4,353 research outputs found

    Subspace Representations for Robust Face and Facial Expression Recognition

    Get PDF
    Analyzing human faces and modeling their variations have always been of interest to the computer vision community. Face analysis based on 2D intensity images is a challenging problem, complicated by variations in pose, lighting, blur, and non-rigid facial deformations due to facial expressions. Among the different sources of variation, facial expressions are of interest as important channels of non-verbal communication. Facial expression analysis is also affected by changes in view-point and inter-subject variations in performing different expressions. This dissertation makes an attempt to address some of the challenges involved in developing robust algorithms for face and facial expression recognition by exploiting the idea of proper subspace representations for data. Variations in the visual appearance of an object mostly arise due to changes in illumination and pose. So we first present a video-based sequential algorithm for estimating the face albedo as an illumination-insensitive signature for face recognition. We show that by knowing/estimating the pose of the face at each frame of a sequence, the albedo can be efficiently estimated using a Kalman filter. Then we extend this to the case of unknown pose by simultaneously tracking the pose as well as updating the albedo through an efficient Bayesian inference method performed using a Rao-Blackwellized particle filter. Since understanding the effects of blur, especially motion blur, is an important problem in unconstrained visual analysis, we then propose a blur-robust recognition algorithm for faces with spatially varying blur. We model a blurred face as a weighted average of geometrically transformed instances of its clean face. We then build a matrix, for each gallery face, whose column space spans the space of all the motion blurred images obtained from the clean face. This matrix representation is then used to define a proper objective function and perform blur-robust face recognition. To develop robust and generalizable models for expression analysis one needs to break the dependence of the models on the choice of the coordinate frame of the camera. To this end, we build models for expressions on the affine shape-space (Grassmann manifold), as an approximation to the projective shape-space, by using a Riemannian interpretation of deformations that facial expressions cause on different parts of the face. This representation enables us to perform various expression analysis and recognition algorithms without the need for pose normalization as a preprocessing step. There is a large degree of inter-subject variations in performing various expressions. This poses an important challenge on developing robust facial expression recognition algorithms. To address this challenge, we propose a dictionary-based approach for facial expression analysis by decomposing expressions in terms of action units (AUs). First, we construct an AU-dictionary using domain experts' knowledge of AUs. To incorporate the high-level knowledge regarding expression decomposition and AUs, we then perform structure-preserving sparse coding by imposing two layers of grouping over AU-dictionary atoms as well as over the test image matrix columns. We use the computed sparse code matrix for each expressive face to perform expression decomposition and recognition. Most of the existing methods for the recognition of faces and expressions consider either the expression-invariant face recognition problem or the identity-independent facial expression recognition problem. We propose joint face and facial expression recognition using a dictionary-based component separation algorithm (DCS). In this approach, the given expressive face is viewed as a superposition of a neutral face component with a facial expression component, which is sparse with respect to the whole image. This assumption leads to a dictionary-based component separation algorithm, which benefits from the idea of sparsity and morphological diversity. The DCS algorithm uses the data-driven dictionaries to decompose an expressive test face into its constituent components. The sparse codes we obtain as a result of this decomposition are then used for joint face and expression recognition

    Surface-guided computing to analyze subcellular morphology and membrane-associated signals in 3D

    Full text link
    Signal transduction and cell function are governed by the spatiotemporal organization of membrane-associated molecules. Despite significant advances in visualizing molecular distributions by 3D light microscopy, cell biologists still have limited quantitative understanding of the processes implicated in the regulation of molecular signals at the whole cell scale. In particular, complex and transient cell surface morphologies challenge the complete sampling of cell geometry, membrane-associated molecular concentration and activity and the computing of meaningful parameters such as the cofluctuation between morphology and signals. Here, we introduce u-Unwrap3D, a framework to remap arbitrarily complex 3D cell surfaces and membrane-associated signals into equivalent lower dimensional representations. The mappings are bidirectional, allowing the application of image processing operations in the data representation best suited for the task and to subsequently present the results in any of the other representations, including the original 3D cell surface. Leveraging this surface-guided computing paradigm, we track segmented surface motifs in 2D to quantify the recruitment of Septin polymers by blebbing events; we quantify actin enrichment in peripheral ruffles; and we measure the speed of ruffle movement along topographically complex cell surfaces. Thus, u-Unwrap3D provides access to spatiotemporal analyses of cell biological parameters on unconstrained 3D surface geometries and signals.Comment: 49 pages, 10 figure

    Automatic face recognition using stereo images

    Get PDF
    Face recognition is an important pattern recognition problem, in the study of both natural and artificial learning problems. Compaxed to other biometrics, it is non-intrusive, non- invasive and requires no paxticipation from the subjects. As a result, it has many applications varying from human-computer-interaction to access control and law-enforcement to crowd surveillance. In typical optical image based face recognition systems, the systematic vaxiability arising from representing the three-dimensional (3D) shape of a face by a two-dimensional (21)) illumination intensity matrix is treated as random vaxiability. Multiple examples of the face displaying vaxying pose and expressions axe captured in different imaging conditions. The imaging environment, pose and expressions are strictly controlled and the images undergo rigorous normalisation and pre-processing. This may be implemented in a paxtially or a fully automated system. Although these systems report high classification accuracies (>90%), they lack versatility and tend to fail when deployed outside laboratory conditions. Recently, more sophisticated 3D face recognition systems haxnessing the depth information have emerged. These systems usually employ specialist equipment such as laser scanners and structured light projectors. Although more accurate than 2D optical image based recognition, these systems are equally difficult to implement in a non-co-operative environment. Existing face recognition systems, both 2D and 3D, detract from the main advantages of face recognition and fail to fully exploit its non-intrusive capacity. This is either because they rely too much on subject co-operation, which is not always available, or because they cannot cope with noisy data. The main objective of this work was to investigate the role of depth information in face recognition in a noisy environment. A stereo-based system, inspired by the human binocular vision, was devised using a pair of manually calibrated digital off-the-shelf cameras in a stereo setup to compute depth information. Depth values extracted from 2D intensity images using stereoscopy are extremely noisy, and as a result this approach for face recognition is rare. This was cofirmed by the results of our experimental work. Noise in the set of correspondences, camera calibration and triangulation led to inaccurate depth reconstruction, which in turn led to poor classifier accuracy for both 3D surface matching and 211) 2 depth maps. Recognition experiments axe performed on the Sheffield Dataset, consisting 692 images of 22 individuals with varying pose, illumination and expressions

    Statistical Models and Optimization Algorithms for High-Dimensional Computer Vision Problems

    Get PDF
    Data-driven and computational approaches are showing significant promise in solving several challenging problems in various fields such as bioinformatics, finance and many branches of engineering. In this dissertation, we explore the potential of these approaches, specifically statistical data models and optimization algorithms, for solving several challenging problems in computer vision. In doing so, we contribute to the literatures of both statistical data models and computer vision. In the context of statistical data models, we propose principled approaches for solving robust regression problems, both linear and kernel, and missing data matrix factorization problem. In computer vision, we propose statistically optimal and efficient algorithms for solving the remote face recognition and structure from motion (SfM) problems. The goal of robust regression is to estimate the functional relation between two variables from a given data set which might be contaminated with outliers. Under the reasonable assumption that there are fewer outliers than inliers in a data set, we formulate the robust linear regression problem as a sparse learning problem, which can be solved using efficient polynomial-time algorithms. We also provide sufficient conditions under which the proposed algorithms correctly solve the robust regression problem. We then extend our robust formulation to the case of kernel regression, specifically to propose a robust version for relevance vector machine (RVM) regression. Matrix factorization is used for finding a low-dimensional representation for data embedded in a high-dimensional space. Singular value decomposition is the standard algorithm for solving this problem. However, when the matrix has many missing elements this is a hard problem to solve. We formulate the missing data matrix factorization problem as a low-rank semidefinite programming problem (essentially a rank constrained SDP), which allows us to find accurate and efficient solutions for large-scale factorization problems. Face recognition from remotely acquired images is a challenging problem because of variations due to blur and illumination. Using the convolution model for blur, we show that the set of all images obtained by blurring a given image forms a convex set. We then use convex optimization techniques to find the distances between a given blurred (probe) image and the gallery images to find the best match. Further, using a low-dimensional linear subspace model for illumination variations, we extend our theory in a similar fashion to recognize blurred and poorly illuminated faces. Bundle adjustment is the final optimization step of the SfM problem where the goal is to obtain the 3-D structure of the observed scene and the camera parameters from multiple images of the scene. The traditional bundle adjustment algorithm, based on minimizing the l_2 norm of the image re-projection error, has cubic complexity in the number of unknowns. We propose an algorithm, based on minimizing the l_infinity norm of the re-projection error, that has quadratic complexity in the number of unknowns. This is achieved by reducing the large-scale optimization problem into many small scale sub-problems each of which can be solved using second-order cone programming

    Inflammatory Gene Regulatory Networks in Amnion Cells Following Cytokine Stimulation: Translational Systems Approach to Modeling Human Parturition

    Get PDF
    A majority of the studies examining the molecular regulation of human labor have been conducted using single gene approaches. While the technology to produce multi-dimensional datasets is readily available, the means for facile analysis of such data are limited. The objective of this study was to develop a systems approach to infer regulatory mechanisms governing global gene expression in cytokine-challenged cells in vitro, and to apply these methods to predict gene regulatory networks (GRNs) in intrauterine tissues during term parturition. To this end, microarray analysis was applied to human amnion mesenchymal cells (AMCs) stimulated with interleukin-1Ξ², and differentially expressed transcripts were subjected to hierarchical clustering, temporal expression profiling, and motif enrichment analysis, from which a GRN was constructed. These methods were then applied to fetal membrane specimens collected in the absence or presence of spontaneous term labor. Analysis of cytokine-responsive genes in AMCs revealed a sterile immune response signature, with promoters enriched in response elements for several inflammation-associated transcription factors. In comparison to the fetal membrane dataset, there were 34 genes commonly upregulated, many of which were part of an acute inflammation gene expression signature. Binding motifs for nuclear factor-ΞΊB were prominent in the gene interaction and regulatory networks for both datasets; however, we found little evidence to support the utilization of pathogen-associated molecular pattern (PAMP) signaling. The tissue specimens were also enriched for transcripts governed by hypoxia-inducible factor. The approach presented here provides an uncomplicated means to infer global relationships among gene clusters involved in cellular responses to labor-associated signals

    U(1) string tension

    Get PDF
    The long distance force between quarks in the U(1) approximation to quantum chromodynamics is calculated on a home made reduced instruction set computer optimized for that purpose. It is found that previous calculations were in error by as much as 85% due to contamination by the Coulomb interaction. The Coulomb constant, measured for the first time in this work, agrees with analytically obtained values

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others

    Machine learning for efficient recognition of anatomical structures and abnormalities in biomedical images

    Get PDF
    Three studies have been carried out to investigate new approaches to efficient image segmentation and anomaly detection. The first study investigates the use of deep learning in patch based segmentation. Current approaches to patch based segmentation use low level features such as the sum of squared differences between patches. We argue that better segmentation can be achieved by harnessing the power of deep neural networks. Currently these networks make extensive use of convolutional layers. However, we argue that in the context of patch based segmentation, convolutional layers have little advantage over the canonical artificial neural network architecture. This is because a patch is small, and does not need decomposition and thus will not benefit from convolution. Instead, we make use of the canonical architecture in which neurons only compute dot products, but also incorporate modern techniques of deep learning. The resulting classifier is much faster and less memory-hungry than convolution based networks. In a test application to the segmentation of hippocampus in human brain MR images, we significantly outperformed prior art with a median Dice score up to 90.98% at a near real-time speed (<1s). The second study is an investigation into mouse phenotyping, and develops a high-throughput framework to detect morphological abnormality in mouse embryo micro-CT images. Existing work in this line is centred on, either the detection of phenotype-specific features or comparative analytics. The former approach lacks generality and the latter can often fail, for example, when the abnormality is not associated with severe volume variation. Both these approaches often require image segmentation as a pre-requisite, which is very challenging when applied to embryo phenotyping. A new approach to this problem in which non-rigid registration is combined with robust principal component analysis (RPCA), is proposed. The new framework is able to efficiently perform abnormality detection in a batch of images. It is sensitive to both volumetric and non-volumetric variations, and does not require image segmentation. In a validation study, it successfully distinguished the abnormal VSD and polydactyly phenotypes from the normal, respectively, at 85.19% and 88.89% specificities, with 100% sensitivity in both cases. The third study investigates the RPCA technique in more depth. RPCA is an extension of PCA that tolerates certain levels of data distortion during feature extraction, and is able to decompose images into regular and singular components. It has previously been applied to many computer vision problems (e.g. video surveillance), attaining excellent performance. However these applications commonly rest on a critical condition: in the majority of images being processed, there is a background with very little variation. By contrast in biomedical imaging there is significant natural variation across different images, resulting from inter-subject variability and physiological movements. Non-rigid registration can go some way towards reducing this variance, but cannot eliminate it entirely. To address this problem we propose a modified framework (RPCA-P) that is able to incorporate natural variation priors and adjust outlier tolerance locally, so that voxels associated with structures of higher variability are compensated with a higher tolerance in regularity estimation. An experimental study was applied to the same mouse embryo micro-CT data, and notably improved the detection specificity to 94.12% for the VSD and 90.97% for the polydactyly, while maintaining the sensitivity at 100%.Open Acces
    • …
    corecore