19 research outputs found

    Solving MaxSAT and #SAT on structured CNF formulas

    Full text link
    In this paper we propose a structural parameter of CNF formulas and use it to identify instances of weighted MaxSAT and #SAT that can be solved in polynomial time. Given a CNF formula we say that a set of clauses is precisely satisfiable if there is some complete assignment satisfying these clauses only. Let the ps-value of the formula be the number of precisely satisfiable sets of clauses. Applying the notion of branch decompositions to CNF formulas and using ps-value as cut function, we define the ps-width of a formula. For a formula given with a decomposition of polynomial ps-width we show dynamic programming algorithms solving weighted MaxSAT and #SAT in polynomial time. Combining with results of 'Belmonte and Vatshelle, Graph classes with structured neighborhoods and algorithmic applications, Theor. Comput. Sci. 511: 54-65 (2013)' we get polynomial-time algorithms solving weighted MaxSAT and #SAT for some classes of structured CNF formulas. For example, we get O(m2(m+n)s)O(m^2(m + n)s) algorithms for formulas FF of mm clauses and nn variables and size ss, if FF has a linear ordering of the variables and clauses such that for any variable xx occurring in clause CC, if xx appears before CC then any variable between them also occurs in CC, and if CC appears before xx then xx occurs also in any clause between them. Note that the class of incidence graphs of such formulas do not have bounded clique-width

    Graph classes equivalent to 12-representable graphs

    Full text link
    Jones et al. (2015) introduced the notion of uu-representable graphs, where uu is a word over {1,2}\{1, 2\} different from 22⋯222\cdots2, as a generalization of word-representable graphs. Kitaev (2016) showed that if uu is of length at least 3, then every graph is uu-representable. This indicates that there are only two nontrivial classes in the theory of uu-representable graphs: 11-representable graphs, which correspond to word-representable graphs, and 12-representable graphs. This study deals with 12-representable graphs. Jones et al. (2015) provided a characterization of 12-representable trees in terms of forbidden induced subgraphs. Chen and Kitaev (2022) presented a forbidden induced subgraph characterization of a subclass of 12-representable grid graphs. This paper shows that a bipartite graph is 12-representable if and only if it is an interval containment bigraph. The equivalence gives us a forbidden induced subgraph characterization of 12-representable bipartite graphs since the list of minimal forbidden induced subgraphs is known for interval containment bigraphs. We then have a forbidden induced subgraph characterization for grid graphs, which solves an open problem of Chen and Kitaev (2022). The study also shows that a graph is 12-representable if and only if it is the complement of a simple-triangle graph. This equivalence indicates that a necessary condition for 12-representability presented by Jones et al. (2015) is also sufficient. Finally, we show from these equivalences that 12-representability can be determined in O(n2)O(n^2) time for bipartite graphs and in O(n(mˉ+n))O(n(\bar{m}+n)) time for arbitrary graphs, where nn and mˉ\bar{m} are the number of vertices and edges of the complement of the given graph.Comment: 12 pages, 6 figure

    On Satisfiability Problems with a Linear Structure

    Get PDF

    Algorithms for Linearly Ordered Boolean Formulas

    Get PDF
    This thesis considers a class of propositional boolean formulas on which various problems related to satisfiability are efficiently solvable by a dynamic programming algorithm. It mainly consists of two larger parts: the first part describes the class of boolean formulas we are interested in and how to find them, and the second part investigates whether this class of formulas have any practical implications.Master i InformatikkMAMN-INFINF39

    Linear-Time Algorithms for Finding Tucker Submatrices and Lekkerkerker-Boland Subgraphs

    Full text link
    Lekkerkerker and Boland characterized the minimal forbidden induced subgraphs for the class of interval graphs. We give a linear-time algorithm to find one in any graph that is not an interval graph. Tucker characterized the minimal forbidden submatrices of binary matrices that do not have the consecutive-ones property. We give a linear-time algorithm to find one in any binary matrix that does not have the consecutive-ones property.Comment: A preliminary version of this work appeared in WG13: 39th International Workshop on Graph-Theoretic Concepts in Computer Scienc

    On the recognition and characterization of M-partitionable proper interval graphs

    Get PDF
    For a symmetric {0, 1, ⋆ }-matrix M of size m, a graph G is said to be M-partitionable, if its vertices can be partitioned into sets V1, V2, . . . , Vm, such that two parts Vi, Vj are completely adjacent if Mi,j = 1, and completely non-adjacent if Mi,j = 0 (Vi is considered completely adjacent to itself if it induces a clique, and completely non-adjacent if it induces an independent set). The complexity problem (or the recognition problem) for a matrix M asks whether the M-partition problem is polynomial-time solvable or NP-complete. The characterization problem for a matrix M asks if all M-partitionable graphs can be characterized by the absence of a finite set of forbidden induced subgraphs. These forbidden induced subgraphs are called obstructions to M. In the literature, many results were obtained by restricting the input graphs. In this thesis, we survey these results when the questions are restricted to the class of perfect graphs. We then study the recognition problem and the characterization problem when the inputs are restricted to proper interval graphs. The recognition problem can be solved by an existing algorithm, but we simplify its proof of correctness. As our main result, we prove that all the matrices of size 3 and size 4 with constant diagonal, have finitely many minimal proper interval obstructions. We also obtain partial results about matrices of arbitrary size if they have a zero diagonal

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et Métiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2022, which was held during April 4-6, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 23 regular papers presented in this volume were carefully reviewed and selected from 77 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems
    corecore