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Glossary terms: 

Affective brain-computer interfaces (aBCI): devices that allow the detection of the affective state of their 

users based on the neurophysiological activity associated with such states. 

 

Brain-computer interfaces (BCI): devices that allow for the control of devices and applications based on the 

neurophysiological activity of a user, thereby bypassing muscular pathways. 

 

Electroencephalography (EEG): a portable neuroimaging method for the temporally high-resolved 

recording of variations in electrophysiological brain activity from the scalp. 

 

Event-related potentials (ERP): a stereotyped electrophysiological response to a specific stimulus or event 

that is estimated by averaging the recorded EEG traces recorded immediately after several occurrences of 

the same event. 

 

Functional magnetic resonance imaging (fMRI): a neuroimaging method for the spatially high-resolved 

recording of brain activity by detecting associated changes in blood flow. 

 

Functional near-infrared spectroscopy (fNIRS): a portable neuroimaging method for the recording of brain 

activity by detecting associated changes in blood flow via magnetic impulses. 

 

Magnetoencephalography (MEG): a neuroimaging method for the temporally high-resolved recording of 

variations in electric brain activity by detecting associated changes in the magnetic fields. 

 

Positron emission tomography (PET): a neuroimaging method for the spatially high-resolved recording of 

brain activity by detecting associated changes in blood flow via radioactive tracers. 
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Affective Brain-Computer Interfaces  

Neuroscientific Approaches to Affect Detection 

Christian Mühl, Dirk Heylen, Anton Nijholt  

Abstract 

The brain is involved in the registration, evaluation, and representation of emotional events, and 

in the subsequent planning and execution of adequate actions. Novel interface technologies – so-

called affective brain-computer interfaces (aBCI) - can use this rich neural information, occurring 

in response to affective stimulation, for the detection of the affective state of the user. This chapter 

gives an overview of the promises and challenges that arise from the possibility of 

neurophysiology-based affect detection, with a special focus on electrophysiological signals. After 

outlining the potential of aBCI relative to other sensing modalities, the reader is introduced to the 

neurophysiological and neurotechnological background of this interface technology. Potential 

application scenarios are situated in a general framework of brain-computer interfaces. Finally, 

the main scientific and technological challenges that have to be solved on the way toward reliable 

affective brain-computer interfaces are discussed. 
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1. Introduction 

Affect-sensitive human-computer interaction (HCI), in order to provide the choice 

of adequate responses to adapt the computer to the affective states of its user, requires a 

reliable detection of these states, that is, of the user’s emotions. A number of behavioural 

cues, such as facial expression, posture, and voice, can be informative about these states. 
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Other sources, less open to conscious control and therefore more reliable in situations 

where behavioural cues are concealed, can be assessed in the form of physiological 

responses to emotional events, for example changes in heart rate and skin conductance. A 

special set of physiological responses is that originating from the most complex organ of 

the human body, the brain. These neurophysiological responses to emotionally significant 

events can, alone or in combination with other sources of affective information, be used 

to detect affective states continuously, clarify the context in which they occur, and help to 

guide affect-sensitive HCI. In this chapter, we will elucidate the motivation and 

background of affective brain-computer interfaces (aBCI) – the devices that enable the 

transformation of neural activity into affect-sensitive HCI -- outline their working 

principles and their applications in a general framework of BCI, and discuss main 

challenges of this novel affect-sensing technology. 

 

1.1 The motivation behind affective BCI 

The brain is an interesting organ for the detection of cues about the affective state. 

Numerous lesion studies, neuroimaging evidence, and theoretical arguments have 

strengthened the notion that the brain is not only the seat of our rational thought, but also 

heavily involved in emotional responses that often are perceived as disruptive to our 

rational behaviour (Damasio, 2000). Scherer’s Component Process Model (Scherer, 

2005) postulates the existence of several components of affective responses that reside in 

the central nervous system, including processes of emotional event perception and 

evaluation, self-monitoring, and action planning and execution1.  

                                                      
1 See also Kemp and colleagues’ chapter in the current handbook, which highlights the importance of brain 

and body responses and their integration. 
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Therefore, the brain seems to possess great potential to differentiate affective states in 

terms of their neurophysiological characteristics, mostly of the neural responses that 

occur after encountering an emotionally salient stimulus event. Such emotional responses 

occur within tens of milliseconds; they are not under the volitional control of a person 

and hence are reliable in terms of their true nature. Such fast and automatic 

neurophysiological responses are contrasted by slower physiological responses in the 

range of seconds after the event and with behavioural cues that are more amenable to 

conscious influence. 

In addition to the promises for a fast and reliable differentiation of affective states, the 

complexity of the brain also holds the potential to reveal details about an on-going 

emotional response elicited by emotional stimulus events. Visual or auditory cortices 

reflect the modality-specific processing resources allocated to emotionally salient events 

(Mühl et al., 2011) allowing for conscious identification of the object which elicited the 

emotional response. Similarly, motor regions might reveal behavioural dispositions, that 

is, planned and prepared motor responses, to an emotional stimulus event. 

Finally, certain patient populations that lose the capability to communicate with the 

outside world due to the loss of musculature or its control, need alternative 

communication channels – using the information available from unimpaired 

physiological and neurophysiological processes -- that are able to reflect their emotions to 

loved ones as well as to caretakers.  

However, the realisation of all this potential, including the advantages of 

neurophysiological signals over other sources of information on affect, are dependent on 

the advancement of research within several disciplines: psychology, affective 

http://www.dict.cc/englisch-deutsch/amenable.html
http://www.dict.cc/englisch-deutsch/influence.html
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neuroscience, and machine learning. We will start with the introduction of relevant sensor 

technologies, before discussing the neurophysiological basis, the technological principles 

and applications of aBCI. 

 

1.2 Sensor modalities assessing neurophysiological activity 

Several sensor technologies enable the assessment of neurophysiological activity. Two 

types of methods can be distinguished by the way they function: one measures cortical 

electric or magnetic fields, directly resulting from the nerve impulses of groups of 

pyramidal neurons, while the other one measures metabolic activity within cortical 

structures, for example blood oxygenation resulting from increased activity of these 

structures. 

The first type of electrophysiological methods, including sensor modalities such as 

electroencephalography (EEG) and magnetoencephalography (MEG), has a high 

temporal resolution of neural activity recordings (instantaneous signals with millisecond 

resolution), but lacks high spatial resolution due to the smearing of the signals on their 

way through multiple layers of cerebrospinal fluid, bone, and skin. Most of the methods 

of the second type, including sensor modalities such as functional magnetic resonance 

imaging (fMRI) or positron emission tomography (PET), have a high spatial resolution 

(in the range of millimeters), but are slow due to the dependence on metabolic changes 

(resulting in a lag of several seconds) and due to their working principle (resulting in 

measurement rhythms of seconds rather than milliseconds). 

Each of the neuroimaging methods mentioned above has its advantages and their use 

depends on researchers’ goals. Regarding affective computing scenarios, EEG seems to 
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be the most practicable method: EEG has the advantage of being relatively unobtrusive 

and can be recorded using wearable devices, increasing the mobility and options for 

locations in which data is collected. Furthermore, the technology is affordable for private 

households and relatively easy to set up, especially the cheaper commercial versions for 

the general public, although these have limitations for research. Comparable wearable 

sensor modalities that are based on the brain metabolism, such as functional near-infrared 

spectroscopy (fNIRS), are currently neither affordable, nor featuring a high spatial 

resolution.  

To focus on the technologies relevant for aBCI in the normal, healthy population, in the 

next section we will briefly review the affect-related neural structures of the central 

nervous system and then introduce the neurophysiological correlates of affect that are the 

basis for aBCI systems using EEG technology as their sensor modality.  

 

2 Neurophysiological Measurements of Affect  

2.1 The Neural Structures of Affect  

The brain comprises a number of structures that have been associated with affective 

responses by different types of evidence. Much of the early evidence of the function of 

certain brain regions comes from observations of the detrimental effects of lesions in 

animals and humans. More recently, functional imaging approaches, such as PET or 

fMRI, have yielded insights into the processes occurring during affective responses in 

normal functioning (for reviews see Barrett, Mesquita, Ochsner, & Gross, 2007; 

Lindquist, Wager, Kober, Bliss-moreau, & Barrett, 2011). Here we will only briefly 

discuss the most prominent structures that have been identified as central during the 
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evaluation of the emotional significance of stimulus events and the processes that lead to 

the emergence of the emotional experience. The interested reader can refer to Barrett et 

al. (2007) for a detailed description of the structures and processes involved.  

The core of the system involved in the translation of external and internal events to the 

affective state is a set of neural structures in the ventral portion of the brain: medial 

temporal lobe (including the amygdala, insula, and striatum), orbitofrontal cortex (OFC), 

and ventromedial prefrontal cortex (VMPFC). These structures compose two related 

functional circuits, which represent the sensory information about the stimulus event and 

its somatovisceral impact, as remembered or predicted from previous experience.  

The first circuit, comprised of the basolateral complex of the amygdala, the ventral and 

lateral aspects of the OFC, and the anterior insula, is involved in the gathering and 

binding of information from external and internal sensory sources. Both the amygdala 

and the OFC structures possess connections to the sensory cortices, enabling information 

exchange about perceived events and objects. While the amygdala is coding the original 

value of the stimulus, the OFC creates a flexible experience- and context-dependent 

representation of the object’s value. The insula represents interoceptive information from 

the inner organs and skin, playing a role in forming awareness about the state of the body. 

By the integration of sensory information and information about the body’s state, a value-

based representation of the event or object is created.  

The second circuit, composed of the VMPFC (including the anterior cingulate cortex 

(ACC)) and the amygdala, is involved in the modulation of parts of the value-based 

representation via its control over autonomous, chemical, and behavioural visceromotor 

responses. Specifically, the VMPFC links the sensory information about the event, as 
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integrated by the first circuit, to its visceromotor outcomes. It can be considered as an 

affective working memory, which informs judgments and choices, and is active during 

decisions based on intuitions and feelings.  

Both circuits project directly and indirectly to the hypothalamus and brainstem, which are 

involved in a fast and efficient computation of object values, and influence autonomous 

chemical and behavioural responses. The outcome of the complex interplay of ventral 

cortical structures, amygdala, hypothalamus, and brainstem establishes the “core 

affective” state that the event induced: an event-specific perturbation of the internal 

milieu of the body that directs the body to prepare for the responses necessary to deal 

with the event. These responses include the attentional orienting to the source of the 

stimulation, the enhancement of sensory processes, and the preparation of motor 

behaviour. The perturbation of the visceromotor state is also the basis of the conscious 

experience of the pleasantness and physical and cortical arousal that accompany affective 

responses. However, as stated by Barrett et al. (2007), the emotional experience is 

unlikely to be the outcome of one of the structures involved in establishing the ”core 

affect,” but rather emerges on the system level, as the result of the activity of many or all 

of the involved structures2. 

 

2.2 Correlates of Affect in EEG  

                                                      
2 This constructivist position, readily compatible with functional appraisal models of emotion and with 

evidence collected by neuroimaging meta-analyses (Lindquist et al., 2011), is opposed by the localist 

position, which is defended by the proponents of basic emotion models. For a neuroimaging meta-analysis 

supporting the localist position see (Vytal & Hamann, 2010). The interested reader is also referred to the 

chapter by Kemp and colleagues contained in the current handbook. 
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Before reviewing the electrophysiological correlates of affect, we shall note that due to 

the working principles and the resulting limited spatial resolution of the EEG, a simple 

measurement of the activation of affect-related structures, as obtainable by fMRI, is not 

possible. Furthermore, most of the core-affective structures are located in the ventral part 

of the brain (but see Davidson, 1992; Harmon-Jones, 2003), making a direct assessment 

of their activity by EEG, focusing on signals from superficial neocortical regions, 

difficult. Hence, we concentrate on electrophysiological signals that have been associated 

with affect and on their cognitive functions, but mention their neural origins if available. 

 

Time-domain Correlates. A significant body of research has focused on the time 

domain and explores the consequences of emotional stimulation on event-related 

potentials. Event-related potentials (ERP) are prototypical deflections of the recorded 

EEG trace in response to a specific stimulus event, for example a picture stimulus.  

ERPs are computed by (sample-wise) averaging of the traces following multiple 

stimulation events of the same condition, which reduces sporadic parts of the EEG trace 

not associated with the functional processes involved in response to the stimulus but 

originating from artefacts or background EEG.  

Examples of ERPs responsive to affective manipulations include early and late potentials. 

Early potentials, for example P1 or N1, indicate processes involved in the initial 

perception and automatic evaluation of the presented stimuli. They are affected by the 

emotional value of a stimulus; differential ERPs are observed in response to negative and 

positive valence as well as low and high arousal stimuli (Olofsson, Nordin, Sequeira, & 
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Polich, 2008). However, the evidence is far from parsimonious as the variety of the 

findings shows. 

Late event-related potentials are supposed to reflect higher-level processes, which are 

already more amenable to the conscious evaluation of the stimulus. The two most 

prominent potentials that have been found susceptible to affective manipulation are the 

P300 and the late positive potential (LPP). The P300 has been associated with attentional 

mechanisms involved in the orientation toward an especially salient stimulus, for 

example very rare (deviants) or expected stimuli (Polich, 2007). Coherently, P300 

components show a greater amplitude in response to highly salient emotional stimuli, 

especially aversive ones (Briggs & Martin, 2009). The LPP has been observed after 

emotionally arousing visual stimuli (Schupp et al., 2000), and was associated with a 

stronger perceptive evaluation of emotionally salient stimuli as evidenced by increased 

activity of posterior visual cortices (Sabatinelli, Lang, Keil, & Bradley, 2006).  

As in real-world applications the averaging of several epochs of EEG traces with respect 

to the onset of a repeatedly presented stimulus is not feasible; the use of such time-

domain analysis techniques is limited for affective BCIs. An alternative to ERPs - more 

feasible in a context without known stimulus onsets or repetitive stimulation - are effects 

on brain rhythms observed in the frequency domain.  

 

Frequency-domain Correlates The frequency domain can be investigated with two 

simple, but fundamentally different power extraction methods, yielding evoked and 

induced oscillatory responses to a stimulus event (Tallon-Baudry, Bertrand, Baudry, & 

Bertrand, 1999). Evoked frequency responses are computed by a frequency 
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transformation applied to the averaged EEG trace, yielding a frequency-domain 

representation of the ERP components. Induced frequency responses, on the other hand, 

are computed by applying the frequency transform on the single EEG traces before then 

averaging the frequency responses. Induced responses therefore capture oscillatory 

characteristics of the EEG traces that are not phase-locked to the stimulus onset and 

averaged out in the evoked oscillatory response. In an everyday context, where the mental 

states or processes of interest are not elicited by repetitive stimulation, with a known 

stimulus onset and short stimulus duration, the use of evoked oscillatory responses is 

equally limited as the use of ERPs. Therefore, the induced oscillatory responses are of 

specific interest when attempting the detection of affect based on a single and unique 

emotional event or period.  

The analysis of oscillatory activity in the EEG has a tradition that reaches back over 

almost 90 years to the 20s of the last century, when Hans Berger reported the existence of 

certain oscillatory characteristics in the EEG, now referred to as alpha and beta rhythms 

(Berger, 1929). The decades of research since then led to the discovery of a multitude of 

cognitive and affective functions that bear influence upon the oscillatory activity in 

different frequency ranges. Below we will briefly review the frequency ranges of the 

conventional broad frequency bands, namely delta, theta, alpha, beta, and gamma, their 

cognitive functions and their association with affect.  

  

The delta frequency band comprises the frequencies between 0.5 and 4 Hz. Delta 

oscillations are especially prominent during the late stages of sleep (Steriade, 

McCormick, & Sejnowski, 1993). However, during waking they have been associated 
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with motivational states such as hunger and drug craving (see Knyazev, 2012). In such 

states, they are supposed to reflect the workings of the brain reward system, some of the 

structures of which are believed to be generators of delta oscillations (Knyazev, 2012). 

Delta activity has also been identified as a correlate of the P300 potential, which is seen 

in response to salient stimuli. This has led to the belief that delta oscillations play a role 

in the detection of emotionally salient stimuli. Congruously, increases of delta band 

power have been reported in response to more arousing stimuli (Aftanas, Varlamov, 

Pavlov, Makhnev, & Reva, 2002; Balconi & Lucchiari, 2006; Klados et al., 2009).  

 

The theta rhythm comprises the frequencies between 4 to 8 Hz. Theta activity has been 

observed in a number of cognitive processes, and its most prominent form, fronto-medial 

theta, is believed to originate from limbic and associated structures (i.e., ACC) (Başar, 

Schürmann, & Sakowitz, 2001). It is a hallmark of working memory processes and has 

been found to increase with higher memory demands in various experimental paradigms 

(see Klimesch, Freunberger, Sauseng, & Gruber, 2008). Specifically, theta oscillations 

subserve central executive function, integrating different sources of information, as 

necessary in working memory tasks (Kawasaki, Kitajo, & Yamaguchi, 2010).  

Concerning affect, early reports mention a “hedonic theta” that was reported to occur 

with the interruption of pleasurable stimulation. However, studies in children between 6 

months and 6 years of age showed increases in theta activity upon exposure to 

pleasurable stimuli (see Niedermeyer, 2005). Recent studies on musically induced 

feelings of pleasure and displeasure found an increase of fronto-medial theta activity with 

more positive valence (Lin, Duann, Chen, & Jung, 2010; Sammler, Grigutsch, Fritz, & 
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Koelsch, 2007), which originated from ventral structures in the ACC. For emotionally 

arousing stimuli, increases in theta band power have been reported over frontal (Balconi 

& Lucchiari, 2006; Balconi & Pozzoli, 2009) and over frontal and parietal regions 

(Aftanas et al., 2002). Congruously, a theta increase was also reported during anxious 

personal compared to non-anxious object rumination (Andersen, Moore, Venables, Corr, 

& Venebles, 2009).  

 

The alpha rhythm comprises the frequencies between 8 and 13 Hz. It is most prominent 

over parietal and occipital regions, especially during the closing of the eyelid, and 

decreases in response to sensory stimulation, especially during visual, but in a weaker 

manner also during auditory and tactile stimulation, or during mental tasks. More anterior 

alpha rhythms have been specifically associated with sensorimotor activity (central mu-

rhythm; Pfurtscheller, Brunner, Schlögl, & Lopes da Silva, 2006) and with auditory 

processing (tau-rhythm; Lehtelä, Salmelin, & Hari, 1997). The observed decrease of the 

alpha rhythm in response to (visual) stimulation, the event-related desynchronisation in 

the alpha band, is believed to index the increased sensory processing, and hence has been 

associated with an activation of task-relevant (sensory) cortical regions. The opposite 

phenomenon, an event-related synchronization in the alpha band, has been reported in a 

variety of studies on mental activities, such as working memory tasks, and is believed to 

support an active process of cortical inhibition of task-irrelevant regions (see Klimesch, 

Sauseng, & Hanslmayr, 2007). 

The most prominent association between affective states and neurophysiology has been 

reported in the form of frontal alpha asymmetries (Coan & Allen, 2004), which vary as a 
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function of valence (Silberman, 1986) or motivational direction (Davidson, 1992; 

Harmon-Jones, 2003). The stronger rightward-lateralization of frontal alpha power during 

positive or approach-related emotions compared to negative or withdrawal-related 

emotions is believed to originate from the stronger activation of left compared to right 

prefrontal structures involved in affective processes. Despite fMRI studies (e.g., Engels et 

al., 2007) suggesting that such simple models of lateralization underestimate the 

complexity of the human brain, evidence for alpha asymmetry has been found in response 

to a variety of different induction procedures, using pictures (Balconi & Mazza, 2010; 

Huster, Stevens, Gerlach, & Rist, 2009), music pieces (Altenmüller, Schürmann, Lim, & 

Parlitz, 2002; Schmidt & Trainor, 2001; Tsang, Trainor, Santesso, Tasker, & Schmidt, 

2006), or film excerpts (Jones & Fox, 1992).  

The alpha rhythm has also been associated with a relaxed and wakeful state of mind 

(Niedermeyer, 2005). Coherently, increases of alpha power are observed during states of 

relaxation, as indexed by physiological measures (Barry, Clarke, Johnstone, & Brown, 

2009; Barry, Clarke, Johnstone, Magee, & Rushby, 2007) and subjective self-report 

(Nowlis & Kamiya, 1970; Teplan & Krakovska, 2009). 

  

The beta rhythm comprises the frequencies between 13 and 30 Hz. Central beta activity 

has been associated with the sensory-motor system as it is weak during motor activity, 

motor imagination or tactile stimulation, but increases afterwards (Neuper et al., 2006). 

That has led to the view that the beta rhythm is a sign of an “idling” motor cortex 

(Pfurtscheller et al., 1996). A recent proposal for a general theory of the function of the 

beta rhythm, however, suggests that beta oscillations impose the maintenance of the 
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sensorimotor set for the upcoming time interval (or “signals the status quo”; see Engel & 

Fries, 2010). Concerning affect, increases of beta band activity have been observed over 

temporal regions in response to visual and self-induced positive, compared to negative 

emotions (Cole & Ray, 1985; Onton & Makeig, 2009). A general decrease of beta band 

power has been reported for stimuli that had an emotional impact on the subjective 

experience, compared with those that were not experienced as emotional (Dan Glauser & 

Scherer, 2008; see gamma rhythm for elaboration). A note of caution for the 

interpretation of high frequency bands of beta and gamma is in order, as their power 

increases during the tension of (scalp) muscles (Goncharova et al., 2003), which are also 

involved in frowning and smiling. 

 

The gamma rhythm comprises the frequencies above 30 Hz. Gamma band oscillations are 

supposed to be a key mechanism in the integration of information represented in different 

sensory and non-sensory cortical networks (Fries, 2009). Accordingly, they have been 

observed in association with a number of cognitive processes, such as attention (Gruber, 

Müller, Keil, & Elbert, 1999), multi-sensory integration (Daniel Senkowski, Schneider, 

Tandler, & Engel, 2009),  memory (Jensen, Kaiser, & Lachaux, 2007), and even 

consciousness (Ward, 2003).  

Concerning valence, temporal gamma rhythms have been found to increase with 

increasingly positive valence (Müller, Keil, Gruber, & Elbert, 1999; Onton & Makeig, 

2009). For arousal, posterior increases of gamma band power have been associated with 

the processing of high versus low arousing visual stimuli (Aftanas, Reva, Varlamov, 

Pavlov, & Makhnev, 2004; Balconi & Pozzoli, 2009; Keil et al., 2001). Similarly, 
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increases of gamma activity over somatosensory cortices have also been linked to the 

awareness to painful stimuli (Gross, Schnitzler, Timmermann, & Ploner, 2007; 

Senkowski, Kautz, Hauck, Zimmermann, & Engel, 2011). However, Dan Glauser and 

Scherer (2008) found lower (frontal) gamma power for emotion for stimuli with 

compared to those without an emotional impact on the subjective experience. They 

interpreted their findings as a correlate of the on-going emotional processing in those 

trials that were not (yet) identified as having a specific emotional effect, and hence 

without impact on subjective experience. In general, increases in gamma power are often 

interpreted as synonymous with an increase of activity in the associated region. 

  

Taken together, the different frequency bands of the EEG have been associated with 

changes in the affective state as well as with a multitude of cognitive functions. 

Consequently, it is rather unlikely to find simple one-to-one mappings between any 

oscillatory activity and a given affective or cognitive function. In Section 4 we will 

elaborate on the challenge that many-to-one mappings pose for aBCI. Nevertheless, there 

is an abundance of studies evidencing the association of brain rhythms with affective 

responses. Affective brain-computer interfaces can thus make use of the frequency 

domain as a source of information about their users’ affective states. In the following 

section, we will introduce the concept of affective brain-computer interfaces in more 

detail.  
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3 Affective Brain-Computer Interfaces  

The term affective brain-computer interfaces (aBCI) is a direct result of the nomenclature 

of the field that motivates their existence: affective computing. aBCI research and 

affective computing aim at the same ends with different means: the detection of the user’s 

emotional state for the enrichment of human-computer interaction. While affective 

computing tries to integrate all the disciplines involved in this endeavour, from sensing of 

affect to its effective integration into human-computer interaction processes, affective 

brain-computer interface research is mainly concerned with the detection of the affective 

state from neurophysiological measurements. Information about successfully detected 

affective states can then be used in a variety of applications, ranging from unobtrusive 

mental state monitoring and the corresponding adaptation of interfaces to neurofeedback-

guided relaxation. 

Originally, the term brain-computer interface was defined as “a communication system 

in which messages or commands that an individual sends to the external world do not 

pass through the brain’s normal output pathways of peripheral nerves and muscles” 

(Wolpaw, Birbaumer, McFarland, Pfurtscheller, & Vaughan, 2002). The notion of an 

individual (volitionally) sending commands directly from the brain to a computer, 

circumventing standard means of communication, is of great importance considering the 

original target population of patients with severe neuromuscular disorders. More recently, 

the human-computer interaction community developed great interest in the application of 

BCI approaches for larger groups of users that are not dependent on BCIs as their sole 

means of communication. This development and the ensuing research projects hold great 

potential for the further development of devices, algorithms, and approaches for BCI, also 
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necessary for its advancement for patient populations. Simultaneously to the development 

of this broad interest for BCI, parts of the BCI community slowly started to incorporate 

new BCI approaches, such as aBCI, in its research portfolio, softening the confinement of 

BCI to interfaces serving purely volitional means of control (Nijboer, Clausen, Allison, & 

Haselager, 2011).  

Below, we will briefly introduce the parts of the affective BCI: signal acquisition, signal 

processing (feature extraction and translation algorithm), feedback, and protocol. Then 

we will give an overview of the various existing and possible approaches to affective 

BCI, based on a general taxonomy of BCI approaches.  

 

3.1 Parts of an Affective BCI  

Being an instance of general BCI systems (Wolpaw et al., 2002), the affective BCI is 

defined by a sequence of procedures that transform neurophysiological signals into 

control signals. We will briefly outline the successive processing steps that a signal has to 

undergo in a BCI (see Figure 1.1), starting with the acquisition of the signal from the 

user, and finishing with the application feedback given back to the user.  

 

 

Figure 1.1: The schematic of a general BCI system as defined by Wolpaw et al. (2002). The 

neurophysiological signal is recorded from the user, and the relevant features, those that are informative 
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about user intent or state, are extracted. They are then translated into the control parameters that are used by 

the application to respond adequately to the user’s state or intent. 

 

Signal Acquisition BCIs can make use of several sensor modalities that measure brain 

activity. Roughly, we can differ between invasive and non-invasive measures. While 

invasive measures, implanted electrodes or electrode grids, enable a more direct 

recording of neurophysiological activity from the cortex, and have therefore a better 

signal-to-noise ratio, they are currently reserved for patient populations – and hence are 

less relevant for the current overview. Non-invasive measures, on the other hand, as 

recorded with EEG, fNIRS, or fMRI, are also available for the healthy population. 

Furthermore, some of the non-invasive signal acquisition devices, especially EEG, are 

already available for consumers in the form of easy-to-handle and affordable headsets3. 

The present work focuses on EEG as a neurophysiological measurement tool, for which 

we will detail the following processing steps in the BCI pipeline. A further distinction in 

terms of the acquired signals can be made, differing between those signals that are 

partially dependent of the standard output pathways of the brain (e.g. moving the eyes to 

direct the gaze toward a specific stimulus), and those that are independent on these output 

pathways, merely registering user intention or state. These varieties of BCI are referred to 

as dependent and independent BCIs, respectively. Affective BCIs, measuring the 

affective state of the user, are usually a variety of the latter sort of BCIs.  

 

Signal Processing - Feature Extraction From the signals that are captured from the 

scalp, several signal features can be computed. We can differentiate between features in 
                                                      
3 Examples of such consumer EEG devices are the Emotive headset with 14 sensors 

(http://www.emotiv.com) and the Neurosky headset with 1 sensor (http://www.neurosky.com). 
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the time and in the frequency domain. An example for features in the time domain is 

amplitude of stimulus-evoked potentials occurring at well-known time points after a 

stimulus event was observed. One of the event-related potentials used in BCI is the P300, 

occurring in the interval between 300 to 500 ms after an attended stimulus event. An 

example for signal features in the frequency domain is the power of a certain frequency 

band. A well-known frequency band that is used in BCI paradigms is the alpha band, 

which comprises the frequencies between 8 - 13 Hz. Both time- and frequency-domain 

features of the EEG have been found to respond to the manipulation of affective states 

and are therefore in principle interesting for the detection of affective states (see Section 

2). However, aBCI studies almost exclusively use features from the frequency domain 

(see Table 1.1 in Mühl, 2012). Conveniently, however, frequency-domain features, such 

as the power in the lower frequency bands (< 13 Hz) are correlated with the amplitude of 

event-related potentials, especially the P300, and hence partially include information 

about time-domain features.  

Standard BCI approaches focus on very specific features, for example the mu rhythm 

over central scalp regions in case of motor-imagery paradigms (Pfurtscheller & Neuper, 

2001), or the mean signal amplitude between 200 and 500 ms associated with each 

attended stimulus in P300 spellers (Farwell & Donchin, 1988). Affective BCI 

approaches, however, to date often lack such clear-cut information on affect-related 

responses. Most of the current aBCI approaches make use of a wide spectrum of 

frequency bands, as these have been found responsive to affect manipulation (see Section 

2.2), resulting in a large number of potential features. However, large numbers of features 

require a large number of trials to train a classifier (the “curse of dimensionality”; Lotte, 



 21 

Congedo, Lécuyer, Lamarche, & Arnaldi, 2007), which are seldom available due to the 

limitations of affect induction (e.g., the habituation of the responses toward affective 

stimulation with time). Therefore, one of the tasks on the road toward affective BCI is the 

evaluation and identification of reliable signal features that carry information about the 

affective state, especially in the complexity of real-world environments. Another 

important task is the development of potent affect-induction procedures, for example 

using naturally affect-inducing stimuli that increase the likelihood of inducing affective 

responses.  

 

Signal Processing - Translation Algorithms The core part of the BCI is the translation 

of the selected signal features into a command for the application or device, such as a 

cursor movement for active BCIs or the creation of an emotion label for affective BCIs. 

The simple one-to-one mapping between feature and command requires a feature that 

conveniently mirrors the state in such manner. Because such ideal features are rare in the 

neurophysiological signal domain, most BCI studies use machine learning approaches 

that are trained to find a mapping between a number of signal features and the labels for 

two or more classes (see Lotte et al. (2007) for an overview of BCI classifiers). These 

classifiers have to adapt to the signal characteristics of the particular user, adapt to 

changes over time and changing contexts of interaction, and deal with the changes in 

brain activity due to the user trying to learn and adapt to the system. Classifiers used for 

affective BCI include linear discriminant analysis (Chanel et al., 2005; Chanel, Kierkels, 

Soleymani, & Pun, 2009; Chanel, Rebetez, Bétrancourt, Pun, & Bétrancourt, 2011; 

Makeig et al., 2011; Murugappan, 2010; Winkler, Jäger, Mihajlović, & Tsoneva, 2010) 
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and support vector machines (Frantzidis et al., 2010; Horlings, Datcu, & Rothkrantz, 

2008; Koelstra et al., 2010; Li & Lu, 2009; Y. P. Lin, Wang, Wu, Jeng, & Chen, 2009; 

Petrantonakis & Hadjileontiadis, 2010; Soleymani, Lichtenauer, Pun, & Pantic, 2011; 

Takahashi, 2004). 

 

The Output Device / Feedback Depending on the application the affective BCI is 

serving, the output can assume different forms. For BCI in general, the most prominent 

output devices are a monitor and speakers, providing visual and auditory feedback about 

the user and BCI performance. In a few cases robots (a wheelchair or car) have been 

controlled (Hongtao, Ting, & Zhenfeng, 2010; Leeb et al., 2007). An exceptional 

example of BCI output, however, is control of one’s own hand by the BCI-informed 

functional electrical stimulation of a paralyzed hand (Pfurtscheller, Müller-Putz, 

Pfurtscheller, & Rupp, 2005). In the case of standard BCIs, the output has a major 

function, relating to the adaptation of the user to the BCI mentioned above. As BCI 

control can be considered to be a skill, any learning necessitates the provision of feedback 

about successful and unsuccessful performance.  

In the specific case of aBCI the same is possible, but the smaller proportion of 

applications requiring active and volitional mental control, typical for standard BCI 

systems, and the dominance of passive paradigms (see Section 3.2) make explicit 

performance-based feedback an option rather than mandatory. Depending on their 

function, aBCI systems will vary in the output device and the type of feedback employed. 

For example, for implicit tagging or affect monitoring (for later evaluation), the feedback 

is not immediate. It might take hours, days, or weeks until the information is used (e.g. 
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during affect-tagged media replay) and then it might be in a subtle way that escapes the 

user’s attention. Such cases, in which there is no clear relation between state and 

feedback perceivable, make the notion of feedback in these aBCI applications almost 

obsolete. However, in many other aBCI applications the feedback is still existent and 

relevant, since the affective data is used to produce a system response in a reasonably 

near future. Examples are the applications that reflect the current affective state (e.g., in a 

game like “alpha World of Warcraft”, Plass-Oude Bos et al., 2010), any neurofeedback-

like application (e.g., warn of unhealthy states or reward healthy states), the active self-

induction of affective states (e.g., relaxation), or the adaptation of games or e-learning 

applications to the state of the user.  

 

The Operating Protocol The operating protocol guides the operation of the BCI system, 

for example switching it on and off (how/when), if the actions are triggered by the system 

(synchronous) or by the user (asynchronous), and when and in which manner feedback is 

given to the user. Other characteristics of the interaction that are defined by the protocol 

are whether the information is actively produced by the user or passively read by the 

system and whether the information is gathered dependent of a specific stimulus event 

(stimulus dependent/independent). These two characteristics of BCI, voluntariness and 

stimulus-dependency, are also the basis for the characterization of different BCI 

approaches in the next section.  

Below, we will outline the different existing applications and approaches to affective 

BCI, and try to locate affective BCI within the general landscape of BCI.  

 

3.2 The Different aBCI Approaches  
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There are several possible applications of neurophysiology-informed affect sensing that 

can be categorized in terms of their dependence on stimuli and user volition. In the 

following, a two-dimensional classification of some of these BCI paradigms will be 

given. It is derived from the three-category classification for BCI approaches (active, 

reactive, and passive BCI) suggested by Zander & Kothe (2011). The dimensions of this 

classification are defined by (i) the dependence on external stimuli and (ii) the 

dependence on an intention to create a neural activity pattern as illustrated in Figure 1.2.  

 

Figure 1.2: A classification of BCI paradigms, spanning voluntariness (passive vs. active) and stimulus 

dependency (user self-induced vs. stimulus-evoked). 
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Axis (i) stretches from exogenous (or evoked) to endogenous (or induced) input. The 

former covers all forms of BCI, which necessarily presuppose an external stimulus. 

Steady-state visually-evoked potentials (Farwell & Donchin, 1988) as neural correlates of 

(target) stimulus frequencies, for instance, may be detected if and only if evoked by a 

stimulus. They are therefore a clear example of exogenous input. Endogenous input, on 

the other hand, does not presuppose an external stimulus, but is generated by the user 

either volitionally, as seen in motor-imagery based BCIs (Pfurtscheller & Neuper, 2001) 

or involuntarily, as during the monitoring of affective or cognitive states. In the case of 

involuntary endogenous input, for example during general affect monitoring, the 

distinction between stimulus-dependent and -independent input might not always be 

possible, as affective responses are often induced by external stimulus events, though 

these might not always be obvious.  

Axis (ii) stretches from active to passive input. Active input presupposes an intention to 

control brain activity while passive input does not require any effort on the side of the 

user. Imagined movements, for instance, can only be detected when users intend to 

perform these, making the paradigm a prototypical application of active BCI. All 

methods that probe the user’s mental state, on the other hand, can also be measured when 

the users do not exhibit an intention to produce it. Affective BCI approaches can be 

located in several of the four quadrants (categories) spanned by the two dimensions, as 

quite different approaches to affective BCI have been suggested and implemented.  

 

Q I. Induced-active BCIs. This category is well-known in terms of neurofeedback 

systems, which encourage the user to attain a certain goal state. While neurofeedback 
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approaches do not necessarily focus on affective states, a long line of this research is 

concerned with the decrease of anxiety or depression by making the users more aware of 

their bodily and mental states (Hammond, 2005). Neurophysiological features that have 

been associated with a certain favourable state (e.g., relaxed wakefulness) are visualized 

or sonified, enabling the users of such feedback systems to learn to self-induce them.  

More recently, it has been shown that affective self-induction techniques, such as 

relaxation, are a viable control modality in gaming applications (George, Lotte, Abad, & 

Lecuyer, 2011; Hjelm, 2003; but see Mühl et al., 2010). Furthermore, induced-passive 

approaches (see below) might also turn into active approaches, for example when players 

realize that their affective state has an influence on game parameters, and therefore begin 

to self-induce states to manipulate the gaming environment according to their 

preferences.  

 

Q II. Induced-passive BCIs. This category includes the typical affect-sensing method 

for application in HCI scenarios where a response of an application to the user state is 

critical. Information that identifies the affective state of a user can be used to adapt the 

behaviour of an application to keep the user satisfied or engaged. For example, studies 

found neurophysiological responses in the theta and alpha frequency bands to 

differentiate between episodes of frustrating and normal game play (Reuderink, Mühl, & 

Poel, 2013). Applications could respond to the frustration of the user with helpful advice 

or clarifying information. Alternatively, parameters of computer games or e-learning 

applications could be adjusted to keep users engaged in the interaction, for example by 
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decreasing or increasing difficulty to counteract the detected episodes of frustration or 

boredom, respectively (Chanel et al., 2011).  

Another approach is the manipulation of the game world in response to the player’s 

affective state, as demonstrated in “alpha World of Warcraft” (Plass-Oude Bos et al., 

2010), where the avatar shifts its shape according to the degree of relaxation the user 

experiences. Such reactive games could strengthen the players’ association with their 

avatars, leading to a stronger immersion and an increased sense of presence in the game 

world.  

 

Q III. Evoked-passive BCIs. BCI research has suggested that evoked responses can be 

informative about the state of the user. Allison & Polich (2008) have used evoked 

responses to simple auditory stimuli to probe the workload of a user during a computer 

game, a measure that might reflect attentional and affective engagement. Similarly, 

neurophysiology-based lie detection, assessing neurophysiological orientation responses 

(P300) to compromising stimuli, has been shown to be feasible (Abootalebia et al. 2009). 

A similar approach is the detection of error-potentials in response to errors in human-

machine interaction. It was shown that such errors evoke specific neurophysiological 

responses, for example the error-related negativity (ERN), that can be detected and used 

to trigger system adaptation (Buttfield, Ferrez, & Millán, 2006; Zander & Jatzev, 2009). 

Given that goal conduciveness is a determining factor of affective responses, such error-

related potentials could be understood as being affective in nature (Scherer, 2005).  

More directly related to affect, however, are those responses observed to media, such as 

songs, music videos, or films. Assuming the genuine affective nature of the response to 
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experiences delivered by such stimuli, it might be possible to detect the user states that 

are associated with them. A possible use for such approaches are media recommendation 

systems, which monitor the user response to media exposure and label or tag the media 

with the affective state it produced. Later on, such systems could selectively offer or 

automatically play back media items that are known to induce a certain affective state in 

the user. Research toward such neurophysiology-based implicit tagging approaches of 

multimedia content has suggested its feasibility (Koelstra et al., 2012; Soleymani et al., 

2011). Furthermore, assuming that general indicators of affect can be identified using 

music excerpts or film clips for affect-induction protocols, such multi-modal and natural 

media seem suited to collect data for the training of aBCIs that detect affective states 

occurring in rather uncontrolled, real-life environments.  

 

Q IV. Evoked-(re-)active BCI. This category seems less likely to be used for aBCI 

approaches, as the volitional control of affect in response to presented stimuli is as yet 

unexplored. However, standard BCI paradigms that use evoked brain activity to enable 

users to select from several choices were the first approaches to BCI and have been 

thoroughly explored. A prominent example is the P300 speller, which relies on the 

enhanced P300 potential observed in response to attended compared to unattended stimuli 

(Farwell & Donchin, 1988). Similarly, BCI control via steady-state evoked potentials 

relies on the increase of an EEG frequency response when a stimulus oscillating with the 

same frequency (e.g., a flicker, vibration, or sound) is attended (Vidal, 1973).  
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Summarizing, there are a multitude of possible applications for aBCI that can be 

categorized according to the axes of induced/evoked and active/passive control. Main 

applications, however, are those that cover the passive control of applications. The challenges 

that have to be dealt with to move beyond proof-of-concept studies and toward aBCIs 

working reliably in the complexity of the real world are addressed in the final section.  

 

4. Controversies, challenges, conclusion  

Though the possibility of neurophysiology-based affect detection has been suggested by 

theoretical and empirical works (see Section 2 and 3), several neuroscientific and 

neurotechnological challenges remain on the way toward reliable aBCIs.  

 

4.1 Neuroscientific challenges 

The primary neuroscientific challenge is the lack of reliable signal features that 

characterize affective states in non-invasive electrophysiological measures, such as EEG. 

It is often argued that EEG has neither the spatial resolution nor the necessary sensitivity 

to register core affective neural activity from deep subcortical structures of the limbic 

system. While this might partially be true, especially in comparison to techniques like 

fMRI, many studies report electrophysiological correlates of emotion manipulations in 

terms of amplitude changes of either potentials or oscillations (see Section 2.2). However, 

it is indeed seldom assessed which parts of these responses to affective stimulation are 

reflected within these differentiating signal features: core affective correlates versus 

cognitive co-activations of affect. Modern emotion theories, for example the Component 

Process Model of Scherer (2005), acknowledge the complex and interwoven nature of 
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affective and cognitive concepts and processes that are present during emotional 

responses. Therefore, it has to be acknowledged as well, that different affective states are 

not only differentiated by the correlates of their core affective features, but also by 

concurrent co-activations of regions and processes that can be observed independently of 

affect as well. An example is enhanced sensory processing, which can be observed in 

response to emotionally arousing stimuli as well as during heightened levels of attention 

(see Mühl, 2012 for further elaboration).  

Consequently, to avoid misclassification of cognitive state changes as affective state 

changes, a major challenge for aBCI is the identification of the nature of affect correlates 

and the development of methods that allow focus on reliable indicators of affect, while 

still making use of the indicative power of those correlates that are not of purely affective 

nature. As noted earlier, richer information about the response to an affective event, for 

example its origin or its behavioural consequences, is one of the major promises of 

aBCIs. To resolve the uncertainties pertaining to the nature of neurophysiological 

correlates of affect and to develop the next generation of affect-sensitive, but context-

aware aBCIs, the design of affect-induction approaches needs special care4. Beside the 

need to carefully balance all factors but the induced emotion to avoid confounds, affect-

induction designs should vary factors that are co-occurring with affective responses and 

known to be reflected in brain activity. Examples are visual or auditory attention 

processes as elicited by the use of stimuli in the respective sensory modalities (Mühl et 

al., 2011).  

 

                                                      
4
Interested readers may wish to refer to the Handbook of Emotion Elicitation and its Assessment by Coan 

& Allen in this regard. 
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However, this requirement for a stringently controlled affect-induction protocol conflicts 

with another condition for the study of reliable neurophysiological indicators: an 

ecologically valid affect induction. To ensure the generalisation of the classifier from 

training to real-world context, the training samples need to be collected in a context as 

similar as possible to the envisioned application scenario. Unfortunately, this often means 

that the affect-induction approach would be of a complex nature, either using complex 

(e.g., multimedia) stimuli or complex interactive tasks. The many factors involved in 

realistic scenarios in which affect detection would be used make the limitation of changes 

to the factor that is to be manipulated (i.e., emotion) rather difficult, leading to the 

occurrence of confounding variables (e.g., stimulus features, motor responses). 

Furthermore, factoring out those variables that potentially reflect cognitive co-activations 

(see above) underlies practical limitations of experiment design (e.g., time, number of 

participants).  

To satisfy these contradictory demands on affect-induction protocols, researchers need to 

carefully analyse the factors implied in a given application scenario. Knowing these 

factors, they can devise experiment designs that manipulate the affect-relevant factors 

with as little variation in other factors, or that manipulate affective and non-affective 

factors in an independent and counter-balanced manner to factor out the most prominent 

cognitive co-activations.  

 

Related to the search for reliable correlates of core affect is the exploration of novel 

signal features that are informative of the affective state. As mentioned in Section 2, the 

neurophysiological features that have been associated with affect manipulations are not 
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uniquely affective in nature. These potentials and oscillations are also implied in 

cognitive processes. Therefore, the discriminatory value of novel signal features, such as 

cross-regional or cross-frequency coherence (Miskovic & Schmidt, 2010), assessing the 

interaction between neural regions and mental processes, or the chronology of different 

neural processes (Grandjean & Scherer, 2008), need to be explored in the context of 

affect. Researchers can profit from existing neurophysiological databases (Koelstra et al., 

2012; Soleymani et al., 2011) when exploring such novel features. 

 

4.2 Neurotechnological challenges 

Neurotechnological challenges exist for software as well as for hardware components of 

aBCIs. Concerning software, the development of appropriate signal processing and 

classification algorithms are key issues. Signal processing algorithms need to become 

able to deconstruct the electrode signals into their components: neural activity originating 

from within the skull, and so-called artefacts, originating from eyes, facial musculature 

and other non-neural sources. One can differ between informative and destructive 

artefacts. Muscular activity (EMG), for example, is treated as a potentially confounding 

influence in conventional EEG studies and hence always removed. However, in an 

applied context EMG can, though it is not of neural origin, inform about the user state, 

especially taking into account how involved the facial musculature is during emotional 

episodes. On the other hand, artefacts - independent of origin - might conceal much 

smaller neural signals and therefore have to be removed. Nevertheless, it makes sense to 

also examine these artefacts for their informativeness. Techniques like independent 

component analysis (ICA; Onton & Makeig, 2009) are able to deconstruct the 
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electrophysiological signals into neural, ocular, and muscular components and might 

allow an independent assessment of the information of these sources. 

 

Classification algorithms have to be able to take the complexity of the 

neurophysiological signals into account. Assuming a possible differentiation between 

core affective and associated cognitive correlates, machine learning approaches that are 

able to deal with these complex signals are needed. They need to be able to ignore or 

penalize the learning of those features that are only co-varying with affect, thus avoiding 

misclassifications due to the cognitive parts of the affective response (e.g., falsely 

recognizing increased visual attention as visually-induced emotion). Alternatively, they 

could learn to use these co-activations to differentiate contextual details of the emotional 

episodes, such as its origin or its intended behavioural consequence.  

Another challenge for learning algorithms is the capability to learn from relatively few 

examples. The induction of affective states is limited by effects of habituation and the 

requirement of ecological validity, leading to a restricted number of samples for training 

and testing. A possible alternative is the development of classifiers that learn from a pool 

of samples of several participants, rendering their results subject-independent, making 

subject-specific training sessions thereby obsolete.  

 

Concerning hardware, the main challenge concerns the wearability and ease of use of 

aBCI systems. To ensure optimal user experience, the system should have as few sensors 

as possible, reducing the time for setup and its intrusiveness during use. There are already 

several commercial devices that enable the recording of EEG from a small number of 
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sensors (1 to 16 compared to 32 to 256 electrodes in research devices) and function 

without conductive gel. The small number of electrodes minimizes the laborious 

optimization of electrode contacts to improve signal quality and thereby increases 

usability. Furthermore, the achievable signal quality of dry or contact-less electrode 

systems seems close to that of gel-based systems (Zander et al., 2011). However, signal 

processing techniques like ICA require a certain number of electrodes to deconstruct 

neural and non-neural signal components, posing problems for a reliable EEG/EMG 

differentiation. Alternatively to EEG-only aBCI systems, such systems can be combined 

with other affect-sensing modalities, assessing physiological or behavioural cues. Such 

hybrid or multimodal BCI systems (Pfurtscheller et al., 2010) have the potential to assess 

the constellation of different aspects of an affective response, for example preparatory 

homeostatic or communicative aspects, but also to enable the use of redundant 

information from these sources and therefore decrease the susceptibility to artefacts and 

increase the reliability of the prediction. Please refer to the chapter of Kemp and 

colleagues for information regarding the integration of signals from body and brain. 

 

Taken together, the main challenges for reliable aBCIs are affect-induction protocols that 

allow the identification and differentiation of core affective correlates and cognitive co-

activations, pre-processing methods that can differentiate between neural and non-neural 

signal sources, and classification methods that are able to automatically acquire that 

information from a limited set of electrodes and samples. Should the development of 

smaller and cheaper sensor technology continue, wearable and easy-to-use aBCI systems 
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could soon become an effective alternative or addition to behaviour- and physiology-

based affect detection.  
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