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ABSTRACT

The long distance force between quarks in the U(l) approximation to 

quantum chromodynamics is calculated on a home made reduced instruction 

set computer optimized for that purpose. It is found that previous calculations 

were in error by as much as 85% due to contamination by the Coulomb 

interaction. The Coulomb constant, measured for the first time in this work, 

agrees with analytically obtained values.

x



U(l) STRING TENSION



INTRODUCTION

Lattice gauge calculations provide alternatives to perturbative methods, 

based on first principles, and devoid of the assumptions of phenomenological 

models. Lattices have been used1 to calculate gluonic and hadronic mass 

spectra, place an upper limit on the mass of the Higgs particle, and calculate 

hadronic weak matrix elements, but this work will be concerned with the 

interquark force, or string tension, the motivation behind the conception2 of 

lattice gauge calculations by Kenneth G. Wilson in 1974.

Meson spectroscopy suggests a linear q - q  potential, resulting in 

confinement due to a force between quarks which, for large distances, is 

independent of the interquark separation. Apparently gluon-gluon interactions 

bind chromoelectric flux into a tube or string. An appealingly intuitive model 

considers the gluonic cloud to be an incompressible fluid, which wets the 

quarks. When the quarks are far apart, any further separation requires work, 

since the formation of additional surface sunders glue-glue bonds. The string 

tension is thus the surface tension of glue. Asymptotic freedom occurs when 

the quarks are very close, and separating them slightly does not increase the 

surface area of the spherical glue drop in which they are embedded.

When sea quarks are omitted, SU(3) lattice gauge calculations do 

indeed demonstrate confinement which disappears when the coupling grows 

weak enough. Although one would not naively expect it, a string tension has 

been rigorously proven to exist3 for all values of the coupling constant for 2+1



3

dimensional compact QED, which can be regarded as an Abelian U(l) 

approximation to SU(3) QCD. There is a puzzle in the measurement of this 

U(l) string tension: although its simplicity makes it a favorite testing ground 

for lattice calculations, no one has explained why apparently sensible 

modifications (SG) (PS) 4-5 yield U(l) string tensions very different from those 

produced by the standard algorithm (AHO) (IP) (WS). Why not sweep this 

disparity under the rug? Other lattice calculations rely on the sting tension to 

set the coupling strength and the spatial scale. Furthermore, previously 

published string tensions may well be contaminated by the X Coulomb force 

expected from Gauss' law in two spatial dimensions. If you can not accurately 

calculate a relatively simple quantity such as the U(l) string tension, how can 

you possibly hope to obtain realistic answers to difficult problems, such as 

hadron masses? This work reports a more accurate string tension measurement 

for the Z(256) approximation to U(l), performed on a home made computer 

roughly comparable, for this calculation, to a Cray I. The additional accuracy 
enabled more reliable separation of the string tension from the Coulomb force.



CHAPTER I. REVIEW OF LATTICE METHODOLOGY

The Statistical Mechanical Analogy for Path Integral Calculations

In Feynman's path integral approach to quantum mechanics6, a system 

is described by its position in configuration space. The non-relativistic 

probability of a transition from one configuration to another is given by the 

square of the amplitude which is obtained by adding the amplitudes of every 

possible “fundamental” virtual trajectory in configuration space. The 

(unnormalized) amplitude for a single trajectory is a complex number given by

where L is the classic Lagrangian and q symbolizes all of the coordinates of the 

path (parameterized by t ) in configuration space. The integration over paths is 

defined by discretizing time and integrating over the coordinates at each time:

where At = {tf - t ) /N ,  tH = tt +nAt, q(tH) = [q(tĤ ) - q ( tH)]/At, and Q is a

constant which drops out after normalization. To simplify calculations a 

change of variables t —> - it  is now made which converts the rapidly 

oscillating amplitudes to nicely damped exponentials. The behavior for real t 
is later obtained from that for r  by analytic continuation. This change of 

variable, resulting in a Euclidian metric, has an interesting side effect: if

e



L = \ q 2 -  V(q) then the sign change due to (l/d tf makes L(t)=L(-iT)=-H(T). 

With the substitution p= N  At /  h, the transition probability becomes

a  a - i

5 1 ^ )_ *» ._A

L»=i J

i fid

” .-A

The quantum statistical (unnormalized) density matrix7 is given by

p M  = £  (*)«-<'''>,(*') P  = V V -
I

To calculate the expected value of some quantum mechanical observable, when 

one quantal system is in thermal equilibrium with many others, one operates on 
the x' dependence of p and then takes the trace:

A = ¥i(x)Ae~p'Hyf*(x) = (x)\Ae~p'H\ ^  (*)),
i i

normalized by Z. The invariance of the trace under similarity transforms 
allows one to use any complete set for the yf. A common choice is energy 

eigenfunctions,

I

To show the relationship between path integrals and thermodynamics, use

position eigenstates (DW) instead:

PfotfO = jdx  8(x -  q) e~p'H8(x -  q') = {q\e~p'H\q').

Defining q„ = q and q0 = q \  and employing the closure of position

eigenstates, one obtains



If P ’IN is sufficiently small,

(<7»+ik  * ^ +v̂ k ) = k +i k~^«"*vk ) = f l ^ k +i k " ^ k )k k ~ * vk>-

Expanding the position eigenstates in momentum eigenstates and using

which is readily integrated by completing the square and shifting variables, to 

yield

which, except for the primes, is identical to the expression for the path integral. 

This similarity motivates the application of statistical mechanical techniques to 

quantum mechanics.

Although the density matrix is essential for the calculation of some 

observables, the measurable of classical thermodynamics can all be obtained 
from the partition function

e 'ipq and Aqn = qKJtX -  qH

provides

Together with the definitions

this results in

Z = Tr(fl(q,q)) = \'__dq(q,-iP'h\q,0).



To calculate the thermal average of an expectation value, operate with A on the 
q' dependence of p, set q' = q and then integrate over q:

A = * H m a n J _ ' d?.A(«0)«-fr<’;) £ dq(q,-ip-n\A\qfi).
H=0

Since this system is supposed to be in thermal equilibrium, measurement of A 
at some t„ * r0 should give the same result and A(q'0) can be replaced by

* S a(<?;)
«=0

which reduces the statistical errors in A when the multiple integrations are 

performed by Monte Carlo techniques.



Importance Sampling Monte Carlo Integration

Trapezoidal integration approximates a funotion/fo) by N  rectangles, 

each with a height equal to the function evaluated at the midpoint of the 

rectangle and a width 2 Ax= ( x ^  -  x ^ / N .  The error associated with a

single rectangle is easily found by Taylor expanding/fo) about the midpoint of 

the rectangle and integrating exactly the first nonzero error term. The 

symmetry due to expansion about the midpoint eliminates the odd terms, 

leaving an error per rectangle

proportional to 1/N 3. Since these errors are highly correlated they should be

(DW), if the integral is expressed in terms of the mean value off(x), measured 

by averaging/^) evaluated at evenly distributed random samples of x, the error 
would be proportional to l/V w . This Monte Carlo technique, although 

worthless for less than four dimensions, is the method of choice for higher 

dimensional integrations. Even the relatively simple calculation considered 

here has three million dimensions. A further improvement to the Monte Carlo 

method can be obtained by sampling the integrand where it contributes the 

most to the integral, instead of randomly. If the density of samples is given by 

an unnormalized function P(x), the integral can be written as

( A detailed derivation can be found in the appendix.) Usually f(x) is the 

product of two functions, one of which is equated to P(x). Normalization of 

the resulting integral eliminates the integration over P(x). The sequence of

added to yield the total error, for a d  dimensional integral, 1/N*. In contrast

p d x f ( x ) =



samples distributed with probability P(x) is obtained from the equilibrium 

distribution of a Markov chain generated by the Metropolis algorithm.



Markov Chains

10

A Markov chain (DW) is a sequence of probability distributions,
/*(*), PM(x) ... where Pi+l is specified by P. : some fraction T(a,b) of the 

probability density Pt(a) will be assigned to Pi+1(b). PM(b) will contain 

contributions from Pi for every value of a:

PM(b) = \daPXa)T(.a,b)

Since all of P, 's probability is to be redistributed J db T(a,b) = 1.

It can now be verified that Pi+l is normalized if Pi is normalized:

J db PM(b) = j  db j  da P, (a) T(a,b)

= f  da P,(a) [ J  db r ( a » ]  = J  daP:(a)

If the probability distribution is to be stable (/*(*) = Pt+Xx) = /^(x)) the flux 

out of P-Xa) must equal the flux into /̂ +1( a ) :

J  db PE(a) T(a,b) = J  db PE(b) T(b,a)

This can be achieved if the integrands are equal, a condition known as 
microreversibility. As expected

fg + i(b )-| daPE(a)T(a,b) = j  da PE(b)T(b,a)

= Pc(b)\ da T(b,a) = PE(b).

To show that the distribution converges toward the equilibrium distribution, 

define the deviation from the equilibrium distribution as

D,S \dx \P ,(x )-P E(x%



Then
Dm  - j d x j j d y P f y ) T ( y , x ) - / i « |

=  j  dx | |  dy(P,(y)-PE(y))T(y,x\ 

i j d x j  <fy |f/(y) -  />E0 ’)| r(y ,jt)= D,.

The equality can hold only when P: = PE : if Pt * PE then for some y 

PXy) -  ̂ eOO must be negative. (If this were not so Pt would not be 

normalized.) DM < D, for Pt * PE also implies there can be only one 

equilibrium: the distribution can not simultaneously converge to two.
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The Metropolis Algorithm

The Metropolis algorithm8 is way to generate random values of x with 
known probability PE(x). Construct an ensemble of calculators, each of which 

is to perform the same Monte Carlo integration. Any convenient distribution is 
used to assign an initial value xi to each of the calculators. Each calculator

then selects a new x according to the following algorithm:
Generate a trial x, xT, with probability TQ(xt,xT) = 7i(jcT,jcf) * 0. 

Calculate r = PE(xT) /  /*(*,-).

If r> l ,  xi+i=xT.

If r < 1 then accept xT with probability r:

Generate a random number R uniformly distributed in (0,1). 
If R < r then xi+l = xT.
If R >r then xi+l = x -t.

If this is done, the distribution of x  in the ensemble will evolve as a Markov 

chain, because the Metropolis algorithm satisfies microreversibility:
If r > l  then T(xi,xT) = T0(xi,xr ) and TXxj.,*,) = j T0{xt,x )̂. Conversely, if 

r< 1 then T(xitXj) = rT0(xitxT) and T(xT,xi) = TQ(xT,xi). Either way

Tjx^Xr) _ r _ PE(xT)
T i X j ^ X i )  P E ( X ; ) '

After enough steps have been taken x  will be distributed according to PE(x).

The calculators never interacted, so except in the proof, there is no need for

more than one.
Little has been said regarding xT selection. The trial x  can not be 

chosen completely randomly: When P(x) is strongly peaked, a randomly 
chosen x  will invariably result in a minuscule r, soxr will never be accepted 

and no new configurations will be generated. It is better to generate a trial x



close to xiy which is normally accomplished by the addition of a uniformly 

distributed perturbation to only one of the many variables defining the state x. 

Applying the Metropolis algorithm to each of the variables sequentially is 

referred to as sweeping the lattice. A single sweep will result in a new state 

highly correlated to the old one, so many sweeps must be performed to 

generate a new configuration. Another modification of the algorithm, 

especially advantageous when the acceptance is low and the calculation of r  is 

slow, is to update a single variable several times (each update is called a hit) 

before moving on the next one. In the infinite hit limit this is known as the 

heat bath algorithm. It will be shown that multiple hits are not computationally 

efficient for the calculation reported here.
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Glue on a Lattice

The gluonic SU(M) QCD Lagrangian density is

L = -±Tr(FtlvF»v)

where the gluonic Faraday tensor and vector potential have been "decolorized" 

by contraction with the group generators

F„v = TF % V = T  A \  -  dvA% + g fabcAbn A%)

= dliA v- d vA/1 -  , A v]

Am = A% Ta,

a process reversible trough the use of the generator's orthonormalization 

constraint
T r ( r T i ) = | 5 fli.

To place this theory on a lattice, each link between neighboring points 
X; and Xj is associated with a variable

_ TU,, = e K

Figure 1. A coordinate system.
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The product of the link variables around the smallest possible square on the 

lattice (known as a plaquette)

uQmv s uauftuA,.uyi=e-*Av(v * A'( V “A'(
with three applications of the Baker-Hausdorf identity (DW)

eK eB = eA+B+*lA,B1 (provided higher commutators vanish),

becomes (neglecting terms of order a3 )

A w(«)~Am (d)+A „ (c)+ A m (* ))_ i « 2« 2 {[“ A v .- A m ]+ [ -A v , A v J+ f-A j,, A v ]+ [ -  A v , AM ] + [ - AM, AM ]+[ A „ , AM ])

_ eVo\v'

The Wilson action is defined as

1 -  £<KTr(UQ)) = (7(1 - ^ T r ( U Q + UQf)).

Evaluating the argument of the trace to lowest order

e*a%* + e-i#‘2f v  _ l £ ( - ^ r
n=0 m=0

= 2 X ~ a(2̂ ) = 2 - s V F mvF„v (no implied sum)
1=0

since FMV is Hermitian. The action and Lagrangian density are therefore 

related by

H v

When the exponential of this action is used as the path integral's integrand, one 

obtains £  = If the lattice spacing in the time dimension equals the lattice

spacing in spatial directions then cA r = a, = and a  = ~pr̂ -
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To demonstrate the action's gauge invariance, consider application of 
the Baker-Hausdorf identity to the following transformation of a link variable 
(to first order in A):

e ~iK ,gigaA^glK i _  g - iA y+i«aA(1+ i[-£A yi<gflAM]+iA1+i[<gflA(,.iA i ]

  “ i(Ay*-Aj y+igaAp ]~[̂ M »̂ i ]Jc?

= e~igaKl

where
K  “ A» =  A" + / ^ A ‘A%)

is the transformation of required for local gauge invariance. Any product

of link variables corresponding to a closed loop is gauge invariant because the 

gauge changing term to the right of a link variable will cancel with the gauge 

term to the left of the next link variable.

To calculate the interquark potential, the energy change is measured 

when a pair of massive quarks is plunged into the gluonic sea for a time T. To 

do this, a term
2Tr(JM A

corresponding to the quark-gluon interaction is added to the Lagrangian 

density and the propagator is calculated by the statistical mechanical analog 

explained earlier, using Monte Carlo integration with the Metropolis 

algorithm's importance sampling. This result, based on the complete 

interacting q-A field system is equated to that of a system composed of gluons 

and immobile quarks which evolve separately under the influence of a “fake” 

q-q potential that contains, in concentrated form, the complicated q-A and A-A 

interactions:
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■ (a a |a 4

,-H a-aN*\

Usually periodic boundary conditions are applied and Ay = A,, is also

integrated. Examining the interaction Lagrangian density in more detail, for a 

quark transition from color i to color/the transition current is given by

where \j/, is the Dirac wave function for the i* color component of qit 

J°_>f  = yai for lattice points r' equipped with a quark, and = 0.

Inserting this interaction into the path integral's Lagrangian density, averaging 

over the quark color at the initial lattice point, and summing over the quark 

colors on lattice points r ' yields an additional term

Gauge invariance demands that r' form closed loops. Provided periodic 
boundary conditions are used, this will be the case if T = N  At, but more 

commonly links along n  *■ 0 are added to form a closed loop with T < N  At. 
The resulting expectation value, W(R, T) = Z(1YZ with

r ^ i g q ^ - V q ,  

-igTV i V / r 'v .  

s  feTV, J l ,
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z ( / ) = j W Ji<v‘*w

=n(j iTRnu.
and

Z S Cfcve"*v
r»

is known as a Wilson loop. Wilson loops with T<N Az are only 

approximations because they use J?*°f  = %s rather than zero: symmetry 

considerations imply that the extra loop segments do not cancel for T < N A z .

Thus the interquark potential can be expressed as

V(R) = -  Limit f  In W(R,T).

For the U(l) case link variables assume the form

UrM = e 0'*

so with the definitions

h ^ r  = <Pr+fi ~ <t>r

the Wilson action becomes

SQrMV = (T(i-coserflv).



CHAPTER II. ANALYTIC RESULTS FOR U(l)

Strong Coupling

In the limit a  —»0, glue only lattice gauge calculations can be 

performed exactly analytically9. Examining only the U(l) case, and cancelling 

some common factors, the Wilson loop can be written as

W = n(j*0
Links^ '

y
PlaqoMM

Boundary

Substituting the multinomial expansion

f  i V"

n(j«)
Linksv  '

i* -n i
V i=l J  i=l Vm,=0

/

i= l

f l m , !
1=1

i
(where the asterisk indicates that the sums are constrained so that = m )

i=i
into the Taylor expansion of the exponential and using /  for the number of 

plaquettes, one obtains

i
<j^9U /q »  f  /

m =0 V i=l

\ m 

y m=0

/ (  .  

(frn  si=i vmi=° y
i=i_______________

f i ™ .;=i

Fortunately, most of these terms vanish when integrated over dU:

19
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It is clear that the lowest order nonzero term in the numerator must contain 
mi = 1 for plaquettes with links on the Wilson loop boundary, so that all the Us

in the product taken around the loop will be multiplied by a corresponding U*

from (9M/Qi.) . If only the plaquettes along the boundary of the Wilson loop

are given mi * 0 then for loops >2x2, (9t£/Qi) m‘ will contain unmatched U*s

coming from unmatched links. A nonzero result can be obtained only if there 
are no boundary plaquettes with m, * 0. Many such surfaces can be

constructed (for example, the torus containing the Wilson loop could be tiled 
with plaquettes everywhere except inside the loop) but due to <r" the largest 

contribution comes from the smallest number of plaquettes, the inside surface 

of the loop (providing the loop is less than half the size of the lattice). The 

result for an NxM loop is therefore (f)N M, which yields a string tension of 

-ln(cx/2).



Mean Field Theory
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A mean field theoretical approximation10 replaces all the link variables 

save one with their averages

A slightly more cumbersome variational approach is available for SU(N)11,12: 
this mean field approximation is limited to U(l) because it immediately 

discards the non-Abelian nature of the fields. Calculating the expectation 
value of a plaquette under the presumption that 9 is real, and using p  to denote 

the number of plaquettes that share each link,

This self consistency equation for 6 can be solved numerically. For an RxT 

Wilson loop this gives 62{R+T), which does not result in a string tension at all.

UQ s (ua)<u„)<u„X=u,<u„)3 s U, 0 s.

Links

£'<*095(0



Weak Coupling
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Analytic calculations for weak coupling in U(l) have been reported by 

Polyakov13, Banks et al (BMK) and Muller and Riihl (MR) 14 (BMK) and 

(MR) both begin by Fourier expanding the exponentiated Wilson action:

z (/ ) = r i [ f  d&r
r,fi *• * v>n

=n
v>/x - mv -* V>/i

expressing 9rflv in terms of 0rM it can be shown that 9rfiVlr/iV = 6m Av/r/lv. With 

this substitution the integrals reduce to delta functions

z w - nr.M
V > /i

l_/v w = - «
n k x H i B 2* * * . + a v/wv)]
r>M r,/i'.M
V>/1

Substitution verifies that a solution to the constraints is given by

where
Kuv — e u V7i ( A *  lr +  X )

X ~ ev*Ai 3̂*

A3! Qr =
j=~°°

A

3 is a unit vector in the 3 direction, and /, is an integer-valued scalar field. 

Using the constraint equation, renormalizing the Bessel functions by dividing 
them by I0(<7), dropping terms that cancel when ratios are taken, and then

asymptotically expanding the Bessel functions gives
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z < '> = n [iJ n N § r ]

=n s n
r U = — J  rJ*

The leading behavior of g2k is O’1-2*. The calculations diverge at this point. 

(MR) convert the sums over /, to integrals, and equate

to(z‘% ) = E ^fl=l
ill
a*

from which they extract

W2(R,T) = iW l(R,T) 
K^ix) = sin2 itxkp

W(R T) = i  f1 j pjt
*'° *i (mud) Xm d

For large R, WX(R,R) = %R + TjRlnR so (MR) predicts the U(l) coulomb 

force, but not the string tension.

Table 1. Numerical evaluations of Wx (R,R) by (AHO)

R Wt(R,R) R W ^ R ) R Wt( R,R)

1 .3333 5 3.9709 9 8.779
2 1.0399 6 5.1004 10 10.082
3 1.9187 7 6.283 20 24.50
4 2.9050 8 7.511 50 75.

Unlike (MR), (BMK) obtains a string tension (without a Coulomb force) after 

a tortuous derivation. Instead of directly converting the sums over /, to 
integrals, they truncate the expansion of the Bessel function ratio to order 1/(7. 

The Poisson sum formula is then applied to integrate The result is
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mathematically the partition function of a gas of magnetic monopoles 

interacting with two R x T  rectangular sheets of monopoles of opposite 

polarity separated by one lattice spacing. Incomplete shielding by the 

monopole gas results in an energy density responsible for a string tension of

^-.253**®
*v<r



CHAPTER HI. EXPERIMENTAL RESULTS FOR Z(256)

The Experimental Apparatus

The calculations described here were performed on SPAM (Stochastic 

Processing Automaton in Memory) which can be thought of as a pipelined 

microprogrammed RISC optimized for spin glass calculations, built out of 

memories and small scale logic. Reduced Instruction Set Computers are based 

on the observation that most of a CPU's instructions are rarely used: the 

resources they consume would be better applied toward improving the 

performance of the instructions that occupy the most time. Microprogrammed 

CPUs derive their internal control signals from a (sometimes very wide) 

memory. Each instruction, or opcode, consists of numerous microstates 

obtained sequentially from this memory.

An overview of SPAM is shown in Figure 1. It consists of an address 

generator, four megabytes of memory, fast hardware random number 

generators, a group logic unit, an arithmetic logic unit, and a look up table for 

exponentials. The address generator contains two counters, microstate lookup 

tables, and one adder for every dimension of the lattice. As well as providing 

control bits used throughout SPAM, the microstate ROM provides relative 

offsets to the adders, which convert the offsets to absolute addresses by adding 

the contents of the node counter, which contains the address of the lattice point 

associated with the variable being updated. When the microstate counter 

reaches its preprogrammed maximum value, it resets itself to zero, increments

25
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the node counter, and the first microstate is applied to the new lattice point. 

This scheme is possible because the same rather small set of instructions is 

applied to each lattice variable. Periodic boundary conditions are 

automatically implemented when the adder overflows into unused bits, 

provided the lattice size in each dimension is an integer power of two. The 

lattice size can be changed by replacing a small simple printed circuit card that 

combines the addresses for each dimension into a single 22 bit address, which 

is then provided to 4 Mb of byte wide dynamic memory.

The memory consists of four cards, each containing thirty six 150 nSec 

41256 DRAM chips, controlled by an Advanced Micro Devices AM2968PC. 

The DRAM controller contains an address multiplexor and a refresh counter. 

Advancements in memory technology now allow 4Mb SIMMs made from 

memories with internal refresh counters (CAS-before-RAS refreshing) which 

would considerably simplify the design. Three of the memory cards contain 

parity error detection hardware: according to the memory data sheet, a cosmic 

ray induced memory error could be expected once every few months. Except 

for errors deliberately induced for testing purposes, no errors were ever 

observed in a year's operation. Debugging the error detection circuitry on the 

fourth card was therefore not considered worthwhile. When a calculation is in 

progress, SPAM is guaranteed to access the memory at half the required 

refresh frequency. Since experiment showed manufacturers specifications for 

this parameter are about a thousand fold higher than necessary, memory refresh 

was provided only when SPAM was not using the memory. Although the 

controlling 68000 sees the lattice memory as word wide, the two bytes are 

multiplexed to one when SPAM accesses the memory.
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Group elements from the lattice memory are fed to a group multiplier, 

which in the current implementation consists of four parallel look up tables. 

Parallel lookup tables could be replaced by smaller serial tables, but increasing 

the length of the pipeline would reduce performance and complicate microstate 

programming. Limiting the group to 28 elements allows a single ROM with 

sixteen address bits to serve as a multiplier. Two of the tables, generating the 

group product of the partial product with either the new link variable or its 

inverse (selected by microstate), are fed to the partial product register which 
provides the other input to the group multiplier. This register can be set to the 

group identity element by one of the control microstates. The remaining two 

tables generate the 16 bit Wilson action of the product, which forms one input 

to an ALU (made from four 74LS181 and one 74LS182) which takes the sum 

or difference of groups of plaquettes. The ALU is 16 bits wide, but an 82C54 

overflow counter makes it look like 48 bits if only additions are performed, 

enabling summation of measurements made at each lattice location.

Differences in the action are exponentiated by a 16 bit look up table.

Good random numbers are difficult to generate, and SPAM needs two 

for every trial link. The most popular pseudorandom number generator is the 

linear congruential algorithm:
ni+l = a - n ^ b  moduloc,

where a, b, and c are carefully chosen constants. Unfortunately the modulo 

operation is easily implemented in hardware only for unsatisfactory values of 

c. Shift register sequences15 are easily generated in hardware, and they make 

excellent pseudorandom bit streams, but these bits can not be concatenated to 

produce random bytes. (PFT) suggests encrypting unsatisfactory random 

numbers using the DES algorithm. To test this notion, all of the random
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number tests suggested by Knuth16 were implemented. Shift register sequences 

for an 88 cell register with feedback taps selected by Stahnke17 spectacularly 

failed the poker test and the run test. The same random numbers after DES 

(PFT) encryption by an AM9518 data encryptor chip failed miserably only the 

coupon test. Since the resulting random numbers proved perfectly satisfactory, 

the failure of this test is distressing only in that it suggests the validity of 

rumors that DES was compromised by the NAS. It would be interesting to see 

if LUCIFER does a better job. In principle the encryptor could scramble its 

own output, but the length of the resulting sequence would be uncertain. The 

88 bit shift register guarantees that the sequence would not have repeated itself 

if numbers were extracted from this generator at its maximum rate of two 

million bytes a second, starting from the creation of the universe, assuring 

there will be no overlap between the sequences initiated by two randomly 

selected seeds. Perhaps randomness would improve if the shift register 

sequence xor DES output was fed into the encryptor. Another way to improve 

randomness, suggested by Knuth, is to generate two pseudorandom numbers, 

one of which is used as an address for a small cache. The second random 

number replaces the one in the selected cache location, which becomes the next 

random number. This method of scrambling the sequence of pseudorandoms is 

not difficult to implement in hardware, but simulations showed no great 

improvement in randomness.

The controller generates some additional control signals from 

microstate bits, and initiates a new microstate once the dynamic RAM 

controller indicates the current memory access is finished. When the last 

lattice point has been processed, the controller stops requesting new 

microstates, and reactivates memory refresh.
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SPAM is controlled by a small microcomputer built around a Motorola 

68000 which runs a resident Forth obtained by modifying Pocket Forth18, a 

public domain Forth inteipreter/compiler based upon FLINT19 (also public 

domain). The 68000 under the control of Forth selects opcodes for SPAM (by 

writing to the opcode latch supplying the six most significant bits to the 

microprogram memory), which applies them to each lattice point. The 68000 

also initializes the random number generator (by setting the contents of the 

shift register, and several registers inside the encryptor) and can read or write 

to the lattice memory whenever it is not in use by SPAM. The 68000 

communicates at 96000 baud with an Apple Macintosh which provides mass 

storage and a convenient user interface. It would have been better to attach the 

68000 to the Mac’s SCSSI port. Normally the Macintosh runs Mach-2 Forth20 

incorporating a terminal emulator and an assembler. The user can then send 

Forth source code or commands to the 68000 through the terminal emulator, or 

the two Forths can communicate with each other directly. Coupled programs 

are easily written. Both Forths are quite fast because they are subroutine 

threaded, but when every microsecond counts assembly language can be 

compiled on the Macintosh and downloaded to the 68000.

The speed of this computer is currently limited by the 250 nSec cycle 

time of the 150 nSec memories used in the lookup tables and the lattice. Now 

that dense memories as fast as 12 nSec are available this machine could be 

made much faster. Additionally, several GLU/ALUs could could be controlled 

by the the same address generator/ microstate controller, as in APE.
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Microprogramming Language
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Each of SPAM'S 64 opcodes are composed of up to 512 microstates, 

specified by a simple microprogramming language. The microinstruction 

compiler (along with a decompiler and a hardware simulator) runs on the 

Macintosh, which also bums the lookup tables and opcode ROMS. In addition 

to Forth's usual amenities, the micro programming language consists of four 

compiler directives and eight pipeline control instructions together with two 

relative path specification instructions (e.g. z, -z) for each dimension. Control 

microinstructions precede the link with which they are stored. This can be a 

little confusing because most microinstructions act on information further 

down the pipeline. The complete microprogram used for this calculation can 

be found in Opcode appendix. After compilation the microprogram is burned 
into ROMs.

Table 2. Pipeline control microinstructions.

Instruction Meaning
Minus Subtract current plaquette sum from previous plaquette sum
Save Save a link, if it was accepted
NewRand Generate a new random number
NewNode Store link address for later use by Save
Difflnit Store current plaquette sum for later use by Minus
UseRand Use a random number instead of a lattice variable
Newll Set the partial group product to the identity element
New£ Set the partial sum over plaquettes to zero

Table 3. Compiler directives.

Meaning
Initialize the compiler 
Process the loop provided since the last P 
Finish the current opcode, start the next one 
Save the contents of each ROM in a separate binary file

Directive
Parselnit
P
EndOpcode
RomSave
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Other Home Made Computers

The Array Processor Experiment, APE21, of the Bologna-CERN- 

Padova-Rockefeller-Pisa-Rome collaboration is an elegantly simple SIMD 

machine featuring a circular array of memories coupled to a circular array of 

32 bit floating point processors through a switch, all of which is under the 

control of microcode broadcast by a bit slice sequencer. A 3081 mainframe 

emulator calculates memory addresses, controls the sequencer, and executes 

some portions of the calculation. The switch connects each processor to one 

16 Mbyte memory bank, so that processor n is connected to memory n+m 

modulo the number of processors. Each 64 Mflop APE FPU consists of four 

register files, four floating point multipliers, and four floating point ALUs, 

configured to multiply and add complex numbers. Microcode is generated by a 

modified optimizing FORTRAN which relieves the programmer of any need of 

hardware expertise. The current APE consists of 16 FPUs, but a seven million 

dollar 4096 FPU APE22, with a projected speed of 100 Gflops, is currently 

under construction. For the sake of comparison, a ten million dollar Cray XMP 

is capable of about 1 Gflop.

The 256 node Columbia group's parallel processor23*24 is a MIMD two 

dimensional torus of vector processor augmented 80286 computers. Each 64 

Mflop vector processor is composed of two 32 bit floating point processors, 

four register files, a 256 Kbyte cache, and a writable control store which 

contains microcode provided by the 80286. The 80286 operates on an 

independent bus with 128 Kbytes of instruction memory and a Multibus 

interface to which a hard disk and commercial memory cards may be coupled. 

In addition to writing opcodes to the control store, the 80286 can access the
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vector processor's data cache. Software development requires the use of a 

microcode assembler.

The GF1125, constructed at IBM's TJ. Watson Research Center, is an 

overly complicated SIMD arrangement of 366 20 Mflop processors and ten 

430 Mbyte hard disks connected by a three level 24 channel switch. Each 

processor contains an ALU, a floating point unit capable of multiplication and 

addition, and 2 Mbytes of memory arranged in three levels of increasing speed. 
The processors are controlled by 180 bits of microcode, which can be modified 

somewhat by each processor’s condition code. Although each processor may 

communicate with any of the others, and any of the hard disks, only 3% of 

them can do so at one time. Because these interconnections are specified by 

8640 bits, they are chosen dynamically by the controller from a preselected set 

of 1024 configurations. Extensive effort went into the GF1 l's software. A 

precompiler translates a C like language with hardware specific extensions into 

pure C which, after compilation and execution, produces a sequence of 

operations to be executed by the GF11, which is then converted to microstates 

by an optimizer.

Caltech and Fermilab have constructed hypercubical arrays of MIMD 

single board computers with fast floating point hardware. A hypercube is the 

multidimensional analog of a cube: an n dimensional hypercube consists of two 

n -1 dimensional hypercubes connected at their corresponding vertices. An n 

dimensional hypercube consists of 2" processors, each of which is connected 

to n other processors. By judiciously ignoring connections the hypercube can 

become a lower dimensional rectangular mesh. Each of the 32 nodes in 

Caltech's machine26 consists of a 68020-68881 with 4 Mbytes of memory, a
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128 Kbyte data cache, and a 16 Mflop XL chip set. Each of the 32 nodes in 

Fermilab's machine27 is comprised of eight processors coupled by eight 

reconfigurable data paths. Each processor is equipped with a 20 Mflop XL chip 

set, 2 Mbytes of code memory, and 8 Mbytes of data memory.
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Before beginning a lattice calculation, one must choose a few 

parameters that affect the efficiency of the calculation. The same observable 

can sometimes be measured in many different but equivalent locations or 

orientations on the lattice. Provided these measurements are not too highly 

correlated, and that the time required for a measurement is smaller than the 

time required to generate a new configuration, it is advantageous to average 

together multiple measurements made on a single configuration. For various 

loop sizes, relative orientations, and relative displacements, the linear 

correlation coefficient between two loops was measured on a 16x16x16 lattice, 

using 100 configurations separated by 50 sweeps. Each such measurement 

was repeated 60 times in order to measure the error on the correlation 

coefficient. The results, shown in tables 4-12, indicate measurements of the 

same loop at different locations and orientations on the lattice, for a single 

configuration, are essentially uncorrelated.

Two additional parameters, the number of sweeps T separating 

configurations, and the number of hits H per sweep, must be traded off against 

each other. By increasing H one hopes to reduce the correlations between 

configurations so that they can be separated by fewer sweeps. The object is 

minimize the time required to obtain a new configuration from an old one. To 

do this, the correlation R between sweeps was measured using a single loop per 

sweep, for H = 1 to 9, T = 1 to 10, and loop size L -  1 to 8. Selected data from 

these measurements can be found in tables 13-15. Since one would naively 

expect an exponential decay, for each L and H the log of R was fit to a linear 

dependence on T:
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Ln (R) = I(L,H) + S(L,H) • T.

The logs of the slope S(LJT) and intercept were then in turn fit to 

logarithmic dependence on H:
Ln(-/(L, H)) = 1, (L)+ S, (L) • Ln (//)
Ln (-S(L,H)) = IS(L) + Ss(L) • Ln (//).

Since the time required to generate a new configuration is
*1 = (Hm + p) xT

(where m is the number of microstates per hit, p  is the number of microstates 
required to fill the pipeline, and x is the time required to execute a microstate),

Ln(/?> + e//(i)+s/(i)Ln(")
T̂/ T -  (Hm + p) _^/4 (t)+Sj {LyLn{H)

can be used to print, for a given R, a table showing the relative time required to 

generate a new configuration as a function of H and L. An example for R=. 1 is 

included as table 16. A more qualitative analysis is to generate from S(L,H) a 

list of half-lives, such as table 17. The conclusions are that more than one hit 

per configuration would be a waste of time, and that eleven sweeps between 

configurations were sufficient to achieve an R of .1.

An even more important parameter is the thermalization time. Before 

measurements are made on the lattice, many configurations must be generated 

to make certain the Metropolis algorithm has converged. To demonstrate 

convergence the calculation can be run twice, once starting from a completely 

disordered lattice, and once starting from a completely ordered lattice. When 

the two calculations yield the same result the thermalization is complete. 

Alternatively the time constant for the thermalization can be estimated by 

fitting measurements to an exponential. Figures 3 and 4 show square Wilson
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loops averaged over the lattice as a function of the number of 25 sweep 
configurations. This data is for a 64x64x256 lattice at a  -  2.0.
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Table 4. Linear correlations between lx l xy and xy plaquettes as a function of

distance and direction.

M
AX x + y x + y  + z

0 1.000 ±.000 1.000 ±.000 1.000 ±.000
i -.035 ±.032 -.047 ± .022 .024 ±.008
2 .016 ±.030 .004 ±.031 .021 ± .027
3 -.051 ±.028 -.016 ±.035 -.032 ± .023
4 .012 ±.032 -.007 ±.034 .002 ±.029
5 .033 ±.028 .024 ±.028 .107 ±.030
6 .033 ±.026 -.021 ± .038 .000 ±.034
7 -.002 ±.030 -.072 ±.029 -.036 ±.031

Table 5. Linear correlations between lx l xy and xz plaquettes as a function of 
distance and direction.

M
AX x + y x + y + z

0 -.072 ±.028 -.072 ±.028 -.072 ±.028
i -.039 ±.037 .011 ±.032 .032 ± .037
2 -.005 ±.014 -.013 ± .027 .008 ± .031
3 .005 ±.032 -.013 ± .024 .017 ± .047
4 .039 ±.036 .038 ± .024 .003 ± .025
5 -.029 ± .016 .012 ±.031 .016 ± .028
6 -.058 ± .025 -.025 ± .021 -.028 ± .031
7 .006 ±.046 .022 ±.019 -.020 ±.024

Table 6. Linear correlations between lx l yz and yz plaquettes as a function of 
distance and direction.

|Ar| AX x + y x + y + z

0 1.000 ±.000 1.000 ±.000 1.000 ±.000
1 .111 ±.035 .012 ±.040 .010 ± .034
2 .049 ±.015 -.034 ±.019 -.045 ± .022
3 .004 ±.036 .028 ± .027 .010 ±.035
4 .045 ± .017 .009 ± .023 .014 ±.043
5 -.004 ±.035 -.039 ± .023 .032 ±.026
6 -.030 ±.022 -.053 ± .023 -.012 ±.049
7 .044 ±.023 .034 ±.020 -.069 ± .029
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Table 7. Linear correlations between 4x4 xy and xy plaquettes as a function of

distance and direction.

M
A
X x + y x + y + z

0 1.000 ±.000 1.000 ±.000 1.000 ±.000
i .165 ±.031 .077 ±.025 .001 ± .020
2 .062 ±.033 -.020 ±.030 .009 ±.018
3 .065 ±.022 -.018 ± .034 .011 ±.026
4 .039 ±.023 -.029 ±.031 -.022 ±.038
5 -.045 ±.041 .002 ±.025 .062 ±.029
6 -.013 ± .030 .082 ±.026 .022 ±.028
7 .051 ± .028 .030 ±.031 .021 ± .027

Table 8. Linear correlations between 4x4 xy and xz plaquettes as a function of 
distance and direction.

|Ar| A
X x + y x + y + z

0 -.024 ±.033 -.024 ±.033 -.024 ±.033
1 -.064 ± .023 -.008 ± .033 .003 ± .037
2 -.022 ± .022 .027 ± .033 -.040 ±.026
3 .018 ± .027 .004 ±.021 -.057 ± .035
4 .017 ± .035 .017 ±.039 .028 ± .029
5 -.022 ±.025 .027 ± .030 .083 ± .030
6 .025 ± .027 .039 ± .034 .004 ±.038
7 -.026 ±.033 -.034 ±.022 -.039 ± .024

Table 9. Linear correlations between 4x4 yz and yz plaquettes as a function of 
distance and direction.

M
A
X x+ y x + y + z

0 1.000 ±.000 1.000 ±.000 1.000 ±.000
i .083 ± .026 .031 ± .028 -.007 ± .026
2 .075 ± .029 .025 ± .036 .054 ±.041
3 .091 ± .026 .015 ± .026 -.057 ±.027
4 .041 ± .022 .002 ±.045 -.019 ± .026
5 .005 ± .027 .038 ± .021 .004 ±.037
6 .002 ±.036 -.012 ±.032 -.034 ±.023
7 .026 ± .028 .015 ± .034 .016 ±.030
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Table 10. Linear correlations between 8x8 xy and xy plaquettes as a function

of distance and direction.

AX x + y x + y + z

0 1.000 ±.000 1.000 ±.000 1.000 ±.000
i .044 ±.025 -.027 ± .017 .038 ± .034
2 -.015 ±.020 .046 ±.027 -.003 ± .028
3 .028 ±.025 .031 ± .025 .004 ±.019
4 .007 ±.033 -.005 ± .024 .012 ±.021
5 .013 ± .032 .030 ±.025 -.006 ±.033
6 .007 ±.035 .007 ± .031 -.007 ±.032
7 -.024 ±.039 -.006 ±.024 -.032 ±.036

Table 11. Linear correlations between 8x8 xy and xz plaquettes as a function 
of distance and direction.

M
AX x + y x + y + z

0 -.020 ±.016 -.020 ± .016 -.020 ±.016
i .007 ±.028 -.008 ± .018 .020 ±.037
2 -.009 ± .022 -.001 ± .025 .015 ±.038
3 -.067 ±.051 .015 ± .033 -.013 ± .040
4 .025 ±.024 -.050 ±.030 -.026 ±.034
5 -.053 ±.023 -.012 ±.036 -.030 ±.022
6 -.046 ±.032 -.007 ±.032 -.044 ±.026
7 -.051 ± .025 -.031 ±.033 .004 ±.038

Table 12. Linear correlations between 8x8 yz and yz plaquettes as a function 
of distance and direction.

|Ar| AX x + y x + y  + z

0 1.000 ±.000 1.000 ±.000 1.000 ±.000
1 .011 ±.029 .008 ± .034 -.025 ±.030
2 -.014 ±.025 -.024 ±.024 .011 ±.040
3 -.003 ± .029 .007 ± .027 -.018 ±.040
4 .004 ±.031 .043 ± .021 -.016 ±.033
5 -.009 ±.025 -.003 ± .024 -.047 ±.027
6 .072 ±.029 -.044 ±.036 -.000 ±.032
7 .035 ±.033 .014 ±.022 -.027 ±.031
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Table 13. Linear correlations between Wilson loops as a function of sweep

separation and loop size, for one hit.

At lx l 2x2 3x3 4x4

1 .734 ±.008 .737 ±.008 .737 ± .010 .713 ± .013
2 .541 ± .012 .565 ± .012 .586 ±.013 .565 ±.014
3 .390 ±.015 .447 ±.014 .479 ±.015 .467 ±.015
4 .292 ± .016 .351 ± .016 .392 ±.017 .386 ±.016
5 .219 ± .016 .278 ± .017 .316 ±.018 .323 ± .017
6 .161 ± .016 .212 ±.019 .262 ±.018 .277 ±.017
7 .115 ±.017 .165 ±.020 .217 ±.019 .238 ± .018
8 .074 ± .016 .133 ± .020 .182 ±.020 .198 ± .018
9 .041 ± .017 .103 ± .019 .156 ±.020 .165 ±.020
10 .025 ± .017 .083 ± .019 .135 ± .020 .147 ±.021

At 5x5 6x6 7x7 8x8

1 .662 ± .010 .557 ±.011 .426 ±.014 .338 ± .013
2 .504 ±.014 .381 ± .015 .259 ± .015 .170 ±.012
3 .399 ± .016 .282 ±.016 .174 ±.013 .114 ±.012
4 .334 ±.017 .226 ±.016 .126 ±.015 .066 ± .012
5 .276 ± .018 .197 ±.016 .087 ±.015 .051 ± .012
6 .237 ± .019 .165 ±.016 .061 ± .015 .042 ± .012
7 .214 ± .019 .132 ±.017 .049 ±.014 .033 ±.012
8 .186 ±.019 .109 ±.017 .046 ±.013 .025 ±.011
9 .160 ±.019 .093 ± .016 .041 ± .013 .007 ±.011
10 .147 ± .018 .081 ± .016 .027 ± .012 -.006 ± .010



Table 14. Linear correlations between Wilson loops as a function of sweep
separation and loop size, for two hits.

At lx l 2x2 3x3 4x4

1 .600 ±.009 .632 ±.010 .659 ±.011 .648 ±.011
2 .380 ±.013 .445 ±.013 .496 ±.015 .497 ±.014
3 .246 ±.015 .330 ±.014 .399 ±.016 .409 ± .015
4 .175 ±.016 .256 ±.016 .328 ±.017 .340 ±.017
5 .133 ± .016 .202 ±.016 .270 ±.017 .285 ±.017
6 .099 ±.016 .157 ±.018 .221 ± .017 .244 ± .018
7 .066 ±.015 .123 ± .018 .188 ±.017 .214 ±.019
8 .048 ± .015 .109 ±.017 .164 ±.018 .191 ± .019
9 .038 ± .014 .097 ±.017 .138 ±.020 .169 ± .019
10 .036 ±.014 .087 ±.016 .113 ±.020 .143 ±.020

At 5x5 6x6 7x7 8x8
1 .558 ± .013 .437 ±.011 .307 ±.011 .219 ±.011
2 .411 ±.015 .304 ± .013 .176 ±.012 .117 ±.011
3 .328 ± .016 .227 ± .014 .138 ± .013 .095 ±.011
4 .266 ±.017 .175 ± .015 .115 ±.013 .062 ±.011
5 .221 ± .017 .135 ±.015 .096 ±.012 .052 ±.010
6 .188 ±.017 .123 ±.016 .072 ±.012 .032 ±.012
7 .168 ± .017 .100 ±.015 .055 ±.012 .026 ±.010
8 .157 ±.016 .088 ± .015 .055 ±.011 .009 ± .012
9 .135 ± .017 .073 ± .015 .053 ± .012 -.004 ±.012
10 .129 ±.018 .071 ± .014 .049 ±.013 -.006 ±.010



Table 15. Linear correlations between Wilson loops as a function of sweep
separation and loop size, for four hits.

At lx l 2x2 3x3 4x4
1 .448 ±.010 .520 ±.011 .574 ±.011 .560 ± .013
2 .214 ±.014 .328 ± .015 .401 ± .014 .417 ±.014
3 .130 ±.014 .228 ± .015 .301 ± .016 .321 ±.015
4 .080 ±.013 .170 ±.015 .233 ± .017 .259 ± .017
5 .043 ± .013 .129 ±.015 .186 ±.017 .209 ± .018
6 .042 ±.013 .117 ±.015 .167 ± .017 .188 ±.019
7 .031 ± .014 .097 ± .016 .151 ±.017 .159 ±.017
8 .031 ± .013 .090 ±.016 .118 ±.017 .135 ± .017
9 .015 ± .014 .072 ±.016 .101 ± .018 .116 ±.017
10 .015 ± .015 .063 ± .016 .089 ±.017 .105 ± .016

At 5x5 6x6 7x7 8x8
1 .499 ±.010 .355 ±.011 .213 ± .013 .115 ±.011
2 .350 ±.013 .255 ± .014 .135 ±.012 .067 ±.011
3 .283 ± .015 .211 ±.014 .125 ±.011 .033 ±.010
4 .225 ±.016 .150 ±.014 .097 ±.011 .035 ±.012
5 .193 ± .016 .116 ±.014 .063 ± .012 .035 ±.010
6 .168 ± .016 .109 ±.014 .040 ±.011 .012 ± .010
7 .130 ±.016 .086 ±.014 .027 ±.011 .026 ±.009
8 .113 ±.016 .063 ± .014 .033 ±.011 .011 ±.010
9 .093 ±.016 .061 ± .013 .022 ±.010 .019 ±.011
10 .083 ± .016 .045 ± .015 .012 ±.013 -.002 ±.011
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Table 16. Number of microstates required to achieve R=A as a function of 

number of hits and Wilson loop size.

hits lx l 2x2 3x3 4x4 5x5 6x6 7x7 8x8
1 259 333 415 454 415 297 200 135
2 305 437 532 580 534 396 245 149
3 348 531 643 702 648 486 283 150
4 383 617 747 819 756 570 313 139
5 411 693 843 930 860 647 337 117
6 432 760 933 1037 960 718 355 84
7 445 818 1018 1139 1055 785 368 41
8 451 868 1096 1237 1147 846 376 -11

Table 17. Number of sweeps required to halve Wilson loop correlations across 
configurations as a function of loop size and number of hits.

Size 1 hit 2 hits 3 hits 4 hits
1 2.2 ±0.1 1.8 ±0.1 1.4 ±0.1 1.2 ±0.1
2 2.8 ±0.2 2.5 ±0.2 2.3 ±0.2 2.3 ±0.2
3 3.4 ±0.3 3.3 ±0.3 2.9 ±0.3 2.8 ±0.3
4 3.7 ±0.4 3.7 ±0.4 3.2 ±0.3 3.3 ±0.4
5 3.6 ±0.4 3.6 ±0.5 3.3 ±0.5 3.1 ±0.4
6 2.8 ±0.3 2.8 ±0.4 3.0 ±0.7 2.8 ±0.5
7 1.9 ±0.2 2.7 ±0.5 2.8 ±0.8 2.5 ±0.9
8 1.5 ±0.2 1.8 ±0.4 1.4 ±0.4 2.4 ±1.6

Size 5 hits 6 hits 7 hits 8 hits
1 1.2 ±0.1 1.3 ±0.1 1.4 ±0.1 1.5 ±0.2
2 2.3 ±0.2 2.5 ±0.3 2.7 ±0.4 2.6 ±0.3
3 2.8 ±0.3 3.0 ±0.4 3.1 ±0.4 3.0 ±0.4
4 3.3 ±0.4 3.4 ±0.5 3.4 ±0.5 3.2 ±0.4
5 3.5 ± 0.6 3.4 ±0.6 3.5 ± 0.6 3.2 ±0.5
6 3.2 ±0.7 3.2 ±0.7 3.4 ±0.8 2.9 ±0.8
7 2.3 ±0.7 2.4 ±0.7 2.8 ± 1.2 1.9 ±0.6
8 2.3 ±2.0 1.6 ±1.0 1.4 ±0.8 1.3 ±1.1
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Figure 3. Wilson loop thermalization
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Figure 4. Wilson loop thermalization on expanded scale
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As explained earlier, string tension measurements should really use 
Wilson loops with T -  N A %, but that increases computation time because 

large loops have small values that are easily swamped by noise. Plotting 

ln(W(/?,7}) from (IP) versus T for fixed R, one finds that for R>3 the data is 

superlatively linear, allowing one to write

ln(W(R,T)) = -V(R)aT + b

Inserting the expected form of V(/?),

V(R) = d a R  + e - f l ( a R )  + h\nR,

symmetry in T and R demands three additional terms,

- e a R + f R  / T - h a R  InT.

Specializing to square loops,

ln(W(/?^» = -da2R 2 - 2e a R + 2/+ b - 2 h a R  lnff,

so the string tension d and the coefficient of the Coulomb force law h can both 

be obtained from a single fit to data from square Wilson loops. (IP) used two 

fits, one to determine W(R), the second to obtain d, with the claim the use of 

additional data from non-square loops increases accuracy. This is not entirely 

true because the time spent calculating the non-square loops could have been 

applied to square loops. The use of non-square loops would allow the 

measurement off,  which is contaminated by b in the case of square loops. 

Liicher28 has predicted
/=  7C (D-2) / 24
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due to string vibrations, which has been verified to the 40% level by (IP).

The square Wilson loops shown in table 18 were measured on a 
64x64x256 lattice at o = 2.0,2.2, and 2.4. A thermalization of 5000 sweeps 

was used, and the configuration separation and number of configurations is 

shown in table 19. The configuration separation is larger than the value 

calculated in the section on parameters because the larger lattice was afflicted 

with the higher correlations shown in table 20. Block averaging, recommended 

by (AHO), was not effective in removing correlations. These loops agree with 

measurements made by (IP).

Table 18. Square Wilson loops as a function of size.

Size G =2.0 or =2.2 a  =2.4
1 .805959 ± .000020 .829459 ±.000015 .846787 ±.000010
2 .496166 ±.000064 .551374 ±.000047 .591892 ±.000033
3 .260946 ±.000096 .326443 ± .000076 .376711 ± .000058
4 .121183 ±.000103 .177858 ± .000087 .225017 ±.000076
5 .050303 ± .000082 .090234 ±.000087 .127786 ±.000083
6 .018759 ± .000065 .042870 ±.000070 .069359 ± .000079
7 .006237 ± .000055 .019143 ± .000057 .036186 ±.000068
8 .001940 ± .000044 .008087 ±.000049 .018211 ± .000052
9 .000532 ±.000039 .003184 ±.000045 .008804 ±.000048
10 .000031 ± .000034 .001166 ±.000034 .004127 ±.000039
11 .000049 ± .000035 .000425 ± .000036 .001807 ± .000034
12 .000033 ± .000036 .000152 ±.000036 .000806 ±.000031
13 .000025 ± .000036 .000028 ± .000038 .000364 ±.000031
14 -.000006 ±.000037 .000015 ± .000034 .000128 ± .000028
15 .000014 ± .000036 -.000032 ±.000035 .000027 ± .000030
16 .000039 ± .000041 -.000064 ±.000031 -.000073 ± .000031
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Figure 5. Logarithm of square Wilson loops versus separation.
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Table 19. Number of sweeps between configurations and number of 
configurations versus a.

a Sweeps/Configuration Configurations Loops

2.0 200 125 3-9
2.2 175 143 4-12
2.4 125 200 5-14

Table 20. Unexpected correlations between configurations separated by 25 
sweeps, for a <7 = 2.0 64x64x256 lattice.

At lx l 2x2 3x3 4x4
1 .200 ±.023 .299 ± .036 .353 ± .041 .396 ±.024
2 .074 ±.026 .158 ± .031 .230 ±.026 .274 ±.033
3 .062 ± .020 .172 ± .025 .198 ± .035 .185 ± .036
4 .055 ±.018 .096 ±.034 .120 ± .044 .155 ±.042
5 .016 ±.023 .070 ± .032 .152 ± .036 .156 ±.033
6 .015 ± .033 .048 ± .032 .106 ± .043 .145 ± .038
7 .032 ±.033 .071 ± .043 .075 ± .051 .120 ±.055
8 -.012 ±.032 .034 ±.035 .094 ±.046 .103 ± .056
9 .056 ±.029 .073 ± .029 .107 ± .032 .114 ±.035
10 -.005 ± .034 .034 ± .026 .082 ±.026 .119 ±.030

At 5x5 6x6 7x7 8x8
1 .373 ±.028 .212 ± .031 .138 ± .034 .097 ± .028
2 .261 ±.039 .140 ± .026 .060 ±.035 .007 ±.023
3 .177 ±.044 .110 ±.029 .046 ±.033 .012 ±.035
4 .165 ± .037 .091 ± .034 .058 ± .028 .013 ± .029
5 .152 ±.031 .097 ± .034 .070 ± .032 -.021 ± .018
6 .150 ±.035 .086 ±.032 .066 ±.027 .007 ±.035
7 .119 ±.041 .088 ± .036 .011 ±.020 .039 ±.023
8 .101 ±.047 .031 ± .049 .015 ±.031 .037 ± .026
9 .067 ± .043 .049 ± .038 -.006 ±.026 .029 ± .033
10 .055 ± .040 .058 ± .037 .029 ±.028 -.004 ±.032



For the sake of comparison with published values, this data was fit 

with h set to zero, without singular value decomposition, with the results 

shown in table 21. Due to incompleteness of G(T) it is necessary to omit loops 

smaller than some cutoff. The smallest cutoff consistent with a Q>.1 was 
chosen. Q (PFT) is the probability of seeing a worse x 2, presuming the model 

is correct and errors on data are normally distributed.

Table 21. Measured U(l) string tensions

Reference a  -  2.0 a  -  2.2 <r = 2.4
(SG) .110±.006 .055±.003
(PS) .098±.002 .050±.002
(AHO) .048±.002 .022±.001
(IP) .054±.003 .032±.003
(WS) .049±.003 .029±.002 .017±.001
This work .0549±.0005 .0315±.0004 .0190±.0004

There appears to be no good reason why previous measurements have 
omitted the Coulomb term. (IP) indicate that their string tension measurements 

are independent of the lower cutoff on R, but this is not a good test: It would 

be far better to prove the Coulomb term is unimportant by including it in the 

fit, and showing that its coefficient is consistent with zero. Accordingly the 

loops in table 18 were fit with h as a parameter, with and without singular 

value decomposition. The results in tables 22 and 23 can be compared with 

tables 24 and 25, a reanalysis, by the same method, of (IP) data.



Table 22. String tension and Coulomb coefficient measured without SVD

a Loop Sizes Q d a 2 l h a
2.0 1-9 .062 .0352±.0007 .165±.003
2.0 2-9 .755 .0413±.0022 .122±.015
2.2 2-12 .913 .0205±.0008 .123±.006
2.4 2-14 .503 .0092±.0004 .131±.003

Table 23. String tension and Coulomb coefficient measured with SVD

a Loop Sizes Q d a 2 l h a
2.0 2-9 .077 .0358±.0004 .160 ±.001
2.0 3-9 .429 .0374±.0010 .157±.003
2.2 3-12 .291 .0174±.0004 .151±.001
2.4 3-14 .041 .0077±.0002 .146±.001
2.4 4-14 .438 .0085±.0004 .142±.002

Table 24. Recalculation of string tension and Coulomb coefficient from (IP) 
data, without SVD

0  Loop Sizes d o 2 l h a

2.0 2-10 .046± .008 .08 ±.06
2.2 2-12 .021± .005 .13 ±.03

Table 25. Recalculation of string tension and Coulomb coefficient from (IP) 
data, with SVD

0  Loop Sizes

2.0 2-10
2.2 2-12

d a 2

.036±.002
.0187±.0009

2 h a

.160±.004

.152±.003
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To compare these experimental values of h with theory, the constants 
|  = .3274±.0089 and T] = .2926±.0067 were extracted by least square fit from 

the data in table 1, with 3% error assumed for all loops except for 50x50, 
which was assigned 10% error. Together with a 1 / 3! a 3 uncertainty due to W3,

these give the values of h shown in table 26.

Table 26. U(l) Coulomb constant calculated from (MR)’s weak coupling
prediction.

a l e a l h a
2.0
2.2
2.4

.1910±.0086 .1707±.0073

.17141.0069 .15311.0058

.15541.0058 .13881.0048



CHAPTER IV. CONCLUSIONS

The U(l) String Tension

It is clear that the Coulomb constant h is nonzero, that experimental 
SVD measurements of h are in agreement with theory, and that previous string 

tension measurements have been off by as much as 85% because they have 

neglected this term. Curve fitting is a subtle art however, and the exact values 

of the string tension measured here depend upon your choice of Q and whether 

you believe in singular value decomposition. According to (PFT) a Q as small 

as .001 may be acceptable if the errors are nonnormally distributed, as they are 

here. However, since every effort has been made to overestimate errors, it 
would seem safer to demand a high Q. In the case of table 25, SVD reduced 

errors by a factor of four, producing results consistent with non-S VD results 

from slightly better data, in table 22. Furthermore, the Coulomb constants in 

table 23, calculated by SVD, are in better agreement with theory than the non- 

SVD results in table 22. It therefore seems reasonable to accept the high Q 

SVD values shown in table 27.

Table 27. Final values for the U(l) string tension and Coulomb constant, 

c  d a 2 l h a
2.0
2.2
2.4

.0374±.0010

.0174±.0004

.0085±.0004

.157±.003

.151±.001

.142±.002

54
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Figure 5 contains a plot of the experimental values from table 27 

superimposed on analytical results. The modified weak coupling curve is an 
attempt (WS) to compensate for the use of the Villain action by replacing tr 

with an effective a . This is done by equating the ratio of the zeroth and first 

Fourier coefficients of the Wilson action with the same ratio for the Villain 

action, which gives

i___
^V illa in

2 In /p(gW iU p»)
_/i (o WBm)

Figures 7-9, based on the data in table 27, show Coulomb and string 

tension contributions to the U(l) potential. The two terms added to the Wilson 
loop data are corrections for the use of square loops. For <7 = 2.4, for example, 

the Coulomb contribution is as large as the string tension’s contribution for all 

loops smaller than 28x28.

Although it is heartening that the Coulomb constant measured in this 

experiment agrees with values obtained by numerical integration of 

expressions derived analytically by (MR), the correction this term provides has 

driven the string tension even further from values calculated by the dual 

method (SG).

Although SPAM was constructed for a single calculation, a few simple 

modifications would render it useful for other purposes. Indeed, it could 

readily be converted into a simulator of cellular automata, which can be 

shown29 to be capable of performing (with negligible efficiency) any desired 

computation. The next few sections will detail a few additional reasonably 

efficient calculations for which SPAM could be modified.
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Figure 6. Analytical and numerical string tensions versus sigma.
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Figure 7. String tension and Coulomb contributions to the U(l) potential at
a = 2.0
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Figure 8. String tension and Coulomb contributions to the U(l) potential at
a = 2.2
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Figure 9. String tension and Coulomb contributions to the U(l) potential at

<7 = 2.4
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Brains of SPAM
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Neural networks30 are crude attempts to simulate the brains of animals. 

Although not entirely correct, a model of the brain satisfactory for many 

purposes expresses the output of neuron i at time k as

/, is a sensory input to neuron i (most of which are zero) and gi} are the

strengths of couplings between neurons. A neural network does not have to be 
stable. It has been shown that symmetric couplings gi} = gfi with gu = 0 result 

in stable systems. The /  can be considered the components of a vector in an N 

(N ~ 1011 for humans) dimensional space. If gi} is regarded as the j*  

component of gt and if a  is large enough so that S can be regarded as a step 

function, then neuron i produces an output which indicates whether/andg, are 

on the same side of the hyperplane perpendicular to g,. Pattern recognition can 

be obtained by selecting g, to define hyperplanes which surround some part of 

the input pattern space: learning consists of adjustments of the g,. In a model 

proposed by D. Hebb, couplings are increased when they are used:

Hebbian learning does work, but it converges slowly, so in practice the g, are 

chosen by optimization techniques. Boltzmann training is the application of 

simulated annealing (PFT) to the selection of optimum weights. Typically an 

input pattern /  is presented and the network is updated until it stabilizes.

(  N
/ « . ) = S

where S is a nonlinear function similar to
l/(l or tanh(ax),

where f  is the desired output plays the role of the Hamiltonian
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in simulated annealing. E is calculated, a weight is altered, the network is 

allowed to restabilize, E is recalculated, and the new weight is accepted or 

rejected according to the Metropolis algorithm. After all the weights have been 

optimized the process is repeated with a new I ,T  pair. Unfortunately the 
change in f i produced by a single weight is not necessarily localized,

implying SPAMs built in Metropolis algorithm could not be used: the number 
of microstates required to evaluate AE exceeds the maximum number of 

microstates per opcode. This is not a problem because SPAM can save a lot of 

time just by updating the network. Tap weights would be represented by bytes 

stored in a square matrix with neural outputs occupying the diagonals, the 

group multiplier would perform algebraic multiplication, the squashing 

function S would reside in SPAM's ex lookup table, and the only essential 

hardware modification would be a buffer between the S output and the data 

bus, to allow the output values of the neurons to be saved. The maximum of 

512 microstates per opcode, with four microstates devoted to emptying the 

pipeline, and two microstates per input, would limit the number of neurons to 

254. The use of six bits to hold address offsets would reduce this to 64. 

Fortunately these limitations can be changed with a few day's labor, to yield a 

memory limit of 1024 neurons.
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Molecular Configurations On SPAM

With a few hardware changes SPAM could find energy minima of 

liquid crystals or clusters of atoms. First one has to express the Hamiltonian in 

a form suitable for incorporation into a few lookup tables. For a system of 
interacting spheres one could construct a three dimensional NxM\3 matrix qijk

where i represents time, /  specifies the particle, and k designates a component 

of the position vector. Each coordinate is represented by a single byte, 

resulting in a 2S63 lattice containing M particles. The group multiplier would 
be reprogrammed to return, for inputs A and B, (A -  B)2 ■ m / 2A/. In addition 

to providing the translational kinetic energy, this would be used to calculate the 

square of the distance between particles which would be fed back to a potential 

lookup table through an extra latch. Liquid crystal simulations require the 
additional term

—♦  —*

If the orientation of each molecule is stored in a byte the S • S lookup is easy, 

and the product could be stored in the partial product latch.

A simpler approximation may prove fruitful in such calculations. As 

long as the particles do not move very far, each one could be allowed to 

occupy only a small region near its mean position. The mean positions from a 

lattice upon which a sublattice for each particle is located. The sublattices can 

be made large enough to overlap completely with neighboring sublattices. The 

advantages of this are that:

• Only neighboring particles interact, vastly simplifying the potential 

calculation.
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• Since the particles move over a smaller area, the binary number that

describes their position can use fewer bits. If the sublattice 

contained less than 256 positions, the potential and kinetic energies 

could each be obtained by a single lookup.

• In the case of liquid crystals, if orientational information were included

with the position information, the potential could include 

orientation dependent steric effects and rotational kinetic energy. 

Unfortunately, 8 bits are inadequate for this, although a crude S • S 

term could be included in two dimensional calculations.



APPENDIX

Summary of Statistics31

N
x  = Arithmetic mean

11=1

AXf s  Xi -  x Deviation of

gn2(x ) = (Ax) - x 2 -  x2 Mean square deviation of x

g2(x) = lim gn2{x) Variance of x
N-

gn ( x )  = tJgn2(x) RMS deviation of x

g(x) = ^ g2(x) Standard deviation of x

e(x) = gn (x) /V V -1 Adjusted standard error of x

E(Q) Error on Q

SN(x) = gn(x)tJn /(N - 1) Adjusted RMS deviation

Even the best measurement of some quantity x is bound to be 

contaminated by some error, which can be reduced by averaging multiple 

measurements. Although other quantities, such as the geometric mean, or the 

most probable value of a measurement, or the value for which half of the 

measurements will be smaller, may sometimes be considered, the arithmetic 

mean is normally regarded as the best estimate of the true value. The best 

estimate of the error on the mean is the adjusted standard error. The error on a 

single measurement (the precision of the measuring apparatus) is the standard 

deviation, the best estimate of which (for a finite amount of data) is the

64
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adjusted RMS deviation. E(Cl) will be used to denote the error on 12: the 

adjusted RMS deviation for a single measurement, the adjusted standard error 

for the average of many uncorrelated measurements, or a more complicated 

quantity for averages of correlated measurements.

Given two sets of data x and y, the linear correlation coefficient (PFT) 

between them is defined by

which is limited to -1 <r < +1. If r = 0 then the data are not linearly related. 

Multiple data sets will show fluctuations in r, so one must select a threshold 

beneath which the correlation is insignificant, and another threshold above 

which the data is to be deemed linearly related. One possibility is to demand 

that the error on the slope must be small enough that the slope is 

distinguishable from zero if x and y are to be considered linearly related. If y 
= ax+b it can be shown that

r(X,y)m - * L * l  *g.r .? y
(x) • crN (y) <JN (x) • <jN (y)

a = Ax Ay/oN2(x) = raN2(y)/«tn2(x)

so
e(a)

a

results in a threshold of |r| ^ l / ^ f 2(N -2 )  + l
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Error Estimates on Correlated Measurements

Correlated data does not change x or oN(x) as one can see by using 

each point twice. The problem is in e(x) which would be incorrectly reduced 

by about l/V2 due to the worthless doubled terms. To estimate the correct 

error (AHO), construct N block averages, each containing M consecutive 

values of x:
i-M

Zi ~ ~ k  ^ l X j  X i,k ~  X (i-l)M + k '
j= (i-l)M + l *=1

M is chosen to be greater than the correlation length, so that the Z, are 

uncorrelated. Then

'  n  1 r n  *'2
^ 2(z) = f  Z ( z.)2j - ^ £ z.

N  r  M M -1 M 1 r N  M

= ™ s v +2Z i' .A  - a s x *,..
1=1 L *= i *=1 /=*+ i J  L 1=1 *=1

Now exchange the order of summation and denote averages over i by angle 

brackets:

u
« z) = t£-

i=l
M-1 M

Z(**2) + 2Z  S  (*/**)- f e t a )
k=l k=l l=k+\ \ k = 1
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Expanding the last term:

' It M-\ M

U=1 *=!/=*+!
All the <rN2(xk) should be equal. Denoting them by a  and also noticing that 
r(xkx,) should depend only upon l-k,

We do not really want to measure crJV2(z) directly from fluctuations of block 

averages: we want a correlation correction to apply to a single block, the entire 

data set of M points. If our entire data set is crammed into i=l then we have 
only one datum with which to calculate a  = aN2 (xk). Since we have presumed 

the correlations are small, however oN2(xk) calculated by using every / / th data 

point should be a satisfactory substitute. Even H -l  should be adequate, 

resulting in

presuming r(l) » r ( * l )  andm »7 ,

E{x) = 0 (2) = e(jt)^l+2r(l).
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Least Square Fits by Singular Value Decomposition

2 IS* . - I 2A linear least square tit (PFT) is the minimization of £ = | b - A - a  

where
x,- are the values of the independent variable

y; are the values of the dependent variable

Ef = £(y,) are the errors on y;

f, are the basis functions

is called the design matrix 

b, = y./E, and
a,- consists of the sought coefficients of f,.

Normally A is singular so no solutiona = A-1 b with x=0 exists. To minimize 
X2, equate to zero derivatives with respect to ak:

= 0 = 2f AT(b -  Aa)l 
daL L J*

0 = ATb - A TAa 

If the data and model are good, AT A is not singular and

a = (ATA)-,ATb

(known as the normal equations) solves the problem. If, however, your 

model is insensitive to some combination of basis functions, ATA will be 

nearly singular and you will wind up with meaningless, often huge, coefficients 
which cancel mercurially to yield a reasonable x 2 • That is when you need 

singular value decomposition (PFT), which enables you to excise the
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singularities and almost-singularities of A"1, thereby removing linear 

combinations of basis functions to which the fit is insensitive.

Any matrix A having its number of rows greater than or equal to its 

number of columns can be "diagonalized" as the product of three other 

matrices
A = U W VT

where UT U = 1, V VT = 1, VT V = 1, and W is diagonal with positive 

elements. This decomposition is almost unique, and furthermore (denoting the 

j A column of V by V;) the Yj with Ŵ . * 0 span the nullspace of A, and the

Uj with Wjj = 0 span the range of A. The inverse of A is then readily 

constructed:
A-1 = V W_1 UT

If A is singular one or more of the elements of W_1 will be infinite, in which 

case an approximation A-1 to A-1 is constructed by replacing the infinite 

elements of W"1 by zero: each infinite element of W '1 corresponds to a 

dimension of the nullspace which ought to be ignored.

If b is within the range of A, the solution to b = Aa will not be 

unique since any element n in the nullspace of A can be added to a without 
changing b. a = A-1 b provides the solution with minimum magnitude:

a = L  ^ [ w - '^ u j b ] ,
J

must be orthogonal to ii because each V;- nullspace basis vector is multiplied

by zero thanks to the definition of W-1. Since a and n are orthogonal,
|I  + n |> |a |.
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If b is not within the range of A, then a = A-1 b will minimize 

| b -  Aa |, exactly the property needed for minimization:

b -  Aa = b -(U W V T)(VW"1UT)b 

= U (l-W W ‘‘)UTb

- 2  e ;[ ( i - w w - i) ..o iTb]

is orthogonal to
A8a = UWVT8a

- X  U;{w4.V.T8a}
j

because the construction of W-1 guarantees that, for a given j, the number in 

braces and the number in brackets can not both be nonzero.

Furthermore the V, happen to be the principal axes of ellipsoids of 

constant 8%2 in coefficient space. The lengths of the axes for S#2 = 1 are 

the corresponding elements of W_1 since

8%2 = | W VT 8a f  = £  W.. y.T 5 = constant
j

defines a multidimensional ellipse. By zeroing additional elements of W-1 the 

error ellipse can be squashed to one less dimension, removing the 

corresponding Vy from the fit. In the rare case of normally distributed errors,

the probability that the correct set of coefficients falls within the ellipse is 
related to the value of 8%2 in the table in figure 14.5.4 in (PFT).

The probable errors in a, and the correlations between them can be 

obtained from the covariance matrix, which is defined by
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*=l
u

dy, d y j

= 2  a t«iL 4 a>L
*=1

= A/r(ai,a i)<rM(ai)<rM(ai) 

from which it can be seen that
£ (» ,)= v c ;

r(a„a,) = C,i/ 1/C,jCi . 

may be evaluated by substituting a = A-1 b into the definition. The result, 

after some manipulation, is

c = y  v v
y v  jp W

\  p p j

To illustrate the utility of singular value decomposition, three fits with 

different tolerances for the elimination of instability were performed. The first 

fit (figure 9) shows the result provided by solution of the normal equations:

Chi Squared ■ 0 .35
Ch iS qrE st ie a te  ■ 1 .00  1 2 .83
ChiPerPoint  ■ 0. 21
Q -  9 .860981e-1

Unstable?:  FALSE Tolerance:  1 .000000e-5
NueberOfDataPoints:  8 NueberOfParaeeters:  4

F?: C o e f f i c i e n t : P r ob a b le E r ro r : X E r r o r : BasisFn:
Ft 0 .389129 0.111762 113.1 1
F2 -0 .115701 0.301170 67.6 R
F3 -0 .0 58 6 25 0.020770 35.1 R*2
F1 0.010851 0.196899 182 .0 RlnR

Because we have too many (or too similar) basis functions for data of this 

quality, the fit can not distinguish between basis functions. The fit is unstable, 
and meaningless coefficients with huge errors are found, which cancel when %
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is computed. The responsible linear combination of basis functions can be 

found by examining W, the singular value matrix, which in this case shows 

that error ellipse vector V3 is the culprit:

U7: RxisLength: Singula rUalues : NoraalizedSU: BadUector?:
U1 1 .380353e-4 7.211526e+3 1.000000 FALSE
U2 I , 0 3 8 5 9 6 e -3 5.438933e+2 0.075076 FALSE
U3 5 . 7 0 10 1 5 o -1 1 . 754073e+0 0.000212 FALSE
IM 1 .181340e-2 6 . 750642e+1 0.009316 FALSE

Axis V3 is composed mostly of FI and F2 with an additional contribution by 

F4:

E r r o r E I 1 ipseAxes:
U?: FI F2 F3 F4
U1 -0 .0 6 1 0 - 0 .2 27 7 - 0 .9 2 1 6 - 0 .3 08 1
U2 0 .4092 0.8059 - 0 .3 2 0 9 0.2831
U3 -0 .7 7 4 0 0.5288 0.0360 - 0 .3 1 4 7
U4 -0 .4781 - 0 .1 38 2 - 0 .2 1 5 3 0.8102

The fitting routine replaces with infinity all the elements of W which, after 

normalization, are smaller than the tolerance. This removes the corresponding 

linear combination of basis functions from the fit. In the present case, when the 

tolerance exceeds 0.000242,

-.7748 + .5288*R + .0360*R*R - .3447*R*ln(R)

will be removed from the solution. This reduces the errors a lot, with an 
acceptable increase in %\
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Chi Squared *  1.30
Ch iS qrE et ie a te  ■ 4 .00  ± 2 .83
ChiPerPoint  -  0 .1 0
Q -  8 .619693e-1

Unstable?:  TRUE Tolerance:  1 .000000e-3
NueberOfDataPoints:  8 NueberOfParaeeters:  4

F?: C o e f f i c i e n t : ProbableError: X E r r o r : BasisFn:
FI -0 .0 39484 0.007122 18.0 1
F2 -0 .152971 0.002527 1.7 R
F3 -0.038705 0.003246 8 .4 R~2
F1 -0 .1 49963 0.012157 8 .3 RlnR

Increasing the tolerance further, linear combination V4 is excluded and an 
additional improvement in the error is observed, but this increases % 

excessively.

ChiSquared -  28 .78
C h iSqrE st ieat e  ■ 4 .00  ± 2 .83
ChiPerPoint  -  1.90
0 -  8 .679712e-6

Unstable?:  TRUE Tolerance:  l . 0 0 00 00 e -2
NueberOfDataPoints:  8 NueberOfParaeeters:  1

F?: C o e f f i c i e n t : ProbableError: XError: Basisl
FI -0 .0 76610 0.000752 1.0 1
F2 -0 .163701 0.001482 0.9 R
F3 -0 .0 55126 0.000604 1.1 R*2
F4 -0 .0 84717 0.000522 0 .6 RlnR



Figure 10. Example fit to (IPVs data at a -  2.0, with R >3.
Chi Squared ■ 0 .3 5
Ch iS qrE et ie a te  ■ 4 .00
ChiPerPoint  -  0.21
Q -  9 . 660981e-1

2.83

Unstable?:  FALSE Tolerance:  1 .000000e-5
NueberOfDataPoints:  8 NueberOfParaeeters:  4

F?:
FI
F2
F3
F4

C o e f f i c i e n t :
0 .389429

-0 .145701
-0 .058625

0.010851

ProbableError:
0 .111762
0.301170
0.020770
0.196899

XError:
113.1

67.6
35.4

482.0

BasisFn:
1
R
R/'2
RlnR

Er rorE l  I ipseRxes:
U?: FI F2 F3 F4
U1 - 0 .0 6 1 0 - 0 .2 27 7 -0 .9 21 6 - 0 .3 08 4
U2 0 .4092 0.8059 - 0 .3 20 9 0.2831
U3 - 0 .7 7 1 8 0.5288 0.0360 - 0 .3 4 4 7
U4 - 0 . 4 7 8 I - 0 .1 38 2 -0 .2 15 3 0.8402

U?: Ax isLength: SingularUalues: NorealizedSU: BadUec
U1 I .30O353e-1 7.214526e+3 1.000000 FALSE
U2 1 . 838596e-3 5.13B933e+2 0.075076 FALSE
U3 5 .701015e-1 1 .754073e+0 0.000242 FALSE
U1 1 . 48 l340 e-2 6.750642e+1 0.009318 FALSE

Couar ianceDatr ix :
1 ,951538e-1 

- 1 .331 405 e- 1  9 .088429e-2
-9 .0 39 1 02 e -3  6 .1898 83e -3  4 .313743e-4

0 . 6 7 0 9 13e-2 - 5 .9 26 2 82 e -2  - 1 . 0 7 1 116e-3 3 .876914e-2

C o r r e l a t  i o n C o e f f i c i e n t s :
1.0000 

- 0 .9 9 9 7  1.0000
- 0 . 9 8 5 2  0 .9886 1.0000

0 .9969  - 0 .9 9 8 4  -0 .9 9 5 5  1.0000

E r r o r ( s i  o p e ) / s i  ope: 
0.0000

- 0 .0 0 9 7  0 .0000
-0 .071 1  0 .0622

0 .0324  - 0 .0 23 3
0.0000

- 0 .0 3 8 8  0 .0000

S i g n ! f i c a n c e :  
0.000000e+0 
5 .623026e - l1  
8.069009e-6  
7.736708e-8

0.000000e+0  
3.693655e-6  
1 . O662O0e-0

0.000000e+0
2 . 252122e-7 0.000000e+0



More About Importance Sampling

To rigorously derive importance sampling Monte Carlo integration, 

start out with a uniform distribution and split the integration interval into N 

regions over which P(x) is approximately constant:

n=l "

Instead of multiplying by the weight P(x), use it to adjust the (still evenly 

distributed) number of samples in each region:

M \  N  M P{xn)
  b—tI X  ’ D /  v  \  V  f i x im ) — b—a  V 1 V 1 /(* * »  )- w l  -UN 2 ,

V I"=l /11=1 n=l m=l

Convert this into a single region having x  distributed with probability P(x)

U 1 L PM  j g jd x P ( x )

_  b -a  " v  / ( * > )  _  b -a  V 1 / (* > )
MN Z u  P M  ~  MN Z L  P(.xk) '

*=1 *=1

As long as the number of points in the sum remains large, it can be rewritten as
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Def ine eoee eacroe:

XhitO NeeNode X NeeV
D i f f l n i t X NeeV

X NeeV
X NeeV

YhitO NeeNode y NeeV
D i f f l n i t y NeeV

y NeeV
y NeeV

ZhitO NeeNode z NeeV
D i f f l n i t z NeeV

z NeeV
z NeeV

Opcode Descriptions

y - X - y p
NeeZ z - X -z p

- y - X y p
-z - X z p

X - y - X p
NeeZ z - y -z p

- X - y X p
-z - y z p

X -z - X p
NeeZ y -z - y p

- X -z X p
- y -z y p

X h i t l UeeRand X NeeV Ninue y - X  ■■y
D i f f l n i t UeeRand X NeeV NeeZ z - X  ■■z

UeeRand X NeeV - y - X y
NeeRand UeeRand X NeeV -z - X z

Vhi 1 1 UeeRand y NeeV Ninue X - y - X

D i f f l n i t UeeRand y NeeV NeeZ z - y -z
UeeRand y NeeV - X - y X

NeeRand UeeRand y NeeV -z - y z

Z h i t l UeeRand z NeeV Ninue X -z  •- X

D i f f l n i t UeeRand z NeeV NeeZ y -z  ■■y
UeeRand z NeeV - X -z X

NeeRand UeeRand z NeeV - y -z y

Xhit UeeRand X NeeV Ninue y - X - y p
Save UeeRand X NeeV NeeZ z - X -z p

UeeRand X NeeV - y - X y p
NeeRand UeeRand X NeeV -z - X z p

Vh it UeeRand y NeeV Ninue X - y - X p
Save UeeRand y NeeV NeeZ z - y -z p

UeeRand y NeeV - X - y X p
NeeRand UeeRand y NeeV -z - y z p

Zh i t UeeRand z NeeV Ninue X -z - X p
Save UeeRand z NeeV NeeZ y -z - y p

UeeRand z NeeV - X -z X p
NeeRand UeeRand z NeeV - y -z y p



( t leasure an N*f1 r e c ta n g u la r  loop. Rdde th ree  loops a l ig n ed  
along xy,  xz ,  and yz faces .  This does not include NeeZ, so a l l
the loops e i l l  be added to g e th e r .  Since the f i r s t  node is no
d i f f e r e n t  f ro e  the o th e rs ,  the re  is no eay to  i n i t i a l i z e  the  
sue: i t  eust be read before  a eeasureeent  begins, and
subtracted  f roe  the r e s u l t .  )
( n h - )
: RU { N N }
x Neel N 1-  t i e e s >  x N t i e e s >  y N t i e e s >  - x  (1 t i e e s >  - y  p
z NeeV N 1-  t i e e s >  z N t i e e s >  x N t i e e s >  - z  N t i e e s >  -x  p
y NeeV N 1-  t i e e s >  y fl t i e e s >  z N t i e e s >  - y  N t i e e s >  - z  p
endOpcode ;

\  generates 32 opcodes each of  ehich eeasures a d i f f e r e n t  s i zed  
\  square Ui Ison  loop.
: eeasure 32 0 do i 1+ dup RU loop ;

\  * * * * * * * * * * * * * *  beg j n opcode d e f i n i t i o n s  * * * * * * * * * * * * * * * *  

parse in i t

\  Three opcodes, one to  update each l a t t i c e  dimension:

xhi tO
x h i t t
30 t i e e s >  x h i t  
endOpcode

yhi tO
y h i t l
30 t i e e s >  y h i t  
endOpcode

zhi tO
z h i t l
30 t i e e s >  z h i t  
endOpcode

\  Neasureeent opcodes:

■easure

\  save the contents  of  each roe in a separate  b inary  f i l e :

RoeSaue
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