2,543 research outputs found

    Electroencephalography reflects the activity of sub-cortical brain regions during approach-withdrawal behaviour while listening to music

    Get PDF
    The ability of music to evoke activity changes in the core brain structures that underlie the experience of emotion suggests that it has the potential to be used in therapies for emotion disorders. A large volume of research has identified a network of sub-cortical brain regions underlying music-induced emotions. Additionally, separate evidence from electroencephalography (EEG) studies suggests that prefrontal asymmetry in the EEG reflects the approach-withdrawal response to music-induced emotion. However, fMRI and EEG measure quite different brain processes and we do not have a detailed understanding of the functional relationships between them in relation to music-induced emotion. We employ a joint EEG ā€“ fMRI paradigm to explore how EEG-based neural correlates of the approach-withdrawal response to music reflect activity changes in the sub-cortical emotional response network. The neural correlates examined are asymmetry in the prefrontal EEG, and the degree of disorder in that asymmetry over time, as measured by entropy. Participantsā€™ EEG and fMRI were recorded simultaneously while the participants listened to music that had been specifically generated to target the elicitation of a wide range of affective states. While listening to this music, participants also continuously reported their felt affective states. Here we report on co-variations in the dynamics of these self-reports, the EEG, and the sub-cortical brain activity. We find that a set of sub-cortical brain regions in the emotional response network exhibits activity that significantly relates to prefrontal EEG asymmetry. Specifically, EEG in the pre-frontal cortex reflects not only cortical activity, but also changes in activity in the amygdala, posterior temporal cortex, and cerebellum. We also find that, while the magnitude of the asymmetry reflects activity in parts of the limbic and paralimbic systems, the entropy of that asymmetry reflects activity in parts of the autonomic response network such as the auditory cortex. This suggests that asymmetry magnitude reflects affective responses to music, while asymmetry entropy reflects autonomic responses to music. Thus, we demonstrate that it is possible to infer activity in the limbic and paralimbic systems from pre-frontal EEG asymmetry. These results show how EEG can be used to measure and monitor changes in the limbic and paralimbic systems. Specifically, they suggest that EEG asymmetry acts as an indicator of sub-cortical changes in activity induced by music. This shows that EEG may be used as a measure of the effectiveness of music therapy to evoke changes in activity in the sub-cortical emotion response network. This is also the first time that the activity of sub-cortical regions, normally considered ā€œinvisibleā€ to EEG, has been shown to be characterisable directly from EEG dynamics measured during music listening

    3D fatigue from stereoscopic 3D video displays: Comparing objective and subjective tests using electroencephalography

    Get PDF
    The use of stereoscopic display has increased in recent times, with a growing range of applications using 3D videos for visual entertainment, data visualization, and medical applications. However, stereoscopic 3D video can lead to adverse reactions amongst some viewers, including visual fatigue, headache and nausea; such reactions can further lead to Visually Induced Motion Sickness (VIMS). Whilst motion sickness symptoms can occur from other types of visual displays, this paper investigates the rapid adjustment triggered by human pupils as a potential cause of 3D fatigue due to VIMS from stereoscopic 3D displays. Using Electroencephalogram (EEG) biosignals and eye blink tools to measure the 3D fatigue, a series of objective and subjective experiments were conducted to investigate the effect of stereoscopic 3D across a series of video sequences

    An EEG study on emotional intelligence and advertising message effectiveness

    Get PDF
    Some electroencephalography (EEG) studies have investigated emotional intelligence (EI), but none have examined the relationships between EI and commercial advertising messages and related consumer behaviors. This study combines brain (EEG) techniques with an EI psychometric to explore the brain responses associated with a range of advertisements. A group of 45 participants (23females, 22males) had their EEG recorded while watching a series of advertisements selected from various marketing categories such as community interests, celebrities, food/drink, and social issues. Participants were also categorized as high or low in emotional intelligence (n = 34). The EEG data analysis was centered on rating decision-making in order to measure brain responses associated with advertising information processing for both groups. The ļ¬ndings suggest that participants with high and low emotional intelligence (EI) were attentive to diļ¬€erent types of advertising messages. The two EI groups demonstrated preferences for ā€œpeopleā€ or ā€œobject,ā€ related advertising information. This suggests that diļ¬€erences in consumer perception and emotions may suggest why certain advertising material or marketing strategies are eļ¬€ective or not

    Looking Beyond a Clever Narrative: Visual Context and Attention are Primary Drivers of Affect in Video Advertisements

    Full text link
    Emotion evoked by an advertisement plays a key role in influencing brand recall and eventual consumer choices. Automatic ad affect recognition has several useful applications. However, the use of content-based feature representations does not give insights into how affect is modulated by aspects such as the ad scene setting, salient object attributes and their interactions. Neither do such approaches inform us on how humans prioritize visual information for ad understanding. Our work addresses these lacunae by decomposing video content into detected objects, coarse scene structure, object statistics and actively attended objects identified via eye-gaze. We measure the importance of each of these information channels by systematically incorporating related information into ad affect prediction models. Contrary to the popular notion that ad affect hinges on the narrative and the clever use of linguistic and social cues, we find that actively attended objects and the coarse scene structure better encode affective information as compared to individual scene objects or conspicuous background elements.Comment: Accepted for publication in the Proceedings of 20th ACM International Conference on Multimodal Interaction, Boulder, CO, US

    Affective Brain-Computer Interfaces Neuroscientific Approaches to Affect Detection

    Get PDF
    The brain is involved in the registration, evaluation, and representation of emotional events, and in the subsequent planning and execution of adequate actions. Novel interface technologies ā€“ so-called affective brain-computer interfaces (aBCI) - can use this rich neural information, occurring in response to affective stimulation, for the detection of the affective state of the user. This chapter gives an overview of the promises and challenges that arise from the possibility of neurophysiology-based affect detection, with a special focus on electrophysiological signals. After outlining the potential of aBCI relative to other sensing modalities, the reader is introduced to the neurophysiological and neurotechnological background of this interface technology. Potential application scenarios are situated in a general framework of brain-computer interfaces. Finally, the main scientific and technological challenges that have to be solved on the way toward reliable affective brain-computer interfaces are discussed

    Event Fixation Related Potential During Visual Emotion Stimulation

    Get PDF
    CĆ­lem tĆ©to diplomovĆ© prĆ”ce je najĆ­t a popsat souvislost mezi fixacĆ­ očƭ v emočně zabarvenĆ©m stimulu, kterĆ½m je obrĆ”zek či video, a EEG signĆ”lu. K tomuto studiu je třeba vyvinout softwarovĆ© nĆ”stroje v prostředĆ­ Matlab k Ćŗpravě a zpracovĆ”nĆ­ dat zĆ­skanĆ½ch z eye trackeru a propojenĆ­ s EEG signĆ”ly pomocĆ­ nově vytvořenĆ½ch markerÅÆ. Na zĆ”kladě zĆ­skanĆ½ch znalostĆ­ o fixacĆ­ch, jsou v prostředĆ­ BrainVision Analyzeru EEG data zpracovĆ”ny a nĆ”sledně jsou segmentovĆ”ny a prÅÆměrovĆ”ny jako evokovanĆ© potenciĆ”ly pro jednotlivĆ© stimuly (ERP a EfRP). Tato prĆ”ce je vypracovĆ”na ve spoluprĆ”ci s Gipsa-lab v rĆ”mci vĆ½zkumnĆ©ho projektu.This diploma thesis is a part of a ongoing research project concerning new joint technique of eye fixations and EEG. The goal of this work is to find and analyze a connection between eye fixation in a face expressing an emotion (static or dynamic). For this study certain software developments need to be done to adjust fixation data in Matlab and connect them to EEG signals with newly created markers. Based on the obtained information on fixations, EEG data are processed in BrainVision Analyzer and segmented to obtain ERPs and EfRPs for each stimuli.

    Emotional Brain-Computer Interfaces

    Get PDF
    Research in Brain-computer interface (BCI) has significantly increased during the last few years. In addition to their initial role as assisting devices for the physically challenged, BCIs are now proposed for a wider range of applications. As in any HCI application, BCIs can also benefit from adapting their operation to the emotional state of the user. BCIs have the advantage of having access to brain activity which can provide signicant insight into the user's emotional state. This information can be utilized in two manners. 1) Knowledge of the inuence of the emotional state on brain activity patterns can allow the BCI to adapt its recognition algorithms, so that the intention of the user is still correctly interpreted in spite of signal deviations induced by the subject's emotional state. 2) The ability to recognize emotions can be used in BCIs to provide the user with more natural ways of controlling the BCI through affective modulation. Thus, controlling a BCI by recollecting a pleasant memory can be possible and can potentially lead to higher information transfer rates.\ud These two approaches of emotion utilization in BCI are elaborated in detail in this paper in the framework of noninvasive EEG based BCIs

    Immersive Composition for Sensory Rehabilitation: 3D Visualisation, Surround Sound, and Synthesised Music to Provoke Catharsis and Healing

    Get PDF
    There is a wide range of sensory therapies using sound, music and visual stimuli. Some focus on soothing or distracting stimuli such as natural sounds or classical music as analgesic, while other approaches emphasize the active performance of producing music as therapy. This paper proposes an immersive multi-sensory Exposure Therapy for people suffering from anxiety disorders, based on a rich, detailed surround-soundscape. This soundscape is composed to include the usersā€™ own idiosyncratic anxiety triggers as a form of habituation, and to provoke psychological catharsis, as a non-verbal, visceral and enveloping exposure. To accurately pinpoint the most effective sounds and to optimally compose the soundscape we will monitor the participantsā€™ physiological responses such as electroencephalography, respiration, electromyography, and heart rate during exposure. We hypothesize that such physiologically optimized sensory landscapes will aid the development of future immersive therapies for various psychological conditions, Sound is a major trigger of anxiety, and auditory hypersensitivity is an extremely problematic symptom. Exposure to stress-inducing sounds can free anxiety sufferers from entrenched avoidance behaviors, teaching physiological coping strategies and encouraging resolution of the psychological issues agitated by the sound

    Recent Applications in Graph Theory

    Get PDF
    Graph theory, being a rigorously investigated field of combinatorial mathematics, is adopted by a wide variety of disciplines addressing a plethora of real-world applications. Advances in graph algorithms and software implementations have made graph theory accessible to a larger community of interest. Ever-increasing interest in machine learning and model deployments for network data demands a coherent selection of topics rewarding a fresh, up-to-date summary of the theory and fruitful applications to probe further. This volume is a small yet unique contribution to graph theory applications and modeling with graphs. The subjects discussed include information hiding using graphs, dynamic graph-based systems to model and control cyber-physical systems, graph reconstruction, average distance neighborhood graphs, and pure and mixed-integer linear programming formulations to cluster networks
    • ā€¦
    corecore