82 research outputs found

    Graph based cross-shape recognition for palm diagnosis

    Get PDF
    Author name used in this publication: David ZhangBiometrics Research Centre, Department of ComputingVersion of RecordPublishe

    Hand Geometry Techniques: A Review

    Full text link
    Volume 2 Issue 11 (November 2014

    Graph based Cross-shape Recognition for Palm Diagnosis

    Full text link

    Visible, near infrared and thermal hand-based image biometric recognition

    Get PDF
    Biometric Recognition refers to the automatic identification of a person based on his or her anatomical characteristic or modality (i.e., fingerprint, palmprint, face) or behavioural (i.e., signature) characteristic. It is a fundamental key issue in any process concerned with security, shared resources, network transactions among many others. Arises as a fundamental problem widely known as recognition, and becomes a must step before permission is granted. It is supposed that protects key resources by only allowing those resources to be used by users that have been granted authority to use or to have access to them. Biometric systems can operate in verification mode, where the question to be solved is Am I who I claim I am? or in identification mode where the question is Who am I? Scientific community has increased its efforts in order to improve performance of biometric systems. Depending on the application many solutions go in the way of working with several modalities or combining different classification methods. Since increasing modalities require some user inconvenience many of these approaches will never reach the market. For example working with iris, face and fingerprints requires some user effort in order to help acquisition. This thesis addresses hand-based biometric system in a thorough way. The main contributions are in the direction of a new multi-spectral hand-based image database and methods for performance improvement. The main contributions are: A) The first multi-spectral hand-based image database from both hand faces: palmar and dorsal. Biometric database are a precious commodity for research, mainly when it offers something new like visual (VIS), near infrared (NIR) and thermography (TIR) images at a time. This database with a length of 100 users and 10 samples per user constitute a good starting point to check algorithms and hand suitability for recognition. B) In order to correctly deal with raw hand data, some image preprocessing steps are necessary. Three different segmentation phases are deployed to deal with VIS, NIR and TIR images specifically. Some of the tough questions to address: overexposed images, ring fingers and the cuffs, cold finger and noise image. Once image segmented, two different approaches are prepared to deal with the segmented data. These two approaches called: Holistic and Geometric define the main focus to extract the feature vector. These feature vectors can be used alone or can be combined in some way. Many questions can be stated: e.g. which approach is better for recognition?, Can fingers alone obtain better performance than the whole hand? and Is thermography hand information suitable for recognition due to its thermoregulation properties? A complete set of data ready to analyse, coming from the holistic and geometric approach have been designed and saved to test. Some innovative geometric approach related to curvature will be demonstrated. C) Finally the Biometric Dispersion Matcher (BDM) is used in order to explore how it works under different fusion schemes, as well as with different classification methods. It is the intention of this research to contrast what happen when using other methods close to BDM like Linear Discriminant Analysis (LDA). At this point, some interesting questions will be solved, e.g. by taking advantage of the finger segmentation (as five different modalities) to figure out if they can outperform what the whole hand data can teach us.El Reconeixement Biomètric fa referència a la identi cació automàtica de persones fent us d'alguna característica o modalitat anatòmica (empremta digital) o d'alguna característica de comportament (signatura). És un aspecte fonamental en qualsevol procés relacionat amb la seguretat, la compartició de recursos o les transaccions electròniques entre d'altres. És converteix en un pas imprescindible abans de concedir l'autorització. Aquesta autorització, s'entén que protegeix recursos clau, permeten així, que aquests siguin utilitzats pels usuaris que han estat autoritzats a utilitzar-los o a tenir-hi accés. Els sistemes biomètrics poden funcionar en veri cació, on es resol la pregunta: Soc jo qui dic que soc? O en identi cació on es resol la qüestió: Qui soc jo? La comunitat cientí ca ha incrementat els seus esforços per millorar el rendiment dels sistemes biomètrics. En funció de l'aplicació, diverses solucions s'adrecen a treballar amb múltiples modalitats o combinant diferents mètodes de classi cació. Donat que incrementar el número de modalitats, representa a la vegada problemes pels usuaris, moltes d'aquestes aproximacions no arriben mai al mercat. La tesis contribueix principalment en tres grans àrees, totes elles amb el denominador comú següent: Reconeixement biometric a través de les mans. i) La primera d'elles constitueix la base de qualsevol estudi, les dades. Per poder interpretar, i establir un sistema de reconeixement biomètric prou robust amb un clar enfocament a múltiples fonts d'informació, però amb el mínim esforç per part de l'usuari es construeix aquesta Base de Dades de mans multi espectral. Les bases de dades biomètriques constitueixen un recurs molt preuat per a la recerca; sobretot si ofereixen algun element nou com es el cas. Imatges de mans en diferents espectres electromagnètics: en visible (VIS), en infraroig (NIR) i en tèrmic (TIR). Amb un total de 100 usuaris, i 10 mostres per usuari, constitueix un bon punt de partida per estudiar i posar a prova sistemes multi biomètrics enfocats a les mans. ii) El segon bloc s'adreça a les dues aproximacions existents en la literatura per a tractar les dades en brut. Aquestes dues aproximacions, anomenades Holística (tracta la imatge com un tot) i Geomètrica (utilitza càlculs geomètrics) de neixen el focus alhora d'extreure el vector de característiques. Abans de tractar alguna d'aquestes dues aproximacions, però, és necessària l'aplicació de diferents tècniques de preprocessat digital de la imatge per obtenir les regions d'interès desitjades. Diferents problemes presents a les imatges s'han hagut de solucionar de forma original per a cadascuna de les tipologies de les imatges presents: VIS, NIR i TIR. VIS: imatges sobre exposades, anells, mànigues, braçalets. NIR: Ungles pintades, distorsió en forma de soroll en les imatges TIR: Dits freds La segona àrea presenta aspectes innovadors, ja que a part de segmentar la imatge de la ma, es segmenten tots i cadascun dels dits (feature-based approach). Així aconseguim contrastar la seva capacitat de reconeixement envers la ma de forma completa. Addicionalment es presenta un conjunt de procediments geomètrics amb la idea de comparar-los amb els provinents de l'extracció holística. La tercera i última àrea contrasta el procediment de classi cació anomenat Biometric Dispersion Matcher (BDM) amb diferents situacions. La primera relacionada amb l'efectivitat respecte d'altres mètode de reconeixement, com ara l'Anàlisi Lineal Discriminant (LDA) o bé mètodes com KNN o la regressió logística. Les altres situacions que s'analitzen tenen a veure amb múltiples fonts d'informació, quan s'apliquen tècniques de normalització i/o estratègies de combinació (fusió) per millorar els resultats. Els resultats obtinguts no deixen lloc per a la confusió, i són certament prometedors en el sentit que posen a la llum la importància de combinar informació complementària per obtenir rendiments superiors

    Human Traces from Car Inner Surfaces Broadening the Application of Genetic Policing

    Get PDF
    A Lofoscopia e a Genética Forense são duas das Ciências Forenses mais importantes, contribuindo frequentemente para a resolução de uma enorme variedade de casos. Este conhecimento específico e direcionado é comumente necessário para analisar impressões digitais ou outros vestígios biológicos a partir dos quais é frequente a extração de DNA, visando sempre a identificação de um indivíduo. Reconhecendo o valor inegável dessas ciências, este trabalho consistiu na avaliação das dificuldades atuais em se conseguir identificações de indivíduos, analisando vestígios biológicos deixados em matrizes difíceis, analisando também a compatibilidade e a complementaridade dessas duas áreas de especialização. Assim, e uma vez que os crimes relacionados com furto e roubos de carros aumentaram consideravelmente em todo o mundo, doze voluntários, simularam a condução de um carro por 15 minutos, duas vezes. Após a condução, os volantes revestidos de pele, do primeiro ato de condução, foram analisados quanto ao DNA (método fenol-clorofórmio, InnoQuant HY-R® Kit, InnoTyper® 21 Kit) e, os volantes revestidos de pele, do segundo ato de condução, foram analisados quanto às marcas lofoscópicas (fumigação de cianoacrilato) e, sequencialmente, foram analisados quanto ao DNA. Previamente, foram construídas bases de dados lofoscópicas e genéticas para que fosse possível a identificação dos condutores de automóveis, por peritos de ambas as especialidades. Apenas através da perícia genética, foi possível identificar dois terços dos condutores, enquanto que a realização da perícia lofoscópica em primeiro lugar, permitiu apenas identificar um terço. A mesma proporção foi obtida ao realizar-se a análise do DNA posteriormente à fumigação do cianoacrilato. Apesar de não inibir os reagentes dos kits, o cianoacrilato levou à redução da quantidade de DNA extraído, tendo-se obtido perfis genéticos com menor qualidade (menos marcadores amplificados), dificultando as possibilidades de obtenção de correspondências entre os perfis genéticos. Apenas metade dos condutores identificados através de perícia lofoscópica foram também identificados através da perícia genética, revelando que nem sempre existe uma correlação direta entre a eficácia de ambas as especialidades. Adicionalmente, o lado esquerdo do volante, tendo mais tempo de contato com a mão, permitiu também a obtenção de maiores quantidades de DNA, maior qualidade dos perfis genéticos e maiores taxas de correspondências entre XIV os mesmos. Além disso, o sexo masculino foi mais frequentemente identificado do que o sexo feminino. Este trabalho, sugere que quando as forças policiais se depararem com este tipo de cenários, os esforços devem ser focados na execução da perícia genética, privilegiando-se o lado esquerdo do volante, no entanto são necessários mais estudos para confirmar os resultados aqui obtidos, os quais poderão contribuir para a definição de protocolos de ação ainda mais adequados para auxiliar o Sistema Judicial

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers

    Comprehensive Survey: Biometric User Authentication Application, Evaluation, and Discussion

    Full text link
    This paper conducts an extensive review of biometric user authentication literature, addressing three primary research questions: (1) commonly used biometric traits and their suitability for specific applications, (2) performance factors such as security, convenience, and robustness, and potential countermeasures against cyberattacks, and (3) factors affecting biometric system accuracy and po-tential improvements. Our analysis delves into physiological and behavioral traits, exploring their pros and cons. We discuss factors influencing biometric system effectiveness and highlight areas for enhancement. Our study differs from previous surveys by extensively examining biometric traits, exploring various application domains, and analyzing measures to mitigate cyberattacks. This paper aims to inform researchers and practitioners about the biometric authentication landscape and guide future advancements

    Palmprint Identification Based on Generalization of IrisCode

    Get PDF
    The development of accurate and reliable security systems is a matter of wide interest, and in this context biometrics is seen as a highly effective automatic mechanism for personal identification. Among biometric technologies, IrisCode developed by Daugman in 1993 is regarded as a highly accurate approach, being able to support real-time personal identification of large databases. Since 1993, on the top of IrisCode, different coding methods have been proposed for iris and fingerprint identification. In this research, I extend and generalize IrisCode for real-time secure palmprint identification. PalmCode, the first coding method for palmprint identification developed by me in 2002, directly applied IrisCode to extract phase information of palmprints as features. However, I observe that the PalmCodes from the different palms are similar, having many 45o streaks. Such structural similarities in the PalmCodes of different palms would reduce the individuality of PalmCodes and the performance of palmprint identification systems. To reduce the correlation between PalmCodes, in this thesis, I employ multiple elliptical Gabor filters with different orientations to compute different PalmCodes and merge them to produce a single feature, called Fusion Code. Experimental results demonstrate that Fusion Code performs better than PalmCode. Based on the results of Fusion Code, I further identify that the orientation fields of palmprints are powerful features. Consequently, Competitive Code, which uses real parts of six Gabor filters to estimate the orientation fields, is developed. To embed the properties of IrisCode, such as high speed matching, in Competitive Code, a novel coding scheme and a bitwise angular distance are proposed. Experimental results demonstrate that Competitive Code is much more effective than other palmprint algorithms. Although many coding methods have been developed based on IrisCode for iris and palmprint identification, we lack a detailed analysis of IrisCode. One of the aims of this research is to provide such analysis as a way of better understanding IrisCode, extending the coarse phase representation to a precise phase representation, and uncovering the relationship between IrisCode and other coding methods. This analysis demonstrates that IrisCode is a clustering process with four prototypes; the locus of a Gabor function is a two-dimensional ellipse with respect to a phase parameter and the bitwise hamming distance can be regarded as a bitwise angular distance. In this analysis, I also point out that the theoretical evidence of the imposter binomial distribution of IrisCode is incomplete. I use this analysis to develop a precise phase representation which can enhance iris recognition accuracy and to relate IrisCode and other coding methods. By making use of this analysis, principal component analysis and simulated annealing, near optimal filters for palmprint identification are sought. The near optimal filters perform better than Competitive Code in term of d’ index. Identical twins having the closest genetics-based relationship are expected to have maximum similarity in their biometrics. Classifying identical twins is a challenging problem for some automatic biometric systems. Palmprint has been studied for personal identification for many years. However, genetically identical palmprints have not been studied. I systemically examine Competitive Code on genetically identical palmprints for automatic personal identification and to uncover the genetically related palmprint features. The experimental results show that the three principal lines and some portions of weak lines are genetically related features but our palms still contain rich genetically unrelated features for classifying identical twins. As biometric systems are vulnerable to replay, database and brute-force attacks, such potential attacks must be analyzed before they are massively deployed in security systems. I propose projected multinomial distribution for studying the probability of successfully using brute-force attacks to break into a palmprint system based on Competitive Code. The proposed model indicates that it is computationally infeasible to break into the palmprint system using brute-force attacks. In addition to brute-force attacks, I address the other three security issues: template re-issuances, also called cancellable biometrics, replay attacks, and database attacks. A random orientation filter bank (ROFB) is used to generate cancellable Competitive Codes for templates re-issuances. Secret messages are hidden in templates to prevent replay and database attacks. This technique can be regarded as template watermarking. A series of analyses is provided to evaluate the security levels of the measures

    Palmprint Identification Based on Generalization of IrisCode

    Get PDF
    The development of accurate and reliable security systems is a matter of wide interest, and in this context biometrics is seen as a highly effective automatic mechanism for personal identification. Among biometric technologies, IrisCode developed by Daugman in 1993 is regarded as a highly accurate approach, being able to support real-time personal identification of large databases. Since 1993, on the top of IrisCode, different coding methods have been proposed for iris and fingerprint identification. In this research, I extend and generalize IrisCode for real-time secure palmprint identification. PalmCode, the first coding method for palmprint identification developed by me in 2002, directly applied IrisCode to extract phase information of palmprints as features. However, I observe that the PalmCodes from the different palms are similar, having many 45o streaks. Such structural similarities in the PalmCodes of different palms would reduce the individuality of PalmCodes and the performance of palmprint identification systems. To reduce the correlation between PalmCodes, in this thesis, I employ multiple elliptical Gabor filters with different orientations to compute different PalmCodes and merge them to produce a single feature, called Fusion Code. Experimental results demonstrate that Fusion Code performs better than PalmCode. Based on the results of Fusion Code, I further identify that the orientation fields of palmprints are powerful features. Consequently, Competitive Code, which uses real parts of six Gabor filters to estimate the orientation fields, is developed. To embed the properties of IrisCode, such as high speed matching, in Competitive Code, a novel coding scheme and a bitwise angular distance are proposed. Experimental results demonstrate that Competitive Code is much more effective than other palmprint algorithms. Although many coding methods have been developed based on IrisCode for iris and palmprint identification, we lack a detailed analysis of IrisCode. One of the aims of this research is to provide such analysis as a way of better understanding IrisCode, extending the coarse phase representation to a precise phase representation, and uncovering the relationship between IrisCode and other coding methods. This analysis demonstrates that IrisCode is a clustering process with four prototypes; the locus of a Gabor function is a two-dimensional ellipse with respect to a phase parameter and the bitwise hamming distance can be regarded as a bitwise angular distance. In this analysis, I also point out that the theoretical evidence of the imposter binomial distribution of IrisCode is incomplete. I use this analysis to develop a precise phase representation which can enhance iris recognition accuracy and to relate IrisCode and other coding methods. By making use of this analysis, principal component analysis and simulated annealing, near optimal filters for palmprint identification are sought. The near optimal filters perform better than Competitive Code in term of d’ index. Identical twins having the closest genetics-based relationship are expected to have maximum similarity in their biometrics. Classifying identical twins is a challenging problem for some automatic biometric systems. Palmprint has been studied for personal identification for many years. However, genetically identical palmprints have not been studied. I systemically examine Competitive Code on genetically identical palmprints for automatic personal identification and to uncover the genetically related palmprint features. The experimental results show that the three principal lines and some portions of weak lines are genetically related features but our palms still contain rich genetically unrelated features for classifying identical twins. As biometric systems are vulnerable to replay, database and brute-force attacks, such potential attacks must be analyzed before they are massively deployed in security systems. I propose projected multinomial distribution for studying the probability of successfully using brute-force attacks to break into a palmprint system based on Competitive Code. The proposed model indicates that it is computationally infeasible to break into the palmprint system using brute-force attacks. In addition to brute-force attacks, I address the other three security issues: template re-issuances, also called cancellable biometrics, replay attacks, and database attacks. A random orientation filter bank (ROFB) is used to generate cancellable Competitive Codes for templates re-issuances. Secret messages are hidden in templates to prevent replay and database attacks. This technique can be regarded as template watermarking. A series of analyses is provided to evaluate the security levels of the measures
    corecore