1,080 research outputs found

    Reconfigurable FPGA Architecture for Computer Vision Applications in Smart Camera Networks

    Get PDF
    Smart Camera Networks (SCNs) is nowadays an emerging research field which represents the natural evolution of centralized computer vision applications towards full distributed and pervasive systems. In this vision, one of the biggest effort is in the definition of a flexible and reconfigurable SCN node architecture able to remotely update the application parameter and the performed computer vision application at run­time. In this respect, we present a novel SCN node architecture based on a device in which a microcontroller manage all the network functionality as well as the remote configuration, while an FPGA implements all the necessary module of a full computer vision pipeline. In this work the envisioned architecture is first detailed in general terms, then a real implementation is presented to show the feasibility and the benefits of the proposed solution. Finally, performance evaluation results underline the potential of an hardware software codesign approach in reaching flexibility and reduced processing time

    A Survey on FPGA-Based Sensor Systems: Towards Intelligent and Reconfigurable Low-Power Sensors for Computer Vision, Control and Signal Processing

    Get PDF
    The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.The research leading to these results has received funding from the Spanish Government and European FEDER funds (DPI2012-32390), the Valencia Regional Government (PROMETEO/2013/085) and the University of Alicante (GRE12-17)

    FPGA-based Anomalous trajectory detection using SOFM

    Get PDF
    A system for automatically classifying the trajectory of a moving object in a scene as usual or suspicious is presented. The system uses an unsupervised neural network (Self Organising Feature Map) fully implemented on a reconfigurable hardware architecture (Field Programmable Gate Array) to cluster trajectories acquired over a period, in order to detect novel ones. First order motion information, including first order moving average smoothing, is generated from the 2D image coordinates (trajectories). The classification is dynamic and achieved in real-time. The dynamic classifier is achieved using a SOFM and a probabilistic model. Experimental results show less than 15\% classification error, showing the robustness of our approach over others in literature and the speed-up over the use of conventional microprocessor as compared to the use of an off-the-shelf FPGA prototyping board

    FPGA-based smart camera mote for pervasive wireless network

    Get PDF
    International audienceSmart camera networks raise challenging issues in many fields of research, including vision processing, communication protocols, distributed algorithms or power management. The ever increasing resolution of image sensors entails huge amounts of data, far exceeding the bandwidth of current networks and thus forcing smart camera nodes to process raw data into useful information. Consequently, on-board processing has become a key issue for the expansion of such networked systems. In this context, FPGA-based platforms, supporting massive, fine grain data parallelism, offer large opportunities. Besides, the concept of a middleware, providing services for networking, data transfer, dynamic loading or hardware abstraction, has emerged as a means of harnessing the hardware and software complexity of smart camera nodes. In this paper, we prospect the development of a new kind of smart cameras, wherein FPGAs provide high performance processing and general purpose processors support middleware services. In this approach, FPGA devices can be reconfigured at run-time through the network both from explicit user request and transparent middleware decision. An embedded real-time operating system is in charge of the communication layer, and thus can autonomously decide to use a part of the FPGA as an available processing resource. The classical programmability issue, a significant obstacle when dealing with FPGAs, is addressed by resorting to a domain specific high-level programming language (CAPH) for describing operations to be implemented on FPGAs

    A high resolution smart camera with GigE Vision extension for surveillance applications

    Get PDF

    A reconfigurable real-time morphological system for augmented vision

    Get PDF
    There is a significant number of visually impaired individuals who suffer sensitivity loss to high spatial frequencies, for whom current optical devices are limited in degree of visual aid and practical application. Digital image and video processing offers a variety of effective visual enhancement methods that can be utilised to obtain a practical augmented vision head-mounted display device. The high spatial frequencies of an image can be extracted by edge detection techniques and overlaid on top of the original image to improve visual perception among the visually impaired. Augmented visual aid devices require highly user-customisable algorithm designs for subjective configuration per task, where current digital image processing visual aids offer very little user-configurable options. This paper presents a highly user-reconfigurable morphological edge enhancement system on field-programmable gate array, where the morphological, internal and external edge gradients can be selected from the presented architecture with specified edge thickness and magnitude. In addition, the morphology architecture supports reconfigurable shape structuring elements and configurable morphological operations. The proposed morphology-based visual enhancement system introduces a high degree of user flexibility in addition to meeting real-time constraints capable of obtaining 93 fps for high-definition image resolution

    Enabling Runtime Self-Coordination of Reconfigurable Embedded Smart Cameras in Distributed Networks

    Get PDF
    Smart camera networks are real-time distributed embedded systems able to perform computer vision using multiple cameras. This new approach is a confluence of four major disciplines (computer vision, image sensors, embedded computing and sensor networks) and has been subject of intensive work in the past decades. The recent advances in computer vision and network communication, and the rapid growing in the field of high-performance computing, especially using reconfigurable devices, have enabled the design of more robust smart camera systems. Despite these advancements, the effectiveness of current networked vision systems (compared to their operating costs) is still disappointing; the main reason being the poor coordination among cameras entities at runtime and the lack of a clear formalism to dynamically capture and address the self-organization problem without relying on human intervention. In this dissertation, we investigate the use of a declarative-based modeling approach for capturing runtime self-coordination. We combine modeling approaches borrowed from logic programming, computer vision techniques, and high-performance computing for the design of an autonomous and cooperative smart camera. We propose a compact modeling approach based on Answer Set Programming for architecture synthesis of a system-on-reconfigurable-chip camera that is able to support the runtime cooperative work and collaboration with other camera nodes in a distributed network setup. Additionally, we propose a declarative approach for modeling runtime camera self-coordination for distributed object tracking in which moving targets are handed over in a distributed manner and recovered in case of node failure

    Design and management of image processing pipelines within CPS: Acquired experience towards the end of the FitOptiVis ECSEL Project

    Get PDF
    Cyber-Physical Systems (CPSs) are dynamic and reactive systems interacting with processes, environment and, sometimes, humans. They are often distributed with sensors and actuators, characterized for being smart, adaptive, predictive and react in real-time. Indeed, image- and video-processing pipelines are a prime source for environmental information for systems allowing them to take better decisions according to what they see. Therefore, in FitOptiVis, we are developing novel methods and tools to integrate complex image- and video-processing pipelines. FitOptiVis aims to deliver a reference architecture for describing and optimizing quality and resource management for imaging and video pipelines in CPSs both at design- and run-time. The architecture is concretized in low-power, high-performance, smart components, and in methods and tools for combined design-time and run-time multi-objective optimization and adaptation within system and environment constraints

    Performance and energy-efficient implementation of a smart city application on FPGAs

    Get PDF
    The continuous growth of modern cities and the request for better quality of life, coupled with the increased availability of computing resources, lead to an increased attention to smart city services. Smart cities promise to deliver a better life to their inhabitants while simultaneously reducing resource requirements and pollution. They are thus perceived as a key enabler to sustainable growth. Out of many other issues, one of the major concerns for most cities in the world is traffic, which leads to a huge waste of time and energy, and to increased pollution. To optimize traffic in cities, one of the first steps is to get accurate information in real time about the traffic flows in the city. This can be achieved through the application of automated video analytics to the video streams provided by a set of cameras distributed throughout the city. Image sequence processing can be performed both peripherally and centrally. In this paper, we argue that, since centralized processing has several advantages in terms of availability, maintainability and cost, it is a very promising strategy to enable effective traffic management even in large cities. However, the computational costs are enormous, and thus require an energy-efficient High-Performance Computing approach. Field Programmable Gate Arrays (FPGAs) provide comparable computational resources to CPUs and GPUs, yet require much lower amounts of energy per operation (around 6×\times and 10×\times for the application considered in this case study). They are thus preferred resources to reduce both energy supply and cooling costs in the huge datacenters that will be needed by Smart Cities. In this paper, we describe efficient implementations of high-performance algorithms that can process traffic camera image sequences to provide traffic flow information in real-time at a low energy and power cost

    An FPGA smart camera implementation of segmentation models for drone wildfire imagery

    Full text link
    Wildfires represent one of the most relevant natural disasters worldwide, due to their impact on various societal and environmental levels. Thus, a significant amount of research has been carried out to investigate and apply computer vision techniques to address this problem. One of the most promising approaches for wildfire fighting is the use of drones equipped with visible and infrared cameras for the detection, monitoring, and fire spread assessment in a remote manner but in close proximity to the affected areas. However, implementing effective computer vision algorithms on board is often prohibitive since deploying full-precision deep learning models running on GPU is not a viable option, due to their high power consumption and the limited payload a drone can handle. Thus, in this work, we posit that smart cameras, based on low-power consumption field-programmable gate arrays (FPGAs), in tandem with binarized neural networks (BNNs), represent a cost-effective alternative for implementing onboard computing on the edge. Herein we present the implementation of a segmentation model applied to the Corsican Fire Database. We optimized an existing U-Net model for such a task and ported the model to an edge device (a Xilinx Ultra96-v2 FPGA). By pruning and quantizing the original model, we reduce the number of parameters by 90%. Furthermore, additional optimizations enabled us to increase the throughput of the original model from 8 frames per second (FPS) to 33.63 FPS without loss in the segmentation performance: our model obtained 0.912 in Matthews correlation coefficient (MCC),0.915 in F1 score and 0.870 in Hafiane quality index (HAF), and comparable qualitative segmentation results when contrasted to the original full-precision model. The final model was integrated into a low-cost FPGA, which was used to implement a neural network accelerator.Comment: This paper has been accepted at the 22nd Mexican International Conference on Artificial Intelligence (MICAI 2023
    corecore