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Analyzing human faces and modeling their variations have always been of

interest to the computer vision community. Face analysis based on 2D intensity im-

ages is a challenging problem, complicated by variations in pose, lighting, blur, and

non-rigid facial deformations due to facial expressions. Among the different sources

of variation, facial expressions are of interest as important channels of non-verbal

communication. Facial expression analysis is also affected by changes in view-point

and inter-subject variations in performing different expressions. This dissertation

makes an attempt to address some of the challenges involved in developing robust

algorithms for face and facial expression recognition by exploiting the idea of proper

subspace representations for data.

Variations in the visual appearance of an object mostly arise due to changes

in illumination and pose. So we first present a video-based sequential algorithm for

estimating the face albedo as an illumination-insensitive signature for face recogni-

tion. We show that by knowing/estimating the pose of the face at each frame of a

sequence, the albedo can be efficiently estimated using a Kalman filter. Then we



extend this to the case of unknown pose by simultaneously tracking the pose as well

as updating the albedo through an efficient Bayesian inference method performed

using a Rao-Blackwellized particle filter.

Since understanding the effects of blur, especially motion blur, is an important

problem in unconstrained visual analysis, we then propose a blur-robust recogni-

tion algorithm for faces with spatially varying blur. We model a blurred face as a

weighted average of geometrically transformed instances of its clean face. We then

build a matrix, for each gallery face, whose column space spans the space of all

the motion blurred images obtained from the clean face. This matrix representa-

tion is then used to define a proper objective function and perform blur-robust face

recognition.

To develop robust and generalizable models for expression analysis one needs

to break the dependence of the models on the choice of the coordinate frame of

the camera. To this end, we build models for expressions on the affine shape-space

(Grassmann manifold), as an approximation to the projective shape-space, by using

a Riemannian interpretation of deformations that facial expressions cause on differ-

ent parts of the face. This representation enables us to perform various expression

analysis and recognition algorithms without the need for pose normalization as a

preprocessing step.

There is a large degree of inter-subject variations in performing various ex-

pressions. This poses an important challenge on developing robust facial expression

recognition algorithms. To address this challenge, we propose a dictionary-based ap-

proach for facial expression analysis by decomposing expressions in terms of action



units (AUs). First, we construct an AU-dictionary using domain experts’ knowledge

of AUs. To incorporate the high-level knowledge regarding expression decomposi-

tion and AUs, we then perform structure-preserving sparse coding by imposing two

layers of grouping over AU-dictionary atoms as well as over the test image ma-

trix columns. We use the computed sparse code matrix for each expressive face to

perform expression decomposition and recognition.

Most of the existing methods for the recognition of faces and expressions

consider either the expression-invariant face recognition problem or the identity-

independent facial expression recognition problem. We propose joint face and facial

expression recognition using a dictionary-based component separation algorithm

(DCS). In this approach, the given expressive face is viewed as a superposition of a

neutral face component with a facial expression component, which is sparse with re-

spect to the whole image. This assumption leads to a dictionary-based component

separation algorithm, which benefits from the idea of sparsity and morphological

diversity. The DCS algorithm uses the data-driven dictionaries to decompose an

expressive test face into its constituent components. The sparse codes we obtain as

a result of this decomposition are then used for joint face and expression recognition.
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Chapter 1: Introduction

Two important problems that computer vision researchers have been dealing

with are object and action recognition. Effective solutions to these problems can

have a wide range of applications including human-computer interaction (HCI), vi-

sual surveillance, video editing, search, retrieval and indexing. Previous works have

demonstrated the challenges involved in solving these problems due to object and

camera motion, variations in expression, posture, motion and clothing, illumination

variations, blur effects and occlusion. These challenges motivate the need for robust

algorithms for object and action recognition.

Human faces are arguably the most extensively studied object in computer vi-

sion. This is partly due to the remarkable face recognition capability of the human

visual system and partly due to numerous important applications for automatic face

recognition technologies. In addition, technical issues associated with face recogni-

tion are representative of object recognition problem in general. Face analysis based

on 2D intensity images requires accounting for various sources of variation due to

changes in illumination, view point, as well as blur on the face and non-rigid facial

deformations. Therefore, it is necessary to have proper models for these changes

which requires understanding the sources that contribute to the variations and the
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ways in which they interact with the faces. Robust face recognition vastly benefits

from such model-based approaches.

The actions related to the human faces are facial expressions which are im-

portant channels of non-verbal communications. Facial expression analysis refers to

algorithms that attempt to automatically analyze and recognize facial motions and

facial feature changes from visual information. It has been an active research topic

for behavioral scientists since the work of Darwin in 1872 [9]. The facial changes

can be either identified as facial action units, proposed by Ekman et al. [10], or

prototypic emotional expressions (e.g. Happy, Sad, Surprise, Disgust, Fear and

Anger).

Facial expression analysis is also affected by changes in view-point and inter-

subject variations in performing different expressions. Therefore, developing robust

algorithms for expression recognition is of interest. Depending on the facial feature

extraction methods as well as the types of input data (2D or 3D), the effects of

these variations are different and they can be eliminated using different approaches.

For example, the effect of in-plane face rotation and different scales of the faces can

be eliminated by face normalization before extracting features or by proper feature

representation before attempting expression recognition.

In order to develop recognition algorithms, we often make some simplifying

assumptions for the image-formation process such as the Lambertian reflectance

model and convexity assumptions for face, an affine model for the variations due to

pose changes or the convolutional model for the blurred images etc. These assump-

tions lead to constraints on the set of features thus obtained which usually cause
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the features to lie on particular subspaces or a manifold. Therefore once the under-

lying assumptions and constraints are well understood, the next important step is

to design recognition algorithms that are consistent with the algebra and geometry

of the constraint set.

This dissertation makes an attempt to address some of the object and action

recognition challenges by exploiting the idea of proper subspace representations for

data. Our endeavor in this direction had been focused on the following problems.

1.1 Joint Video-based Albedo Estimation and Pose Tracking from

Video

The albedo of a Lambertian object is a surface property that contributes to

an object’s appearance under changing illumination. As a signature independent of

illumination, the albedo is useful for object recognition. Single image-based albedo

estimation algorithms suffer due to shadows and non-Lambertian effects of the im-

age. In this dissertation, we propose a sequential algorithm to estimate the albedo

from a sequence of images of a known 3D object in varying poses and illumination

conditions. We first show that by knowing/estimating the pose of the object at each

frame of a sequence, the object’s albedo can be efficiently estimated using a Kalman

filter. We then extend this for the case of unknown pose by simultaneously tracking

the pose as well as updating the albedo through a Rao-Blackwellized particle filter.

More specifically, the albedo is marginalized from the posterior distribution and esti-

mated analytically using the Kalman filter, while the pose parameters are estimated

3



using importance sampling and by minimizing the projection error of the face onto

its spherical harmonic subspace, which results in an illumination-insensitive pose

tracking algorithm.

1.2 Spatially Varying Blur Descriptor for Robust Face Recognition

Understanding the effect of blur is an important problem in unconstrained

visual analysis. Especially, with the increase in the usage of hand-held cameras,

which usually generate images with lots of motion blur, the problem of blur-robust

face recognition has become more and more important. While most of the existing

methods use the convolutional model with a blur kernel to describe the process of

forming a blurred image from a clean image, it is known that blur due to camera

shake is significantly non-uniform across the image. In this dissertation, we propose

a blur-robust face recognition algorithm for images with space-variant blur. By

modeling a blurred face as a weighted average of geometrically transformed instances

of its clean face, we build a matrix, for each gallery face, whose column space spans

the space of all the motion blurred images obtained from the clean face. Considering

the sparse representation of the blurred face in this space, we optimize a proper

energy function with l1 constraint on the coefficients to obtain the sparse coefficients

as well as the identity of the face. We use a proper multiscale implementation to

make the process efficient in terms of both computations and memory requirements.
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1.3 Towards View-Invariant Expression Analysis Using Analytic Shape

Manifolds

To develop robust and generalizable models for expression analysis one needs

to break the dependence of the models on the choice of the coordinate frame of the

camera, i.e. expression models should generalize across facial poses. To perform

this systematically, one needs to understand the space of observed images subject

to projective transformations. However, since the projective shape-space is cumber-

some to work with, we address this problem by deriving models for expressions on

the affine shape-space as an approximation to the projective shape-space by using a

Riemannian interpretation of deformations that facial expressions cause in different

parts of the face. We use landmark configurations to represent facial deformations

and exploit the fact that the affine shape-space can be studied using the Grassmann

manifold. This representation enables us to perform various expression analysis and

recognition algorithms without the need for normalization as a preprocessing step.

1.4 Structure-Preserving Sparse Decomposition for Facial Expression

Analysis

Although facial expressions can be decomposed in terms of action units (AUs)

as suggested by the Facial Action Coding System (FACS), there have been only

a few attempts that recognize expression using AUs and their composition rules.

We propose a dictionary-based approach for facial expression analysis by decom-
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posing expressions in terms of AUs. First, we construct an AU-dictionary using

domain experts’ knowledge of AUs. To incorporate the high-level knowledge re-

garding expression decomposition and AUs, we then perform structure-preserving

sparse coding by imposing two layers of grouping over AU-dictionary atoms as well

as over the test image matrix columns. We use the computed sparse code ma-

trix for each expressive face to perform expression decomposition and recognition.

Since domain experts’ knowledge may not always be available for constructing an

AU-dictionary, we also propose a structure-preserving dictionary learning algorithm

which we use to learn a structured dictionary as well as divide expressive faces into

several semantic regions.

1.5 Component-based Recognition of Faces and Facial Expressions

Most of the existing methods for the recognition of faces and expressions

consider either the expression-invariant face recognition problem or the identity-

independent facial expression recognition problem. We propose a joint face and

facial expression recognition algorithm using a dictionary-based component sepa-

ration algorithm (DCS). In this approach, the given expressive face is viewed as a

superposition of a neutral face component with a facial expression component which

is sparse with respect to the whole image. This assumption leads to a dictionary-

based component separation algorithm which benefits from the idea of sparsity and

morphological diversity. This entails building data-driven dictionaries for neutral

and expressive components. The DCS algorithm then uses these dictionaries to de-
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compose an expressive test face into its constituent components. The sparse codes

we obtain as a result of this decomposition are then used for joint face and expression

recognition.

1.6 Organization of the Dissertation

In Chapter 2, we discuss our algorithm for joint video-based albedo estimation

and illumination-invariant head pose tracking. Chapter 3 describes the proposed

blur-robust face recognition algorithm for the cases that we have spatially vary-

ing blur due to camera motion. Chapter 4 discusses a step towards view-invariant

expression recognition using analytic shape manifolds and shows its potential for

further extension. In Chapter 5, we propose a dictionary-based approach for facial

expression analysis which is based on structure-preserving dictionary learning algo-

rithm. In Chapter 6, a joint face and facial expression recognition algorithm using

a dictionary-based component separation algorithm (DCS) is presented. Chapter 7

discusses the directions for future work.

7



Chapter 2: Joint Video-based Albedo Estimation and Pose Tracking

from Video

2.1 Introduction

Variations in the visual appearance of an object mostly arise due to changes in

illumination and pose [11]. Therefore, understanding the interaction of the objects’

surface with irradiated light (illumination) and subsequent imaging with a camera

(pose) is important for a wide range of computer vision applications. When a surface

exhibits Lambertian reflectance, an illumination-insensitive property of the surface

is the albedo which is a surface reflectance property that contributes to the object’s

appearance under changing illumination.

Estimating the reflectance properties of human faces has been of interest for

decades [1, 2, 12–16]. But the proposed algorithms and assumptions underlying the

development of algorithms are application dependent. Although faces are neither

exactly Lambertian nor entirely convex, many algorithms make convex Lambertian

assumption for the face. Such assumptions are reasonable for applications where

the goal is to find a signature that is independent of illumination for representing

and recognizing faces across illumination variations [1,17–19] and not to analyze the
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Figure 2.1: Benefit of albedo estimation using multiple images. Two views of a face
are shown as input images in the left and right columns and their corresponding
albedos are estimated using [1]. The albedo maps shown in the right and left columns
are noisy and partly based on the mean albedo. The middle column shows the
improved estimated albedo map using both views of the face.

reflectance field of the face or to render a face [20,21]. In this work, we also make the

convex Lambertian assumption for faces and explore a robust and computationally

efficient method for recovering the albedo of a known 3D facial surface1 from multiple

images or a video. While the discussion of this chapter is mainly on estimating

the albedo of human face, the proposed algorithm can be applied to generic objects

under Lambertian reflectance assumption. However, since we do not explicitly model

nonrigid deformations, the objects either should be rigid or only have small nonrigid

deformations.

Much of the progress in facial albedo estimation has been achieved using a

single image of the object under unknown lighting conditions. However, most of the

existing approaches are based on restrictive assumptions on objects and illumina-

tion conditions, [1, 2], or are computationally intense due to iterative optimization

procedures used for obtaining the solution, [22]. On the other hand, the ability to

handle multiple images goes a long way in overcoming the shortcomings of single

image-based algorithms due to its inherent advantage of having more information

1An average 3D face model is used.
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(see Fig. 2.1 for a motivating example).

Multiple image-based algorithms mostly process the data in the batch mode

[15,23–27]. However, recursive processing of a set of images is important especially

when a video is being processed. Hence our main focus is on recursive estimation

of albedo from multiple frames in a video. Since the presence of multiple images

comes with the possibility of additional variations (e.g. in the pose), efficient fusion

of available information over the images is important as it leads to a more accu-

rate and robust estimate of albedo. The goal of this work is recursive/sequential

albedo estimation for improved pose tracking and recognition of faces modeled as

Lambertian objects.

For a Lambertian object in a known pose and illumination, the observed image

is linear in its albedo. This allows us to formulate the problem of multi-view albedo

estimation as one of Kalman filtering. In particular, the unknown albedo is defined

as the static state vector of the Kalman filter. However, since the pose of the face

is usually unknown, the albedo estimation step is coupled with a pose tracking step

to realize a joint albedo and pose estimation algorithm. We set this problem in a

Bayesian inference framework and efficiently solve it using a Rao-Blackwellized par-

ticle filter. This allows us to perform efficient analytical inference using a Kalman

filter over the albedo state-space and computationally intensive inference using par-

ticle filters over a smaller state-space encompassing just the pose parameters.

The joint tracking and albedo estimation approach allows us to incorporate

illumination-insensitivity into a tracking algorithm. This is achieved by defining the

particle weights using the projection error onto the spherical harmonic subspace of
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the current observation. We demonstrate the computational and numerical advan-

tages as well as the limitations of our algorithm using several experiments.

It is worth pointing out that the problem studied in this chapter has close

connections to the photometric stereo problem. Specifically, photometric stereo

[28] refers to surface reconstruction of a static scene from multiple images taken

under varying illumination. Under appropriate reflectance model (Lambertian [12],

specular [29]), the image intensities at each pixel can be expressed in terms of

unknown surface parameters (typically, the surface normal) and illumination. This

static scene assumption obviates the need for accurate registration, and in many

cases, surface estimates can be individually obtained at each pixel. As a result,

photometric stereo and its variants (which includes structured lighting) are among

the most precise methods for accurate shape recovery. In this chapter, we consider

the scenario of a non-static scene under changing illumination. While this puts us

beyond the traditional setup of photometric stereo, some of the core concepts in

photometric stereo are highly relevant to our problem formulation and solution.

Contributions: In this chapter we address joint video-based albedo estima-

tion and illumination-insensitive pose tracking. Our contributions are as follows:

• When the pose of the object is known, we propose an efficient video-based

sequential albedo estimation using the Kalman filter.

• When the pose of the object is unknown, we show that pose and albedo esti-

mation of an object from a video sequence can be performed using a compu-

tationally efficient Rao-Blackwellized particle filter.
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• Finally, we propose an approach that eliminates the need for recalculating the

spherical harmonic bases at each pose by exploiting the physical properties

inherent to Lambertian objects.

Outline of the chapter: We discuss related work in Section 2.2. The problem

of albedo estimation is addressed in Section 2.3. Subsequently, a Rao-Blackwellized

particle filter is proposed in Section 2.4 for joint pose tracking and albedo estimation.

Experimental results are presented in Section 2.5.

2.2 Related Work

In this section, we review some previous efforts undertaken for recovering the

albedo of an object from an intensity image or a sequence of images/video of an

object in different poses and illuminations. Since pose estimation is required for

video-based albedo recovery, we also discuss some related work on illumination-

insensitive pose tracking.

2.2.1 Albedo estimation

Estimating the facial albedo and the surface shape, as intrinsic factors perti-

nent to establishing facial identity, has been the focus of computer vision researchers

for a long time. While significant efforts have been made to reduce the impact of

extrinsic factors such as illumination and pose, the underlying problems still per-

sist and are difficult to solve. We categorize the existing approaches into single

image-based and multiple image-based approaches.
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Single image-based approaches: Estimating the albedo, illumination di-

rection and surface normals given a single intensity image is inherently ill-posed.

Two approaches, namely shape-from-shading (SFS) approaches and model-based

approaches, have been employed to make the problem more tractable.

Shape-from-shading approaches for object shape and albedo estimation make

simplifying assumptions such as constant or piecewise constant albedo and known

illumination direction [12,13]. These assumptions are not valid for many real objects

and limit the practical applicability of these algorithms. Other SFS algorithms

reduce the intractability of general albedo maps and surface normal estimation by

using appropriate domain specific constraints, such as symmetry [30], or employing

a statistical model for the shape [31–33]. In most of these approaches the main

goal is shape estimation and albedo is incorporated to completely specify the image

formation process.

The Retinex algorithm [34, 35] is one of the first approaches to estimating

the lightness of surfaces. This algorithm uses a simplified model of intrinsic image

statistics and makes the assumption that image derivatives with a large magnitude

are caused by changes in the albedo of the surface, while derivatives with a small

magnitude are caused by changes in illumination. Under this model, a shading image

can be constructed by calculating the derivatives of the observed image, eliminating

derivatives with a large magnitude, then reconstructing the image. However, this

simple characterization of shading does not hold for many surfaces and this is the

main disadvantage of this algorithm as noted in [36].

Model-based approaches, on the other hand, use the statistical knowledge
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of the 3D object model which regularizes this problem significantly [2, 37]. Blanz

et al. [37] recovered the shape and albedo parameters of a 3D morphable model

(3DMM) in an analysis-by-synthesis fashion. In order to handle more general light-

ing conditions, Zhang et al. [2] integrated the spherical harmonic illumination repre-

sentation [11, 17] into the 3DMM approach, by modeling the texture component of

the face using spherical harmonic bases. They proposed a feature point-based shape

recovery algorithm followed by iterative estimation of albedo and illumination coef-

ficients. However, their method can not handle the harsh lighting conditions due to

the limited information that can be extracted from a single image.

To address this problem, Wang et al. [22, 38] proposed an optimization algo-

rithm for albedo estimation which is robust to harsh illumination conditions and

partial occlusion. By decoupling texture, geometry and illumination and modeling

them separately they handle challenging conditions such as cast shadows and satu-

rated regions. Their algorithm works by optimizing the energy function of a Markov

Random field over albedo, shape and light resulting in a computationally expensive

algorithm that may converge to a local optimum solution.

Biswas et al. [1, 39] proposed a stochastic filtering framework for albedo es-

timation for a frontal face as well as a face with unknown pose. They explicitly

accounted for the error in the estimate of surface normals, illumination coefficients

and pose to improve the albedo estimate. In their framework, the albedo estimate

for pixels corrupted with a large noise is mainly based on the prior albedo and as a

consequence it leads to unreliable estimation in noisy situations. Figure 2.1 shows

the albedo estimated using their algorithm on two poorly illuminated faces of a sub-
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ject. Each face by itself gives a poor estimate of the albedo, which is partly based

on the mean albedo. However, estimating the albedo by fusing the information from

both images leads to a much more accurate albedo map. This motivates the problem

of multi-image or video-based albedo estimation.

Multiple image-based approaches: When an object rotates in front of a

camera under distant and varying illumination, the appearance of the object changes

both geometrically and photometrically. These changes provide clues to both shape

and albedo of the object. Most of the approaches in this category combine multi-

view stereo with photometric stereo to find correspondences across views and subse-

quently estimate the shape and albedo of the object [15,23–27]. But these algorithms

operate in a batch processing mode and are computationally demanding [15].

Zhou et al. [14] proposed a factorization-based approach to fully recover the

albedo and surface normal by imposing a rank, integrability and face symmetry con-

straints. But the important limitation of this algorithm as well as other multi-image

based approaches is that they process all the images in a batch mode. However, it

is necessary to develop algorithms that can work in the sequential mode and fuse

the estimated parameters in previous frames with the newly available data while

accounting for the various sources of error.

Non-Lambertian face modeling: As discussed earlier, the Lambertian as-

sumption for faces is valid depending on the application. Recognizing faces across

illumination variations using the albedo of the face as a signature independent of

illumination has shown promising results [1,39]. On the other hand, there are other
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approaches that propose non-Lambertian models for analyzing the apparent bidirec-

tional reflectance distribution function (BRDF) of the face [20,40]. While these non-

Lambertian models are appropriate for computing photo-realistic facial animations

as well as face relighting, they only bring slight improvements for face recognition

as compared to the results obtained by making the Lambertian assumption [20].

2.2.2 Illumination-insensitive Pose Tracking

An important challenge in video-based albedo estimation is to find the pose

of the face at each frame. Since albedo estimation is often coupled with a 3D

shape model, a pose tracking algorithm is required to obtain the 3D configuration

of the face at each frame. Several methods have been proposed for 3D face tracking,

[16,41–44], however, they are often sensitive to illumination variations.

Cascia et al. [43] formulated the tracking problem as an image registration

problem in the cylinder’s texture map image. To account for lighting variations,

they modeled the residual error of registration as a linear combination of texture

warping templates and orthogonal illumination templates. Marks et al. [44] proposed

a generative model and stochastic filtering algorithm for 3D nonrigid object tracking

with the aim of addressing the inefficiencies of template matching and optical flow-

based algorithms. They combined the advantages of template matching and flow-

based algorithms and performed the joint inference of 3D position, orientation and

nonrigid deformations.

Xu and Roy-Chowdhury [16] proposed a bilinear space of motion and illumi-
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nation in which they estimated the pose and illumination parameters by iterative

optimization. They assumed that the illumination in the first frame is uniform and

hence the intensity can be used as an estimate of the albedo. This assumption nar-

rows down the domain of videos on which the algorithm can successfully perform

tracking. Although explicit illumination modeling makes the tracking algorithm

reasonably robust to illumination variations, their algorithm does not adequately

model the albedo while tracking the face. The readers are referred to [45] for more

detailed discussions on pose tracking.

2.3 Video-based Albedo Estimation

The key idea behind the sequential albedo estimation framework proposed in

this chapter revolves around the linear relationship between the image observation

and albedo. Under the Lambertian assumption for the face, the intensity reflected

by a point pi on the face, with the surface normal ni and the albedo ρi, due to the

lighting function l coming from direction ul is modeled as:

I(pi) = Ii = ρi

∫
l(ul) max(ni.ul, 0)dul (2.1)

Lambert’s cosine law is non-linear due to max(n.ul, 0) which accounts for the

formation of attached shadows. However, in a seminal work, Basri and Jacobs [17]

showed that images of a face (specifically, any convex Lambertian object) under

varying illumination are closely approximated by a 9-dimensional (linear) subspace

using a spherical harmonic decomposition. Let ynm be the spherical harmonic basis
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of order n and degree m. Note that spherical harmonic bases are functionals on a

sphere, i.e, ynm : S2 7→ R. For the rest of the chapter, we parametrize S2 using unit

norm vectors in R3. Any arbitrary lighting function l over a scene can be described

as a function in S2 if the light sources are at infinity (or in practice, sufficiently far

away). In such a case, the lighting function l can be described using the spherical

harmonic bases as,

l(ul) =
∞∑
n=0

n∑
m=−n

lnmynm(ul) (2.2)

Basri and Jacobs also showed that the Lambertian kernel, max(n.ul, 0), acts

as a smoothing filter on the light source, and the image of the object produced in

that lighting condition depends heavily on the lower order spherical harmonic basis

elements. Therefore the generated image can be well approximated using just the

first 9 basis elements as,

Ii ≈ ρi

2∑
n=0

n∑
m=−n

lnmαnynm(ni) (2.3)

= ρi

2∑
n=0

n∑
m=−n

lnmYnm(ni)

where {αn} are the coefficients of the spherical harmonic expansion of the Lam-

bertian kernel. For a given object of d pixels described using a set of albedos

{ρi} and normal vectors {ni}, we can now construct the so called spherical har-

monic basis images (SHBI) {Ynm ∈ Rd|n = 0, 1, 2;m = −n, . . . , n} such that

Ynm = {Ynm(ni)} = (αnynm(n1), αnynm(n2), . . . , αnynm(nd))
T .

Using (2.3), the intensity observed at the ith pixel of the face with a known
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pose and illumination is written as

Ii = ρiY
T (ni)L+ νi, (2.4)

where Y (ni) = (Y00 (ni), . . . , Y22(ni))
T ∈ R9 encodes the pose using spherical har-

monic basis values at that pixel and L = (l00, . . . , l22)T ∈ R9 encodes the lighting

positions. Moreover, the observation noise, ν = N (0,Σv), is defined to have a

multivariate Gaussian distribution and it models the surface deviation from the

Lambertian assumption (specularity, cast shadow, and saturated pixels). Then, the

intensity vector for the whole face can be expressed as,

I = diag(ρ)YL+ ν, (2.5)

where ρ = (ρ1, . . . , ρd)
T ∈ Rd and the d× 9 matrix Y = [Y00, . . . ,Y22] encodes the

spherical harmonic basis images. Here, the subject intrinsic matrix B = [diag(ρ)Y]

defines an illumination-insensitive subspace of all images of the face under arbitrary

illuminations. Given an observation I, we can use the projection error onto this

subspace to define an observation model that is illumination-insensitive as well.

For a video of the face where the pose is known, the albedo can be optimally

updated over time using the Kalman filter. However before describing the Kalman

filter framework for albedo estimation, we discuss how we can avoid recalculating

the spherical harmonic basis images at each frame which makes the algorithm com-

putationally efficient.
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2.3.1 Head Orientation vs. Illumination Direction

Representation of the face in (2.3) relates the 3D structure of the face, the

illumination direction and the face albedo to the generated image. This representa-

tion is suited for situations where the pose is fixed and only the illumination varies.

However, when the pose changes in a video, the basis images {Ynm} differ from

frame to frame as the normal vectors associated with a point of the face change due

to rotation. Therefore, to estimate albedo, we need to recalculate the basis images

at each frame which is computationally inefficient. Xu and Roy-Chowdhury [16]

addressed this problem by proposing a bilinear subspace formulation for joint illu-

mination and motion. They combined the effects of motion, illumination and 3D

structure in generating a sequence of images. But their approach still requires com-

puting the bilinear bases at each frame which is time consuming. Here, we resolve

this problem by exploiting a property of Lambert’s law.

For Lambertian objects, the apparent intensity of a surface patch to an ob-

server depends on the angle between its surface normal, ni, and the incident illu-

mination direction, ul, and is independent of each of these directions separately.

Rotation of the face changes the direction of ni, which leads to change of angle

between ni and ul and change of intensity at pi as a result. But the same change

in 〈ni.ul〉 is obtained if we keep ni fixed and rotate the illumination source by the

same magnitude and about the same axis, but in the opposite direction.

When the face is rotated by R, while the illumination is fixed, the intensity of

20



the point pi changes as

IR(pi) = ρi
∑
n

∑
m

lnmYnm(R(ni)) (2.6)

where {Ynm(R(ni))} are the basis values in the new pose. Recalculating the basis

images for each new pose is computationally expensive. On the other hand, the

rotation of spherical harmonics using the transformation matrix D(R) has been

studied in [11,46,47]. Using this idea and (2.6), the intensity of the point pi can be

written as

IR(pi) = ρi
∑
n

∑
m

lnm
∑
m′

Dn
mm′(R)Ynm′(ni) (2.7)

= ρiL
T (D(R)Y (ni)) = ρiY (ni)

T (DT (R)L)

where D is the 9×9 spherical harmonics transformation matrix [46]. This expresses

the new intensity at pi in terms of original harmonic basis values, Y (ni) and the

transformed illumination coefficients. As this equation suggests, the illumination

coefficients should be transformed by DT , which is the inverse of matrix D, to

compensate for the head rotation. It should be noted that transforming the 9-

dimensional illumination coefficients is more robust than rotating the whole 9 × d

harmonic basis matrix. Moreover, this is justified by the Lambertian property, as

discussed before.

We can now use the same basis images, {Ynm}, for representing the face

throughout the image sequence and only compute the new illumination coefficients

21



Figure 2.2: (left) Head rotation in front of a fixed illumination source can be
replaced by (right) the illumination source rotation in opposite direction around
the fixed face along with visibility modeling. As a consequence of the physical
properties inherent to Lambertian objects, these two configurations result in the
same observed intensities on the face.

for each new pose/frame. In this way we avoid recalculating the SHBI at each frame

which makes the computation much faster and efficient. However, it should be noted

that since rotation of the face makes some pixels disappear, a visibility test needs to

be applied in order to remove the non-visible pixels from the current view. Since we

have a 3D model for the face, visibility issues are solved easily. Figure 2.2 illustrates

the idea proposed in this section.

2.3.2 Shape estimation

We calculate the 3D morphable shape model [48] by convex combinations of

the shapes of m training examples in the Vetter dataset [49] followed by principal

component analysis (PCA) as s = s̄+Sa. The columns of S are the most significant

eigenvectors si rescaled by their standard deviation and the coefficient a constitutes

a pose-insensitive low-dimensional coding of a face. We can either use the mean

shape, s̄, throughout the process or compute a more accurate estimate of the 3D

shape using the approach presented in [2].

Registering the 3D shape model to the face in the first frame can be performed
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Figure 2.3: (left to right) Fifteen manually picked landmarks on the face, and the
rendered 3D face in different views after registering the 3D model to the given face.

using the method proposed by Zhang et. al [2]. For a set of pre-selected feature

points on the morphable model, we find the corresponding landmarks, simg, on the

first frame of the test video2. We set the initial coefficient a0 to zero and register the

average shape, s̄, to the first frame using the algorithm proposed by [50]. This gives

us the initial rotation, translation and scale parameters. We define the shape error

at feature points as the difference between simg and the new shape information of

feature points in the model that was rendered by the recovered projection param-

eters. Then the vector of shape parameters, a, can be updated using the method

proposed in [2]. We iterate through the shape parameter updating procedure until

the amount of update falls below a threshold. Then the final shape parameters are

used to get the face 3D shape model. This estimated shape model is used through-

out the frames. Figure 2.3 shows a sample of the face with landmarks on it along

with the registered shape with the face texture warped on it.

2We picked fifteen landmarks manually on the face in the first frame, but it can also be performed
automatically using face and facial component detection method
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2.3.3 Albedo Estimation using the Kalman Filter

As mentioned earlier, there are many single image-based algorithms for robust

albedo estimation. However, to obtain an accurate estimate of the albedo from

a sequence of images (sequential mode), estimates from individual images must

be fused. We use the Kalman filter to fuse the information over time. Though

the Kalman filter was originally designed to estimate the state of a time-varying

system, it can be used on static processes as well. There are many instances where

the Kalman filter has been used in this fashion [51,52]. In fact, the classic textbook

by Maybeck [53] introduces the Kalman filter using a static example. It should

be noted that when we apply the Kalman filter to a static process like the albedo

map, the state transition model is given as ρt = ρt−1 and it is noiseless. We use

the Kalman filter to sequentially update the albedo as more information becomes

available over time. In such cases, as more observations are introduced, the albedo

estimate converges to the true value.

The problem of video-based albedo estimation in a sequential mode can be

formulated as follows. Given the estimate of albedo at frame/time t−1 characterized

by its mean and covariance matrix, {µρ,t−1,Σρ,t−1}, we want to update the posterior

probability of the albedo P (ρ|Z t,Θ) as a new frame Zt becomes available. Here,

Zt is the frame at time t, and Z t = {Z1, ..., Zt}. The parameter Θ = {θ1, . . . , θt},

where θt denotes the surface pose at time t and, for now, is assumed to be known.

Knowing this pose parameter, θt, an inverse warp of the 3D model of the face onto

the image Zt gives us a registered observation at time t as a d-dimensional intensity

24



vector, It = It(Zt, θt). Note that, we use a point-cloud model consisting of d points,

each with a known normal ni and an unknown albedo ρi.

Using Bayes’ theorem, the posterior probability of the albedo can be sequen-

tially updated as follows

P (ρ|Z t,Θ) ∝ P (Zt|ρ,Z t−1,Θ)P (ρ|Z t−1,Θ) (2.8)

where the posterior probability at time t− 1, P (ρ|Z t−1,Θ), acts as the prior proba-

bility at time t to recursively update P (ρ|Z t,Θ). From (2.5), the likelihood function

P (Zt|ρ,Z t−1,Θ) can be written as

P (Zt|ρ,Z t−1,Θ) = P (It|ρ,Z t−1,Θ) = N (It|Htρ,Σv,t)

where the observation matrix, Ht = diag(ht), is a d×d diagonal matrix with entries

hti = Y T (ni)Lt defined for the ith pixel of the face. The illumination vector, Lt,

is approximated at each frame using the albedo estimates from previous frames.

Finally, the posterior estimate for the albedo at t is given by the following Kalman

filter update equations:

µρ,t = µρ,t−1 +Kt(It −Htµρ,t−1) (2.9)

Σρ,t = (I−Kt)Σρ,t−1 (2.10)

where I is the identity matrix of size d and the Kalman gain Kt is defined as
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Kt = Σρ,t−1(Σρ,t−1 + Σv,t)
−1.

Here, the prior albedo values (for faces), {µρ,0,Σρ,0}, are estimated as the

mean and covariance of the available training data in the Vetter dataset. Moreover,

the initial observation noise covariance matrix, Σv,0, is learned using the training

data when for each face the mean shape and mean albedo are used. We ignore the

correlation among nearby pixels by defining Σρ, Σv and therefore the Kalman gain,

K, to be diagonal matrices. However, it should be noted that non-diagonal matrices

can be used without significantly changing the fusion algorithm.

In order to make the albedo estimate robust against noisy pixels which are due

to deviations from the Lambertian assumption, we update the observation noise

covariance matrix, Σv,t, at each frame by assigning a very large value to those

entries (corresponding to the pixels) whose observed intensities are above an upper

threshold or below a lower threshold as well as to non-visible pixels. In this way

we avoid the saturated pixels, pixels in cast shadows, pixels with specularity and

occluded regions to affect the estimated value of the albedo.

As more knowledge about the albedo becomes available through new observa-

tions, the uncertainty in the static parameter ρ is updated. Equation (2.10) shows

that the error covariance of the estimated ρ decreases over time (Kt’s components

are ≤ 1) and since the Kalman filter at each frame gives an unbiased MMSE esti-

mate of ρ, a decrease in the error covariance indicates improvement in the estimated

parameter over the time. In the ideal case where each pixel’s intensity satisfies the

Lambertian property in some frames over the sequence (i.e. not counting saturation

or shadows), Kt and Σρ,t converge to zero and the final albedo estimate, µρ, remains
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1 4 10 14 21

Figure 2.4: The first row shows some frames of a synthetic sequence obtained from
the PIE illumination dataset. The estimated albedo maps using faces up to these
frames are shown along with their corresponding Kalman gains in the second and
third row, respectively. Shown below the third row are the frame numbers. Note
how the Kalman gain converges to zero when all parts of the face gets well lit.

unchanged.

Figure 2.4 shows the result of applying the Kalman filter for sequential albedo

estimation on a synthetic sequence. In this sequence, the head pose is fixed so as

to focus on the performance of the Kalman filter for updating the state of a static

parameter. It should be noted that while for a multiple image problem in which the

pose is fixed (and so the correspondences are known) batch processing algorithms

such as photometric stereo can be applied to get an accurate estimate of the object

shape and albedo, our emphasis is on developing a sequential approach.

Figure 2.4 shows some frames of a sequence synthesized using the PIE illu-

mination images [54]. The sequence starts with a face under harsh illumination

conditions and then the light source rotates in front of the face. The figure also

shows the albedo map estimated for the face up to each frame along with the cor-
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responding Kalman gain, Kt, at each frame. The Kalman gain images show how

the algorithm assigns large weights to informative pixels in the current frame and

reduces the weights of badly illuminated pixels as well as pixels that violate the

Lambertian assumption. As the algorithm proceeds through the frames, the albedo

estimate improves and finally stabilizes as Kt goes to zero.

2.4 Pose Tracking and Albedo Estimation

When the pose of the face is unknown, analytical inference of the albedo can

still be done when the albedo posterior probability is conditioned by the head pose.

This observation motivates the use of the Rao-Blackwellized particle filter (RBPF).

Rao-Blackwellization of a particle filter involves splitting the state variables into two

sets, such that analytical inference is possible on one set conditioned on the other

[55]. Rao-Blackwellization leads to more accurate estimates of state parameters

with fewer particles. It has been applied to various problems such as joint rigid and

non-rigid face tracking [44] and joint face tracking and head pose estimation [55].

We characterize the head pose as a function of rotation and translation of the

head, where the rotation and translation are described using 3-dimensional vectors

r = {r1, r2, r3} and t = {t1, t2, t3}, respectively. Using a 3D shape model registered

to the face in the first frame, the goal is to obtain a trajectory of the pose parameter

evolution θt = {r, t}t, over the frames as well as an estimate for albedo. To this end,

at each time instant t, the RBPF uses the hybrid particle set {θ(i)
t , w

(i)
t , µ

(i)
ρ,t,Σ

(i)
ρ,t} to

approximate the posterior P (θt, ρ|Z t) over the joint state vector St = {θt, ρ}. Here

28



{θ(i)
t , w

(i)
t } approximate the posterior of pose parameters, P (θt|Z t), and {µ(i)

ρ,t,Σ
(i)
ρ,t}

form the analytical estimate (in terms of the mean and covariance of a Gaussian

density) of the albedo associated with each pose particle, θ
(i)
t , obtained using the

Kalman filter described in Section 2.3.3. The posterior distribution P (θt, ρ|Z t) can

be written as,

P (θt, ρ|Z t) ∝ P (Zt|θt, ρ)× (2.11)∫
θt−1

∫
µρ,t−1

P (θt, ρ|θt−1, µρ,t−1)P (θt−1, µρ,t−1|Z t−1)

By integrating out the albedo part of the state vector, we obtain a marginal filter

for pose parameter, θt, as follows,

P (θt|Z t) ∝
∫
ρ

P (Zt|θt, ρ)× (2.12)∫
θt−1

∫
µρ,t−1

P (θt, ρ|θt−1, µρ,t−1)P (θt−1, µρ,t−1|Z t−1)

Here, the posterior P (θt−1, µρ,t−1|Z t−1) is approximated over the previous joint state

by a set of particles {θ(i)
t−1, w

(i)
t−1, µ

(i)
ρ,t−1,Σ

(i)
ρ,t−1} as

P (θt−1, µρ,t−1|Z t−1) = P (θt−1|Z t−1)P (µρ,t−1|θt−1,Z t−1)

∝
∑
i

w
(i)
t−1δ(θ

(i)
t−1)α

(i)
t−1(µρ,t−1) (2.13)

where α
(i)
t−1(µρ,t−1) is defined as the density on µρ,t−1 conditioned on the pose of the
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ith particle and the measurements Z t−1:

α
(i)
t−1(µρ,t−1) = P (µρ,t−1|θ(i)

t−1,Z t−1) (2.14)

Substituting (2.13) into the expression for the marginal filter (2.12) we obtain the

following Monte-Carlo approximation to the exact marginal Bayes filter,

P (θt|Z t) ∝
∑
i

w
(i)
t−1

∫
ρ

P (Zt|θt, ρ)× (2.15)∫
µρ,t−1

P (ρ|θt, θ(i)
t−1, µρ,t−1)P (θt|θ(i)

t−1, µρ,t−1)α
(i)
t−1(µρ,t−1)

This approximation has a complicated form which makes it intractable in

general. In theory, it is possible to directly sample from the approximation, but

this is both computationally and analytically difficult. Hence, to obtain a practical

algorithm we make one additional assumption that the head motion model for pose

θt does not depend on the albedo value µρ,t−1 at time t − 1, P (θt|θ(i)
t−1, µρ,t−1) =

P (θt|θ(i)
t−1). So we can now move the motion model out of the integral in (2.15),

yielding

P (θt|Z t) ∝
∑
i

w
(i)
t−1P (θt|θ(i)

t−1)

∫
ρ

P (Zt|θt, ρ)×∫
µρ,t−1

P (ρ|θt, θ(i)
t−1, µρ,t−1)α

(i)
t−1(µρ,t−1) (2.16)

Now we can perform importance sampling in the usual way, using the predic-

tive density
∑

iw
(i)
t−1P (θt|θ(i)

t−1) as the proposal density. We define the observation

30



model of the particle filter as the projection error of the observed intensity vector

I
(i)
t = It(Zt, θ

(i)
t ) onto the subspace of spherical harmonic images. This makes the

tracking component of the particle filter illumination-insensitive. Toward this end,

the importance weights, {w(i)
t }, are estimated as follows. For each pose particle

θ
(i)
t , first the spherical harmonic basis images (including albedo) are calculated as

B
(i)
t = diag(µ

(i)
ρ,t)Y, where µ

(i)
ρ,t is the analytical estimate of albedo obtained using

(2.9). Here, Y is the d × 9 matrix which, based on the discussion in Section 2.3.1,

is fixed regardless of the head pose parameter θ
(i)
t . By leveraging the Gaussian

assumption in (2.5), the importance weights are defined as

w
(i)
t ∝ exp(−1

2
‖I(i)

t −B
(i)
t L

(i)
t ‖2

Σv),where L
(i)
t = (B

(i)
t )†I

(i)
t (2.17)

Here, B
(i)
t L

(i)
t is the projection of the observation vector I

(i)
t onto the basis B

(i)
t ,

and (B
(i)
t )† is the pseudo-inverse. Figure 2.5 presents a summary of the proposed

algorithm.

2.5 Experimental Results

In this section, we present experimental results on joint face tracking and

albedo estimation. We report the results on some synthetic sequences generated

using the 3D Vetter dataset [49] and images from the PIE-illumination dataset [54].

The PIE-illumination dataset has several images of a subject taken under different

illumination conditions. These images can be used to generate a synthetic video of

the fixed head under desired illumination variations. We also show results on real
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Initialization:

• model registration: Fifteen landmark points are manually selected on
the face in the first frame using which the initial pose parameters, θ0, are
estimated.

• parameter setting: We use the mean albedo and its variance over training
data as the initial albedo, µρ,0, and the initial Kalman filter error covariance
matrix, Σρ,0, respectively. The 3DMM is calculated using the training data
in the Vetter dataset (we mostly use the mean shape as the 3D model in
our experiments). The initial illumination coefficients are obtained using
the mean albedo and current observation.

RBPF iterations: Starting from the posterior approximation P (θt−1, ρ|Z t−1)

estimated by a set of N weighted hybrid particles {θ(i)
t−1, w

(i)
t−1, µ

(i)
ρ,t−1,Σ

(i)
ρ,t−1}, repeat

for j ≤ N :

1. Sample from the dynamic model P (θt|θ(i)
t−1) for a chosen θ

(i)
t−1 to obtain a

predicted pose parameter, θ̂
(j)
t .

2. Get the observation vector I
(j)
t through an inverse warp of the 3D model on

the current frame using θ̂
(j)
t as the head pose and then find the intensity at

the model vertices.

3. Update µ
(i)
ρ,t−1 and Σ

(i)
ρ,t−1 to µ

(j)
ρ,t and Σ

(j)
ρ,t according to the Kalman filter

equations (2.9,2.10).

4. Calculate the importance weight w
(j)
t using (2.17).

Figure 2.5: Summary of the algorithm for joint albedo estimation and pose tracking.

sequences from the BU dataset [43]. This dataset has various sequences per subject

in which significant illumination changes and 2D (in-plane) and 3D (out-of-plane)

head rotations exist. The resolution of frames is 320 × 240 (non-interleaved) and

the videos are collected at 30 fps.

To have examples with more extreme lighting conditions, we also collected

some sequences of rotating heads in front of a fixed lighting source to evaluate the

performance and limitations of our algorithm in situations where the Lambertian
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Figure 2.6: The plot in the left column shows the MSE of estimated albedo for
synthetic PIE sequences averaged over 68 subjects. We compared our results at each
frame with those obtained from the temporal fusion of Biswas’ [1] and Zhang’s [2]
estimates up to each frame. The right column shows the estimated albedos for a
chosen subject obtained from (from top to bottom) our approach, [1], and [2]. The
faces in the left column are the estimates obtained in the first frame and the right
column shows the final albedo estimates. Both visualizations indicate the superior
performance of the proposed approach.

assumption for the face is largely violated. It should be noted that the ground truth

albedo maps are available for the PIE and Vetter datasets. But for the BU dataset,

there are sequences taken under uniform illumination which can be used to obtain

the ground truth albedos with scale ambiguity for each subject. We should also

mention that we did not perform shape correction in these experiments and just

used the mean shape for the faces. We also evaluate the effect of using the mean

shape instead of the true shape in the estimated albedo error.

2.5.1 Albedo Estimation

In this section, the goal is to evaluate the performance of our video-based

albedo estimation algorithm using various synthetic and real sequences.
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Synthetic sequences: We compare our results with the results of Biswas et

al. [1] and Zhang et al. [2] using 68 synthetic PIE sequences with fixed frontal faces

and rotating illumination source around them. To ensure a fair comparison, we

apply their algorithms at each frame separately and then fuse the estimated albedos

by temporal averaging over the frames (computing the mean of the estimated albedo

maps up to each frame). In other words, at each frame we obtain the albedo map by

averaging over the estimated albedos form all the previous frames up to (including)

current frame. Figure 2.6 illustrates the error curves for the three methods. As can

be seen, the proposed algorithm achieves the best final albedo estimates compared to

other approaches. This result shows the impact of using the Kalman filter to fuse the

information over the frames. [2] gives estimates with large error in the initial frames

due to the harsh illumination condition. On the other hand, the algorithm proposed

in [1] obtains better initial albedo because of incorporating the error statistics in

the calculations, but the estimate is not improved through fusion.

While estimating the 3D shape of the subjects will increase the accuracy of

the results, it is time consuming. On the other hand, in many cases using the

mean shape of the face can produce results with an acceptable level of accuracy.

To show the effect of using the mean shape instead of the true shape for each

face, we use 3D faces in the Vetter dataset to synthesize sequences with the head

fixed at a position and rotating illumination, consisting of 20 frames. The albedos

are estimated using both the mean shape and the true subject specific shapes of

the faces. Figure 2.7 illustrates the effect of using the mean shape instead of the

true shapes on the mean squared error of the estimated albedos with respect to
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Figure 2.7: The effect of using the mean shape instead of the true 3D shape on the
estimated albedo error with respect to the ground truth. The estimates are obtained
for the synthesized Vetter sequences (with 20 frames, fixed face and rotating illumi-
nation source around the face). The mean estimated albedo errors are also shown
using color coded images top: when the mean shape is used for albedo estimation,
and bottom: when the true subject specific shapes are used for albedo estimation.
The figure is best viewed in color.

the ground truth for 100 synthetic sequences. The figure also shows the spatial

distribution of the mean albedo errors for the two situations. As it can be seen, the

albedo errors are comparable for the two cases even for the regions around eyes and

nose. Moreover, in both cases the error in the final albedo is considerably smaller

than the initial error. Therefore, although using the mean shape leads to the larger

final error, the fact that there is no need to know or estimate the true 3D shape of

the face compensates for that.

Real sequences: Albedo estimation in real video sequences with changing

pose is more challenging due to tracking errors as well as deviations from the Lam-

bertian assumption.3 Figure 2.8 illustrates the decrease in the error of the estimated

3This source of error exists in the PIE sequences as well
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Figure 2.8: The MSE of the albedo estimate versus frames for a sequence in the BU
dataset along with the appearance of the face at some frames. Rotation of the face
brings more information for albedo estimation and therefore reduces the estimate
error.

albedo map over the frames for a sequence from the BU dataset with varying head

pose and illumination. The figure also shows the appearance of the face at places

where the error decreases drastically. As it can be seen, such sudden reductions

in the albedo error happens when some previously shadowed parts of the face be-

come illuminated, which means they bring new information for albedo estimation.

It should also be noted that slight increases in errors are mainly due to tracking

errors and errors created as a consequence in the albedo estimation process.

Figure 2.9 shows the albedo maps obtained for some of the subjects in the BU

dataset. The rows show some frames of the selected sequences (including the very

first and last frames), along with the estimated albedo maps using the proposed

algorithm up to each frame. The selected sequences in this figure usually start

with the face in a harsh illumination condition and then the motion of the face in
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Figure 2.9: Albedo maps estimated for three sequences in the BU dataset. The
rows show some of the frames in each sequence followed by the estimated albedo
using the proposed algorithm up to that frame. The last column shows the averaging
of the estimated albedos obtained using [1] at each frame.

subsequent frames brings more information regarding the reflectance properties of

those shadow pixels and hence improves the albedo estimate obtained from the first

frames. The last column result of the albedo rows shows the temporal averaging

of the estimated albedo maps [1] over the frames. These results are blurry due to

incorporating information from all the frames with equal weights.
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Figure 2.10: The MSE in the final estimate of albedo with respect to the ground
truth averaged over 80 sequences in BU dataset along with the standard deviation
of the error at each frame.

The amount of reduction in the albedo error over the frames for various se-

quences depends on the illumination conditions throughout the frames as well as

tracking accuracy. For some sequences the shape of the face is far from the average

shape and also for some cases the illumination condition is not improving enough

over the frames, so the final albedo estimate still has considerable error with respect

to the ground truth, although it is less than the initial error. Figure 2.10 shows the

average behavior of the albedo error with respect to the ground truth over 80 BU

sequences along with the standard deviation of error at each frame.

Finally, to evaluate our algorithm for some extreme situations, we applied the

algorithm on some sequences, collected indoors, where the face rotates in front of a

fixed illumination source. Figure 2.11 shows some frames along with their estimated

albedos for the two sequences one with a good lighting condition and the other one
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1 30 80 105 1 30 80 105

Figure 2.11: Tracking results and albedo estimates for two sequences in left: good
illumination and right: harsh illumination conditions. Shown below is the frame
number of each image (out of 150 frames).

in a harsh illumination condition with saturated pixels and cast shadows. As can

be seen, the albedo estimated using the second sequence is noisy which is mainly

due to the saturated pixels. This example illustrates a limitation of our algorithm

which occurs when a part of the object is not Lambertian. Since our algorithm

excludes such pixels from the updating framework, their albedo estimates will not

improve over the frames. But if specularity (or any other example of violation from

Lambertian assumption) occurs in a limited number of frames and the surface parts

that have such errors in some frames show their Lambertian properties in some other

frames, our algorithm will be able to ignore the occurrences of such errors and get

a good albedo estimate out of good frames in the sequence.

2.5.2 Illumination-Insensitive Tracking

Illumination-insensitive head pose tracking is an important part of the pro-

posed algorithm. While pose estimation is necessary for our sequential albedo es-

timation algorithm, updating the albedo map at each frame also helps to have ac-
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Figure 2.12: Tracking results for two sequences under illumination changes and
in/out-of-plane rotation. The first row shows faces with tracked landmarks on
them, the second row presents a comparison between the estimated rotation angles
(roll, yaw, pitch) with the ground truth for the sequence in the top-left column.

curate pose tracking. We evaluate the performance of the tracking algorithm using

sequences with both uniform and varying illumination in the BU dataset for which

the ground truth pose information is available. The dataset with uniform illumina-

tion has 45 sequences for 5 subjects (9 sequences per subject) and the dataset with

varying illumination has 27 sequence for 3 subjects, each sequence has 198 frames

in which the face goes through several in-plane and out-of-plane rotations as well as

translations.

Figure 2.12 shows some frames of two sequences with the tracked landmarks on

the face. These examples show the ability of the tracker to maintain tracks in spite

of illumination changes and large out-of-plane rotations. Figure 2.12 also presents a

comparison between the rotation angles estimated for the left sequence, in the top
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Uniform Illumination Varying Illumination

Rotation 0.822± 0.44 1.01± 0.15
Translation 0.83± 0.42 0.95± 0.095

Table 2.1: Averaged tracking error in terms of both position (translation) and ori-
entation (rotation) for two subsets of BU dataset one with uniform illumination and
other one with varying illumination.

row, and its ground truth. It can be seen that the tracker accurately estimates the

pose of the face in almost all frames.

To have a quantitative evaluation of the precision of our tracking algorithm and

evaluate its robustness against illumination variation, we use the metric introduced

in [43] which is based on the Mahalanobis distance between the estimated and

measured positions and orientations. Two normalized errors, position error and

orientation error, are defined at each frame of the sequence. The precision of the

tracker is then defined for each sequence as the root mean square error computed

over the sequence up to the point where the track was lost. For this purpose we

defined the track as lost when the position error at that frame exceeded a fixed

threshold.

Table 2.1 shows the evaluation results for both subsets of the BU dataset with

uniform and varying illuminations. The percentage of tracked frames for both cases

is 89.2± 4.003 and the averaged tracking time per frame is 2.05± 0.34 seconds (us-

ing Matlab software and on a 4GHz processor) where most of this time is spent for

retrieving the observed intensities at the vertices of a 3D face model4. The timing

of the joint pose and albedo estimation algorithm is the same as for tracking, since

4We can improve the tracking rate using a parallelized particle filter [56] as well as using a more
powerful processor and by programming on C++.
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Figure 2.13: Comparing the pose tracking results with and without albedo updating
step. For each sequence, the first row shows the tracking results of the particle filter
without the albedo updating step and the second row has the results of the proposed
algorithm. For the second sequence, we also show the estimated albedo map using
the proposed algorithm at each frame. The frame numbers are shown below images.

the albedo estimation is based on just a linear operation. As Table 2.1 shows, the

proposed algorithm performs well for both orientation (rotation) and position (trans-

lation) estimation. Moreover, comparable results on both datasets indicate that our

algorithm is to a reasonable degree insensitive to illumination changes. However as

expected, tracking on a dataset with varying illumination is more challenging.

To show the importance of the albedo update step for pose tracking, we per-
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form the pose tracking experiment using the particle filter framework, as discussed

in Section 2.4 but without the albedo update using the Kalman filter step. So the

albedo is estimated using the first frame of the sequence (we assume that the face

has an almost frontal pose in the first frame of the sequence and it is partially

shadowed) and the estimated spherical harmonic basis images Bt are therefore fixed

throughout the pose tracking step. We compare the results from this algorithm with

those of our algorithm (using RBPF) on two sequences. As Fig. 2.13 shows, the first

algorithm looses the track whenever the face goes through an illumination change.

This is because the estimated albedo and therefore the estimated spherical harmonic

basis are not accurate and changing the appearance of the face due to illumination

changes causes the face to not lie on the same spherical harmonic subspace. This

emphasizes the importance of updating the albedo throughout the sequence so that

the available information from multiple images is used to obtain a more accurate

estimate of the albedo and spherical harmonic basis as a result.

2.5.3 Video-based Face Recognition

The resulting albedo maps provide signatures of faces that can be used as

inputs to many existing 2D techniques for face recognition. Here our objective is to

show the improvement in face recognition obtained due to video-based albedo esti-

mation. To this end, we use the true albedo maps of the subjects as the gallery set

and the probe set includes a number of videos per subject where the videos usually

starts with the face partly in the shadow. We perform the face recognition experi-
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Figure 2.14: Video-based face recognition rate versus number of frames used for
albedo estimation. Left: comparing the recognition rate on the PIE synthetic
sequences using the albedo maps resulting from [1] estimated at each single frame,
temporal fusion of [1] estimates up to each frame, face intensity at each frame and
the proposed algorithm; Right: recognition rate on the BU dataset using the albedo
maps produced by the proposed algorithm compared to the recognition rate using
the warped intensity at each frame.

ment on the synthetic sequences from the PIE dataset as well as the BU sequences.

In both cases we report the recognition rates averaged over all the sequences versus

the number of frames used for albedo estimation. We expect the recognition rate

to increase as more frames are used for albedo estimation, since the albedo maps

improve over the frames.

Figure 2.14 illustrates the face recognition rate averaged over all the sequences

versus frame number. For the PIE sequences (left column of the figure) we have

68 subjects and a sequence of 21 frames per subject in the test set. Each sequence

starts with the face being partly in shadow and then the illumination rotates around

the face. We apply the proposed algorithm to each sequence to obtain the estimated

albedo maps up to each frame using which we perform the face recognition (blue

solid curve). To show the importance of albedo estimation and proper fusion of
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information over frames for face recognition, we compare our results with the results

from three other algorithms. First we obtain the albedo maps at each frame using

Biswas’ single image-based algorithm [1] and use them to perform face recognition

at each frame (green dash curve). Then we temporally fuse these estimated albedo

maps up to each frame (temporal averaging) and again perform recognition at each

frame (red solid curve), and finally perform recognition using the face intensity at

each frame (magenta dash-dotted curve).

As the plots show, recognition performance using the intensity at each frame

as well as the albedo estimated from a single frame is completely dependent on

the quality of the face at that frame and while it is around 90% for some frames,

it decreases to below 10% for some other frames. The temporal fusion/averaging

of the [1] estimates over the frames stabilizes the results but still the recognition

rate is low due to the blurry albedo maps obtained through this process. But the

proposed algorithm results in a considerable increase in the recognition rates over

the sequences.

Similar results using the sequences in the BU dataset are presented in the right

column of the figure. We have six subjects and an average of nine sequences per

subject, each with 80 frames, using which we obtain the albedo maps up to each

frame and perform face recognition. We compare the results from our algorithm with

the case where we use the warped intensity at each frame for recognition. However

since the pose of the head is changing throughout the sequence, to get the warped

intensity at each frame we need to estimate the head pose. We can perform this

step separately by tracking fiducial points using the Kanade-Lucas-Tomasi (KLT)
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tracker [57], but since the illumination is changing considerably throughout the

sequences, the KLT fails to track the feature points. Therefore, we use the estimated

poses from our algorithm (RBPF) and then obtain the warped intensity map at each

frame for recognition. The results again show the superiority of having an accurate

albedo map for face recognition compared to the intensity map at each frame.

2.5.4 Kalman Smoother

In the proposed algorithm, the estimate of ρt is made based on the noisy mea-

surement set Z t = {Z1, ..., Zt}. But if a delay in the production of ρt be permitted,

then more measurements become available during the delay interval and these new

measurements can be used in producing the estimate of ρt. Thus a delay of N time

units during which Zt+1, ..., Zt+N appear allows estimation of ρt by

µρ,t|t+N = E[ρt|Z1, ..., Zt+N ]

Such an estimate is called smooth estimate. Historically, three particular types of

smoothing problems have been studied, each characterized by the particular subset

of all possible smoothed estimates sought: Fixed-point smoothing, fixed-lag smooth-

ing and fixed-interval smoothing. For our problem, the fixed-lag smoother [58] is

the best since it allows “online” production of smoothed estimates.

Since more measurements are used in producing µρ,t|t+N than in producing

µρ,t|t, one expects the estimate to be more accurate, and generally, one expects

smoothers to perform better than filters, although inherent in a smoother is a delay

46



0 2 4 6 8 10 12 14 16 18 20 22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame #

C
o

rr
e
c
t 

R
e
c
o

g
n

it
io

n
 R

a
te

Kalman Filter

Fixed−lag Smoother

Figure 2.15: Comparing the face recognition rates obtained using our approach
(Kalman filter) with those of applying the fixed-lag smoother algorithm (with lag
of 4 frames) on the synthetic PIE sequences.

and, as it turns out, an increase in estimator complexity. Further, the greater the

delay, the greater the increase in complexity [58]. Thus depending on the delay and

complexity that the system can tolerate, some improvements in the estimates can

be obtained using smoothed estimates.

To investigate the trade-off between the delay and the improvement we obtain

in the estimate of the albedo map we perform the sequential albedo estimation and

face recognition experiments on the synthetic PIE sequences. We consider a lag

of N = 4 frames and applied a fixed-lag smoother to the PIE sequences at each

frame to estimate µρ,t|t+4 and then use these smoothed estimates to perform the

face recognition experiment as explained in the section 2.5.3. Figure 2.15 shows the

improvements that the smoothed estimates result compared to the causal estimates

obtained using the Kalman filter. Increasing the value of N slightly increases the

improvement.
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It should be noted that the head poses are fixed in the synthetic PIE sequences,

since if the head pose is varied then we need the pose information for the future

frames as well which is not available at the current frame. Moreover, knowing that

the delay at each frame in the proposed approach is due to the pose estimation step

(the albedo estimation is performed in real-time), we need our sequential algorithm

and the Kalman filter to jointly estimate the pose and albedo map at each frame.

2.5.5 Comparison with a Batch Processing Algorithm

We also compared our sequential albedo estimation algorithm with a batch

processing method for albedo estimation. As we mentioned in the introduction, our

algorithm has connections to the photometric stereo problem. Hence, we applied

a photometric stereo algorithm (as a batch processing method)5 to the synthetic

PIE sequences to estimate the albedo (as well as the normal vectors to the surface)

for each subject. Then we computed the average MSE of the estimated albedo and

the ground truth albedo over 68 subjects. Note that while the photometric stereo

algorithm optimizes the albedo globally (along with accounting for surface estimates

etc.), our algorithm incrementally updates the albedo under a fixed shape model.

Table 2.2 shows the results for both the algorithms. As the table shows,

using the batch processing method gives a slightly better error rate compared to

our sequential algorithm. This result was expected since a batch processing method

uses all the available information (including the future frames in our case) at once.

However as we emphasized in the chapter, our algorithm is applicable to a video in

5http://pages.cs.wisc.edu/ csverma/CS766 09/Stereo/stereo.html
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Table 2.2: MSE error of the estimated albedos using a photometric stereo algo-
rithm as well as our proposed sequential algorithm with respect to the ground truth
averaged over 68 synthetic PIE sequences.

Photometric Stereo Our approach

Albedo MSE 0.166 ± 0.042 0.21± 0.08

which frames come at a time and so the algorithm processes the information once

it becomes available.

When pose variations are presented in the sequences, both the sequential and

batch processing methods need correspondences across the images. We applied a

tracking algorithm to obtain these correspondences for the low resolution images

we used for our experiments. These correspondences are not very accurate and it

would be interesting to investigate the effects of these inaccurate correspondences

on a batch processing method as a future work.

2.6 Summary and Limitations

We proposed a joint tracking and sequential albedo estimation framework using

a Rao-Blackwellized particle filter. The tracking algorithm finds the best pose at

each frame which minimizes the projection error of the observed appearance onto

the spherical harmonic basis images. At the same time, a Kalman filter updates

the albedo map estimated in the previous frame using current observations and by

incorporating useful information regarding the albedo into the prior albedo estimate.

Simultaneous pose and albedo estimation at each frame improves the final albedo

map. Comparisons with true poses and true albedo maps were shown to validate
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the effectiveness of the algorithm. Moreover, the robustness of the algorithm against

errors due to deviations from the Lambertian assumption has been evaluated. The

albedo estimated using our approach can be used for video-based face recognition.

The proposed algorithm has limitations and we briefly discuss some of them here.

Assumptions: The main assumption in this work is the Lambertian assump-

tion for the human face. As discussed in the introduction, while this assumption is

reasonable for the application in this work, having a more accurate model for the

face image formation will lead to more precise results and enables improved infer-

ences. We also make simplifying assumptions regarding independence of pixels in

the face image. This assumption can be removed by adding a prior albedo model

and also having full covariance matrices in the Kalman filter.

Robustness: In this work we achieved some robustness against non-Lambertian

effects (e.g. cast shadow, saturation and specularity) by updating the Kalman filter

observation noise matrix at each frame in an ad-hoc manner. It might be interesting

to actually use a proper robust distribution instead of Gaussian as the noise model.

Speed: Sequential estimation of albedo has many advantages in the context

of real-time implementations. For one, we need a small buffer to store frames before

they are processed. Further, even when the processing algorithm is not real-time,

we can continue processing frames using strategies for carefully dropping frames

while maintaining a finite buffer. This is especially relevant in our setting. While

albedo estimation can be performed in real-time, the pose estimation step which is

based on the particle filter implementation in Matlab is slow which makes the whole

algorithm non-real time. However it should be noted that our choice of particle filters
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— in addition to providing powerful inference capabilities — also allows parallel

implementation. There has been a significant body of work on parallel and pipelined

implementations of particle filters [56, 59]. A basic premise of this body of work is

that particle filters are extremely parallelizable and linear speedup in the number

of computing nodes is very much possible. A GPU implementation with modern

GPUs that have 100-1000s of computing nodes, for example, has the capability of

achieving real-time performance.

The delay in estimating the albedo at each frame can be used to interpret

the problem as a smoothing problem, as we discussed in the chapter. But the

interpretation as a fixed-lag smoothing problem is currently applicable only for the

constant pose case. Extension to variable pose case would be interesting.

Deformation: We do not account for non-rigid deformation in our models.

However since at each frame we only update the albedo for those pixels whose current

intensity is in a reasonable range with respect to their intensity in the previous frame

(we assume small changes between two frames), our algorithm can handle non-rigid

deformation up to some degree. This approach can also be generalized for other

types of objects which are rigid or can only have small non-rigid deformations.
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Chapter 3: A Spatially Varying Blur Descriptor for Robust Face

Recognition

3.1 Introduction

Understanding the effects of blur, which normally arise due to out-of-focus

lens, atmospheric turbulence, and relative motion between the camera and objects

in the scene, is an important problem in image analysis applications such as face

recognition. Motion blur, among them, has long been an important challenge for

developing robust face recognition algorithms. With increase in the usage of hand-

held cameras, the study of motion blur is receiving considerable attention. During

image capture, due to the effect of averaging of light intensities at the camera sen-

sors, the relative motion between the scene and the camera results in motion blur.

Although the main objective has usually been to remedy the effect of blur, works

also exist that focus on inferring valuable information about the object or camera

motion by using blur as a cue [60–64]. In this chapter, we deal with the problem of

recognizing human faces blurred due to incidental motion of hand-held cameras.

The blur at each image point is characterized by a blur kernel also known as

the point spread function (PSF). For the case of pure in-plane camera translations,
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(a) (b) (c) (d) (e) 

Figure 3.1: Examples of blur images under the real camera shake. The blur in the
images is very non-uniform. The images are from an internally collected dataset.

the shape of the PSF reflects the camera motion. In fact, the shape of the PSF is

preserved at all image points. In such cases the image formation equation modeling

the blurring process can be written as, g(x, y) = (f ∗ k)(x, y) + η(x, y). Here (x, y)

denotes the pixel location at which a 2D convolution, ∗, is performed between a clean

image f and an unknown blur point-spread function k, to result in a blurred image.

The ubiquitous noise present in the system, which can be due to quantization, or

other sensor-induced errors, is represented by η.

The convolution model although convenient, is restrictive. Face images when

captured with a hand-held camera typically exhibit non-uniform blurring under the

influence of camera motion. Figure 3.1 shows some images taken with a real camera.

The camera transformations can range from (a) in-plane translation and rotation to,

(b) out-of-plane translation, (c) out-of-plane rotation, and even general 6D motion.

As can be seen, the blur on the images and faces is very non-uniform. Such images

cannot be modeled using the convolutional model for blur and we need to model

these images using space-varying blur formulation.

Face recognition systems that work with clean faces have considerably lower

performance when they are presented with blurred faces. Therefore, it is important
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to either remove the effect of blur from faces before passing them to recognition

systems or use a blur-robust face recognition algorithm. Especially with the in-

crease in the usage of hand-held cameras which usually generate images with lots

of motion blur and also the emergence of new applications such as photo tagging

in social media, the problem of blur-robust face recognition has become more and

more important. Since the main goal of face recognition systems is to recognize the

face and not to generate the clean image of the face, we focus on proposing a direct

approach for blur-robust face recognition. In this work, we treat the camera motion

to consist of translations and rotations along all three directions.

When a camera undergoes a general 6D motion the shape of the blur kernel

will vary across different image points. If we assume a planar structure for face, the

blurred image can be modeled as a weighted average of geometrically transformed

instances (homographies) of the reference image. Each homography is assigned a

weight that denotes the fraction of the exposure duration for that transformation.

The weights of the transformations are referred to as the transformation spread

function (TSF). The TSF is a generalization of the PSF notion; while the PSF

denotes the motion of a point light source at a pixel during image capture, the

TSF denotes the transformations undergone by the image plane due to camera

motion [65]. The notion of TSF or set of homographies for describing motion blur

was mooted in the recent past by different groups [65–68].

We use the TSF blur model to design a blur-robust face recognition algorithm.

This model is general and mimics the realistic blurring situations very accurately.

It is important to note that clean training images are available when attempting

54



face recognition. By applying all the possible transformations that exist in a six-

dimensional space (three dimensions for translations and three dimensions for rota-

tion) on the clean image, we obtain a matrix whose column space spans all possible

blur images obtained from that clean image. To compute such a matrix, we should

first discretize the space of all transformations. To recognize a blurred image, we

minimize the distances between the given image and the transformation matrices

computed for all the gallery/clean images. For this purpose, we use a proper op-

timization function with l1 constraint on the TSF weights. This optimization also

gives us an estimate of the transformations applied to the clean image which resulted

in that blurred image. We also propose a multiscale implementation of the algorithm

to make the process efficient in terms of both the computations and the memory

demands. Various experiments on both synthetic and real faces are performed to

evaluate the effectiveness of the proposed algorithm.

Contributions: In this work we propose a direct approach for motion blur-

robust face recognition which does not need image deblurring. We also propose

• a subspace representation for all the blurred versions of a clean image obtained

under arbitrary camera shake.

• an objective function with proper sparsity constraints which after minimiza-

tion gives the identity of the blurred face as well as a good estimate of the

transformation that must be applied to the clean image to generate the blurred

image.

• a multiscale implementation of the algorithm which makes the process efficient
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in terms of both computations and memory demands.

Outline of the chapter: Related works are discussed in Section 3.2. Then we

review the convolution model for uniform blur formation in Section 3.3 and discuss

the shortcomings of this model. We discuss some details of the motion blur model

and propose the optimization algorithm for blur kernel estimation in Section 3.4.

The face recognition across motion blur is provided in Section 3.5. We also discuss

our multiscale implementation in this section. Section 3.6 has several experimental

results using both synthetic and real examples.

3.2 Related Work

Face recognition has received significant attention in several disciplines such

as computer vision, image processing, pattern recognition and neural networks. The

ubiquity of computer applications that use face recognition to help users with tagging

their photos, such as Google Picasa, Adobe Photoshop Elements, Apple iPhoto,

Facebook and Microsoft Windows Live Photo Gallery highlights the success of face

recognition. Various recent algorithms have been proposed for face recognition [69–

76], where some of them have been designed for robust face recognition against

challenges such as occlusion, illumination, degraded training images, low-resolution

and blurred faces.

Most of the existing face recognition systems usually have considerably lower

performance when presented with degraded faces due to effects such as blur. Hence

several blur-robust face recognition algorithms have been proposed [76–78]. In blur-
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robust face recognition the main objective is to remedy the effect of blur and have

blur-insensitive recognition. Existing approaches for blur-robust face recognition can

be classified as: (i) inverse methods based on deblurring, and (ii) direct methods

based on invariants. While the goal of deblurring is to estimate the clean image from

the observed blurred image, direct methods, which are mainly based on invariants,

search for those properties of the original image that are preserved across blur and

use them for robust face recognition [79].

Existing approaches for blur-insensitive face recognition usually have a spa-

tially uniform blur assumption [77, 78, 80]. But this assumption made by most

algorithms is often violated. Among them, deblurring-based methods either use the

knowledge of PSF at image pixels as well as the clean image statistics to perform

non-blind deconvolution or attempt to solve an under-constrained problem of esti-

mating the PSF and the clean image without assuming any knowledge about the

blur kernel using blind-deconvolution [76, 77, 80]. Zhang et al. [76] proposed a joint

blind image restoration and recognition method based on the sparse representation

prior to handle the challenging problem of face recognition from low-quality images,

where the degradation model is realistic and totally unknown. The proposed algo-

rithm achieves simultaneous restoration and recognition by iteratively solving the

blind image restoration in pursuit of the sparsest representation for recognition.

There are also direct methods, mostly developed for the specific class of cen-

trally symmetric blur PSF’s which account for blur due to out-of-focus lens and

atmospheric effects [81, 82] as well as methods based on moment-based invariants

in both spatial and Fourier domain [83–85]. A recent direct method proposed a
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blur-robust descriptor for face recognition using a fusion of image-formation models

under the effect of spatially uniform blur and differential geometric tools [78]. They

showed that the subspace resulting from convolutions of an image with a complete

set of orthonormal basis functions that could represent the blur kernel, is invariant

to blur under some assumptions. They then studied the utility of this invariant for

the problem of direct recognition of faces, using techniques that account for their un-

derlying non-Euclidean geometry. In another work, Vageeswaran et al. [86] showed

that set of all images obtained from a face image by blurring it and by changing the

illumination conditions forms a bi-convex set. Based on this set-theoretic character-

ization, they proposed a blur and illumination-robust algorithm for face recognition

whose main step involves solving convex optimization problems.

As mentioned earlier, real camera shake causes non-uniform blur which cannot

be modeled using the convolutional blur formulation. The assumption of uniform

blur is violated for many images/faces that are taken under arbitrary camera shake.

Several deblurring algorithms have been proposed for shaken images. Some of these

approaches have focused on piecewise-uniform blurs arising from multiple moving

objects in the scene, spatially varying combinations of localized uniform blurs or

rotations of planar objects in the scene [87–90]. But, these approaches usually make

the assumption that the blur is locally uniform, and do not consider global models

for continuously varying blur that results from arbitrary camera shakes.

Miskin et al. [91] and Fergus et al. [92] attempted to estimate the blur kernel

using a variational inference approach. The estimated kernel is then used to de-

blur the observation directly using the Richardson-Lucy (RL) algorithm to give the
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clean image. Several algorithms have been proposed for image restoration under the

motion blur effect [68,93–96]. Whyte et al. [68,97] proposed a new parametrized geo-

metric model of the blurring process in terms of the rotational velocity of the camera

during exposure. They modified the algorithm proposed by [91,92] to perform blind

deblurring for camera shake removal using a single blurred image. They also pro-

posed an algorithm, based on the work in [98], which uses both a blurred image and

a sharp but noisy image of the same scene to remove the non-uniform blur. But

they limit the freedom of camera motions to camera rotations only. Cho et al. [96]

presented a novel blind motion deblurring method for dealing with non-uniform

blurs caused by camera shake. Their method is based on a novel representation of

motion blurs, which models the blur effects using a set of homographies. They fully

describe the motions of camera shakes in 3D world.

3.3 Convolution Model for Space-Invariant Blur

As we mentioned in the introduction, for images with spatially-invariant blur,

the image formation can be expressed as the convolution between the original sharp

image and the point spread function (PSF) of the blur kernel. While this model

is sufficient for describing the blur due to out-of-focus lens, atmospheric turbulence

and pure in-plane camera translations (all for flat scenes), it cannot describe many

other blurring effects which are mainly due to general camera shake (including out-

of-plane motion and in-plane rotation).

Direct face recognition algorithms usually benefit from the resulting simple
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(a) (b) (c) (d) (e) 

Figure 3.2: Some synthetic images obtained from the clean image (left most col-
umn) after applying random (a) in-plane translations, (b) in-plane translations and
rotation, (c) out-of-plane translation, (d) out-of-plane rotation, and (e) 6D motion,
i.e. 3D translations and 3D rotations. The image is from an internally collected
dataset.

convolutional model to yield a blur-insensitive descriptor for recognition. In a recent

work, Gopalan et al. [78] represented the blur kernel as a linear combination of a

complete set of orthonormal basis functions, k =
∑K

i=1 αiφi. Hence under no noise

assumption, the blur image lies in the subspace generated by convolving the clean

image with each of these basis functions,

g = f ∗
K∑
i=1

αiφi =
K∑
i=1

αi(f ∗ φi) = Dα (3.1)

where D = [f ∗φ1, f ∗φ2...f ∗φK ] and α ∈ IRK . Using this representation, the blur-

insensitive face recognition can be performed by minimizing the distance between

the blurred test face and each of the gallery face subspaces.

n∗ = arg min
n
‖g −

K∑
i=1

αi(fn ∗ φi)‖2
2 (3.2)

= arg min
n
‖g −Dnα‖2

2
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An important limitation of space-invariant blur modeling for face recognition

is that this model can only handle face misalignments due to in-plane translations.

If the faces have out-of-plane geometric degradation (due to out-of-plane camera

rotation) then the model cannot handle such misalignments between the faces and

the recognition algorithm will fail1. Especially the scale differences between images

which is because of camera motion orthogonal to the image plane causes a serious

problem for the convolutional model of the blur.

In order to show the weakness of the convolutional model in handling most

of the motion-blurred images, we compare the reconstruction errors of the recon-

structed faces using the convolutional model and the motion blur model (will be

introduced in Section 3.4) for different synthetic blur faces generated using vari-

ous camera motions, as shown in Fig. 3.2, ((a) in-plane translations, (b) in-plane

translations and rotation, (c) out-of-plane translation, (d) out-of-plane rotation, and

(e) 6D motion, i.e. 3D translations and 3D rotations.). Figure 3.3 shows the re-

constructed faces as well as the RMS errors. As the figure shows, except for the

in-plane translations (case (a)) where as expected the RMS is the same for the both

models, in all other cases the correct motion blur model gives much smaller RMS

than the convolutional model and it is clear from the figure that the convolutional

model is restrictive and cannot handle out-of-plane transformations (cases (c), (d),

(e)) as well as in-plane rotation (cases (b), (e)).

1Unless the displacement is quite small or the camera focal length is large enough so to approx-
imate the out-of-plane camera rotation with the in-plane translation
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(RMS=0.05) (RMS=0.05) (RMS=5.27) (RMS=10.92) (RMS=0.11) (RMS=5.48)
(a) (b)

(RMS=10.51) (RMS=0.00) (RMS=0.00) (RMS=8.04) (RMS=0.07) (RMS=7.21)
(c) (d)

(RMS=13.90) (RMS=4.95) (RMS=6.16) (RMS=16.61) (RMS=3.45) (RMS=4.04)
(e) (e)

Figure 3.3: Comparing the reconstructed faces and reconstruction errors (RMS)
using the convolutional model for the blur and the motion blur model with the
brute force and multiscale implementations. The results are shown for 5 different
camera motions, (a) in-plane translations, (b) in-plane translations and rotation, (c)
out-of-plane translation, (d) out-of-plane rotation, and (e) 6D motion. We show two
examples for case (e). For each motion case images from left to right are: original
blur, convolutional model, motion blur model and multiscale implementation.

3.4 Motion Blur Model For Faces

When the camera motion is not restricted to in-plane translations, the appar-

ent motion of scene points in the image will vary at different locations resulting in

space-variant blurring. In such a scenario, the convolution model with a single blur

kernel does not hold. However, as we mentioned earlier 2, because we model face

by a flat surface, the blurred face can be accurately modeled as a weighted average

of the warped instances of the original image [65, 67, 68, 93]. In this section, we

2The focus of this chapter is on the images of faces, but the proposed algorithm is equally
applicable to other planar scenarios.
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present the motion blur model and illustrate how this model can explain geometric

degradations of faces. Next, we propose an optimization algorithm to recover the

motion blur kernels.

Note that in the face recognition problem, the original training images are

available. Let the image of a training face captured by a still camera be denoted by

f : R2 → R. Let X = [X Y Z]T denote the spatial coordinates of a point on the

face with the camera center as the origin. The projection of X in the image plane

(x, y) is given by x = νX
Z

and y = νY
Z

where ν denotes the focal length of the camera.

Using homogeneous coordinates, the image point x = [x y 1]T can be written as

KνX. In this discussion, Kν is assumed to be of the form

Kν =


ν 0 0

0 ν 0

0 0 1

 (3.3)

Due to camera motion during image capture, at each instant of time τ , the coor-

dinates of the 3D point X changes to Xτ = RτX + Tτ with respect to the camera,

where Tτ = [TXτ TYτ TZτ ]
T is the translation vector and Rτ is the rotation matrix.

This rotation matrix is parameterized in terms of θX , θY and θZ (the angles of

rotation about the three axes) using the matrix exponential

Rτ = eΘτ where Θτ =


0 −θZτ θYτ

θZτ 0 −θXτ

−θYτ θXτ 0

 (3.4)
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We consider that all of the face points in the training image are at a distance do from

the camera. Since the depth is constant, the point xτ , at which Xτ gets projected

in the camera, can be obtained through a homography Hτ as xτ = Hτx where

Hτ = Kν

(
Rτ +

1

do
Tτ [0 0 1]

)
K−1
ν (3.5)

Let gτ denote the blurred image captured at time instant τ . For the sake of

simplicity, we use the same notation (x) for the homogeneous coordinates as well as

for the coordinates in the image plane. Then we can write gτ (x) = f (H−1
τ x) where

H−1
τ denotes the inverse of Hτ (since gτ (Hτx) = f (x)). Now the blurred face g can

be interpreted as the average of the light intensities observed in the image plane

during exposure. Therefore, the blurred face intensity at an image point x is given

by

g (x) =
1

te

te∫
0

f
(
H−1
τ x

)
dτ (3.6)

where te is the total exposure duration.

The blurred face can be more appropriately modeled in terms of the clean face

by averaging it over the set of possible transformations resulting from the camera

motion. We define the transformation spread function (TSF) hT : T→R+ as a

mapping from the set of all possible transformations T to non-negative real numbers.

For each transformation λ∈T, the value of the TSF, hT (λ), denotes the fraction of

the total exposure duration for which the camera stayed in the position that caused

the transformation H−1
λ on the image coordinates. The blurred image can be written
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as an average of the warped images weighted by the TSF, hT . i.e.,

g (x) =

∫
λ∈T

hT (λ) f
(
H−1
λ (x)

)
dλ (3.7)

In this model, the order of the set of transformations undergone by the reference

image during exposure is lost due to the averaging effect; however, this is not rele-

vant information. According to this model, the apparent motion of pixels may be

significantly non-uniform across the image.

When the camera motion is not restricted, the paths traced by scene points in

the image plane can vary across the image resulting in space-variant blur; however,

the blurring operation can be described by a single TSF using (3.7). So the TSF

depicts camera motion during exposure. For instance, if the camera undergoes

only in-plane rotations, the TSF will have non-zero weights only for the rotational

transformations. Analogous to a blur kernel, the TSF satisfies the relation

∫
λ∈T

hT (λ) = 1 (3.8)

It should be noted that convolution model for the blur is a special case of motion

blur which is valid when the camera motion is confined to 2D translations. In such

a case the PSF and TSF will be identical.
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3.4.1 Recovery of Homographies

Having a clean image and its blurred version under unknown camera shake, it

is of interest to estimate the homographies applied to the clean image and the corre-

sponding TSF values. Having an estimate of these values can help for blur-insensitive

face recognition through minimizing the distance between the reconstructed blur im-

age, using the estimate of the homographies and TSF, with the original blur image.

In practice, we represent the transformation space T with coordinate axes

that correspond to the camera motion and quantize each axis to get a discrete set of

transformations. The TSF, hT , defined on the discrete transformation space T can

be considered as a vector in RNT where NT is the total number of transformations

present in T. NT is controlled by the number of translation steps along each axis

as well as the number of rotation steps about each axis, so NT = Ntx×Nty ×Ntz ×

Nrx ×Nry ×Nrz. Discretizing (3.7), each observed pixel gi is modeled as:

gi =

NT∑
k=1

(∑
j

Cijkfj

)
hk (3.9)

where i, j and k index into the blurred image, the clean image and the blur kernel,

respectively. Here the sum
∑

j Cijkfj interpolates the point f(Hkxi) in the clean

image. Based on this equation, the blurred image can be linearly expressed in terms

of the clean image as

g = Bh (3.10)

where Bik =
∑

j Cijkfj. If f ∈ IRN , with N = R × C pixels for an image with R
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rows and C columns, then B ∈ IRN×NT is a matrix whose columns each contain

a projectively transformed copy of the clean image [68]. Therefore, if we apply all

possible transformations in the space T (after discretization as discussed before) to

the clean image f and build the matrix B using all the transformed copy of f as the

columns, then the column space of B spans the space of all motion blurred images

obtained from the clean image f .

As we mentioned earlier, space-invariant blur which results from the convolu-

tional blur model is a special case of general motion blur model. Hence (3.10) is a

general version of (3.1) where each element hk corresponds to a camera orientation

(translation followed by rotation), and consequently to a homography Hk. However,

since a sparse number of camera motions usually happen while capturing an image,

h will be very sparse and moreover, since components of h represent the fraction of

time that each homography has been applied to the image, those components must

be nonnegative and sum up to one.

3.5 Face Recognition Across Motion Blur

Let us consider an M class problem with {fm}Mm=1 denoting the gallery faces

which are clean faces, one face per subject. Let g denote the blurred probe image

which belongs to one of the M classes. The problem we are looking at is, given fm’s

and g, find the identity m∗ ∈ {1, 2, ...,M} of g. Based on the discussion above, the

first step is to generate the matrix Bm for each gallery face. Then since g belongs

to one of the M classes, it falls into the span of one of these matrices. Therefore,
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the identity of the probe image can be found by minimizing the projection error of

g onto {Bm}’s considering the proper constraints as

m∗ = arg min
m
‖g −Bmhm‖2

2 + λ‖hm‖1 (3.11)

s.t. ‖hm‖2 = 1 & hm ∈ IRp+

This equation is similar to (3.2), but it has proper constraints to guarantee the

properties we expect for h.

In equation (3.11) we assume observation noise, ν, to be Gaussian, zero mean

and unit variance distribution so that g = Bh + ν. Minimizing the l1 norm of

h guaranties the sparsity of h while the constraints force the elements of h to be

non-negative and sum up to one. This optimization problem can be solved using a

proper variant of the Lasso algorithm [99] which considers additional constraints. It

should be noted that the transformation space T should be defined and discretized

properly so that the algorithm be able to find correct homographies. We refer

to this implementation of our algorithm as brute force, since it searches over all

possible combinations of homographies and tries to minimize the reconstruction

error considering all the constraints.

Figure 3.3 shows some examples of reconstructed faces after estimating the

TSF and homographies. As the figure shows, the algorithm is able to perfectly

reconstruct the synthetic blurred faces. In all the reconstructed examples using the

blur motion model shown in this figure, the RMS value is smaller than one, except

for the case (e), 6D motion. As the figure shows, the RMS is larger for this case
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and the reason is that the algorithm needs to search through a very large set of

transformations and this makes the optimization to be slow and non-efficient which

leads to possibly a local minimum as a result. Latter in Section 3.5.1 we will discuss

how using multiscale implementation we can make the process more efficient.

3.5.1 Multiscale Implementation

Appropriate discretization of the space of transformations will affect our ability

to accurately estimate the blur kernel and homographies. Since we are fundamen-

tally limited by the resolution of the images, having a very fine discretization leads

to redundant computations. So in practice, we need a grid spacing which corre-

sponds to a minimum displacement of one pixel in the image. It should be noted

that since the kernel is defined over 6 dimensions, tx, ty, tz, rx, ry, rz, doubling the

sampling resolution for them increases the number of kernel elements, NT , by a

factor of 26. We set the size of the blur kernel along each dimension in terms of the

size of the blur we need to model, typically a few pixels for translation along each

dimension, e.g. [−6 : 1 : 6], and a few degrees along each dimension of rotation, e.g.

[−5o : 0.5o : 5o].

Considering the discretization defined above, the number of transformations

in the space T becomes in the order of 20 × 106. Optimization over a vector with

this number of elements is very time consuming and inefficient, especially since only

few of those elements have nonzero values. Moreover the resulting matrix B should

have this number of columns which is too many to fit in the computer’s memory.
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Therefore, we need to apply a multiscale framework to solve this problem. We

follow the multiscaling approach presented in [68]; however, here we are dealing with

multiscaling in 6D instead of 3D. The idea is to start from a coarse representation of

image and kernel, and successively refine the estimated kernel at higher resolutions.

We first build Gaussian pyramids of nl levels for both the clean and blurred

images. Then starting from the coarsest scale s = 0, we estimate the homographies

by optimizing (3.11) over a smaller space of transformations. In fact downsampling

a blurred image by scale of s reduces the amount of pixel displacements due to the

camera translation along X and Y axes by the same scale, and if the focal length

of the camera is large enough, it has the same effect on pixel displacements due to

camera rotation about X and Y . Hence, downsampling the images will also reduce

the space of allowed transformations3.

So at each scale s, we find the optimal blur kernel ĥs for that scale. We

then up-sample ĥs to the next scale (s + 1) using bilinear interpolation, find the

nonzero elements of this up-sampled and interpolated kernel. Also, using a proper

threshold we remove very small nonzero values (resulted from interpolation). This

process gives us several 6D nonzero regions inside the transformation space. When

finding the optimal kernel ĥs+1, we only search for the valid homographies which lie

within these nonzero regions. This corresponds to discarding many columns of B,

reducing both the computation and memory demands of the algorithm. We repeat

this process at each scale, until we find the optimal kernel at the finest scale.

Figure 3.3 compares the RMS value we obtain using this multiscale imple-

3translation and rotation along the Z axis remain unchanged after downsampling the image
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mentation with the RMS from the brute force search. As the figure shows, using

multiscale implementation we obtain a much faster algorithm which may yield less

accurate homography estimation and face reconstruction. Also from the figure we

can claim that the larger the search intervals for the transformation is (larger basis

matrix) the more gain we obtain by applying our multiscale implementation (e.g.

case (e)).

Using the multiscale implementation, we obtain a considerable speed up in

the process. For example, while performing the homography estimation and face

reconstruction using the brute force algorithm on 200 synthetic blurred images in

case (b) (each image is of size 64× 64) takes an average of 52.3± 11.3 cputime (on

a 4Gb linux machine, and using the MATLAB software), the multiscale implemen-

tation performs the task in 0.71± 0.15 cputime. This means a speed up of around

70 times. For the case (e) where the multiscale implementation has its most ben-

efits, the speed up we gain is around 80 times. This speed up, although obtained

at the cost of lower accuracy, makes the multiscale implementation perfect for face

recognition applications, where the speed is the main concern and the reconstruction

accuracy is of less importance.

3.6 Experimental Results

In this section, we show the effectiveness of the proposed algorithm for blur-

insensitive face recognition using some synthetic and real blurred faces. We also

study the robustness of the algorithm to noise due to facial variations other than
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blur such as lighting, expression, alignment and occlusion, which are common in an

unconstrained face recognition setting.

Experiments on FERET dataset First we generate some synthetically

blurred faces using the FERET dataset [100]. This dataset includes ’fa’-gallery and

’fb’-probe subsets which have faces of 1001 subjects, with one image per subject.

Faces of the same person across ’fa’ and ’fb’ have small variations in expression and

alignment. The original image size of 256× 256 is first resized to 64× 64. Then we

generate five different synthetically blurred sets of ’fb’ by applying random camera

transformations. These fives sets are synthesized using following camera motions:

(a) in-plane translations, (b) in-plane translations and rotations, (c) out-of-plane

translations, (d) out-of-plane rotations and (e) 6D motions.

To show the effects of different parameters in the performance of the algorithm,

we plot the RMS values versus the values of sparsity of h for various transformation

intervals. We randomly select 200 images among 1001 available synthetically blurred

faces from FERET dataset. To generate the synthetic blurred faces, we fix the

sparsity to 5, and the transformation intervals are as, tx = [−3 : 1 : 3], ty = [−3 :

1 : 3], tz = [0.8 : 0.1 : 1.2], rx = [−2 : 1 : 2], ry = [−2 : 1 : 2], rz = [−3 : 1 : 3].

As can be seen in Fig. 3.4, increasing the sparsity for the reconstruction decreases

the RMS up to a certain point and it remains unchanged afterward. Moreover,

increasing the search intervals for various transformations also initially improves

the RMS and then the RMS remains unchanged for transformation intervals which

are larger than the original ones. These plots show that if we choose large enough

values for the transformation intervals and for the sparsity value, we will obtain
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Figure 3.4: RMS versus sparsity of the blurred coefficients for synthetic blurred
faces from FERET dataset. For the cases (a) to (d) we used brute force search
to estimate the homographies and reconstruct the face. We applied our multiscale
implementation to the case (b) and (e).

good reconstructed faces and RMS values. But this comes at the cost of having a

slower algorithm with higher memory demands.

We also investigate the effect of various parameters in the performance of the

multiscale implementation. The last column in Fig. 3.4 has the plots for multiscale

implementation for cases (b) and (e). As can be seen, the RMS values is higher

for multiscale implementations, but same as brute force case the increase in the

intervals and sparsity improves the results. Even in case (e) we see that the RMS

error keeps improving as we increase the sparsity and intervals; however, again here

we have a trade off between the speed and accuracy.

Face Recognition: We perform face recognition while (i) we consider ’fb’ as
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Clean (a)-S2 (b)-S2 (c)-S2 

(d)-S2 (e)-S1 (e)-S2 (e)-S3 

Figure 3.5: Some examples of the blurred faces in different set-ups from the FERET
dataset.

the gallery set, which means we are ignoring the expression changes and misalign-

ments, and (ii) we use ’fa’ as the gallery set, so we have noise due to expression

changes and misalignments between faces.

For generating synthetic blurred faces, we use three settings for the trans-

formation intervals. Table 3.1 shows the range of transformations we use at each

setting. The sparsity value in all the cases is set to 10. For recognizing faces, we use

a multiscale implementation and the number of scales in multiscale implementation

is set to 3. In all cases, the camera focal length is set to 200. The transformation

Table 3.1: Transformation settings to generate synthetic blurred faces using FERET
dataset.

Set-ups
Transformation intervals

tx, ty tz rx, ry rz
S1 [-2:1:2] [0.8:0.05:1.2] [-1:0.5:1] [-2:0.5:2]
S2 [-3:1:3] [0.8:0.05:1.2] [-2:0.5:2] [-3:0.5:3]
S3 [-5:1:5] [0.8:0.05:1.2] [-3:0.5:3] [-3:0.5:3]
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Table 3.2: Face recognition rates (%) on synthetic sequences from FERET dataset.
’fb’ set is the gallery set.

Sparsity
Set-ups

(a)-S2 (b)-S2 (c)-S2 (d)-S2 (e)-S1 (e)-S2 (e)-S3
5 100 97 100 100 100 93 75
10 100 98 100 100 100 95 82
15 100 100 100 100 100 100 92

intervals are fixed to S2 and we change the sparsity parameter to be 5, 10 and 15.

Figure 3.5 illustrates some examples of the blurred faces in different set-ups.

Table 3.2 shows the recognition rates for different set-ups of the experiments on

the FERET dataset, when ’fb’ set is our gallery faces (no expression changes or mis-

alignment). To evaluate the robustness of the face recognition algorithm against

other sources of noise such as expression changes and misalignment, we perform

the experiments on the synthetic blurred faces using ’fa’ set as the gallery images.

Table 3.3 shows the results. It should be noted that if we use the convolutional blur

model to perform face recognition, we obtain 47% recognition rate on the set (e)-S2,

when the sparsity is set to 20.

Experiments on real motion-blurred dataset: We perform face recogni-

tion experiments on an internally collected dataset. The images have been captured

while the camera has gone through various 6D motion and so the captured images

have non-uniform blur. Each image contains one or more faces (Fig. 3.1) so we

Table 3.3: Face recognition rates (%) on synthetic sequences from FERET dataset.
’fa’ set is the gallery set.

Sparsity
Set-ups

(a) (b) (c) (d) (e)
10 72 70 74 72.5 68
15 76 75 76 74 72
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Gallery Faces Query Faces, Outdoor Query Faces, indoor 

Gallery Query-indoor

Figure 3.6: Some examples of the real blurred images from gallery and query set.

crop the faces from images. Since the proposed algorithm can handle out-of-plane

translation (scaling), we do not need to resize the images and the gallery and probe

images can all be of different sizes. We append the images with zero so to have

two equal size images for comparison and recognition. The query images have been

usually taken indoor, under the same lighting condition. Expression and head pose

variations are other sources of noise available in this dataset. Some examples of the

blurred images from both indoor and outdoor sets are shown in Fig. 3.6.

We perform face recognition on these images. The dataset includes 6 gallery

faces and 250 test images. We use multiscale implementation with 3 scales and set

the transformation intervals as tx = [−3 : 1 : 3], ty = [−3 : 1 : 3], tz = [1 : 0.1 :

3], rx = [−2 : 1 : 2], ry = [−2 : 1 : 2], rz = [−3 : 1 : 3]. The focal length is chosen

to be 200 and the sparsity value is set to 15. As a result we obtain 80% recognition

rate on this dataset.
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3.7 Summary

We proposed a blur-robust face recognition algorithm for space-variant blur

images. Using the transformation spread function, which is a generalization of PSF,

we modeled the blurred face as a weighted average of geometrically transformed

instances of the clean face. This enabled us to construct a matrix, for each clean

face, whose column space spans the space of all the motion blurred images obtained

from the clean face. This matrix was then used in a proper objective function along

with l1 minimization to obtain the TSF coefficients and the identity of the blurred

test face. We also proposed a multiscale implementation of our algorithm to increase

the efficiency and speed of it. The experimental results on both synthetic and real

faces prove the effectiveness of the proposed algorithm on handling non-uniform

blur on faces. Since there is no publicly available dataset for this problem, we could

not perform comparisons. Our future work is to collect proper dataset with outdoor

images and other variations such as illumination changes and to perform comparison

with other available approaches for blur-robust face recognition.
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Chapter 4: Towards View-Invariant Expression Analysis Using An-

alytic Shape Manifolds

4.1 Introduction

The goal of facial expression analysis is to create systems that can automat-

ically analyze and recognize facial feature changes and facial motion from visual

information. This has been an active research topic for several years and has at-

tracted the interest of many computer vision researchers and behavioral scientists,

with applications in behavioral science, security, animation, and human-computer

interaction [101].

Facial expressions occur along with the head motions and pose variations,

especially when there are spontaneous human-to-human interactions. Therefore, it

is necessary for facial expression analysis algorithms to be able to jointly analyze

the head pose and facial expressions, or in other words be invariant to pose changes.

But this is a challenging task especially due to large variations in the appearance of

facial expressions in different views and also the nonlinear coupling of these different

sources of variations in the observed images.

While most of the proposed methods for facial expression analysis can only
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handle frontal-view faces, [102–104], there has been recent progress in designing

pose-invariant facial expression recognition algorithms. Previous work treating pose

invariance in facial expression analysis can be generally divided into two groups

of approaches as those based on a 3D face model and those based on a 2D face

model. It should be noted that since facial geometry conveys important information

about a human’s emotional state, one of the common approaches for analyzing facial

expressions is by using face shape models. Therefore, our focus in this work is on

geometry-based approaches.

There are several approaches that use a 3D face model and jointly estimate

the rigid and nonrigid facial deformations [105–109]. In these approaches, the es-

timated rigid motion of the face is a byproduct of the system and can be used for

tracking facial landmarks, while the non-rigid motion is further processed for expres-

sion analysis. The main disadvantages of these 3D shape model-based approaches

is that they are computationally expensive, require time-consuming initialization

process, and the 3D model fitting techniques may not converge. Moreover in a HCI

application, 2D images and 2D shapes are far more easily available than 3D shapes.

Thus, the focus of our work is on using 2D facial geometries.

Since 2D face images are projections of 3D faces, the rigid head motions and

non-rigid facial expressions are non-linearly coupled in the captured 2D images. This

fact has made the pose-invariant facial expression analysis based on 2D shape mod-

els hard to solve [110]. Most of the existing approaches that use a 2D shape model

and facial landmarks, decouple the rigid and nonrigid motions via normalization by

aligning all the available configurations to a reference frame [111–113]. But these
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normalization-based approaches depend on the choice of the reference frame which

is usually made arbitrarily [114]. There is also a very recent normalization-based

algorithm proposed by Rudovic et al. [110] in which using some trained regression

functions, the 2D landmark locations in non-frontal poses are mapped to the cor-

responding locations in the frontal pose. This method shows promising results for

pose-invariant expression recognition, however, requires a pose estimation phase be-

fore performing pose normalization and errors in pose estimation may contribute to

recognition errors.

The main drawback of all these normalization-based approaches is that they

ignore the intrinsic geometry of shape-space and instead they consider the aligned

shapes as points in the Euclidean space. In this chapter, we emphasize the impor-

tance of understanding shapes as equivalence classes across view-changes instead of

as a vector derived from features such as active shape models. This would enable

expression models to generalize across views. Since the 2D face images are the pro-

jections of 3D faces, the projective shape-space, which carries information about the

configuration of the facial landmarks that are invariant to the camera view point, is

of most importance in expression analysis.

Equivalence classes are difficult to work with from a statistical perspective

and we need a canonical representative from them that can be used for statistical

analysis. For the similarity shape-space (Kendall’s shape-space) [115], concepts such

as pre-shape and Procrustes analysis are well-studied. The affine shape-space for m

landmark points in IRk is identified with the set of all k-dimensional subspaces of

IRm, [114,116], which is a Grassmann manifold. This manifold also has well-studied
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mathematical structure that can be used for statistical analysis [3, 117–119]. But

similar advances in projective shape-space have been slow due to overemphasis on

the importance of similarity shapes in image analysis [120]. Thus, suitable metrics

are hard to define for comparing projective shapes.

On the other hand, projective transformations can in many cases be approx-

imated by affine transformations. Therefore, here we perform expression analysis

using the affine shape-space since its structure is well-understood. But the eventual

goal is to achieve invariance to large view-changes via projective shape-spaces and

this work is a small step in that direction so that the advantages of using shape

spaces for pose-invariant expression analysis can be realized.

Contributions: Our main contribution is to show the advantages of using

a proper shape-space for pose-invariant facial expression analysis. Modeling the

facial landmark configurations as equivalence classes on the affine shape-space, as

an approximation to the projective shape-space, not only decouples the rigid and

nonrigid facial motions, but also offers a well-defined underlying structure for the

data. Most of the available algorithms for expression analysis can easily be extended

to this shape-space.

Outline of the chapter: In Section 4.2, we discuss the landmark-based rep-

resentation of facial geometry. We then discuss the affine shape-space and show

that the facial landmark configurations can be identified as points on the Grass-

mann manifold. Some mathematical discussions on the Grassmann manifold are

also provided. Then in Section 4.3, we describe the extension of some of the facial

expression analysis algorithms to this shape-space and present experimental results
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Neutral AU-1 AU-2 AU-43 AU-12 AU-15 AU-27

Figure 4.1: A sequence from the Cohn-Kanade database (first row), and a subject
in the Bosphorus database performing various AUs (second row). The landmark
locations are shown on the faces.

on facial expression recognition. Finally Section 4.4 illustrates the effectiveness of

our representation for expressions synthesis and expression mapping among subjects.

4.2 Facial Expressions on the Manifold

Non-rigid facial deformations can be encoded using facial action coding system

(FACS) [10], where each action unit (AU) determines the shape of its corresponding

facial components. Figure 4.1 (second row) shows the face of a subject with different

AUs. As can be seen, while AU-1 implies a raised inner brow, AU-27 corresponds

to a wide open mouth. As the figure shows, the geometry of facial components is a

good cue for representing and recognizing most of the AUs/expressions. In our work

we use the landmarks on the face to represent the facial geometry at each frame of

an expression sequence.
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4.2.1 Facial Geometry

Landmark-based face shape representation is one of the most widely used

approaches for geometric modeling of faces. Here we model the facial geometry

using a m × 2 matrix L = [(x1, y1), (x2, y2), ..., (xm, ym)]T in IR2. Figure 4.1 shows

the locations of 2D landmarks on faces in different databases. To model the non-

rigid deformations corresponding to each expression, the first step is to decouple the

rigid and non-rigid deformations of landmarks. Since the shape observed in an image

of a face is a perspective projection of 3D locations of the landmarks, the projective

shape-space is an appropriate choice to realize invariance with respect to the camera

angle. Modeling the facial geometry as equivalence classes in the projective shape-

space introduces a new way of statistical analysis of 2D faces which is independent

of the face poses. But advances in statistical analysis of projective shapes are still

preliminary. On the other hand, projective shapes in constrained situations can

be approximated with affine shapes. Therefore, we limit our discussions to affine

shape-spaces.

All the affine transformations of a shape can be derived from the base shape

simply by multiplying the centered shape matrix, L̃base, by a 2× 2 full-rank matrix

on the right (translations are removed by centering). Multiplication by a full-rank

matrix on the right preserves the column space of the matrix, thus the 2D subspace

of IRm spanned by the columns of the centered shape, i.e. span(L̃base), is invariant

to affine transformations of the shape. Subspaces such as these can be identified as

points on a Grassmann manifold [117].
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Given a sequence of a face performing an expression, we would like to model the

facial deformations that generate such a sequence. Based on the above discussions,

a sequence of faces is represented as a sequence of points on a Grassmann manifold.

So, we can model the facial deformations via geodesics on the manifold, where a

geodesic is a path of shortest length on the manifold between two given points.

The geodesic emanating from a point on the manifold can be characterized by a

velocity vector on the tangent plane at that point. Therefore, we parametrize the

facial deformations corresponding to each expression/AU as a velocity (or sequence

of velocities) with which a point on the manifold (neutral face) should move in order

to reach the final point (apex) in unit-time. In the following, we briefly describe how

to compute these parameters on the Grassmann manifold. The readers are referred

to [3, 119] for a more in-depth discussion of the mathematical details.

4.2.2 Geometry of the Grassmann Manifold

As we mentioned in the previous chapter, a Grassmann manifold, Gm,k, is the

space of k-dimensional subspaces in IRm. By fixing m, k throughout this chapter

we avoid adding suffixes to index the set G. Each element of G can be identified

by a unique m×m projection matrix, P , onto the k-dimensional subspace of IRm.

It should be noted that there are two approaches for representing points on the

Grassmann manifold, either as tall-thin m × k matrices, or as square idempotent

projection matrices. The former while more efficient, requires sophisticated quotient-

space interpretations. The projection matrix representation, on the other hand, has
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Figure 4.2: Process of computing a geodesic on the Grassmann manifold by lifting
it to the particular geodesic in O(m), [3].

relatively simpler analytical and geometric properties, but it is computationally

intensive. However, since we are using sparse landmarks, m is typically in the order

of 50− 100, thus the extra computational burden is not very significant. Therefore,

we work with the projection matrix representation for the Grassmann points. Let

IP be the set of all m × m symmetric, idempotent matrices of rank k. Then, IP

is the set of all projection matrices and hence is diffeomorphic to G. The identity

element of IP is defined as Q = diag(Ik, 0m−k,m−k), where 0a,b is an a× b matrix of

zeros and Ik is the k × k identity matrix.

A Grassmann manifold G (or IP ) is a quotient space of the orthogonal Lie

group, O(m). Therefore, the geodesic on this manifold can be made explicit by

lifting it to a particular geodesic in O(m) [3]. This process is illustrated by Fig. 4.2.

Then the tangent, X, to the lifted geodesic curve in O(m) defines the velocity

associated with a curve on IP . The tangent space of O(m) at identity is o(m), the

85



6& 9&

Figure 4.3: Parallel transport of a vector around a closed loop on the manifold. The
direction and orientation of the vector changes to match the local structure of the
destination point.

space of m×m skew-symmetric matrices, X. In this space, the Riemannian metric

is defined as the inner product 〈X1, X2〉 = trace(X1X
T
2 ). This property is inherited

by IP as well.

The geodesics in IP passing through the point Q (at time t=0) are of the type

α : (−ε, ε) 7→ IP , α(t) = exp(tX)Q exp(−tX), where X is a skew-symmetric matrix

belonging to the set M , where

M =


 0 A

−AT 0

 : A ∈ IRk,n−k

 ⊂ o(m) (4.1)

Therefore, the geodesic between Q and any P is completely specified by an X ∈M

such that exp(X)Q exp(−X) = P . We can then construct a geodesic between any

two P1, P2 ∈ IP by rotating them to Q and some P ∈ IP .

One important concept is the parallel transport which is a smooth operation

between tangent spaces that allows us to transfer tangent vectors between points
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while locally preserving direction and orientation [119]. In Euclidean space, the

parallel transport is simply performed by moving the base of the arrow. However,

moving a tangent vector by this technique on a manifold will not generally be a

tangent vector. Figure 4.3 illustrates the parallel transport on the manifold. As the

figure shows the result of parallel transport depends on the path along which we

move the tangent vector. Readers are referred to [119] for more details on parallel

transport on the Grassmann manifold. Some Grassmann related algorithms which

will be of use in expression analysis are as follows.

1. Let U ∈ Φ−1(P1) so that P1 = UQUT

2. Define P = UTP2U

3. Find X that takes Q to P .(using Algorithm 2)

4. Find the geodesic between Q and P : α(t) = exp(tX)Q exp(−tX)

5. Shift α(t) to P1 and P2 as:
α̃(t) = (U exp(tX)UT )P1(U exp(−tX)UT )

*** Here the sub-matrix A, where X = cdiag(A,−AT ), is the velocity that
takes P1 to P2 in unit time.

Algorithm 1: Find the geodesic between two points P1, P2 ∈ IP

1. Define B = Q− P
2. Find the Eigen decomposition of B = WΣW T .

*** The eigenvalues of B are either 0’s or occur in pairs of the form (λj,−λj)
where 0 < λj ≤ 1. Then Qwj and Qwj′ are chosen to be positive multiples of
each other, where wj, wj′ are the columns of W corresponding to the
eigenvalues λj and −λj. This is achieved by multiplying wj by an appropriate
unit number.

3. Set X = WΩW T ∈M , where Ω is derived from Σ by replacing all the
2× 2 blocks, �diag(λj, λj′), by cdiag(− sin−1(λj), sin

−1(λj)) and keep the rest
unchanged.

Algorithm 2: Given P ∈ IP , find an X ∈ M such that α(1) =
exp(X)Q exp(−X) = P
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1. Let U ∈ Φ−1(P1) so that P1 = UQUT

2. Form a skew-symmetric matrix X = cdiag(A,−AT )

3. Define V (t) = U exp(tX)UT

4. Then P2 = V (1)P1V (1)T

Algorithm 3: P2 ∈ IP that is reached in unit time by following a geodesic
starting at P1 with velocity A

1. Let U1 ∈ Φ−1(P1) so that P1 = U1QU
T
1

1. Let U3 ∈ Φ−1(P3) so that P3 = U3QU
T
3

2. Define V = U1 exp(X)UT
1

3. Compute P4 = V P3V
T

4. Having P3 and P4, the parallel transport of X to P3 is calculated using
Algorithm 1

Algorithm 4: Given P1 and the direction vector X ∈ M , find the parallel
transport of X to point P3

4.3 Facial Expression Analysis

The goal is to perform expression analysis using the equivalence classes of

face shapes on the Grassmann manifold. We show how we can extend most of

the available expression analysis algorithms to the Grassmann manifold in order to

perform expression analysis in an affine-invariant manner. In particular, we discuss

the linear modeling of facial landmark deformations using ASM as well as modeling

the nonlinear deformations using a nonlinear dimensionality reduction technique.

We also discuss the AUs and basic expression recognition by learning statistical

models on the Grassmann manifold.

We use three databases to evaluate the strength of this approach. The first

one is the Bosphorus database [121] that is composed of a selected subset of AUs as

well as the six basic emotions for 105 subjects. For each subject, the neutral face
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and the face in the apex of various AUs and emotions are presented. In addition,

22 landmarks per face are provided by the database. However, we manually marked

75 landmarks for some of the subjects (Fig. 4.1). The second database is the Cohn-

Kanade’s DFAT-504 database (CK) [122], which consists of more than 100 subjects,

each performing a set of emotions. The sequences begin from neutral or nearly

neutral faces and end at the apex state of the expression. The sequences were

annotated by certified FACS coders. We also manually labelled the sequences into

the six basic expressions. Moreover, 59 landmarks per faces are available [123]. The

third database is a sequence of a talking face 1 with 5000 frames which shows the

face of a subject while talking. The facial landmarks are also provided for this

database. Figure 4.1 shows some examples of the images in these databases.

4.3.1 Facial Deformations Modeling

By representing the facial landmark configurations as equivalence classes on

the affine shape-space, we transform the data to the space of nonrigid deformations.

In other words, starting from a projection matrix on the Grassmann manifold cor-

responding to a neutral face, it is ensured that moving in each direction on the

manifold is corresponding to a nonrigid deformation of the initial configuration.

These nonrigid facial deformations can be statistically modeled, depending on the

linear or nonlinear assumptions for the deformations, by calculating the principal

directions of variations using principal geodesic analysis (PGA) or by estimating the

expression manifold through nonlinear dimensionality reduction.

1http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/data

89



1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

noise level

a
v
e
ra

g
e
 p

ix
e
l 
d
is

p
la

c
e
m

e
n
t

PCA−95%

PGA−95%

PCA−85%

PGA−85%

PCA−75%

PGA−75%

Figure 4.4: PCA versus PGA bases for facial landmarks representation and recon-
struction.

4.3.1.1 Linear Deformations Modeling

As we know, assuming a linear structure for the facial deformations, active

shape models (ASM) learn the principal directions of facial geometric variations

using PCA. The same idea can be extended to the Grassmann manifold using PGA,

[124], which is a generalization of PCA to the manifold setting. Representing the

facial landmarks with different expressions as points on the Grassmann manifold,

the principal directions of variations can be learned. For this purpose, the first

step is to find the intrinsic mean of the points on the manifold using the Karcher

mean algorithm for the Grassmann manifold [3, 125]. Then the principal geodesic

directions are calculated using the warped data to the tangent plane at the mean

point.

Figure 4.4 compares the PCA and PGA approaches for recovering the face
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shape, in the talking face database, under the noise. Using manually marked 2D

landmarks on the faces in this database as ground truth, we perturb the position of

landmarks independently with different levels of Gaussian noise. Then we use these

two approaches to reconstruct the shapes from the noisy observations. We apply

the similarity alignment method on the faces to bring them to the same co-ordinate

frame before performing PCA. As the figure shows the PGA bases have higher

resilience against noise. This can be due to the fact that modeling the variations on

the shape-space ensures that the variability being computed is from shape changes

only and not due to rigid transformations.

4.3.1.2 Nonlinear Manifold Learning

Since the linear assumption for facial deformations is not always valid, there

are several approaches that consider the geometric variations of facial components

on a low-dimensional nonlinear manifold and learn such a manifold using nonlinear

dimensionality reduction algorithms [107, 112, 113]. The nonlinear dimensionality

reduction algorithms preserve the local structure of the data while reducing dimen-

sionality. Therefore, considering the true structure of the data is important for these

algorithms.

As emphasized earlier, the face shapes after quotienting the affine group lie

on the Grassmann manifold. The local structure of the data on this space can

be employed to learn the low-dimensional nonlinear expression manifold. A simple

dimensionality reduction algorithm is locally linear embedding (LLE), [126], which
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Figure 4.5: Dimensionality reduction using LLE from data in the Euclidean space
(left) and on the Grassmann manifold (right). Plots show the distributions of the
1D projected data separated by the classes. Better separation is seen among classes
on the right.

is a neighborhood-preserving embedding of high-dimensional inputs. This algorithm

can be extended to the data on the Grassmann manifold to nonlinearly project the

subspaces to the lower dimensional space.

We compare the results of low-dimensional manifold learning using the data

on the Grassmann manifold versus normalized data in the Euclidean space. For this

purpose the dimensionality of the training data, composed of the facial landmarks for

80 subjects in the Bosphorus database having three different expressions, Neutral,

AU-12, and AU-27, is reduced to one-dimension using the LLE method. Figure 4.5

illustrates the distribution of the data in the LLE embedded space for both Euclidean

and manifold cases. As the figure clearly shows, for the data on the Grassmann

manifold the one-dimensional representations are well-separated for different classes

compared to that for the data on the Euclidean space.
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Figure 4.6: A sequence of facial expression is a curve on the Grassmann manifold.

4.3.2 AUs Template Learning

Facial expressions are combinations of several AUs occurring simultaneously

or sequentially in different parts of the face. Recognizing these AUs is a proper

way for expression recognition. To this end, we learn a template for each AU on

the Grassmann manifold. A sequence of faces performing an AU is represented as

a sequence of facial landmarks L = {Li}n1 where L1 corresponds to the neutral face

and Ln to the apex point (in our cases). This sequence is equivalent to a sequence

of subspaces/projection matrices P = {Pi}n1 which can be considered as samples of

a curve on the Grassmann manifold (Fig. 4.6).

We represent each sequence as a piecewise-geodesic curve and model each

piece using its velocity vector. Therefore, we have a sequence of N velocity vectors

A = {Ai}, where Ai = velocity(Pi → Pi+1) and N is the number of segments.

For the case of CK database, we choose N to be equal to the number of sequence

frames minus one. But for the Bosphorus database, since only the initial and final
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images of each sequence are available, each AU is represented using the velocity

vector corresponding to the geodesic between P1 and Pn (n = 2). Although this

geodesic is an approximation to the real sequence, our experiments show that it

is a good approximation since AUs are simple and represented by short sequences

and the geodesic between the initial and end point is almost the same as the curve

connecting the intermediate frames on the manifold.

In order to learn a template model for each AU on the manifold, an important

step is to parallel transport each curve to a common tangent plane so that we can

learn the statistics of the set of vectors corresponding to an AU. As mentioned

earlier, parallel transport on the manifold is different from that of Euclidean space.

Figure 4.7 compares the results of parallel transport on the Euclidean space and

the manifold. The tangent vector from the sequence in the first row is learned and

then we parallel transport it to a new face in the second and third rows. Before

applying the tangent vector, we affine transform the new face so that we can better

show the effect of parallel transport. As the figure shows, parallel transport on the

manifold generates the face with the correct deformations while the corresponding

result on the Euclidean space is distorted. This again emphasizes the importance

of exploiting the shape-space geometry for our problem.

The natural choice for the common tangent plane is the one at the average

of neutral faces on the manifold. For this purpose, we calculate the Karcher mean

for the neutral faces. Then the velocity vectors corresponding to each AU, for the

Bosphorus database, is parallel transported to the mean point and the Gaussian

distribution is learned as the model for each AU. It should be noted that in the
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Figure 4.7: Comparison between the results of parallel transport on the manifold
versus that of Euclidean space. The first sequence (its tangent vector from the
leftmost to the rightmost shape) is parallel transported to the face on the second
and third row, and the new sequence is synthesized on the manifold (second row)
and Euclidean space (third row).

Bosphorus database each AU is represented using a tangent vector. Therefore, the

final model is the mean and standard deviation over the tangent vectors at the mean

neutral face.

Another method for learning an AU template model is using dynamic time

warping (DTW) on various sequences corresponding to each AU [127]. Especially

for the CK database, since each AU is represented using a sequence of projection

matrices and since expressions occur at different rates, it is necessary to time warp

the sequences in order to learn a rate-invariant model for them. Adapting the DTW

algorithm to the sequences that reside on a Riemannian manifold is a straightfor-

ward task, since DTW can operate with any measure of similarity between the

different temporal features. Here, we use the geodesic distance between the projec-

tion matrices of different sequences as a distance function and warp all the sequences
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(corresponding to an AU) to a randomly selected sequence. Then the final model for

each AU is obtained by computing the Karcher mean of all the warped sequences.

This is a simple and fast approach that works fairly well.

4.3.3 Action Units Recognition

Using the learned AU models for the Bosphorus and CK databases, we perform

AU recognition. We report the results on seventeen single AUs in the Bosphorus

database and nine single or combined AUs in the CK database. The training samples

are chosen as images/sequences containing only the target AU occurring in the cor-

responding local facial components (brow, eye, nose, and mouth). In the Bosphorus

database the lack of sufficient landmarks on the faces limits our recognition capabil-

ities. For example we cannot recognize the AU-43 since no landmarks are provided

for the eyes. Also for the CK database, since the sequences are mainly correspond-

ing to the expressions and not AUs, we only chose those AUs for which enough

training sequences are available. We divide both databases into eight sections, each

of which contains images from different subjects. Each time, we use seven sections

for training and the remaining sections for testing so that the training and testing

sets are mutually exclusive. The average recognition performance is computed on

all the sections.

For the Bosphorus database, we perform maximum likelihood (ML) recog-

nition where we find the probability of each test velocity vector comes from the

learned Gaussian distribution. But for the CK database, we first warp each test
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Figure 4.8: Confusion matrices for AU recognition on the Bosphorus (left) and CK
(right) databases. LFAU and UFAU refer to the lower and upper face AUs.

sequence to the learned template using DTW and then use the distance between

the two sequences for recognition. Figure 4.8 shows the confusion matrices for both

databases. As the results indicate, for the AUs that are mainly identified by their

facial deformations the recognition rate is high, e.g. AU-2, AU-4, and AU-27. How-

ever, for AUs whose distinction is more due to the appearance deformations than the

geometries, the algorithm may confuse them with the AUs with similar geometries,

e.g. AU-16 and AU-25. In these cases, AUs occurring in other parts of the face can

be used as cues to remove the ambiguity and improve the recognition.

We also performed a recognition experiment using the Bosphorus database on

the Euclidean space, where the normal parallel transport is performed before learn-

ing the distributions. While the average recognition rate for AUs on the Grassmann

manifold is 83%, this value is 79% on the Euclidean space. Although the recognition

rate is improved on the Grassmannian, but it is not considerable. A possible reason
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can be the fact that in the Bosphorus database the faces are almost always frontal

and there are not significant affine variations between the faces.

4.3.4 Basic Expression Recognition

To have a comparison with baseline results, we perform the basic expression

recognition using the CK database. For this purpose, we manually label the se-

quences into one of six basic expressions, namely, {Happy, Sad, Fear, Surprised,

Disgust, Angry} and then from each sequence we select the last five frames. We

apply the linear discriminant analysis (LDA) and multi-class SVM to the training

data and perform leave-one-subject-out cross-validation over 89 subjects. Table 4.1

compares the results of applying LDA and SVM to the normalized data in the Eu-

clidean space as well as subspace representations on the Grassmann manifold. For

the Grassmann data, we use the projection Grassmann kernel, [129], to perform

SVM as well as kernel LDA. The table also shows the latest results reported by

Cohn and Kanade et al. [128]. However, it should be noted that these results are

reported on the extended Cohn-Kanade dataset (CK+) which has more subjects

and accurate expression coding. The results show some improvements in using the

Table 4.1: Basic expression recognition on the CK dataset using algorithms on both
Euclidean (E) and Grassmann (G) spaces. The last row shows the results on CK+
dataset.

Ha Sa Fe Su Di An Averaged

E-LDA 91.3 75.0 70.2 96.1 76.3 60.0 78.15

G-LDA 88.9 78.2 74.4 97.3 80.5 68.0 81.2

G-KLDA 95.1 85.7 83.0 98.6 86.8 65.7 85.8

E-SVM 91.3 80.3 74.4 97.2 78.9 62.8 80.8

G-SVM 95.0 85.7 74.5 97.2 78.9 65.7 82.8

SVM [128] 98.4 4.0 21.7 100.0 68.4 35.0 54.6
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geometry of the Grassmannian over performing the analysis in the Euclidean space.

Although we see only modest improvements, but as discussed before, while perform-

ing normalization in the Euclidean space suffers from being arbitrary and thus is

highly sensitive to noise, the analysis on the Grassmann is more stable and resilient

to noise.

4.4 Facial Expression Synthesis

In this section, we illustrate the capability of this representation for expres-

sions synthesis and mapping among subjects. We also evaluate the performance of

our approach in decomposing an expression into its constituent AUs. Our results

show that using proper geometric modeling, we not only can recognize most of the

AUs, based on templates learned for them, but also can recognize expressions by de-

composing them into their AUs building blocks, perform novel expression synthesis,

as well as transfer expressions among subjects.

4.4.1 Facial Expression Synthesis

As mentioned earlier, a facial expression is composed of several AUs where they

may occur in combinations or show a serial dependence. Transition from AUs or

combination of actions to another may involve no intervening neutral state (Fig. 4.9).

In our geometric-based representation framework we can easily combine the velocity

vectors corresponding to various AUs in order to generate a curve of new expression

on the manifold. Since the velocity vectors are all defined on the same tangent plane
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Figure 4.9: AUs combinations lead to new expression sequences. The combination
can occur simultaneously (left) or sequentially (right).

(o(m)) addition of velocity vectors is well-defined. We can also compute weighted

sums of velocity vectors to create new expressions. In addition, we can apply the

AUs one after another in order to generate the sequentially occurring AUs.

Figure 4.9 illustrates the process of synthesizing new expression for both simul-

taneous and sequential cases. The combinations of AUs may be either additive or

non-additive. The figure shows an example of an additive combination, AU-12+26,

where the effect of each individual AU is still observed in the final combination.

However, non-additive combinations represent further complexity. An example is

AU-12+15, shown in Fig. 4.9, where the AU-15 modifies the effect of AU-12 on the

lip corners. In these cases the resulting appearance change is highly dependent on

timing. For non-additive AUs the combinations mostly occur sequentially [101].

We performed this experiment on the Bosphorus database. In this database,

the combination of velocities for different AUs gives a new geodesic, sampling along

which generates a sequence of new expressions, as can be seen in Fig. 4.10. The

figure shows examples of generating Surprise and Disgust expressions using their

corresponding AUs. For visualization, the generated sequence of subspaces on the
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Neutral AU-1 AU-2 AU-4 AU-44 AU-10 AU-20 AU-27

Figure 4.10: AUs combinations. First row: some of the AUs from Bosphorus
database, middle row: combination of AUs 1+2+27 which gives Surprise expression,
and last row: combination of AUs 4+44+10+20 which gives Disgust expression

manifold is transformed to the landmark space. For this purpose, we first find

an orthonormal bases Y for each subspace P . Then using the locations of global

landmarks on the face and their corresponding values in the matrix Y , the 2 × 3

affine matrix B is obtained. Applying this matrix to Y gives the landmarks on the

image coordinate-system.

4.4.2 Expression Mapping

Expression mapping (also called performance-driven animation) has been a

popular technique for generating realistic facial expressions. Given an image of the

person’s neutral face as well as the same person’s face with an expression, the goal

is to generate the same expression on a new person’s neutral face. In this section we

are not dealing with the appearance modeling of the expressions, but our goal is to

show how we can transport an expression model between subjects. The appearance
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Figure 4.11: Expression mapping. The happy expression is mapped from a subject
in the first row to another subject in the middle row. The last row shows the real
happy expression for the second subject. The synthesized sequence has the style of
the first subject.

modeling can always be done on top of geometric modeling to create photorealistic

faces [130].

Mapping an expression from a point on the manifold to another point can

be performed by parallel transporting the geodesics between subspaces using Algo-

rithm 4. Figure 4.11 shows an example of mapping the Happy expression between

two subjects in the Cohn-Kanade database. It also shows the real expression se-

quence available for the second subject. It should be noted that mapping an expres-

sion, from a subject to another subject, maps the style of the first subject as well.

Therefore, the real sequence may not necessarily be the same as the synthesized one.

4.4.3 Expression Decomposition

Parsing an expression-stream into its constituent AUs is an essential require-

ment of a robust facial expression analysis system. Most of the existing algorithms
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Figure 4.12: Expression decomposition into AUs. First row is Disgust expression and
second row is Surprise expression. Only the labels for the AUs with the intensities
greater than 0.2 are shown.

require training using various combination of AUs, additive and non-additive. But

in the proposed algorithm we can decompose an expression only using the learned

template models for the individual AUs. For this purpose, we build a dictionary

matrix, D = [Aau−i], where the columns are the velocity vectors corresponding to

various AUs. This dictionary matrix can be built either for a subject using the

mean velocity vectors learned for that subject, or for the whole database using AU

template models learned using all the training data. Now having the velocity vector

for a test expression, Ae, the coefficient vector x is obtained by solving for the lin-

ear system Ae = Dx using linear programming and with the constraint that {xj}’s

must be all positive. The reason for this constraint is that each expression is the

combination of several AUs with positive weights.

Figure 4.12 shows two examples of expression decomposition for a subject. As

the figure shows, the Disgust and Surprised expressions are decomposed into some

AUs. The figure also shows the AUs with considerable weights/intensities (greater
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than 0.2) for each expression. Knowing the AUs that an expression is composed of,

we can easily recognize the expression. This experiment can be extended for stream

of expressions to detect transitions among various AUs as well as different intensity

level of an AU. (e.g. different level of mouth opening).

4.5 Summary

This work is a step toward breaking the dependence of facial expression anal-

ysis systems to the choice of the coordinate frame of the camera. We discussed

that using the equivalence class of shapes in a proper shape-space, one can remove

the need for a pre-processing step to align the data to a common coordinate frame.

While we claim that the projective shape-space is the proper space to model the

facial variations, we have limited our discussions to the affine shape-space since it

is mathematically well understood compared to the projective space. We showed

that the affine shape-space for our facial landmark configurations has Grassmannian

properties and therefore nonrigid facial deformations due to various expressions can

be represented as points on the Grassmann manifold. By modeling the facial expres-

sions on this manifold we ensure that the variability being computed is from shape

changes only and not the coordinate frame. We extended some of the available sta-

tistical algorithms for facial expressions, e.g. ASM, nonlinear manifold learning, and

expression template learning, to the Grassmann manifold and showed the benefits

of this representation. It should be noted that while similarity alignment in the

Euclidean space can remove the effect of camera coordinate frame to a good extent,
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working with equivalence class of shapes in the shapes-spaces is a systematic way of

dealing with alignment issue and the main benefits become more obvious when we

move to the projective shape-space.
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Chapter 5: Structure-Preserving Sparse Decomposition for Facial Ex-

pression Analysis

5.1 Introduction

Some emotions motivate human actions and others enrich the meaning of

human communications [131]. Therefore, understanding the users’ emotions is a

fundamental requirement of human-computer interaction systems (HCI). Facial ex-

pressions are important means of detecting several emotions. Following the work

of Ekman et al. [10], many studies have focused on the analysis and recognition of

facial expressions. The goal of facial expression analysis is to create systems that

can automatically analyze facial feature changes and map them to facial expressions.

This has been an active research topic for several years and has attracted the inter-

est of many computer vision researchers and behavioral scientists, with applications

in behavioral sciences, security, animation and human-computer interaction.

Facial expressions are combinations of a set of AUs introduced in the Facial

Action Coding System [10]. Action units are the smallest visibly discriminable

muscle actions that combine to perform expressions and FACS is a human-observer-

based system designed to code these subtle changes in facial features [4]. Such
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Figure 5.1: Summary of the proposed algorithm. The AU-dictionary D is con-
structed from various blocks of AU atoms. The test face is represented using a
matrix of features (image matrix Y ) and is decomposed using the AU-dictionary
and coded as a structure-preserving sparse code matrix X (Y = DX). This rep-
resentation enables expressive face classification as well as decomposition into its
constituent AUs.

changes happen locally in the face and result in both local appearance changes and

shape deformations. Previous research studies on expression analysis indicate the

importance of proper modeling of such local deformations for automatic expression

analysis. AUs are suitable as mid-level representations in automatic facial expres-

sion analysis systems as they reduce the dimensionality of the problem [132, 133].

However, there have been only a few attempts that exploit the domain experts’

knowledge on AU composition rules and expression decompositions for designing

systems to analyze and recognize expressions.

In this chapter, we propose a dictionary-based approach for facial expression
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analysis including expression decomposition, classification and synthesis. Using the

domain experts’ knowledge on various AUs and how local facial regions are affected

by these AUs, we first learn an AU-dictionary, D. This dictionary, as shown in

Fig. 5.1, consists of AU-blocks, i.e., dictionary atoms corresponding to each AU,

and so it has a particular structure which helps capture the high-level knowledge

regarding AUs and their composition rules extracted from FACS. To encode this

knowledge as sparse codes while designing the dictionaries, we propose a two-layer

approach for grouping the dictionary atoms. The lower layer is the AU-layer which

groups dictionary atoms corresponding to each AU. The top layer is called the

expression-layer which uses the high-level knowledge to group different AUs that

are composed to form a particular expression (e.g. Sad, Happy, Angry). This two-

layer approach suggests a multi-layer structure-preserving sparse coding problem.

The sparse code matrix, X, approximates an expressive face, Y , using this AU-

dictionary.

As shown in Fig. 5.1, the test face is represented using a matrix of features,

Y , which is referred to as the image matrix. Therefore, we are dealing with a multi-

layer as well as multi-variable (columns of Y ) sparse coding problem. The image

matrix also has a structure in which local descriptors (columns) corresponding to

each AU region on the face are grouped together and in the top layer all the columns

are grouped together to represent a particular expression. In order to preserve this

structure we define two grouping layers for this image matrix as well. Then by

employing a multi-layer, multi-variable group sparse coding algorithm, we minimize

a proper objective function which imposes these groupings (for both dictionary
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and image matrix) into the sparse code matrix X. This is effective for expression

classification as well as decomposing an unknown expression. We can also synthesize

new expressions through valid composition of AU-blocks of the dictionary.

Learning an AU-dictionary requires a dataset of subjects performing various

AUs which is not always available. On the other hand, since the definition of AU is

an ambiguous semantic description in FACS [134], it is hard to define proper struc-

tures for AUs. Hence, we further propose a structure-preserving dictionary learning

algorithm to jointly learn several semantic structures on expressive faces and their

corresponding dictionary atoms (structure-blocks). For this purpose, we introduce

an appropriate objective function and propose a greedy algorithm to optimize that.

We then use the learned dictionary (concatenation of structure-blocks) for expres-

sion classification in a similar way as discussed for the AU-dictionary. We evaluate

the proposed algorithm on two publicly available datasets and demonstrate the ef-

fectiveness of algorithms for expression decomposition and classification. We also

illustrate some preliminary examples of expression synthesis using our generative

algorithm.

Contributions: Our main contributions in this work are:

• We learn an AU-dictionary by defining proper semantic regions on the face.

• We incorporate the high-level knowledge from FACS regarding AUs and their

composition rules as a two-layer grouping over dictionary atoms. We also

impose a similar two-layer grouping over the test image matrix.

• We extend the single multi-layer group sparse coding algorithm proposed in
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[135] to the multi-layer, multi-variable group sparse coding case.

• We also propose a structure-preserving dictionary learning algorithm to replace

the AU-dictionary.

Outline of the chapter: We review related work in Section 5.2. Then

Section 5.3 discusses the structured AU dictionary, our approach to generate it and

the groupings we impose over the dictionary atoms. Then in Section 5.4 we present

the multi-layer multi-variable group sparse coding, the objective function and the

algorithm to optimize it. A structure-preserving dictionary learning algorithm is

then proposed in Section 5.5. Experimental results are presented in Section 5.6.

5.2 Related Work

Many previous approaches for expression analysis have proposed discrimina-

tive classifiers for AUs and/or universal emotions [102, 106, 110, 128, 134, 136–138].

Among these, Littlewort et al. [136] presented the Computer Expression Recogni-

tion Toolbox (CERT) which is a software tool for fully automatic real-time facial

expression recognition. CERT can automatically code the intensity of 19 different

facial actions from FACS and 6 different universal facial expressions. Although some

of these approaches show very promising recognition rates on emotions/AUs, they

do not benefit from the connection among AUs and emotions provided in FACS as

well as they are pure discriminative classifiers. For surveys on recent developments

in universal emotions and AU recognition, we refer the readers to [131,132].

A few algorithms that employed the knowledge presented in FACS regarding
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AUs and emotions for expression analysis are reviewed here. Tong et al. [106] sys-

tematically combined prior knowledge about facial expressions and AUs with image

measurements through a dynamic Bayesian network (DBN) to achieve accurate,

robust, and consistent facial expression analysis. They modeled the relationship be-

tween AUs and the local facial components as well as the relationships among AUs

themselves using a complex graphical model and used that to infer facial expressions.

Yang et al. [134] interpreted facial expressions by learning some compositional

features based on local appearance features around AU areas. They avoided AU

detection, and tried to interpret facial expression by learning these compositional

appearance features. They showed the consistency of the built compositional fea-

tures with respect to the interpretation of FACS.

There are some generative approaches for expression analysis in which new ex-

pressions are recognized as compositions of simpler/basic expressions. Active shape

models (ASM) and active appearance models (AAM) [139] are used to approximate

deformable face models using linear subspace analysis. However, linear subspace

methods are inadequate to represent the underlying structure of real data and so

nonlinear manifold learning approaches are proposed. Liao et al. [107] decomposed

each expression using a basis of eight one-dimensional manifolds each learned of-

fline from sequences of labeled universal expressions. They applied tensor voting to

learn these nonlinear deformation manifolds and showed results for both expression

recognition and synthesis.

By observing that images of all possible facial deformations of an individual

make a smooth manifold embedded in a high dimensional image space, Chang et
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al. [140] proposed a probabilistic video-based facial expression recognition method

on manifolds. They represented a complete expression sequence as a path on the ex-

pression manifold and used a probabilistic model to perform expression recognition

as well as synthesize image sequences. Taheri et al. [141] modeled AUs as geodesic

pathways on the Grassmann manifold. This representation enables expression mod-

els to be generalized across view changes. Moreover, it enables the decomposition

of an expression into constituent AUs, synthesis of new expressions and expression

mapping between different subjects.

These studies have limitations in terms of the expressions they recognize or

features they use. Most of them are pure discriminative classifiers or only use the

facial shape information and so can only synthesize the shape sequences. But they

all suggest that it is important to propose a generative expression analysis system

that models AUs and employ them for expression analysis by incorporating domain

experts’ knowledge provided by FACS regarding expression decomposition and AU

composition rules.

Dictionary learning and sparse coding have been effective for robustly modeling

data with some level of noise and intra-class variations. Algorithms for data-driven

learning of domain-specific overcomplete dictionaries are widely employed for recon-

struction and recognition applications [142–145]. Local variations in the appearance

of the faces due to various expressions can also be modeled using a set of dictionary

atoms. But facial expressions are structured actions (e.g. deformations correspond-

ing to each AU occur at a particular local region of the face) and maintaining this

structure is important for expression analysis. Yu et al. [146] propose a computa-
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Figure 5.2: Some samples of various AUs and different subjects performing them
from the Bosphorus dataset. The regions that each AU affects are illustrated on the
faces.

tionally efficient MAP-EM algorithm for structure-preserving dictionary learning.

This approach regularizes the sparse estimation by assuming dependency on the

selection of active atoms. In this work, we also need to learn a structure-preserving

dictionary for modeling facial expressions and AUs.

5.3 Action Unit Dictionary

Action units are the basic components of each expression and they are usually

different for various expressions. Therefore, breaking an expression into a set of AUs

is an important step toward facial expression analysis. Facial action coding proposed

in FACS serves only as an initial step. However, the next step for modeling these

AUs and exploiting them for expression analysis is particularly difficult due to the

ambiguous semantic nature of AUs. In this section, we propose a dictionary learning

framework for facial AUs.
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AU	
   Name	
  

1	
   Inner	
  Brow	
  Raiser	
  

2	
   Outer	
  Brow	
  Raiser	
  

4	
   Brow	
  Lowerer	
  

5	
   Upper	
  Lip	
  Raiser	
  

6	
   Cheek	
  Raiser	
  

7	
   Lid	
  Tightener	
  

9	
   Nose	
  Wrinkler	
  

12	
   Lip	
  Corner	
  Puller	
  

15	
   Lip	
  Corner	
  Depressor	
  

16	
   Lower	
  Lip	
  Depressor	
  

AU	
   Name	
  

17	
   Chin	
  Raiser	
  

20	
   Lip	
  Stretcher	
  

22	
   Lip	
  Funneler	
  

23	
   Lip	
  Tightener	
  

24	
   Lip	
  Pressor	
  

25	
   Lips	
  Part	
  

26	
   Jaw	
  Drop	
  

27	
   Mouth	
  Stretch	
  

28	
   Lip	
  Suck	
  

43	
   Eyes	
  Closed	
  

Emo)on	
   AUs	
  	
  

Happy	
   6+12+25	
  

Sad	
   1+4+15	
  

Surprise	
   1+2+5+26	
  

Fear	
   1+2+4+5+20+26	
  

Angry	
   4+5+7+23	
  

Disgust	
   9+15+16	
  

Figure 5.3: FACS action units and their compositions. As the right table shows,
combinations of different AUs generate universal facial emotions. [4]

5.3.1 Modeling Action Units

Each AU determines the deformation of its corresponding facial components,

as shown in Fig. 5.2 and Fig. 5.3. Figure 5.2 shows faces of a few subjects performing

different AUs. As can be seen, each AU acts in a local area of the face while keeping

other parts unchanged. This motivates using local features extracted from expres-

sive faces to model each AU. Moreover, Fig. 5.2 shows that there is a large degree

of inter-subject variations in performing various AUs. These individual differences

in expressiveness relates to the degree of facial plasticity, morphology, frequency of

intense expression, and overall rate of expression [4]. These intra-subject variations

should also be considered while modeling various AUs. As discussed earlier, dic-

tionary learning is effective for modeling such data with large degree of inter-class

variations.

While dictionary learning using all local descriptors extracted from faces can
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be effective for expression analysis, it does not preserve the structure of facial de-

formations. For example, a deformation in a particular local area of the face (e.g.

mouth) can be reconstructed using the same set of dictionary atoms used for rep-

resenting a deformation in different parts of the face (e.g. brow). The coherence

of such a dictionary limits its descriptive and discriminative power and the large

degree of freedom in choosing dictionary atoms may become a source of instability

in decomposition [146].

Therefore, it is important to preserve the structure of deformations while mod-

eling AUs. To this end, we learn a dictionary per AU using local features extracted

from AU semantic regions on faces performing that AU. These semantic regions are

defined as regions on the face in which local deformations corresponding to various

AUs occur. Such regions can be subjectively defined by looking at various faces

performing particular AUs. Figure 5.2 illustrates some examples of these semantic

regions we use for different AUs. After defining these regions, we apply the well-

known K-SVD algorithm [142] to learn data-driven AU dictionary blocks, i.e., atoms

corresponding to each AU. There are also some extensions proposed for the K-SVD

algorithm, [143, 144], to learn dictionaries that are compact, discriminative as well

as reconstructive. We can apply these extensions to learn dictionaries for the AUs

acting on the same semantic region of the face in order to learn dictionaries that are

discriminative for those AUs.

Finally, we have several blocks of dictionaries (AU-blocks) which can be com-

bined to generate an AU-dictionary, as illustrated in Fig. 5.1. This dictionary has a

structure indicated by its AU-blocks. This structure is later imposed as a constraint
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for structure-preserving sparse coding (Section 5.4). Details of feature representa-

tion and extraction are discussed in Section 5.3.3.

5.3.2 Composing Action Units

There are some subsets of AUs that usually co-occur on the face to generate

meaningful facial emotions. The number of these subsets is much smaller than

all possible combinations of AUs. These subsets of AUs are especially well-known

for universal expressions. For example, it is known that a happy face is usually a

combination of AUs-{6+12+25}. Figure 5.3 shows some combinations of AUs that

generate universal facial emotions. After learning the AU-dictionary, we should

define these high-level groupings for AU-blocks in the dictionary. Such a grouping

is particularly useful for expression classification into one of universal facial emotion

classes as well as expression decomposition.

It should be noted that while most of the expressions can be reconstructed as

linear combinations of additive AUs, there are some non-additive AU combinations

as well. An example of an additive AU combination is smiling with mouth open,

which can be coded as AU-{12+25}, AU-{12+26}, or AU-{12+27} depending on

the degree of lip parting [4]. However, non-additive combinations usually affect

the same area of the face where the outcome of their simultaneous occurrence is

different from the effect of each of the constituent AU. An example is AU-{12+15},

which often occurs during embarrassment. Although AU-12 raises the cheeks and

lip corners, its action on lip corners is modified by the downward action of AU-
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15 [4]. Although such non-additive combinations usually occur sequentially, the

simultaneous occurrence of them imposes further constraints. Since the number

of such non-additive AUs is limited, this issue can be addressed by adding these

non-additive combinations as new AUs to the dictionary.

5.3.3 Feature Extraction

Feature representation plays an important role in facial expression recogni-

tion. The features used for this purpose generally fall into two categories, geometric

features [107, 140, 141] and appearance features [106, 134, 147]. In this work we use

proper appearance features to model local appearance deformations.

Selection of appropriate features is critical in facial expression analysis. Pop-

ular local appearance descriptors include Gabor filter, Haar-like features, SIFT and

Local Binary Patterns (LBP). While all these features are powerful for describing

local appearances, the SIFT features are effective in describing the edges and finer

appearance features. Since deformations corresponding to facial expressions are

mainly in the form of lines and wrinkles, we chose SIFT features for our experi-

ments.

To extract the local features, we divide each face image into overlapping

patches so that they cover all the AUs’ semantic regions (Fig. 5.4). We extract SIFT

features at three scales from the center of all the patches, denoted as {P1, P2, ...PK},

where K is the number of image patches. We choose the local patches to be of

size (n/8 × n/8) where the size of the face images are (n × n) (after aligning and
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Figure 5.4: Local overlapping patches are placed on the face image and local de-
scriptors are extracted from each patch.

resizing). The amount of overlaps between patches may vary and in the experiments

presented in this chapter it is set to n/16.

5.4 Structure-Preserving Sparse Coding

In the previous section we discussed how to learn an AU-dictionary and defined

some compositional rules for grouping AUs to form various emotions. The particu-

lar structure in the dictionary and the AUs grouping can be imposed as constraints

for structure-preserving sparse coding. In this section, we discuss the formulation

of our multi-layer, multi-variable group sparse coding and present methods for pre-

dicting the class label of an expressive face and decomposing an expression into its

constituents using sparse codes.
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5.4.1 Problem Formulation

Having the structured AU-dictionary, an expressive face can be decomposed

into combinations of some AUs. Our goal is to impose proper grouping-based con-

straints on this decomposition so that a sparse subset of AU-blocks in the dictionary

is used for expression reconstruction and the subset is among the valid compositions

of AUs that we discussed in Section 5.3.2. Such grouping-based constraints encode

the high-level knowledge regarding expression formations on the face.

Dictionary grouping: There are two layers of grouping constraints to be

imposed on the dictionary atoms. In the lower layer, to emphasize that the dictio-

nary atoms used for reconstructing the test face should come from a sparse set of

AUs, we impose the sparsity constraint on the AU-blocks in the dictionary and force

the number of blocks with non-zero coefficients to be as few as possible. On the

top layer, we impose AUs co-occurrence information through valid AUs composition

(or expression-layer grouping) by forcing the groups having non-zero coefficients for

their AU-blocks to be as few as possible. We refer to these two layers of grouping

constraints as the dictionary-AU-layer and the dictionary-expression-layer.

Image matrix grouping: As mentioned before, an expressive face is repre-

sented as a set of local descriptors extracted from overlapping patches on the face.

So we have a multi-variable (multi-column) representation for each test face. How-

ever, the sparse representation for each of the local descriptors is not independent

from others. Hence, we define two layers of grouping constraints on the image ma-

trix. On the top layer, we force the same sparsity pattern for all the local descriptors
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by grouping them together in one group. This means that we want all these local

descriptors to have the same expression label. In the lower layer, we want the de-

scriptors extracted from the same AU semantic regions on the face to have similar

sparsity patterns. This implies that these descriptors are reconstructed using the

atoms in the same dictionary-AU-layer. We refer to these two layers of grouping on

the image matrix as the test-AU-layer and the test-expression-layer. An illustra-

tion of these different layers of grouping constraints and the sparse code matrix is

depicted in Fig. 5.1.

The AU-dictionary consists ofN blocks forN action units, D = {D1, D2, ..., DN},

where the ith block has Ji dictionary atoms. Therefore, the AU-dictionary, D, is a

matrix of size d×J where d is the dimensionality of local descriptors extracted from

a patch on the face and J =
∑

i Ji. The dictionary-AU-layer is formed by grouping

atoms in each Di and the dictionary-expression-layer is formed by grouping some

valid subsets of {Di}’s as discussed in Section 5.3.2. We express these two grouping

layers using a set of indices, Gdic = {g1, g2, ..., g|Gdic|}, where gi ⊂ {1, ..., J} includes

indices of those dictionary atoms grouped together in either AU- or expression-layer.

|Gdic| is the total number of such groupings which is a summation of the number of

groups in two layers.

Image matrix Y is a d × K matrix where K indicates the number of local

descriptors extracted from each expressive face (number of patches). We also define

a set of indices, Gtst = {g1, g2, ..., g|Gtst|} where gi ⊂ {1, ..., K} includes indices of

grouped dictionary atoms in either the AU- or the expression-layer. |Gtst| is the total

number of such groupings which is the summation of number of groups in two layers.
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The matrix of sparse codes, X ∈ RJ×K should be computed such that the grouping

structures indicated by Gdic and Gtst are satisfied. Therefore, we formulate the

objective function of multi-layer, multi-variable structure-preserving sparse coding

as follows:

min
X∈RJ×K

f(X) = min
X

1

2
‖Y −DX‖2

F (5.1)

+ γdic

K∑
k=1

∑
g∈Gdic

ωdicg ‖X(k)
g ‖2

+ γtst

J∑
j=1

∑
g∈Gtst

ωtstg ‖X(j)
g ‖2 + λ‖X‖1

Here γdic, γtst, ω
dic
g , ωtstg and λ are weights on different layers and different groups.

X(k) and X(j) are the kth column and the jth row of matrix X, respectively, X
(k)
g

is a part of the column X(k) indicated by the indices in g ∈ Gdic and X
(j)
g is a part

of the row X(j) indicated by the indices in g ∈ Gtst. Also ‖X‖1 is the l1-norm of

the matrix X which is defined as the l1-norm of the vector formed by concatenating

all the columns of the matrix. This l1-norm penalty encourages the solution to be

generally sparse, and λ is the regularization parameter that controls the sparsity

level. For the X
(k)
g and X

(j)
g we use the l2-norm to encode the sparse codes within

each group as a unit. We adopt the Proximal Gradient method proposed recently

in [135] to optimize this objective function and extend it to the multi-layer, multi-

variable sparse coding case, as discussed in the next section.
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5.4.2 Objective Optimization

In this section we discuss an extension of the Proximal Gradient method [135]

to optimize the objective function (5.1). This objective function consists of three

terms as follows,

min
X∈RJ∗K

f(X) = min
X

g(X) + Ω(X) + λ‖X‖1 (5.2)

where g(X) = 1
2
‖Y − DX‖2

F is the squared-error loss and Ω(X) is called the

structured-sparsity-inducing penalty [135]. The main challenge in optimizing this

objective function arises from the overlapping group structure in the non-smooth

penalty term Ω(X). The overlaps among {X(k)
g }g∈Gdic and {X(j)

g }g∈Gtst make the

block coordinate descent methods [148,149] which are commonly used for the prob-

lem with non-overlapping groups (group Lasso) not applicable. The most widely

adopted method for addressing this problem is to formulate it as a second-order

cone programming (SOCP) and solve it by the interior method (IPM) [150]. But

this approach is computationally prohibitive even for problems of moderate size.

Very recently, Chen et al. [135,151] proposed the Proximal Gradient method for es-

timating regression parameters with the overlapping group structure encoded in the

structured-sparsity-inducing norm. They showed that using the dual norm, the non-

separable structured-sparsity-inducing penalty Ω(X) can be approximated using a

smooth function such that its gradient can easily be calculated. The approximation

problem can then be solved by the first-order proximal gradient method: fast iter-
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ative shrinkage-thresholding algorithm (FISTA) [152]. In this work, we adopt this

method and extend it to the multi-layer, multi-variate group sparse coding in order

to optimize (1).

The non-smooth penalty term Ω(X) can be formulated as

Ω(X) = γdic

K∑
k=1

∑
g∈Gdic

ωdicg ‖X(k)
g ‖2 (5.3)

+ γtst

J∑
j=1

∑
g∈Gtst

ωtstg ‖X(j)
g ‖2

= max
A1,A2

〈C1X,A1〉 + 〈C2X
T , A2〉

where A1 and A2 are auxiliary matrices associated with X
(k)
g and X

(j)
g respectively.

The matrix A1 is of size
∑

g∈Gdic |g| × K and its kth column is defined as αk =

[αkg1
T
, ..., αkg|Gdic|

T
]T with the domain Q ≡ {αk|‖αkg‖2 ≤ 1,∀g ∈ Gdic}, where Q

is the Cartesian product of unit balls in Euclidean space and thus a closed and

convex set. A2 is also a matrix of size
∑

g∈Gtst |g| × J and its jth column is defined

as αj = [αjg1
T
, ..., αjg|Gtst|

T
]T with the similar domain as defined before. There are

also two highly sparse matrices, C1 and C2, which help separating the overlapping

groups in X. In the matrix C1 ∈ R
∑
g∈Gdic

|g|×J , the rows are indexed by all pairs of

(i, g) ∈ {(i, g)|i ∈ g, i ∈ {1, ..., J}}, the columns are indexed by j ∈ {1, ..., J}, and

each element is given as:

C
(1)
(i,g),j =


γdicω

dic
g if i = j,

0 otherwise
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and similarly the elements of C2 ∈ R
∑
g∈Gtst

|g|×K are also defined (replacing γdicω
dic
g

with γtstω
tst
g ).

The smooth approximation of Ω(X) is formulated as follows,

fµ(X) = max
A1,A2

(
〈C1X,A1〉+ 〈C2X

T , A2〉 − µ(d(A1) + d(A2)
)

(5.4)

where µ is the positive smoothness parameter which controls the degree of approx-

imation and d(A(.)) = 1
2
‖A(.)‖2

F . Chen et al. [135] proved that for any µ > 0, fµ(X)

in a convex and continuously-differentiable function in X, and the gradient of fµ(X)

takes the following form:

5fµ(X) = CT
1 A
∗
1 + A∗2

TC2

where A∗1 and A∗2 are optimal solutions to (5.4). [135] also provides the closed-form

equations for these optimal solutions. The equations presented in [135] can be eas-

ily extended to our problem. Given the smooth approximation of the non-smooth

structured-sparsity-inducing penalties, the fast iterative shrinkage-thresholding al-

gorithm (FISTA) can be applied to minimize the objective function in (5.2). Read-

ers are referred to [135,151] for more details on this optimization technique and the

smoothing proximal gradient algorithm for structured sparse coding.
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5.4.3 Expression Decomposition and Classification

Using the structure-preserved sparse code matrix X, we can decompose an

expressive face into its constituent AUs. Then the magnitude of each AU (the l2-

norm of the corresponding block in the sparse code matrix X) can be an indication

of the intensity of that AU in the face. This decomposition is not limited to faces

with universal emotions and can be performed for any expressive face. However

since FACS specifically has the information regarding AUs composition rules for the

universal emotions, we can enforce these particular groupings into the dictionary-

expression-layer and employ that for universal expression recognition.

Using the information presented in Fig. 5.3, right table, we form the grouping

indices for the dictionary-expression-layer. Now having a test face with universal

emotion, we can predict the class label for this face based on the reconstruction

error in the dictionary-expression-layer such that we assign the test image to the

class with the minimum residual error computed as:

c∗ = arg min
c
‖Y −Dδc(X)‖F (5.5)

where δc(X) is obtained by setting all the coefficients in X except those in the cth

dictionary-expression-layer to be zero.
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5.5 Structure-Preserving Dictionary Learning

Constructing the AU-dictionary needs expert-level knowledge regarding AUs

and the regions they affect on the face as well as a dataset with subjects performing

various AUs for data-driven dictionary learning. Such information and dataset may

not always be available. Therefore, it is necessary to have an automatic approach

for structure-preserving dictionary learning for facial expression analysis.

To this end, we propose a structure-preserving dictionary learning algorithm

for facial expressions. The goal is to jointly estimate some semantic structures on

different expressive faces and their corresponding dictionary atoms. Our approach

is motivated by Yu et al. [146] which proposed a computationally efficient MAP-EM

algorithm for structure-preserving dictionary learning. With the goal of preserving

the image directional regularity, they defined an initial set of dictionary bases using

directional PCAs. Then using the EM framework, patches from the input image

are clustered based on their residual errors over the initial dictionary bases and

the dictionary bases are updated. This process converges after some iterations and

finally the directional structures on the image as well as their dictionary bases are

obtained.

We model a face as a collection of local subspaces so that each subspace element

is well reconstructed using that subspace basis and its approximation via other

subspaces results in a large residual error. So the goal is to find these subspace

structures over various expressive faces. In other words, we want to find some

clusters {Si} over the facial patches and their corresponding dictionary atoms {Di}
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Figure 5.5: Learned structures for the universal expressions from the CK+ dataset
(best viewed in color). AN: Angry, DI: Disgust, FE: Fear, HA: Happy, SA: Sad, SU:
Surprise.

so that the final clusters (or their corresponding subspace representations) are as

separate as possible. This can be achieved by maximizing the summation over cross-

residual errors which we define as the error in representing each cluster’s descriptors

using other cluster’s dictionary atoms. The objective function can be formulated as

follows,

max
{Si},{Di}

∑
i

∑
j 6=i

‖Y (Si)−DjXij‖2
F (5.6)

where Y (Si) is a matrix with the columns of all the descriptors extracted from the

patches at cluster Si, and Xij is the matrix of sparse coefficients resulting from

decomposition of Y (Si) on dictionary Dj where j 6= i. This problem can be solved

by a greedy algorithm based on a bottom-up pair-wise merging procedure. The

algorithm starts with some initial clustering of input patches and then in order to

maximize (5.6), at each step we greedily merge two clusters with minimum cross-

residual costs.

We initialize the clusters at each of the patch locations, p, on expressive faces

with a same expression label, e, and learn the initial dictionary atoms, De,p, using

patch descriptors at each initial cluster, Se,p. This means that if we have K local
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patches at each face image and E different expression labels, we start with a K×E

initial set of dictionary blocks. The reason to incorporate the expression labels for

structure initialization is that the patches at the same locations but on different ex-

pressive faces do not necessarily encode the same semantic knowledge. For example,

the patches corresponding to the lip corners are in different locations for Happy and

Surprise faces.

As mentioned earlier, we adopt a greedy bottom-up procedure to merge pairs

of clusters. At each iteration of the algorithm (before the stopping criterion is met),

the cross-residual error between each pair of clusters, Crc, is calculated and then the

two clusters with the minimum merging cost, Cr̃c̃, are merged to form a new cluster,

(r̃, c̃) = arg min
r,c

Crc (5.7)

= arg min
r,c

(
‖Y (Sr)−DcXrc‖2

F

+ ‖Y (Sc)−DrXcr‖2
F

)

The dictionary for the new cluster is updated using the K-SVD algorithm [142].

The procedure stops when the minimum merging cost of two clusters goes above a

threshold. A summary of this algorithm is presented in Algorithm 5. Here {ye.,p}

is the feature pool extracted from the pth patch location in all the images with

expression label e. Figure 5.5 illustrates the result of applying this algorithm on ex-

pressive faces with universal emotions from the CK+ dataset. As it can be seen, the

learned structures are almost similar for different expression classes. Now in order

to construct the structure-preserving dictionary, we learn the dictionary blocks for
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the structures on each of the expression classes. Then the final dictionary is formed

by putting these dictionary blocks together. In this case the two-layer grouping is

formed in the lower layer by grouping the dictionary atoms corresponding to each

structure and in the top layer by grouping the structures corresponding to each ex-

pression class. We employ this dictionary for the universal expression recognition.

Data: features from all images
Result: final structures and dictionaries: {{Ss}, {Ds}}
initialization: Se,p ← {ye.,p}, De,p ← K-SVD

(
Y (Se,p)

)
;

while stopping criterion has not been met do
Cost-Matrix = {Crc = ‖Y (Sr)−DcXrc‖2

F + ‖Y (Sc)−DrXcr‖2
F};

(r̃, c̃) = arg minr,c Cost-Matrix;
Update Step:
Snew ← merge{Sr̃&Sc̃};
Dnew ← K-SVD{Y (Snew)};
Update Cost-Matrix;

if Cr̃c̃ > cost-threshold then
stopping criterion is met;

end

end

Algorithm 5: Summary of the algorithm for structure-preserving dictionary
learning.

5.6 Experimental Results

We conducted experiments using two publicly available datasets. The first

is the Bosphorus dataset [121] that is composed of a selected subset of AUs as

well as the six universal emotion categories: Anger, Disgust, Fear, Happy, Sadness

and Surprise, for 105 subjects. For each subject, the neutral face and the face

in the apex of various AUs and emotions are presented. Some AUs or emotions

are not available for some subjects. The second dataset is the Extended Cohn-
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Figure 5.6: Some example of expressive faces in (first row) CK+ and (second row)
Bosphorus datasets after the preprocessing step is completed.

Kanade dataset (CK+) [128] which consists of 593 sequences from 123 subjects.

The image sequences incorporate the onset (neutral face) to peak formation of facial

expressions. Only 327 out of 593 sequences have emotion labels from each of the six

universal emotion categories. Again some emotion sequences are not available for

some subjects.

In the preprocessing step for the CK+ dataset, we first detect and crop faces at

the apex of sequences. Then for both datasets, face images are resized to 128× 128

and using the coordinates of eye corners and nose tip (provided by the datasets)

the faces are properly aligned. Figure 5.6 shows some examples of faces from both

datasets after the preprocessing step is completed.

5.6.1 Parameters Setting

Multi-layer, multi-variate group sparse coding has several parameters and it

is important to assign appropriate values to them for better performance of the

algorithm. We follow the weighting strategy proposed by Chen et al. [135] and

also adopted by Gao et al. [153]. In this strategy the weight for each group is
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proportional to the square root of the length of the group, so ωdicg =
√
|g| (g ∈ Gdic)

and ωtstg =
√
|g| (g ∈ Gtst). Then we set γdic = γtst = λ = θ. In this way there is

only one parameter, θ, in the whole objective function. In our experiments we set

θ = 10−3.

The number of atoms in a dictionary block (AU/structure-block) and the

sparsity are other parameters needed by the K-SVD [142] algorithm which is used

for data-driven dictionary learning. In our experiments, we learn a dictionary of size

Ji = 20 per structure/AU and set the sparsity to be half of the dictionary size, i.e.

10. Our experiments show that these choices ensure a good trade-off between the

accuracy of the representation and the speed of the algorithm. A larger dictionary

(up to a point) may slightly improve the results but at the cost of slower convergence

of the sparse coding algorithm.

5.6.2 Expression Decomposition

As discussed in Section 5.4.3, the AU-dictionary can be used to decompose an

expressive face into its constituent AUs. In fact the main advantage of modeling AUs

for expression analysis is that we are not limited to the six universal expressions,

and many other expressions that often occur on the face but do not belong to these

universal expressions can also be analyzed by predicting the AUs they are composed

of. For this experiment, we learn the AU-dictionary using a selected subset of 15

AUs in the Bosphorus dataset. This subset consists of six upper face AUs (1, 2, 4,

5, 6, and 43) and nine lower face AUs (12, 17, 20, 22, 24, 25, 26, 27 and 28). To learn the
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Figure 5.7: Expression decomposition into constituent AUs. Each example includes
the matrix of sparse codes, X, on the right column, the AU bar plot which shows
the l2-norm of each AU-block in the sparse code matrix, the sample faces with those
AUs that have significant magnitude on top of the bar plot, and finally the original
and reconstructed expressive faces below the bar graph. The decompositions reveal
the correct constituent AUs for each expressive face.

AU-dictionary, we first delineate the patches that correspond to each AU semantic

region. For simplicity we only define seven regions on the face corresponding to

brows, eyes, nose, mouth and forehead. It should be noted that AU-5 and AU-6

are not included in the Bosphorus dataset; however, these two AUs occur in many

expressions, so we learn their corresponding dictionary blocks using the happy and

surprise samples in the dataset. However, we avoid using the same samples for

132



dictionary training and decomposition testing.

Observations: Figure 5.7 shows some examples of expression decomposition

we performed using expressive samples from the Bosphorus dataset. The figure

shows decomposition results for two happy faces of different subjects. Both decom-

positions predict AUs-{06+12+25} which is in accordance with the information in

Fig. 5.3. However in part (b), AU-43 has also been reported as one of the con-

stituent components of the happy face. This can be due to the extreme smile on

the face which makes the eyes look almost closed. Parts (c) and (d) illustrate the

decomposition for two expressive faces with Surprise and Fear expressions. The

decompositions reveal the correct constituent AUs. It should be noted that in these

experiments as well as in the expression synthesis experiments, in order to be able to

visualize the reconstructed faces we concatenated the SIFT features extracted from

each patch with the intensity difference image (the difference between the neutral

face and the expressive face in that patch). So to visualize we add the reconstructed

intensity difference feature to the neutral face.

5.6.3 Expression Recognition

In this section we report the results of expression recognition using the learned

structure-preserving dictionaries for both the CK+ and Bosphorus datasets. We

adopt the leave-one-subject-out cross-validation configuration to maximize the amount

of training and testing data. Figure 5.8 shows the confusion matrices for both

datasets. It should be noted that for the CK+ dataset we only use the apex of
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Figure 5.8: Confusion matrix for emotion recognition on the (a) CK+ dataset, (b)
Bosphorus dataset. The number of samples per classes for the CK+ dataset is:
(AN:45, DI:59, FE:25, HA:69, SA:28, SU:79) and for the Bosphorus dataset is: (AN:71,

DI:69, FE:70, HA:105, SA:66, SU:71).

each expression sequence for recognition. The average recognition rate on the CK+

dataset is 88.52% and on the Bosphorus dataset is 69.78%. It should be noted that

while both the CK+ and the Bosphorus are datasets with posed expressions, but

there are main discrepancies in their annotations. The CK+ was first FACS coded

manually, then emotion labels were assigned based on FACS rules, while in the

Bosphorus the subjects were asked to show the given emotion/AU and hence the

emotion labels might not correspond to the given AU combinations. This explains

the lower recognition rate on Bosphorus compared to CK+. Also in the Bosphorus

dataset, there is a large degree of similarity among faces of some classes (e.g. Fear

and Surprise).

To show the importance of incorporating high-level knowledge on grouping

AUs, we compare our algorithm with two other algorithms on the CK+ dataset
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Table 5.1: Comparing the averaged recognition rate using three algorithms on CK+.
Algorithms Recognition Rates

Multi-layer multi-variable grouping 88.52%

Multi-layer single grouping 80.2%

Simple Lasso 69.68%

(Table 5.1). In the first algorithm, multi-layer single grouping [135], we removed

the grouping information on the image matrix and so the sparse representation for

each local descriptor extracted from the test face is obtained independent of others.

In the second algorithm both grouping information on the dictionary and image

matrix are ignored and a simple LASSO algorithm [99] is applied to learn sparse

representation for each local descriptor. As Table 5.1 shows, removing each of the

high-level grouping information decreases the recognition rate. These results again

emphasize the importance of incorporating the high-level information for expression

analysis.

Table 5.2 compares the average recognition rate of our algorithm with some

recent advances in expression recognition for the CK/CK+ datasets. The CK

dataset [122] is the old version of CK+ which has fewer subjects and sequences.

Most of these algorithms did not follow leave-one-subject-out validation, but instead

they divided the dataset randomly into training and testing parts and reported the

results on the testing part. As the table shows, our result is comparable to the

best reported results. However, it should be noted that as our algorithm is a gen-

erative approach, it is expected that its classification performance be lower than

fully discriminative methods like Adaboost. But the proposed approach can also

perform unknown expression decomposition and new expression synthesis which are
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Table 5.2: Comparison with recent advances in expression recognition on CK
dataset.

Recognition Methods Recognition Rates

CERT [136] ∗ 87.21%

Gabor+Adaboost+SVM [154] 93.3%

PGKNMF‡ [155] 83.5%

CAPP? +SVM [128] † 86.48%

RegRankBoost [147] 88%

Combined Features+Adaboost [134] 92.3%

Our approach 88.52%

∗ results on 26 subjects in CK+ but not in CK

‡ PGKNMF = Projected Gradient Kernel Non-negative Matrix Factorization

? CAPP = Canonical Appearance Features

† results on CK+ with leave-one-subject-out validation

not possible with pure discriminative algorithms. Moreover, our algorithm provides

a general framework for decomposing an action in terms of its constituent basic

components. Using a better feature representation for expressive faces as well as a

machine learning algorithm for learning over the sparse code matrix, we can expect

a higher recognition rate.

5.6.4 Expression Synthesis

Combining different AUs can result in new expressions on the face. Using the

AU-dictionary, we perform this experiment to generate valid expressions through

composition of some AUs. For this purpose, first we need valid models for sparse

coefficients corresponding to each AU. We obtain these models for each subject

by decomposing the sample of a particular AU onto the AU-dictionary. Then by

selecting a subset of these AUs and assigning values to the corresponding coeffi-

cients in the sparse matrix we are able to synthesize new expressions. However, it
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Figure 5.9: Expression synthesis using the AU-dictionary.

should be noted that this approach does not work for non-additive AUs (discussed

in Section. 5.3.2). Figure 5.9 illustrates two examples of expression synthesis.

5.7 Summary

We presented a dictionary-based approach for facial expression analysis. Us-

ing the domain experts’ knowledge provided in FACS, we learned an AU-dictionary.

We also proposed an automatic algorithm to learn a structure-preserving dictio-

nary without incorporating the experts’ knowledge. Then the high-level knowl-

edge regarding the AUs/structures composition is incorporated into this dictionary

through a multi-layer grouping of dictionary atoms. Since we are also dealing with a

multi-variable problem, we impose appropriate groupings over the test image matrix

columns. We employed a multi-layer, multi-variable group sparse coding algorithm

to impose these grouping constraints for structure-preserving sparse coding. This

enables us to perform expression decomposition into the constituent AUs for a face

with any unknown expression. Using the sparse code matrix we can also perform

universal emotion recognition. The results indicate the improvements that this
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high-level knowledge brings to expression analysis. Moreover, since the proposed

algorithm is a generative approach, we can also perform new expression synthesis.

We show some preliminary results for expression synthesis.

This chapter presented a general framework for decomposing an action into

its constituent components. We showed the potential of this algorithm for facial

expression analysis, including expression decomposition, synthesis and recognition.

The proposed algorithm can be generalized to recognition of human actions pro-

vided we have a good definition for human action units. This algorithm can be

further improved by adding temporal sequence information as a new grouping layer.

Incorporating temporal information enables us to predict the intensity of AUs and

detect AUs that are combined sequentially to form an expression/action.
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Chapter 6: Component-based Recognition of Faces and Facial Ex-

pressions

6.1 Introduction

Facial expressions arise owing to a person’s internal emotional states, inten-

tions, or social communications. On the one hand, these facial changes present im-

portant challenges for face recognition algorithms, where researchers are proposing

various expression-invariant face recognition algorithms. On the other hand, these

facial changes are the best cues for recognizing facial expressions. Understanding

the users’ emotions is a fundamental requirement of human-computer interaction

systems (HCL) and facial expressions are important means of detecting emotions.

Many effective algorithms have been proposed for expression-invariant face

recognition as well as facial expression recognition. While the main focus of expression-

invariant face recognition algorithms is to mitigate the changes related to facial

expressions [156–161], the goal of facial expression analysis algorithms is to auto-

matically analyze and recognize facial motions and facial feature changes from visual

information [6, 131, 134, 141]. Despite the connections between these two problems,

there are only a few works that jointly address them.
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(a) (b) (c)

Figure 6.1: Facial component separation. Original face image (a) is viewed as
the superposition of a neutral component (b) with a component containing the
expression (c).

Proposed algorithms for joint face and facial expression recognition usually en-

code the identity and expression variability of faces in independent control parame-

ters which are then used for recognition [162,163]. One popular class of algorithms is

the bilinear model proposed by Tanenbaum et al. [164] and its generalization, tensor

decomposition which offer an efficient way for modeling the bi-factor or multi-factor

interactions. These algorithms have motivated some interesting face decomposi-

tion ideas [165–168]. After separating the identity and expression components of a

face, joint expression-invariant face recognition and identity-independent expression

recognition is achieved.

Motivated by the success of these bilinear/multilinear models for the decompo-

sition of expressive faces, we propose a similar facial component separation algorithm

based on the principle of sparse representation. We model an expressive face as a

neutral face superimposed by a sparse image of deformations corresponding to the

expression on the face (see Figure 6.1). Using this model, we propose a component

separation method so that an expressive face image is decomposed into a sum of
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Figure 6.2: Overview of the proposed algorithm.

neutral and expression elements. Our formulation is based on finding sparse repre-

sentations of these elements using dictionaries specifically suited to sparsify them.

By taking advantage of sparse representations, we retain important salient features

in the final estimated images. These separated components are then used for joint

face and expression recognition.

Figure 6.2 illustrates an overview of the proposed joint face and expression

recognition algorithm. In the training phase, the data-driven dictionaries are gener-

ated. Having multiple samples of expressive faces per subject 1, we first obtain the

neutral and expressive parts by decomposing the training images into sparse and

low-rank components using the well-known Principle Component Pursuit (PCP)

algorithm [8]. We then find the best representation for each member in these com-

1neutral faces might be available as well
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ponents by learning subject-specific dictionaries under strict sparsity constraints.

In the testing phase, the expressive test face is first decomposed into its building

components using the proposed dictionary-based component separation algorithm

(DCS). The separated components along with the corresponding dictionaries are

then used for recognition.

Contributions: Our main contributions are,

• We propose a dictionary-based component separation algorithm to decompose

an expressive face into a neutral and an expression part.

• We propose a joint face and expression recognition scheme using the separated

components, dictionaries and sparse coefficient vectors.

Outline of the chapter: We review related work in Section 6.2. The

dictionary-based component separation algorithm is then presented in Section 6.3.

Section 6.4 discusses how the joint recognition of face and expression is achieved us-

ing these separated components. Experimental results are presented in Section 6.5.

6.2 Related Work

Face and facial expression recognition have long been topics of interest for

computer vision researchers. Face recognition is affected by different sources of

variation such as nonrigid deformations due to facial expressions. Therefore, several

algorithms have been proposed that offer expression-invariance into face recognition.

These algorithms treat nonrigid deformations as noise and try to mitigate/remove

their effects on the identity recognition. On the other hand, these nonrigid deforma-
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tions on the faces are the main cues for facial expression analysis and recognition.

The proposed algorithms for expression recognition consider the identity of faces as

noise and attempt to make the algorithms independent of the face identity. The

obvious connection between these two problems is the main motivation for joint

recognition of faces and facial expressions2. Here we review some of the proposed

algorithms for the individual problems as well as for jointly addressing these two

related problems.

6.2.1 Expression-Invariant Face Recognition

A comprehensive review of the related works on face recognition can be found

in [156, 169]. It has been noticed that facial expression usually affects the perfor-

mance of face recognition algorithms. To deal with it several expression-invariant

face recognition algorithms have been proposed. Expression-invariant face recogni-

tion is a challenging task owing to complex and varied nature of facial expressions.

Some systems use video sequences to handle a wide range of facial expressions, since

a video sequence contains more information than a single image [170,171].

Image-based algorithms for expression-invariant face recognition can be cat-

egorized as subspace-based and optical flow-based approaches. Tsai et al. [161]

provided a subspace-based analysis for face recognition which showed robustness to

facial deformations. In [158], Naseem et al. used the concept that patterns from a

single-object class lie on a linear subspace and proposed a linear regression classifi-

2It should be noted that here joint recognition implies that having an expressive test face we
find both the face identity and the expression label. So, it is not the case that the solution to one
problem helps to solve the other problem
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cation algorithm in which a linear model was developed representing a probe image

as a linear combination of class-specific galleries. Amberg et al. [159] proposed an

expression-invariant algorithm for face recognition by fitting an identity/expression

separated 3D morphable model to shape data.

Methods based on optical flow can establish a dense correspondence between

pairs of faces and compute the face warping transformation. Martinez [172] used

the optical flow between testing and sample images as a measure of how good each

pixel is for face recognition. They proposed a weighting measure which gives more

importance to the facial regions that are more similar between training and testing

images and less importance to the less similar areas. Hsieh et al. [173] modified

the regularization-based optical flow algorithm by imposing constraints on some

given point correspondences to compute precise pixel displacement and intensity

variation. They removed the expression from the face image by elastic image warping

to recognize the subject with facial expression. Jorstad et al. [157] proposed a

deformation as well as lighting insensitive metric to compare images and presented

a framework to optimize over this metric for calculating a dense flow between images.

Recently, face recognition algorithms based on ideas of sparse representation

and compressive sensing have been proposed [174,175] that are able to handle chang-

ing expression, pose and illumination. Nagesh et al. [160] proposed an expression-

invariant face recognition algorithm based on compressive sensing. They represented

the training images of a given subject using two feature images: one that captures

the common features of the faces and one that captures the different expressions

in all training images. Assuming that changes due to variation in expressions are
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sparse with respect to the whole image, they approximated the test image using

these two feature images of the same subject.

6.2.2 Identity-Independent Expression Recognition

The goal of facial expression analysis is to create systems that can automati-

cally analyze facial feature changes and map them to facial expressions. Since dif-

ferent faces have different structures and appearances, the main challenge for such

systems is to be independent of the identity of the faces. There are several past and

current efforts in modeling and recognizing the nonrigid deformations in facial com-

ponents as a result of various expressions. Some of these approaches extract a set

of appearance-based features, including raw gray scale intensities [140, 176], Gabor

features [105, 106, 145, 177], Haar-like features [134, 147] and local binary patterns

(LBP) [176, 178] from a still image or use some rules based on the deformation of

local facial components and shape-based features [107, 132, 141, 179, 180] and then

employ a machine learning approach, such as Adaboost [134], SVM [6, 181] and

Neural Nets [182] for expression recognition.

Tong et al. [105,106] proposed a unified probabilistic framework based on the

dynamic Bayesian network to simultaneously and coherently represent the non-rigid

motions and their image observations, as well as to capture the temporal evolution

of the facial activities. Yang et al. [134] interpreted facial expressions by learning

some compositional features based on local appearance changes on the face. They

interpreted facial expressions by learning these compositional appearance features
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and showed the consistency of the built compositional features with respect to the

action units (AUs).

Active shape models (ASM) and active appearance models (AAM) [183,184],

are used to approximate deformable face models using linear subspace analysis [6].

However, linear subspace methods are inadequate to represent the underlying struc-

ture of real data and so nonlinear manifold learning approaches have been proposed.

Liao et al. [107] decomposed each expression using a basis of eight one-dimensional

manifolds each learned offline using a tensor voting algorithm and sequences of la-

beled universal expression.

By observing that images of all possible facial deformations of an individual

form a smooth manifold embedded in a high dimensional image space, Chang et

al. [140] proposed a probabilistic video-based facial expression recognition method

on manifolds. They represented a complete expression sequence as a path on the

expression manifold and used a probabilistic model to perform expression recogni-

tion. Taheri et al. [141] modeled expressions as geodesic pathways on the Grassmann

manifold. This representation enables expression models to be generalized across

view changes.

Sparse representation have also been applied to facial expression recognition

[145, 176]. Ying et al. [176] designed two classifiers in the sparse domain using

two different sets of image features: raw gray scale pixel values and local binary

patterns. The final expression recognition was then performed by fusing the results

of the two classifiers. Mahoor et al. [145] presented a sparse learning approach for AU

combination classification. They developed an overcomplete dictionary to efficiently
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and robustly recognize the combination of facial AUs using L1-norm minimization.

6.2.3 Joint Face and Facial Expression Recognition

As we mentioned earlier, expression-invariant face recognition and identity-

independent expression recognition are two related problems and can be considered

jointly. There are a few works that addressed this joint recognition problem. Col-

menarez et al. [162] proposed a Bayesian framework for face and facial expression

recognition. The algorithm finds a face model and facial expression that maximizes

the likelihood of a given test image. Li et al. [163] employed the idea of separating

geometry and texture information in a face image to perform joint face and expres-

sion recognition. They modeled the two types of information by projecting them into

separate Principal Component Analysis (PCA) spaces which were specially designed

to capture the distinctive features among different individuals. While a combina-

tion of texture and geometry attributes were employed for face recognition, study

of geometry enabled expression classification. The geometry and texture separation

was performed by fitting a generic mask to the face and warping the texture on it.

Vasilescu et al. [165] used a tensor decomposition known as the N-mode Sin-

gular Value Decomposition (SVD) to separate the identity, pose, illumination and

expression of a given face. Wang et al. [166] used Higher-Order Singular Value De-

composition (HOSVD) to model the mapping between individuals and expressions.

They learned the expression subspace and person subspace from a corpus of images

and performed simultaneous face and expression recognition as a result of facial ex-
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pression decomposition. A similar idea has also been applied to 3D faces. Mpiperis

et al. [167] used a bilinear model to express the 3D facial surface as the interaction

of expression and identity components. By fitting an elastically deformable model

to unknown faces and decoupling the identity and expression they performed face

recognition invariant to facial expressions and facial expression recognition with un-

known identity. Lee et al. [168] learned nonlinear mappings between a conceptual

embedding space and facial expression image space and decomposed the mapping

space using multilinear analysis.

In this work, we decompose an expressive face into neutral and expression

components and then perform joint face and expression recognition. After obtaining

the individual components, we can extract any feature from them and apply any

algorithm for face/expression recognition. However, since the proposed algorithm is

based on sparsity ideas and we need to obtain neutral and expression dictionaries in

the training phase, we adopt the sparse representation-based recognition algorithm

[174] while taking the special structures of the dictionaries into account.

6.3 Decomposition of Expressive Faces

In this section, we present our proposed Dictionary-based Component Separa-

tion (DCS) algorithm for decomposing an expressive face into neutral and expression

parts.
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6.3.1 Dictionary-based Separation of Expressive Face Components

We identify an l×q grayscale face image as an N -dimensional vector, x, which

can be obtained by stacking its columns, where N = l×q. A face image x containing

an expression can be viewed as a superposition of a neutral face component xn with

a facial expression component xe. In other words

x = xn + xe. (6.1)

We assume that xn is sparse in a dictionary Dn, and similarly, xe is sparse in a

dictionary De. Given Mn,Me ≥ N , the dictionaries Dn ∈ RN×Mn and De ∈ RN×Me

are chosen such that they provide sparse representations of neutral and expression

contents, respectively. That is, we assume there are sparse coefficient vectors αn ∈

RMn×1 and αe ∈ RMe×1 so that xn = Dnαn and xe = Deαe.

One can recover the face image x by estimating the components xn and xe via

αn and αe by solving the following optimization problem:

α̂n, α̂e = arg min
αn,αe

λ‖αn‖1 + λ‖αe‖1

+
1

2
‖x−Dnαn −Deαe‖2

2, (6.2)

where for an N -dimensional vector x, ‖.‖q denotes the `q-norm, 0 < q <∞, defined

as

‖x‖q =

(
N∑
i=1

|xi|q
) 1

q

.
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The two components are the corresponding representations of the two parts and can

be obtained by x̂n = Dnα̂n and x̂e = Deα̂e. This notion of separating an image into

different morphologies using sparse representations is often known as Morphological

Component Analysis (MCA) [185]. Figure 6.2 shows an example of this separation

in the testing part of the algorithm.

6.3.2 Iterative Shrinkage Algorithm

Various methods can be used to obtain the solution of (6.2) [186, 187]. In

this section, we derive a fast convergent iterative shrinkage algorithm based on

Separable Surrogate Functionals (SSF) to solve the separation problem posed in (6.2)

[187–189]. For simplicity, we assume that D = [Dn,De]. The objective function in

(6.2) can then be re-written as

f(α) = λ‖α‖1 +
1

2
‖x−Dα‖2

2 (6.3)

where α contains both the neutral and expression parts. Let

d(α, α0) =
c

2
‖α− α0‖2

2 −
1

2
‖Dα−Dα0‖2

2, (6.4)

where α0 is an arbitrary vector of length N and the parameter c is chosen such that

d is strictly convex. This constraint is satisfied by choosing

c > ‖DTD‖2 = λmax(DTD),
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where λmax(DTD) is the maximal eigenvalue of the matrix DTD.

Adding (6.4) to (6.3) gives the following surrogate function

f(α) = λ‖α‖1 +
1

2
‖x−Dα‖2

2 +
c

2
‖α− α0‖2

2 −
1

2
‖Dα−Dα0‖2

2. (6.5)

This surrogate function f̃(α) can be rewritten as

f̃(α) = A+
λ

c
‖α‖1 +

1

2
‖α− x0‖2, (6.6)

where

x0 =
1

c
DT (x−Dα0) + α0

and A is some constant. Let (a)+ denote the function max(a, 0) and sign(x) be the

signum function defined as

sign(x) =


−1 if x < 0

0 for x = 0

1 for x > 0.

Given that

Sλ(x) = sign(x)(|x| − λ)+ (6.7)

is the element-wise soft-thresholding operator with threshold λ, the global minimizer
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of the surrogate function is given by

αsol = Sλ/c (x0)

= Sλ/c
(

1

c
DT (x−Dα0) + α0

)
. (6.8)

It was shown in [188] that the iterations

αk+1 = Sλ/c
(

1

c
DT (x−Dαk) + αk

)
(6.9)

converge to the minimizer of the function f in (6.3) where the superscript k indicates

that it is the value for the kth iteration. We decompose the above iteration into

sub-iterations that essentially solve (6.2),

αk+1
n = Sλ/c

(
1

c
DT
n (x−Dnα̂

k
n −Deα̂

k
e) + α̂kn

)
(6.10)

αk+1
e = Sλ/c

(
1

c
DT
e (x−Dnα̂

k
n −Deα̂

k
e) + α̂ke

)
. (6.11)

The algorithm for recovering the two separated components of a facial image by

minimizing (6.2) is summarized in Figure 6.3. In step 3 of the algorithm in Fig-

ure 6.3, ‖.‖∞ denotes the `∞-norm. For an N dimensional vector x, it is defined as

‖x‖∞ = max(|x1|, · · · , |xN |).

Once the representation coefficients of the two components of x are estimated,

we obtain the final estimate of xn and xe as x̂n = Dnα̂n and x̂e = Deα̂e, respectively.
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Input: x, c.
Initialization: Initialize k = 1 and set
α0
n = 0, α0

e = 0 and r0 = x−Dnα
0
n −Deα

0
e, and λ0 = 1

2

(
‖DT

nx‖∞ + ‖DT
e x‖∞

)
.

repeat:
1. Update the estimate of αn and αe as

αkn = Sλk
(

1

c
DT
n (rk−1) + αk−1

n

)
αke = Sλk

(
1

c
DT
e (rk−1) + αk−1

e

)
.

2. Update the residual as

rk = x−Dnα
k
n −Deα

k
e .

3. Update the shrinkage parameter as

λk =
1

2

(
‖DT

nrk‖∞ + ‖DT
e rk‖∞

)
.

until: stopping criterion is satisfied.
Output: The two representation vectors α̂n = αkn and α̂e = αke .

Figure 6.3: The DCS iterative shrinkage algorithm to solve (6.2).

6.3.3 Obtaining Initial Dictionaries

Finding dictionaries that represent the neutral and expression components

of faces is critical as it affects how well the components are separated through

successive iterations. In this section, we propose a method based on sparse and

low-rank approximation to determine the initial dictionaries.

Suppose that we are given C distinct subject classes and a set of m train-

ing images per class containing various expressions. The expression label for each

training image is known and is one of the E available expression classes. Let

Bi = [x1
i , · · · ,xmi ] ∈ RN×m (6.12)
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be an N×m matrix of training images corresponding to the ith subject class. Using

(6.1), the training matrix Bi in (6.12) can be written as

Bi = Bn
i + Be

i , (6.13)

where Bn
i = [x1

in, · · · ,xmin] and Be
i = [x1

ie, · · · ,xmie ] are the matrices containing the

neutral and expression face components, respectively. Since the neutral components

{xjin} are common parts in all the training images of a given subject, these com-

ponents are very similar to each other3, therefore Bn
i is a low-rank matrix. On the

other hand, the facial expression components {xjie} are often sparse as they contain

small deformations that are applied to the neutral face components {xjin} which

generate expressive face images, {xji}. As a result, Be
i is a sparse matrix.

Given a matrix Bi, one can decompose it into a low-rank matrix Bn
i and a

sparse matrix Be
i by solving the following optimization problem

(B̂n
i , B̂

e
i ) = min

Bn
i ,B

e
i

rank(Bn
i ) + η‖Be

i‖0

s.t. Bi = Bn
i + Be

i , (6.14)

where ‖A‖0 denotes the `0 norm which counts the number of non-zero entries in

A and η > 0 is a parameter that trades off the rank of the solution Bn
i versus the

sparsity of Be
i . Various methods have been proposed in the literature that allow one

to solve the above optimization problem [8, 160, 190]. In this work, we adopt the

3except some possible variations due to slight misalignment between images and other changes
such as illumination variation

154



PCP algorithm [8] to solve (6.14). In the training part of Figure 6.2, we show some

sample images from the output of the PCP algorithm. Note that the low-rank part

essentially captures the common structure (neutral part) of training samples and

the sparse component captures various expressions that are present in the training

set.

6.3.4 Component Dictionary Learning

Let

Bn = [Bn
1 ,B

n
2 , · · · ,Bn

C ] ∈ RN×mC

and

Be = [B̄e
1, B̄

e
2, · · · , B̄e

E] ∈ RN×m̄E

be the concatenation of neutral and expression component matrices, respectively. It

should be noted that for the expression matrix, Be, we also permute the elements of

matrix and put the elements with the same expression labels together. Hence, while

Bn
i has the neutral components of the ith subject images, B̄e

k has the expression

components of the images with the kth expression label (there are m̄ of such images

per expression and mC = m̄E).

Then, one can find the best representation for each member in Bn under strict
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sparsity constraints by solving the following optimization problem per subject

(D̂n
i , Γ̂

n
i ) = arg min

Dn
i ,Γ

n
i

‖Bn
i −Dn

i Γ
n
i ‖2

F

s.t. ∀l ‖γnl ‖0 ≤ T0, (6.15)

where γnl , l ∈ {1, · · · ,m} represents a column of Γn
i and T0 is a sparsity parameter.

Here, the Frobenius norm of a matrix A ∈ RM×N is defined as

‖A‖F =

[
M∑
i=1

N∑
j=1

|A2(i, j)|

] 1
2

.

Similarly, one can find the best representation for each member in Be by solving

(D̂e
k, Γ̂

e
k) = arg min

De
k,Γ

e
k

‖B̄e
k −De

kΓ
e
k‖2

F

s.t. ∀l ‖γel ‖0 ≤ T0, (6.16)

where γel , l ∈ {1, · · · , m̄} represents a column of Γe
k. Then, final dictionaries are

defined as

D̂n = [D̂n
1 , · · · , D̂n

C ]

and

D̂e = [D̂e
1, · · · , D̂e

E].

One of the most well-known algorithms for learning such dictionaries is the

K-SVD algorithm [191]. The K-SVD algorithm alternates between sparse-coding
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and dictionary update steps. First, a dictionary D with `2 normalized columns is

initialized. Then, the main iteration is composed of the following two stages:

• Sparse coding : In this step, D is fixed and the following optimization problem

is solved to compute the representation vector γ l for each example xl, l ∈

{1, · · · ,m} or l ∈ {1, · · · , m̄}, i.e.

min
γl
‖xl −Dγ l‖2

2 s. t. ‖γ l‖0 ≤ T0.

Since the above problem is NP-hard, approximate solutions are usually sought.

Any standard technique [192] can be used but a greedy pursuit algorithm such

as orthogonal matching pursuit [193] is often employed due to its efficiency.

• Dictionary update: In this stage, the dictionary update is performed atom-

by-atom in an efficient way. It has been observed that the K-SVD algorithm

converges in a few iterations.

Due to its simplicity and efficiency, we adapt the K-SVD algorithm to learn dictio-

naries for the neutral and expression components.

6.4 Joint Face/Expression Recognition

Given an expressive test face, xt, we first decompose it into neutral and ex-

pressive components using the DCS algorithm proposed in Section 6.3. Then an

obvious next step is to use the sparse coefficient vectors, αn, αe, obtained for the
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neutral and expression parts of the face to perform joint face and expression recog-

nition. Since the subject labels for the Dn atoms are available from the training

images, we predict the subject class label for xt based on the reconstruction error

of xn using the dictionary Dn as

cs = arg min
cs
‖xn −Dnδcs(αn)‖, (6.17)

where δcs(αn) is obtained by setting all the coefficients in αn to zeros except those

having the csth subject label. So we classify xt by assigning it to the class cs that

has the lowest residual error.

The same procedure can be used for expression recognition. Now having the

expression labels for the De atoms, we predict the expression label for xt based on

the reconstruction error of xe using the dictionary De as follow

ce = arg min
ce
‖xe −Deδce(αe)‖ (6.18)

where δce(αe) is obtained by setting all the coefficients in αe to zero except those

having the ceth expression label. So we assign xt to the expression class ce that has

the lowest residual error.

While the proposed recognition procedure is effective in using the sparse codes

obtained from the face decomposition step, it ignores the structural information

available for the dictionaries. Since the label information is available for Dn and De,

we can obtain new sparse codes for each of the extracted components by projecting
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it into its corresponding dictionary while using the group structure of the dictionary

as a constraint for the sparse decomposition. Thus, the obtained sparse codes are

optimized for the recognition purpose.

Having the extracted neutral component of the test face, xn, and the neutral

dictionary, Dn, we want to sparsely decompose xn using Dn having the dictionary

subject labels as constraint. If xt belongs to csth subject, our goal is to force the new

sparse code, βn, to be zero everywhere except for those coefficients having the csth

subject label (corresponding to the dictionary atoms with the csth subject label).

For this purpose, we perform the following optimization,

min
βn

1

2
‖xn −Dnβn‖2

2 + λ1‖βn‖1 + λ2

C∑
g=1

wng ‖βnGg‖2, (6.19)

where βn is divided into C non-overlapping groups βnG1 , βnG2 , ..., βnGC . The group-

ing is based on the subject labels of the dictionary atoms and C is the total number

of subjects available in the gallery. λ1, λ2 and {wng }′s are weighting coefficients that

are set appropriately. This objective function is similar to the sparse group Lasso

penalty [194], so we use a proper implementation of spars group Lasso [195] to

optimize this objective function and obtain the sparse code.

The new sparse code corresponding to the expression component is also ob-

tained using the same approach and by optimizing the following objective function,

min
βe

1

2
‖xe −Deβe‖2

2 + λ1‖βe‖1 + λ2

E∑
g=1

weg‖βeGg‖2, (6.20)
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Given a test sample xt and C training matrices B1, · · · ,BC where each Bi ∈ RN×m

contains m training samples for ith subject. The expression label for each training
image is known and is one of the E available expression classes. There are m̄
sample images for each expression label.

Training:
1. Given a matrix Bi, decompose it into a low-rank matrix Bn

i and a sparse matrix
Be
i by solving (6.14) using the PCP algorithm.

2. Let
Bn = [Bn

1 ,B
n
2 , · · · ,Bn

C ]

and
Be = [B̄e

1, B̄
e
2, · · · , B̄e

E]

be the concatenation of neutral and permuted expression component matrices, re-
spectively.
3. Learn the best dictionaries for the neutral and expression components by solving
(6.15) and (6.16), respectively using the K-SVD algorithm.
Testing:
1. Given an expressive face, xt, decompose it into neutral and expressive components
using the DCS algorithm outlined in Figure 6.3.
2. Obtain the new sparse codes βn, βe optimized for the face and expression recogni-
tion by decomposing the extracted components onto their corresponding dictionaries
using equations (6.19) and (6.20), respectively.
3. Use the sparse coefficient vectors, βn, βe to perform joint face and expression
recognition using the minimum residual rules in equation (6.21).

Figure 6.4: Joint face and expression recognition algorithm.

where the grouping is based on the expression labels of De atoms and E is the total

number of expression labels. After computing the new sparse codes, the identity

and expression label for the test image are obtained using (6.17) and (6.18) where

{αn, αe} are replaced with {βn, βe}.

cs = arg min
cs
‖xn −Dnδcs(βn)‖, (6.21)

ce = arg min
ce
‖xe −Deδce(βe)‖

160



Figure 6.5: Some sample expressive faces in the two datasets. Top: the CMU
dataset [5], Bottom: the CK+ dataset [6].

We summarize the proposed joint face and expression recognition algorithm

in Figure 6.4.

6.5 Experimental Results

We evaluate our algorithm using two face expression datasets: (1) CMU AMP

face expression dataset [5] and (2) Extended Cohn-Kanade face expression dataset

(CK+) [6]. The CMU dataset contains 975 images (13 subjects with 75 images per

subject) with different facial expressions. The CK+ dataset contains 593 expression

sequences from 123 subjects. Only 327 out of 593 sequences have emotion labels from

each of the six universal emotion categories (Anger, Disgust, Fear, Happy, Sad and

Surprise). We compare our face recognition results with the results of B-JSM algo-

rithm proposed in [160] which is an expression-invariant face recognition algorithm,

also with the results from SRC [174] algorithm. For expression recognition results,

we compare with recent results reported on CK+ dataset [6]. We also evaluate

our algorithm with respect to two dictionary learning algorithms, KSVD [191] and
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FDDL [196]. We learn dictionaries for the training data using these algorithms4 and

then perform face and expression recognition using the original test image (without

the component separation step). These comparison emphasizes the importance of

the proposed component separation algorithm for face and expression recognition.

Figure 6.5 shows several examples of faces from these two datasets. All experiments

are done on a Linux machine with 4GB of RAM using MATLAB.

6.5.1 Implementation details

In all the datasets, images are well-cropped and aligned. We resize the faces

to 32 × 32. From the discussion in section 6.3, the parameter c should be chosen

such that c > λmax(DnD
T
n + DeD

T
e ). This can be satisfied by choosing c > 2. In

particular, the value we used is c = 3. We change the threshold value of λk during

each iteration according to

λk =
1

2

(
‖DT

nrk‖∞ + ‖DT
e rk‖∞

)

and stop the iterations when λk ≤ T, where T ≈ 2.1. The value for the regularization

parameter η in (6.14) is set equal to 1√
max(N,m)

[8]. The parameter T0 in the K-SVD

algorithm is empirically determined and is set equal to m
2

for the neutral dictionary

and m̄
2

for the expression dictionary.

4for KSVD, we learn dictionaries per subject/expression and the final dictionary is obtained by
concatenating the individual dictionaries. Therefore, we have the subject/expression labels for the
dictionary atoms
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J = 4 

J = 6 

J = 5 

J = 7 

Figure 6.6: Some examples of expressive face decomposition using DCS on the
selected samples from the CMU dataset for various values of J . In these images,
the first image is the original input image. The second and the third images are
the separated neutral and expression components, respectively. The fourth image is
the sum of the two extracted components which is very similar to the original input
image.

6.5.2 Experiments on the CMU dataset

For this dataset, we follow the experimental set-up presented in [160] to per-

form face recognition. We randomly select J images per subject to form the training

set. The remaining faces per subjects are used for the face recognition experiment.

We perform validation for J = [4, ..., 8] with 10 trials each. Figure 6.6 has some

examples of expressive face decomposition using the DCS algorithm on the selected

samples from this dataset and for various values of J . As more number of images

per subject are used for the training set, the learned dictionaries become more rep-

resentative of the data and therefore better recognition rates are obtained, as shown

in Table 6.1.

We compare the face recognition results from our algorithm with those of

B-JSM algorithm [160] and sparse representation-based face recognition (SRC) al-

gorithm [174] in Table 6.1. We report our results using both recognition schemes
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Table 6.1: Recognition rate (%) on the CMU dataset with 10 trials for each J .

J
DCS DCS B-JSM [160] SRC [174]

with (6.21) with (6.17,6.18)

High Low Avg High Low Avg High Low Avg High Low Avg

4 100 100 100 100 98.13 99.30 100 97.48 98.95 100 97.68 98.90

5 100 100 100 100 99.86 99.96 100 99.67 99.91 100 99.12 99.80

6 100 100 100 100 100 100 100 99.69 99.97 100 98.76 99.75

7 100 100 100 100 100 100 100 100 100 100 98.30 99.74

8 100 100 100 100 100 100 100 100 100 100 99.31 99.87

proposed in section 6.4. As the table shows when we use (6.21) for recognition, the

proposed algorithm has 100% recognition rates for all values of J . Using the simpler

recognition scheme (6.17,6.18) the results are slightly lower but still superior to two

other algorithms. Since in the simpler recognition scheme we do not enforce any

constraint regarding the structure of the dictionaries in the sparse coding, we can

expect lower performance when the number of samples for each class is few (small

value of J). However, as the value of J increases, the performance improves. This

emphasizes the importance of the recognition step.

It should be noted that the testing phase in our algorithm is very fast. When

J = 7, for each test face (of size 32×32) it takes about 1.4 cputime to decompose it

into the constituent components using DCS algorithm and then obtain the residuals

for e.g. 13 subjects. However, for the B-JSM algorithm the recognition phase is

slow since it needs to perform the optimization between each gallery face and the

test image, which for 13 subjects (and using the same setup as provided in the

paper [160]) takes about 37.6 cputime, on the same machine.
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One-Subject-Out One-Expression-Out 

Figure 6.7: Two examples of expressive face decomposition using the DCS algorithm
for one-subject-out (S2) and one-expression-out (S3) set-ups on the CK+ dataset.
In both figures, the first image is the original input image. The second and the
third images are the separated neutral and expression components, respectively.
The fourth image is the sum of the two extracted components which is very similar
to the original input image.

6.5.3 Experiments on the CK+ dataset

One of the important advantages of our algorithm over B-JSM and the other

expression-invariant face recognition algorithms is that we can perform expression

recognition with no additional cost. To show the performance of joint face and

expression recognition, we use the CK+ dataset. This dataset is used mainly for

expression recognition, but we perform both face and expression recognition on it.

Since in this dataset, the number of sequences per subjects varies a lot (some subjects

only have one or two labeled expression sequences and some may have as many as

six expression sequences) we select a subset of the dataset in which the subjects

have at least four different expression sequences. This helps us to have a balanced

dictionary which is necessary for dictionary-based algorithms. The selected subset

has 25 subjects.

We perform these experiments in three different set-ups. In the first set-up

(S1), we randomly select 3 sequences per subject for training and leave the rest for

testing. We repeat this process ten times and finally report the average face and
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expression recognition results. In the second set-up (S2) we perform one-subject-

out expression recognition where we remove one subject with all its sequences from

the dataset for testing and train on the rests. We also consider this experimental

set-up for the whole dataset (106 subjects) and obtain the results for expression

recognition, for the purpose of comparing with other algorithms. Finally in the

third set-up (S3), we perform one-expression-out face recognition to evaluate the

effect of various expressions on the face recognition performance. In all cases, we

select the four initial frames of each sequence as neutral faces and the four last frames

(apex) as expressive faces and run our algorithm on these images. The test images

are selected as the four last frames of the test sequences. Figure 6.7 shows two

examples of expressive face decomposition using DCS algorithm for one-subject-out

(S2) and one-expression-out (S3) set-ups on this dataset.

We compare the face recognition results using S1 and S3 set-ups with the

results from B-JSM, KSVD and FDDL algorithms. As Table 6.2 shows, in almost

all the cases our algorithm gives higher recognition rates. FDDL algorithm, which is

based on learning a discriminative dictionary, performs close (even slightly better in

S3 set-up) to DCS algorithm. So considering the fact that the dictionaries learnt in

the training step of the DCS algorithm are not discriminative, this emphasizes the

importance of component separation step in DCS algorithm. Moreover, DCS shows

Table 6.2: Face recognition rates (%) on the CK+ dataset with S1 and S3 train-test
set-ups.

Set-ups DCS B-JSM [160] KSVD [191] FDDL [196]

S1 99.14± 1.4 85.2± 5.01 85.6± 4.8 98.8± 1.6

S3 95.1± 6.7 81.5± 6.15 91.2± 3.1 95.3± 3.7
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Figure 6.8: Effects of various expressions on the face recognition results on the CK+
dataset using S3 set-up. Each bar shows the face recognition rate we obtain when
all the faces with corresponding expressions are kept out for testing and the rest are
used for training.

superiority to FDDL in expression recognition (Table 3) which is more challenging

task compared to face recognition on this dataset.

Figure 6.8 shows the effects of various expressions on the face recognition

results using the S3 set-up. As the figure shows, while angry and sad faces are

the easiest expressive faces to recognize (since these expressions are more subtle

compared to others and so they present less challenges for face recognition), the

surprise face is the most challenging one for recognition.

We also compare the results of expression recognition using our algorithm with

those of KSVD and FDDL as well as some recent methods for expression recognition

on the CK/CK+ datasets including a joint face and expression recognition method

[168]. The CK dataset [197] is the old version of CK+ which has fewer subjects and

sequences. Most of these algorithms performed the recognition by dividing the CK

dataset randomly into training and testing parts and only [6] has the results with
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Table 6.3: Comparison with recent advances in expression recognition on CK+
dataset.

Recognition Methods Recognition Rates (%)

SVM+MLR∗ [181] 91.5

NN+GMM [182] 71

CAPP? +SVM [6] † 86.48

RegRankBoost [147] 88

Combined Features+Adaboost [134] 92.3

Decomposable Generative Model [168] 70.85

KSVD-S1 49.2

KSVD-S2-selected subset 64.6

FDDL-S1 73.7

FDDL-S2-selected subset 73.6

DCS-S1 81.64

DCS-S2-selected subset 86.8

DCS-S2-whole dataset 89.21

∗ MLR = Multinomial Logistic Ridge Regression

? CAPP = Canonical Appearance Features

† results on CK+ with leave-one-subject-out validation

one-subject-out cross-validation on the CK+. We compare the results from both

S1 and S2 set-ups in Table 6.3. As the table shows, our results are better than the

results of KSVD and FDDL algorithms which as we mentioned before this proves the

importance of component separation for face and expression recognition. Compared

to other reported results for expression recognition on CK/CK+, while our result

(DCS-S2-whole dataset) is among the top reported results, it is not the best one.

But it should be noted that while most of these algorithms extract several features

from the expressive faces and use trained classifiers such as SVM, Adaboost and

Neural Networks, our algorithm only uses the extracted deformation component of

the face as a holistic image with a simple residual-based classification.

We also evaluate our expression recognition results for different expressive
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Figure 6.9: Confusion matrices for expression recognition on CK+ using one-subject-
out cross-validation. left: results using our approach, right: result from [6]

faces. Figure 6.9 shows the confusion matrix for the whole CK+ dataset with

one-subject-out cross-validation (S2). The figure also shows the confusion matrix

reported in [6] for the same set-up 5. As the results show, both algorithms have

difficulty recognizing the fear expression. These results can be improved by adding

some other types of features, such as shape features [6], through joint sparse repre-

sentation.

6.6 Summary

We proposed joint face and facial expression recognition using a dictionary-

based component separation algorithm. Considering an expressive face as a super-

position of a neutral face with expression component, we proposed an algorithm to

decompose an expressive test face into its building components. For this purpose, we

5The original matrix has the results for ’Contempt’ expression as well. Since we removed
this expression from our experiments due to non-enough sequences, we modified their results
appropriately to have a fair comparison
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first generate two data-driven dictionaries, one for neutral components and the other

one for the expression components. Knowing that the neutral component of the test

face has sparse representation in the neutral dictionary and the expression part can

be sparsely represented using the expression dictionary, we decompose the test face

into these morphological components. The elements of the test face along with the

dictionaries are then used for face and expression recognition. For this purpose, the

separated components are sparsely decomposed using dictionaries while the group-

ing structures of the dictionaries are enforced into the sparse decomposition results.

The results for face recognition are very good and the expression recognition results

are among the top results. These results can be further improved by incorporating

some facial features such as the shape of facial components to boost the expression

recognition results.
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Chapter 7: Directions for Future Work

The problems addressed in this dissertation and the methods proposed to

solve them suggest several interesting future research directions. In this chapter we

outline a few directions for future research work.

7.1 Expression Flow Modeling

One limitation of our work on facial expression analysis on the shape-space is

the need for having landmarks on the face. We can eliminate this requirement by

using the dense flow field corresponding to various expression sequences. We can

employ two possible approaches for modeling the expression flow field. The first

approach is to model flow fields corresponding to various expression sequences as

dynamic processes driven by spatio-temporal models. For any point on the face, the

motion corresponding to that point can be modeled as

X(t1) = F (t1, t0, x, y)X(t0)

where t0 is taken to be the starting time. Once we have learned F for all t1, x, and

y, then the expression motion is completely characterized. Therefore to be able to
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Figure 7.1: Uniform flow regions on an expressive face.

learn F , we consider a parametric model for it and a good model is to limit the F to

belong to affine Lie group. Moreover, to make the problem more tractable, instead

of modeling the motion at each point, we model the motion over a region of the face

with uniform motion pattern. This leads to a spatial hybrid model, in which we

assume K affine models over the expressive face. Figure 7.1 shows a face with the

learned uniform flow regions on it. The flow at each region is modeled using affine

Lie group [198].

The second approach for modeling the expression flow is to find a non-analytic

expression flow manifold for various facial expressions. It is known that faces across

various expressions can be modeled on image articulation manifold (IAM) [199],

since it provides a powerful model for such ensembles: a collection of N -pixel im-

ages, with each image indexed by K degrees of freedom, can be modeled as a K-

dimensional nonlinear manifold embedded in RN . Then several problems such as

parameter estimation, supervised and semi-supervised classification, and novel view

synthesis can all be cast as navigation to appropriate point/regions on an IAM and

this requires constructing transport operators that traverse the IAM. The approach
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described in the previous paragraph provides an algebraic method for IAM transport

which exploits the geometric relationships between the images comprising an IAM.

A limitation of this approach and other algebraic transport methods is that they

are limited to a small class of IAMs with a well-defined algebraic structure (such

as a Lie group structure); such a structure occurs only in some special cases, such

as affine articulation. On the other hand, optical flow between pair of images is a

natural instance of transport on an IAM [7]. We argue that set of optical flows from

neutral face to various expressive faces forms a low-dimensional smooth manifold

and we can call it expression flow manifold. Such a manifold facilitates tasks such

as pose-invariant expression analysis and novel-expression synthesis. An illustration

of this idea can be seen in Fig. 7.2.
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Figure 7.2: Image articulation manifolds (IAMs) are non-differentiable; therefore,
locally linear models such as tangent spaces provide an inaccurate approximation
to the manifold geometry. In contrast, the optical flow manifold (OFM) associated
with a point on the IAM accurately captures the intrinsic curved geometric structure
of the IAM. The image is taken from [7].
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7.2 Structure-Preserving Sparse Decomposition for Actions/Activities

Recognizing human actions in still images has many potential applications in

image indexing and retrieval. One straightforward solution for this problem is to

use the whole image to represent an action and treat action recognition as a gen-

eral image classification problem [200–202]. Although such methods have achieved

promising performance, they do not explore the semantically meaningful compo-

nents of an action, such as human poses, body parts involved and the objects that

are closely related to the action [203]. Structure-preserving sparse decomposition

algorithm discussed in Chapter 5 proposes a general framework for decomposing

an action into its constituent components considering their semantic information

and compositional rules. If we could define proper attributes and parts for each

action, then the proposed algorithm can be generalized to general class of action

recognition.

Group activity recognition is a challenging problem mainly due to the inher-

ent difficulties in modeling inter-person interactions. For individual actions, body

parts share common motions due to human articulation constraints. Similar to

the individual actions, for structured group activities collaborative players can have

correlated motions. Such interactions between players and the temporal constraints

among their motions can be used to describe a group activity. One can also in-

corporate spatial constraints such as orientation and distance. Using the proposed

structure-preserving sparse decomposition algorithm, a complex activity can be de-

scribed as a set of semantic units connected using spatial and temporal constraints.
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Fig. 4. Removing shadows, specularities, and saturations from face images. (a) Cropped and aligned images
of a person’s face under different illuminations from the Extended Yale B database. The size of each image is
192×168 pixels, a total of 58 different illuminations were used for each person. (b) Low-rank approximation
L̂ recovered by convex programming. (c) Sparse error Ŝ corresponding to specularities in the eyes, shadows
around the nose region, or brightness saturations on the face. Notice in the bottom left that the sparse term
also compensates for errors in image acquisition.

4.4. Real Data Example: Removing Shadows and Specularities from Face Images

Face recognition is another problem domain in computer vision where low-dimensional
linear models have received a great deal of attention. This is mostly due to the work
of Basri and Jacobs [2003], who showed that, for convex, Lambertian objects, images
taken under distant illumination lie near an approximately nine-dimensional linear
subspace known as the harmonic plane. However, since faces are neither perfectly
convex nor Lambertian, real face images often violate this low-rank model, due to
cast shadows and specularities. These errors are large in magnitude, but sparse in
the spatial domain. It is reasonable to believe that if we have enough images of the
same face, Principal Component Pursuit will be able to remove these errors. As with the
previous example, some caveats apply: the theoretical result suggests the performance
should be good, but does not guarantee it, since again the error support does not follow
a Bernoulli model. Nevertheless, as we will see, the results are visually striking.

Figure 4 shows two examples with face images taken from the Yale B face database
[Georghiades et al. 2001]. Here, each image has resolution 192 × 168; there are a
total of 58 illuminations per subject, which we stack as the columns of our matrix
M ∈ R32,256×58. We again solve PCP with λ = 1/

√
n1. In this case, the algorithm

requires 642 iterations to converge, and the total computation time on the same Core
2 Duo machine is 685 seconds.

Figure 4 plots the low rank term L̂ and the magnitude of the sparse term Ŝ obtained
as the solution to the convex program. The sparse term Ŝ compensates for cast shadows
and specular regions. In one example (bottom row of Figure 4 left), this term also com-
pensates for errors in image acquisition. These results may be useful for conditioning
the training data for face recognition, as well as face alignment and tracking under
illumination variations.

Journal of the ACM, Vol. 58, No. 3, Article 11, Publication date: May 2011.

Figure 7.3: Removing shadow, specularities, and saturations from face images [8].

7.3 Taking the PIE off the face

As we discussed earlier pose, illumination and expression (PIE) impose chal-

lenges for face/object recognition. Various algorithms have been proposed to remove

these variations from faces. An important class of algorithms is based on separating

style and content [164,204,205]. The main goal of these algorithms is to decompose

a test face into its style and content components having enough samples of faces

with different variations from multiple subjects. But the main limitation of these

algorithms is that they often need the same set of possible variations for different

subjects in order to perform the separation task.

The component separation algorithm proposed in Chapter 6 is not specific to

expression decomposition, but it can also be applied to separate other sources of vari-

ation from the test face. The important challenge here is to learn proper dictionaries

for each component and the advantage is that there is no need to have all possible
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variations for every subject. Robust principal component analysis (RPCA) [8] shows

promising results in separating the variations due to illumination, specularities and

saturations from the faces (Fog. 7.3). So we propose using DCS algorithm to take

PIE off the test face.
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and L. Akarun. Bosphorus database for 3D face analysis. In Workshop on
Biometrics and Identity Management (BIOID), 2008.

[122] Takeo Kanade, Jeffrey F. Cohn, and Yingli Tian. Comprehensive database
for facial expression analysis. In FGR, pages 46–53, 2000.

[123] G. Lipori. Manual annotations of facial fiducial points on the Cohn-
Kanade database. LAIV laboratory, University of Milan, web url:
http://lipori.dsi.unimi.it/download.html.

[124] P. Thomas Fletcher, Conglin Lu, Stephen M. Pizer, and Sarang Joshi. Prin-
cipal geodesic analysis for the study of nonlinear statistics of shape. IEEE
Transactions on Medical Imaging, 23:995–1005, 2004.

[125] Xavier Pennec. Intrinsic statistics on riemannian manifolds: Basic tools
for geometric measurements. Journal of Mathematical Imaging and Vision,
25(1):127–154, 2006.

[126] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by
locally linear embedding. SCIENCE, 290:2323–2326, 2000.

[127] Ashok Veeraraghavan, Anij Srivastava, Amit K. Roy Chowdhury, and Rama
Chellappa. Rate-invariant recognition of humans and their activities. IEEE
Transactions on Image Processing, 18(6):1326–1339, 2009.

[128] P. Lucey, J.F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews.
The extended cohn-kanade dataset (CK+): A complete dataset for action unit
and emotion-specified expression. In CVPR Workshop, 2010.

[129] Jihun Ham and Daniel D. Lee. Grassmann discriminant analysis: a unifying
view on subspace-based learning. In ICML, pages 376–383, 2008.

[130] Zicheng Liu, Ying Shan, and Zhengyou Zhang. Expressive expression mapping
with ratio images. In SIGGRAPH, pages 271–276, 2001.

[131] Zhihong Zeng, Maja Pantic, Glenn I. Roisman, and Thomas S. Huang. A sur-
vey of affect recognition methods: Audio, visual, and spontaneous expressions.
TPAMI, 2009.

185



[132] M.F. Valstar, M. Mehu, Bihan Jiang, M. Pantic, and K. Scherer. Meta-
analysis of the first facial expression recognition challenge meta-analysis of
the first facial expression recognition challenge meta-analysis of the first facial
expression recognition challenge. IEEE Transactions on Systems, Man, and
Cybernetics, 2012.

[133] M.F. Valstar and M. Pantic. Biologically vs. logic inspired encoding of facial
actions and emotions in video. In IEEE Int’l. Conf. on Multimedia and Expo,
2006.

[134] Peng Yang, Qingshan Liu, and Metaxas Dimitris. Exploring facial expression
with compositional features. In CVPR, 2010.

[135] Xi Chen, Qihang Lin, Seyoung Kim, Jaime G. Carbonell, and Eric P. Xing.
An efficient proximal gradient method for general structured sparse learning.
Journal of Machine Learning, 2011.

[136] Gwen Littlewort, Jacob Whitehill, Tingfan Wu, Ian R. Fasel, Mark G. Frank,
Javier R. Movellan, and Marian Stewart Bartlett. The computer expression
recognition toolbox (cert). In FG, 2011.

[137] Yunfeng Zhu, F. De la Torre, Jeffrey F. Cohn, and Yu-Jin Zhang. Dynamic
cascades with bidirectional bootstrapping for action unit detection in sponta-
neous facial behavior. TAC, 2011.

[138] Peng Yang, Qingshan Liu, Xinyi Cui, and D.N. Metaxas. Facial expression
recognition using encoded dynamic features. CVPR, 2008.

[139] J. Xiao, S. Baker, I. Matthews, and T. Kanade. Real-time combined 2D+3D
active appearance models. In CVPR, pages 535–542, 2004.

[140] Y. Chang, C. Hu, and M. Turk. Probabilistic expression analysis on manifolds.
In CVPR, 2004.

[141] S. Taheri, P. Turaga, and R. Chellappa. Towards view-invariant expression
analysis using analytic shape manifolds. In Automatic Face and Gesture Recog-
nition (FG), 2011.

[142] Michal Aharon, Michael Elad, and Alfred Bruckstein. K-SVD: Design of dic-
tionaries for sparse representation. Trans. on Signal Processing, 2006.

[143] Qiang Qiu, Zhuolin Jiang, and Rama Chellappa. Sparse dictionary-based
representation and recognition of action attributes. In ICCV, 2011.

[144] Zhuolin Jiang, Zhe Lin, and Larry S. Davis. Learning a discriminative dictio-
nary for sparse coding via label consistent K-SVD. In CVPR, 2011.

[145] M.H. Mahoor, M. Zhou, K.L. Veon, M. Mavadati, and J.F Cohen. Facial
action unit recognition with sparse representation. In FG, 2011.

186



[146] Guoshen Yu, Guillermo Sapiro, and Stéphane Mallat Mallat. Solving inverse
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logistic regression. Journal of the Royal Statistical Society, 2008.

[150] M. Lobo, L. Vandenberghe, S. Boyd, , and H. Lebret. Applications of second-
order cone programming. Linear Algebra and its Applications, 284:193–228,
1998.

[151] X. Chen, Q. Lin, S. Kim, J. Pena, J. G. Carbonell, and E. P. Xing. An efficient
proximal-gradient method for single and multi-task regression with structured
sparsity. Technical report, CMU, 2010.

[152] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems. SIAM Journal Imaging Sci., 2(1):183–202,
2009.

[153] Shenghua Gao, Liang-Tien Chia, and Ivor W. Tsang. Multi-layer group sparse
coding - for concurrent image classification and annotation. In CVPR, 2011.

[154] M.S. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, I. Fasel, and J. Movel-
lan. Recognizing facial expression: Machine learning and application to spon-
taneous behavior. In CVPR, 2005.

[155] S. Zafeiriou and M. Petrou. Nonlinear non-negative component analysis algo-
rithms. TIP, 2010.

[156] W. Zhao, R. Chellappa, A. Rosenfeld, and P. J. Phillips. Face recognition: A
literature survey. ACM Computing Surveys, pages 399–458, 2003.

[157] A. Jorstad, D. Jacobs, and A. Trouv. A deformation and lighting insensitive
metric for face recognition based on dense correspondences. In CVPR, pages
2353–2360, Jun. 2011.

[158] I. Naseem, R. Togneri, and M. Bennamoun. Linear regression for face recog-
nition. TPAMI, 32:2106– 2112, 2010.

[159] B. Amberg, R. Knothe, and T. Vetter. Expression-invariant 3D face recogni-
tion with a morphable model. In FG, 2008.

187



[160] P. Nagesh and B. Li. A compressive sensing approach for expression-invariant
face recognition. In CVPR, 2009.

[161] P.-H. Tsai and T. Jan. Expression-invariant face recognition system using
subspace model analysis. In IEEE Conf. Systems, Man and Cybernetics, vol-
ume 2, 2005.

[162] Antonio Colmenarez, Brendan Frey, and Thomas S. Huang. A probabilistic
framework for embedded face and facial expression recognition. In CVPR,
1999.

[163] Xiaoxing Li, Greg Mori, and Hao Zhang. Expression-invariant face recognition
with expression classification. In Canadian Conf. on Computer and Robot
Vision, 2006.

[164] J. Tenenbaum and W. Freeman. Separating style and content with bilinear
models. In Neural Computation, 2000.

[165] M. A. O. Vasilescu and D. Terzopoulos. Multilinear subspace analysis of image
ensembles. In CVPR, 2003.

[166] H. Wang and N. Ahuja. Facial expression decomposition. In ICCV, 2003.

[167] I. Mpiperis, S. Malassiotis, and M.G. Strintzis. Bilinear models for 3D face and
facial expression recognition. IEEE Transactions on Information Forensics
and Security, 3, 2008.

[168] Chan-Su Lee and Ahmed Elgammal. Facial expression analysis using nonlinear
decomposable generative model. In FG, 2005.

[169] S.Z. Li and A.K. Jain. Handbook of face recognition. Springer, 2005.

[170] D. O. Gorodnichy. Video-based framework for face recognition in video. In
Can. Conf. Computer and Robot Vision, 2005.

[171] U. Park, H. Chen, and A. Jain. 3D model-assisted face recognition in video.
In Can. Conf. Computer and Robot Vision, 2005.

[172] A. M. Martinez. Recognizing expression variant faces from a single sample
image per class. In CVPR, 2003.

[173] C.K. Hsieh, S.H. Lai, and Y.C. Chen. Expression-invariant face recognition
with constrained optical flow warping. Transaction on Multimedia, 11, 2009.

[174] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust face recognition
via sparse representation. TPAMI, 2008.

[175] J. Huang, X. Huang, and D. Metaxas. Simultaneous image transformation
and sparse representation recovery. In CVPR, 2008.

188



[176] Z. Ying, Z. Wang, and M. W. Huang. Facial expression recognition based
on fusion of sparse representation. Lecture Notes in Computer Science, 6216,
2010.

[177] M.S. Bartlett, G.C. Littlewort, M.G. Frank, C. Lainscsek, I. Fasel, and J.R.
Movellan. Automatic recognition of facial actions in spontaneous expressions.
Journal of Multimedia, 2006.

[178] C. Shan, S. Gong, and P.W. McOwan. Robust facial expression recognition
using local binary patterns. In ICIP, 2005.

[179] Ying-Li Tian, Takeo Kanade, and Jeffrey Cohn. Recognizing lower face action
units for facial expression analysis. In FG, pages 484 – 490, March 2000.

[180] M. Pantic and I. Patras. Dynamics of facial expression: Recognition of facial
actions and their temporal segments from face profile image sequences. SMC-
B, 36(2):433–449, 2006.

[181] G. Ford. Fully automatic coding of basic expressions from video. Technical
report, Machine Perception Lab, Institute for Neural Computing, UCSD, 2002.

[182] Zhen Wen and T.S. Huang. Capturing subtle facial motions in 3D face track-
ing. In ICCV, 2003.

[183] T. Cootes, C. Taylor, D. Cooper, and J. Graham. Active shape models - their
training and application. Comput. Vis. Image Understand, 61:18–23, 1995.

[184] T. Cootes, G. J. Edwards, and C. Taylor. Active appearance models. TPAMI,
23:681–685, 2001.

[185] J.-L Starck, Michael Elad, and David L. Donoho. Image decomposition via
the combination of sparse representations and a variational approach. IEEE
Transactions on Image Processing, 14(10):1570–1582, 2005.

[186] Sylvain Sardy, Andrew G. Bruce, and Paul Tseng. Block coordinate relaxation
methods for nonparametric wavelet denoising. Journal of Computational and
Graphical Statistics, 9(2):361–379.

[187] M. Elad. Sparse and Redundant Representations: From theory to applications
in Signal and Image processing. Springer, 2010.

[188] Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresh-
olding algorithm for linear inverse problems with a sparsity constraint. Com-
mun. Pure Appl. Math., 57:1413–1541, 2004.

[189] M. Zibulevsky and M. Elad. L1-L2 optimization in signal and image process-
ing. Signal Processing Magazine, IEEE, 27(3):76 –88, May 2010.

189



[190] V. Chandrasekaran, S. Sanghavi, P. Parrilo, and A. Willsky. Rank-sparsity
incoherence for matrix decomposition. SIAM Journal on Optimization,
21(2):572596, 2011.

[191] M. Aharon, M. Elad, and A. M. Bruckstein. The K-SVD: an algorithm for
designing of overcomplete dictionaries for sparse representation. IEEE Trans.
Signal Process., 54(11):4311–4322, 2006.

[192] S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit.
SIAM J. Sci. Comp., 20(1):33–61, 1998.

[193] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching pur-
suit: recursive function approximation with applications to wavelet decompo-
sition. 1993 Conference Record of the 27th Asilomar Conference on Signals,
Systems and Computers, pages 40–44, Pacific Grove, CA, 1993.

[194] J. Friedman, T. Hastie, and R. Tibshirani. A note on the group Lasso and
a sparse group Lasso. Technical report, Department of Statistics, Stanford
University, 2010.

[195] J. Liu, S. Ji, and J. Ye. SLEP: Sparse Learning with Efficient Projections.
Arizona State University, 2009.

[196] M. Yang, L. Zhang, X. Feng, and D. Zhang. Fisher discrimination dictionary
learning for sparse representation. In ICCV, 2011.

[197] T. Kanade, J. F. Cohn, and Y. Tian. Comprehensive database for facial
expression analysis. In FG, 2000.

[198] Ruonan Li and Rama Chellappa. Group motion segmentation using a spatio-
temporal driving force model. In CVPR, 2010.

[199] C. Grimes and D. Donoho. Image manifolds which are isometric to euclidean
space. Math. image and Vision, 23(1):5–24, 2005.

[200] V. Delaitre, I. Laptev, and J. Sivic. Recognizing human actions in still images:
A study of bag-of-features and part-based representations. In BMVC, 2010.

[201] N. Ikizler-Cinbis, R. G. Cinbis, and S. Sclaroff. Learning actions from the web.
In ICCV, 2009.

[202] B. Yao, A. Khosla, and L. Fei-Fei. Combining randomization and discrimina-
tion for fine-grained image categorization. In CVPR, 2011.

[203] B. Yao, X. Jiang, A. Khosla, A.L. Lin, L. Guibas, and L. Fei-Fei. Human
action recognition by learning bases of action attributes and parts. In ICCV,
2011.

190



[204] Chan su Lee and Ahmed Elgammal. Facial expression analysis using nonlinear
decomposable generative models. In International Workshop on Analysis and
Modeling of Faces and Gestures, 2005.

[205] Chan su Lee and Ahmed Elgammal. Separating style and content on a non-
linear manifold. In CVPR, 2004.

191


