatives such as auctions, this method was selected to maintain agent independence 

as discussed in Section 3.3.3.  

The free market employed in the anarchic manufacturing system has one currency, here all 

factors impacting the completion of a product is translated into currency by each agent; 

through its individual perception of value associated with each factor. For example, expected 

operation start time could be perceived differently and therefore valued differently with 

respects to currency. This highlights the inherent agent individualism in anarchic 

manufacturing, discussed above in Section 4.3.1. Additionally, anarchic manufacturing 

utilises the free market and single currency to achieve scalability and adaptability for 

increasing complexity. Further factors, for example social and environmental concerns 

detailed in Section 2.2.5, can impact the market when translated to the single currency, 

however, consideration for these factors is beyond the scope of this thesis. 

The overarching mechanism for agents, in the free market structure, is to make decisions in 

order to maximise profit. There are varying ways that an agent can calculate profit, these are 

inherently malleable to a given scenario, providing adaptability. Profitability calculations can 

consider a long term horizon, the lifetime for an agent or other forecasting factors, this will 

reduce myopia; which is a significant criticism to distributed systems as discussed in Section 

2.4.4. Lifetime profitability considerations were applied in Chapter 6 for assembly 

experimentation to reduce myopia. This was the downfall for the BMS used by Scholz-Reiter 

et al., which used ant pheromones conveying recent history for decision-making, rather the 

comparative rule-based system was superior which considered resource queues relating to 

the near future (Scholz-Reiter, Görges and Philipp, 2009). Additionally, the profitability 

assessment can be adapted to consider multiple conflicting objectives by translating these 

into a single currency; this was employed during experimentation for multiple conflicting 

objectives, as reported in Section 5.3.3. This high-level objective that guides all mechanisms 

provides sufficient mechanism malleability to any given scenario whilst retaining individual 

perspectives on the environment. 
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4.3.3 Competitive and cooperative behaviour 

A free market harnesses the benefits of competitive behaviour, suppliers offering the same 

or similar goods bring market equilibrium by competing on price or offering a differentiated 

service. Using competitive agents is beneficial when there are no clear dominant strategies 

and high problem complexity (Pendharkar, 2012) as well as when agents are similar to each 

other (Dias and Stentz, 2000). Increasing competition in distributed systems has been found 

to improve performance through experimentation, this is presented in Section 5.3.1, in direct 

contrast to Deming’s assertion that the destructive effects of competition cannot be afforded 

(Deming, 2000).  

Dias and Stentz observed that complementary resources with different skills are best when 

cooperative (Dias and Stentz, 2000). Additionally, for more advanced scenarios similar 

agents may benefit from selective cooperation, for example in natural teamworking 

environments or when there is a global and individual benefit to all parties. Additional 

mechanisms achieve cooperation between like agents as appropriate. However, they all 

retain a profit maximising perspective to align with the free market architecture. A profitability 

assessment can be used to decide whether to cooperate with similar agents; as employed 

for dynamic batching in Chapter 7. 

Certain teamworking scenarios are explored in this thesis, Chapter 6 experimentation for 

assembly and Chapter 7 for product transition evaluate natural teamworking scenarios where 

cooperation between job agents is locally and globally beneficial. Joining jobs for assembly 

requires agent cooperation, to group jobs that have similar goals (to become a particular 

model), this reduces divergence in objectives and therefore decision-making direction. 

Similarly, the product transition experimentation used a dynamic batching mechanism to 

benefit from economies of scale. Cooperation requires ethical decision-making to not 

undermine other agents, similarly a competitive free market requires ethical transactions to 

function efficiently; these decision-making ethics are explained in the next section. 

4.3.4 Ethical decisions and interactions 

An ethical and just society is required for a capitalist economy to function sustainably (Ikerd, 

2008). With respects to a free market containing a population of agents, ethical decisions and 

interactions are required for the effective and efficient function of the free market. Ethically, 

agents must not deceive another agent in order to undermine or take advantage; for example, 

collusion, price fixing or intentional misinformation. This is feasible in the proposed 

manufacturing system, predominately comprised of agent decision-makers whose decisions 
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and actions are defined through models; therefore, their behaviour is known and created to 

be ethical. 

Ethics are required for a distributed system to avoid top-down or centralised administrative 

bureaucracy. Additionally, this will ensure that the agents avoid disrupting the free market by 

operating against profit-maximisation, as discussed in the aforementioned Section 4.3.2. No 

research was conducted into unethical exploitation or flawed communications, i.e. 

unintentional miscommunication, as it was considered beyond the scope of the thesis, see 

Section 3.1 for research scope and boundaries. 

4.4 System structure and core mechanics 

This section provides the system structure and core mechanics of the anarchic manufacturing 

system. The general system structure is provided, followed by agent descriptions and finally 

the negotiation structure and mechanisms used; this is the base structure and mechanics of 

anarchic manufacturing. The anarchic manufacturing system is adapted and applied to each 

application scenario for experimentation; adaptations are detailed in the relevant application 

scenario within Chapters 5 to 7. 

4.4.1 General structure  

Anarchic manufacturing’s core structure represents a free market by utilising jobs and 

machine tools (MT), where jobs negotiate the service of a MT to complete a particular 

operation. For ease of explanation, all entities within the system can be considered to be 

inside the four walls of a factory where jobs at first embody orders that fulfil operations, via 

MTs, to become finished products; the majority of experiments within this thesis consider the 

anarchic system within a factory. Jobs arrive periodically, each job has a predefined list of 

operations to complete and is provided currency (a budget) to become a finished product, on 

completion jobs exit the system. A MT can complete an operation for a job at a cost, they are 

restricted to operate on one job at a time and can build a queue of jobs which are processed 

on a FIFO basis. 

Jobs negotiate the services of a MT for its next operation by communicating directly to MTs 

that have the correct capabilities to fulfil the operation. The job and MTs then negotiate, 

primarily following the contract net protocol (Smith, 1980). On a high-level, the negotiation 

steps are: the job requests a cost for the operation from all capable MTs; the MTs reply with 

a cost; the job evaluates these and if the lowest cost MT is within a spending threshold; the 

contract is awarded to the MT and the job joins the back of the queue for this MT. Figure 4-1 
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diagrammatically explains this process. On completion of an operation the job repeats the 

process for the next and all subsequent operations. 

 

Figure 4-1: Anarchic manufacturing system’s negotiation explanation 

4.4.2 Agent descriptions 

Jobs 

Jobs have a predetermined sequence of operations to complete and only plan the next 

operation rather than determining a route through the whole manufacturing system. 

Additionally, jobs are given a budget to spend on consuming services; they are also instructed 

to spend so that they have sufficient budget to complete all their future operations. If there 

are r jobs in the system and job i is represented by ji., the job set is composed as:  

 𝐽 = {𝑗1, 𝑗2, … , 𝑗𝑟} (4.1) 

To determine the available budget to spend on a given operation, the job accounts for both 

its remaining budget and future operations, to ensure its ability to complete all operations. γi 

(t) denotes the remaining budget for job i at time t. ψi (t) denotes the remaining number of 

operations for job i at time t. So, if λi (t) is the allocated budget for an operation for job i at time 

t, the job allocates remaining budget equally to all remaining operations, following the 

equation: 

 
𝜆𝑖(𝑡) =

𝛾𝑖(𝑡)

𝜓𝑖(𝑡)
 

(4.2) 
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Job agent behaviour is governed by a statechart, a simplified version is shown in Figure 4-2. 

For a job’s next operation, of capability Ci, it negotiates with capable MTs, of capabilities Ck, 

through a tendering and bidding process. The set of MTs who qualify to tender is evaluated 

as: 

 𝑀𝑖 𝐵𝑖𝑑 = {𝑀𝑘|𝐶𝑖 ∈ 𝐶𝑘} (4.3) 

 

Figure 4-2: Job agent's AnyLogic simplified statechart 

MTs tender and bidding is evaluated over a certain number of bidding rounds, to see whether 

the lowest cost MT of Mi Bid is below the job’s threshold. The Job’s cost threshold for each 

budget in bidding round n, αi n (t), is increased by the factor ρi (t) between each bidding round; 

ρi (t) is the Job’s appetite for risk at time t. The initial thresholds are evaluated by: 

 𝛼𝑖 𝑛(𝑡) = 0.9𝜆𝑖(𝑡) (4.4) 

All subsequent bid rounds, n+1, cost thresholds are evaluated by: 

 𝛼𝑖 𝑛+1(𝑡) = 𝜌𝑖(𝑡) ∙ 𝛼𝑖 𝑛(𝑡) (4.5) 
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where the risk factor ρi (t) is a function of budget remaining and operations remaining at time 

t denoted as: 

 𝜌𝑖(𝑡) = 𝑓(𝛾𝑖  (𝑡), 𝜓𝑖(𝑡)) (4.6) 

Appetite for risk and the subsequent willingness to spend more contribute to the free market 

mechanism, where price rises as demand increases against a fixed supply. Additionally, the 

concept of risk highlights the agent’s intelligence and changing behaviour in response to its 

dynamic environment. If successfully allocated to an MT, the job will join the queue for the 

MT for processing, if unsuccessful the job will wait to find a suitable MT at a different time. 

On completing all operations, the job will exit the system. Whilst a job is waiting and unable 

to find a suitable MT, the budget is regularly increased. Within a free market, a job with 

insufficient funds would not be processed at all, a regular budget increase negates this for 

manufacturing, as all jobs must be processed eventually even those with an initial low priority. 

Machine tools 

Machine Tool agents are service providers on a chargeable basis, enabling Jobs to complete 

operations and to prioritise operations on behalf of the whole system; a job assigned with a 

high budget indicates its priority and value to the manufacturing system. Assuming there are 

q machines in the system, the set of machines is defined as: 

 𝑀 = {𝑚1,𝑚2, … ,𝑚𝑞} (4.7) 

 

Figure 4-3: Machine Tool agent's AnyLogic simplified statechart, (a) operational (b) bidding 
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The cost for an operation on machine k at time t is denoted by βk (t), Mk has capabilities 

denoted as Ck. MTs operate operational and bidding processes simultaneously, these are 

governed by the two statecharts operating concurrently; simplified versions are shown in 

Figure 4-3. Figure 4-3 (b) governs the bidding process, of an initial cost βk n (t), where n is 0, 

which is a function of the MT’s current utilisation and any subsequent rebidding costs, 

calculated as: 

 
𝛽𝑘 𝑛(𝑡) =

𝛽𝑚𝑎𝑥
3

(𝜔𝑘(𝑡) + 𝑚𝑎𝑥 (
𝑄𝑐𝑘(𝑡)

𝑂𝑝𝑝𝑙𝑎𝑛
, 1) + 𝑚𝑎𝑥 (

𝑄𝑒𝑘(𝑡)

𝑂𝑝𝑝𝑙𝑎𝑛
, 1)) 

(4.8) 

where βmax is a predefined maximum MT cost, ωk (t) is the utilisation of MT k at time t, Qck (t) 

and Qek (t) are the current and expected queue lengths respectively for MT k at time t and 

Opplan is the maximum number of operations a MT could fulfil within its planning horizon. The 

expected queue length, Qek (t), provides consideration to the immediate and near future and 

is calculated by: 

 

𝑄𝑒𝑘(𝑡) =∑
∑ 𝐽𝑖 𝑗(𝑡)
𝑗𝑟
𝑖=1

∑ 𝑅𝑘 𝑗
𝑚𝑞

𝑘=1

𝑛𝑐

𝑗=1

 

(4.9) 

Where nc is the number of j capabilities in the system, Ji j (t) is the number of jobs requiring 

capability j at time t, such that: 

 
𝐽𝑖 𝑗 = {

 1 𝑖𝑓 𝑗𝑜𝑏 𝑖 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑗

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4.10) 

And the number of resources (MTs) with capability j is Rk j, a binary value defined as:  

 
𝑅𝑘 𝑗 = {

 1 𝑖𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑘 𝑝𝑟𝑜𝑣𝑖𝑑𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑗

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4.11) 

The MT’s cost is lowered between bid rounds by δk (t), which is a function of recent bid 

success at time t, and defined by: 

 𝛿𝑘(𝑡) = 𝛿𝑚𝑎𝑥(1 − 𝜏𝑘(𝑡)) (4.12) 

Where τk (t) is the recent bid success of MT k at time t and δmax (t) is the maximum bid 

reduction. MT costs for the second and all subsequent bid rounds, n+1, is calculated as: 
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 𝛽𝑘 𝑛+1(𝑡) = 𝛽𝑘 𝑛(𝑡) − 𝛿𝑘(𝑡) (4.13) 

All functions used in the anarchic manufacturing model are directionally correct, providing a 

pragmatic and functional device reflecting the free market analogy; the optimised function 

construction and parameter selection are beyond the necessities of this research but are 

identified in future work. Figure 4-3 (a) models the MT’s operational status, which includes 

the possibility of failure. 

4.4.3 Negotiation structure 

The negotiation framework follows a free market architecture for distributed systems (Dias 

and Stentz, 2000), with low-level negotiation mechanisms are a combination and adaptation 

of the contract net protocol with cost factor adaptation (Kádár and Monostori, 2001). There is 

no predefined structure or objective to maximise flexibility; resources (machine and human) 

and jobs (materials evolving to products) interact locally to achieve personal goals. 

Local negotiation mechanisms use a bidding format where a job invites MTs that are capable 

of fulfilling its operation tendered, of capability Ci. Initially a job is prepared to pay a preset 

fraction of its budget, λi (t) following equation 4.2 above, and calculates an initial threshold 

below this to try to gain market surplus, αi n (t) is the job’s threshold that bids are evaluated 

against and follows equation 4.4. MTs fluctuate their cost βk n (t) according to their utilisation, 

ωk (t), and current and expected queues, Qck (t) and Qek (t), following equation 4.8. If the 

lowest cost MT βn is below the job’s cost threshold, αi n (t), the Job is assigned to the MT, if 

not a second round of bidding is started.  

For the second and all subsequent rounds of bidding, the job and MTs reconsider their bids, 

jobs increase their cost threshold, by the job’s risk factor ρi (t) calculated by equation 4.6, and 

MTs lower their cost by an amount they are willing to concede δk (t), according to its bid 

success, τk (t), as indicated by equation 4.12. This mechanism maximises profits for both 

agent types but still allocates operations. The rebidding mechanism is repeated for a certain 

number of rounds, and if unsuccessful the job gives up and waits before restarting the 

tendering process. Figure 4-4 shows the negotiation framework through a flowchart where n 

is the bid round, α the job cost threshold, ρ a risk factor that changes over time, γ the overall 

budget, λ the operation budget ψ number of operations remaining, C the capability of a job’s 

operation of the MT’s capabilities, β the MT cost, σ the MT cost reduction and MT utilisation 

and bid success are ω and τ respectively. The subscript notation is i the Job number, k the 

MT number, j the operation capability and n the bid round. 
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Figure 4-4: Anarchic manufacturing negotiation framework 

4.5 Summary 

The literature review in Chapter 2 identifies the challenges for smart manufacturing production 

planning and control as well as the need to evaluate free market distributed systems. This 

chapter defines design principles and then in Section 4.2 how they are fulfilled and embodied 

as an anarchic manufacturing system. First, the design principles are detailed, explaining why 

agent independence is required, why free markets and mechanisms are used and the 

system’s stance on competitive and cooperative behaviour and ethical decision-making. The 

free market structure, with agent decision-making authority and autonomy, facilitates the rise 

of emergent synthetic behaviour and has adaptable mechanisms for differing scenarios. The 

overarching profit maximising mechanisms allow selfish agents to operate in the free market, 

their mechanisms for calculating profitability and possible collaborative actions to achieve 

greater profitability enable system development. The system does rely on ethical decisions 
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and actions for the free market to work efficiently, these are ensured through predefined 

models to govern behaviour. This theoretical underpinning enables the embodiment of 

anarchic manufacturing, the system structure and core mechanics are explained in Section 

4.4. The structure, agents and negotiation protocol are explained in detail, providing the basis 

for the anarchic manufacturing system. 

To test and evaluate anarchic manufacturing, its performance is compared relative to 

centralised and hierarchical manufacturing systems in the following three chapters, Chapters 

5 to 7. The theorised characteristics and affordances of anarchic manufacturing are analysed, 

for both the system adaptations for a given scenario and the behavioural outcome. The 

discussion in Chapter 8 evaluates both the theoretical and experimental performances of the 

anarchic manufacturing system, critiquing the system.  
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5 Application 1, simple discrete manufacture 

5.1 Introduction 

The first scenario to evaluate the anarchic manufacturing system considers simple discrete 

manufacturing in flexible manufacturing environments. Discrete jobs are independent of one 

another, although they may share the same operation characteristics; they do not need to 

join as an assembly or be delivered simultaneously and there are no sequence-dependent 

setup/changeover times. Jobs are provided with a sequence of operations to complete and 

their sole interaction is through sharing resources. 

The research motivation for this chapter is to provide a baseline for the performance of the 

systems in a known environment, but also extend knowledge into specific scenarios that have 

not been evaluated for distributed systems. This and the following two chapters fulfil the third 

and fourth research objective outlined in Section 1.1. Job shop and flowshop style 

environments are well researched and often used as benchmark problems for algorithm 

development (Taillard, 1993), for this reason novel permutations of these manufacturing 

environments were evaluated to provide a baseline. Three scenarios and experiments were 

evaluated that highlight key characteristics of the planning and control problem in smart 

manufacturing, the first considered mass customisation and scale to increase the problem 

complexity. The second evaluated complicatedness and complexity, complicatedness was 

increased by reducing machine tool capability and therefore resource flexibility, and 

complexity was increased by adding non-coupled operator selection to the resource chain. 

The final scenario and experiment considered whether the systems can manage multiple and 

conflicting objectives, by adjusting the cash and on time delivery objectives. The first two 

apply the manufacturing systems in steady state environments, allowing the simulations to 

ramp up and stabilise, rather the third applies disruption as a step change in objectives 

creating a more dynamic environment. This progression provides the performance baseline 

and tests thesis hypothesis, stated in Section 4.2, that the free market distributed system can 

be applied to dynamic environments. 

This chapter first reviews additional background literature, then details through each 

experiment in turn, stating the problem considered, adaptations to the systems used, 

experiment setup and parameters, displays and discusses experiment results, finally the 

chapter summarises outcomes from all experiments. A summary table of additional elements 

to the anarchic system introduced in this chapter are indicated below in Table 5-1. 
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Table 5-1: Additional anarchic system elements introduced in Chapter 5 

Element Meaning 

LFi Lateness Factor for job i, a consideration for a job of whether it will 

be early, meet, be late for its individual due date 

Ei Expected due date for job i 

Di Due date for job i 

OTObj On Time Objective, the global on time objective performance, i.e. 

whether the system is reaching its on time objective 

CScr Cash score, the score considering the cash / revenue position 

against the cash / revenue objective 

CFi Cash Factor for job i, a consideration for a job of whether the global 

cash position (cash score) will impact its cost threshold 

κi Completion percentage for a job, considering the number of 

operations completed and still outstanding  

 

5.2 Scenario background 

Recent manufacturing system production models have shifted their focus; from production 

maximisation to cost reduction, process standardisation to mass customisation and 

production-centric to service-oriented (Lu, Xu and Xu, 2014). Smart manufacturing business 

objectives aim to satisfy greater demand volatility, mass customisation and accommodate 

non-manufacturing concerns, e.g. social and environmental. One of the most challenging is 

mass customisation; providing custom goods and services at mass production prices, but this 

has yet to be fully realised (Ferguson et al., 2018); partly because variants drive complexity 

(Vogel and Lasch, 2016). For further background to mass customisation please see section 

2.2.5. 

Manufacturing complexity is poorly defined, many definitions attempt to classify types of 

complexity, such as dynamic and structural, or use entropy and heuristic approaches to 

quantify complexity (Kuzgunkaya and ElMaraghy, 2006; Elmaraghy et al., 2012). Increasing 

constraints and reducing flexibility increases system complicatedness, Kuzgunkaya states 

reduced versatility and flexibility of resources increases system complexity (Kuzgunkaya and 

ElMaraghy, 2006). Considering an entropic definition of complexity (Huaccho Huatuco et al., 

2009), as the number of agents (scale) or shared resources required per operation increases, 

the number of states the system can be in rises exponentially, denoted as O(aN) an 
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exponential complexity problem. For further background to manufacturing complexity please 

see section 2.3.2. 

The multicriteria decision-making approach TOPSIS is used as a comparative tool in this 

study, to represent traditional methods where multiple distinct alternatives are available. Free 

markets use a different methodology, where the price of a good / service encodes all factors 

associated in providing the good / service into a single concise value, allowing locally optimal 

decisions based on low-bandwidth information (Dias and Stentz, 2000). Anarchic 

manufacturing, based on the free market, has been adapted to consider multiple objectives 

by influencing the amount a job is willing to spend on its next operation (bidding thresholds). 

5.3 Experimentation 

5.3.1 Mass customisation and scale 

Mass customisation at scale is a business objective within smart manufacturing. This entails 

individual job customisation to suit a customer, manufactured in batches of one, at a very 

large scale. To distil the problem down to its characteristics it is evident, as customisation and 

scale increase, complexity increases. Increasing customisation, reflected as greater random 

and diverse operational requirements and durations, increases uncertainty and therefore 

problem complexity from a planning and control point of view (Elmaraghy et al., 2012). Taking 

an entropic view of complexity, scale directly increases the complexity of a system, as there 

is an exponentially increasing number of states the system can be in (Huaccho Huatuco et 

al., 2009). The anarchic manufacturing system was compared against centralised systems, 

with hierarchical and flexible structures. Figure 5-1 summarises the scenario and 

experimental parameters diagrammatically, indicating the experiment variable parameter 

inputs, the general scenario structure, the decision-making authority structures evaluated, 

and metrics analysed. 
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Figure 5-1: Mass customisation and scale experiment summary 

System adaptations 

The only adaptations for the anarchic system, defined in section 4.2 for this experiment, 

allowed for jobs to factor in distance and transferring time into the machine tool cost, to prefer 

closer MTs. This change is highlighted in Figure 5-2, where the job threshold is evaluated 

against the lowest MT cost multiplied by a distance factor, which accounts for distance to the 

MT. 
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Figure 5-2: Mass customisation and scale adjusted negotiation framework 

The centralised systems, hierarchical and centralised flexible as defined in section 3.3.2, use 

a FIFO dispatch rule and allocates jobs to the next available and capable resource or 

hierarchy level (decision makers within the hierarchical system only considered the pool of 

jobs within its range of control in the immediate level below). The hierarchical system had 

three levels, global, cell and MT and maintained roughly 10 MTs per cell. MTs were allocated 

to cells by their location. 

Experimental framework 

The overall experimental setup followed the general experimental structure stated in Section 

3.3.4, it involved continuous job arrivals to maintain a holistic 50% MT utilisation and achieve 

a steady state environment. Each job had four sequential operations, the capabilities and 

durations of these are varied, see variable parameters below. Overall, there were eight 

operational capabilities (A-H) of the same nominal duration. MTs had two capabilities (e.g. 

capability C & D); they were located randomly in the modelling space. On completing all 

operations, jobs left via a central ship point. Key fixed experimental parameters are 

summarised in Table 5-2. 
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Table 5-2: Mass customisation and scale experiment fixed parameters 

Fixed parameter Level 

Operations / job 4 operations 

Operation duration nominal 10t 

System utilisation 50% 

No. operation capabilities 
(classifications) 

8 

Capabilities / MT 2 

Two experimental parameters were varied, the degree of job operation customisation and 

system scale. Operation customisations were varied by duration and capability required; this 

parameter is denoted as OpCust. For OpCust = 1, homogenous jobs were produced with 

identical and deterministic durations with sequential operational capability requirement (i.e. 

A-B-C-D or E-F-G-H); for OpCust = 2 durations were random uniformly varied, 10t (𝒰 [7.5, 

12.5]); for OpCust = 3 durations were random uniformly varied, 10t (𝒰 [5, 15]), and capability 

of each operation was random uniformly selected from all capabilities (A-H); these OpCust 

parameter levels are summarised in Table 5-3. The second variable parameter is scale, 

denoted as Scl and summarised in Table 5-4, levels were: Scl = 1 at 40 MTs, Scl = 2 at 80 

MTs, Scl = 3 at 800 MTs. The experiment evaluated all possible combinations of OpCust and 

Scl, each experiment was repeated for ten runs, each run kept the same random inputs. The 

metrics recorded were normalised WIP, this by MT i.e. average queue size; and waiting time, 

which is lead time less operational time (randomly varied) i.e. time for moving and queuing. 

Table 5-3: Mass customisation and scale experiment, operation customisation variable 

parameter 

Operation customisation 
parameter level 

Duration Operation capability 
sequence 

OpCust = 1 10t A-B-C-D or E-F-G-H 

OpCust = 2 10t (𝒰 [7.5, 12.5]) A-B-C-D or E-F-G-H 

OpCust = 3 10t (𝒰 [5, 15]) A-H uniform randomly 
assigned for each 

operation 
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Table 5-4: Mass customisation and scale experiment, scale variable parameter 

Scale parameter level No. MTs 

Scl = 1 40 

Scl = 2 80 

Scl = 3 800 

Results and discussion 

The experimental results were averaged for all runs for each combination of OpCust  

(operation customisation) and Scl (scale), Figure 5-3 displays the WIP / machine tool results 

and Figure 5-4 displays the job waiting time results. At a high level, these metrics demonstrate 

that the centralised system remains consistent for all experiments, rather both the hierarchical 

and anarchic improve with scale. The absolute superior performance of the anarchic systems 

is evident, as is the very poor hierarchical cellular system which never reaches system 

stability. 

WIP / MT results, shown in Figure 5-3, displays a clear trend of improving anarchic 

performance, as WIP / MT decreases on increasing parameter levels and complexity, and the 

hierarchical cellular system is consistently poor. The flexible centralised system retains a 

consistent performance. Anarchic system’s improving performance is likely to be an emergent 

outcome of the free market architecture; an increase in competition improves overall system 

efficiency. Increasing scale increases system complexity and difficulty to become allocatively 

efficient, the result that the anarchic system improves with scale and therefore complexity, 

under certain scenarios, is very promising. The hierarchical cellular structure is clearly the 

worst to fulfil mass customisation, the restrictive architecture heavy detriments performance. 
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Figure 5-3: Mass customisation and scale WIP / MT results 

Waiting time results show a similar outcome, displayed in Figure 5-4, whereby the hierarchical 

system performs significantly worse, rather the flexible centralised and anarchic perform 

consistently; with the anarchic being superior in large-scale scenarios (Scl = 3 at 800 MTs). 

The outcomes are clear from the probability densities and the 90% population mark. The 

consistency of performance for the centralised and anarchic system is positive, however, the 

hierarchical cellular structure’s long tail is unacceptable for most manufacturing scenarios. 



 

82 

 

 

Figure 5-4: Mass customisation and scale waiting time results 

Contrary to the traditional methods to deal with complexity, by creating hierarchical structures, 

a single centralised method or an anarchic distributed system is better. Further levels of 

hierarchy and cell structures significantly impede overall performance; they will likely restrict 

flexibility and will not be able to manage the large complexity associated with mass 

customisation. Anarchic manufacturing provides a novel approach to solving mass 

customisation through free market principles.  

This experiment, evaluating mass customisation and scale, has shown that under certain 

conditions, where operations become increasingly diverse through a larger duration range 

and capabilities for operations are randomly assigned, the anarchic system performs best 

and improves as scale increases; all systems reacted similarly to increasing customisation.  

5.3.2 Complicatedness and complexity 

Modern smart manufacturing, as it moves away from dedicated mass production lines to 

smaller batches and flexible manufacturing production models, will become more complex 

(Lee, Rahimifard and Newman, 2004). The rise in complexity will be compounded through 

the proposed solution that uses smart factories, utilising advanced digital technologies and 
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systems such as the Internet of Things (Bi, Xu and Wang, 2014) and Cyber-Physical Systems 

(Monostori et al., 2016a). The number and combinations of system elements, their states and 

capabilities to be managed will dramatically increase, resulting in a significantly more complex 

planning and control problem.  

This experiment increased complicatedness, by reducing machine tool flexibility, and 

increased complexity, by mandating a non-coupled operator to the resource chain. Increasing 

constraints and reducing flexibility increases system complicatedness, Kuzgunkaya 

compares several manufacturing system configurations and states reduced versatility and 

flexibility of resources increases system complexity (Kuzgunkaya and ElMaraghy, 2006). 

Using an entropic view of complexity, reducing the flexibility will not increase the system 

states exponentially, hence the author is describing this restriction as complicatedness. The 

need to increase the resource chain, from selecting a MT to also selecting an operator from 

a pool of shared resources does increase the problem complexity; resulting in an exponential 

increase in options (Huaccho Huatuco et al., 2009).  

The experiment is summarised in Figure 5-5, identifying the variable parameters and planning 

and control systems used. The capabilities of MTs is reduced and the number of resources 

required in the resource chain is increased. The anarchic system is compared to a centralised 

system, and WIP and job waiting time are the metrics analysed. 

 

Figure 5-5: Complicatedness and complexity experiment summary 
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System adaptations 

The anarchic manufacturing system has been adapted so that when the resource chain 

requires an operator, the MT bid for an operator reflecting job to MT negotiation; this is 

diagrammatically summarised in Figure 5-6 as a two stages negotiation. Using the negotiated 

cost between the job and resource 1 plus surplus budget accrued by resource 1, each 

resource tendered and negotiated the next resource along the chain. Otherwise, the anarchic 

manufacturing system is unchanged. 

 

Figure 5-6: Resource chain two stages negotiation 

The centralised system managed all resources centrally, allocating to the next available MT 

on a FIFO basis. For multiple resource scenarios, the job is allocated to resource 1 which is 

then allocated to resource 2, via the same dispatch rule. 

Experimental framework 

The experiment simulated a job shop style environment, with complete route flexibility, the 

jobs had four operations to complete. All operations had the same random uniform duration 

of 15t (𝒰 [10, 20]) and uniformly allocated one of the 16 capabilities modelled. A stable steady-

state environment was created through fixed parameters, which maintained nominal MT 

utilisation at 68% through a fixed job arrival rate. Resources had multiple and overlapping 

capabilities, the spread of these capabilities was varied according to the variable experiment 

parameter. For the anarchic system, all jobs were given the budget of the expected average 

cost for all operations. A summary of parameter levels is shown in Table 5-5. 



 

85 

 

Table 5-5: Complicatedness and complexity experiment fixed parameters 

Fixed parameter Level 

Operations / job 4 operations 

Operation duration (random uniform distribution) 15t (𝒰 [10, 20]) 

System utilisation 68% 

No. operation capabilities (classifications) 16 

No. MTs 16 

No. operators (if required) 16 

Global information was publicly available to both systems including number of resources, 

number of resources of each capability, capability required of the jobs’ operations. Variable 

parameters reflected an increasingly complicated and complex system, by reducing flexibility 

through reducing resource capability and increasing the number of shared resource types 

required respectively; these reflect real-world challenges. The MT capability parameter 

(MTCap) was denoted by the proportion of all capabilities covered by machine resources; 

reflecting specialised machines for more difficult operations or lower cost fewer flexible 

resources. The number of resources parameter required per operation (NoR), machine and 

operator, was extended by reducing the operators’ capabilities, see Table 5-6 for variable 

parameter levels. 
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Table 5-6: Complicatedness and complexity variable parameters 

Variable parameter Levels Value 

Machine capability 
coverage (MTCap) 

1  1 (all capabilities/MT) 

2 1/2 (8 capabilities/MT) 

3 1/4 (4 capabilities/MT) 

4 1/8 (2 capabilities/MT) 

Number of resources 
(operator capability 
coverage), (NoR) 

1 1 (MT only) 

2 2 (MT and operator at 1/2 coverage)  

3 2 (MT and operator at 1/4 coverage) 

Twelve experiments were run at four levels of variable parameter MTCap (MT capability)  

 and three levels of parameter NoR (number of resources and operator capability), each 

experiment was run ten times. Each run had identical random number inputs for direct 

comparability. 

Results and discussion 

Simulation results, analysing Work In Progress and job waiting time, suggest the anarchic 

system adapts better to increasing complexity as the resource chain increases, although both 

deteriorate equally as complicatedness from constraints increase. WIP and waiting time 

reflect the system state and the job’s perspective; both have a lower the better measurement. 

WIP results, smoothed with a rolling average and then averaged for all runs with a 95% 

confidence interval, are seen in Figure 5-7. Job waiting time was plotted on histograms with 

an 80-percentile marker, with a reduced vertical scale insert for clarity, shown in Figure 5-8. 

Practical implementation considerations notwithstanding, both systems are directly 

comparable; as one is not significantly more sophisticated or provided unfairly advantageous 

information. 
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Figure 5-7: Complicatedness and complexity WIP results 

 

Figure 5-8: Complicatedness and complexity lead time results 

The anarchic system is expected to have superior job allocation, due to better foresight. 

Considering a contrived scenario of two machines, one of capability ‘A’ and the second of ‘A’ 

and ‘B’, and ten jobs, the first four with capability requirement ‘A’ and the rest ‘B’. The 

centralised system would allocate the first four jobs evenly and the remaining to machine 2; 



 

88 

 

whilst the anarchic would consider all upcoming jobs and allocate the first four to machine 1 

and the rest to machine 2, this is allocatively more efficient and applied in a more realistic and 

complex scenario in this thesis. 

WIP results show that as variable parameters MTCap and NoR increase, both centralised 

and anarchic system’s performances deteriorate, however, the centralised system 

deteriorates more as NoR and complexity increases. For NoR = 1, there is no clearly 

discernible difference. However, an addition to the resource chain immediately causes the 

centralised system to perform worse. This is extended as the secondary resource’s capability 

reduced (NoR = 3 with operator capability at 1/4 coverage) and maintained as machine 

capability was reduced. This is at the edge of the 95% confidence interval plotted, observed 

by comparing the mean value of one system to the confidence interval range (coloured area) 

of the other. 

The anarchic system’s superior performance as NoR parameter increases and maintained as 

MTCap increases suggest that both systems are comparable as the system becomes more 

complicated, however, as complexity increases the anarchic can manage coordination 

complexity better. Increasing the number of resources required along the resource chain 

significantly increases the relative complexity from an O(a1) to O(a2). As (machine capability) 

rises complicatedness increases, and the deteriorating performance difference is maintained; 

which hinders the flexibility of both systems in a similarly.  

The distribution of job waiting time is largely similar for centralised and anarchic systems, 

particularly in the worst performing scenarios, during less constrained scenarios (MTCap < 

4) the centralised system performs slightly better. Waiting time impacts a manufacturer’s 

service level, typically denoted by fulfilling a percentage of orders within a specified time. 

Service level contributes to the metric On Time In Full (OTIF) (Ahmad and Dhafr, 2002), 

where there is a greater desire to avoid lateness rather than promote fulfilling early. The 80-

percentile marks, shown in Figure 5-8, are broadly similar; however, at the most constrained 

case of MTCap = 3 (1/8 capability coverage per MT) and worst performing, both systems 

perform very similarly. Suggesting that system constraints impact anarchic system’s waiting 

time more, but as waiting time becomes a crucial factor both systems perform similarly. 

The results indicate that as complexity increases, the anarchic system is likely to be able to 

deal with complexity and perform better. This is likely to be true for increasingly uncertain 

scenarios that move from complicated to complex and chaotic, the anarchic should be more 

adaptable. 
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5.3.3 Multiple conflicting objectives 

Manufacturers and businesses are faced with multiple and often conflicting objectives, as 

discussed in Section 2.3.3; two of which are meeting due dates (minimizing lateness) and 

maximizing cash. Businesses need to ensure there is sufficient cash to cover expenditure 

and remain solvent, additionally customers demand a high On Time In Full (OTIF) 

performance, usually expressed as a percentage of orders delivered. Considering a short-

term horizon, conserving cash can be achieved by delaying expenditure on operations, 

however, delaying operations will impact lateness. Alternatively, ensuring a job is completed 

by its due date is likely to entail advanced processing of operations and consequent early 

expenditure of cash, thereby reducing a manufacturer’s cash position. These issues relate to 

scheduling and control, which determines the allocation of resources to tasks over given time 

periods (Stecca, 2014), i.e. the timing of specific operations. 

This experiment evaluates how different organizational structures can resolve multiple 

conflicting global objectives, and specifically assesses the capability of the anarchic 

manufacturing system against conventional approaches; by evaluating their ability to meet on 

time and cash objectives. This experiment is diagrammatically summarised in Figure 5-9. The 

main criticism for distributed systems is myopic decision-making; with respects to a short-

term time horizon and localised problems rather than global problems. This experiment 

assesses anarchic manufacturing system’s ability to meet changing global objectives and 

indicates whether local myopic decision-making can be improved. 

 

Figure 5-9: Multiple conflicting objectives experiment summary 
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System adaptations 

The manufacturing systems aim to balance dynamic objective levels for on time and cash 

levels, both are normalised; as the percentage of jobs completed on time and cash as a 

percentage of revenue. Performance is scored against these objectives, where <1 : 1 : >1 are 

underachieving : meeting : overachieving. 

The anarchic system used in this experiment extended the system disclosed in section 4.2 

by considering multiple objectives and adapting the bidding threshold and currency available 

for each job. The main adaptation was the jobs’ budget allocation, which was multiplied by 

cash and lateness factors instead of a risk factor, this difference is highlighted in Figure 5-10. 

This was the cost threshold to spend on its next operation and negotiate with capable MTs. 

This allowed each job to consider its individual likelihood to be on time and the global 

manufacturer’s cash position against the cash objective to account for the system’s global 

multiple objectives. Additionally, jobs were able to renege on arrival to a MT; by paying off 

and taking the place of the next job in the queue. Reneging improves the overall prioritisation 

of jobs whilst maintaining free market mechanisms and anarchic manufacturing principles. 

 

Figure 5-10: Multiple conflicting objectives adjusted negotiation framework 
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Job i’s lateness factor at time t, LFi (t), was multiplied to the allocated budget for the next 

operation for the initial bidding threshold and was derived from the job’s likelihood to be on 

time and the manufacturer’s objective level. This on time adjustment factor encouraged jobs 

to spend more to secure an operation sooner within reasonable means of its budget. Due 

date, Di (t), and expected due date at t, Ei (t), was compared against the manufacturer’s on 

time objective at time t, OTObj (t), to provide the lateness factor which is bounded by a ceiling 

of 2, as displayed in equation 5.1. 

 

𝐿𝐹𝑖(𝑡) = {
(
𝐸𝑖(𝑡) − 𝐷𝑖(𝑡)

𝐷𝑖(𝑡) − 𝑡
) + 𝑂𝑇𝑂𝑏𝑗(𝑡) 𝑖𝑓 (

𝐸𝑖(𝑡) − 𝐷𝑖(𝑡)

𝐷𝑖(𝑡) − 𝑡
) + 𝑂𝑇𝑂𝑏𝑗(𝑡) ≤ 2

2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(5.1) 

Job i considered the manufacturer’s cash score at t, CScr (t), which was determined by 

comparing the cash/revenue position against the cash/revenue objective, CObj, if this was 

greater or equal to 1 the cash factor, CFi (t), had no impact (CFi (t) = 1). If the manufacturer’s 

cash factor was below 1, jobs prioritised those nearest completion relative to the population 

of jobs. The distribution increased dependent on the severity of the cash score and the job’s 

percentage completeness relative to the mean completeness of all jobs. Completion 

percentage for job i at t is κi (t), and the mean completion percentage of all jobs at time t is 𝜅̅ 

(t). The cash factor calculation follows equation: 

 

𝐶𝐹𝑖(𝑡) = {
𝐶𝑆𝑐𝑟(𝑡) + (1 − 𝐶𝑆𝑐𝑟(𝑡)) (

𝜅𝑖(𝑡)

𝜅̅
) 𝑖𝑓 𝐶𝑆𝑐𝑟(𝑡) < 1

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(5.2) 

The redistribution of currency was required for jobs to be able to bid with an increased 

threshold when the cash factor (CFi (t)) was greater than 1 for job i, without negatively 

impacting the job in future operations, this additional cash was provided by other jobs with a 

cash factor less than 1 (below the average completion percentage). Jobs provided the cash 

that could have been spent on the next operation but chose not to as influenced by the cash 

factor, i.e. 1 – CFi (t). This currency was available for jobs whose cash factor was greater 

than 1 and required additional currency to achieve the new threshold, as determined by the 

cash factor, i.e. CFi (t) – 1, for its next operation. The inter-round bidding increment increased 

a job’s cost threshold, this was calculated as cash and lateness factors multiplied together. 

Jobs reneged on arrival at a MT by paying off the job in front if possible, the currency allocated 

to the next operation but not spent on the MT contracted cost was deemed surplus and 

available to renege with. The job in front calculated its pay off cost, as the difference between 
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the contracted cost of the operation and a recalculated threshold considering its budget 

allocation multiplied by lateness factor, LFi (t). This allowed jobs to prioritise themselves within 

the MT’s queue, which otherwise operated on a FIFO basis. This mechanism maintains 

anarchic manufacturing principles whilst enabling cooperative behaviour, as a job may be 

willing to delay its operation for a fee which is influenced by the lateness factor. 

The hierarchical manufacturing system, diagrammatically shown in Figure 5-11 had four 

decision-making tiers; global, division, cell and machine tool. The top three tiers used 

coordinators to allocate jobs to the tier below them through a dispatch rule. The coordinators 

used a version of the multicriteria decision-making method TOPSIS, selecting the appropriate 

dispatch rule to improve the poorest performing objective. This was achieved by comparing 

the global cash position and the likely on time performance of the population of jobs within its 

hierarchy; e.g. a division coordinator considered the jobs that populate the cells and MTs 

within its span of control. The dispatch rules selected were Earliest Due Date (EDD) to 

improve on time performance, and Shortest Processing Time (SPT) to improve the cash 

position. 

 

Figure 5-11: Multiple conflicting objectives experiment, hierarchical system structure 

Experimental framework 

The experiment evaluated whether anarchic and hierarchical systems can balance multiple 

objectives and trade-off performance to best achieve conflicting objectives. The problem 

considered a manufacturer with multiple MTs, with different and overlapping capabilities, that 

processed individually variable jobs. For this experiment, there was a step-change at 1500t, 

after simulation ramp-up, where system utilisation (demand) increased and objectives may 

be changed; there were no other disruptions (e.g. MT failure or cash reduction). Each 

experiment used 100 repeatable runs; each run had different random inputs. Instantaneous 

communication and decision-making were modelled for greater direct comparability. 

Fixed experiment parameters were selected to showcase system behaviour in a realistic 

scenario whilst reducing noise; these are shown in Table 5-7. Jobs on completing an 
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operation incur a cost, revenue was realised on or after the job’s due date when jobs had 

completed their operations, this revenue was added to the cash available. The value of a job 

was determined as the sum of the average expected cost of operations multiplied by a profit 

margin of 10%. The anarchic system’s starting currency was the sum of expected operation 

values. The cost incurred per operation was the cost negotiated for the anarchic system, for 

the hierarchical a calculated cost by MTs at the time of job assignments was used; this was 

identical to the anarchic system’s MT’s initial bid without any bidding surplus. The due date 

was calculated as the sum of expected operational and waiting durations multiplied by a due 

date surplus of 20%. Jobs had a variable number of operations to fulfil in a predefined random 

sequence, the capability required and duration of each was randomly and equally distributed 

between four capabilities (A-D) and its duration was a capability dependent random uniform 

distribution, as shown in Table 5-7. There were 48 MTs; for the hierarchical system there 

were four tiers, one global agent, four divisions, three cells per division (12 total) and four 

MTs per cell (48 total). 

Table 5-7: Multiple conflicting objectives experiment, fixed parameters 

Fixed parameter  Level 

Expected operation waiting time   30t 

No. operations/job  𝒰 [2, 6] operations 

Operation values by capability 
(duration, expected cost): 

A 𝒰 [10t, 15t], 30 

B 𝒰 [10t, 20t], 40 

C 𝒰 [15t, 25t], 40 

D 𝒰 [15t, 25t], 60 

Variable experiment parameters were objective levels, Objs, and demand impacting 

utilisation; the two objectives are cash/revenue, CObj (t), and on time performance, OTObj 

(t). The cash objective was determined as cash as a percentage of revenue, and on time 

performance as a percentage of jobs that had completed all operations within the due date 

whose due date was within the last 100t. The starting and disruption parameter levels are 

shown in Table 5-8, disruption was a step change at 1500t. Objective levels, Objs, change 

objective focus, Objs = 1 was cash focused and Objs = 3 was on time focused; demand and 

therefore system utilisation increases the stress on the system. 
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Table 5-8: Multiple conflicting objectives, variable parameters 

Parameter Starting Level 1 Level 2 Level 3 Level 4 

Objs (cash, on time) 0.2, 0.8 0.3, 0.7 0.2, 0.8 0.1, 0.9 NA 

Utilisation 0.4 0.4 0.5 0.6 0.7 

Results and discussion 

Cash/revenue and on time performances were recorded; allowing direct comparison between 

objective levels, rather than analysing the scores against these objectives. Figure 5-12 and 

Figure 5-13 display results for cash/revenue and on time performance respectively for each 

combination of parameter levels. Figure 5-14 and Figure 5-15 compares cash/revenue and 

Figure 5-16 and Figure 5-17 compares on time performance. When considering either 

anarchic or hierarchical at a distinct utilisation level; allowing direct comparison between Objs 

(objective trade-off) levels at each level of system utilisation. All plots display the step-change 

time (1500t), mean performance and its 95% confidence interval as a shaded corridor against 

simulation time. 
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Figure 5-12: Multiple conflicting objectives, cash/revenue objective results 
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Figure 5-13: Multiple conflicting objectives, on time objective results 

Performance plots for each experiment, Figure 5-12 and Figure 5-13, have subplots arranged 

by increasing parameter levels, Objs changing horizontally from cash to on time focused 

objectives and utilisation increasing downwards. The overall superior performance of the 

anarchic system is evident from both figures, particularly as utilisation (demand) increases, 

the hierarchical system’s performance degrades at a faster rate for both cash and on time 

performance. The changes between Obj levels (objective trade-off) is unclear, but this is 

evaluated in Figure 5-14 to Figure 5-17. The hierarchical system has poor resilience to 

change, observed by a significant performance reduction soon after the step change; rather 

the anarchic system’s performance degrades more gradually. 
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Figure 5-14: Multiple conflicting objectives, anarchic cash/revenue objective comparison 

 

Figure 5-15: Multiple conflicting objectives, hierarchical cash/revenue objective comparison 
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Figure 5-16: Multiple conflicting objectives, anarchic on time objective comparison 

 

 

Figure 5-17: Multiple conflicting objectives, hierarchical on time objective comparison 
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Comparing the impact on Objs levels under the same level of system utilisation, and stress 

on the system, indicates a system’s reactivity to changes and whether behaviour changes to 

suit the renewed objectives. A system that reacts and accommodates a change in objectives 

will change its performance to suit. A reactive system, whose objectives sacrifice on time 

performance for a more demanding cash position, should demonstrate a trade-off in 

performance between these conflicting objectives. As shown in Figure 5-14 the anarchic 

system had a clear (at the 95% confidence interval) reduction in cash performance as Objs 

levels increase (cash is less important), particularly soon after the disruption. This indicates 

that the anarchic system is willing to exchange a short-term cash position according to the 

objectives, however as the system recovers from the step change, the anarchic system 

tended toward a stable position, regardless of objective changes (Objs), governed by 

utilisation. The anarchic system’s on time performance, displayed in Figure 5-16, shows there 

is a difference between Objs levels (there is a clear difference between Objs = 1 and 3 at the 

highest utilisation level), however, this was a delayed reaction whereas the cash position 

changed very quickly; due to the short-term cash mechanism. However, it shows when 

objectives favour on time performance the anarchic system sacrificed the cash position for 

an improved-on time performance, and conversely for cash-oriented objective levels. The 

system’s parameters had not been optimised to an effective sensitivity level, but the anarchic 

system has been shown to work by trading off performance to balance objectives; countering 

the argument against distributed systems of local myopic decision-making. 

The hierarchical system showed no discernible difference in cash/revenue performance when 

reacting to a change in objectives soon after disruption, indicating that the hierarchical system 

did not immediately adjust according to changes in objectives (Objs); as seen in Figure 5-15. 

The hierarchical system did dramatically change its on time performance in response to 

changing objectives, shown in Figure 5-17, when Objs = 3 on time performance is highly 

prioritised and subsequently improved. This was a result of clearer alignment between 

hierarchy levels, which were more likely to select EDD rather than a mix of EDD and SPT 

where inefficiencies arise. These results suggest that the hierarchal system cannot effectively 

balance conflicting multiple objectives or has made an indication that it can balance 

objectives. 

5.4 Summary 

Simple discrete manufacture scenarios evaluate the anarchic manufacturing system against 

centralised systems for several scenarios. These provide a baseline understanding of the 

systems against simple scenarios and contributed to the characterisation for complexity and 



 

100 

 

reactivity to global objectives. Additionally, experimentation aided the development of 

anarchic manufacturing by accommodating increasingly complex scenarios.  

The three experiments covered in this chapter evaluated scenarios for mass customisation 

and scale, increasing complicatedness and complexity and finally adapting to dynamic and 

conflicting objectives. Overall, they have found that the anarchic manufacturing system 

handled complexity well and deteriorated at a slower rate in comparison to centralised and 

hierarchical systems. The anarchic system was shown to improve with scale, in Section 5.3.1, 

free market efficiencies were realised as the system increased competition with scale. 

Additionally, on adapting the systems to consider multiple dynamic global and conflicting 

objectives in Section 5.3.3, the anarchic system was shown to react to the change in 

objectives; rather the hierarchical system was unable to. Although small and relatively 

insubstantial, the anarchic system’s indication of a reaction provided insight into the system’s 

ability to adapt to objective changes, reducing myopia with respects to local decision-making. 

The 95% confidence intervals provided statistical confidence to these observations.  

Simple discrete manufacturing scenarios have provided an initial understanding of anarchic 

system’s performance relative to centralised systems. The observed affordances provided by 

the anarchic manufacturing system directly contribute to the thesis aim. However, the job and 

flow shop style manufacturing facilities are a relatively small subset of real-world 

manufacturing. The next chapter adapts anarchic manufacturing for the broader area of 

assembly, which provides a significantly greater challenge through a structural problem that 

requires team working and cooperation to join jobs together. This is contrary to existing 

methods employed in anarchic manufacturing utilising competition to realise free market 

efficiencies. 
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6 Application 2, assembly manufacture 

6.1 Introduction 

Assembly compared to simple discrete manufacture significantly increases system 

complexity, as jobs must coordinate and cooperate with each other; previously system 

elements were only in competition with each other for simple discrete manufacture. 

Increasing product variety combined with volatile demand and a need for rapid lead time to 

market has resulted in the transition from dedicated assembly lines to mixed-model 

production. Volatile demand refers to rapidly transient customer expectations and values, and 

lead time to market is the time taken from order placement to a customer’s receipt of goods. 

Businesses view flexibility and agility, to satisfy these two characteristics as a source of 

competitive advantage (He, Zhang and Li, 2014). Assembly is one of the most cost-effective 

approaches to achieve high product variety, however, variety also causes complexity in 

manufacturing and assembly systems (Hu et al., 2011).  

The research motivation for this chapter is to test whether the anarchic manufacturing system 

can be effectively adapted for mixed-model assembly and whether proposed benefits of 

distributed systems can be realised in assembly production planning and control; which 

requires cooperation between similar agents. The anarchic system is tested against 

centralised and hierarchical systems in idealised assembly scenarios, considering balanced 

production and dynamic bottlenecks. These idealised scenarios remove potential noise or 

overarching factors to clearly show anarchic manufacturing characteristics. The extension 

into dynamic bottlenecks is selected as they are a significant issue for assembly, which 

typically arises from cycle time drift (Hu et al., 2011). 

This chapter first covers additional background literature on assembly, relevant to the 

scenarios evaluated; detailing existing research areas in line balancing and assembly 

sequencing (scheduling), and any relevant literature for distributed assembly systems. In 

Section 6.3 the experimentation is detailed, explaining the significant system adaptations for 

assembly and the two experiments carried out for balanced production and dynamic 

bottleneck production. Finally, the chapter is brought together through a discussion and a 

summary are provided in Sections 6.4 and 6.5. A summary table of additional elements to the 

anarchic system introduced in this chapter are indicated below in Table 6-1. 
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Table 6-1: Additional anarchic system elements introduced in Chapter 6 

Element Meaning 

Pftip The profitability for job i to pursue model p 

Prcip Selling price if job i can still fulfil model p 

Cexpip Expected total cost to fulfil model p for job i 

Dmdp Demand for model p 

Fflcp Fulfilment for model p by jobs of class c 

FWgtip Filfilment model weighting for job i considering model p, i.e. the 

consideration of model demand and fulfilment by all job classes for 

this model 

Oicpj Operation of capability j is required for job i of class c for model p 

(binary value) 

JJi Job J is in group containing job i 

Cp Job class c is required for model p (binary value) 

CstHisigrp Cost already incurred by all jobs in group containing job i 

Crygrp Currency held by all jobs in group 

Qtotk Total in queue for resource k 

Qck Queue currently assigned in queue 

Qek Expected queue length 

 

6.2 Scenario background 

Although the concept of assembly is well understood by practitioners, there is no single 

definition. For the purpose of this thesis, considering planning, scheduling and control, 

assembly is defined as: “The joining of components or subsystems together, to form a single 

system, achieved through an operation that may require resource(s) and not instantaneous 

to complete.” This definition aligns to existing definitions when considering production 

planning and control (Schenk, Wirth and Müller, 2009; Hu, 2014). 

Due to demands for more flexible and versatile production, assembly lines have changed 

from fixed lines of a single model to mixed-model assembly lines, producing variants of the 

same product family (Battini et al., 2009). Mixed-model assembly lines use flexible workers 

and machinery to reduce setup times and costs, so different products can be jointly 

manufactured in an intermixed product sequence on the same line (Boysen, Fliedner and 
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Scholl, 2009). Many issues arise from mixed-model facilities having greater task duration 

variation and drift from the cycle time and a lack of buffers used in industry (Battini et al., 

2009). For mixed-model production lines, the production processes of manufactured goods 

require a minimum level of homogeneity, therefore a common base product, or platform, is 

typically used which is customisable through a bounded number of and predetermined 

optional features (Boysen, Fliedner and Scholl, 2009).  

The unique problem associated with assembly scheduling, not applicable to independent jobs 

with only sequential operations, stipulates that a higher level item cannot be processed unless 

preceding lower level items have been processed and assembled (Reeja and Rajendran, 

2000). Reeja and Rajendran state this structural complexity introduces coordination and 

pacing problems. Typically, the problem is considered in two interrelated aspects spanning 

multiple planning horizons, sequencing orders (arrival to the assembly line) in the short term 

and balancing operations in the long term (Battini et al., 2009).   

Assembly scheduling is typically referred to as assembly sequencing, which is the order that 

orders are released (Boysen, Fliedner and Scholl, 2009). Many researchers have focused on 

the automated generation and optimisation of assembly sequences (Wang et al., 2009), often 

using meta-heuristic and search algorithms. Sequencing problems are typically solved 

together with line balancing for mixed-model assembly lines, as line balancing solutions 

minimise potential workload fluctuations from different models (Hu et al., 2011). Assembly 

line balancing allocates tasks to work stations whilst considering restrictions and stochasticity 

(Wang et al., 2009), but is significantly impacted by product variety. Drift is the deviation from 

cycle time at a workstation, which can result in lost efficiency or bottlenecks (Hu et al., 2011). 

The assembly scheduling and line balancing typically allude to rigid production system that 

processes orders in a fixed sequence along sequential workstations; rather than flexible 

routing between workstations (e.g. flow shops). However, further research is required to 

realise flexible assembly systems for high product variety and resultant complex systems 

(Asadi, Jackson and Fundin, 2016). Currently, mixed-model assembly lines can manufacture 

moderately different models, rather completely different product mixes create short term 

material supply issues (Battini et al., 2009).  

There are few fully distributed systems investigated for assembly, despite recent increasing 

interest. Wang et al. comment that agent-based distributed manufacturing assembly has 

emerged for adaptive and dynamic process planning (Wang et al., 2009). Additionally, Krüger 

et al. propose combining decentralised and embedded controllers with machine learning for 

automation, to control system elements, including robotics, for flexible and reconfigurable 

assembly lines (Krüger et al., 2017). Antzoulatos et al. propose a MAS framework, using 
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heterarchical with mediator structure, for plug-in/-out reconfigurable assembly resources 

(Antzoulatos et al., 2017), these intelligent and distributed resources align to the paradigm of 

cyber-physical systems (Monostori et al., 2016b). However, none of these systems detail now 

a distributed system could be applied to assembly, which this chapter fulfils. 

6.3 Experimentation 

6.3.1 System adaptation, anarchic manufacturing system 

For all assembly experiments conducted, the system adaptations were used for both anarchic 

and centralised systems. The anarchic manufacturing system used had significant changes 

to incorporate the natural teamworking scenario to join jobs and find group consensus for 

decision-making, as well as allowing jobs to determine what product they will fulfil. By 

contrast, the centralised systems retained centralised decision-making, using a push 

structure and predetermining job groupings for a specific order to fulfil. 

The anarchic manufacturing system was adapted for mixed-model assembly scenarios, 

where jobs are inter-dependent for joining operations and must select one of a limited range 

of models to fulfil orders. Anarchic manufacturing’s design principles were maintained, by 

retaining dynamic distributed decision-making in a free market environment; where agents 

maximise profitability through competitive behaviour, baulk at high prices and are 

opportunistic with lower prices. Global objectives were aligned via the free market structure, 

by generating demand (orders) and using pricing mechanisms for resource allocation.  

The anarchic manufacturing system fulfilled orders by generating demand for the associated 

model, this influenced profitability and subsequent agent decision-making. The system 

consisted of jobs, where job i of class c is noted as Jic, jobs were processed into products 

(finished goods and realisation of models) to fulfil customer orders of models, where model p 

is noted as Mdlp and there were nM models, by using resources (machine tools) to complete 

operations, where MT k of capability j is noted as Mk. Models had predefined operations that 

combined different job classes requiring a specific capability and have a nominal duration, 

these are represented by precedence graphs. These operations could result in a job or sub-

assembly becoming customised to a specific model or remain interchangeable with other 

models. Figure 6-1 presents an example precedence graph and annotations identifying jobs, 

classes, models and products.  
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Figure 6-1: Example precedence graph 

Orders for specific models were created periodically and fulfilled on a FIFO basis by 

completed products. Models differed but may have had common jobs until an operation 

customises the job to a model; i.e. jobs can fulfil multiple models until the point of model 

customisation. Following the free market structure, there was a product selling price on 

fulfilling an order; which varied according to the outstanding demand (unfulfilled orders) for 

the model. The selling price informed incomplete jobs of an estimated profitability on fulfilling 

a specific model and influenced job decision-making; which is profit maximising. The system 

created jobs so that there were always enough jobs of each class plus a small buffer; in 

experimentation there were always three additional jobs of each class to fulfil current 

outstanding orders. 

The anarchic manufacturing system for assembly is best described by following a job’s 

processes. A job considers the profitability of each model and decides which to pursue, it then 

assesses the next operation for this model and whether additional jobs are required. If so, it 

will search for jobs and request them in turn to connect. If the request is successful a 

regrouping process determines, through profit maximisation, which model to pursue and 

which jobs to group together. Once all required jobs are connected for the next operation, 

they negotiate with resources individually. As jobs have individual objectives and may prefer 

different resources, a group consensus method, based on the Borda Count (Zahid and De 

Swart, 2015), selects the most suitable resource. A (group of) job(s) can renege on arrival to 

a queue, by paying off the job(s) in front. On completing each operation, the job reassesses 

which model to pursue and on completing all operations for a model, it is assigned to an order. 

This process is shown in Figure 6-2, the four key decision-making processes and actions 

highlighted are covered in depth. 
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Figure 6-2: Anarchic manufacturing for assembly job flow chart of processes 

Model profitability and selection 

A job, on creation and after each operation, selects a model to pursue according to 

profitability, the process shown in Figure 6-2 note 1; using model profitability in a roulette 

wheel selection process (Lipowski and Lipowska, 2012) is socially beneficial to achieve global 

goals for the system. Model selection maintains agent independence and through these local 

objectives a global emergent outcome is achieved of fulfilling all orders and the models that 

are demanded the most as a priority. This selection process requires calculating the 

profitability of each model p at time t for Job i of class c, Pftip (t), determined by Equations 

6.1–6.7. Profitability considers the selling price if job i can still fulfil model p (i.e. not beyond 

the point of model customisation) at time t, Prcip (t), expected total cost to fulfil this model, 

Cexpip (t), which incorporates costs already incurred and currency available, the demand for 

model p, Dmdp (t), the number of jobs of the same class fulfilling model p, Fflcp (t), and the 
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fulfilment model weighting, FWgtip (t), which considers the model demand and fulfilment by 

all job classes required to complete the model. The profitability of model p for job i at time t, 

is calculated by: 

𝑃𝑓𝑡𝑖𝑝(𝑡) = 𝐹𝑊𝑔𝑡𝑖𝑝(𝑡) (𝑃𝑟𝑐𝑖𝑝(𝑡) − 𝐶𝑒𝑥𝑝𝑖𝑝(𝑡) + 5 (𝐷𝑚𝑑𝑝(𝑡) − 𝐹𝑓𝑙𝑐𝑝(𝑡))) (6.1) 

To evaluate the expected cost, a binary function is used to determine whether an operation 

of capability j is required by job i of class c (Jic) for model p at time t, Oicpj; given the status of 

job i, i.e. the number of operations required to fulfil model p given the operations the job has 

completed.  

𝑂𝑖𝑐𝑝𝑗(𝑡) = {
1

𝑖𝑓 𝐽𝑖𝑐  𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑂 𝑜𝑓 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑗
𝑡𝑜 𝑓𝑢𝑙𝑓𝑖𝑙 𝑚𝑜𝑑𝑒𝑙 𝑝 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6.2) 

Another binary function is used to determine whether Job J is in the group containing Job i, 

Jigrp, at time t. 

𝐽𝐽𝑖(𝑡) = {
1 𝑖𝑓 𝐽𝐽 ∈ 𝐽𝑖𝑔𝑟𝑝 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6.3) 

The expected total cost considers the expected cost of operations outstanding for the job to 

complete the product and the cost of operations already incurred and all available currency 

from jobs in the job group containing Job i at time t, Jigrp (t). The expected total cost, Cexpip 

(t), uses the average recent cost of capability j, Cstj (t), costs already incurred by all jobs in 

the group, CstHisigrp (t), and the currency available to Job J at time t, CryJ (t), is calculated as: 

𝐶𝑒𝑥𝑝𝑖𝑝(𝑡) = ∑ (𝐶𝑠𝑡𝑗(𝑡) ∙ 𝑂𝑖𝑐𝑝𝑗(𝑡))

𝑛𝑂𝑝

𝑂𝑝=0

+ ∑ (𝐽𝐽𝑖(𝑡) (𝐶𝑠𝑡𝐻𝑖𝑠𝐽𝑔𝑟𝑝(𝑡) − 𝐶𝑟𝑦𝐽(𝑡)))

𝑛𝐽𝑜𝑏

𝐽=0

 (6.4) 

Where Op is the index of operations required for model p and nop is the total number of 

operations.  

A job accounts for the demand for a model and the number of other jobs of the same class 

aiming to fulfil this model. The number of jobs that are similar to Job i of class c fulfilling model 

p, Fflcp (t), which sums all the model (profitability) weightings of jobs of a particular class and 

model (i.e. if a job can fulfil multiple models, the model weighting for each model is taken, 

each is a fraction of and sum to 1), is calculated as: 
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𝐹𝑓𝑙𝑐𝑝(𝑡) = ∑
𝑃𝑓𝑡𝐽𝑐𝑝(𝑡)

∑ 𝑃𝑓𝑡𝐽𝑐𝑝(𝑡)𝑃𝑓𝑡𝐽𝑐𝑝(𝑡)≥0𝐶𝐽=𝐶𝑖∧𝑀𝑑𝑙𝐽=𝑀𝑑𝑙𝑖

 (6.5) 

The fulfilment model weighting for job i for model p at time t, FWgtip (t), considers the demand 

for model p and the fulfilment by jobs of the same class c and then adjusts this by the demand 

and fulfilment by other job classes required to be joined with for model p. The job uses the 

weighting to assess the demand fulfilment by the same class and is influenced heavily by 

other classes it is required to join with. This fulfilment model weighting is used during grouping 

and group model selection to ascertain the commitment of a job to pursuing a model, this 

influences decision-making by factoring in risk that a job will pursue other interests. A binary 

function defines the job classes required for model p, is defined as: 

𝐶𝑝 = {
1

𝑖𝑓 𝑐𝑙𝑎𝑠𝑠 𝑐 𝑖𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑚𝑜𝑑𝑒𝑙 𝑝 𝑎𝑛𝑑
𝑛𝑜𝑡 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑙𝑎𝑠𝑠 𝑎𝑠 𝐽𝑜𝑏 𝑖

 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6.6) 

The fulfilment model weighting, FWgtip (t), is defined as: 

𝐹𝑊𝑔𝑡𝑖𝑝(𝑡) =  0.5 + 0.5min(
𝐷𝑚𝑑𝑝(𝑡)

𝐹𝑓𝑙𝑐𝑝(𝑡)
, 2)

+ ∑ (0.5(min(
𝐶𝑝 ⋅ 𝐷𝑚𝑑𝑝(𝑡)

𝐹𝑓𝑙𝑐𝑝(𝑡)
, 2) − 1))

𝑛𝑐

𝐶𝑐=0

 

(6.7) 

Job connection, grouping and group model selection 

If job A requires additional jobs to complete the next operation, it will search for suitable jobs 

to connect with against class, availability and status criteria; see Figure 6-2 note 2. The 

grouping mechanism realises cooperative behaviour between like agents, the ability to leave 

a group if not physically coupled as a subassembly maintains independence and retains 

competitiveness ensuring global suitability of decisions. Jobs are unavailable if they are 

complete products or in operation; therefore, a job is available whilst queuing or already in a 

group. A job’s status indicates which operations have been completed. Job A will search for 

suitable jobs and approach the first, job B, and send job B a request to connect respective 

groups, GrpA (t) and GrpB (t), if the request is accepted a group re-evaluation occurs, if 

unsuccessful job A approaches the next suitable job. Job B will accept the request to connect 

subject to the scenario; regarding job A and B’s model selection, MdlA and MdlB, and whether 

job B has selected and is queuing at a resource (MT), MB. The acceptance criteria are based 

on both jobs’ model fulfilment weighting, Fflip (t), which indicates the level of commitment to 
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model p and currency held by each group, Crygrp; these scenarios and criteria are detailed in 

Table 6-2. 

Table 6-2: Anarchic assembly, job request connection criteria 

Scenario at time t Criteria 

𝑀𝑑𝑙𝐴 = 𝑀𝑑𝑙𝐵 ∧𝑀𝐵 = ∅ 𝐶𝑟𝑦𝑔𝑟𝑝𝐴(𝑡) ⋅ 𝐹𝑓𝑙𝐴𝑝𝐴(𝑡) ≥ 0.7 ⋅ 𝐶𝑟𝑦𝑔𝑟𝑝𝐵(𝑡) ⋅ 𝐹𝑓𝑙𝐵𝑝𝐵(𝑡) 

𝑀𝑑𝑙𝐴 ≠ 𝑀𝑑𝑙𝐵 ∧𝑀𝐵 = ∅ 𝐶𝑟𝑦𝑔𝑟𝑝𝐴(𝑡) ⋅ 𝐹𝑓𝑙𝐴𝑝𝐴(𝑡) ≥ 1 ⋅ 𝐶𝑟𝑦𝑔𝑟𝑝𝐵(𝑡) ⋅ 𝐹𝑓𝑙𝐵𝑝𝐵(𝑡) 

𝑀𝑑𝑙𝐴 = 𝑀𝑑𝑙𝐵 ∧𝑀𝐵 ≠ ∅ 𝐶𝑟𝑦𝑔𝑟𝑝𝐴(𝑡) ⋅ 𝐹𝑓𝑙𝐴𝑝𝐴(𝑡) ≥ 1.5 ⋅ 𝐶𝑟𝑦𝑔𝑟𝑝𝐵(𝑡) ⋅ 𝐹𝑓𝑙𝐵𝑝𝐵(𝑡) 

𝑀𝑑𝑙𝐴 ≠ 𝑀𝑑𝑙𝐵 ∧𝑀𝐵 ≠ ∅ 𝐶𝑟𝑦𝑔𝑟𝑝𝐴(𝑡) ⋅ 𝐹𝑓𝑙𝐴𝑝𝐴(𝑡) ≥ 2 ⋅ 𝐶𝑟𝑦𝑔𝑟𝑝𝐵(𝑡) ⋅ 𝐹𝑓𝑙𝐵𝑝𝐵(𝑡) 

Where a job’s model fulfilment weighting, Fflip (t), determines the proportional weighting of 

model p by profitability against all models for job i, is defined as: 

𝐹𝑓𝑙𝑖𝑝(𝑡) =
𝑃𝑓𝑡𝑖𝑝(𝑡)

∑ 𝑃𝑓𝑡𝑖𝑝(𝑡)𝑃𝑓𝑡𝑖𝑝(𝑡)≥0
 (6.8) 

If job A satisfies the connecting request criteria all jobs connected to jobs A and B are re-

evaluated together. On group re-evaluation, a model is selected and the most suitable jobs 

for it are grouped, both evaluation processes use currency held multiplied by model fulfilment 

weighting. Model selection is determined by the greatest sum of currency multiplied by model 

fulfilment for all jobs, subsequently necessary job classes required for it are filled by the same 

criteria of highest currency multiplied by model fulfilment. This is repeated until all jobs are 

grouped together and each group has a model to pursue. This process is conducted by a 

nominated job in the group for administrative purposes only, there is no bias or benefit. This 

regrouping process selects the best and most suited jobs for the nominated model; therefore, 

jobs can dynamically change groups up until they are operated on, changing is determined 

by how attractive the offer is in the scenario. 

Job to resource negotiation 

A job, after connecting with all required jobs, will each negotiate the next operation with 

resources, by their own objectives; this relates to the process in Figure 6-2 note 3. The 

anarchic negotiation protocol follows that covered in Section 4.4.3, but is adapted before the 

job commits to a MT. The adapted negotiation framework for assembly is detailed in Figure 



 

110 

 

6-3, with the change noted that MT costs are recorded and jobs are not assigned until group 

consensus is reached. 

 

Figure 6-3: Assembly job to resource negotiation adjusted framework 

A job will communicate with applicable (capable) resources and invite them to tender, the job 

evaluates a threshold it is willing to spend on its next operation; by proportioning the combined 

currency of the group against the value of the next operation over the value of all operations 

remaining to complete the model. Additionally, the job calculates an inter-bidding round 

increment as a small proportion of the threshold.  

Each resource invited to tender evaluates an initial bid and inter-bid reduction. The resource’s 

initial bid for bid round n for MT k of capability j at time t, βkjn (t), is a function of recent average 

cost of capability j, Cstj (t), recent utilisation, ωk (t), utilisation weighting, Uk, total queue length, 

Qtotk (t), which is a combination of current assigned jobs in queue, Qck (t), and expected 

queue length, Qek (t); and is defined as: 
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𝛽𝑘𝑗𝑛 = 1.1𝐶𝑠𝑡𝑗(𝑡) (𝑈𝑘 ∙ 𝜔𝑘(𝑡) +
𝑄𝑡𝑜𝑡𝑘(𝑡)(1 − 𝑈𝑘)

𝑄𝑗 𝑢𝑡𝑖𝑙
) (6.9) 

Where 1.1 is an initial surplus value, and utilisation, ωk (t), and total queue length, Qtotk (t), is 

weighted 0.3:0.7, and Qj util is the queue size of resources with capability j required to meet 

full utilisation over the planning time horizon. Total queue length, considering the queue 

already assigned and the expected queue, is defined as: 

𝑄𝑡𝑜𝑡𝑘(𝑡) = 𝑄𝑐𝑘(𝑡) + 𝑄𝑒𝑘(𝑡) (6.10) 

To count the number of resources of a capability, MT with capability j, MRj, is represented as 

a binary value: 

𝑀𝑅𝑗 = {
1 𝑖𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑘 ℎ𝑎𝑠 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6.11) 

The expected queue is an estimated number of operations in the current pool of jobs requiring 

capability j, considering how many operations of capability j are required for a job of class c 

to fulfil model p, Ocpj, and the number of jobs of class c fulfilling model p, Fflcp (t), as defined 

in Equation 6.5. The expected queue length, Qek (t), is defined as: 

𝑄𝑒𝑘(𝑡) = 0.5 ⋅
∑ 𝐹𝑓𝑙𝑐𝑝(𝑡) ⋅ 𝑂𝑐𝑝𝑗𝑗=𝑗𝑘

∑ 𝑀𝑅𝑗
𝑛𝑅
𝑅=0

 (6.12) 

The factor of 0.5 is taken, as holistically jobs are expected to be halfway through production. 

The resource’s inter-bid round reduction, Redk (t), is bounded between 1 and 10 and is a 

function of recent bid success, τk (t), and actual job queue over expected job queue; this is 

defined as: 

𝑅𝑒𝑑𝑘(𝑡) = 5 (2 − 𝜏𝑘(𝑡) +
𝑄𝑐𝑘(𝑡)

𝑄𝑒𝑘(𝑡)
) (6.13) 

After job and resources have evaluated their bidding values, the job evaluates and records 

all bids, and will continue bidding rounds until a bid received is below the job’s threshold or 

the maximum of five rounds is reached. Between bidding rounds, a job increases its threshold 

by the increment and resources lower their bids by reduction, Redk (t). If five bidding rounds 

have been exceeded the job records the resource bids from the last round and will retender 
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after a short waiting time if another job in its group has not successfully negotiated with 

resources. 

Job group consensus, resource selection 

A group of jobs must decide which resource to select, relating to Figure 6-2 note 4, however, 

with different objectives they may have different preferences; a currency weighted Borda 

Count method (Zahid and De Swart, 2015) is used to select a single option. The Borda Count 

gives points for each voting participant to candidates in rank order; for m candidates, the 

highest ranked receives m votes and the second m–1 votes etc.. The highest scoring 

candidate resource is selected, by multiplying the job’s (voter’s) currency held and the Borda 

Count score for all jobs. The lowest negotiated price for the resource by any job is taken. 

6.3.2 System adaptation, central and hierarchical systems 

System adaptations were made to the two comparative centralised systems, these used a 

push model, with three levels of hierarchy but different cell structures; see Figure 6-4 for 

system illustrations. A push system was selected over pull to manage increasing variation in 

mixed-model production. Krishnamurthy et al. state pull strategies are fundamentally 

handicapped for manufacturing facilities that produce different products with distinct demands 

and/or processing requirements (Krishnamurthy, Suri and Vernon, 2004).  

 

Figure 6-4: Assembly centralised system structures 

The fixed system cells contained one of each resource type and cells manufactured all jobs 

for an order. Whereas the flexible system had a flow shop structure, cells contained and 

managed all resources of a particular capability. For this flexible system, the global 

coordinator reassigned jobs to capability cells for each operation. Both systems used the 

Earliest Due Date (EDD) dispatch rule (heuristic) to allocate jobs at all levels of hierarchy. 

Both systems used a push system and following Material Resource Planning (MRP) practice, 

jobs (or materials) are assigned to an order and cannot transfer to another (Lewis and Slack, 

2003). 
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For both centralised systems, no line balancing was required or traditional assembly 

sequencing. Experimental setup followed nominally balanced production with flexible in cell 

routing; rather than rigid assembly lines of sequential workstations. 

6.3.3 Balanced production 

A balanced production experiment evaluated anarchic against centralised systems in an 

idealised state with increasing levels of drift. Although manufacturers aim to minimise drift, 

for mixed-model assembly lines it will be almost impossible to balance the line properly, due 

to differing model characteristics (Hu et al., 2011), this is extended by stochastic operation 

durations. This nominally balanced production scenario, with increasing levels of drift, will 

clearly indicate performance regardless of line balancing and is a suitable starting point on 

applying distributed systems to assembly. Figure 6-5 diagrammatically shows the balanced 

assembly production experiment, which varies the structural drift through increasing model 

differences and operation duration variability, additionally interactions between jobs, groups 

of jobs and jobs to MTs are shown. 

 

Figure 6-5: Assembly balanced production experiment summary 

Experimental framework 

Both systems fulfil orders for three models by performing joining and independent operations 

on jobs. There are 16 resources (machine tools), four of each capability, there are three 

capabilities (A, B, C) for independent operations and one capability (Z) for joining. Orders 

arrive at a constant rate, maintaining 60% utilisation, are randomly assigned a model against 
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a split of 0.4:0.4:0.2, see Table 6-2 for a summary of fixed parameters. There are no additional 

resources required or work in progress restrictions, movement durations are very small 

relative to operation durations. 
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Table 6-3: Assembly balanced production fixed parameters 

Parameter Value 

No. resources 16 MTs 

No. capabilities 4 (4 of each) 

No. cells (central fixed and flexible 
only) 

4 cells 

Nominal MT utilisation 60% 

No. models (weighted split) 3 (0.4:0.4:0.2) 

Average operating time/product 160 min 

Average operation duration 20 min 

The experiment increased levels of drift, both structurally in parameter, Dft, and through 

stochastic operation durations, OpD; both parameters had three levels. As structural drift, Dft, 

increases nominal operation duration is more varied, model precedence structures 

increasingly diverge and job customisation to a particular model is earlier (reducing job 

interchangeability between models). This parameter progression is shown in Figure 6-6, 

displaying model precedence graphs with model customisation, operation capability and 

nominal durations. To maintain nominally balanced production, all models require each 

capability twice and all models have the same total operation duration. The second parameter 

increases stochasticity of operation durations, OpD, against a uniform random distribution, 

increasing from 0 to changes of 0.25 and 0.5 of the nominal duration. 
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Figure 6-6: Assembly balanced production, structural drift precedence graphs 

Results and discussion 

The experiment results, shown in Figure 6-7 for WIP jobs with a 95% confidence interval, 

Figure 6-8 for order lead time and Table 6-4 for lead time population splits, directly compare 

the three systems. WIP jobs results indicate the anarchic system is significantly better when 

all models are identical, Dft=1, additionally for moderate structural drift, Dft=2, all systems 

perform similarly; at both levels the anarchic system maximises flexibility. For Dft=3, the 

anarchic system’s poor performance arises from structural inflexibility, preventing jobs’ model 

transferring due to earlier customisation to a model. Decision-making mechanisms, currency 

levels and costs were not optimised, these hindered jobs from assessing profitability 

effectively causing some to go beyond the point of customisation before there was sufficient 

demand. For most parameter levels, the fixed system’s performance was worse than the 

centralised flexible system. The flexible centralised system performed consistently, by 

prioritising affectively and reduce waiting time for co-dependent jobs. The fixed system 

represents a hierarchal structure, with siloed cells that do not communicate; whereas the 

flexible can effectively manage all resources; a cell manages all interchangeable resources 

simultaneously. The increasing stochasticity of operation durations, OpD, has little impact on 

system performances compared to structural drift. 
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Figure 6-7: Assembly balanced production WIP results 

Analysing order lead time results in Figure 6-8 and Table 6-4, the anarchic system 

outperforms both centralised systems for the majority of orders in all scenarios. The anarchic 

system, for Dft=1 & 2, significantly outperforms the push systems for all orders; even for 

moderate structural drift and reduced flexibility for Dft=2. For Dft=3, the anarchic system has 

a superior performance for the initial 75% of orders, as shown in Figure 6-8, but a longer tail 

of prolonged order lead times. This is because the anarchic manufacturing system 

demonstrates anticipatory behaviour, guided by model profitability, whilst utilising dynamic 

demand-oriented decision-making; producing a strong global result despite the heavily 

criticised myopic decision-making (which has been reduced as jobs maximise lifetime 

profitability). The fixed and flexible system performances mimic that of WIP jobs performance, 

with consistency at all parameter levels. It is unknown why for Dft=2 the flexible system 

consistently performs worse. Operation duration stochasticity, OpD, does not significantly 

impact performance; at reduced stochasticity levels all systems have spikes, this is due to 

repeated identical sequences. 
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Figure 6-8: Assembly balanced production, order lead time results 

Table 6-4: Assembly balanced production, order lead time population split 

Order lead time 
DfT=1 DfT=2 DfT=3 

50% 75% 90% 50% 75% 90% 50% 75% 90% 

OpD = 
0 

Anarchic  55.4   75.1  102.5  67.4  88.1  115.7  105.5  146.7  223.8  

Flexible 125.6  139.4  144.9  124.0  140.0  175.6  128.3  150.3  170.6  

Fixed 144.8  161.5  178.2  128.3  151.4  161.1  149.5  164.8  180.8  

OpD = 
0.25 

Anarchic    55.2  73.7    97.7    64.5  86.7  110.9  102.9  148.2  227.0  

Flexible 125.2  137.3  148.1  133.3  150.7  179.8  127.9  149.8  170.6  

Fixed 129.1  150.3  161.2  133.4  153.7  170.6  145.9  163.4  179.9  

OpD = 
0.5 

Anarchic  56.5    76.8  102.1  64.4  88.3  113.7  106.4  146.5  214.9  

Flexible 127.7  141.4  155.8  137.1  156.6  187.3  130.7  154.5  177.2  

Fixed 132.5  149.4  164.6  137.0  155.4  173.3  147.0  165.3  183.2  
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6.3.4 Dynamic bottleneck production 

Bottlenecks can significantly reduce productivity, many current bottleneck detection schemes 

focus on long-term detection, typically evaluated analytically or through simulation, however, 

short-term bottleneck detection is increasingly important in operations management (Li, 

Chang and Ni, 2009). Short-term dynamic bottlenecks are harder to manage and require 

process control techniques. Bottlenecks is a significant issue in assembly, however they 

typically arise from cycle time drift (Hu et al., 2011) these conflicts with traditional systems’ 

rigid and centralised structure. This experiment created dynamic bottlenecks by drastically 

increasingly one operation duration, of a different capability, for each model. Figure 6-9 

displays the experiment summary, using fewer model differences and increasing the 

bottleneck extended operation. 

 

Figure 6-9: Assembly dynamic bottleneck experiment summary 

Experimental framework 

This experiment adapted the previous experiment for balanced production, covered in section 

6.3.3, at Dft=2 and OpD=0.25. Table 6-5 summaries the fixed parameter settings, notably 

utilisation was increased to 80% (by increasing order arrival rate, adjusted for the extended 

operation), and order model split is a third each. Average and total model operation durations 

change by variable parameter and have been omitted. 
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Table 6-5: Assembly dynamic bottleneck fixed parameters 

Parameter Value 

No. machine tools 16 MTs 

No. capabilities 4 (4 MTs of each) 

No. cells (central fixed and flexible 
only) 

4 cells 

Nominal utilisation rate 80% 

No. models (order split between 
models) 

3 (0.33:0.33:0.33) 

 

The experiment increases the severity of the bottleneck, by increasing the duration of the 

single extended operation, this variable parameter is denoted as BtN. A dynamic bottleneck 

between capabilities is ensured by extending a different capability for each model. Figure 

6-10 shows the three model precedence graphs, the extended operation duration is marked 

‘XX’ and durations are detailed in Table 6-6. 

 

Figure 6-10: Assembly dynamic bottleneck precedence graphs 
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Table 6-6: Assembly dynamic bottleneck variable parameter levels 

Parameter 
level 

Extended operation 
duration (min) 

Proportion of 
extended operation 

of the whole process 

BtN = 1 50 14% 

BtN = 2 75 20% 

BtN = 3 100 25% 

Results and discussion 

Results from dynamic bottleneck production are shown in Figure 6-11 for WIP jobs, Figure 

6-12 for order lead time and Table 6-7 for order lead time population splits. WIP jobs results, 

displayed in Figure 6-11 with a 95% confidence interval, clearly shows the flexible system is 

best and the anarchic has a similar but slightly worse performance at all parameter levels. 

The centralised fixed system, with isolated hierarchical cells, performs poorly and for BtN=2 

the system is unstable; instability is evident from a continuously increasing trend. All systems 

are unstable at BtN =3. 

 

Figure 6-11: Assembly dynamic bottleneck, WIP results 

The anarchic system has superior performance at all levels for order lead time. Order lead 

times increase as BtN increases for all systems, with the anarchic system performing best at 

all population splits, despite a longer tail than centralised flexible systems. This superior order 

lead time, improving service level, can be highly attractive to manufacturers. Additionally, it 

demonstrates the anarchic system’s robustness to unforeseen disruption through its ability to 

manage short-term dynamic bottlenecks. 



 

122 

 

 

Figure 6-12: Assembly dynamic bottleneck production, order lead time 

Table 6-7: Assembly dynamic bottleneck, order lead time population split 

Order 
lead time 

BtN=1 BtN =2 BtN =3 

50% 75% 90% 50% 75% 90% 50% 75% 90% 

Anarchic 136.3  174.8  223.7  186.2  240.8  304.0  246.3  320.4  399.4  

Flexible 181.8  208.1  236.7  229.3  270.4  316.7  293.0  357.5  425.7  

Fixed 219.6  250.9  281.2  325.0  385.3  641.9  452.7  548.1  642.0  

6.4 Discussion 

The assembly planning and control problem extends independent job manufacture through a 

coordination problem, assigning jobs to join once all preceding operations have been fulfilled. 

The anarchic manufacturing system, for both experiments, demonstrated the ability to resolve 

this coordination problem in a purely distributed manner. The lack of global coordination in 

distributed systems is argued for the use of mediators and hybrid systems (Blunck and 

Bendul, 2016); hybrid systems use a hierarchical structure with distributed decision-making 

(He, Zhang and Li, 2014). However, in this chapter inter-job cooperation is achieved using 

anarchic manufacturing’s design principles by maintaining free market competition and profit 

maximisation, fulfilling global objectives; by efficiently delivering orders in a relatively short 

lead time. The balanced production experiment, covered in Section 6.3.3, demonstrates that 

when ignoring line balancing activities, mixed-model assembly can effectively be fulfilled 

through anarchy and distributed systems. 

The balanced production experiment demonstrates that anarchic manufacturing can fulfil 

assembly production whilst maximising flexibility in the system. At lower levels of structural 

drift, most notably for late model customisation, the anarchic system outperformed centralised 

systems for both WIP jobs and order lead time. Good order lead time was maintained at 

higher levels of structural drift, however, WIP was poor as reduced flexibility hindered the 
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anarchic system. The dynamic bottleneck production experiment demonstrated the anarchic 

system’s ability to adapt to disruption, as degradation in performance was in line with the 

centralised flexible system, which operated as a flow shop. Order lead times, although 

superior for most orders, had a large distribution; this is undesirable for some manufacturers. 

However, a more aggressive demand and priority-oriented pricing structure will likely resolve 

this and cut the long tail. This would be achieved by advertising an increased selling price of 

a highly demanded model to influence job decision-making, whilst maintaining the 

anarchic/distributed structure.  

Anarchic manufacturing’s maximising flexibility trait, through inter-changeable 

jobs/subsystems, could entail that new permutations of existing models can easily be fulfilled 

without substantial system re-planning. Mixed-model assembly lines typically produced 

variants from a platform (Battini et al., 2009). An agent’s fulfilment by profitability would 

indicate suitability for higher-level business decisions on product mix and appropriate pricing; 

as the anarchic system’s free market and profitability-oriented mechanisms directly relate to 

business objectives. Several distributed system traits are exhibited during experimentation, 

agility and flexibility, self-healing and myopic decision-making, these are discussed in further 

detail below. 

Agility and maximising flexibility 

The balanced production experiment increased structural drift and reduced available flexibility 

in the mixed-model assembly system. It is evident that the flexible centralised system 

maintained performance, however, the anarchic maximised the flexibility available at the 

reduced drift and high flexibility scenarios. Centralised systems were unable to maximise the 

flexibility available, as on aligning to MRP principles the jobs (materials) are assigned an 

order and cannot change at any point during production. The anarchic manufacturing 

system’s dynamic decision-making for jobs at all stages of production, allowed for an agile 

and adaptive delayed decision-making; rather than being tied to a specific order from creation. 

The anarchic system maximised flexibility by embracing complexity, the less restricted and 

more complex the system is the more effective flexibility becomes. Considering an entropic 

view to complexity, as the number of options and selection choices increase the more 

complex the system is (Elmaraghy et al., 2012). The anarchic system had its limits, as seen 

in the balanced production experiment in Section 6.3.3, when structural drift was high at 

Dft=3, earlier customisation limited flexibility and the system’s early decisions based on 

uncertain information were binding thus preventing adaptability to new scenarios. The 

centralised push systems managed complexity through simplification and structure, by 
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assigning jobs to an order on creation. The flexible system is effective for all experimental 

parameter levels, but limited its performance; the fixed system with an hierarchical cells 

structure performed reasonably well until it faced disruptions, as observed in dynamic 

bottleneck production in Section 6.3.4. 

Self-healing system 

The anarchic manufacturing system exhibited robust self-healing characteristics against 

dynamic and unforeseen disturbances, as shown in the dynamic bottleneck experiment in 

Section 6.3.4. Bottlenecks can significantly impact productivity, even in flexibly structured 

systems. The anarchic system was able to reallocate operations away from the bottleneck 

resource to directly interchangeable resources just as effectively as a centralised flexible 

system that managed all interchangeable resources concurrently. This was observed through 

similar rates at which WIP jobs, in Figure 6-11, and order lead time, in Figure 6-12, increased 

for the two systems. This aligns to self-organising and fault-tolerant characteristics proposed 

for distributed systems (Heragu et al., 2002), and reinforcing previous conclusions from 

literature (Leitão, 2009) . 

Reducing myopic decision-making 

Myopic decision-making is a key criticism of distributed systems (He, Zhang and Li, 2014), 

where short-sighted decisions result in globally suboptimal outcomes. Anarchic 

manufacturing system for assembly adapted agent decision-making to maximise lifetime 

profitability; demand impacts a product’s selling price and reported recent costs indicate 

profitability for selecting one model over another. This lifetime profit maximisation is an 

effective alternative to other myopic decision-making counter measures; re-introducing 

hierarchy and altering competitive behaviour are likely to impede emergent behaviour (Blunck 

and Bendul, 2016). Lifetime profitability maximisation is a complex decision with highly 

uncertain outcomes, the environment is likely to change over the course of a job agent’s 

lifetime. When an early decision was forced, in balanced production in Section 6.3.3 at Dft=3, 

it impeded agent and global outcomes as agents cannot impact their early decision-making. 

For flexible scenarios, with late job to model customisation that allowed agile systems to 

maximise flexibility, the impact of myopic decision-making was reduced; through delayed and 

dynamic decision-making throughout an agent’s life. However, as shown in the balanced 

production experiment with reduced flexibility, at Dft=3, early decisions significantly impact 

the outcome, evident through very high WIP jobs in Figure 6-7. The lack of global coordination 

has impacted the performance of anarchic manufacturing in this uncertain and inflexible 

environment. 



 

125 

 

6.5 Summary 

The previous chapter evaluated anarchic manufacturing in simple discrete manufacturing 

scenarios and found that the anarchic system could manage complexity effectively and adapt 

to conflicting objectives. This chapter evaluates the anarchic manufacturing system against 

centralised systems for assembly problems and has extended the breadth of research into 

distributed systems into assembly as well as confirming some conclusions found previously.  

The anarchic manufacturing system has been demonstrated to effectively manage the mixed-

model assembly scenario; that uses multiple jobs that are joined to make a product. There is 

a fundamental coordination problem that extends decision-making processes beyond an 

individual agent. Independent decision-making was maintained throughout and used group 

decision-making methods for the natural teamworking scenario, as detailed in Section 6.3.1. 

Independent decision-making allowed jobs (or subassemblies) to leave a group of jobs if the 

joining operation had not started. Furthermore, the free market architecture, where system 

elements maximise profitability, was used for all decision-making. This resulted in an effective 

system that reduced myopia by maximising life-time profitability, as shown in Section 6.3.3 

where jobs were guided by its calculations for expected model profitability. This demonstrated 

the malleability of the free market system employed to create sophisticated mechanisms and 

compounds the findings in Chapter 5, which adjusted the system to react to dynamic multiple 

objectives. 

Experiments evaluated an idealised balanced production and dynamic bottleneck scenarios 

and found the anarchic system is superior when it can embrace complexity to its advantage 

through maximising flexibility. Additionally, dynamic bottleneck experimentation, that evoked 

unforeseen disruption, validated previous assertions and studies for the robustness and self-

healing nature of distributed systems. Anarchic manufacturing system was able to fulfil mixed-

model assembly production, and even exceeded centralised performance under certain 

circumstances. Several desirable anarchic manufacturing traits were observed, these include 

agility and maximising flexibility, self-healing, and reduced myopic decision-making. These 

findings reinforce the conclusions drawn from Chapter 5, where similarly the anarchic 

manufacturing system was shown to embrace complexity and reduce myopic decision-

making through profitability mechanisms. 

This chapter considering mixed-model assembly along with the previous chapter using simple 

discrete manufacturing have analysed anarchic manufacturing relative to centralised systems 

in subsets of manufacturing scenarios, where long-run and mature behaviour is developed 

and analysed. Almost all manufacturers face the problem of product transition, where the 
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manufacture of one product is replaced over a prolonged period with another. Subsequently, 

there is a complex planning and control problem over a finite period, where mature states 

cannot be achieved, given the dynamic and temporal nature of the problem. The next chapter 

evaluates this product transition scenario, which gives rise to a highly volatile environment, 

where anarchic manufacturing may leverage its self-organising and flexible traits.   
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7 Application 3, product transition 

7.1 Introduction 

The movement from producing one product to another or between variants, known as 

manufacturing transition, is a traditional problem facing many manufacturers. The existing 

planning and control structures focus on mature steady-state environments for high volume 

and long term performance (Colledani, Tolio and Yemane, 2018); rather than the volatile 

transitional state, where there are many unforeseen disruptions during ramp-up (Surbier, 

Alpan and Blanco, 2014). Despite the volatile environment, there has been little focus on 

managing the transition period with respects to production planning and control. 

The research motivation for this chapter is to ascertain whether the anarchic manufacturing 

system can leverage distributed system traits for an inherently volatile scenario concerning 

product transition, where traditional methods are at a disadvantage due to the unpredictable 

and dynamic nature. This chapter investigates a dynamic environment which is characterised 

by a lack of steady-state behaviour; in preceding chapters, only steady-state or reaction to a 

step change have been investigated. The anarchic manufacturing system is compared to 

centralised systems using flexible flowshop and hierarchical cell structures in idealised 

scenarios to isolate behaviour as well as against an automotive case study, which serves to 

validate idealised experiments. Important product transition factors are varied and evaluated, 

most notably the ramp-up/transition curves, learning rate to improve production, failure rate 

and structural flexibility. 

This chapter covers additional relevant background literature for transition, ramp-up, batch 

production and production structures for transition. Subsequently, the experimentation 

section initially details the adaptations to the anarchic and centralised systems for transition 

scenarios and all experimentation, then the section details the four experiments conducted. 

The first three experiments used idealised scenarios with fabricated data which was validated 

by a fourth experiment using an automotive case study; all but the second idealised scenario 

experiment evaluated different ramp-up and down curves. The chapter then discusses all 

experiments and is concluded with a summary. A summary table of additional elements to 

the anarchic system introduced in this chapter are indicated below in Table 7-1. 

Table 7-1: Additional anarchic system elements introduced in Chapter 7 

Element Meaning 

Copkp Cost per operation for resource k and product p 

𝜓𝑘𝑝 Changeover discount factor 
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Cchange Cost of changeover between products 

tojp Nominal duration of an operation of capability j for product p 

tplan Planning horizon (time duration) 

nkpresent Number of recent jobs of product p processed at resource k 

 

7.2 Scenario background 

7.2.1 Transition 

Manufacturing transition concerns a manufacturing facility transitioning to produce a new 

product family or product iteration that is significantly different to the existing product, with 

regards to manufacturing processes; these new processes require a ramp-up phase to 

reduce disturbances and improve production efficiency. Product rollover is the replacement 

of an old product with a new product, the rollover decisions consider when to replace the 

product and whether to offer both old and new products simultaneously (Katana et al., 2017). 

A dual rollover, offering both products simultaneously, can include a transition phase when 

both products are manufactured simultaneously. 

For all manufacturing facilities producing multiple product families, product changeover at 

machines can significantly hinder performance. Changeover typically uses well developed 

lean manufacturing techniques, most notably SMED (Single Minute Exchange of Die) (Mali 

and Inamdar, 2012). It is assumed for the experiments in this chapter that a tooling 

changeover is required when changing between product families, and this is a non-

instantaneous task. 

7.2.2 Ramp-up  

The period between development completion and full capacity utilisation is known as 

production ramp-up. During this period the production process is poorly understood causing 

low yield and low production rates (Terwiesch and Bohn, 2001), this requires learning to 

improve any new production process. Ramp-up management and control aims to achieve 

rapid time to volume, to ensure fast time to market and full utilisation of production capacity, 

typically the experience gained during production ramp-up improves production efficiency 

(Hansen and Grunow, 2015). Ramp-up has increasing importance given the rise of 

Reconfigurable Manufacturing Systems, product variety and volatility entails manufacturing 

systems need to change product mix more frequently. RMS is viewed to improve the ramp-

up process through rapid reconfiguration using physical technologies (Andersen, Nielsen and 

Brunoe, 2016), rather than through planning and control techniques.  
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During production ramp-up, product quality and system disturbances are significant and 

common issues. Available quality methods focus on high volume production and long term 

system performance, which lose their effectiveness during system ramp-up (Colledani, Tolio 

and Yemane, 2018). On implementing a new production process, whether for a new product, 

new production technology or both, system disturbances are highly likely to lead to 

unpredictable behaviour (Basse et al., 2014). These disturbances interrupt production and 

reduce production efficiency and throughput. Insufficient process capabilities of the 

production technology is one of the main reasons for disturbances (Stauder et al., 2014). 

Ramp-up key performance indicators concern throughput time and ramp-up efficiency to 

attain quality and quantity targets in a predetermined lead time at the lowest possible cost 

(Surbier, Alpan and Blanco, 2014). 

Ramp-up production is designed, progressing from pilot production to low and then high 

volume production phases (Almgren, 2000), increasing new product volumes whilst 

decreasing that of the old product against defined ramp-up and down curves (Surbier, Alpan 

and Blanco, 2014). Throughout all ramp-up phases, learning through experiments is 

important to achieve a rapid time to volume with high yield. Experience gained can be 

expressed from the cumulative production volume and can be used for production capacity 

planning (Hansen and Grunow, 2015). Learning aids process improvement but reduces 

capacity in the short-run, resultantly there is a trade-off between experiments and production 

(Terwiesch and Bohn, 2001). Terwiesch and Bohn formalised the intertemporal trade-off 

between short-term opportunity cost of capacity against long-term value of learning and 

examined the trade-off between production speed and quality. 

7.2.3 Batch production 

Despite the pervasion of lean manufacturing, there are continuing opportunities and reasons 

for batch production. These include manufacturers of varying production volumes, batch 

production provides operational flexibility to try out low volumes of new work (Cooney, 2002). 

The scenario described aligns to the problem faced in transition and ramp-up of a new 

product. 

The inter-task product changeover at a machine or resource for multi-model production can 

have a significant impact on performance (Nazarian, Ko and Wang, 2010). In scenarios where 

there is a significant changeover setup task, batch production will reduce the number of 

changeovers required between product types and can improve overall production efficiency. 

This is likely during the transition between two product families and extended if the production 

facility is designed to produce one or the other rather than both simultaneously. 
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Almgren details that batch production was used during the low volume ramp-up phase, rather 

than continuous production for developed high volume production phase (Almgren, 2000). 

This is most likely to improve learning during early-stage ramp-up production and benefit from 

batch production traits. 

7.2.4 Transition and ramp-up production structures 

There are many remedial and investigative methods to improve the ramp-up method; for 

example, reducing root cause of instabilities (Basse et al., 2014), pilot programmes (Almgren, 

2000), gamification for learning (Kampker et al., 2014), copy-exactly ramp-up strategy for 

learning (Terwiesch and Xu, 2004). However, these cannot improve the planning and control 

of a system, they are part of the learning process to reduce disturbances and improve 

production processes.  

Strategic planning methods for transition and ramp-up consider temporal plans and task 

allocation and may use advanced planning simulation tools. Almgren divides the ramp-up 

phase into low volume learning to high volume production (Almgren, 2000). More detailed 

methods are used for short-term planning; a method that models technologies, whilst 

considering stochastic influences, to predict ramp-up behaviour for a given scenario is used 

within a hybrid simulation model (Klocke et al., 2016). A full factory simulation tool was used 

as a decision support tool during a transient period of the parallel ramp down of one product 

and the ramp-up of a new product (Klein and Kalir, 2006). On a network scale, Becker et al. 

consider a strategic ramp-up planning process for automotive production networks. They 

utilise a hierarchical planning framework to strategically determine ramp-up and down 

decisions, and show that their strategic ramp-up planning model outperforms sequential 

planning approaches (Becker, Stolletz and Stäblein, 2017).  

Traditionally, hierarchical planning and control structures are used to simplify the overall 

problem into manageable sizes. This often leads to independent manufacturing cells. During 

ramp-up, the system’s complexity is the cause of instabilities observed as unpredictable and 

uncontrollable system behaviour (Basse et al., 2014), hence manufacturers aim to reduce 

complexity through structure. For scenarios with a large setup time between product families, 

multiple cells are used and each dedicated to a different product family (Miltenburg, 2001). 

Similar rules can be applied to transition scenarios to simplify the problem, Ford closed their 

Dearborn Truck Plant for 11 weeks to complete the overhaul and ramp-up for the new 

aluminium body Ford F-150 pickup (Fleming, 2018). In this example a distinct cut off from 

one product to manufacturing the other was made; simplifying the problem by avoiding 

parallel manufacture through a direct changeover transition.  
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Methods and tools used for managing a ramp-up phase are not specific to the ramp-up 

conditions, rather they consider mature production conditions, resulting in inaccurate 

resource planning (Surbier, Alpan and Blanco, 2014). This suggests that production 

engineers are poorly equipped to manage transition and ramp-up periods, as a long-term 

steady-state perspective is unsuitable. Due to time pressures and insufficient data, 

analytically validated decisions are not feasible, inevitably heuristics are applied to decision-

making which helps to reduce complexity (Basse et al., 2014). 

Distributed management of autonomous reconfigurable manufacturing systems, proposed to 

reduce ramp-up times through modularity of resources, has been proposed (Li et al., 2018). 

However, they do not consider the concurrent production of two products but aim to 

significantly reduce the time between runs of different products, improving through physical 

manufacturing technologies rather than decision-making.  

Distributed systems have not previously been proposed to resolve the transition or ramp-up 

problem. However, the reported self-organising and agile nature of distributed systems, as 

discussed in Section 2.4.4, suggest they could solve the highly dynamic and volatile nature 

of product transition. 

7.3 Experimentation 

7.3.1 System adaptation, anarchic manufacturing system 

The anarchic manufacturing system has been adapted to fulfil the transition scenario. The 

most significant concern in a generic transition scenario is to determine whether a resource 

should change the product type it is producing. This will typically require a changeover 

operation for retooling and setup. The anarchic system, to determine whether it is worthwhile 

to changeover product, uses temporary syndicate batching agents to achieve collaborative 

economies of scale; by grouping jobs of the same type requiring the same resource capability. 

The benefit to a resource, through profitability, of changing over for a different batch of 

products is compared against market conditions, providing an economic assessment against 

the global conditions. The resource changeover cost is calculated, as an equivalent lost 

operational revenue, and charged to the jobs requesting a changeover. The temporary batch, 

using pooled currency from all jobs within the batch, may overcome the changeover cost, 

thereby benefiting from economies of scale. This ensures economic viability as the resource 

charges for the changeover operation and globally it ensures that there is sufficient demand 

to warrant a resource to changeover products. 
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Anarchic manufacturing for transition has a structure where dynamic batches of jobs are 

created, as economically appropriate, and these batches negotiate with resources using the 

contract net protocol to assign jobs (within the batch) to a resource. Figure 7-1 

diagrammatically displays the anarchic system where three jobs of two different types are 

joining batching agents, which in turn negotiate with resources; these resources illustratively 

reflect the utilisation and queue cost and product changeover cost.  

 

Figure 7-1: Transition, anarchic system for transition with dynamic batching 

Jobs join an unassigned batch of the same product type looking for the same resource 

capability where available. As the batch has not successfully negotiated a resource (MT), it 

suggests that further jobs are required to pool resources and benefit from economies of scale, 

overcoming any possible changeover cost. Jobs cannot join assigned batches; therefore, a 

highly efficient system would process jobs in batches of one, achieving single piece flow 

through the system.  

Batches negotiate with resources using a contract net protocol framework, with up to five 

rounds of bidding; similar to the anarchic manufacturing system detailed in Section 4.2, 

except for an adjusted resource cost calculation, explained below. Batches ask resources 

with suitable capability to bid for the operations within the batch, resources reply with a cost 

for all the operations, considering any product changeover cost. Each job calculates a 

threshold, which is the currency held divided by the number of operations remaining. Batches 

evaluate whether the lowest bid is below the total threshold for all jobs and assigns the jobs 

to the resource if so, otherwise the batch will ask the resources for a rebid for up to four further 
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rounds. This negotiation process, with highlighted adaptations, is summarised in Figure 7-2 

and displayed as a decision flowchart. 

 

Figure 7-2: Transition adjusted negotiation framework 

The MT bidding cost calculation considers the number of jobs to be processed, utilisation and 

queue at the MT, efficiency of processing the product, the changeover cost and recent history 

of tendering batches. Equation 1 defines the bidding cost for MT 𝑘 for model 𝑝 at time 𝑡, 

𝛽𝑘𝑝(𝑡), where 𝑛𝑏 is the number of jobs in the tendering batch, 𝐶𝑜𝑝𝑘𝑝(𝑡) is the cost per 

operation for resource 𝑘 and product 𝑝 at time 𝑡, 𝜓𝑘𝑝 (𝑡) is the changeover discount factor 

and 𝐶𝑐ℎ𝑎𝑛𝑔𝑒 is the cost of changeover. 

𝛽𝑘𝑝(𝑡) = 𝑛𝑏 ⋅ 𝐶𝑜𝑝𝑘𝑝(𝑡) + 𝜓𝑘𝑝(𝑡) ⋅ 𝐶𝑐ℎ𝑎𝑛𝑔𝑒 (7.1) 

The cost per operation, 𝐶𝑜𝑝𝑗 𝑝(𝑡), resource 𝑗 and product 𝑝 at time 𝑡 is calculated as: 

𝐶𝑜𝑝𝑘𝑝(𝑡) = 𝐶𝑜𝑝𝑐𝐸𝑥𝑝 (𝜔𝑘(𝑡) +
𝑄𝑘(𝑡) ⋅ 𝑡𝑜𝑗𝑝

𝑡𝑝𝑙𝑎𝑛
) (7.2) 
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Where 𝐶𝑜𝑝𝑐𝐸𝑥𝑝 is the expected operational cost for capability 𝑐, 𝜔𝑘(𝑡) is the utilisation of 

resource 𝑘 at time 𝑡, 𝑄𝑘(𝑡) is the queue at resource 𝑗, 𝑡𝑜𝑗𝑝 is the nominal duration of an 

operation of capability j for product 𝑝 and 𝑡𝑝𝑙𝑎𝑛 is the planning horizon. 

The changeover discount factor, 𝜓𝑗𝑝(𝑡), for product 𝑝 at time 𝑡, is calculated as: 

𝜓𝑘𝑝(𝑡) =

{
 
 

 
 0

𝑖𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑎𝑠 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡
𝑖𝑛 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑘

𝑚𝑖𝑛 (1, 2 −
2𝑛 𝑘𝑝𝑟𝑒𝑐𝑒𝑛𝑡(𝑡)

𝑛𝑘𝑟𝑒𝑐𝑒𝑛𝑡(𝑡)
 ) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7.3) 

Where  𝑛𝑘𝑝𝑟𝑒𝑐𝑒𝑛𝑡(𝑡) is the number of recent jobs of product 𝑝 processed by resource 𝑘 at time 

𝑡, and 𝑛𝑘𝑝𝑟𝑒𝑐𝑒𝑛𝑡(𝑡) is the total number of recent jobs processed. 

7.3.2 System adaptation, central and hierarchical systems 

For comparison simple centralised systems are used, following a flexible flowshop style 

structure and a hierarchical cell structure; both of which use simplifying structures to manage 

operational complexity. The flexible flowshop structure prioritises older batches, to evenly 

manage backlogs by product, and nominally processes jobs for product A then B; as 

diagrammatically shown in Figure 7-3. The flowshop cells contain all the machine tools of a 

particular capability. Jobs at each stage are allocated to the applicable cell and assigned to 

the next available MT on arrival to a cell, i.e. the MT with the shortest queue. This enables 

flexibility on MT failure, as jobs will be reassigned to the next available MT. 

 

Figure 7-3: Transition, illustrative centralised flexible flowshop structure 

The hierarchical cell structure has cells that contain one MT of each capability, and therefore 

they can complete all operations, jobs cannot move between cells. On arrival of a new batch, 

at the beginning of each week, the hierarchical system splits the jobs by product A and B and 
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assigns each cell a product, with one cell processing a mix of A and B, each cell gets an equal 

share of jobs; as diagrammatically shown in Figure 7-4. This system minimises changeovers, 

as only one cell processes a mix of both product types, and processes these in an A then B 

sequence. For a MT that is shared between cells, e.g. only 1 MT of a particular capability 

shared between 2 cells, the MT will prioritise queued jobs by older jobs and secondarily 

product A over B of jobs within the same batch. This simplifies the allocation problem by 

dedicating cells to a product, however on MT failure jobs must wait for repair before continuing 

as they cannot be reassigned between cells. 

 

Figure 7-4: Transition, illustrative centralised hierarchical cell structure 

7.3.3 Factors impacting experiments 

All experiments conducted used stochastic operation durations and failure rates; therefore, 

each parameter setting was repeated for 50 runs for suitable confidence and statistical 

significance. Section 7.2 highlights key product transition issues, those that are tested in this 

chapter are differing ramp-up/product transition curves, the learning rate to improve 

production efficiency and reduce failures, failure severity itself and the structural flexibility of 

the manufacturing system. All simulations models were created as agent-based models, 

using the AnyLogic platform. 

For all systems and experiments, resources are impacted by ramp-up issues, most notably 

high inefficiency and failure rate until learning is achieved through experience. The operation 

duration, for MT k operating on product model p at time t, is divided by the efficiency rating, 

𝐸𝑓𝑓𝑘𝑝 (𝑡), which for a new product type starts at 0.3. Learning through experience improves 

the efficiency rating, improving by 0.1 for every 𝑘𝑒𝑝𝑗 number of operations for that product 

completed globally and locally, for product model p by resource capability j. MT 𝑘, at time 𝑡 

processing model 𝑝, has a chance of failure before every operation dependent on the failure 

rate, 𝐹𝑘𝑝(𝑡), which improves through learning and experience, similar to efficiency. The start 
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failure rate, 𝐹𝑠𝑡𝑎𝑟𝑡, is a probability of 0.4 and similarly improves by 0.1 for every 𝑘𝑓𝑝𝑗 operations 

completed for the product model p by capability j; there is a minimum failure rate of 0.01. 

For all experiments, product A was replaced by product B in various ramp-up curves, these 

changed the volume of production over time; the ramp-up curve used is noted as parameter 

RC and displayed in Figure 7-5. Gradual transition (RC = 1) reflects an increasing new 

product volume and decreasing old product to a predefined ramp-up curve (Surbier, Alpan 

and Blanco, 2014). Concurrent production (RC = 2) maintained equal product volumes for a 

prolonged duration, to represent equally demanded products. The direct changeover 

transition (RC = 3) has a hard cutover from product A to B, representing a simplified solution 

of zero concurrent production. At the beginning of each week, orders were released as jobs. 

The facility operates two shifts in a six-day week providing 96 hrs of production.  

 

Figure 7-5: Transition ramp-up curves, (a) gradual transition, (b) concurrent production and 

(c) direct changeover 

The idealised scenarios used artificial parameter settings, although these do not relate 

directly to industry, they have suitable ballpark values and still enabled a relative comparison 

between systems as parameter levels changed. The relative comparison is suitable to 

characterise the systems as a factor became more severe.  

For the initial idealised experiments, jobs for both product types were required to complete 

four operations in the same sequence (i.e. A-B-C-D). This could be fulfilled by any capable 

resource, allowing flexible routing; planning and control structure permitting. Each operation 

had the same nominal duration which was uniformly randomly varied by 20%. For the first 

two experiments, varying learning rates and failure severity, there were 16 resources; four 

resources for each capability. The third experiment varying the structural flexibility of the 

system varied the number of resources from six to eight. 
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7.3.4 Learning rate  

The first idealised scenario experiment explored the impact of learning rates as well as ramp-

up curves. The rate of learning is the focus of much the product transition and ramp-up 

literature, as covered in section 7.2. This experiment directly investigated whether the speed 

of learning impacted the performance for distributed and centralised systems and is 

diagrammatically summarised in Figure 7-6. The learning method and impact of learning was 

kept consistent for all systems, it was assumed that there would be no difference between 

systems in how learning was achieved. 

 

Figure 7-6: Transition learning rates experiment summary 

Experimental framework 

Learning is the focus of much of the ramp-up and transition literature. Learning rates (LR) 

were varied in the first experiment, by adapting the number of operations completed, 𝑘𝑒𝑝𝑗 

and 𝑘𝑓𝑝𝑗, to improve efficiency and failure rates by 0.1; see Table 7-2 for variable parameter 

levels. All three ramp-up curves were evaluated, the severity of failure was maintained at 20 

hrs repair time.  

Table 7-2: Transition learning rate, variable parameter levels 

Parameter level No. operations for efficiency 
improvement, 𝑘𝑒𝑝𝑗, of 0.1 

No. operations for failure rate 
improvement, 𝑘𝑓𝑝𝑗, of 0.1 
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LR = 1 100 50 

LR = 2 150 100 

LR = 3 200 150 

Results and discussion 

The first experiment analysed rates of learning, increasing the number of operations required 

to obtain efficiency gains and reduce failure rates. Figure 7-7 displays the 95% confidence 

interval of the backlog for each parameter setting, directly comparing anarchic to centralised 

cell and flexible systems. The plots increase the learning rate (LR) variable horizontally, and 

the three ramp-up curves (RC) change vertically. It is evident that the anarchic system 

degraded as learning rates become slower for the gradual transition and direct changeover 

(RC=1 and 3); as WIP increased at a greater rate than the centralised systems. However, for 

the concurrent production system, the anarchic was comparable to the centralised flexible 

system. The two centralised systems performed similarly for gradual (RC=1) and direct 

changeover (RC=3) scenarios, for the concurrent production scenario (RC=2), the centralised 

hierarchical cell system performed the best. For the prolonged period of equal production 

volumes, the centralised cell system divided the resources into two independent operating 

systems, where there was no need to changeover between products. 
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Figure 7-7: Transition learning rate, confidence interval backlog results 

7.3.5 Failure severity 

Product transition and ramp-up scenarios are inherently volatile, with at first a high failure rate 

and severity of failure until learning is achieved. Reducing failure and its impact is a source 

of many disturbances during ramp-up, as noted in the background literature in Section 7.2. 

Directly evaluating an increasingly severe failure scenario, by lengthening the repair time, 

would indicate whether anarchic manufacturing would be able to deploy its robust self-healing 

traits; this experiment is diagrammatically summarised in Figure 7-8, indicating the single 

gradual ramp-up curve and increasing repair time. 
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Figure 7-8: Transition failure severity experiment summary 

Experimental framework 

During production ramp-up of a new product, production failures are more frequent and are 

the most significant disturbances to production. For the second experiment the severity of 

these failures was varied by changing the repair time (RT); Table 7-3 details the variable 

parameters. Learning rates were maintained at LR=2 from the first experiment, 𝑘𝑒𝑝𝑗=150 

operations and 𝑘𝑓𝑝𝑗=100 operations. 
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Table 7-3: Transition failure severity, variable parameter levels 

Parameter level Repair time on failure 

RT = 1 20 hrs 

RT = 2 40 hrs 

RT = 3 80 hrs 

Results and discussion 

The second experiment evaluated an increasing failure severity by increasing repair time 

(RT), the gradual transition ramp-up curve was maintained (RC = 1), backlog plots at the 95% 

confidence interval display the results in Figure 7-9. As the impact of failure became more 

severe, by increasing repair time, the anarchic system became superior as it was less 

sensitive to the disruption and flexibly managed the scenario; adapting to disruptions and 

exploiting available flexibility. This was particularly apparent at the most severe parameter 

level, RT=3, where there is a clear separation between the 95% confidence interval ranges 

for a significant proportion of the simulation and at the peak levels of backlog. Similarly, the 

centralised flexible system has a similarly degrading performance as repair time increased, 

however, the fixed hierarchical cell system performed very poorly as the parameter level was 

increased; highlighting the rigidity and lack of flexibility in the cell structured system. 

The anarchic system had the best robustness to disruption, through adaptability. This was 

achieved by embracing the complexity of the system and maximising available flexibility, as 

it is not constrained by a simplifying structure. 

 

Figure 7-9: Transition failure severity, confidence interval backlog results 

7.3.6 Structural flexibility 

Few factories have the idealised flowshop set up as the previous experiments in this chapter 

have investigated. Often factories have reduced number of MTs for a given process to reduce 
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capital expenditure for MTs or increase MTs for a process to eliminate a bottleneck and 

improve throughput. Subsequently, the structural flexibility of the system will change and will 

require coordination across multiple MTs; this was evaluated and the experiment is 

summarised in Figure 7-10. Reducing the structural flexibility was achieved by first reducing 

the system to two MTs per stage and then ensuring there were bottleneck resources; by only 

providing one MT for a stage, that was twice as fast to maintain balance. 

 

Figure 7-10: Transition structural flexibility experiment summary 

Experimental framework 

Reducing the structural flexibility of a system reflects planning and control problem of real 

systems, bottleneck resources can imitate this scenario; reducing the structural flexibility of 

the system if there is only one resource of a particular capability. The third experiment 

reduced the structural flexibility of the system (SF), for the first level there are two resources 

for each capability and no bottleneck resources, for level two the second capability has only 

one resource and for the third level the second and fourth have only one resource; these 

variable parameter levels are summarised in Table 7-4. Learning rates were maintained at 

LR=2 from the first experiment, 𝑘𝑒𝑝𝑗=150 operations and 𝑘𝑓𝑝𝑗=100 operations. Additionally, 

repair time on failure was maintained at RT=2, 40 hours. 
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Table 7-4: Transition structural flexibility, variable parameter levels 

Parameter level No. capabilities with one 
resource only 

SF = 1 0 

SF = 2 1 (2nd operation) 

SF = 3 2 (2nd and 4th operation) 

Results and discussion 

Experiment 3 changed the number of bottleneck shared resources in a reduced 

manufacturing system reducing the structural flexibility (SF). This was compared against all 

three ramp-up curves. Figure 7-11 displays the backlog confidence interval plots for all 

parameter settings, directly comparing the three systems. Figure 7-12 to Figure 7-14 similarly 

displays the backlog confidence interval but compares the three structural flexibility levels 

against each other for a particular system and ramp-up curve (RC). 

Backlog and overall performance show that as shared resources go from 0 to 1 (SF 0 to 1) 

there was a significant degradation in performance for most systems and ramp-up curves. 

The anarchic was very poor at the direct changeover scenario, RC=3. During concurrent 

production, RC=2, the cell system significantly reduced performance as 1 resource was 

shared. Generally, the centralised systems performed similarly whilst the anarchic was worse 

for all scenarios. 
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Figure 7-11: Transition, structural flexibility, confidence interval backlog results 

On evaluating the performance differences between parameter levels more closely, shown in 

Figure 7-12 to Figure 7-14, further characterisation can be elicited. Comparing the system 

performance as the number of shared resources increased directly, using the 95% confidence 

interval, indicated the response to a scenario with reduced flexibility.  

Considering the gradual transition and the concurrent production ramp-up curves. The 

anarchic system for SF=2 and 3 (1 and 2 shared resources) did not have a significant 

difference in performance at the 95% confidence interval; observed through overlapping 

confidence interval ranges. This was in contrast to the hierarchical cell system, displayed in 

Figure 7-13, which showed a significant difference, at the 95% confidence interval, between 

each level of shared resources. Performance reduced as there are more shared resources. 

This indicated that the hierarchical cell system degraded at a faster rate and was less robust 

to this structural change. The hierarchical system was less effective at adapting to a more 

constrained system, reducing the effectiveness of the hierarchical cell structure. The 

centralised flexible system adapted similarly to the anarchic system, with little difference when 

at least one resource was shared. 
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Figure 7-12: Transition structural flexibility, anarchic system confidence interval backlog 

results 

 

Figure 7-13: Transition structural flexibility, centralised cell system confidence interval 

backlog results 

 

Figure 7-14: Transition structural flexibility, centralised flexible system confidence interval 

backlog results 

7.3.7 Automotive case study 

An automotive industrial case study was used to validate findings against a real-world 

problem. By reflecting a real factory setup and restrictions in a simulation experiment, it was 

evaluated whether the anarchic, centralised and hierarchical systems operated similarly to 

previous experiments. The case study utilised a flexible flowshop facility, where jobs can 

select any of the unrelated parallel machines in a production stage, to produce small 

automotive components for a medium-sized manufacturer (Frantzén, 2013). The 

manufacturing facility produces approximately 7,000 units per week and has 10 production 

stages; which have between one and seven parallel machines; products do not require all 
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production stages. The ramp-up curve and demand level (units per week) are varied in this 

experiment, this is summarised in Figure 7-15. 

 

Figure 7-15: Transition automotive case study experiment summary 

Experimental framework 

The case study, which informs the mature steady-state environment, was simplified for the 

purposes of this research, ignoring machine settings, safety stocks, buffers and inter-machine 

transferring, and the two highest demanded of the many variants produced (10 and 13) were 

used to represent the two main product groups. Key data available included product specific 

operation durations, sequence-dependent setup/changeover durations, machine specific 

mean time between failure (MTBF) and mean time to repair (MTTR) exponential distribution 

means. MTBF and MTTR indicate a high failure rate but a fast repair time. Additionally, 

unavailable data was fabricated to reasonable industry values, these included: learning rates 

impacting production efficiency and failure rates, and the long-term transition time horizon. 

These values are not expected to significantly impact the simulation outcomes. The number 

of operations to improve learning rates 𝑘𝑒𝑝𝑗 and 𝑘𝑓𝑝𝑗 are 75,000 and 40,000 operations 

respectively for a 0.1 improvement. Table 7-5 summarises the case study experimental 

parameters for production stages taken from Frantzén (Frantzén, 2013). 
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Table 7-5: Transition automotive case study, production facility data (Frantzén, 2013) 

Production 
stage 

No. MTs/ 
stage 

Op 
duration A 
(s / unit) 

Op 
duration B 
(s / unit) 

Product 
changeover 
duration (s) 

MTBF 
(min) 

MTTR 
(min) 

1 5 99 125 60 55-72 8-15 

2 1 - - - - - 

3 2 - 48 300 80 8 

4 3 59 - 1200 50 8-12 

5 3 40 43 1440 60-80 8-14 

6 7 94 133 900 50-68 7-25 

7 3 33 44 2700 68-70 10-12 

8 1 14 14 0 150 5 

9 2 32 - 24 140 6-7 

10 2 27 37 24 72 8 

The experiment varied the transition ramp-up curves and the overall demand on the system. 

The transition ramp-up curves are identical for the experiments above (RC = 1, 2 & 3), using 

a gradual, concurrent and direct change transitions; as shown in Figure 7-5. The transition 

period is modelled over 18 months, which was representative for the automotive case study. 

The overall system demand was varied from the nominal 7,000 units/week produced to 

11,000 units/week; these are detailed in Table 7-6. 

.  
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Table 7-6: Transition automotive case study, variable parameter levels 

Parameter level Demand, units/week 

Dmd = 1 7,000 

Dmd = 2 10,000 

Dmd = 3 11,000 

Results and discussion 

The automotive case study experiment varied the demand (Dmd) put on the system, 

increasing system utilisation, which was run against the three ramp-up curves (RC). Figure 

7-16 plots the mean work in progress within a week, including its 95% confidence interval; 

the confidence intervals are very small but can be seen on the magnification inset for RC=1 

and Dmd=2. There was no backlog created for gradual and concurrent transition ramp-up 

curves, therefore WIP was plotted. 

For the gradual and concurrent changeovers, RC=1 and 2, all systems are able to manage 

the scenario and had zero backlog; this suggested that the real-world scenario did not strain 

the systems enough to gain valuable insight to their performance differences. For the direct 

changeover scenario, RC=3, the anarchic system performed very poorly and did not 

overcome the sharp change at high demand levels; a large backlog was created. This was 

due to the anarchic system being influenced by the recent past, its perception of the current 

market conditions was very different from the current and future reality. The market conditions 

were not fast enough to respond to a sudden and very different change; a forecasting 

mechanism that pro-actively influences the market conditions would correct this. 

Subsequently, the system was unable to effectively price according to new market conditions, 

impacting allocative efficiency. 

For gradual and concurrent changeovers, the anarchic system performed worse during the 

changeover period but managed the scenario and maintained WIP at a controllable level, to 

eliminate any backlog and ultimately recover. Additionally, at the highest demand level, 

Dmd=3, and concurrent ramp-up curves, RC=2, the anarchic performed better than the fixed 

centralised system. This highlights anarchic manufacturing’s flexibility as demand and high 

utilisation stress the system. 
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The flexible centralised system performed best overall for all scenarios. The hierarchical (pre-

planned and fixed) centralised system performed well, however for the highest demand, 

Dmd=3, the performance deteriorated and recovery was slow. For the concurrent high 

demand scenario, RC=2 and Dmd=3, the pre-planned hierarchical system was very poor. 

This was due to high resource sharing and cross over resulting in an inability to implement 

an effective hierarchical or cell structure. This indicated the downfall of the hierarchical fixed 

system, suffering from high rigidity and inflexibility, in a real-world scenario. 

This automotive case study provided real-world validation to the previous simulation 

experiments, as observed by similar outcomes. It can be concluded that the anarchic 

manufacturing system is functional against a real-world case study, but not the best 

performing. However, as no systems produced a backlog for gradual and concurrent 

changeovers, there were no serious considerations in performance between systems. 

Flexible dispatch heuristics performed well, and for most scenarios the anarchic 

manufacturing system maintained a good performance that was comparable to the 

centralised flexible system in particular scenarios. The anarchic system at times of high stress 

was superior to the hierarchical structure.  

 

Figure 7-16: Transition automotive case study, confidence interval WIP results 
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7.4 Discussion 

From the four experiments conducted, there was no overall superior system. The centralised 

systems had mixed performances, although the hierarchical cell system was the most 

allocatively efficient in the simplest of scenarios. The simplification methods, implemented as 

a hierarchical cell structure, reduced flexibility. This was evident through relative low 

performance as structural flexibility reduced and severity of failure increased.  

The anarchic manufacturing system is shown to perform well in all scenarios using a gradual 

and concurrent production transition ramp-up curve, leading to the conclusion that distributed 

systems can manage a product transition scenario effectively. The self-organising anarchic 

system performed best when flexibility was required, particularly for the second experiment 

which increased failure severity. Additionally, the automotive case study validated the 

anarchic system’s performance in a real-world context; showing comparable performance, 

which in high demand and high-stress scenarios could outperform the hierarchical 

manufacturing system.  

Anarchic manufacturing was shown to manage the product transition scenario effectively and 

warrant further investigation as to whether the benefits of distributed systems can be 

leveraged in the volatile transition scenario. This chapter evaluated an automotive case study 

to validate simulation experiments. However, all scenarios assumed flexible routing and 

ignored transportation issues and safety stock levels; these do not detract from the 

conclusions drawn but highlight that the system requires further development and 

investigation before real-world implementation. 

7.5 Summary 

The preceding two chapters detailed experiments using steady-state or step-change 

scenarios, whereas this chapter evaluated a transitional scenario where there is high volatility. 

Product transition proposes many challenges which have resulted in manufacturers resorting 

to simple dispatch rules, as discussed in Section 7.2. The anarchic manufacturing system 

was found to manage the dynamic product transition scenario, warranting further investigation 

as to whether the characteristics of distributed systems can be leveraged. 

To manage the natural teamworking and cooperative problem, anarchic manufacturing used 

dynamic batching; this maintained distributed decision-making and anarchic freedom. It 

leveraged economies of scale and enabled effective decision-making by directly evaluating 

the profitability of a changeover and processing a batch of alternate products. The profitability 

assessment was relatable to the overall environment and an agent’s individual circumstance, 
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this in turn reduced system myopia; whilst aligning to the free market paradigm and individual 

decision-making autonomy. Reducing myopia through profitability assessments further 

demonstrated the malleability of anarchic manufacturing that was observed in Chapter 5 for 

dynamic multiple objectives and Chapter 6 for model selection in mixed-model assembly. 

Four experiments were conducted in Section 7.3, three using idealised scenario parameters 

and the fourth used an automotive case study to validate the preceding experiments. They 

found that the anarchic manufacturing system was able to manage the product transition 

scenario effectively and that the system demonstrated self-healing traits. This was prevalent 

under the second experiment in Section 7.3.5, where the anarchic system deteriorated at a 

relatively slower rate compared to centralised systems under increasing failure severity. 

Anarchic manufacturing’s effectiveness was achieved through entities following individual 

profitability and leveraging economies of scales with cooperative teamworking in dynamic 

batches, in the free market environment.  

This chapter has provided evidence that anarchic manufacturing can manage a volatile 

transitional scenario by using self-organisation characteristics and leveraging cooperative 

interactions in a system with distributed decision-making that maximises profit. Chapters 5 to 

7 have experimentally shown the capabilities of the anarchic manufacturing system, noting 

the associated affordances which contributes to the thesis aim. The next chapter discusses 

in depth the outcomes from these in combination with the theory proposed in Chapter 4.  
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8 Discussion 

8.1 Introduction 

The preceding Chapters 4 to 7 detail the theory and experimentation for anarchic 

manufacturing. This chapter discusses the findings in the context of the research aims and 

objectives, discusses how the theory was realised through experimentation, articulates the 

real-world impact of anarchic systems, discusses the limitations of the research conducted 

and highlights future work. 

8.2 Evaluation of aim and objectives 

This section discusses the achievement of objectives enumerated in section 1.1. 

1) Review the state of the art of smart manufacturing, the production planning and control 

problem and existing solution architectures, within the boundaries and scope of the 

research, and identify research gaps and existing solutions 

The literature review in Chapter 2 covered relevant background areas, split into three 

categories, smart manufacturing, the production planning and control problem and existing 

solution architectures. The literature was critiqued, and research gap identified in Section 2.5, 

this informed the subsequent theoretical framework with the need to extend existing free 

market systems to improve functionality and adaptability, and identified that there is no 

literature that applies a distributed system to assembly or product transition scenarios. 

2) Create a prototype distributed planning and control system (the anarchic 

manufacturing system), to be applied to manufacturing scenarios 

Section 4.4 details the core structure and mechanics of the anarchic manufacturing system, 

creating a prototype for the system; the negotiation procedure is detailed with all factors 

explicitly defined through equations. This prototype is adapted appropriately for the 

manufacturing scenarios tested in Chapters 5 to 7, whilst maintaining the design principles of 

anarchic manufacturing. 

Apply the prototype system against a range of manufacturing scenarios using a suitable 

modelling method and document the process undertaken, these scenarios were: simple 

discrete manufacturing, mixed-model assembly and product transitionThe three 

manufacturing scenarios created are detailed in the three experimental Chapters 5 to 7. All 

use idealised scenarios to evaluate the manufacturing systems, additionally, an automotive 

case study was used in Chapter 7. All scenarios extended knowledge of both the anarchic 



 

153 

 

system and the application of a distributed system in a new environment or evaluated 

untested factors. The process of adapting the anarchic manufacturing suitable to a particular 

scenario is documented, explicitly defining the mechanisms used and how they still align to 

the anarchic system’s design principles. 

3) Evaluate the performance of the anarchic manufacturing system relative to centralised 

and hierarchical systems against the created scenarios through simulation 

experiments 

Chapters 5 to 7 evaluate the performance of the anarchic manufacturing system against 

centralised and hierarchical systems within the specific scenario using simulation 

experiments. Each of these chapters discuss the experimental findings, comparing 

performance and highlighting observable characteristics and affordances of anarchic 

manufacturing. Chapter 5 found that the anarchic manufacturing system handled complexity 

well and deteriorated at a slower rate in comparison to centralised and hierarchical systems. 

Chapter 6 extended these observations and found that the anarchic system was superior 

when it embraced complexity to its advantage through maximising flexibility. Both Chapter 6 

and 7 successfully applied a distributed system to advanced manufacturing scenarios, mixed-

model assembly and product transition, these had not previously been fulfilled. Additionally, 

for both scenarios several traits were evident, these included self-healing, robustness and 

reduced myopic decision-making. 

Chapter 8 discusses and integrates all research findings, relating experimental findings to the 

theory and discussing the impact to the real world. The contribution to knowledge is defined 

in Chapter 9, which highlights the methodology to apply anarchic manufacturing to a range of 

manufacturing scenarios, two of which have not previously fulfilled by a distributed system. 

Research aim: Create and develop a new methodology that enables manufacturing systems 

to be modelled as distributed free market systems for production planning and control. 

The thesis aim, restated above, has been realised through achieving the research objectives. 

The process of applying a distributed free market system against various manufacturing 

scenarios, to fulfil the planning and control functions, has been documented. The anarchic 

manufacturing system has been developed into prototypes which have been applied through 

simulation experiments to three smart manufacturing scenarios; two of which have not 

previously been fulfilled by a distributed system. Relevant characteristics have been 

highlighted and discussed as a result of experimental evidence and the realisation of 

theoretical principles. 
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8.3 Realisation of theory 

The hypothesis and theory for anarchic manufacturing are proposed in Chapter 4, detailing 

the design principles and attributes as to why the system would work. This theory was verified 

through simulation experiments, presented in Chapters 5 to 7, observations were made for 

independent agents using the free market structure, extending the profitability mechanism for 

scenarios and applying competitive and cooperative behaviour as appropriate.  

The hypothesis proposed in Section 4.2, that distributed free market systems can be applied 

to dynamic environments, was found to be true during experimentation. It is evident 

throughout that anarchic manufacturing, using a free market architecture, can effectively fulfil 

the production planning and control problem.  

Agent decision-making independence was required throughout and evident through 

observing self-organising and adaptability characteristics. Section 5.3.3 detailed the anarchic 

system’s ability to adapt to changes in objectives and Sections 6.3.4 and 7.3.5 demonstrated 

the system’s ability to self-organise from bottleneck and failure disruptions respectively; this 

self-organising capability was evident across all scenarios including the advanced assembly 

and product transition scenarios.  

The benefits of free market competition and the malleability of the profitability mechanism 

were evident in all scenarios. Increasing scale, in Section 5.3.1, increased the problem 

complexity, however, the free market structure embraced this complexity by simultaneously 

increasing competition and resultantly improved performance globally. This free market 

benefit was evident as structural flexibility was reduced, the more options available to the 

system and less constrained it was the greater the performance. This was evident in Section 

6.3.3 as WIP was lower due to a job’s delayed model selection in a mixed-model assembly 

idealised balanced production scenario. The profitability mechanism was adapted for all 

scenarios whilst retaining the same core anarchic manufacturing negotiation protocol detailed 

in Section 4.4, demonstrating the malleability of the anarchic manufacturing system and 

aptitude for further development. Additionally, the profitability mechanism was adapted for a 

far-sighted agent lifetime perspective (for job agents) in all experimental chapters, which 

resulted in reduced system myopia. 

The benefits of competition in the free market are evident to ensure fair market pricing and 

resultant efficient allocation of resources according to demand; the benefits of competition 

through scale is discussed above. Scenarios requiring cooperation were investigated, the 

profitability assessment considered the benefits of cooperating whilst agent independence 

was retained. The distributed systems are shown to cooperate effectively when required, as 
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documented in Chapter 6 for assembly and Chapter 7 for dynamic batching in product 

transition scenarios. Agent independence was maintained throughout, allowing agents to 

leave a cooperative group for another, unless they were physically coupled by an operation, 

this ensured the system remained truly distributed. 

Several advantageous characteristics were observed in the anarchic system on 

experimentation, many of these have been documented in literature, as reviewed in Section 

2.4.4. Self-organisation, self-healing and adaptive behaviour were evident on disruption in 

Sections 5.3.3, 6.3.4 and 7.3.5. Similarly, scalability was evident in Section 5.3.1 and flexibility 

was used in all scenarios. Anarchic manufacturing was shown to maximise flexibility by 

embracing complexity, previously documented by Scholz-Reiter et al. by stating logistic 

performance improved as complexity increased whilst using a distributed system (Scholz-

Reiter, Görges and Philipp, 2009), but this observation is not prevalent in most commentaries 

on distributed systems. This research, in Chapters 6 and 7, found that the anarchic system’s 

flexibility improved by increasing the complexity of the solution space. In Section 6.3 

experimentation for assembly the system maximised flexibility by delaying model selection 

for jobs, this increased the solution complexity but also improved performance. The longer 

there were multiple options available during the agent’s lifetime the more flexible the system 

was. The most significant criticism of distributed systems is myopic decision-making (Blunck 

and Bendul, 2016), this has been reduced by anarchic manufacturing by considering the 

lifetime profitability for an agent; as evidenced in Section 5.3.3 and 7.3. 

8.4 Real-world impact 

The literature review in Chapter 2 identified the potential use for distributed systems in smart 

manufacturing, by leveraging reported characteristics of distributed systems for an ever-

increasingly volatile and complex environment. The implementation of distributed systems is 

possible with existing and developing technologies, as discussed in Section 2.2.4, and may 

be required to effectively realise the production models noted in Section 2.2.3. Distributed 

systems enable a radically different operating model for internet of things enabled cyber-

physical systems (Monostori et al., 2016a), these as found by this research would not be 

hindered by the associated high scale and complexity expansion and may even improve 

performance. However, distributed systems research, this thesis included, currently 

evaluates systems in idealised simulation environments to characterise the benefits and 

drawbacks; the associated limitations are discussed in Section 8.5 below. The affordances of 

the anarchic manufacturing system improve the proposition for distributed systems and could 

be used if the projection of smart manufacturing is fulfilled by highly dynamic production 

models.  
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The Anarchic manufacturing system can be applied where a distributed system is 

advantageous, including non-manufacturing scenarios; these reasons could include 

removing reliance on centralised systems, a structural benefit from removing central systems 

or the need for highly dynamic systems for volatile and complex environments. Military 

systems may benefit from removing centralised actors which may become single points of 

failure, and the robustness provided by distributed systems could mitigate the volatility and 

hostile environment (Beautement et al., 2005). Certain scenarios with structural constraints 

would also benefit from removing central entities. An example is cloud manufacturing, 

discussed in Section 2.2.3, which utilises distributed manufacturing from many suppliers for 

many consumers (Wu, Matthew J. Greer, et al., 2013), the delegation of tasks is best not to 

be facilitated by a central entity from a competition point of view. This would remove bias and 

allow fair competition between suppliers, additionally, it would provide scalability.  

8.5 Limitations 

There were some limitations to the research conducted, these are associated with theoretical 

and experimental aspects. The theoretical proposal of anarchic manufacturing, detailed in 

Chapter 4, utilises independent and selfish agents in the free market environment. The 

limitations of the theory are associated with ethical decisions and actions as well as unrelated 

or hard to quantify factors with regards to currency. The effectiveness of the free market is 

reliant on the environment to reflect perfect competition. The most significant factor that could 

undermine this is ethical decisions and actions, this could come apparent through agents 

‘gaming’ the system or colluding for price-fixing. Using anarchic manufacturing, or other free 

market-based systems, within a closed environment would reduce the likelihood of unethical 

behaviour. However, it is unknown whether using learning systems, for example 

reinforcement learning, would result in agents manipulating their interactions through 

unethical behaviour. This research used profit maximising models to regulate agent behaviour 

these were predetermined and aligned ethically, this mitigates against unethical behaviour. 

However, these mechanisms to determine behaviour have not been optimised and would 

require further detailed analysis to improve them rather than leaving it to learning methods. 

Vrabič et al. used reinforcement learning for rationally bounded agents for control in a process 

industry production system (Vrabič et al., 2018), however, the agents did not communicate 

with each other and only considered a very localised operating environment which excluded 

any other agents. Future work, detailed in Section 8.6, identifies an opportunity to explore 

unethical behaviour utilising reinforcement learning and predetermined models. 

The anarchic manufacturing system researched for this thesis uses a single currency, 

additional factors that are unrelated or hard to quantitively relate to the single currency were 
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not considered. Social and environmental factors, discussed in Section 2.2.5, are difficult to 

relate to monetary currency, but manufacturers are increasingly pushed to consider value 

mechanisms of other systems for a sustainable society (Ueda et al., 2009). The anarchic 

system could be manipulated to have additional currencies that either could be traded, a 

dynamic exchange rate would quantify the relationship between factors, or retained as 

separate parallel currencies to act as concurrent requirements. This limitation has not been 

investigated as there are scenarios of greater value yet to be evaluated. 

The experimental limitations, relating to Chapters 5 to 7, include the contrived parameter 

selection, the simplistic comparative centralised systems and relative results analysis. For all 

experiments, except for the automotive case study investigated in Section 7.3.7, the 

scenarios and parameter selection are fabricated and can be viewed as contrived. This was 

done to reduce experimental noise and allow results to clearly evaluate the variable 

parameters. These parameter levels have not been validated against real-world scenarios 

and therefore lack direct relevance to real-world manufacturing. To address this, as was 

conducted for the product transition automotive case study, real-world industrial case studies 

can inform parameter selection. However, as found in Section 7.3.7, the results may lack 

clarity or insight into the relative performance if all systems behave similarly; experimenting 

in fabricated scenarios allowed the performance boundaries to be evaluated. 

The comparative centralised systems, used in Chapters 5 to 7, employing centralised and 

hierarchical structures, used simplistic dispatch rules to govern decision-making rather than 

advanced techniques or the state-of-the-art. The comparative method to evaluate results, 

considering the rate of change against a variable parameter detailed in Section 3.3.2, negated 

the need for system equivalence. Additionally, certain scenarios in industry, for example 

during ramp-up as discussed in Section 7.2.2, do not use advanced centralised systems due 

to their high volatility and defer to simple dispatch heuristics (Basse et al., 2014). This has 

limited the research to a relative commentary between systems. Comparison against 

advanced centralised systems, for example meta-heuristic search algorithms, would provide 

absolute performance information and progress the system for industry use; advancing the 

Technology Readiness Level beyond level two / three.  

The relative results analysis compared performance of a system as a parameter level 

changed the rate of deterioration was compared between systems, this enabled results 

analysis without the need for comparable systems. However, the associated limitations 

prevent an absolute comparison of system performance against the scenario. This analysis 

method is necessary on applying systems to real-world scenarios, however, almost all 
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experiments used fabricated scenarios for clarity of results and relative performance 

characterisation.  

8.6 Future work 

Future work can be categorised into theoretical and implementation research, each extending 

research by different aspects. 

Theoretical future work will investigate the role of ethics and whether machine learning 

techniques could undermine this design principle established in Section 4.3.4. Ethical actions 

and decision-making are required for the distributed system to work effectively, however 

human actors or machine learning methods may ‘game’ the system. Ethics is the study of 

moral principles (Oxford English Dictionary, 2020) and refers to decisions that purposefully 

detriment other actors in the system. The impact of this will be investigated as well as whether 

machine learning techniques, such as reinforcement learning, can be applied effectively 

considering ethical behaviour. 

Future work will analyse the impact of unreliable communications on decision-making to 

determine the robustness of the system. An agent may have inaccurate data that would 

impact its decision-making. These unintentional errors could arise through faulty sensors or 

delayed analytics and communication. Whether these can be detected and their impact within 

a highly dynamic system. 

Further theoretical future work will improve the anarchic system’s mechanics by evaluating 

the mechanisms used for decision making. The directional mechanisms to calculate various 

factors that impact decisions, such as bidding cost and threshold, will be reviewed through a 

sensitivity analysis. This will determine whether optimisation of these factors is required or 

whether the free market structure is effective at handling directional factors; this will aid 

implementation future work on creating physical prototypes. 

Implementation future work will evaluate the technologies required to realise anarchic 

manufacturing and create a physical prototype. Existing technologies are discussed in 

Section 2.2.4 as theoretically feasible, however, a physical prototype employing IoT in a CPS 

production model will validate this and increase the technology readiness level. 
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9 Conclusion 

9.1 Introduction 

This thesis proposes anarchic manufacturing, a distributed production planning and control 

system, by creating a framework and demonstrating the effectiveness by applying prototype 

implementations of the framework as simulated systems to three manufacturing scenarios, 

noting affordances of the systems and demonstrating the system’s adaptability. 

9.2 Conclusions 

The literature review in Chapter 2 surveys the background and system architectures, 

indicating the most likely way to address the inadequacies of current systems. The review 

identifies that smart manufacturing must manage an increasingly volatile and complex 

environment, where traditional centralised decision-making structures may suffer from 

rigidity. Distributed systems, categorised as rule-based, biomimetic and free market, are a 

radical alternative and are all underpinned by emergent synthesis. They have been reported 

to have flexible, robust and adaptable characteristics, these would be highly desirable in 

complex and volatile environments. Free market distributed systems were highlighted as a 

worthy system to pursue, due to the adaptability of a free market structure and its mechanisms 

to various scenarios. 

The theoretical framework and core structure and mechanics of the anarchic manufacturing 

system are proposed in Chapter 4. The design principles of anarchic manufacturing argue 

the need for independent decision-making agents, a free market structure with profit 

maximising mechanisms, both competitive and cooperative behaviour, and ethical decisions 

and interactions. All these factors enable the emergent synthetic system to operate 

effectively. A prototype system embodies the theoretical framework and is presented in 

Section 4.4, detailing the structure and core mechanics by stating the role of different agents 

and their interactions through negotiation. This core system provides the basis for the 

anarchic manufacturing system, enabling adaptation as suitable for any scenario.  

Chapters 5 to 7 experimentally evaluates the anarchic manufacturing system, by developing 

and applying it to a given manufacturing scenario. The anarchic system is compared to 

centralised and hierarchical systems in simple discrete manufacturing, assembly and product 

transition manufacturing scenarios. The system development, following the framework 

detailed in Chapter 4, highlights the system’s malleability.  
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Chapter 5 evaluates three simple discrete manufacturing scenarios. The first experiment 

found that the anarchic manufacturing system managed customisation well and even 

improved with scale, which increased problem complexity. This improvement with scale 

demonstrated some of the free market capabilities as improvements were realised with 

increased competition. The second experiment increased complicatedness and complexity, 

it found that the anarchic system deteriorated at a slower rate relative to centralised and 

hierarchical systems, which suggests a superior performance as complexity increased. The 

final experiment for simple discrete manufacture scenarios demonstrated the ability to adapt 

to dynamic and conflicting objectives, rather the hierarchical system was unable to. This 

experiment demonstrated anarchic manufacturing system’s ability to adapt and reduce 

myopia, which is a significant criticism of distributed systems. Overall, the anarchic 

manufacturing system was shown to manage complexity well and were superior to centralised 

and hierarchical systems in certain scenarios.  

Chapter 6 applied the systems to idealised assembly scenarios, considering balanced 

production and dynamic bottlenecks. Anarchic manufacturing effectively managed mixed-

model assembly scenarios, an area not previously evaluated in literature, resolving the 

coordination problem in a distributed manner. The distributed system embraced complexity, 

this resulted in a more flexible system. As problem constraints reduced complexity the 

flexibility and resultant performance deteriorated; additionally, life-time profit maximising 

mechanisms reduced myopia. These attributes are highly desirable considering the trajectory 

of smart manufacturing, systems that can embrace and improve with complexity align with 

the vision for self-organising intelligent objects that operate within a smart factory (Bendul 

and Blunck, 2019).  

Experimentation documented in Chapter 7 considered product transition scenarios, using 

idealised parameters and an automotive case study. The dynamic batching mechanism 

employed maintains distributed decision-making and anarchic freedom via a profitability 

assessment that considers economies of scale within a batch. The four experiments found 

the anarchic system was able to manage the product transition scenario effectively, 

demonstrating self-healing traits. The successful application of anarchic manufacturing to a 

highly volatile scenario, where centralised systems resort to simple dispatch rules over 

advanced methods (Basse et al., 2014), is promising for smart manufacturing where volatility 

is likely to increase. 

This thesis proposes an alternative to hierarchical systems that ‘simplify to improve’, with 

anarchic manufacturing that ‘embraces complexity to achieve flexibility’. The experimental 

results demonstrated that centralised and hierarchical systems are not inherently better than 
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distributed systems. Complexity and volatility can effectively be managed through distributed 

systems. Therefore, it is worthwhile to further investigate distributed systems for 

manufacturing to benefit from its adaptive and flexible characteristics. 

9.3 Contribution to knowledge 

The research presented in this thesis contributes to knowledge by documenting the process 

undertaken to model the anarchic manufacturing system in a range of scenarios, particularly 

advanced problems of assembly and product transition which has previously been fulfilled; 

additionally, the design principles for anarchic manufacturing and the observed system 

characteristics are highlighted. The theoretical framework and design principles for anarchic 

manufacturing are verifyed through experimentation, and demonstrate the systems’ 

capabilities against scenarios not previously fulfilled by distributed systems. Additionally, the 

research contributes to the knowledge of distributed systems, reinforcing previous 

conclusions as well as highlighting new or sparsely reported characteristics. These culminate 

in the argument to further evaluate distributed systems, which could unlock and realise the 

potential of the Internet of Things and Cyber-Physical Systems by providing an alternative 

operating model. 

The theoretical framework for anarchic manufacturing, delivered in Chapter 4, created an 

effective distributed system for malleability and adaptability. The sophistication of the free 

market structure and profit maximising mechanisms enabled adaptability whilst benefitting 

from distributed system characteristics.  

Experimentation in Chapters 5 to 7 not only demonstrates how a distributed system can be 

applied to new scenarios but reinforces previously reported and new or unestablished 

conclusions in literature. Assembly and product transition scenarios have not previously been 

resolved by a purely distributed systems, as discussed in background Sections 6.1 and 7.2. 

The novel process of adapting the anarchic manufacturing system to fulfil these scenarios is 

documented, explicitly detailing how the distributed system considers the specific advanced 

scenario characteristics to contribute to its profit-maximising decisions and operate effectively 

in the free market structure. The research has shown the application of a distributed to 

advanced scenarios can be achieved whilst retaining distributed system characteristics. 

Distributed characteristics of self-organisation, robustness and adaptability have been 

reported in literature (Shen et al., 2006), but reducing myopia, found in all experimental 

Chapters 5 to 7,  and embracing complexity to improve flexibility, discussed in Sections 5.3.1 

and 6.4, have seldom been reported. 
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The aforementioned contributions to knowledge demonstrate that a free market distributed 

system can be applied to advanced manufacturing scenarios and improve the argument for 

distributed systems, justifying further research and development. Distributed systems enable 

a radically alternative operating model that could unlock the potential of the internet of things 

and cyber-physical systems. Providing a competitive advantage of high flexibility in complex 

environments. The associated scale and complexity of IoT enabled ‘intelligent objects’ in a 

CPS environment may be too difficult for a centralised or hierarchical system to manage. 

Distributed systems and associated operating models could remove centralised 

inefficiencies. 
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