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Abstract

Three studies have been carried out to investigate new approaches to e�cient image segmen-

tation and anomaly detection. The �rst study investigates the use of deep learning in patch

based segmentation. Current approaches to patch based segmentation use low level features

such as the sum of squared di�erences between patches. We argue that better segmentation

can be achieved by harnessing the power of deep neural networks. Currently these networks

make extensive use of convolutional layers. However, we argue that in the context of patch

based segmentation, convolutional layers have little advantage over the canonical arti�cial neu-

ral network architecture. This is because a patch is small, and does not need decomposition

and thus will not bene�t from convolution. Instead, we make use of the canonical architec-

ture in which neurons only compute dot products, but also incorporate modern techniques of

deep learning. The resulting classi�er is much faster and less memory-hungry than convolution

based networks. In a test application to the segmentation of hippocampus in human brain MR

images, we signi�cantly outperformed prior art with a median Dice score up to 90.98% at a

near real-time speed (<1s).

The second study is an investigation into mouse phenotyping, and develops a high-throughput

framework to detect morphological abnormality in mouse embryo µ-CT images. Existing work

in this line is centred on, either the detection of phenotype-speci�c features or comparative

analytics. The former approach lacks generality and the latter can often fail, for example,

when the abnormality is not associated with severe volume variation. Both these approaches

often require image segmentation as a pre-requisite, which is very challenging when applied

to embryo phenotyping. A new approach to this problem in which non-rigid registration is
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combined with robust principal component analysis (RPCA), is proposed. The new framework

is able to e�ciently perform abnormality detection in a batch of images. It is sensitive to

both volumetric and non-volumetric variations, and does not require image segmentation. In a

validation study, it successfully distinguished the abnormal VSD and polydactyly phenotypes

from the normal, respectively, at 85.19% and 88.89% speci�cities, with 100% sensitivity in both

cases.

The third study investigates the RPCA technique in more depth. RPCA is an extension of

PCA that tolerates certain levels of data distortion during feature extraction, and is able to de-

compose images into regular and singular components. It has previously been applied to many

computer vision problems (e.g. video surveillance), attaining excellent performance. However

these applications commonly rest on a critical condition: in the majority of images being pro-

cessed, there is a background with very little variation. By contrast in biomedical imaging

there is signi�cant natural variation across di�erent images, resulting from inter-subject vari-

ability and physiological movements. Non-rigid registration can go some way towards reducing

this variance, but cannot eliminate it entirely. To address this problem we propose a modi�ed

framework (RPCA-P) that is able to incorporate natural variation priors and adjust outlier tol-

erance locally, so that voxels associated with structures of higher variability are compensated

with a higher tolerance in regularity estimation. An experimental study was applied to the

same mouse embryo µ-CT data, and notably improved the detection speci�city to 94.12% for

the VSD and 90.97 % for the polydactyly, while maintaining the sensitivity at 100%.
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Chapter 1

Introduction

Modern biomedical studies often involve the use of imaging technology to examine biological

matters in vivo in a non-invasive and e�cient manner. The availability of biomedical images

signi�cantly enhances our capability to observe and understand the anatomy and biological

process in humans and animals. Based on relevant imaging physics, popular biomedical imaging

modalities range from ultrasonography, X-ray computed tomography (CT), magnetic resonance

imaging (MRI), to positron emission tomography (PET) and single photon emission computed

tomography (SPECT), etc. The imaging modalities related to this thesis, CT and MRI, will

be described in more details in Section 1.2.

In the digital era, biomedical images are often stored in computer hardware, with popular �le

formats including Dicom, Analyze, Nifti and Minc [92], which are usually visualised using tools

tailored for biomedical images, such as ITK-SNAP1, ImageJ2, and MIPAV3, etc. Depending

on the acquisition procedure, a biomedical image can be either a 2D slice or a 3D volume,

where the latter is often visualised using three orthogonal transverse planes that, respectively,

display the imaging subject in axial, saggital and coronal views. Figure 1.1 illustrates a sample

3D image of a human brain under MRI scanning. The size of a biomedical image may vary

signi�cantly based on the size of imaging subject and the spatial resolution of imaging device.

1ITK-SNAP o�cial website: http://www.itksnap.org/
2ImageJ o�cial website: https://imagej.nih.gov/
3MIPAV o�cial website: http://mipav.cit.nih.gov/

1
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(a) axial view (b) saggital view (c) coronal view

Figure 1.1: A sample 3D image of a human brain under MRI scanning in (a) axial, (b) saggital,
and (c) coronal views

Biomedical image analytics is an interdisciplinary �eld of study involving computer science,

mathematics, medicine and so on, with a primary purpose centred on extracting clinically rel-

evant information or knowledge from biomedical images. Example tasks include organ recog-

nition and disease diagnostics, etc. Traditionally, image analytics was carried out by domain

experts manually, which was often a tedious and extremely time-consuming task. More im-

portantly, past decades have witnessed a period of �data explosion�, where the scale of image

production at present day is unprecedented in history and has quickly overwhelmed the possi-

bility of solely manual analytical work.

Computer-assisted analytics, or sometimes (bio-)medical image computing, on the other hand

has become a major trend for image-based biomedical research and practices. Among a large

variety of studies and projects, there are two major branches of research in this �eld, which

aim:

1. To help recognise and/or process speci�c tissues, anatomical structures, organs and so

forth in biomedical images.

2. To facilitate the procedures regarding the diagnosis, classi�cation and/or identi�cation of

certain diseases or abnormalities of the imaging subjects.

One of the primary focuses in the �rst branch of work is the development of a series of fast
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and accurate image segmentation methods, whereas the second branch is often associated with

pattern recognition using disease-speci�c or pathology-dependent information.

To help achieve these goals, a range of image analytical techniques has been developed over

the past decades. A large proportion of these techniques fall into a more general category

of computing technology called �signal processing�, in which an image is treated as a (multi-

dimensional) matrix of intensity signals. To this day, signal processing theories and methods

have turned out to be one of the major pillars underpinning the modern research of biomedi-

cal image computing, helping to shape it into its present form. Widely-used image computing

techniques within this scope include image reconstruction, denoising, inhomogeneity correction,

spatial encoding, intensity normalisation and image registration: a background study is easily

accessible with a range of introductory materials [149, 177, 44]. However, computational ap-

proaches solely leveraging image processing techniques often have signi�cant limitations when

it comes to discovering underlying patterns within imaging data, or to making predictions on

new data, for example the classi�cation of imaging subjects, or detection of data anomaly, etc.

Recent years have witnessed a growing trend toward the employment of machine learning

technology. Machine learning is a sub�eld of computer science centred on developing algorithms

to train the computer so that it is able to learn from and make predictions on data. Based on

the learning mechanism, it can be divided into supervised learning and unsupervised learning.

In the supervised category, a ground truth label class will be provided for each training data

entry, and the learning process is centred on �tting a classi�cation model to the data, so that

it can make e�ective generalisations over existing data and perform accurate classi�cation on

previously unseen data entries. Popular supervised learning frameworks include support vector

machines, random forests and arti�cial neural networks, etc.

In the unsupervised category, such label information is not available, and the learning process is

instead centred on discovering some hidden patterns or structures inside the data, such as data

clusters. Popular unsupervised learning frameworks include nearest-neighbour clustering, prin-

cipal component analysis (PCA) and manifold learning, etc. Introduction to machine learning

is also easily accessible with a number of excellent textbooks [113, 20].
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This thesis will present three studies that explore both research branches of biomedical image

analytics, with a focus on the development of novel and e�cient machine learning approaches

to segmenting anatomical structures in human brain MRI data, as well as to identifying mor-

phological anomalies in mouse embryo µ-CT imaging data.

1.1 Research Overview

1.1.1 Study One: e�cient image segmentation using a patch-based

canonical neural network

In terms of image analytics and image-powered medical interventions, identifying relevant

anatomical structures in the biomedical image is a fundamental step. It is often a prerequisite

to carrying out advanced procedures such as diagnostics. In biomedical image computing, this

process is usually formalised as image segmentation or image annotation. In a typical proce-

dure, the pixels/voxels pertaining to a structure of interest (such as heart or lung) or tissue type

(such as grey matter or white matter) in the image will be classi�ed using designated labels.

However, despite decades of active research in this �eld, the development of an accurate, robust

and fast segmentation algorithm remains an open challenge. The human brain for example,

consists of very complex anatomical structures that nevertheless look similar under prevail-

ing imaging modalities such as MRI, making it di�cult to achieve this goal. To address this

challenge, modern approaches tend to utilise a set of labelled training images (called �atlases�)

to help with image segmentation. Normally, an atlas would be an image similar to the one

being segmented, with target structures being manually annotated by a domain expert in ad-

vance. Due to the structural congruity of anatomy, the developed computer system is expected

to mimic human behaviour and conduct similar annotation on the target image, either fully

automatically (automatic segmentation), or with partial human involvement (semi-automatic

segmentation).

Over the past years, a large variety of computerised segmentation frameworks have been pro-
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posed. To this day, a large proportion of high-pro�le frameworks can be categorised into one

of the two major paradigms:

1. Label propagation via image registration [71, 91, 64, 85, 36, 65, 56, 129, 6,

40]: the central philosophy behind this paradigm is to establish a voxel-level one-to-one

correspondence between the target image and one or more atlases, so that the labels in the

atlases can be propagated over the target image accordingly to perform segmentation. The

spatial correspondence is often established using the �image registration� technique, and

in most cases that of the �non-rigid registration� category. The developed segmentation

methodology, based on the actual studies and application domains, may vary signi�cantly

in terms of image pre-processing, atlas selection, image registration scheme, label fusion,

use of intermediate template, and post-processing, etc.

However, although decades of research e�orts have been devoted to the image registration

framework, state-of-the-art methods still frequently encounter substantial di�culties to

accurately and e�ciently establish the desired voxel-wise correspondence, due to a range

of reasons, including but not limited to, physiological movements, inter-subject variability,

and di�erent imaging protocols. Furthermore, computational e�ciency is often limited,

where the processing time to register a target image with multiple atlases can easily

increase to the order of hours.

2. Patch-based pattern matching [37, 133, 10, 49, 143, 151, 166, 156]: As an

alternative approach, instead of securing a spatial one-to-one correspondence, a patch of

voxels, for example of size 5× 5× 5, centred at each voxel of interest is retrieved in this

paradigm, to perform contextual pattern matching. Typically, each target patch is pair-

wise compared with a set of training patches retrieved from the atlases, and its centre

voxel is then classi�ed via label fusion using these training patches based on speci�c

similarity measures. Depending on the actual applications, the methodology may also

vary signi�cantly, in terms of image pre-processing, atlas selection, patch search method,

similarity measure and label fusion mechanism (including feature extraction), as well as

image post-processing, etc.
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Many methods under this paradigm are also limited by low computational e�ciency as

well as concerns regarding atlas selection. Moreover, patch comparison is often realised

using some low-level hand-engineered features extracted from the patches, such as the sum

of square di�erences, which generally have limited capability of feature representation.

More recently, the employment of machine learning for biomedical image segmentation has

received increasing attention, in particular the deep learning framework. These approaches

are centred on training a classi�er based on hierarchical feature composition using deep neu-

ral networks. An arti�cial neural network consists of a number of inter-connected layers, each

composed of a set of independent computational neurons. In the canonical architecture (Canon-

Net), each neuron stores a feature extraction function that takes an input in vector form and

outputs a scalar-valued feature response. Each feature function contains a number of learning

weights (or parameters), which are self-optimised by the computer during the learning process.

In a deep network structure with many layers, the aggregate feature function can become very

complex and enable high-level feature representation and classi�cation capabilities. In the past

few years, deep learning has brought about a revolution in computer vision, speech recognition,

natural language understanding, sentiment analysis and so forth [94].

In the case of image classi�cation in particular, since an image may easily scale to millions of

pixels/voxels, leading to many more millions of weights to be trained using a relatively smaller

number of images, the CanonNet architecture often quickly ends up over-�tting. As a result,

the convolutional neural network (ConvNet) has become extremely popular, especially since the

seminal work AlexNet [90] that outperformed the runner-up method by a substantial margin

in the ImageNet challenge in 2012. Instead of taking an entire image directly as the input, a

ConvNet neuron typically �lters it with a sliding convolutional kernel which only addresses a

local image patch at a time, and outputs a feature image for further processing. As a result, deep

ConvNets are able to achieve advanced feature representation while using far fewer learning

weights, making them more robust and popular than CanonNets for image-level classi�cation.

Following its major success in computer vision, researchers in biomedical imaging quickly fol-

lowed, and a number of image segmentation studies based on ConvNets have since been pro-
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posed [131, 78, 132, 45, 126]. Typically, segmentation of an image is broken down into a col-

lection of voxel-level classi�cation sub-problems in a patch-based setting, in which each patch

is treated as a mini-image for the labelling of its centre voxel. However, we argue that for

patch-based segmentation, the ConvNet's advantage is largely diminished due to the nature of

the segmentation approach, and propose a novel segmentation method based on the CanonNet

architecture with substantial re-engineering. An evaluation was applied to the segmentation of

hippocampus in the human brain, with a set of MRI data retrieved from a benchmark database.

1.1.2 Study Two: high-throughput mouse phenotyping using non-

rigid registration and robust principal component analysis

This study explores the second major branch of research in biomedical image analytics and

carries out an investigation into the development of a high-throughput image computing ap-

proach to mouse phenotyping. In this work, we will propose a morphological anomaly detection

framework, based on the combined employment of non-rigid registration and robust principal

component analysis (RPCA).

International e�orts have been underway toward phenotyping the mouse genome, by systemat-

ically modifying mouse genes one-by-one for comparative analysis, in order to study the impact

of gene-mutation with respect to morphology, metabolism or other biological traits (collectively

known as the �phenotype�). In terms of phenotype examination, current practices still rest on

the traditional method using microscopic histological examination, which is not only labour

intensive and highly time consuming, but is also restricted to limited anatomical coverage and

prone to errors during histological sectioning.

Fortunately, recent years have witnessed a growing trend regarding the employment of image

analytics to facilitate the phenotyping process, especially that concerning the recognition of

morphological abnormality. Similar to other biomedical imaging work, as the modern scale

of data production grows at an unprecedented pace, the research community has been calling

for some high-throughput image computing approaches, with the use of automatic or semi-
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automatic analytical tools to address this increasing challenge.

Broadly speaking, there are two major branches of study toward computer-aided phenotyping.

1. Phenotyping via detection of phenotype-speci�c features [167, 137, 161]: The

�rst branch is focused on developing some niche algorithms that capture phenotype-

speci�c features to help recognise target phenotypes, for example, by detecting the con-

nectivity between cardiac ventricles to identify ventricular septal defects (VSD) in the

heart. This line of research ultimately leads to automatic classi�cation of speci�c known

phenotypes. However such niche approaches generally fail to serve a general phenotyp-

ing purpose, in particular the discovery of unknown phenotypes, since the corresponding

phenotypical information is not available.

2. Phenotyping via comparative analytics [35, 120, 172, 34, 89, 168, 134]: The

second branch of research is focused on anomaly detection, via data-driven comparative

analytics. Existing work in this line is primarily centred on volumetric comparison of

target anatomical structures between the normal and gene-modi�ed subjects to identify

anomaly. However, volume contrast merely achieves a super�cial level of screening for

identifying the morphological phenotype, and will generally fail when there is no severe

volume variation involved, as there is, for example, in the VSD. Alternative approaches

include leveraging distinguishing deformation features derived from group-wise image reg-

istration onto a purpose-built template to identify the anomaly. However, such detection

approaches are often not very robust, as deformation features may vary signi�cantly across

di�erent registration settings and the use of di�erent templates.

Furthermore, both branches of work often require image segmentation on certain structures of

interest before proceeding to further analysis. As discussed in study one above, many biomedical

image segmentation methods require the availability of atlases to carry out the task. In contrast,

the rapid organogenesis throughout the brief embryo development period (approximately 18.5

days) poses a signi�cant obstacle to securing a suitable atlas, making image segmentation very

challenging in the case of mouse embryo phenotyping. All these reasons lead to a critical
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demand for a robust and e�cient general-purpose anomaly detection framework without prior

knowledge of the phenotype and the need of image segmentation, which is the purpose of this

study.

We propose a systematic framework that is able to e�ciently detect morphological anomalies

in a batch of images, sensitive to both volumetric and non-volumetric variations, and does

not require image segmentation, nor resort to unreliable deformation features, and is therefore

robust to various registration settings and template use. The core of the proposed approach

lies on jointly employing the non-rigid registration and RPCA methods. RPCA [32] is an

unsupervised machine learning technique that is able to decompose the dataset under study into

a regular and a singular component. The former is an estimated low-dimensional subspace that

models the regular/standard structure of mouse anatomy, whilst the latter is mainly composed

by sparse data that captures the anomalous information of each image. The purpose of non-

rigid registration in this case is to group-wise align all images to ensure the e�ectiveness of

the subspace estimation in the RPCA process. An evaluation was carried out on two separate

mouse embryo µ-CT imaging datasets regarding the detection of two abnormal phenotypes:

VSD and polydactyly.

1.1.3 Study Three: robust principal component analysis with varia-

tion priors (RPCA-P)

The third study investigates the RPCA framework in more depth and proposes a novel RPCA-

P framework that is better able to address the prevailing natural variations in biomedical data.

RPCA is an extension of the classic PCA technique, which is arguably the most widely used

statistical data analytical method concerning feature extraction and dimensionality reduction.

PCA uses an orthogonal transformation to convert a given dataset with possibly correlated

variables into a low-dimensional subspace composed by linearly uncorrelated variables called

principal components [75]. The classic PCA algorithm may be derived by assuming that the

data is drawn from a multivariate Gaussian distribution. It is, however, well-known and well-

documented [32, 169, 41, 42] that the classic PCA algorithm is fragile to some distributions
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that depart from this assumption, such as those containing large outliers. Consequently, data

distributed in a non-Gaussian manner will be represented less accurately, and a single data point

with gross corruption in this case could signi�cantly lower the quality of the resulting subspace

representation. Such limitation alongside the wide prevalence of data corruption sparked the

development of the RPCA framework [32, 169, 41, 42, 21, 81].

Due to the strong performance guarantees, RPCA via principal component pursuit (PCP)

[32] has gradually become the standard RPCA method (the word RPCA in this thesis gen-

erally refers to PCP-based RPCA unless otherwise stated). It has previously been applied to

many computer vision problems, including including video surveillance [163, 32, 8, 175, 174],

face recovery [163, 32, 175, 174] and batch linear alignment of face images with partial occlu-

sion/corruption [124], attaining excellent performances. However these applications commonly

rest on a critical condition, which is that in the majority of images being processed, there is a

background with very little variation.

By contrast, in biomedical imaging, there is a signi�cant natural variation across di�erent

image samples, such as inter-subject variability, physiological movements (such as heartbeat),

di�erent postures and orientations at di�erent imaging procedures. Also, di�erent anatomical

structures often manifest varying individual natural variations. For that reason, the method

needs to be upgraded to address this condition. Although non-rigid image registration can go

some way toward reducing this variance, it cannot eliminate the problem entirely. Moreover, in

the baseline RPCA framework, the level of outlier tolerance for marginal data to be included

into the regular or singular component is solely controlled by a single parameter, applied globally

regardless of local variability.

To improve this purely unsupervised machine learning approach without leveraging any prior

knowledge, we propose a modi�ed RPCA framework (RPCA-P) that is able to incorporate nat-

ural variation priors in the model and adjusts outlier tolerance locally so that voxels associated

to structures of higher natural variability are compensated by allowing a higher tolerance dur-

ing feature decomposition. The variation priors are learned from the data itself. In this case,

the proposed method is able to signi�cantly improve the performance of feature decomposition
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in the biomedical domain. An evaluation was carried out on a revisit to the mouse embryo

phenotyping application, in order to investigate whether the RPCA-P improves the detection

performance.

1.2 Imaging modalities in this thesis

As mentioned earlier, there are a variety of imaging modalities used in biomedical practices.

Each modality has a unique visualisation property based on its imaging physics. In general,

imaging technologies can be broadly divided into two categories: ionising radiation and non-

ionising radiation. The ionising radiation category primarily consists of modalities that utilise

X-rays (such as CT, Radiography) or Gamma rays (such as SPECT) to produce images. The

non-ionising radiation category mainly utilises either acoustic pulses (such as ultrasonography)

or radiowaves in combination with magnetic �elds (such as MRI). Depending on the actual

application, there could be one or multiple imaging modalities used at the same time. Here,

we brie�y describe some basics of CT and MRI, which are the imaging modalities used in the

work presented in this thesis.

1.2.1 Computed tomography (CT)

CT is a prevailing imaging technology that produces tomographic images based on the combined

use of X-ray and computer reconstruction. When performing a CT scan, the imaging subject

is often positioned on a table, which gradually moves across the centre of an X-ray machine.

The machine consists of a rotating radiation source that emits X-rays passing through the

subject, and a signal receiver that measures the attenuation level of X-ray beam that arrives.

As the source rotates, radiation decay is measured from multiple orientations. A computer

tomographic reconstruction process such as Feldkamp's �ltered back-projection [50] can then be

applied and generate a grey-level intensity image based on the distribution of X-ray attenuation.

The intensity value of a pixel/voxel x in the generated CT image re�ects the level of signal
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(a) brain (b) heart (c) knee

Figure 1.2: Some sample 2D slices of CT scans on (all in sagittal view): (a) brain, (b) heart
and (c) knee (image source: http://radiopaedia.org/)

attenuation as X-ray passes through the location, and is often computed based on the Houns�eld

Unit (HU) [142]:

HUx = 1000× µx − µwater
µwater

where µx is the average linear attenuation coe�cient at voxel x and µwater represents the

attenuation level of water. Since di�erent types of tissue absorb X-rays at di�erent levels, the

HU value varies from voxel to voxel, resulting in a signal intensity image that visualises various

parts and structures of the imaging subject, including bones, muscles, fat, tumours and internal

organs.

The HU values in a CT image usually range from -1000 to +1000, with the air corresponding

to around -1000 HU, water to around 0 HU, and bone to around +1000 HU. Some sample CT

scans of the brain, the heart and the knee are shown in Figure 1.2, in which the brain skull and

bones appear bright, the soft tissues grey, and the air dark.

1.2.2 Magnetic resonance imaging (MRI)

MRI is another widely-used tomographic imaging technology introduced some 30 years ago,

and is able to generate high quality images based on the phenomenon of nuclear magnetic

resonance. The fundamentals of MRI physics will be outlined here, yet for a more detailed

http://radiopaedia.org/)
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description one should refer to further readings [60].

When performing an MRI scan, the imaging subject is often placed in the bore of a super-

conducting magnet that generates a strong magnetic �eld. The magnetic �eld then aligns the

spins of hydrogen nuclei (or protons) within the subject, most notably in water molecules. Such

alignment can be disrupted by applying an external radio frequency (RF) electromagnetic pulse.

In response to the force returning them to the equilibrium state, the nuclei precess causing a

changing magnetic �ux, leading to a di�erential voltage in receiver coils as a measurable re-

sponse signal. Moreover, by applying additional magnetic �eld gradients that vary linearly over

space, the source of response signals can be located using the frequency of resonance signals.

Then an image of the subject anatomy can be produced, by applying a Fourier transform that

decodes such frequencies into a spatial map.

The image quality and signal-to-noise-ratio of MRI scanning are determined by the strength

of magnetic �eld, where the common setting in existing clinical systems is either 1.5T or 3T.

The signal-to-noise-ratio of a 3T scan in theory is twice as good as a 1.5T scan, with an

improved spatial resolution and reduced acquisition time. Nevertheless, MRI su�ers from wide

prevalence of artefacts such as spatial distortion, which tends to be stronger in higher magnetic

�eld strength.

Furthermore, the signal intensity of MRI is collectively determined by a number of factors,

most notably the longitudinal relaxation time (T1), transverse relaxation time (T2) and proton

density. T1 and T2 a�ect how protons return to the equilibrium state after an RF pulse is

applied, making a direct impact on image contrast. More speci�cally, there are two main

parameters in the pulse sequence: the repetition time (TR) and echo time (TE). The former

indicates the interval between two RF pulses whereas the latter indicates the duration from the

start of an RF pulse to the detection of its response signal.

Based on the settings of TR and TE, there are three basic forms of MRI scanning, respec-

tively, T1-weighted, T2-weighted and PD-weighted MR images [66]. The T1-weighted imaging

sequence applies a short TR and short TE, the T2-weighted sequence applies a long TR and

long TE, and the PD-weighted sequence uses a long TR and short TE. An example brain scan
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(a) (b) (c)

Figure 1.3: Sample scans of human brain under (a) T1-weighted, (b) T2-weighted,
and (3) PD-weighted MRI sequences (image source: https://radiology.ucsf.edu/blog/

neuroradiology/exploring-the-brain-how-are-brain-images-made-with-mri)

of each imaging sequence is illustrated in Figure 1.3.

Relevant studies have suggested that T2-weighted scan is most suitable for the analysis of

brain pathologies such as vascular damage or other intra-cranial diseases [46]. In contrast,

T1-weighted and PD-weighted scans are preferable when characterising lesions. Moreover, a

T1-weighted scan is often considered the best option in the case of analysing pathologies such

as brain atrophy [63]. In addition, sometimes multiple sequences are used at the same time

to enhance image analytics, such as to improve the segmentation of brain tumours using a

combination of T1-weighted and T2-weighted scans [112].

1.2.3 CT vs MRI

Both CT and MRI are popular imaging technologies, each has a unique set of advantages and

disadvantages, suitable for di�erent imaging requirements and making them complementary to

each other. Compared to MRI, CT o�ers a higher spatial resolution and requires a relatively

short acquisition time (in the order of tens of seconds). Furthermore, there is a good imaging

contrast between bones and soft tissues in CT scans, which generally outperform MRI when it

comes to examining trauma, or other similar situations. On the other hand, CT su�ers from

https://radiology.ucsf.edu/blog/neuroradiology/exploring-the-brain-how-are-brain-images-made-with-mri)
https://radiology.ucsf.edu/blog/neuroradiology/exploring-the-brain-how-are-brain-images-made-with-mri)
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a poor soft tissue contrast, which makes it di�cult to distinguish various soft tissues and to

conduct relevant pathological analysis, though such limitation can be signi�cantly relieved with

the use of contrast agents. In addition, X-rays are an ionising form of radiation and could be

harmful to the human body.

In contrast, MRI is non-ionising and considered a safe imaging technology without measurable

harm. Another major advantage of MRI is its ability to adjust image contrast, and thus can

be employed to highlight di�erent types of soft tissue by applying customised pulse sequences.

Moreover, MRI can be tailored for functional [106] imaging (fMRI) or di�usion [19] imaging

(DWI or DW-MRI), satisfying a wider range of observational and analytical demands. However,

since there is little presence of hydrogen nuclei for magnetic resonance in the bones, MRI is

generally limited to a poor contrast between bones and soft tissues.

1.2.4 Micro-level imaging: µ-CT and µ-MRI

Regular CT and MRI often produce images at spatial resolutions in the order of millimetres.

In some circumstances, imaging needs to be applied to small animals, microfossils or certain

biomedical samples, etc., in which case the imaging subject is often too small to meet the

regular CT and MRI standards. X-ray micro-computed tomography (micro-CT or µ-CT) on

the other hand, is a special type of CT that produces images with a spatial resolution in the

micrometre range. Its counterpart using MRI is known as micro-MRI or µ-MRI. Such high-

resolution imaging allows for much re�ned visualisation to cater for the demand of micro-level

observation. In study two and study three, image analytics will be carried out on a set of normal

and gene-modi�ed embryos of laboratory mice, in order to observe the subject morphology at

prenatal stage. In this condition, µ-CT is used for data acquisition instead of the regular CT.

In other similar studies, µ-MRI is also frequently used.
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1.3 Summary of Key Contributions

The key contributions of the work presented in this thesis are summarised below:

• A novel biomedical image segmentation framework using a patch-based deep neural net-

work, which in contrast to following the popular ConvNet architecture, employs the

CanonNet architecture instead: in our evaluation study applied to the segmentation of

hippocampus in human brain MRI data, the proposed framework outperformed the prior

state-of-the-art with an improved accuracy and a near real-time speed.

• A systematic morphological anomaly detection framework based on the combined em-

ployment of non-rigid registration and RPCA techniques. The proposed framework o�ers

a high-throughput approach to the widely-interesting mouse embryo phenotyping work.

• An RPCA-P technique that incorporates variation priors into the state-of-the-art PCP-

RPCA framework, allowing it to work much more robustly in biomedical imaging.

1.4 Structure of the Thesis

Following this introduction chapter, the thesis is organised as follows:

• To start with, study one is presented in Chapter 2. It includes a comprehensive review

of well-known existing image segmentation techniques based on registration-based label

propagation and patch-based pattern matching, as well as recent work on ConvNet seg-

mentation, before proceeding to describe the proposed framework.

• Study two is then detailed in Chapter 3. It starts by motivating the mouse phenotyping

work using biomedical image analytics, then reviews existing phenotyping approaches and

limitations, and further points out the challenges regarding mouse embryo phenotyping,

followed by the methodological development of our high-throughput anomaly detection

framework using non-rigid registration and RPCA.



1.5. List of publications 17

• Based on the insights from study two, study three is described in Chapter 4. It �rst

introduces the background of RPCA, with an emphasis on the work related to the principal

component pursuit method, including the formulations of di�erent optimisation problems

and popular existing algorithms to solve them.

• Chapter 5 provides a summary of the work presented in this thesis, our major contribu-

tions and the key novelties. In addition, some suggestions for future studies carrying on

these lines of work will be also be included.

1.5 List of publications

This thesis is based on the following publications:

• Z. Xie and D. Gillies. Near real-time hippocampus segmentation using a patch-based

canonical neural network. IEEE Transactions on Medical Imaging (in submission).

• Z. Xie, X. Liang, L. Guo, A. Kitamoto, M. Tamura, T. Shiroishi, and D. Gillies. Au-

tomatic classi�cation framework for ventricular septal defects: a pilot study on high-

throughput mouse embryo cardiac phenotyping. Journal of Medical Imaging 2(4):041003,

2015.

• Z. Xie, A. Kitamoto, M. Tamura, T. Shiroishi, and D. Gillies. Non-rigid registration and

robust principal component analysis with variation priors: a high-throughput mouse phe-

notyping approach. In: IEEE International Symposium on Biomedical Imaging (ISBI),

pp. 1118�1122. Prague, Czech Republic, 2016.

• Z. Xie, A. Kitamoto, M. Tamura, T. Shiroishi, and D. Gillies. High-throughput mouse

phenotyping using non-rigid registration and robust principal component analysis,� In:

SPIE Medical Imaging, vol. 9784, no. 978415. San Diego, USA, 2016.

• Z. Xie and D. Gillies. Patch forest: a hybrid framework of random forest and patch-based

segmentation. In: SPIE Medical Imaging, vol. 9784, no. 978428. San Diego, USA, 2016.
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Chapter 2

E�cient Image Segmentation Using A

Patch-based Canonical Neural Network

2.1 Introduction

In biomedical image analytics, segmentation of relevant anatomical structures in the medical

image is a fundamental step, and often a prerequisite to advanced procedures such as di-

agnostics. Traditionally this is done by an expert segmenting the image by hand, which is

extremely time-consuming, prone to errors, hard to reproduce, unscalable, and also subject to

inter-/intra-annotator variability [138]. Furthermore, the vast amount of data produced every-

day also makes manual segmentation rather prohibitive. This naturally leads to the need of

(semi-)automatic segmentation technology. However, despite decades of active research in this

�eld, the development of an accurate, robust and fast segmentation algorithm remains an open

challenge. The brain for example, composed of complex anatomical structures with similar

appearances under the widely used MRI scanning, places a strict barrier to achieving this goal.

To address this di�culty, state-of-the-art approaches tend to leverage a set of labelled training

data (called �atlases�) to help with segmentation. The term �atlas� originates from cartography

regarding the study and practice of drawing maps; in the biomedical domain, its de�nition

extends to the annotation of structures of interest in the biomedical images. The interpretation

19
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(a) (b)

(c) (d)

Figure 2.1: An example MRI atlas of a human brain: (a-b) the axial and coronal views of the
grey-level image, (c-d) superimposed with its label map

of an atlas varies across di�erent research communities: some interpret it as a pair of image and

label map, others extend it to a collection of such pairs. Another less popular interpretation

associates the term with a model template image without label annotations. To clarify its use

in this thesis, we adopt the �rst interpretation and de�ne an atlas as a tuple (I, L), where I

represents the image and L represents its label map of target structures. An example atlas is

shown in Figure 2.1. The production of a label map may be carried out by an expert manually,

or with the use of automatic or semi-automatic segmentation tools. In early studies, researchers

tended to create a model atlas based on a set of images for label map production. However an

atlas created in this way cannot characterise the anatomical variability within the population.

For that reason, in modern work each training image is often used to create a separate atlas, and

the whole atlas collection is then used for segmentation in order to embrace the full spectrum

of population diversity.



2.1. Introduction 21

(a) atlas (b) target (c) segmented target

Figure 2.2: Atlas-based segmentation: (a) an atlas (b) the target image (c) the segmented
target image

In segmentation problems, an atlas is normally similar to the image being segmented. By

leveraging the structural congruity of anatomy, the developed algorithm is expected to mimic

human behaviour and conduct similar annotation on the target image, as shown in Figure 2.2.

This is often known as �atlas-based segmentation�. Over the past years, a large collection of

atlas-based segmentation methods has been proposed. A signi�cant proportion of high-pro�le

segmentation frameworks to this day, can be categorised into two major signal processing-based

paradigms: label propagation via image registration and patch-based pattern matching.

In the label propagation paradigm, typically a voxel-level one-to-one correspondence will be

established between the atlases and target image using image registration techniques, and

the labels are then propagated over the target space to perform segmentation. To improve

segmentation accuracy, usually multiple atlases are used at the same time, followed by some

label fusion techniques, such as majority voting [64, 85, 36, 65, 56] or weighted label fusion

[129, 6, 40]. Many algorithms of this type have been proposed in the literature, with high levels

of accuracy reported in many studies [71, 91, 64, 85, 36, 65, 56, 129, 6, 40]. However these

approaches typically require a non-rigid registration between every target-atlas pair, which can

be very time-consuming with a large number of atlases. Some variant methods have been

proposed to improve the e�ciency, such as label propagation via composite transformation

[108, 109], or using a probabilistic atlas in combination with statistical models to conduct label

inference [123, 52, 12, 125, 98, 107]. However, the e�ciency improvement is often achieved at

a certain level of compromise on segmentation accuracy. Meanwhile, these methods often raise
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an additional issue regarding the selection/creation of an intermediate template, which is not

only application-speci�c but also data-dependent [76].

As an alternative, another school of researchers have developed a series of patch-based segmen-

tation methods [37, 133, 10, 49, 143, 151, 166, 156]. In these approaches, the strict voxel-level

one-to-one correspondence for label propagation is relaxed to patch-based pattern matching,

where patches are typically retrieved from the atlases using a localised search window. Patch

relevance will then be measured using some hand-engineered similarity metrics (such as the

sum of squared di�erences) in the form of pair-wise comparison. Subsequently, a set of best

matching patches drawn from all atlases are used collectively (rather than atlas-by-atlas) to

perform label fusion. A particular advantage of this paradigm is that it no longer requires

any form of non-rigid registration, and thus avoids a series of troubles including the risk of

registration failure, the issues regarding template creation and composite transformation, etc.

State-of-the-art segmentation accuracy has also been reported in many relevant applications,

however segmentation e�ciency generally remains low. The key bottleneck lies on the time-

consuming patch search and label fusion computation based on pair-wise patch comparison,

although a series of more e�cient patch search techniques have been proposed to mitigate this

problem.

Recently, machine learning using deep neural networks (often referred to simply as �deep learn-

ing�) is quickly gaining wide attention. These approaches are centred on training a classi�er

based on high-level hierarchical feature representations. The classi�er delivers an abstract gen-

eralisation on the training data, and when applied to the test data, classi�cation can then be

carried out e�ciently without explicitly re-using the training data. More speci�cally, a neural

network consists of a number of inter-connected layers, each is composed by a set of indepen-

dent computational neurons. In a canonical architecture (we will call it �CanonNet� hereafter),

each neuron stores a feature extraction function that takes input in vector form and outputs

a scalar valued feature response. With a deep structure (many layers), the aggregate feature

function learned from the data can become very intricate and enable an excellent capacity of

feature representation and classi�cation, as in contrast to the simple hand-engineered features

used in conventional approaches.
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In terms of image classi�cation however, an image may easily scale to millions of pixels/voxels,

leading to millions of learning parameters for a single neuron and potentially millions of neurons

in a network, quickly ending up over-�tting. As a result, the convolutional neural network

(�ConvNet� hereafter) has become particularly popular. In the ConvNets, instead of fully

connecting to the image for global processing, the neurons �lter it by convolution, in which each

neuron is associated with a convolutional kernel that only locally connects to a small image

patch at a time, and produces a feature image (rather than a scalar) for further processing. Deep

ConvNets can achieve intricate feature representation while using far fewer learning parameters,

making them more robust and popular than CanonNets for image classi�cation. Over the past

few years, deep ConvNets have brought about a revolution in computer vision, most notably

since the ImageNet challenge in 2012, when the AlexNet [90] signi�cantly outperformed the

runner-up with almost a half error rate. Following these striking successes, deep ConvNets

have increasingly been applied to biomedical image segmentation lately. Notable works include

the U-Net [131]1 and DeepMedic [78]2, amongst many others [132, 45, 126]. Image segmentation

is often broken down to voxel-wise labelling on a patch-based setting, where a patch is treated

as a mini-image for classi�cation of its centre voxel.

However, ConvNet classi�cation generally involves millions of neuron-wise convolution on each

single run, requiring long training periods and demanding memory consumption (for example,

the AlexNet required 5-6 days of training on two modern GPUs [90]). Moreover, many existing

segmentation studies are based on a nesting structure that integrates with other models such as

superpixels [132] or conditional random �elds [78, 45], further complicating the computation.

By contrast, we argue that for patch-based segmentation, the ConvNet's advantage is largely

diminished, as a patch is only sized around 9× 9 to 15× 15, and the nature of the classi�cation

approach is that patches do not need decomposition and thus will not bene�t from further

convolution. Instead, we revisit the CanonNet architecture in which neurons only compute dot

products, and are therefore much faster and less memory-hungry than convolution. Further-

more, we have also substantially re-engineered the CanonNet architecture with state-of-the-art

1The U-Net has won multiple segmentation challenges, including the ISBI challenge for segmentation of
neuronal structures in electron microscopic stacks in 2012, ISBI challenge for computer-automated detection of
caries in bitewing radiography in 2015, and ISBI challenge for cell tracking challenge in 2015

2The DeepMedic has won the MICCAI challenge for ischemic stroke lesion segmentation in 2015
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deep learning techniques, including the use of ReLU activation [90], 2.5D tri-planar patch set-

ting [126] and dropout layers [68], in addition to GPU programming that signi�cantly boosts

computational e�ciency. Although our approach is general, we conducted experimentation on

the segmentation of hippocampus in the human brain, and achieved a median Dice score up to

90.98% at a near real-time speed (<1s). To the best of our knowledge, this is by far the fastest

algorithm with highest segmentation accuracy ever reported in hippocampus segmentation.

2.2 Segmentation via registration-based label propagation

The label propagation approach heavily rests on the use of the image registration technique,

and is therefore sometimes known as �registration-based segmentation�. Image registration is

the process to estimate a spatial transformation that maps one image (often called the �source

image� or �moving image�) to another (often called the �reference image�, �target image� or ��xed

image�), so that a voxel-level correspondence can be established between the two images. When

an atlas is successfully registered with a target image (normally through a non-rigid registration

scheme), its labels are propagated to the target space using the derived transformation to

perform voxel-wise label classi�cation, as illustrated in Figure 2.3. The image registration

technique will be introduced in Section 2.2.1, followed by a detailed description of the label

propagation framework in Section 2.2.2. Image registration will also be used in Chapter 3 and

Chapter 4.

Figure 2.3: Image segmentation via registration-based label propagation (image source: [159])
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Figure 2.4: Overview of the image registration process

2.2.1 Image registration

Image registration is one of the major cornerstones underpinning modern biomedical image

analytics. Despite a range of variant schemes having been proposed in the literature (which have

been extensively reviewed in a number of survey studies [61, 67, 181, 115]), image registration

is generally based on the process illustrated in Figure 2.4, with a number of major components

to build up its computational pipeline, including similarity metrics, transformation models and

optimisation methods.

Denote the source image as IS, the reference image as IR, a physical point x in an image I as

Π(I, x). The registration process is to �nd a transformation (also called �deformation �eld�)

T such that Π(IS, T (x)) spatially aligns with Π(IR, x). Technically, the mapping is from the

reference space to the source, in order to ensure the completeness of a deformed image. The

quality of alignment is de�ned by a cost function f(T, IS, IR) based on a certain similarity

measure (also called �distance measure�) ζ, and in the case of non-rigid registration, since the

problem is ill-posed, usually an additional penalty term (also called �regularisation term�) ψ

will be included to constrain T . Mathematically, the registration process can be formulated as:

arg min .
T

f(T, IS, IR) = −ζ(T, IS, IR) + γ · ψ(T ) (2.1)
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To improve the e�ciency of registration, a multi-resolution scheme is often applied, where the

estimation of T starts with the images at a relatively low resolution, which gradually increases,

until reaching full resolution. There are a number of multi-resolution strategies, for example,

based on down-sampling, Gaussian smoothing or both [101].

Transformation model

The transformation model determines how the source image can deform in order to align with

the reference image. Based on the degree of freedom, in increasing order, major transformation

models include translation, rigid, a�ne and non-rigid transformations. A visual demonstration

of brain transformation with di�erent models is illustrated in Figure 2.5.

(a) reference (b) source (c) translation

(d) rigid (e) a�ne (f) B-spline

Figure 2.5: Visual demonstration of major transformation models: (a) the reference image, (b)
the source image overlaid with a grid, (c) deformed by a translation, (d) a rigid transformation,
(e) an a�ne transformation, and (f) a B-spline non-rigid transformation. (Image source: [83])
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To begin with, the �rst three models fall into the category of global transformation, in which the

same computation is applied to all data in the image or a region of interest (ROI). Supposing

x = 〈x1, x2, x3〉 denotes any physical point in 3D space (the 2D case can be easily deduced

accordingly) and θ is the set of parameters associated with the transformation model, these

models are formulated as follows:

• Translation:

T (x) = x+ t (2.2)

where t = 〈t1, t2, t3〉 is a translation vector that shifts x along each of the axes. The model

in this case has three degrees of freedom and is parametrised by θ = (t1, t2, t3).

• Rigid transformation:

T (x) = R(x− c) + t+ c (2.3)

where R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 is a rotation matrix, c = 〈c1, c2, c3〉 is the centre of rotation,

and t is a translation vector like in the previous model. In this model, the image is

treated as a rigid body that can translate and rotate, but cannot be scaled or sheared.

The rotation matrix is de�ned by three Euler angles α, β, γ, respectively, for the 2D planes

over every two axes (note in the case of 2D there would be only one Euler angle): R =


r11 = cosβ · cosγ r12 = cosα · sinγ + sinα · sinβ · cosγ r13 = sinα · sinγ + cosα · cosβ · cosγ

r21 = −cosβ · cosγ r22 = cosα · cosβ − sinα · sinβ · sinγ r23 = sinα · cosγ + cosα · sinβ · sinγ

r31 = sinβ r32 = −sinα · cosβ r33 = cosα · cosβ


Therefore this model is parametrised by θ = (α, β, γ, t1, t2, t3), increasing the degree of

freedom to six.

• A�ne transformation:

T (x) = A(x− c) + t+ c (2.4)
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where the transform matrix A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 has no restrictions as previously, and the

image can translate, rotate, and also scale and shear. For that reason, the model has 12 de-

grees of freedom and is parametrised by θ = (a11, a12, a13, a21, a22, a23, a31, a32, a33, t1, t2, t3).

Alternatively, some researchers prefer to parametrise A in terms of rotation, scale and

shear, and de�ne the transform matrix as

A =


r11 r12 r13

r21 r22 r23

r31 r32 r33



k1 0 0

0 k2 0

0 0 k3




1 s3 s1

0 1 s2

0 0 1


where α, β, γ are the Euler angles for rotation, k1, k2, k3 and s1, s2, s3 are the scaling

and shearing factors along each axis. In this case, the model still has 12 degrees of

freedom but is instead parametrised by θ = (α, β, γ, k1, k2, k3, s1, s2, s3, t1, t2, t3). Also,

when k1 = k2 = k3 = 1 and s1 = s2 = s3 = 0, it is equivalent to a rigid transformation.

Another notable point is that an a�ne transformation preserves parallels and only certain

shears will do this.

Although such global transformations can achieve an overall alignment between IS and IR,

local correspondence is not well addressed, in particular soft tissues often exhibit non-rigid

deformations. To address this issue, there has been a range of non-rigid transformation models

proposed in the literature, including the spline models [23, 135], elastic-solid models [153],

physical models [154], viscous-�uid models [39], linear combination of some basic functions

such as wavelet basis functions [164], and smoothed displacement �elds [5].

Among them, the thin-plate spline and B-spline models are probably the most commonly used,

and both embody transformation using control points. The thin-plate splines were initially

introduced to model the deformation of shapes in medical image analysis by Bookstein [23]. An

important merit of thin-plate splines is that they provide a close-form solution of T estimation

using landmarks, which on the other hand however, also makes it very sensitive to landmark
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placement. In particular, the movement of any landmark will a�ect the entire deformation

�eld, and as a consequence makes the model computationally ine�cient.

By contrast, Rueckert et al. [135] proposed free-form deformation based on B-splines, which has

arguably become a standard non-rigid transformation model. This method features deformation

with local control point support, which enables e�cient implementation, including the use of

GPU programming [114]. In this model, the image is overlaid with an n1 × n2 × n3 grid Φ,

composed by a set of evenly spaced control points φi,j,k. Then the local transformation is

modelled in the form of cubic B-splines:

T (x) =
3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (2.5)

where i = bx1
n1
c − 1, j = bx2

n2
c − 1, k = bx3

n3
c − 1, u = x1

n1
− bx1

n1
c, v = x2

n2
− bx2

n2
c w = x3

n3
− bx3

n3
c

and Bl(·) represents the lth basis function of the B-spline [95, 96]

B0(u) = (1− u)3/6 B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6 B3(u) = u3/6

In this case, the degree of freedom is n1 × n2 × n3 × 3, which is determined by the resolution

of Φ (note each control point can deform in a 3D space). In practice, the B-spline deformation

is normally applied after (or combined with) a global transformation (usually through a�ne

registration) that secures an overall correspondence.

Furthermore, as mentioned earlier, in non-rigid registration the deformation often needs to be

regularised to secure a good performance, for example, in terms of smoothness [135], curvature

[51] or rigidity [140], etc. The bending energy penalty proposed in the original free-form defor-

mation framework [135], for example, is a widely used in combination with B-spline registration

to regularise deformation smoothness. It is de�ned by:

ψ(T ) =
1

|Ω(IR)|

∫ x1

0

∫ x2

0

∫ x3

0

[(∂2T

∂x2
1

)2
+
(∂2T

∂x2
2

)2
+
(∂2T

∂x2
3

)2

+2
( ∂2T

∂x1x2

)2
+ 2
( ∂2T

∂x2x3

)2
+ 2
( ∂2T

∂x1x3

)2
]
dx1dx2dx3

(2.6)
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Another notable point is that transformation is applied to physical points in the image space,

which may correspond to individual voxel centres, as well as inter-voxel locations.

Similarity metrics

Similarity metrics are used to evaluate the quality of alignment between IR and the deformed

IS. Unlike the transformation model that can be applied to any physical points, the similarity

measure is based on the actual voxels in the images or ROIs. Since the voxel centres in IR

often do not exactly align with their counterparts in the deformed IS, an interpolation process

is usually involved. Popular interpolation methods include nearest neighbour interpolation,

linear interpolation (sometimes called �tri-linear interpolation� in the case of 3D), B-spline

interpolation, and C-spline interpolation [99]. Higher-order interpolations often lead to higher

computational complexity, thus in practice there is often a trade-o� between quality and speed.

Based on the nature of comparison, similarity metrics can be divided into intensity-based and

feature-based metrics. Widely-used similarity metrics include the sum of squared di�erences

[53], cross correlation [127], normalised cross correlation [127], mutual information [152, 147],

normalised mutual information [141], joint entropy [128] and label consistency [18]. Supposing

I(v) denotes the intensity value of voxel v in image I, and Ω(I) denotes the set of all voxels in

I or the ROI within it. The four most widely-used metrics are formulated as follows.

• Sum of squared di�erences (SSD)

ζSSD(T, IS, IR) =
∑

v∈Ω(IR)

(
IS(T (v))− IR(v)

)2

(2.7)

Sometimes the average value will be used instead of the sum, which turns it into another

common metric: the mean of squared di�erences.

• Normalised cross correlation (NCC)

ζNCC(T, IS, IR) =

∑
v∈Ω(IR)

(
IS(T (v))− µ[IS]

)(
IR(v)− µ[IR]

)√∑
v∈Ω(IR)

(
IS(T (v))− µ[IS]

)2∑
v∈Ω(IR)

(
IR(v)− µ[IR]

)2
(2.8)
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where µ[I] = 1
|Ω(I)|

∑
v∈Ω(I) I(v) is the average intensity value of image I. This is a

normalised version of the cross correlation metric [127].

• Mutual information (MI)

ζMI(T, IS, IR) =
∑
s∈BS

∑
r∈BR

p(T, s, r)log2

( p(T, s, r)

pR(r)pS(T, s)

)
(2.9)

where BS, BR are, respectively, the sets of bin centres of the intensity histograms of IS, IR,

and pS(T, s), pR(r), respectively, denote the marginal probability distribution functions

of the two images. p(T, s, r) denotes the joint probability distribution function:

p(T, s, r) =
1

|Ω(IR)|
∑

v∈Ω(IR)

wS

(s− IS(T (v))

δS

)
wR

(r − IR(v)

δR

)
(2.10)

where wS(·) and wR(·) indicate the source and reference B-spline Parzen Windows, and

the scaling constants δS and δR equal to the bin widths of BS and BR. The number of

bins to create the histograms is a tunable parameter adjusted by the user.

• Normalised mutual information (NMI)

ζNMI(T, IS, IR) =

∑
s∈BS

∑
r∈BR p(T, s, r)log2

(
pR(r)pS(T, s)

)
∑

s∈BS

∑
r∈BR p(T, s, r)log2p(T, s, r)

(2.11)

This is essentially a normalised version of the MI metric.

The SSD and NCC measures are usually used for images of the same modality. The SSD

measure is only suited in the case that the two images have a compatible intensity distribution,

such as the Houns�eld scale in the CT modality. The NCC measure is less strict and only

assumes a linear relationship between the intensity values of IS and IR, and is thus applicable

to, for example, two MR images of di�erent intensity scales. The MI and NMI are more general

and rest only on the assumption of a relation between the intensity probability distributions of

the two images in the information-theoretic sense. More intuitively, they are used to measure

the ability of one image to explain the other, and are thereby suitable for both mono- and

multi-modality image registration.
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Optimisation method

To solve the registration problem Eq. (2.1), an iterative optimisation strategy is often employed:

Ti+1 = Ti + ηi · di (2.12)

where di and ηi, respectively, indicate the search direction and step size for optimisation at

iteration i. Common optimisation methods include gradient descent, quasi-Newton, non-linear

conjugate gradient and Robbins-Monro algorithms [84]. Among them, the gradient descent

method is probably most widely used. It takes the opposite of the gradient of the cost function

as the search direction at each iteration, and is formulated as:

Ti+1 = Ti − ηi ·
∂f(Ti, IS, IR)

∂Ti
(2.13)

Furthermore, in modern applications, a stochastic gradient descent technique is often utilised

to approximate this procedure in an e�cient manner. Instead of taking each optimisation step

using all voxels in the image/ROI as in the standard gradient descent, the stochastic scheme

performs optimisation on a small subset (for example 2000 voxels) randomly sampled from the

image/ROI. It has widely proven to be able to improve the registration process signi�cantly

without compromising registration accuracy [84].

2.2.2 The label propagation framework

The label propagation framework is centred on the employment of non-rigid registration to

establish a voxel-level one-to-one correspondence between the atlases and the target image.

Although an accurate registration may be achieved more easily between images of similar

subjects, it is far more challenging on imaging data that manifest substantial inter-subject

variability: unfortunately this condition applies to most real-world scenarios. An inaccurate

registration could cause signi�cant misalignment of anatomical structures, leading to incorrect

label propagation. To improve segmentation performance, state-of-the-art methods often use
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Figure 2.6: Multi-atlas label propagation (image source: [159])

a number of atlases at the same time to minimise the impact of registration errors, which is

widely known as �multi-atlas label propagation� (MALP). Many MALP algorithms have been

proposed in the literature, generally based on a computational pipeline illustrated in Figure 2.6.

The variations are primarily based on the atlas selection and label fusion methods, in addition

to the registration methods discussed earlier. A comprehensive survey has been conducted by

Iglesias and Sabuncu [71].

Atlas selection

Suppose there are N atlases in total collectively represented by U , and denote an atlas as

(Ia, La) ∈ U with an ID number a and the target image as It. In terms of segmentation

accuracy, relevant studies [4] have demonstrated that MALP using a properly selected subset

of atlases (denoted as UK) often yields a better performance than using the whole atlas set, or

a single best atlas, or a randomly selected subset. This is because the aggregate registration

error can be reduced in this case, making label classi�cation more robust, especially when label

fusion is based on majority voting. The issue of atlas selection on the other hand, often boils

down to two factors: the number of atlases to use (denoted as K) and the selection criteria.

In terms of selection criteria, some similarity metrics are generally used to to rank the relevance

of atlases. Popular metrics in image registration such as the SSD and NMI are often borrowed

and calculated on a voxel-to-voxel basis over the whole image or an ROI. The exact choice is

normally application-dependent, for example, SSD is not suitable for images without proper

intensity normalisation, whereas NMI is more robust to di�erential levels of intensity contrast
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and appearance, but is less sensitive to small local di�erences.

Moreover, based on the stage to perform selection, it can be further divided into pre-registration

and post-registration selections. In general, post-registration tends to be more e�ective and

widely-used, but requires a separate registration between every target-atlas pair, which signi�-

cantly increases the computational complexity. Several survey studies have been conducted to

comparatively evaluate common post-registration methods in the literature [4, 130]. In con-

trast, pre-registration selection is generally considered much more challenging, less e�ective

and also less well-studied by far, with the existing work mostly based on content-based image

retrieval. A review has been carried out by Akgul et al. [2]

Label fusion

Denote (I ′a, L
′
a) ∈ U ′ as the atlases warped to the target space, and U ′K as the collection of

selected atlases. Label fusion (also known as �decision fusion�) is the process to derive the �nal

segmentation Lt using U ′K . In principle, it is similar to the traditional classi�cation problem

with multiple independent classi�ers, since each atlas generates a separate label proposal. The

simplest fusion strategy is probably majority voting, in which each selected atlas casts a single

vote and the label class that wins the most votes is chosen as the �nal label of the target voxel.

Majority voting is one of the �rst and most widely-used fusion schemes, easy to implement,

with its e�ectiveness demonstrated in many applications [64, 85, 36, 65, 56]. However, since

transformation is continuous and voxels generally do not align perfectly, it often leads to several

neighbouring label proposals in the same atlas bidding for the same target voxel.

To address this issue, an interpolation scheme is often employed. Common schemes, as described

in Section 2.2.1, include nearest neighbour interpolation, linear interpolation and B-spline in-

terpolation. Except for the nearest neighbour scheme, partial volume interpolation is realised

in most other schemes, in which a portfolio of label proposals is included for weighted voting.

A representative weighted voting approach is to directly sum up the weights per label class

derived from UK , and pick the class with the highest weight as the �nal label, which is often

known as the sum rule [129]. Alternatively, label proposals may be weighted on intensity-based
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similarity, such as the NMI, between the atlases and target image [6], or label-based similarity,

for example, by pair-wise comparison between the atlases only [40], or other weighting schemes.

Moreover, weighting may be carried out at the global, regional or local level [71, 7, 102].

Another popular label fusion technique is the simultaneous truth and performance level esti-

mation (STAPLE) method [160], which alternates between estimating the consensus segmen-

tation and the reliability of contribution by each atlas, based on the well-known expectation-

maximisation (EM) framework [43]. In each iteration, the provisional consensus segmentation

is used to estimate contribution reliability, and measure atlas weights based on individual sensi-

tivity and speci�city. Subsequently, the derived weights are then used to update the estimate of

consensus segmentation, which triggers another iteration. In that regard, the STAPLE method

enables atlas weighting with minimal impact of dissimilar atlases. It is particularly e�ective

when there is a large variation in the atlases.

2.2.3 Notable variants

Label propagation using composite transformation

A high accuracy has been reported in many studies using segmentation approaches based on

the MALP framework. However, a major drawback which limits its wider applicability is its

high computational burden. In a typical MALP application, non-rigid registration needs to

be performed between every atlas (Ia, La) ∈ U and the target image It in order to estimate

a separate transformation. This will require N times of independent registration processes to

segment each single image, which is extremely time-consuming, especially with a large set of

atlases. For example, segmenting a single brain image using state-of-the-art MALP methods

with 15 atlases in practice could take up to several hours to complete [91].

As a remedy, some researchers proposed a more e�cient approach using composite transfor-

mation [108, 109]. Instead of a direct registration with the target image, in this approach

all atlases are registered with an intermediate template in advance, each generates an atlas-

template transformation T
′
a. At test-time, only a single run of non-rigid registration needs to
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Figure 2.7: Label propagation using composite transformation (image source: [109])

be carried out to estimate the transformation T0 between the template and the target image,

followed by the concatenation Ta = T
′
a ◦ T0 to perform label propagation on each atlas, as

shown in Figure 2.7. This approach could approximately reduce computation time to 1/N of

that using a standard MALP method, dramatically boosting segmentation e�ciency. Although

theoretically sound, composite transformation however is prone to errors in practice. Moreover,

it also raises the issue concerning the selection/creation of an ideal template to secure a good

composite transformation, which is often not only application-speci�c but also data-dependent

[76].

Segmentation with a probabilistic atlas

Another approach that avoids pair-wise registration between every atlas and the target image

is to use a probabilistic atlas. A probabilistic atlas is usually created using the segmentations of

multiple subjects based on a group-wise non-rigid alignment in a common template space [123],

for example the MNI152 template 3 widely used in brain MRI applications. More speci�cally, a

3MNI152 brain MRI template: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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probabilistic atlas provides voxel-wise varying prior information, which, when propagated to the

target image via non-rigid registration, can be used in combination with a range of parametric

statistical models to perform label inference [123, 52, 12, 125] .

A popular approach, for instance, is to combine prior information such as label probability

statistics, with intensity models such as the Gaussian mixture model, which captures each tissue

class with a separate Gaussian distribution. Parameter optimisation may be achieved using the

EM algorithm [43], which tries to maximally explain the intensities in IS using the estimated

model. A typical work is the segmentation of white matter, grey matter and cerebrospinal �uid

in brain MR images [98], where each tissue class is captured separately in the Gaussian mixture

model, and a Markov random �eld is used to correct intensity inhomogeneity occurring during

image acquisition. An accurate and smooth segmentation for each tissue class was obtained

in that study, and a number of related methods have since been proposed in other studies

[52, 107].

In these approaches, normally only a single registration process is required, in order to warp

the target image to the template space, or the other way round. However, similar to label

propagation using a composite transformation, the improved e�ciency is often achieved at a

certain level of compromise on segmentation accuracy. In addition, registration performance

is critical to both the creation of the probabilistic atlas and the quality of prior information

for segmentation, and securing a suitable template remains a challenge, pending on the actual

level of inter-sample variability.

2.3 Segmentation via patch-based pattern matching

In this paradigm, the strict voxel-level one-to-one correspondence for label propagation between

the target image and each atlas is relaxed to patch-based pattern matching, and therefore it is

often known as �patch-based segmentation� (PBS). A patch (sometimes also called �template�) is

usually a 2D or 3D box centred at the voxel under study, containing its contextual information.

For each patch in the target image, a patch search process will be performed to retrieve similar
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patches from the atlases, followed by label fusion using the retrieved patches to classify the

centre voxel of the target patch. Often, a group-wise a�ne registration will be applied in

advance, to establish an overall alignment between the target image and atlases, in order to

enhance the patch search process.

Patch matching and label fusion are often carried out using some hand-engineered features and

similarity metrics, for example based on the SSD. Sometimes, some image pre-processing may

be included to enhance pattern matching. In particular, for pattern matching based on the SSD

metric, a tissue-standardising normalisation [121] is often applied to MRI data to regulate and

ensure the compatibility of intensity scales across all images. Other standard pre-processing

techniques including image denoising [38] and inhomogeneity correction [139] are also frequently

employed as a preliminary step to improve MR image quality.

Comparing to the label propagation approach, the key di�erences of the PBS framework include:

1. Localised similarity measure: in the label propagation framework, local disparities are

aggregated to an overall cost function in the registration process. By contrast, in the PBS

framework, a patch is essentially a local context descriptor, and the similarity measure is

localised to the patch level.

2. Voxel-wise optimisation: In image registration, the optimisation of cost function is realised

using model parameters and is subject to the corresponding degree of freedom, which

may be �ne-grained to the control point resolution level (using the B-spline model) at

the best. In the PBS framework, segmentation is optimised voxel-wise and carried out

independently from one voxel to another.

3. Pattern matching beyond immediate neighbourhood : in the label propagation framework,

pattern matching is based on information within the vicinity of a target voxel. In the

PBS framework, it is well extended beyond the immediate neighbourhood, where patch

search was carried out over a large search window, or even an entire ROI.

4. Increased proposals for label fusion: in the label propagation framework, each (selected)

atlas typically generates a single label proposal per voxel for label fusion. Whereas in
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the PBS framework, a large and customisable number of patches are retrieved from the

atlases, generating many more proposals for label fusion. A notable point is that the

patches in atlases are collectively addressed at the same time, rather than atlas-by-atlas.

2.3.1 The patch-based segmentation framework

The PBS framework was originally proposed by Coupe et al. [37] and Rousseau et al. [133]

independently around the same time, and was, respectively, applied to the segmentation of

hippocampus and lateral ventricle, and to the segmentation of tissues and a range of anatomical

structures. Both studies were validated on a set of human brain MRI data. This framework

primarily consists of three components to build up its computational pipeline: atlas selection,

patch search and label fusion, as illustrated in Figure 2.8.

Figure 2.8: Overview of the standard patch-based segmentation framework (image source: [37])
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Atlas selection

Similar to the label propagation framework, segmentation performance is usually improved

with the use of a properly selected subset of atlases UK , rather than all atlases U collectively.

Yet unlike the label propagation framework where atlas selection is generally performed after a

time-consuming pair-wise non-rigid registration, the selection process is carried out at a much

earlier stage in the PBS framework. In the work of Coupe et al. [37], an ROI that covers

only the hippocampus, lateral ventricle and their immediate neighbourhoods was applied as

an initialisation mask to the linearly aligned images. Atlas selection was then performed by

identifying the most similar K atlases based on the SSD metric computed over the ROI mask.

Other popular selection strategies discussed in relevant studies [4, 130] may be employed instead,

including the use of NCC or MI metrics.

Patch search

Denote P (v) ∈ Rp×p×p as a patch (typically sized from 3× 3× 3 to 9× 9× 9) centred at voxel

v in the target image, Pa(v) as its counterpart at the corresponding location in atlas (Ia, La)

(note all images are linearly aligned), and Sa(v) ∈ Rs×s×s as the search window (typically sized

from 3× 3× 3 to 15× 15× 15) deployed around v in the atlas space. The purpose of the patch

search algorithm is to e�ciently retrieve a set of matching patches Υ∗, from a patch library

Υ = {P (v′), l′
∣∣ v′ ∈ Sa(v), l′ = La(v

′), (Ia, La) ∈ UK} created using all selected atlases UK .

In the work of Coupe et al. [37], the patch search algorithm was simply a brute-force search

over Υ, screening out dissimilar patches using the structural similarity measure [157]:

ss(P (v), P (v′)) =
2µ[P (v)] · µ[P (v′)]

µ[P (v)]2 + µ[P (v′)]2
× 2σ[P (v)] · σ[P (v′)]

σ[P (v)]2 + σ[P (v′)]2
> τ (2.14)

where µ[P (v)] and σ[P (v)], respectively, indicate the mean intensity and standard deviation of

patch P (v), and all training patches (P (v′), l′) ∈ Υ with ss(P (v), P (v′)) not above the given

threshold τ are to be discarded. In their experiment, τ was manually set to 0.95 based on

empirical experience. Other patch search algorithms will be discussed in Section 2.3.2.
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Label fusion

Once patch search is complete, a weighted label fusion process will be carried out using all

the retrieved patches (P (v′), l′) ∈ Υ∗ in the form of pair-wise comparison. Label weighting is

typically carried out based on the SSD metric. For instance, in the work of Coupe et al. [37],

it is de�ned by:

wl(P (v), P (v′)) =


exp

(
−||P (v)−P (v′)||22

h(v)

)
, if l = l′

0, otherwise
(2.15)

where || · ||2 represents the element-wise L2 norm and ||P (v)−P (v′)||22 is equivalent to the SSD

between P (v) and P (v′) in matrix form. The h(v) is a local adjustment factor borrowed from

relevant work [111] and is de�ned by:

h(v) = min .
v′
||P (v)− P (v′)||2 + ε ∀(P (v′), l′) ∈ Υ∗ (2.16)

where ε is a small constant to ensure numerical stability. As the last step, the target voxel v is

labelled with the label class carrying the highest aggregate weight:

L(v) = arg max .
l

∑
(P (v′),l′)∈Υ∗

wl(P (v), P (v′)) (2.17)

2.3.2 Notable variants

Despite its excellent segmentation accuracy, the standard PBS method has been widely criti-

cised for its low computational e�ciency. Segmentation of an image may take hours to complete

when applied, for instance, to the whole brain. The key bottleneck lies on the lack of e�cient

patch search and label fusion techniques. A number of approaches have since been proposed to

improve its e�ciency, such as a multi-resolution approach that gradually re�nes segmentation

from a coarser to a �ner level [49, 158], e�cient patch search using search trees [156], random

forests [179, 180, 166, 87, 88], or the PatchMatch algorithm [143].
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Figure 2.9: Example of patch search using tree models: a search tree is created per label class
with training patches drawn from each ROI of each atlas (image source: [156])

PBS with search trees or random forests

Probably the most straightforward idea is to use search trees to facilitate patch retrieval. More

speci�cally, by employing a tree-based search mechanism, patch search (at test-time) no longer

requires time-consuming exhaustive search across the whole patch library for pair-wise similarity

measure, but through a number of quick binary tests instead. Figure 2.9 illustrates an example

idea of tree construction for patch search. Notable studies in this line include the use of ball

trees [156], atlas forests [179, 180], patch forests [166] and neighbourhood approximation forests

[87, 88]. The variations are primarily centred on the methods regarding tree creation, patch

search and label fusion.

For instance, in one of our earlier studies, we proposed an augmented PBS method with an

e�cient patch search technique using random forests (called �patch forests�) [166]. Each atlas

(Ia, La) is used to train a separate patch forest that contains n number of trees: PFa =

{t(1)
a , .., t

(n)
a }. Once trained, each tree ta ∈ PFa is able to e�ciently classify/navigate a target

patch P (v) to a leaf node, which stores a collection of training patches drawn from (Ia, La),

denoted by ta[P (v)], where each (P (v′), l′) ∈ ta[P (v)] is similar to P (v) in appearance with

label information. Starting from the root, each splitting node is associated with a binary test
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composed of a feature projection function f ∈ F :: Rp×p×p → R and a threshold τ ∈ R.

The tests are applied to P (v) and redirect it to the left/right child for further processing,

until a leaf node is reached. Since all training patches in the same leaf node have passed the

same set of tests, they are considered similar to P (v). With n trees in PFa, it then outputs

Υa = t
(1)
a [P (v)]∪..t(n)

a [P (v)] as the search outcome, and the patches are ranked by the frequency

included in di�erent tree search results:

Γ(P (v′),l′) =
|{ta|(P (v′), l′) ∈ ta[P (v)], ta ∈ PFa}|

n
(P (v′), l′) ∈ Υa (2.18)

Suppose there are K atlases used for segmentation PF = {PF1, .., PFK}, which generate

Υ1 ∪ ..ΥK . Then the k patches with highest Γ(P (v′),l′) scores across all atlases are then selected

(denoted by Υ∗) for label fusion, using the weighting scheme:

wl(P (v), P (v′)) =


exp

(
− ||P (v)− P (v′)||22

)
, if l = l′

0, otherwise
(2.19)

which is similar to Eq. (2.15), but without the need of h(v). As the last step, the target voxel

v is labelled with the class carrying the highest weight, as in Eq. (2.17).

In terms of forest training, each tree is trained independently with the same objective function

at each splitting node:

min .
f,τ

|ΨsL|
|Ψs|

C(ΨsL) +
|ΨsR|
|Ψs|

C(ΨsR) s.t. Ψs = ΨsL + ΨsR (2.20)

based on the compactness measure borrowed from other random forest studies [88]:

C(Ψs) =
1

|Ψs|2
∑

P (v1),P (v2)∈Ψs

ρ(P (v1), P (v2)) (2.21)

where Ψs, ΨsL, ΨsR, respectively, represent the set of training patches arriving at the node,

and the subsets to the left and right children. ρ(·, ·) is a customisable distance measure, which

in our work was modelled as a combination of squared SSD and spatial regularisation with
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borrowed insights from related work [156]:

ρ(P (v1), P (v2)) = ||P (v1)− P (v2)||22 + α · ||v1 − v2||22 (2.22)

where α is a weighting parameter to adjust ||v1−v2||22, the squared Euclidean distance between

voxel coordinates v1 and v2. Intuitively, tree training is centred on �nding a parcellation that

minimises data compactness, in terms of both intensity information and spatial distance. When

an optimal parcellation ends up with |ΨoL| = 0 or |ΨoR| = 0, the node becomes a leaf node.

The detailed training algorithm is based on a heuristic technique with iterative randomisation

of f and τ , which will not be elaborated here.

PBS with PatchMatch

Another notable variant is to combine PBS with the PatchMatch algorithm. PatchMatch

was originally proposed by Barnes et al. [11] for structural editing of real-world images, and

was later adapted as a fast patch search technique to improve the PBS e�ciency [143]. The

algorithm consists of three steps: initialisation, propagation and random search. In the PBS

adaptation [143], it is initialised by randomly associating each patch in the target image to

another in an atlas image, within a constrained window. Subsequently, a series of propagation

and random search steps are iteratively carried out in alternation to improve the match.

Denote Θ[P (v)]i = Pa(v
′) as the PatchMatch function, which associates P (v) with Pa(v

′) in

atlas (Ia, La) at iteration i. In the propagation step, supposing Θ[P (v+d)]i = Pb(v
′′+d) is the

current match of an o�set patch P (v + d), a provisional match between P (v) and Pb(v′′) will

be examined to check whether a better match can be established in comparison to the original

match. In their work, the SSD was simply used as the distance metric for patch comparison, and

the o�sets were restricted to the six adjacent patches with d ∈ {〈±1, 0, 0〉, 〈0,±1, 0〉, 〈0, 0,±1〉}.

Then, out of the seven proposals derived by all adjacent patches and the original match,

Θps[P (v)]i+1 = Pe(v
′′′) is updated by the one with the lowest SSD. A notable point is that

an updated match could be a patch in a di�erent atlas: it is not necessary for a = e.
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Figure 2.10: PBS with PatchMatch (image source: [143]): the CI here stands for constrained
initialisation, PS stands for a propagation step, CRS stands for a constrained random search,
and PM stands for a separate PatchMatch instance

In the random search step, supposing Θps[P (v)]i+1 = Pe(v
′′′) is the updated match in the

propagation step, a set of o�set patches beyond adjacency will be randomly sampled from the

same atlas (Ie, Le), constrained within a gradually narrowing search window around v′′′, in

order to explore a better match Θcrs[P (v)]i+1 = Pe(v
′′′′). This then triggers another iteration,

until the termination condition is met. The algorithm is often set to terminate after around �ve

iterations [11, 143]. Figure 2.10 (a-e) illustrates an example procedure from an initialisation

step, to two iterations of propagation and random search.

In addition, a parallel setting is employed to improve both computational e�ciency and seg-

mentation accuracy, with k independent instances of PatchMatch running at the same time, as

shown in Figure 2.10 (f). As the last step, segmentation is completed with the same label fusion

process as in the standard PBS method, using the �nal match {Θ∗[P (v)](1), ..,Θ∗[P (v)](k)} to

classify each target voxel v.
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2.4 Deep learning and the Proposed Approach

Our approach carries on the line of research on patch-based segmentation by incorporating deep

learning. In contrast to the use of low-level hand-engineered features (such as the SSD) for patch

search and label fusion in the conventional PBS approaches, we train a patch-based deep neural

network (PatchDNN) that serves as both an advanced feature extraction mechanism and a

classi�er. The PatchDNN takes patch data as input and projects it to a high-level feature space

through a set of deeply learned non-linear functions, followed by a simple softmax classi�cation.

In this case, segmentation at run-time becomes extremely fast and highly accurate, without

the need to explicitly re-use the atlas data for further processing.

Moreover, sometimes there is a variety of manual annotation protocols used in di�erent stud-

ies, leading to certain levels of discrepancy on the reference segmentation, such as the case of

the hippocampus segmentation work. Although these are mitigated by recent protocol stan-

dardisation practice [22], they can still cause considerable complexity, when adapting a signal

processing-based segmentation algorithm to multiple datasets obtained from earlier studies. By

contrast, with our approach, it simply requires a network re-training process, without signi�cant

human involvement.

2.4.1 The neural network framework

Mainstream studies into arti�cial neural networks (ANN) date back to the 1980s, when re-

searchers started to train multi-layer computational architectures with the back-propagation

technique [136]. Since then, there has been only limited success, due to the complexity of net-

work training and limited computing power, until the advent of modern GPUs and simpli�ed

GPU programming techniques. Since its revival in the late 2000s, deep learning has brought

about a revolution in computer vision, speech recognition, natural language understanding,

sentiment analysis and so forth: LeCun et al. [94] have carried out an insightful review.

The development of the ANN architecture was originally inspired by the simulation of biological

neural systems. In a typical neural system, there are billions of neurons intricately connected
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(a) biological neuron (b) computational neuron

Figure 2.11: Computational simulation of a biological neuron (image source: http://cs231n.
github.io/neural-networks-1)

through an extremely large collection of synapses. Each neuron receives input signals from its

dendrites and produces output signals in its axon, which then channels out to other neurons via

the synaptic connections. In a similar course, an ANN consists of a number of inter-connected

layers, each is composed of a set of independent computational units named after the �neurons�

(sometimes also called �nodes� or �modules�). Figure 2.11 illustrates the basic idea regarding

the computational simulation of a biological neuron. More speci�cally, each neuron receives a

vector of signals x and outputs a scalar-valued response:

y = f(w · x + b) = f
(∑

i

wi · xi + b
)

(2.23)

where w is a vector of adjustable parameters (often called �weights�) that �interacts� with the

data, and is to be learned in the network training process; b is a bias term that di�ers from one

neuron to another, and f is an activation function, which triggers signal emission in a particular

pattern and is usually used to introduce non-linearity. Common activation functions include

• Sigmoid activation: fsgm(x) = 1
1+e−x

• Tanh activation: ftanh(x) = 2
1+e−2x − 1

• Recti�ed linear unit (ReLU) activation: frelu(x) = max(x, 0)

The graphs of these activation functions are shown in Figure 2.12 in a comparative fashion.

http://cs231n.github.io/neural-networks-1
http://cs231n.github.io/neural-networks-1
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(a) Sigmoid (b) Tanh (c) ReLU

Figure 2.12: Graphs of the (a) Sigmoid, (b) Tanh, and (c) ReLU activation functions

In a more abstract sense, each neuron is a feature extraction function that projects input

signals over a feature dimension and generates a feature response. In fact itself can be used

for classi�cation directly, but the feature representation capability of a single neuron is limited.

The ANN model extends this property by constructing a multi-layer architecture, where the

input signals can be fed forward layer-after-layer, as the example shown in Figure 2.13 (a).

By harnessing the property of feature composition, the aggregate function can become very

intricate and achieve an excellent capacity of feature representation. Finally at the output

layer, the network returns a vector of class scores, and then the input data is normally labelled

by the class with the highest score.

(a) Feature composition via forward propagation (b) Network training via backward propagation

Figure 2.13: Arti�cial neural network architecture (image source: [94])
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Network training, on the other hand, is through backward propagation, by employing the chain

rule of derivatives. In a supervised learning scenario, the provisional classi�cation output will

be compared with the ground truth, and an objective function will be formulated to measure

the level of discrepancy. Then the classic gradient descent technique is utilised to reduce the

discrepancy by making a minor adjustment on the weights in the opposite direction to their

gradients. The adjustment at the output layer is then propagated backwards, layer-after-layer,

until reaching the input layer, as shown in Figure 2.13 (b). This procedure is typically repeated

for millions of times before the network converges to an optimal solution that yields an excellent

classi�cation accuracy.

2.4.2 Convolutional neural network

We call the ANN model described above the canonical network or CanonNet architecture. In

image classi�cation problems however, an image may easily scale to millions of pixels/voxels,

leading to millions of learning weights for a single neuron, and there could be millions of neurons

in a network. A CanonNet in this case, often quickly ends up over-�tting. As a result, a variant

model, the convolutional network or ConvNet has become particularly popular.

Instead of �interacting� with an entire image directly, ConvNet neurons (in a convolutional layer)

�lters it by convolution, in which each neuron only �interacts� with a small local patch of the

input image at a time, and produces a feature image rather than a scalar. Each convolutional

layer contains a collection of neurons, each uses a separate convolutional kernel with di�erent

weights but of the same size, and all neurons collectively output a multi-channel feature image

for further processing. A notable point is that such local connectivity dramatically reduces

the number of weights to be learned in each neuron and hence the whole network. Activation

functions such as ReLU are often incorporated as well. An example ConvNet application to

the classi�cation of a 2D RGB image of a Samoyed is illustrated in Figure 2.14.

Deep ConvNets are able to achieve advanced feature extraction while using far fewer learning

weights, making them more robust and popular than CanonNets for image classi�cation. In

particular, since the ImageNet challenge 2012 when the AlexNet [90] signi�cantly outperformed
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Figure 2.14: Convolutional neural network architecture (image source: [94])

the runner-up with almost half the error rate, the use of ConvNet has now become a dominant

approach in computer vision. That accomplishment was primarily attributed to the e�cient

use of modern GPUs that signi�cantly boosted computational e�ciency, the ReLU activation

functions that reportedly sped up network training by 5-6 times, and a new regularisation

technique (called �dropout�) [68] to reduce over-�tting.

Following the remarkable success in computer vision, although still at a limited scale, deep

learning using ConvNets (in fact deep learning in general) are quickly gaining popularity in

biomedical imaging, especially in the applications to image segmentation lately [131, 78, 132, 45,

126]. Typically, segmentation is broken down to voxel-wise labelling on a patch-based setting,

where a patch is treated as a mini-image for the classi�cation of its centre voxel. However,

ConvNet classi�cation generally involves millions of neuron-wise convolutions in each single

run, requiring long training periods (for example, the AlexNet required 5-6 days of training

on two modern GPUs [90]), as well as demanding memory consumption, since each neuron

generates a separate feature image. In addition, existing ConvNet segmentation approaches

are often based on a nesting structure that integrates with other models such as superpixels

[132] or conditional random �elds [78, 45], further complicating the computation.
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2.4.3 E�cient biomedical image segmentation using a patch-based

canonical neural network: the proposed approach

Unlike other deep learning work, in this study we abandon the popular ConvNet architecture.

We argue that for patch (mini-image) based segmentation, the ConvNet's advantage is largely

diminished, as a patch is only sized around 9× 9 to 15× 15, and the nature of the classi�cation

approach is that patches do not need decomposition and thus will not bene�t from further

convolution. Instead, we revisit the CanonNet architecture in which neurons only compute dot

products, and are therefore much faster and less memory-hungry than convolution.

Furthermore, we substantially re-engineer the CanonNet architecture with state-of-the-art deep

learning techniques, including use of ReLU activation and dropout layers. Moreover, we also

adopt a 2.5D patch setting, which takes three 2D patches, respectively, from the axial, coronal

and sagittal planes as the input. Such tri-planar patch setting is able to achieve comparable

(sometimes even better) segmentation accuracies as the conventional 3D patch setting at a

much smaller computational cost [126]. In an abstract sense, our PatchDNN model can be

formulated as:

F = h (P1(v), P2(v), P3(v)) , V = softmax(F ), l = argmax
c

(Vc) (2.24)

where P1(v), P2(v), P3(v) are the tri-planar patches for target voxel v, F is a feature vector

generated by the feature extraction function h(·, ·, ·), V is a vector of label values obtained by

the softmax classi�er, and l is the output label, which is assigned to the label class c carrying the

highest label value Vc. In addition, modern GPU programming techniques are also employed

to improve the computational e�ciency.

2.4.4 Network architecture

The network contains 6 feature extraction layers, 2 dropout layers, and a softmax layer at

the end to take the aggregate features for classi�cation, as shown in Figure 2.15. All layers
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Figure 2.15: Architecture of the proposed PatchDNN model

preceding the softmax layer collectively model the h(·, ·, ·) in Eq. (2.24). Each neuron in a

feature extraction layer, pairing with a subsequent ReLU activation, independently generates

a feature response by the following function:

f (j) = max
(∑

w
(j)
i · xi + b(j), 0

)
(2.25)

where w(j)
i and b(j) are the learnable weights for the ith entry of the (interim) input x at the

jth neuron.

The ReLU introduces non-saturating non-linearity, which is able to speed up gradient descent

training of large networks multiple times compared to the traditional Sigmoid and Tanh ac-

tivation functions [90, 94]. Moreover, the �rst two feature extraction layers contain three

pathways, respectively, for each of the tri-planar patches. Starting the third layer, all three

pathways merge into one, which becomes a standard fully connected layer. Such design sig-

ni�cantly reduces the number of weights to train compared to a scheme with full connectivity

from the beginning, while retaining excellent feature representation capabilities. In addition,

Layer 5 and 7 are dropout layers. A dropout layer randomly disconnects each neuron from the

network at probability ε, which is typically set to 0.5 during training and 0 (no dropout) at

test-time [68]. The purpose of dropout is to simulate the network as a combination of several

networks trained separately, which can empirically reduce over-�tting.
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2.4.5 Network training

Our framework performs a supervised learning scheme, where the tuple 〈P1(v), P2(v), P3(v)〉

collectively represents a single training data entry d and the centre voxel label in the reference

segmentation indicates its supervisory output l∗. In terms of cost function, we resort to the

widely-used cross entropy:

min .
ξ

E = H(ξ(k), X, Y ) = −
∑
o=1..n

π(l∗o) · log ξ(k)(do) (2.26)

where X = [d1, .., dn] and Y = [l∗1, .., l
∗
n], respectively, indicate the training data and ground

truth information, π(·) denotes the probability distribution function of label classes, and ξ(k)(·)

denotes the network function that outputs classi�cation scores, at training step k. Moreover, a

number of leading-edge training techniques are also employed in this work:

Mini-batch stochastic gradient descent: The modern mini-batch gradient descent opti-

misation scheme is utilised to train the network. It takes a small batch of training data (denoted

as X ′ and Y ′), randomly sampled from X and Y with a customisable batch size δ, to perform

optimisation in each step, instead of using the entirety of the training pool.

Reducing training pool with an ROI mask: Due to the structural congruity of anatomy,

the target structures being segmented are spatially close in di�erent images (after a�ne align-

ment). We therefore apply a mask over the corresponding ROI, created by taking the union of

all foreground voxels in all atlases, followed with a minor dilation. The mask should be manu-

ally checked to ensure it fully covers the target structures and their immediate neighbourhoods

in each image. This can reduce training pool to a small fraction, dramatically lowering the

computational volume and memory consumption.

Foreground/background separate sampling: In segmentation studies, background labels

often substantially outnumber foreground labels, even with the use of an ROI mask. For

example, the ratio exceeded 10:1 in our application to hippocampus segmentation described

in Section 2.4.6. This is often known as the �class imbalance problem� in machine learning
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research, which could lead to a trained classi�er over-�tting the background label class. To

address this issue, for each mini-batch we draw half the samples from foreground and half from

background. This enables each foreground data entry to be trained multiple times with di�erent

background counterparts, and was proven able to e�ectively improve segmentation accuracy.

2.4.6 Application to hippocampus segmentation

Although our approach is general, in this work a validation study was applied to the segmenta-

tion of the hippocampus in the human brain, which is a problem domain frequently visited in

existing work on patch-based approaches [37, 143, 166, 151, 156], allowing for easy comparison.

Hippocampus segmentation is a particularly challenging problem, due to its small size, high

variability, low contrast, and discontinuous boundaries in conventional MR images [37].

Furthermore, another reason to carry out the validation study on hippocampus segmentation

was due in part to the easy access to data, in particular the open source ADNI database4

that our methods were tested on. The ADNI database contains a series of brain MR images

acquired at regular temporal intervals from a population of around 800 people, including some

200 cognitively normal (CN) elderly individuals, 400 with mild cognitive impairment (MCI) and

another 200 with con�rmed Alzheimer's disease (AD). A more detailed description is available

in relevant ADNI studies [117].

As a pilot study, 100 samples were randomly picked from the ADNI database. Among the test

dataset, 34 subjects were CN controls, 33 subjects were con�rmed AD patients and the other

33 subjects were diagnosed with MCI. The demographic pro�le is shown in Table 2.1, and a

simple Student's t-test was conducted, concluding no statistically signi�cant di�erence on age

and MMSE score (p-value > 0.1) from the entire ADNI database, indicating that the sample

pack was representative.

In addition, all the imaging data were acquired via the standard ADNI pipeline [73], and a ref-

erence segmentation of the hippocampus for each image was created semi-automatically using a

4The Alzheimer's Disease Neuroimaging Initiative (ADNI), o�cial website: http://adni.loni.usc.edu

http://adni.loni.usc.edu
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Table 2.1: Demographic pro�le of the test dataset
Number Age MMSE score

CN 34 77.13 ± 6.10 29.77 ± 1.08 [26-30]
MCI 33 75.01 ± 7.35 27.40 ± 1.52 [24-30]
AD 33 76.28 ± 6.97 23.54 ± 1.88 [20-26]

high dimensional brain mapping tool (Medtronic Surgical Navigation Technologies, Louisville,

CO), and later inspected and manually corrected by quali�ed reviewers [70]. Intensity inhomo-

geneity was also corrected using the well-known non-parametric non-uniformity normalisation

(N3) technique [139]. An example brain image superimposed with its reference segmentation

is shown in Figure 2.16.

2.5 Results

2.5.1 Experimental setting and evaluation method

Experimentation was carried out using cross-validation. The 100 images in the test dataset

were divided into ten equally-sized folds via random distribution. A leave-one-out strategy was

applied in each experiment, with nine folds to train a PatchDNN and the remaining fold for

testing. In total, there were ten instances of network training and 100 instances of segmentation

(a) axial (b) sagittal (c) coronal

Figure 2.16: An example brain MR image superimposed with its hippocampus reference seg-
mentation in (a) axial view, (b) sagittal view, and (c) coronal view. The green and pink coloured
regions, respectively, indicate the left and right hippocampi
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for each experimental setting, which is considered adequate for our proof-of-concept purpose.

Segmentation accuracy was measured using the Dice score (also known as the �kappa index� or

�similarity index�). It is a prevailing metric standard in biomedical image segmentation, com-

puted by Dice(A,B) = 2|A∩B|
|A|+|B| , which is the number of matching labels between segmentation

A and ground truth B, divided by the total number of labels in both label maps.

2.5.2 Training parameters

In our work, the hippocampal ROI mask covered around 70,000 voxels. With the use of 90

atlases in each test, there were around 6.3 million data entries collectively used to train a

PatchDNN with O(105) learning weights. At the training stage, the only major parameters to

tune were: 1) patch size p× p, 2) learning rate η, 3) mini-batch size δ.

The batch size is relatively simple, because it does not have signi�cant impact, as long as

adequate training is secured. For simplicity, δ was �xed at 200 entries for each training step.

The learning rate on the other hand, is more di�cult, because it can dramatically a�ect training

outcome. Figure 2.17 illustrates the impact of three rates: η = 10−4, η = 10−5 and η = 10−6, on

the segmentation performance during the training of a PatchDNN with 13×13 patches. In this

case, η = 10−4 and η = 10−6 were, respectively, set too high to train a good network and too

low for the network to converge to an optimal solution in an e�cient manner, whereas η = 10−5

was considered the best rate, which was in fact the setting used in our �nal con�guration.

In terms of patch size, we tested four settings, respectively, 9×9, 11×11, 13×13 and 15×15. The

performance metrics of segmentation are shown in Figure 2.18. The highest median dice score

achieved (using 13×13 patch setting) was 90.98%, which, to the best of our knowledge, is by far

the highest accuracy level ever reported on hippocampus segmentation, compared to previous

work using a comparable size of validation dataset (80-202 images [37, 143, 166, 155, 156]). The

9×9 setting scored slightly lower than the others at 87.75% median level, yet still outperformed

the prior state-of-the-art (to be detailed in Section 2.5.4). Sample segmentations of the best,

median and worst cases (in terms of the 13× 13 setting) are compared in Figure 2.19.
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Figure 2.17: Impact of training parameters: learning rate η

Figure 2.18: Impact of training parameters: patch size
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Best case

Dice = 0.9270

Dice = 0.9464

Dice = 0.9189

Dice = 0.8605

Median case

Dice = 0.9388

Dice = 0.9098

Dice = 0.9260

Dice = 0.9028

Worst case

Dice = 0.8289

Dice = 0.7930

Dice = 0.7961

Dice = 0.7831

Figure 2.19: Sample segmentation outcome (the images are zoomed in around the hippocampus
region in saggital view): (Row 1) reference segmentation, (Row 2) PatchDNN with 15 × 15
patches, (Row 3) 13 × 13 patches, (Row 4) 11 × 11 patches, and (Row 5) 9 × 9 patches. The
best, median and worst cases are de�ned in terms of the 13× 13 setting.
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2.5.3 Training and testing time

The experimentation environment was deployed on a standard PC with an NVIDIA GTX Titan

X graphics card. During training, each gradient descent step took approximately only 0.01s.

Since it generally took millions of steps to secure good performance, the total training time

could take up to 10+ hours. In stark contrast, image segmentation at test-time was achieved

at a near real-time speed, taking < 1s for each target image. To the best of our knowledge,

this is by far the fastest hippocampus segmentation system, with only the PBS-PatchMatch

method [143] described in Section 2.3.2 having reported a comparable speed.

2.5.4 Comparison with prior state-of-the-art

In further evaluation we also compared our work with the best previous results in hippocampus

segmentation, in which the conventional PBS methods have been very successful. Although

there is a variety of such algorithms proposed in the literature, the fundamental principle is

always pair-wise patch similarity measure with some hand-engineered low-level features (usually

SSD variants). We therefore used the standard PBS method [37] and PBS with Patchforest

[166] for comparison, both were described in Section 2.3.

The implementation of the standard PBS method was based on the built-in PBS framework

in the open source IRTK repository5. To ensure fairness, we rigorously applied the same pre-

processing described in the original work [37], including non-local means denoising [38], N3

bias correction and tissue-standardising normalisation [121]. For each target image, we then

selected 10 atlases with lowest overall SSD within the masked ROI to perform segmentation.

Two patch settings were tested: 5× 5× 5 (PBS-1) and 7× 7× 7 (PBS-2), with a 11× 11× 11

search window, which were the two best performing con�gurations in the original work [37].

Figure 2.20 shows the performance metrics in comparison to the PatchDNN with the 13 × 13

patch setting. The best median Dice score obtained was 86.65% (PBS-2): a level somewhat

below the 88.4% in the authors' own work, which was probably due to the use of di�erent

5Image Registration Toolkit (IRTK), o�cial website: https://github.com/BioMedIA/IRTK

https://github.com/BioMedIA/IRTK
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Figure 2.20: Comparison of segmentation accuracies: (from left to right) PatchDNN using
13× 13 tri-planar patches, PF using 5× 5× 5 and 7× 7× 7 patches, and PBS using 5× 5× 5
and 7× 7× 7 patches

experimental datasets, in particular there were only healthy controls in their dataset whereas

ours also includes MCI and AD subjects. Yet by any means the accuracy was notably lower than

our PatchDNN approach. The segmentation outcome of the same three cases are illustrated in

Figure 2.21 for a comparative view. Furthermore, e�ciency boost was even more evident, with

PBS-1 and PBS-2, respectively, taking an average 197s and 645s (excluding pre-processing) to

segment a target image, compared to our near real-time level.

The PBS with Patchforest method was implemented based on the Microsoft Sherwood Li-

brary6. This method only modi�es the patch search and label fusion processes, and thereby the

remaining computation was identical to the standard PBS, including the pre-processing and

atlas selection. The same two patch settings 5× 5× 5 (PF-1) and 7× 7× 7 (PF-2) were used,

but the search window was expanded to 15×15×15 with its improved patch search capability:

which were also the best performing con�gurations in the original work [166].

6Microsoft Sherwood Library, o�cial website: https://www.microsoft.com/en-us/research/project/

decision-forests/

https://www.microsoft.com/en-us/research/project/decision-forests/
https://www.microsoft.com/en-us/research/project/decision-forests/
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Best case

Dice = 0.9464

Dice = 0.8926

Dice = 0.8750

Median case

Dice = 0.9098

Dice = 0.8618

Dice = 0.8837

Worst case

Dice = 0.7930

Dice = 0.7525

Dice = 0.7662

Figure 2.21: Comparison of segmentation outcome: (Row 1) reference segmentation, (Row 2)
PatchDNN using 13 × 13 tri-planar patches, (Row 3) standard PBS using 7 × 7 × 7 patches,
(Row 4) PF using 7× 7× 7 patches, applied to the same three subjects as in Figure 2.19.

The accuracy metrics are also shown in Figure 2.20 for direct comparison. The best median

Dice score obtained was 85.12% (PF-2), which was slightly below the standard PBS method,

but the di�erence was not signi�cant. Segmentation outcome of the same sample subjects is

also illustrated in Figure 2.21 for comparison. The computational time on the other hand was

reduced to 115 and 130, which were considerably lower than the PBS method, especially in
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the case of 7 × 7 × 7 patch setting. Nonetheless, the PatchDNN approach again substantially

outperformed this method in terms of both the segmentation accuracy and speed.

2.6 Discussion and Conclusion

Over the past decades, image segmentation in the biomedical domain in general has heavily

rested on signal processing paradigms, with registration-based label propagation and pair-wise

patch-based pattern matching being the cornerstones of prior state-of-the-art. The computa-

tional e�ciency however, has been a major obstacle to a wider application in clinical environ-

ments. Although at a much limited scale, machine learning has been increasingly practised

in recent years. In general, machine learning approaches tend to be much faster than signal

processing counterparts, but the level of sophistication for feature representation has been a

limiting factor in traditional (shallow learning) frameworks, such as random forests or support

vector machines, to secure a comparable segmentation accuracy. Therefore machine learning

is often used in combination with the conventional art to improve the overall performance, for

example, to help with atlas selection [88], patch search [143, 166] and so on, rather than used

for image segmentation alone.

Deep learning in contrast, by projecting contextual information over a highly intricate network

composed of a large collection of neurons each associated with non-linear computation, is able

to achieve an excellent capability of feature representation and use it to train a high perfor-

mance classi�er in terms of both accuracy and e�ciency. Deep ConvNets are the model behind

many ground-breaking image classi�cation studies that overtook prior state-of-the-art in com-

puter vision over recent years. Its major advantage for image classi�cation is a comparatively

small number of learning weights (although many systems still scale to millions) by employing

convolution, whereas a fully connected CanonNet model applied to a large image would end up

with an overwhelming number of learning weights that easily lead to over-�tting.

In the case of biomedical image segmentation with a patch-based approach however, we argue

such concern is no longer as signi�cant as at full image scale, and can be further relieved by the
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employment of modern techniques such as dropout layers and tri-planar patch multi-pathway

setting. For that reason, we abandon the popular ConvNet model and propose the PatchDNN

using, which can be considered a substantially modernised CanonNet architecture. Without

large-scale neuron-wise convolution on each single run, the network trains much faster than a

deep ConvNet while consuming far less memory.

In addition, state-of-the-art network training techniques have also been utilised, including ReLU

activation to introduce non-saturating non-linearity, mini-batch stochastic gradient descent,

foreground/background separate sampling, which collectively can reduce the training time dra-

matically, making such an approach very practical. The e�ectiveness was clearly re�ected by

the quick segmentation and training speed. An important insight resulting from our work is

that a ConvNet is not necessarily superior to an CanonNet despite its popularity, and we pre-

dict a shift away from ConvNet to other deep learning models for patch-based approaches in

coming years.

In an evaluation study, we tested the proposed approach on the application of hippocampus

segmentation using 100 brain MR images drawn from the widely-used ADNI database. Our

framework was able to signi�cantly outperform the prior state-of-the-art approaches, in terms

of both segmentation accuracy and speed: scoring a median Dice score up to 90.98% with a

near real-time performance (< 1s) on a modern GPU.
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Chapter 3

High-throughput Mouse Phenotyping

Using Non-rigid Registration and Robust

Principal Component Analysis

3.1 Introduction

For many decades, scientists have been studying genetic impacts on mammalian development

and disease pathology. The Human Genome Project1 for example, was a major milestone mark-

ing the completion of human DNA sequencing and gene mapping, since which researchers have

carried on to study gene-associated functional information. This process, known as phenotyping

as compared to genotyping, however, is very di�cult to follow due to numerous issues regard-

ing modifying human genes, especially the moral concerns. The mouse genome, therefore, has

widely been used as a surrogate model, due, in part, to the �ndings that 99% of mouse genes

have a homologue in the human genome [116], as well as other advantages including the low

cost and short time required for breeding mice.

Intensive global e�orts have been underway toward understanding all the approximately 25,000

genes in the mouse genome, most notably the International Knockout Mouse Consortium
1The Human Genome Project, https://www.genome.gov/10001772.

65
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(IKMC)2 [72] and the International Mouse Phenotyping Consortium (IMPC)3 [24], which are

centred on one-by-one systematic gene modi�cations for comparative analysis. More specif-

ically, an entire series of mouse embryonic stem cells is under development, with individual

genes to be mutated using gene targeting [33] or other relevant techniques, to generate tailored

mouse strains, which are then raised in order to investigate the impact of gene-mutation with

respect to morphology, metabolism, or other biological traits (also known as the �phenotype�).

Furthermore, it was estimated that around 30% of mutant mouse lines would end up embryo

lethal [1], which in turn has stimulated considerable research e�ort into prenatal phenotyping.

In terms of morphological phenotyping, current practices still heavily rely on the traditional

method using microscopic histological examination, which is not only labour intensive, highly

time consuming and prone to errors during histological sectioning, but is also restricted to

limited anatomical coverage. With the data volume and analytical workload scaling up expo-

nentially in modern studies, the research community has been calling for some high-throughput

phenotyping approaches [25]. Biomedical imaging technology, such as CT and MRI, has started

being used to facilitate phenotyping practices concerning morphological anomaly, especially

with the employment of image informatics to automate defect recognition.

Broadly speaking, there are two branches of study toward computer-aided phenotyping. The

�rst is focused on developing some tailored algorithms that capture phenotype-speci�c features

to help recognise target phenotypes. For example, certain heart phenotypes can be characterised

by the detection of connectivity between cardiac ventricles [167], or diameter measurement of

great arteries and semilunar valves [161]. This line of research ultimately leads to automatic

classi�cation of speci�c known phenotypes. However these tailored approaches often fail to

serve a general phenotyping purpose, in particular the discovery of new phenotypes, since the

corresponding phenotypical information is not known.

This naturally leads to the second branch of research centred on anomaly detection, which

2The International Knockout Mouse Consortium (IKMC, http://www.mousephenotype.org/about-ikmc)
includes a number of projects, most notably the Knockout Mouse Project (KOMP), European Conditional
Mouse Mutagenesis Program (EUCOMM) and the North American Conditional Mouse Mutagenesis Project
(NorCOMM).

3International Mouse Phenotyping Consortium (IMPC), http://www.mousephenotype.org.

http://www.mousephenotype.org/about-ikmc
http://www.mousephenotype.org
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is often achieved by conducting data-driven comparative analytics between the normal and

gene-modi�ed mice. Existing work in this line primarily leverages volumetric contrast of target

anatomical structures to identify anomaly [35, 120, 172, 89]. Nevertheless, volume contrast

merely achieves a super�cial level of screening for morphological phenotype, and would generally

fail when it is not associated with severe volume variation, such as the ventricular septal defects

(VSD) in the heart. Another major approach is to employ morphometrics based on a range

of distinguishing deformation features, derived from non-rigid registration to a purpose-built

template image [34, 134, 168]. However, such deformation-based morphometry is often not very

robust because deformation features may vary signi�cantly with the use of di�erent registration

settings and di�erent reference templates.

Furthermore, phenotyping on mouse embryo data is particularly challenging for a number of

reasons. First of all, mouse embryo development typically takes only around 18.5 days, and

one day di�erence often leads to dramatic changes due to rapid organogenesis. In addition, the

variety of nurturing conditions can also end up in di�erential growth rates. In this case, it is

sometimes di�cult to ensure subjects under study are acquired from the same developmental

stage, especially when conducting comparative analysis on data retrieved from multiple sources.

More importantly, this poses a substantial challenge to secure a suitable atlas for image seg-

mentation, which happens to be a cornerstone of existing phenotyping work in both branches

of research. Meanwhile the situation is further undermined by the limited availability of public

atlases. On the other hand, segmentation via label propagation is also much more challenging

on mouse embryos undergoing anomalous deformation, even if an atlas is secured.

All these reasons lead to a critical demand for a robust and e�cient general-purpose anomaly

detection framework without prior knowledge of the phenotype and the need of image segmen-

tation, which is the purpose of this study. We propose a systematic framework that is able to

e�ciently detect morphological anomaly in a batch of images simultaneously, sensitive to both

volumetric variations like polydactyly and non-volumetric variations like VSD, and does not

require image segmentation, nor resort to unreliable deformation features, and is thus robust

to various registration settings and template use. The key to the proposed approach lies on

the combined employment of non-rigid registration and robust principal component analysis
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(RPCA) to achieve feature decomposition into a regular and a singular component, the latter

of which is then used for anomaly detection.

This chapter will be focused on methodological development, with a comprehensive pipeline

that starts from image denoising, mouse embryo extraction, creation of a model template using

local data, and goes on to group-wise non-rigid image alignment and RPCA feature processing

for anomaly detection. The RPCA technique will be studied in more depth in the next chapter,

and a novel RPCA-P method will also be developed to better address the wide prevalence and

varying levels of natural variation in biomedical data, which is able to signi�cantly improve

RPCA's practical performance in the biomedical domain.

3.2 Existing phenotyping work and limitations

3.2.1 Phenotyping via comparative analytics

Volumetric contrast

The �rst major branch of existing image informatics work is primarily centred on data-driven

comparative analytics, most notably by leveraging volumetric contrast of anatomical structures

between the normal and gene-modi�ed mice for abnormality detection [35, 120, 172, 168, 34].

These approaches generally rest on image segmentation over the structures of interest as a

pre-requisite. Typically, an atlas is created in advance with target structures manually labelled

by experts. At test time, target images are non-rigidly registered with the atlas, and labels are

propagated over the target space to perform segmentation, which is widely recognised as atlas-

based label propagation (also known as segmentation propagation) and has previously been

detailed in Chapter 2 Section 2.2. Once structures of interest have been segmented, volumetric

evaluations can then be conducted on separate abnormal subjects from the normal.

However, volumetric contrast merely achieves a super�cial level of screening for morphological

abnormality, and generally fails when the anomalous phenotype is not associated with severe
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volume variations, such as for the case of VSD. Furthermore, performing atlas-based segmenta-

tion on images of mouse embryos undergoing abnormal deformations can be very challenging,

which will be detailed in Section 3.3.

Morphometrics on deformation features

In response to these limitations, another school of researchers has suggested employing mor-

phometrics based on a range of distinguishing deformation features, derived from non-rigid reg-

istration to some purpose-built template image [34, 89, 168, 134]. Such methods are sometimes

also recognised as �deformation-based morphometry� or �tensor-based morphometry�. Typi-

cally, a group-wise non-rigid image registration process will be carried out �rst, to collectively

align target images in the designated template space. Then a set of quantitative features, often

based on the deformation �elds resulting from the non-rigid image registration, are leveraged

to capture distinct deformation properties across di�erent subjects, groups or genotypes. It is

hypothesized that in such settings, phenotypes associated with morphological anomalies would

present abnormal deformation features that are highly distinguishable from the normal ones.

Suppose the deformation �eld (also known as �transformation�) of an image I is denoted as

FI , and FI(v) represents the displacement vector that maps a voxel v to its counterpart in the

template space. The �nal distinguishing model applied to �normal-vs-abnormal� classi�cation

in practice is often a portfolio of primitive features that are direct derivatives of the deformation

�elds, such as:

• voxel-wise displacement magnitude (also called �positional shift�) [172, 34, 89]: obtained

by computing the Euclidean norm ||FI(v)|| for each displacement vector FI(v)

• voxel-wise rate of volumetric expansion/contraction [172, 168, 34, 134]: obtained by com-

puting the determinant JI(v) of the local Jacobian matrix. JI(v) > 1 indicates voxel

expansion and JI(v) < 1 indicates contraction

• block-wise deformation stress [134]: obtained by computing the entropy of varying defor-

mation directions within a local block of neighbouring voxels BI(v)
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Meanwhile, functions like mean, variance, and standard deviation are frequently applied to

aggregate individual metrics to capture systematic di�erences between the normal and gene-

mutated populations. Moreover, image segmentation, or simply a mask roughly covering the

region of interest, is often applied as well in order to obtain aggregate feature metrics at the

structure or region level.

Nevertheless, this type of phenotyping approach is often not very robust, since deformation

features could vary signi�cantly with the use of di�erent registration settings and di�erent

reference templates. In addition, the build-up of feature portfolios is often carried out empir-

ically on a trial and error basis, without strong theoretical support for the choice of feature

combination.

3.2.2 Phenotyping via detection of phenotype-speci�c features

The second major branch of existing work is generally centred on leveraging phenotype-speci�c

information to help recognise target phenotypes. A number of phenotyping methods have been

proposed to identify some (well-known) defective phenotypes via the detection of their well-

studied distinctive morphological features, such as the connectivity between cardiac ventricles

to identify the VSD [167] and diameter measurement of great arteries and semilunar valves to

identify vascular and valvular stenosis [161], as well as cavity analysis regarding various heart

malformations [137], etc. This line of research ultimately leads to automatic classi�cation of

speci�c known phenotypes.

Probably one of the best examples is the class of phenotypes concerning congenital heart dis-

eases, which has attracted wide attention in the domain of mouse embryo phenotyping [69].

Surprisingly however, there is very limited research progress harnessing image computing tech-

nology to the recognition of heart phenotypes. This is not only due to the challenges of embryo

heart segmentation in which only a few semi-automatic segmentation studies were found [182],

but also because heart defects tend to be more subtle and often di�cult to identify using, for

example, volumetric contrast. The VSD for instance, is one of the most common congenital

heart diseases (amongst others such as cardiomyopathy and atrial septal defects) [69]. Figure
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(a) Normal subject (b) VSD subject

(c) Ventricle connectivity detection: negative (d) Ventricle connectivity detection: positive

Figure 3.1: VSD classi�cation via the detection of ventricular connectivity: (a) a normal sub-
ject, (b) a VSD subject, and (c-d) ventricular connectivity detections of (a-b) using joint ven-
tricle segmentation and snake evolution [167]

3.1 (a) and (b), respectively, illustrate the µ-CT images of a normal subject and a VSD subject

in a comparative fashion. This particular phenotype features the presence of a hole or similar

defect in the cardiac ventricular septum that divides the left and right ventricles, for which no

severe heart volume di�erence may be observed between the normal and abnormal populations.

In order to address this challenge, in our earlier work [167] we developed, to the best of our

knowledge, the �rst fully automatic VSD classi�cation system in mouse embryo phenotyping.

The core of the approach is to perform a (coarse) atlas-based segmentation on individual ven-
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tricles, followed by a snake evolution (also known as active contour) algorithm that gradually

grows the contours of the two ventricles. VSD classi�cation is achieved by checking whether the

two ventricle segmentations eventually border or overlap with each other. A sample test ap-

plied to the two aforementioned cases are shown in Figure 3.1 (c) and (d), where, respectively, a

negative and a positive result of ventricular connectivity detection were generated accordingly.

However, all these approaches are tailored for speci�c known phenotypes, and are normally

unable to deliver a general phenotyping purpose, in particular the discovery of new phenotypes,

since the corresponding phenotypical information is not known.

3.3 Further challenges of mouse embryo phenotyping

3.3.1 Rapidity of mouse embryo development

Prenatal mouse phenotyping is particularly challenging due to the short embryo development

period. Typically, it only lasts for around 18.5 days, and one day di�erence often leads to

dramatic changes due to rapid organogenesis. The approximate timeline of mouse embryo

development is illustrated in Figure 3.2. Moreover, the variety of nurturing conditions across

di�erent facilities can also contribute to mildly di�erential growth rates. For that reason, it is

sometimes di�cult to ensure subjects under study are acquired from the same developmental

stage, especially when data is retrieved from di�erent cohorts at multiple institutions.

To help cross-comparative analysis, a standardising system is often employed to categorise

imaging subjects into di�erent stages. Probably the most common and straightforward ap-

proach is to categorise via timed pregnancy, or more speci�cally, based on the measure of days

post-coitum (dpc). Normally, mouse embryos are collected from natural mating, and noon on

the day, when the presence of vaginal plug is detected, is designated as 0.5 dpc or the E0.5

stage. This is also the standard used in Figure 3.2. However, the timeline could be signi�cantly

a�ected by di�erent nurturing conditions as mentioned earlier, and meanwhile is also subject

to inter-sample variability.
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Figure 3.2: The approximate timeline of mouse embryo development: the E0.5-13.5 notations
refer to 0.5-13.5 days post-coitum. (image source: the e-Mouse Atlas Project, http://www.
emouseatlas.org)

Alternatively, some other researchers tend to use a set of morphological criteria to stage fetal

development. The Theiler stage is arguably the most widely used such system, which divides

fetal development into 26 prenatal and 2 postnatal stages. The staging criteria is detailed in

the seminal work by Karl Theiler [146], and is to some extent similar to the Carnegie stage

system in human embryology [122]. The Downs and Davies stage [48] is another well-known

and more recent system, but is much less widely-used in practice. However, although such a

staging system in theory is able to establish a better standard to measure developmental status

of normal embryos, subjects of anomalous phenotypes sometimes do not follow the same rule,

especially the ones leading to prenatal mortality. Therefore, to some extent it is actually more

common to use the timed pregnancy system in phenotyping practices.

http://www.emouseatlas.org
http://www.emouseatlas.org
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Another signi�cant challenge stems from the incompleteness of knowledge over phenotypes.

Not only does this pose substantial obstacles to phenotyping using tailored anomalous features,

but it also raises the question from what stage the relevant phenotypical features start to be

manifest, and consequently when to collect data. An optimal strategy to obtain desirable results

in the shortest possible time is a common matter of consideration in embryo phenotyping work.

Typically, to ensure productive image analysis, the embryos are usually collected at later stages,

often after 12.5 or 14.5 dpc, when organogenesis generally �nalises and salient phenotypical

features have emerged to allow e�ective image processing.

3.3.2 Challenges of image segmentation

A large proportion of existing image analytics-based phenotyping studies rely heavily on im-

age segmentation, which is particularly challenging on mouse embryo data, especially in the

presence of anatomical defects. Considerable progress has been made in recent years on the

model of the adult mouse, including the creation of mouse atlases [89, 47, 74, 110] and brain

segmentation work [3, 165, 93, 100, 9, 97, 119]). On the other hand, embryo segmentation

has encountered more obstacles. An obvious challenge directly resulting from the rapid and

di�erential developmental status of mouse embryos, is the di�culty in practice to secure a suit-

able public atlas, since the studies are often conducted in di�erent environments with di�erent

cohorts of mice. To make situation worse, the availability of public atlases is actually very

limited, with the only ones we found being:

(1) a set of multi-stage µ-MRI atlases [80]: six atlases in total, respectively, at E8.5,

E13, E15, E16, E17 and E18 stages, created by directly conducting manual segmentation

on selected µ-MRI mouse embryo images, with labels covering all parts of the embryos,

as shown in Figure 3.3. However, the image quality is relatively poor.

(2) an E15.5+ µ-MRI atlas [35]: during its creation, a template image was generated �rst,

using 19 µ-MRI embryo images ranging from E15.5 to E18.5 stages, followed by manual

segmentation on the template image, with labels mainly covering the brain and the heart,
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(a) E13 stage (b) E17 stage (c) E18 stage

(d) E13 atlas with labels (e) E17 atlas with labels (f) E18 atlas with labels

Figure 3.3: The multi-stage µ-MRI atlas set [80]: (a-c) sample images at di�erent stages, (d-f)
superimposed with label maps

as shown in Figure 3.4.

(3) an E15.5 µ-CT atlas [162]: during its creation, a template image was created using

35 E15.5 µ-CT embryo images �rst, followed by manual segmentation on 48 anatomical

structures, including 25 structures in the brain as well as 23 in other organs such as the

heart, lung, liver, stomach, as illustrated in Figure 3.5.

Among them, the modality of atlases (1) and (2) are incompatible to the µ-CT images used in

our work. Meanwhile, atlas (3) is inapplicable to phenotypes such as polydactyly (extra �n-
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(a) 2D view (b) 3D view

Figure 3.4: The E15.5+ µ-MRI atlas [35]

Figure 3.5: The E15.5 µ-CT atlas [162]
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gers/toes), which is to be tested in our study, due to the absence of limb labels for segmentation

propagation. Creating a local atlas on the other hand, is an expensive and time-consuming job

requiring domain expertise, and thus may well be impractical in many scenarios. Furthermore,

even allowing for the presence of a suitable atlas, it could still be di�cult to establish a voxel-

level one-to-one correspondence on a region undergoing anomalous deformation with a normal

counterpart, for example the heart of the VSD subject with that of the control subject along

the ventricle regions in Figure 3.1 .

3.4 Overview: Methods and Materials

3.4.1 Anomaly detection by non-rigid registration and RPCA

In essence, our approach is centred on group-wise feature extraction and decomposition into

regular and singular components, where the singular features are then used for detection of

morphological abnormalities. The core of this approach lies on the combined use of group-wise

non-rigid registration and RPCA techniques.

As a preliminary step, image denoising is applied to each raw image of mouse embryo, which is

then extracted from its unwanted surroundings. Subsequently, all extracted mouse embryos are

group-wise non-rigidly aligned with a template image, using a standard three-step registration

scheme including rigid, a�ne and B-spline registrations. The template is created locally using

only the normal control data. Once all target images are group-wise aligned in the template

space, we then proceed to decompose each image with the model Ii = Ii,r + Ii,s. In a super�cial

sense, this could be understood as that each embryo's observed appearance is a distortion of

its regular form by some singular factors, in particular anomalous deformations.

Suppose there are n images I1, .., In ∈ Rw×h×d. Concatenating each image into a vector of size

m = w×h×d and stacking them together generates a matrixD = R+S, whereD,R, S ∈ Rm×n.

Since D is the observed data, the goal then is to estimate an R̂ such that it best represents

its regular form. Due to the structural congruity of mouse anatomy, R should be low-rank,
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which essentially turns into a low-dimensional subspace learning problem with the presence of

anomalous data. It can then be formulated as:

min .
R,S

||S||0 s.t. rank(R) < min(m,n), D = R + S (3.1)

where ||.||0 denotes the element-wise 0-norm, the total number of non-zero entries in the matrix.

Principal component analysis (PCA) is a well-known feature extraction technique that projects

high-dimensional data into a low-dimensional feature space [75]. However, the classic PCA

algorithm only works well when the data points are independent and identically distributed

(i.i.d.) in a Gaussian manner. Phenotypical deformation readily breaks this condition with

arbitrarily large levels of variation.

In recent years, a number of approaches have been proposed to make PCA more robust, most

notably the RPCA framework based on principal component pursuit [32]. It is an extension of

the classic PCA that tolerates a certain level of gross data corruption, and tackles Eq. (3.1)

via an approximate conversion to:

min .
R,S

||R||∗ + λ||S||1 s.t. O = R + S (3.2)

where ||M ||∗ =
∑

i σi(M) denotes the nuclear norm of a matrix M , which is the sum of its

singular values, and ||M ||1 =
∑

ij |Mij| denotes the element-wise 1-norm, the sum of its absolute

values. The theoretical foundations of RPCA and popular algorithms to solve Eq. (3.2) will

be detailed later in Chapter 4. The derived R and S can then be used to reconstruct Ii,r and

Ii,s for each subject i, and Ii,s is subsequently used for anomaly detection.

RPCA (including its variants) has previously been applied to a number of computer vision

problems and achieved remarkable success. Notable examples include video surveillance [163,

32, 8, 175, 174], face recovery from shadow and specularity [163, 32, 175, 174], and batch

linear alignment of face images with partial occlusion/corruption [124]. Sample work of video

surveillance and face recovery are described below, which are primarily focused on deriving the

S and R, respectively.
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Figure 3.6: RPCA application to video surveillance [32]: (left) sample original video frames in
D, (middle) the invariant background recovered by R, and (right) the moving objects (such as
people and luggage) captured by S

Example RPCA work: video surveillance

Figure 3.6 illustrates some sample decomposition results retrieved from an RPCA study applied

to video surveillance [32]. In this application, a recorded video clip was acquired from a sta-

tionery camera set up to monitor a scene in an airport. The video clip contained 200 frames of

the scene without signi�cant change in illumination condition. During the period of recording,

there was a lot of human activity occurring in the scene, mostly consisting of di�erent people

walking along the corridor. All 200 frames were vectorised and stacked together to create an

observation matrix D for RPCA processing. As a result, the background was captured in the

derived R, whereas the moving objects (such as people and luggage) were successfully separated

into S.
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Figure 3.7: RPCA application to face recovery [32]: (left) sample original face images in D,
(middle) the faces recovered by R, and (right) the distortions resulting from the shadow and
specularity captured by S

Example RPCA work: face recovery from shadow and specularity

Figure 3.7 illustrates sample decomposition results retrieved from another RPCA application,

which was aimed at recovering faces from shadow and specularity [32]. In this application, a

set of face images were downloaded from a popular benchmark database4. For each subject, a

4The Extended Yale Face Database B: http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.
html

http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
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total of 31 photos taken under di�erent illumination conditions were collected, all of which were

cropped and well-aligned. Similarly, all these images were vectorised and stacked together to

create an observation matrix D for RPCA processing. As a result, the faces in the images were

successfully recovered in R, and the distortions associated with the shadow and specularity

were captured by S.

Limitations of existing RPCA work and the proposed approach

Nevertheless, almost all these previous applications commonly rest on a critical condition,

which is that in the majority of images being processed, there is a background with very little

variation. By contrast in biomedical imaging there is a signi�cant natural variation across

di�erent image samples, hence the method needs to be upgraded to address this condition.

A comprehensive study of the RPCA technique will be carried out in Chapter 4, including

the development of a novel RPCA-P method that is able to incorporate natural variation

priors to better address this challenge in biomedical imaging. In this study, non-rigid image

registration is employed to deal with this issue. Non-rigid registration estimates a combined

global and local transformation from one image to another, and establishes a voxel-level one-

to-one correspondence between two images undergoing certain levels of physiological motions

(such as heartbeat) and inter-subject variation. A detailed description of non-rigid registration

has been covered in Chapter 2 Section 2.2.1.

The proposed approach rests on the assumption that the phenotypes of interest will cause

salient topological distortion to a subject's regular form, which cannot be well aligned with

the normal counterparts. A validation study has been carried out using two di�erent defec-

tive phenotypes: VSD and polydactyly. The former is associated with the presence of a hole

in the cardiac ventricular septum, leading to the (lethal) connectivity between left and right

ventricles, whereas the latter indicates the presence of extra �ngers/toes. Such abnormal fea-

tures do not match with normal features and will not be �corrected� by non-rigid registration.

Another assumption is that anatomical abnormalities across di�erent subjects do not appear

in consistent patterns even for the same phenotype, making anomalous features always sparse.
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Both assumptions hold quite generally for many phenotypes, and this approach should work

robustly in practice.

3.4.2 Data acquisition

All the test data was produced by an expert team at the National Institute of Genetics5 and

the RIKEN BioResource Centre6 in Japan. All our animal experiments were approved by the

Animal Care and Use Committee, and all mouse subjects used in this study were maintained

at the Genetic Strains Research Centre, both within the National Institute of Genetics. The

mouse embryos were stored in a speci�c pathogen free facility, with 12-hour light and dark

cycles. The popular C57BL/10 mouse strain was used as both the source of normal subjects

and the basis for gene-modi�ed lines. The embryos were generated by natural mating and

timed pregnancy was used as the staging system.

All mouse embryos in this study were collected at 14.5 dpc. A notable point is that sample

collection at earlier stages might lead to the absence of certain anatomical structures and sub-

stantial inter-subject variability due to ongoing organogenesis, making it di�cult to perform

non-rigid image registration and RPCA. All the collected embryos were then washed in Phos-

phate Bu�ered Saline solution and maintained in 4% Paraformaldehyde solution. Just before

imaging, the embryos were soaked in a contrast agent, created by using a 1:3 mixture of Lugol

solution and double distilled water. The scanning was then performed on a SCANXMATE-

E090S 3D µ-CT machine (Comscan Techno, Japan), during which each embryo was �tted in a

separate 1.5 ml Eppendorf tube and �xed by wet paper. The X-ray radiation was applied at a

tube voltage peak of 60 kVp and a cube current of 130 µA. The subject was rotated by 360o at

0.36o per step, generating 1000 projections and reconstructed in 3D at an isotropic resolution.

There were two datasets used for experimentation in this work:

5Principal researcher: Professor Toshihiko Shiroishi, Mammalian Genetics Laboratory, National Institute
of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan. O�cial website: https://www.nig.ac.jp/nig/

research/organization-top/organization/shiroishi
6Principal researcher: Dr. Masaru Tamura, RIKEN BioResource Centre, 3-1-1 Koyadai, Tsukuba, Ibaraki

305-0074, Japan. O�cial website: http://en.brc.riken.jp/

https://www.nig.ac.jp/nig/research/organization-top/organization/shiroishi
https://www.nig.ac.jp/nig/research/organization-top/organization/shiroishi
http://en.brc.riken.jp/
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(a) (b)

(c)

Figure 3.8: An example raw image of a mouse embryo from Dataset A in (a) sagittal view, (b)
axial view, and (c) its intensity histogram

• Dataset A consisted of 31 µ-CT scans, each contained a separate mouse embryo from the

gene knockout project, acquired via an imaging protocol conforming to IMPC standards.

Each image was approximately sized 560 × 640 × 950 at a spatial resolution around

12× 12× 12 µm3. Among them, 26 subjects were standard C57BL/10 embryos showing

the normal phenotype, while the remaining 5 were knockout subjects with 4 samples

manifesting the VSD phenotype. Figure 3.8 illustrates an example raw image of a mouse

embryo from Dataset A in sagittal and axial views, as well as its intensity histogram.
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(a) (b)

(c)

Figure 3.9: An example raw image of a mouse embryo from Dataset B in (a) sagittal view, (b)
axial view, and (c) its intensity histogram

• Dataset B consisted of 15 µ-CT scans, each contained a separate mouse embryo from

the recombination-induced mutation 4 (Rim4) project [144]. These embryos were imaged

using a slightly di�erent protocol with intensities rescaled to a di�erent standard. The

images were sized around 300×360×480 at a spatial resolution around 27×27×27 µm3.

In this dataset, polydactyly was identi�ed in 10 out of the total 60 limbs. Figure 3.9

illustrates an example raw image of a mouse embryo from Dataset B in sagittal and axial

views, and its intensity histogram.
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3.5 Detailed Methodology

3.5.1 Image denoising

To start with, all raw images undergo a standard image denoising process using Gaussian

smoothing. This is to reduce artefacts generated during imaging and to smooth intensity

variance across a small neighbourhood for each voxel.

3.5.2 Mouse embryo extraction

Since each mouse embryo is contained in a glass test tube and soaked in the maintenance

solution (which may also contain air such as in our Dataset B), the �rst major computational

step is to extract the embryo from its unwanted surroundings for subsequent processing. A

simple histogram study reveals that signals tend to be distributed into several clusters, with

the �rst two being tube and solution (denoted k1, k2) respectively (if there is a signi�cant

amount of air present, there would be an additional cluster k0 preceding these two). The

residuals are generally part of the mouse (k3), with a rather bizarre pattern due to di�erent

re�ection properties of tissue types.

Given this, we perform a simple multi-scale histogram smoothing, with the voxel count θ(i)
b of

bin b at each stage i updated by averaging values over [b(i)−α(i) ·Nb, b
(i) +α(i) ·Nb], where Nb

indicates the total number of bins and α(i) is a radius factor. The histogram shall then become

much less steep, with most local maxima/minima smoothed out.

Next, we proceed to localise the clusters. For simplicity we use the �rst three (four) peaks in

the histogram, respectively, p1, p2, p3 (and p0) drawn from the set Sp =
{
b
∣∣∣ dθb

db
= 0, d2θb

db2
< 0
}

in ascending order, to represent the positions of k1, k2, k3 (and k0). A binary thresholding is

applied thereafter to separate k3 from k1, k2 (and k0), by setting the threshold to the valley

between p2 and p3:

Φ1 = min

{
b
∣∣∣ dθb
db

= 0,
d2θb
db2

> 0, b > p2

}
(3.3)
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After that, the largest foreground region is extracted, while the smaller regions, mostly being

k2 voxels misidenti�ed as k3, are re-labeled as background. The label map is then dilated

with a standard ball-shaped kernel to re-include k3 voxels being accidentally ruled out during

thresholding.

3.5.3 Creation of the local mouse template

As described earlier, in order to e�ectively estimate a representative feature space during RPCA

processing, all mouse embryo images must be group-wise aligned in advance. To reduce bias,

we create an unbiased control template using local normal subject images via the following

procedure (as sketched in Figure 3.10):

First, one of the candidate images is randomly selected as an initial reference, with the rest of

them rigidly registered to it. The rigidly-aligned images are then averaged to generate a new

reference, which is blurry but unbiased toward the geometry of the initial reference. The aligned

images are then a�nely registered to the rigid-mean reference, followed by further averaging

to generate an a�ne-mean reference. After that, a B-spline non-rigid registration is iteratively

performed for local alignment, with both the reference and images updated after each iteration,

until boundaries become sharp and anatomical structures become clear.

The B-spline registration uses a metric function composed of mutual information and a bending

energy penalty term, and runs a multi-resolution scheme with the spacing of control points

Figure 3.10: Creation of the mouse template through rigid, a�ne and (iterative) non-rigid
image alignment and averaging, using local normal control subject images
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gradually reducing over time. Furthermore, a stochastic gradient descent technique is employed

using small sub-samples retrieved from a randomised region for each optimisation step. Such

setting can signi�cantly reduce the computation time for registration while retraining an equal

level of performance. The actual implementation of the registration algorithm in our work

was based on the open source Elastix toolbox7 [86], and the parameter settings in di�erent

registration steps are listed in the Appendix.

3.5.4 Group-wise non-rigid image alignment

Once the template is generated, we proceed to perform group-wise non-rigid image alignment.

The purpose of this process is centred on reducing physiological motions and inter-subject vari-

ations in the test dataset, so that the feature space can be best estimated. The alignment

scheme follows a standard pipeline with three steps: a rigid and then an a�ne registration

to secure a global correspondence, followed by a B-spline non-rigid registration to establish a

localised one-to-one correspondence. All target images after embryo extraction in each experi-

ment are collectively registered to the template, in order to achieve group-wise alignment with

minimal bias. The registration con�guration is similar to that used in template creation, and

the in�uence of key parameter settings will be examined in Section 3.6.

3.5.5 Feature decomposition using RPCA

Due to the individualism of natural variation from one anatomical structure to another, which

will be discussed in more details in Chapter 4, in this study we apply a mask around the heart

region for the detection of VSD, and another mask covering the limb regions for polydactyly,

in order to secure a good feature decomposition performance regarding the target phenotypes.

These masks are manually checked prior to RPCA computation to ensure they cover the desir-

able regions in each of the target images. The use of mask is a constraint which will be released

in the next Chapter by the introduction of a modi�ed technique (RPCA-P) that incorporates

prior knowledge of natural variation. On the other hand, it also dramatically lowers compu-

7Elastix o�cial website: http://elastix.isi.uu.nl

http://elastix.isi.uu.nl


88 Chapter 3. High-throughput Mouse Phenotyping Using Non-rigid Registration and RPCA

tational volume and memory consumption. In our case, it reduces m = w × h × d to a small

fraction m′, by which we formulate:

{R′, S ′} = arg min .
R′,S′

||R′||∗ + λ||S ′||1 s.t. D′ = R′ + S ′ (3.4)

where D′, R′, S ′ ∈ Rm′×n

and solve it using the IALM algorithm [103], which will be detailed in Chapter 4 Section 4.2.2.

After that, a target image Ii and its decompositions Ii,r, Ii,s can be easily reconstructed using

the corresponding D′i, R
′
i, S

′
i ∈ Rm′×1.

3.5.6 'Normal-vs-Abnormal' classi�cation

In theory, a perfect non-rigid registration should be able to critically deform all normal subject

images so that they perfectly align with the reference template, while leaving morphological

abnormalities in the defective subjects poorly aligned. These are then solely captured by S ′

in the RPCA process. However, registration often does not work to the demanding quality

in practice, and some minor misalignment almost always occurs near the boundaries between

di�erent anatomical structures, due to signi�cant inter-subject variations.

In order to deal with this problem, we develop a special metric, the anomaly rate (denoted

as Ω), to calculate the level of morphological abnormality identi�ed in each image/region, and

compare it with a baseline level to determine whether the corresponding image/region would

be annotated as normal or abnormal:

Ωi =
||S ′i||0
m′

, Li =


1, Ωi > µ[Ω] + η · σ[Ω]

0, Ωi ≤ µ[Ω] + η · σ[Ω]

(3.5)

where µ[Ω] and σ[Ω] represent the mean and standard deviation of anomaly rates across the

whole dataset, and η is a tunable parameter used to adjust the baseline anomaly rate. Li = 1

indicates image Ii (or I ′i at the region level) being considered abnormal and vice versa.
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3.6 Evaluation

A series of experiments have been carried out on the aforementioned two test datasets to eval-

uate the proposed framework. The key to a successful feature decomposition and abnormality

detection has been found to be associated with the setting of control point spacing in non-rigid

registration and the tuning of the tolerance parameter λ in Eq. (3.4). The impact of major

parameter settings will be detailed in the following sections, prior to which, the results of mouse

embryo extraction and template creation will be brie�y discussed to ensure the completeness

of evaluation.

3.6.1 Results of mouse embryo extraction

The mouse embryo extraction results were assessed qualitatively by domain experts and found

to be satisfactory, in particular a 3D model was reconstructed for each extracted mouse image

to facilitate evaluation. For instance, a sample raw image of mouse embryo superimposed with

its label map generated by the algorithm is shown in Figure 3.11 (a), and was used to obtain

the extracted embryo in Figure 3.11 (b), which was then successfully portrayed in 3D with a

high level of detail, including head, body, tail as well as the number of �ngers and toes, as

(a) (b) (c)

Figure 3.11: Example mouse embryo extraction outcome: (a) a raw image superimposed with
the label map generated by our algorithm (b) the embryo image after extraction (c) 3D recon-
struction of the extracted embryo
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shown in Figure 3.11 (c). Quantitative measures (such as Dice score) however were di�cult

to compute since there was no ground truth information available. On the other hand, such

measures were not part of the goal here for morphological abnormality detection.

In our best experimental performance, we set Nb = 1000 and chose a three-stage processing with

a(i) = 1/25, 1/35, 1/45, respectively, for the multi-scale histogram smoothing. This however is a

simple guideline since there could be numerous settings to achieve this task, as long as most local

maxima/minima are smoothed out and intensity distribution of the clusters follows a Gaussian-

like pattern. Given such a condition, a more straightforward idea for cluster localisation may

be to �t a Gaussian mixture model as used in human brain tissue classi�cation [173]. The

model is expected to capture the mean µk and standard deviation σk of each cluster, and once

obtained the threshold can then be simply set to Φ = µ2 + 2σ2 or similar values. However this

does not work well in practice, because the mouse cluster does not follow a simple Gaussian

distribution. Modelling the mouse itself as a Gaussian mixture is also di�cult, as there is no

method to determine how many sub-clusters would �t the data.

In addition, another approach that might be considered with CT images is to de�ne an abso-

lute threshold using Houns�eld Unit (HU). As explained in Chapter 1 Section 1.2.1, HU is a

normalised CT intensity scale with respect to water, computed by:

HUx = 1000× µx − µwater
µwater

(3.6)

where µx is the average linear attenuation coe�cient at voxel x and µwater represents the atten-

uation level of water. The HU values in a CT image usually range from -1000 to +1000, with

the air corresponding to around -1000 HU, water to 0 HU, and bone to around +1000 HU. In

this case, if the HU distribution of the maintenance solution is known in advance and consis-

tent over di�erent datasets, the threshold can be derived using its upper bound. This however

was unknown in our study. In addition, the intensity scale in Dataset A conforms to the HU

standard while Dataset B does not, therefore a universal threshold was not applicable. On the

other hand, our approach is more general and identi�es the desirable threshold automatically,

regardless of the use of di�erent imaging protocols and maintenance solutions.
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3.6.2 Results of template creation

All the normal subject images in each dataset were collectively used to create a local template.

The interim result right after group-wise linear processing (alignment and averaging) was very

blurry, yet it was quickly re�ned as non-rigid processing took place. After �ve iterations

of non-rigid processing, boundaries had already become sharp. After eight/nine iterations

improvement became marginal. The reference template right after linear processing, and after

�ve, eight, ten iterations of non-rigid processing are shown in Figure 3.12. A notable point is

(a) (b)

(c) (d)

Figure 3.12: Template updates (a) right after group-wise linear processing (b) after 5 iterations
(c) 8 iterations (d) 10 iterations of non-rigid processing
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that abdominal structures will always appear more blurry due to substantial natural variations.

In our work, we carried out ten iterations before �nalising the template, which was then used

as the reference for group-wise image alignment.

In fact, warping images to a representative template space for comparative analysis is by any

means not new. Rather it is a common practice in many biomedical image computing studies.

There have been a number of paradigms proposed for unbiased template creation [162, 134, 77],

more or less akin to ours. The key insight here is that by creating a �standard mouse� using

local normal control data for group-wise non-rigid alignment, we are able to minimise the

overall inter-subject variations across the local imaging dataset, so that the regular component

can include as much data as possible in the RPCA decomposition process, ideally with only

abnormalities remaining in the singular component.

3.6.3 Results of feature decomposition: the in�uence of tolerance pa-

rameter λ in RPCA processing

The parameter λ governs the level of tolerance/strictness for potential outliers to be considered

normal. In other words, it a�ects whether marginal features should be included in R′ or S ′. The

tolerance factor takes e�ect at the whole batch level rather than at single image level. A working

setting is generally within the order of 1/
√
m, based on the insights from previous studies [32].

Figure 3.13 compares the decomposition results of four settings, respectively, λ = 1/
√
m,

λ = 2/
√
m, λ = 3/

√
m and λ = 4/

√
m, applied to four di�erent subject images from Dataset A

regarding the VSD phenotype. Similar comparison across three cases from Dataset B regarding

the polydactyly phenotype are illustrated in Figure 3.14. In both examples, the �nal control

point spacing for non-rigid registration was set to 200µm (to be detailed in Section 3.6.4). A

close observation will discover that the reconstructed Ir images are more similar to each other

when λ is lower. Then as λ increases, more information in S ′ is transferred to R′, where only

salient features that are more distant from �normality� are retained.

In the test to Dataset A, when λ = 3/
√
m, the majority of normal subjects ended up with an



3.6. Evaluation 93

(a) (b) λ = 1/
√
m (c) λ = 2/

√
m

(d) λ = 3/
√
m (e) λ = 4/

√
m

Figure 3.13: Example RPCA decomposition results on Dataset A (the images are cropped
to better show the heart region, which is coloured in purple): the original images (a) are
decomposed into a regular (left) and a singular component (right), with (b) λ = 1/

√
m, (c)

λ = 2/
√
m, (d) λ = 3/

√
m, and (e) λ = 4/

√
m. Each row in the sub�gures shows a di�erent

subject. Rows 1-2 are typical of normal controls and Row 3 is a subject of the VSD phenotype.
Row 4 on the other hand shows a normal subject with signi�cant natural variation, in which
case its individual features are more likely to be retained in the singular component.
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(a) (b) λ = 1/
√
m (c) λ = 2/

√
m

(d) λ = 3/
√
m (e) λ = 4/

√
m

Figure 3.14: Example RPCA decomposition results on Dataset B (the limb region is coloured
in orange): similarly, the original images (a) are decomposed to a regular (left) and a singular
component (right), with (b) λ = 1/

√
m, (c) λ = 2/

√
m, (d) λ = 3/

√
m, and (e) λ = 4/

√
m.

Each row shows a di�erent subject. Rows 1-2 are typical of normal controls, and Rows 3 is a
subject with polydactyly phenotype.
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almost empty Is. Whereas in subjects with VSD, the features signifying ventricular connectivity

were retained in Is. However, raising λ to 4/
√
m led to most anomalous features being included

in R′ and remaining undetected. The test to Dataset D showed a similar pattern, yet features

signifying polydactyly remained more salient than the normal controls at λ = 4/
√
m. In

addition, a small proportion of normal subjects manifested signi�cant individual traits, and the

associated salient features were more likely to be retained in Is, causing false positive detection

described in Section 3.6.5. This situation occurred more commonly in the detection of cardiac

abnormality than limb abnormality, probably due to more signi�cant inter-subject variability

in the heart.

3.6.4 Results of feature decomposition: the in�uence of registration

parameters in group-wise image alignment

The rigid and a�ne registrations are more standardised and do not involve complex parameter

settings, whilst the non-rigid registration part is a more di�cult. We tested three settings, all

using a four-scale multi-resolution scheme with maximally 4000 iterations at each resolution

level. The spacing of control points was halved at every new resolution level, with the �nal

spacing, respectively, set to 400µm, 200µm, 100µm in these settings.

We found feature decomposition did not work desirably with the 400µm setting with respect to

the VSD phenotype, which, as shown in Figure 3.15, almost led to empty Is images at λ = 3/
√
m

for the same four subjects in Figure 3.13. Decomposition performance improved dramatically

as the spacing narrowed down to 200µm and 100µm. This implies feature similarity and outlier

tolerance are determined in relative terms across the image batch rather than in absolute terms.

RPCA performance tends to improve when normal samples are better aligned against subjects

with salient anomalous features. This can be achieved through a more localised non-rigid

registration, in which the registration is properly regularised so that anomalous features are

not eliminated. However such improvement may diminish quickly while computational cost

rises dramatically: a trade-o� needs to be balanced in practice. In general, the 200µm and

100µm settings were found to be both e�ective and relatively e�cient in our experiments.
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(a) (b) λ = 1/
√
m (c) λ = 2/

√
m

(d) λ = 3/
√
m (e) λ = 4/

√
m

Figure 3.15: Example RPCA decomposition results on the same four samples from Dataset
A, with the 400µm non-rigid registration setting: the original images (a) are decomposed into
a regular (left) and a singular component (right), with (b) λ = 1/

√
m, (c) λ = 2/

√
m, (d)

λ = 3/
√
m, and (e) λ = 4/

√
m. In this setting, the decomposition almost end up with an

empty singular component at λ = 3/
√
m for all four subjects.
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3.6.5 Abnormality detection performance

In our study, each setting was tested 31 and 15 times, respectively, on Datasets A and B

via a leave-one-out strategy. In each test, non-rigid registration and RPCA were applied on

all the remaining 30 and 14 images, with η = 0.5 for heart anomaly and η = 0.3 for limb

anomaly, based on empirical experience. Anomaly detection was measured at the region-level,

where the heart and each of the four limbs in a mouse were treated separately. A true positive

(TP) or false negative (FN) detection indicates an abnormal region being correctly labelled as

abnormal or otherwise, and a true negative (TN) or false positive (FP) indicates a normal case

being correctly labelled normal or otherwise. In terms of metrics, the sensitivity, speci�city as

well as the overall accuracy were calculated:

SEN =
TP

TP + FN
SPE =

TN

TN + FP
ACC =

TP + TN

TP + FN + TN + FP
(3.7)

The performance metrics on both datasets across all three registration settings with λ = 3/
√
m

are illustrated in Table 3.1 and Table 3.2 in a comparative fashion. The low standard deviation

Table 3.1: Performance metrics of abnormality detection on Dataset A across all three settings
of �nal control point spacing for non-rigid registration

Dataset A

SEN SPE ACC
400µm 50.00± 6.09% 88.89± 1.15% 83.87± 1.25%
200µm 100.00± 0.00% 85.19± 1.29% 87.10± 1.13%
100µm 100.00± 0.00% 81.48± 1.42% 83.87± 1.25%

Table 3.2: Performance metrics of abnormality detection on Dataset B across all three settings
of �nal control point spacing for non-rigid registration

Dataset B

SEN SPE ACC
400µm 100.00± 0.00% 66.67± 4.72% 80.00± 2.96%
200µm 100.00± 0.00% 88.89± 3.15% 93.34± 1.84%
100µm 83.33± 4.88% 88.89± 3.15% 86.66± 2.52%
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in the metrics indicates a stable performance across di�erent experimental trials. A notable

point is that in this particular problem domain, sensitivity is considered the �rst priority,

and the general guideline is normally to maximise sensitivity before speci�city (although this

may not necessarily always be the case). For that reason, with a mean sensitivity of 50%,

the performance of the 400 µm registration setting was considered almost a failure for VSD

phenotype detection, although the mean speci�city was the highest, at 88.89%.

Its performance on polydactyly was more acceptable with 100% sensitivity and 66.67% mean

speci�city. Signi�cant improvements were seen on both datasets as the spacing narrowed down

to 200 µm: VSD sensitivity quickly rose to the desirable level of 100%, although mean speci�city

lowered to 85.19%; and in the case of polydactyly detection, the mean speci�city rose to 88.89%

while maintaining sensitivity at 100%. Further narrowing down the control point spacing to the

100 µm setting however, did not produce further improvement. Rather, a somewhat surprising

minor decline was witnessed, with the mean VSD speci�city lowered to 81.48% and the mean

polydactyly sensitivity lowered to 83.33%.

3.6.6 Experimental Environment and Computation Time

The runtime environment of our experiments was deployed on a standard PC with an Intel

i7 3.4GHz quad-core CPU and 32GB RAM memory. Taking all runs of cross validation into

account, in the case of Dataset A, on average mouse embryo extraction took 57s per image,

non-rigid registration took around 14 min per image and RPCA took only 68s for each image

batch, which summed to around 451 min for the whole batch (30 images) or 15 min per image.

For Dataset B, on average mouse embryo extraction took 42s per image, non-rigid registration

to the template took 10 min per image, RPCA processing took 301s for the whole batch,

which summed to around 155 min at the batch level (14 images) or 11 min per image. This is

considered substantially high-throughput in phenotyping practices. The reason for RPCA on

Dataset B to be longer than Dataset A was mostly due to the use of a larger mask to cover

limbs than the mask for heart. In addition, template creation may take up to several hours

depending on data size and the number of iterations but is done in advance and once for all.
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Furthermore, since all steps other than RPCA are independent for each image sample, compu-

tational e�ciency can be further boosted with parallel setting for all non-RPCA processing. In

a separate experiment under a cluster computing environment, the computation time reduced

dramatically to a small fraction, with only 22 min and 25 min for Datasets A and B at the

batch level respectively.

3.7 Comparison with the baseline PCA approach

In further evaluation, additional experimentation was conducted using the baseline PCA ap-

proach for direct comparison, in order to examine our earlier suggestion regarding its infeasibil-

ity in terms of feature decomposition and abnormality detection in this scenario. To ensure a

fair comparison, the computation followed an identical procedure to the original methodology

detailed in Section 3.5, except that the RPCA decomposition was replaced with the classic

PCA method. More speci�cally, a set of principal components were learned from the obser-

vation data D, where the most representative r components were then used to reconstruct R,

and the residual S = D − R was used for abnormality detection. In this case, r is the only

parameter to tune and resembles the function of λ in Eq. (3.2).

In the test applied to Dataset A, the outcome of the PCA-based feature decomposition on

the same four subjects as in the original experiments are illustrated in Figure 3.16, with an

increasing number of principal components used for R reconstruction. By comparison with

Figure 3.13, it can be easily identi�ed that replacing RPCA with baseline PCA led to a wide

prevalence of noise that almost corrupted every single entry in S, except for the case using

all principal components (r = 30, note there are only 31 images in Dataset A) which perfectly

reconstructed R, leaving S completely empty. This shows that PCA lacks the ability to separate

data anomaly from regularity, and its detection performance with the use of 400µ, 200µ and

100µ registration settings is shown in Table 3.3 in comparison to the best result obtained in

the RPCA-based approach. A similar �nding was con�rmed in the counterpart test applied

to Dataset B, where Figure 3.17 illustrates the feature decomposition outcome for comparison
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(a) (b) r = 3 (c) r = 17

(d) r = 29 (e) r = 30

Figure 3.16: PCA-based feature decomposition on Dataset A, applied to (a) the same four
samples as in Figure 3.13 based on the 200µm non-rigid registration setting: with the use of
(b) r = 3, (c) r = 17, (d) r = 29, and (e) r = 30 principal components for regular component
reconstruction.
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(a) (b) r = 3 (c) r = 11

(d) r = 13 (e) r = 14

Figure 3.17: PCA-based feature decomposition on Dataset B, applied to (a) the three four
samples as in Figure 3.14 based on the 200µm non-rigid registration setting: with the use of
(b) r = 3, (c) r = 11, (d) r = 13, and r = 14 principal components for regular component
reconstruction
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Table 3.3: Performance metrics of abnormality detection on Dataset A using the baseline PCA
approach as compared to the RPCA approach

Dataset A

SEN SPE ACC
RPCA 100.00± 0.00% 85.19± 1.29% 87.10± 1.13%

PCA 400µm 100.00± 0.00% 5.88± 1.36% 23.81± 2.18%
PCA 200µm 100.00± 0.00% 29.41± 3.15% 42.86± 2.54%
PCA 100µm 100.00± 0.00% 17.65± 2.20% 33.33± 2.42%

Table 3.4: Performance metrics of abnormality detection on Dataset B using the baseline PCA
approach as compared to the RPCA approach

Dataset B

SEN SPE ACC
RPCA 100.00± 0.00% 88.89± 3.15% 93.34± 1.84%

PCA 400µm 100.00± 0.00% 7.41± 5.86% 18.67± 3.05%
PCA 200µm 100.00± 0.00% 14.81± 6.32% 28.00± 1.69%
PCA 100µm 100.00± 0.00% 22.22± 4.17% 22.81± 2.24%

with that in Figure 3.14. Table 3.4 shows the corresponding abnormality detection performance.

Both these tests corroborated our suggestion and demonstrated the superiority of RPCA to the

classic PCA in this particular problem.

3.8 Discussion

Phenotype assessment is an advanced process requiring high levels of domain knowledge. Some

studies have been proposed to automatically classify certain phenotypes, however these ap-

proaches generally tend to be over-speci�c to phenotypical features and unable to achieve

general-purpose detection of abnormal phenotypes. Moreover, even after the use of such auto-

matic classi�ers, the con�rmation of exact phenotypes in practice usually still requires expert

manual assessment (and often involve advanced histological examination), due in part to the

complex nature of pathology diagnostics, as well as the problem that the C57BL/10 strain is

still under study and hence the complete phenotypical characteristics regarding morphological

abnormality are yet unknown.
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The proposed approach on the other hand aims to equip domain experts with a mechanism that

is able to automatically identify salient morphological anomaly in imaging data, so that the

search space can be narrowed considerably for the discovery of potential defective phenotypes.

Yet a notable point is that an �anomalous region� signi�ed by the algorithm does not necessarily

always indicate the presence of an abnormal phenotype, as there might be other factors causing

the anomaly, although the detection of a morphological anomaly is usually correlated to certain

biological signi�cance. For instance, an accidental removal of the umbilical cord (locating close

to the toes) during data acquisition had occurred in one particular subject image, and constantly

led to false positive detection of polydactyly. Also, stronger individual variation in a subject is

more likely to trigger false positive detection.

In the wake of substantial obstacles toward direct phenotype classi�cation, identifying major

morphological anomalies for manual phenotype examination is a widely used approach as in

other phenotyping studies based on data-driven comparative analytics. With its capability to

perform batch-wise anomaly detection in a short time, this high-throughput framework is able

to signi�cantly boost phenotyping e�ciency, especially when applied to large data volumes.

Another notable point is that the 'normal-vs-abnormal' classi�cation technique based on the

anomaly rate described in Section 3.5.6, to some extent, can be cast as a special type of (one-

tailed) hypothesis testing, where an Ω statistic is computed over the target data and then

compared to a baseline level, which is derived from the estimation of overall data distribution

(parametrised by µ[Ω] and σ[Ω]) and a manually chosen signi�cance level (parametrised by η).

By simple extension, a p-value can be calculated once the distribution is estimated, and the use

of parameter η to adjust the baseline level can be substituted by a p-value threshold instead.

The merits of such re-formulation include: (1) hypothesis testing is a widely-used concept fa-

miliar to a broad readership, (2) it links abnormality detection with probability theory, o�ering

an easier way to make sense of the classi�cation, (3) it also provides strong theoretical support

to make the actual choice of threshold (especially when it comes to p-value), whereas the choice

of η in Eq. (3.5) tends to be more ad hoc. This is particularly favourable when there are many

repetitive tests involved, in which case state-of-the-art studies often leverage the techniques
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regarding false discovery rate control [15, 16, 55]. The false discovery rate is de�ned as:

q = E
( FP

FP + TP

)
(3.8)

which is the expectation of the probability for a test to be false positive given it yields a

positive output, in the context of multiple inferences. This concept was originally proposed by

Benjamini and Hochberg [15], who also suggested a well-known technique to control q:

Suppose there are m tests H1, ..,Hm which yeild p-values P1 ≤ .. ≤ Pm sorted in ascending

order, the false discovery rate can be controlled at q∗ level if the threshold θ is set to

θ = Pk where k = argmax .
i

Pi ≤
i

m
· q∗ (3.9)

whereby H1, ..,Hk are rejected (classi�ed abnormal) and Hk+1, ..,Hm are accepted (classi�ed

normal). The value of q∗ is adjustable and often set to 0.01 or 0.05, etc. A number of studies

have since been carried out to enhance false discovery rate control in various scenarios [16, 55].

The line of research on hypothesis testing, especially multi-testing with false discovery rate

control, can be highly relevant when our work is extended to consider the detection of multiple

abnormalities in very large datasets. Its applicability however is limited in this pilot study,

due to the di�culty to accurately estimate a data distribution with a small sample size, in

particular an accurate estimation often requires the exclusion of outliers in the training stage,

which does not align with the nature of this unsupervised learning problem.

3.9 Conclusion

In conclusion, we have proposed a high-throughput general-purpose mouse phenotyping frame-

work. It features a systematic methodology that starts from image denoising, extraction of

mouse embryo in the image, then goes on to group-wise non-rigid registration with reference

to a template image created using local normal control data, followed by RPCA feature de-

composition into a regular and a singular component, where the latter is then used to detect

morphological abnormality.
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The proposed framework has been tested on two µ-CT datasets, which, respectively, contain

31 mouse embryo subjects with four manifesting the VSD phenotype, and 15 subjects with 10

out of the 60 limbs manifesting the polydactyly phenotype. A set of empirical cross-validating

experiments have been conducted, in which the best setting (200 µm for non-rigid registration

and λ = 3/
√
m for RPCA processing) achieved 100% detection sensitivity for both phenotypes,

as well as a 85.19± 1.29% speci�city and 87.10± 1.13% overall accuracy for the heart defects,

and a 88.89± 3.15% speci�city and 93.34± 1.84% overall accuracy for the limb defects.

This pilot study has veri�ed our framework to be 1) both theoretically sound and empirically

viable; 2) high-throughput, where anomaly detection can be performed on a batch of images

simultaneously in a single run; 3) e�ective to both volumetric abnormalities such as polydactyly

and non-volumetric such as VSD; 4) no segmentation is involved and no external atlas of any

kind is required, making it low-cost and widely applicable. 5) feature extraction is performed

post image alignment and does not rest on unreliable deformation features, thereby it is robust

to various registration settings and template uses.
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Chapter 4

Robust Principal Component Analysis

with Variation Priors

4.1 Introduction

The mouse phenotyping framework using non-rigid image registration and robust principal com-

ponent analysis (RPCA) was introduced in the last chapter, with a comprehensive methodology

starting from image denoising, mouse embryo extraction, template creation, to group-wise non-

rigid image alignment, RPCA processing and abnormality detection. As outlined in Chapter

3 Section 3.4, this framework is centred on group-wise feature extraction and decomposition

into a regular and a singular component, where the latter is then used to detect morphological

abnormalities. However, the methodology in Chapter 3 simply employed the baseline RPCA

to implement a purely unsupervised data-driven approach to abnormality detection, without

incorporating any prior information of natural variation. Furthermore, in terms of feature

decomposition there was only a single criterion of outlier tolerance, controlled solely by the

parameter λ and applied globally regardless of local variability. For that reason feature decom-

position was applied to a dedicated region of interest (ROI) to overcome the individual natural

variation from one anatomical structure to another, rather than to multiple structures/regions

at the same time. In addition, the technical details of the RPCA method were not explained.

107
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As mentioned earlier, the RPCA technique stemmed from the work of principal component anal-

ysis (PCA) [75], which is arguably the most widely used statistical data analytical technique

concerning feature extraction and dimensionality reduction. PCA uses an orthogonal trans-

formation to convert a given dataset with possibly correlated variables into a low-dimensional

subspace (sometimes known as feature space or a new coordinate system) composed by linearly

uncorrelated variables called principal components. However, it is well-known [32, 169, 41, 42]

that the classic PCA algorithm is fragile to the presence of data anomalies or outliers, for

its subspace learning assumes a multivariate Gaussian data distribution, and a single data

point with gross corruption could signi�cantly lower the quality of estimation. Such limita-

tion alongside the wide prevalence of grossly corrupted data in real-world applications has

stimulated considerable research e�ort toward the RPCA or robust subspace learning problem

[32, 169, 41, 42, 21, 81], in particular in the computer vision domain.

In contrast to the classic PCA, RPCA aims to separate outliers from the regular data during

subspace estimation. Early RPCA works include learning linear multivariate representations

of the imaging data via robust M-estimations [41, 42], or via self-organising rules that incorpo-

rate additional binary decision �elds and outlier prior distributions [169]. Other representative

approaches include using iteratively re-weighted least squares [21], or alternating convex pro-

gramming on robust L1 norm factorisation [81]. Nevertheless, none of these approaches yielded

a polynomial-time algorithm with strong performance guarantees under broad conditions, until

the seminal work of principal component pursuit (PCP) [163, 32], which has gradually become

the standard approach of RPCA.

Prior to this study, the RPCA technique (PCP and its variants) has been applied to a number

of computer vision problems, including video surveillance [163, 32, 8, 175, 174], face recovery

[163, 32, 175, 174] and batch linear alignment of face images with partial occlusion/corruption

[124], attaining excellent performances. Nevertheless, an important pre-condition of the baseline

RPCA is the existence of a stationery background, which is mostly invariant throughout the

entire dataset. In biomedical imaging, there is usually a structural congruity of biological

anatomy across di�erent subjects, which coarsely corresponds to this condition and yields

the relevance of low-dimensional subspace learning. Yet meanwhile, biomedical data often
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undergoes signi�cant natural variations from one subject to another, leading to a number of

challenges to the practical application of baseline RPCA.

This chapter will carry on this line of work and explore the RPCA framework in more depth. In

particular, a modi�ed framework (which we call RPCA-P) that extends the baseline technique

to incorporate variation priors for feature decomposition will be proposed, which can signi�-

cantly improve its practical performance in biomedical imaging and achieve better abnormality

detection results.

4.2 The RPCA Framework

4.2.1 PCP problem formulation

The RPCA technique aims to decompose data (also known as observations) into a regular

component and singular component that features a collection of gross but generally sparse

corruptions, based on the following model:

D = R0 + S0 where D,R0, S0 ∈ Rm×n (4.1)

The D here represents the observed data with corruptions, R0 represents the uncorrupted form

of D which lies in a low-dimensional subspace, and S0 models the erroneous factors that cause

the corruptions. In this sense, RPCA is closely related to two lines of research:

• The �rst line of work is often formalised as �matrix completion� [28, 29, 30, 59, 58, 82],

which, in brief, is about recovering a low-rank matrix from the condition where only

a small fraction of its entries are available. In some circumstances, it is extended to

completing a matrix with only a small number of linear components/variables. The

estimation of R0 in the RPCA problem is somewhat similar to matrix completion. A

prevailing and mathematically validated approach to it is to conduct convex optimisation

on nuclear norm minimisation [28, 29, 30, 58, 82].
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• The estimation of S0 on the other hand, is inspired from another line of work that con-

cerns robustly recovering under-determined linear systems of equations from arbitrary but

sparse errors in polynomial time. This can be achieved by performing convex optimisation

on L1 norm minimisation [31].

Combining the insights from both lines of work, the original PCP approach [32] was initially

introduced to tackle to an idealised RPCA problem, in which S0 is strictly sparse and contains

errors that can be arbitrarily large in magnitude but a�ect only a small fraction of D. It was

demonstrated that under minimal assumptions, R0 and S0 can be exactly recovered from D by

formulating the following tractable convex optimisation problem:

min .
R,S

||R||∗ + λ||S||1 s.t. D = R + S (4.2)

where R and S are, respectively, the estimations of R0 and S0, ||M ||∗ =
∑

i σi(M) denotes the

nuclear norm of a matrix M , which is the sum of its singular values, and ||M ||1 =
∑

ij |Mij|

denotes the element-wise 1-norm, the sum of its absolute values. Moreover, λ is a global

weighting parameter that balances the optimisation process between the two sub-problems

that, respectively, estimate R0 and S0. Based on the insights from their study [32], λ is usually

set to λ = 1/
√
max(m,n).

The idealised RPCA condition however, signi�cantly limits PCP's ability to apply to many

real-world problems. This is because besides the gross but sparse errors, data acquisition in

real-world applications is often undermined by other types of noise, which may cause small

perturbations but a�ect many or even all entries of D, in either a deterministic or stochastic

pattern. For instance, there might be a mild change of background luminance from one acqui-

sition procedure to another. In face recognition on the other hand, the human face is not a

strictly convex, and does not exhibit the Lambertian re�ectance property with perfect isotropic

di�usion. Therefore a collection of face images acquired under lights from di�erent sources

often do not exactly satisfy the low-rank condition.

To address this issue, some researchers proposed a relaxed version of PCP formulation (called
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�Stable PCP� [176]), which introduces another noise term N and converts Eq. (4.2) to:

D0 = R0 + S0 +N0 where D0, R0, S0, N0 ∈ Rm×n (4.3)

The optimisation problem in this case is re-formulated as:

min .
R,S

||R||∗ + λ||S||1 s.t. ||N ||F ≤ δ,D = R + S +N (4.4)

where δ is a tunable parameter that models the aggregate magnitude of the estimated noise N .

Such a relaxed condition secures a better stability to achieve the desired decomposition from

noisy data.

In the special case where quantisation errors (denoted E) during image acquisition are primar-

ily concerned, the following modi�ed formulation (called �Quantised PCP� [14]) is often used

instead:

min .
R,S

||R||∗ + λ||S||1 s.t. ||E||∞ ≤ ε,D = R + S + E (4.5)

where ||M ||∞ = max{|M1,1|, |M1,2|, .., |Mm,n|} is the in�nity norm or maximum norm, which

is the largest absolute value of all matrix entries. In the case of RGB images with three 8-bit

channels, quantisation can induce an error of at most ε = 0.5 at pixel/voxel level. In fact, in

terms of algorithmic solutions (to be discussed in Section 4.2.2), the Stable PCP and Quantised

PCP are almost identical to the original PCP, with major di�erences being the corresponding

termination conditions.

In addition, when the errors are sparse while corrupting the data in a column-wise (or row-wise)

pattern, a tailored version of PCP (called �block-sparse PCP� [145] by the authors, but should

not be confused with some other block-sparse RPCA approaches [54]) can be used to improve

decomposition performance by formulating:

min .
R,S

||R||∗ + κ(1− λ)||R||2,1 + κλ||S||2,1 s.t. D = R + S (4.6)

where ||M ||2,1 =
∑

i ||Mi||2 is the L2,1 norm, which calculates the L1 norm of the vector
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resulting from column-wise taking L2 norms of the matrix M .

4.2.2 Algorithms to solve PCP optimisation problems

A number of algorithms have been developed to solve the PCP optimisation problems. An early

and straightforward solution is to employ the standard interior point methods (such as CVX

[57]). However, o�-the-shelf interior point solvers are generally limited to O(m6) complexity,

and thus are di�cult to apply when the problem scales up to, for example m > 102. To

address this issue, a number of more advanced algorithms have been proposed, most notably the

accelerated proximal gradient (APG) and augmented Lagrangian multiplier (ALM) algorithms,

each will be discussed in the following.

In an abstract sense, all these algorithms are based on two sub-algorithms: the Bregman itera-

tive algorithm for L1-minimisation [62, 170] and the singular value thresholding algorithm for

nuclear-norm minimisation [27], which are used to optimise S and R estimations, respectively.

In particular, an e�cient approach is employed based on the iterative shrinkage-thresholding

scheme [13], with the use of a special shrinkage (soft-thresholding) operator [148]:

Φε[x] =


x− ε, if x > ε

x+ ε, if x < −ε

0, otherwise

(4.7)

where x and ε are real-valued scalars and ε must be positive. At the matrix/vector level, the

operator is simply extended to:

Φε[X] = sgn(X) ◦max(|X| − ε,0) (4.8)

which performs element-wise absolute value shrinkage on all entries of the target matrix/vector

X towards the zero matrix/vector 0.
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Accelerated proximal gradient algorithm

The APG algorithm was originally proposed for matrix completion [150], and a similar algorithm

was developed later to tackle the PCP problem [163, 104]. In this algorithm, Eq. (4.2) is �rst

of all relaxed to the following form:

min .
R,S

||R||∗ + λ||S||1 +
1

2µ
||D −R− S||2F (4.9)

where µ is a positive scalar, and as µ → 0, Eq. (4.9) approximates the original objective

function. Supposing X = (R, S), g(X) = ||R||∗ + λ||S||1, and f(X) = 1
2µ
||D − R − S||2F , Eq.

(4.9) is then converted to:

min .
X

F (X) = f(X) + g(X) (4.10)

Instead of directly minimising F (X), the APG algorithm proceeds to iteratively minimise a

sequence of separable quadratic approximations to F (X), denoted Q(X,Z), formulated using

a set of purposefully chosen milestones Z:

min .
X

Q(X,Z) = f(Z) + 〈∆f(X), X − Z〉+
Lf
2
||X − Z||2F + g(X) (4.11)

where Lf represents the Lipschitz constant and in this case Lf = 2. Algorithm 1 is a piece of

pseudocode that outlines the computational procedure.

The convergence behaviour of this algorithm depends heavily on the selection of Z. A straight-

forward choice would be setting Zi = Xi, which would lead to a convergence rate of O(i−1)

[104, 13]. Alternatively, it was discovered that by setting Zi = Xi + ti−1−1
ti

(Xi −Xi−1) at each

iteration i, with a sequence {ti} satisfying the condition t2i − ti ≤ t2i−1, the optimisation is able

to achieve a convergence rate of O(i−2) [118]. Furthermore, to improve practical performance,

a gradual decay scheme (or continuation scheme) is often applied to µ, which starts with a

large initial value µ0 followed by geometric decrease, until reaching a pre-set minimum µmin.

Nevertheless, it is generally di�cult to derive a generic continuation setting that guarantees

both good accuracy and convergence rate across a wide range of problem settings. For that
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Input: D ∈ Rm×n, λ, µ
1 R0 = R1 = 0, S0 = S1 = 0, t0 = t1 = 1, µmin > 0, η < 1, Lf = 2;
2 while not converged do

3 Zi,R = Ri + ti−1−1
ti

(Ri −Ri−1), Zi,S = Si + ti−1−1
ti

(Si − Si−1);
4 Gi,R = Zi,R − 1

Lf
(Zi,R + Zi,S −D), Gi,S = Zi,S − 1

Lf
(Zi,R + Zi,S −D);

5 (U,Σ, V ) = svd(Gi,R);
6 Ri+1 = UΦ µi

Lf

[Σ]V ∗;

7 Si+1 = Φλµi
Lf

[Gi,S];

8 ti+1 =
1+
√

4t2i+1

2
;

9 µk+1 = max(ηµi, µmin);
10 k = k + 1;
11 end

Output: R∗, S∗ ∈ Rm×n

Algorithm 1: RPCA by APG algorithm

reason, it often requires a series of empirical tests before reaching a good solution. In addition,

a pre-requisite of the APG approach, is that f(X) must be convex and smooth, and follows the

Lipschitz continuity ||∆f(X1)−∆f(X2)||F ≤ Lf ||X1−X2||F [104]. Fortunately, this condition

is generally satis�ed for RPCA problems on image analytics.

Augmented Lagrangian multiplier algorithms

The ALM is one of the most widely used methods to solve optimisation problems. A general

description of the method with practical examples can be easily found in the literature [17]. Two

tailored solutions to the PCP problem have been proposed, namely the exact ALM (EALM)

algorithm and inexact ALM (IALM) algorithm [103], the latter of which is similar to the

alternating direction method developed separately at the same time [171]. Both EALM and

IALM algorithms start with a standard conversion of Eq. (4.2) to the canonical augmented

Lagrangian function form:

min . L
.
= ||R||∗ + λ||S||1 + 〈Y,D −R− S〉+

µ

2
||D −R− S||2F (4.12)

In this case, R, S and Y are then updated iteratively: in each iteration, R and S are updated

�rst by minimising L with respect to R and S while keeping Y �xed, and then the discrepancy
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Input: D ∈ Rm×n, λ
1 R0,0 = 0, S0,0 = 0;
2 Y0 = D/max (||D||, λ−1||D||∞);
3 i = 0, µ0 > 0, ρ > 1;
4 while not converged do
5 j = 0;
6 while not converged do
7 (U,Σ, V ) = svd(D − Si,j + µ−1

i Yi);
8 Ri,j+1 = UΦµ−1

i
[Σ]V ∗;

9 Si,j+1 = Φλµ−1
i

[D −Ri,j+1 + µ−1
i Yi];

10 j = j + 1;
11 end
12 Yi+1 = Yi + µi(D −Ri,j − Si,j);
13 Ri+1,0 = Ri,j, Si+1,0 = Si,j;
14 µi+1 = ρµi;
15 i = i+ 1 ;
16 end

Output: R∗, S∗ ∈ Rm×n

Algorithm 2: RPCA by EALM algorithm

(D −R− S) is used in turn to update Y .

EALM algorithm: Once the objective function is formulated, the EALM algorithm then

carries out the computation described in Algorithm 2, where ||M || = max{σi} denotes the

spectral norm of the matrix M , which calculates its largest singular value. To secure a

good convergence speed and improve practical performance, Y is often initialised to Y0 =

D/max (||D||, λ−1||D||∞), the merit of which is described in the dual problem [104]. Further-

more, based on relevant analysis [103], the EALM algorithm converges Q-linearly. In particular,

the outer-loop converges faster as the geometric series µi grows faster, however the inner-loop

converges slower when µi is larger, which makes the setting of µ and ρ critical to the �nal

computational e�ciency.

IALM algorithm: Further analysis [103] on the other hand, concluded that the inner-loop

that tackles the sub-problem:

(Ri∗, Si∗) = arg min .
Ri,Si

L(Ri, Si, Yi, µi) while keeping Yi �xed (4.13)

does not need to be solved exactly in each outer-loop iteration, in order for the �nal R∗, S∗ to
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Input: D ∈ Rm×n, λ
1 R0 = 0, S0 = 0;
2 Y0 = D/max (||D||, λ−1||D||∞);
3 i = 0, µ0 > 0, ρ > 1;
4 while not converged do
5 Si+1 = Φλµ−1

i
[D −Ri + µ−1

i Yi];
6 (U,Σ, V ) = svd(D − Si+1 + µ−1

i Yi);
7 Ri+1 = UΦµ−1

i
[Σ]V ∗;

8 Yi+1 = Yi + µi(D −Ri+1 − Si+1);
9 µi+1 = ρµi;
10 i = i+ 1;
11 end

Output: R∗, S∗ ∈ Rm×n

Algorithm 3: RPCA by IALM algorithm

converge to the optimal solution. For that reason, the IALM algorithm was proposed based on

a much faster inexact solution, as outlined in Algorithm 3. In this algorithm, Ri and Si are

only updated once when tackling the sub-problem Eq. (4.13), and all (Ri, Si, Yi) are updated

collectively in each single (overall) loop. Furthermore, it was shown that the algorithm still

converges Q-linearly with a geometrically growing µi series, yet if the growth rate ρ was set

too high, the algorithm may no longer converge to the optimum [103]. The recommended

setting was somewhere near ρ = 1.5 based on the authors' empirical experience. In a set of

simulation experiments [103], the IALM algorithm converged at least �ve times faster than the

APG algorithm. For that reason, the IALM method has become one of the most widely used

solution to the PCP optimisation problem nowadays.

4.3 RPCA with Variation Priors

4.3.1 Challenges of RPCA in biomedical imaging

Based on the description in Section 4.2.1, it is not di�cult to identify that the condition

of stationery background in previous RPCA applications simply corresponds to the idealised

RPCA assumption, in which R0 lies in a low-dimensional subspace while S0 being sparse and

a�ecting only a small number of entries in D. However, such idealised assumption is often
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unrealistic when applied to the biomedical domain.

In biomedical imaging, there is usually a structural congruity of biological anatomy across dif-

ferent subjects, which in many circumstances implies the existence of a regular structure in

imaging data, or in RPCA terms, a low-dimensional subspace for high-level feature represen-

tation. Nevertheless, in contrast to those computer vision problems, there is often a signi�cant

natural variation within biomedical data, leading to a number of fundamental challenges re-

garding the applicability of the RPCA technique, most notably:

(a) When acquiring multiple images of the same subject, the imaging subject may be posi-

tioned di�erently with slightly di�erent postures or orientations in di�erent acquisition

procedures.

(b) A subject may undertake physiological movements when imaging is performed at di�erent

time points. For instance, this problem is particularly signi�cant when applied to in-vivo

cardiac imaging, due to frequent heartbeats.

(c) When imaging is performed on multiple subjects, there is usually a signi�cant inter-

subject variability due to the idiosyncratic nature of biological structures.

(d) Di�erent anatomical structures are generally associated with individualistic natural vari-

ability rather than a common variation property. For example, the intestine generally has

higher natural variation than the bones.

(e) There is a high prevalence of noise and artefacts in biomedical images acquired using

contemporary imaging facilities.

(f) For the MRI modality, di�erent images often have di�erent scales of intensity values

To cope with the challenges above, a number of methods have been employed in the framework

described in Chapter 3. To start with, Gaussian smoothing was applied to denoise images,

in order to mitigate problem (e). Secondly, group-wise linear (rigid and a�ne) registration

was employed to deal with problem (a), where images with di�erent postures and orientations
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can be e�ectively aligned. This is also a common practice in computer vision applications

such as face recovery. Furthermore, challenge (b) can be addressed by the application of non-

rigid registration on intra-subject images, whilst (c) can be tackled (although not eliminated

entirely) by group-wise non-rigid alignment in a locally-created representative template space.

In addition, in the case of MRI data, some tissue-standardising normalisation techniques [121]

are often utilised to overcome problem (f).

However, challenge (d) was not directly addressed using the methodology described in Chapter

3. Instead, an ROI mask was applied to restrict RPCA decomposition only to the target struc-

tures, in order to avoid dealing with multiple structures at the same time. More importantly,

this points out the limitation of the baseline RPCA technique for biomedical imaging, in the

sense that there is only a single criterion of outlier tolerance in feature decomposition, solely

controlled by the parameter λ, and applied globally regardless of local variation properties.

4.3.2 The RPCA-P framework

In contrast to the baseline RPCA technique that implements a purely unsupervised data-

driven approach without leveraging any prior knowledge, we propose a modi�ed framework,

the RPCA-P, which is able to incorporate variation priors in feature decomposition. In the

proposed framework, outlier tolerance can be adjusted locally so that voxels associated with

structures/regions that experience higher variability in nature are compensated by allowing

a higher tolerance during feature decomposition. The priors are learned from the variation

patterns in the data itself. In this case, the RPCA-P framework rests on a more relaxed

assumption, in which there could be di�erential levels of variation across di�erent regions in

imaging data. On the other hand, in terms of anomaly detection, the anomalous distortion

should exceed the normal range of variation to distinguish themselves from normality.

Suppose there are n images in total, all of which are properly denoised and group-wise aligned

non-rigidly in a common template space (denoted as I1, .., In ∈ Rw×h×d). Concatenating each

image into a vector of size m = w × h × d and stacking them together will create a matrix
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D ∈ Rm×n, then we have:

D = R + S where D,R, S ∈ Rm×n (4.14)

Similar to the previous setting, the R here estimates the intrinsic regular structure of D that

lies in a low-dimensional subspace, and S captures the abnormal deformations that distort

subjects from their regular form. However R may be subject to moderate normal variation

across all regions in every data sample, whereas the abnormal variation in S is assumed to be

sparse, only a�ecting a small percentage of entries in D. Then in contrast to the standard PCP

formulation, we instead formulate:

min .
R,S

||R||∗ + λ||ξ(n) ◦ S||1 s.t. D = R + S (4.15)

where ξ(n) ∈ Rm×n is the n-time column-wise replication of ξ ∈ Rm×1, which is the vectorised

form of the variation prior map Iξ ∈ Rw×h×d that voxel-wise adjusts outlier tolerance. The

prior Iξ is learned from data, and the learning methods will be discussed in Section 4.3.3.

In order to solve the above optimisation problem, we developed an algorithm based on the state-

of-the-art IALM algorithm described in Section 4.2.2. To start with, Eq. (4.15) is converted to

the canonical augmented Lagrangian function form:

L
.
= ||R||∗ + λ||ξ(n) ◦ S||1 + 〈Y,D −R− S〉+

µ

2
||D −R− S||F (4.16)

We then solve it using Algorithm 4. In particular, the shrinkage operator is extended to include

a two-input version:

Φτ,w[X] = sgn(X) ◦max(|X| − τ ·w(n),0) (4.17)

where X represents the target matrix to perform the shrinkage operation, τ ·w(n) models the

locally adjusted shrinkage level and is based on the combination of a baseline shrinkage τ and

a weight vector w ∈ Rm×1, in which shrinkage is performed on each image independently.
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Input: D ∈ Rm×n, ξ ∈ R1×m, λ
1 Y0 = D/max (||D||, λ−1||D||∞) ;
2 R0 = 0, S0 = 0, i = 0, µ0 > 0, ρ > 1 ;
3 while not converged do
4 Si+1 = Φλµ−1

i ,ξ∗ [D −Ri + µ−1
i Yi] ;

5 (U,Σ, V ) = svd(D − Si+1 + µ−1
i Yi) ;

6 Ri+1 = UΦµ−1
i

[Σ]V ∗ ;
7 Yi+1 = Yi + µi(D −Ri+1 − Si+1) ;
8 µi+1 = ρµi ;
9 i = i+ 1 ;
10 end

Output: R∗, S∗ ∈ Rm×n

Algorithm 4: RPCA-P by modi�ed ALM Method

4.3.3 RPCA-P application to mouse embryo phenotyping

In order to test our hypothesis regarding the e�ectiveness of RPCA-P, we apply it to the mouse

embryo phenotyping problem for direct comparison with the baseline PCA and RPCA methods.

We employ a similar methodology to that detailed in Chapter 3 Section 3.5:

Data pre-processing: image denoising and mouse embryo extraction

The computation in this part is identical to the original methodology in Chapter 3, with

image denoising described in Section 3.5.1 and mouse embryo extraction in Section 3.5.2. The

e�ectiveness of such pre-processing has been evaluated in Section 3.6.

Group-wise image alignment

Non-rigid image registration is employed to collectively align all target images before RPCA-P

processing, in order to ensure e�ective subspace estimation. For simplicity, we directly use

the same template created earlier in Chapter 3 Section 3.5.3 as the reference for group-wise

registration. The non-rigid registration scheme again contains three steps: a rigid, an a�ne

and then a B-spline registration. Based on our previous study, we use the best parameter

setting derived in Section 3.6.4. In particular, in terms of B-spline registration we apply a four-

scale multi-resolution con�guration with maximally 4000 iterations at each resolution level.
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The objective function is based on the combination of mutual information and bending energy

penalty, and the spacing of control points is halved at every new resolution level, with the �nal

spacing set to 200 µm.

Estimation of natural variation priors

In order to perform RPCA-P processing, we need to estimate the variation prior ξ �rst. As

described earlier, ξ = vec(Iξ) where Iξ ∈ Rw×h×d is a weight map that captures the local

variability at voxel-level. A notable point is that Iξ can be learned from (1) the whole dataset,

or (2) a smaller control group. The former case requires the abnormal deformation features to

be sparse across the whole dataset, so that they will carry a low weight in the learned Iξ. The

latter case relaxes this condition and is able to completely exclude the in�uence of abnormal

deformation in Iξ estimation, however it requires some subjects known to be normal in advance.

Since the purpose of the phenotyping study is to detect morphological abnormalities in the

whole test dataset without knowing label information a priori, and defective phenotypes are

assumed to be sparse with individualistic deformation features, we take the former approach.

Depending on the actual application, there could be many possible learning models. Three

typical models are used in this study, respectively, based on:

• Voxel-wise intensity variance:

I
′

ξ =
1

n
·
∑
i∈1..n

(
(Ii − Iµ) ◦ (Ii − Iµ)

)
(4.18)

where Iµ = 1
n

∑
i∈1..n Ii is the average image of the dataset, and A◦B indicates entry-wise

multiplication of matrices A and B.

• Voxel-wise standard deviation:

I
′

ξ =

√
1

n
·
∑
i∈1..n

(Ii − Iµ) ◦ (Ii − Iµ) (4.19)
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where
√
M is an entry-wise operator that computes the square root of every entry in the

matrix M . By de�nition, this is simply the voxel-wise square root of the variance model.

• Average pair-wise discrepancy:

I
′

ξ =
( n!

2!(n− 2)!

)−1

·
∑

i,j∈1..n

|Ii − Ij| (4.20)

where |M | is an entry-wise operator that computes the absolute value of every entry in

the matrix M . This model essentially sums up the pair-wise absolute di�erences between

every two images and then takes the average.

To normalise the weight scale across di�erent prior models, the intensities in the generated I
′

ξ

are rescaled with reference to their mean intensity values, and a standard Gaussian smoothing

is then applied before vectorisation to �nalise ξ estimation:

Iξ = G
( I

′

ξ

µ(I
′
ξ)

)
ξ = vec(Iξ) (4.21)

The e�ectiveness of each model will be empirically tested on the mouse embryo µ-CT data

regarding anomaly detection in Section 4.4.

RPCA-P feature decomposition

With the variation prior model ξ estimated, the optimisation problem Eq. (4.15) is then

formulated and solved using Algorithm 4. Since ξ is able to voxel-wise adjust outlier tolerance

across the whole mouse embryo rather than restricted to a small anatomical structure or region,

an ROI mask in this case is no longer needed. Instead we apply it to the entire embryo (excluding

the background to reduce computational burden in the actual implementation).

In terms of the convergence condition, we use the same criterion recommended in the original

work of the IALM algorithm [103] and set it to:

π = ||D −R∗ − S∗||F / ||D||F < 10−7 (4.22)
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The only important parameter to tune then is the baseline tolerance λ, which will be detailed

in Section 4.4. Once the algorithm terminates, the obtained R∗ and S∗ are then used to

reconstruct I∗i,r and I
∗
i,s, ∀i ∈ 1..n.

Abnormality detection

For easy comparison, abnormality detection is carried out using the same method as in the

original methodology using the purpose-developed anomaly rate metric (denoted Ω), described

in Chapter 3 Section 3.5.6. A notable point is that the `Normal-vs-Abnormal� classi�cation

is applied separately from the RPCA-P process, and can be applied to the entire image or a

speci�c region, regardless of whether feature decomposition is applied to the image or region

level. In brief, this method calculates the level of morphological abnormality identi�ed in each

image or region, and compares it with a baseline level, in order to determine whether the

corresponding image/region should be annotated normal or abnormal.

4.4 Evaluation

4.4.1 Test data

An evaluation study has been carried out on the same two datasets of mouse embryo µ-CT

images, described in Chapter 3 Section 3.4.2. Figure 4.1 illustrates some sample images of

Datasets A and B after pre-processing and group-wise alignment. In particular, since the

images in Dataset A were too large to scale RPCA-P computation to the entire embryo region

in our experimental environment (with 32GB memory only), all of them were down-sampled

to the resolution 20× 20× 20 µm3, and the reduced image size was 326× 392× 612.

Furthermore, it is easy to identify that the images in each dataset are structurally similar,

but there is also a notable natural variation across di�erent subjects, especially in regions like

the heart and lung. A series of experiments have been carried out on both test datasets to

demonstrate the e�ectiveness of the RPCA-P in comparison with the baseline method. The
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(a) Dataset A

(b) Dataset B

Figure 4.1: Sample images in axial view from (a) Dataset A and (b) Dataset B. In contrast
to Figures 3.8 and 3.9 in Chapter 3, all images displayed here are properly pre-processed and
group-wise non-rigid aligned in the template space, ready for RPCA-P processing directly. In
particular, images in Dataset A are down-sampled to the resolution 20× 20× 20 µm3

results of variation prior estimation, and the combinatorial in�uences of baseline tolerance

and local tolerance adjustment on feature decomposition and abnormality detection will be

discussed in the following sections.

4.4.2 Results of variation prior ξ estimation

The variation prior ξ estimates the degree of natural variability at voxel-level, and is used

to adjust the local outlier tolerance during RPCA-P feature decomposition. In anatomical

structures or regions that naturally experience higher variability (such as the lung and the

intestine), features more distant from �normality� will be tolerated and included in the regular
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: The weight maps generated by variation prior estimation using the (a) ξvar model,
(b) ξstd model and (c) ξapd model for Dataset A, as well as the counterparts using the (d) ξvar
model, (e) ξstd model and (f) ξapd model for Dataset B

component, rather than being considered anomalous.

As described earlier, in this study there were three models used for learning local natural

variability, respectively, based on (1) voxel-wise intensity variance ξvar, (2) voxel-wise standard

deviation ξstd, and (3) average pair-wise discrepancy ξapd. The local tolerance maps generated

for Dataset A and Dataset B using these three learning models are illustrated in Figure 4.2,

where the brighter part indicates a higher local variability and thus higher outlier tolerance,

and vice versa.
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4.4.3 Results of feature decomposition: the in�uence of the baseline

tolerance λ

The parameter λ governs the global baseline level of outlier tolerance for regular/singular

decomposition. Similar to that in the original methodology, the reconstructed Ir images are

more similar to each other when λ is smaller, and as λ increases, more individualistic features

are included in Ir, leaving only features distant from �normality� retained in Is.

In contrast to the simple guideline described in Chapter 3 Section 3.6.3, the setting of λ in the

RPCA-P framework needs to be determined in combination with the use of variation prior ξ,

which may seem more complicated at the �rst glance. However, we found that once the weight

normalisation in Eq. (4.21) is applied, a working setting would still be somewhere near the

order of λ = 1/
√
m; or λ = 1/(µξ

√
m) if not normalised. The decomposition results with the

settings λ = 0.5/
√
m, λ = 1/

√
m and λ = 1.5/

√
m are compared across four di�erent samples

from Dataset A and four from Dataset B in Figure 4.5, Figure 4.6, and Figure 4.7.

4.4.4 Results of feature decomposition: the in�uence of the variation

prior ξ

In general, the incorporation of variation priors signi�cantly improves the performance of feature

decomposition compared to the baseline method used in our original methodology. To better

demonstrate the superiority of RPCA-P, an example outcome of feature decomposition applied

to the same subjects in Dataset A and Dataset B, using the baseline PCA method and baseline

RPCA method, as well as RPCA-P with ξvar, ξstd, and ξapd priors are, respectively, illustrated

in Figure 4.3, Figure 4.4, Figure 4.5, Figure 4.6, and Figure 4.7 in a comparative fashion. The

region showing the heart in images from Dataset A, as well as the regions containing the left

and right limbs in images from Dataset B are, respectively, coloured in purple, green and red,

in order to help with visual inspection. In contrast to the original methodology however, as

described earlier, the RPCA-P process did not use ROI masks for feature decomposition, and

was instead applied to the entire embryo.
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(a) (b) r = 3 (c) r = 29 (d) r = 30

(e) (f) r = 3 (g) r = 13 (h) r = 14

Figure 4.3: Sample results of feature decomposition using baseline PCA, applied to (a-d)
Dataset A with r = 3, r = 29, and r = 30, and (e-h) Dataset B with r = 3, r = 13, and
r = 14, respectively. Rows 1-2 in both cases are typical of normal controls, Row 3 is a subject
of VSD/polydactyly phenotype, and Row 4 is a normal subject with particularly signi�cant
natural variation.
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(a) (b) λ = 0.5/
√
m (c) λ = 1/

√
m (d) λ = 1.5/

√
m

(e) (f) λ = 0.5/
√
m (g) λ = 1/

√
m (h) λ = 1.5/

√
m

Figure 4.4: Sample results of feature decomposition using baseline RPCA, applied to the same
subjects as above, with λ = 0.5/

√
m, 1/

√
m, and 1.5/

√
m, respectively.
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(a) (b) λ = 0.5/
√
m (c) λ = 1/

√
m (d) λ = 1.5/

√
m

(e) (f) λ = 0.5/
√
m (g) λ = 1/

√
m (h) λ = 1.5/

√
m

Figure 4.5: Sample results of feature decomposition using the RPCA-P method with ξvar,
applied to the same subjects as above
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(a) (b) λ = 0.5/
√
m (c) λ = 1/

√
m (d) λ = 1.5/

√
m

(e) (f) λ = 0.5/
√
m (g) λ = 1/

√
m (h) λ = 1.5/

√
m

Figure 4.6: Sample results of feature decomposition using the RPCA-P method with ξstd,
applied to the same subjects as above
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(a) (b) λ = 0.5/
√
m (c) λ = 1/

√
m (d) λ = 1.5/

√
m

(e) (f) λ = 0.5/
√
m (g) λ = 1/

√
m (h) λ = 1.5/

√
m

Figure 4.7: Sample results of feature decomposition using the RPCA-P method with ξapd,
applied to the same subjects as above
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By simple inspection, one can easily identify that feature decomposition by classic PCA was,

again, ine�ective and unable to separate outliers from the regularity. Decomposition by the

baseline RPCA method, on the other hand, was still far from ideal, with a lot of normal

features outside the heart region in the case of Dataset A, or the limb region in the case

of Dataset B, being mistakenly included in the singular component. In stark contrast, the

RPCA-P method substantially enhanced the decomposition performance, where the target

abnormalities were generally captured with minimal noise present in the singular component.

Moreover, feature decomposition using ξstd and ξapd generally outperformed the counterpart

using ξvar, in terms of capturing the desired phenotypical features while tolerating considerable

natural variations. The di�erence between ξstd and ξapd on the other hand, was much less

signi�cant. Yet a closer observation will discover that there was a larger amount of phenotypical

features remaining in the singular component with the use of ξapd prior model, especially when

λ increased to λ = 1.5/
√
m. A notable point is that the RPCA-P application to Dataset B

using ξvar in particular, was not very successful, with the polydactyly features mostly being

included in the regular component rather than separated out as singular features, leading to a

lower anomaly detection accuracy, which will be discussed in the next section. The di�erential

feature decomposition results indicate that the selection of variation prior is critical to RPCA-P

performance.

4.4.5 Results of abnormality detection

Similar to our previous study, the performance of abnormality detection was evaluated using

cross validation, in which each setting was applied 31 and 15 times, respectively, to Datasets A

and B with a leave-one-out strategy. In each test, the baseline PCA, baseline RPCA and the

proposed RPCA-P using ξvar, ξstd, ξapd priors were applied to the remaining 30 and 14 images.

In terms of evaluating the detection performance, the same system based on the sensitivity,

speci�city and overall accuracy measures described in Chapter 3 Section 3.6.5 was applied.

To enforce a fair comparison, we apply the same set of ROI masks corresponding to, respectively,

the heart for Dataset A and each of the four limbs in Dataset B, to compute the anomaly rates
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Table 4.1: Performance metrics of abnormality detection on Dataset A

Dataset A

SEN SPE ACC
Baseline PCA 100.00± 0.00% 17.65± 2.20% 33.33± 2.42%
Baseline RPCA 100.00± 0.00% 82.35± 2.20% 85.71± 1.79%

RPCA-P with ξvar 100.00± 0.00% 88.24± 1.86% 90.48± 1.50%
RPCA-P with ξstd 100.00± 0.00% 94.12± 1.36% 95.24± 1.09%
RPCA-P with ξapd 100.00± 0.00% 94.12± 1.36% 95.24± 1.09%

for all cases. A notable point is that each ROI mask used here is a simple cuboid that contains

a target organ as well as its surrounding tissues and structures (respectively depicted by the

purple, green and red-coloured regions in the �gures), in contrast to only covering the target

organs as in our previous study in Chapter 3. This reduces the additional work to draw re�ned

ROI masks as in the original methodology.

The metrics of phenotypical abnormality detection using the baseline PCA, baseline RPCA

and RPCA-P with ξvar, ξstd, ξapd priors applied to Dataset A are shown in Table 4.1 in a

comparative fashion. Unsurprisingly, the baseline PCA method obtained low detection scores,

again, corroborating our suggestion of its infeasibility for abnormality detection. Then, in

comparison to the baseline RPCA method, an improved detection performance regarding the

VSD abnormality was observed in all three RPCA-P settings: where the statistics rose from

82.35 ± 2.20% speci�city and 85.71 ± 1.79% overall accuracy obtained in the baseline case, to

88.24±1.86% speci�city and 90.48±1.50% accuracy using RPCA-P with ξvar, and further rose

to 94.12± 1.36% speci�city and 95.24± 1.09% accuracy with ξstd or ξapd, while the sensitivity

was maintained at 100% at all times.

In the case of Dataset B, the comparative performance metrics are shown in Table 4.2. Similarly,

the baseline PCA was considered a failure and quickly ruled out of consideration, whereas the

baseline RPCA approach obtained 77.42±2.93% speci�city and 84.44±2.06% overall accuracy.

On the other hand, by using RPCA-P with ξstd the performance improved to 86.46 ± 2.69%

speci�city and 90.67 ± 1.87% overall accuracy, and by using RPCA-P with ξapd it further

improved to 90.97± 1.68% speci�city and 93.78± 1.17% overall accuracy. However, RPCA-P
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Table 4.2: Performance metrics of abnormality detection on Dataset B

Dataset B

SEN SPE ACC
Baseline PCA 100.00± 0.00% 11.11± 11.11% 20.00± 21.78%
Baseline RPCA 100.00± 0.00% 77.42± 2.93% 84.44± 2.06%

RPCA-P with ξvar 100.00± 0.00% 63.86± 3.47% 75.11± 2.48%
RPCA-P with ξstd 100.00± 0.00% 86.46± 2.69% 90.67± 1.87%
RPCA-P with ξapd 100.00± 0.00% 90.97± 1.68% 93.78± 1.17%

application with ξvar led to a lower performance, scoring only 63.86 ± 3.47% speci�city and

75.11± 2.48% overall accuracy. The sensitivity was �xed at 100% in all cases.

A notable point is that the detection performance with the baseline PRCA method here is lower

than that in Chapter 3 Section 3.6.5 using the original methodology. This is because feature

decomposition was no longer applied to a dedicated ROI but to the whole embryo instead,

in which the singular features in neighbouring structures could lead to false positive anomaly

detections, and thus lowered the speci�city and overall accuracy.

4.4.6 Computation time

The same runtime environment was deployed as in our previous study, on a standard PC with

an Intel i7 3.4GHz quad-core CPU and 32GB RAM memory without parallel settings. However,

this time feature decomposition was applied to the whole embryo rather than a small ROI. An

embryo in Dataset A occupies mA ≈ 3 × 107 voxels, and a counterpart in Dataset B occupies

mB ≈ 2× 107 voxels.

Taking all runs of cross validation into consideration, the average RPCA-P processing time on

Dataset A was around 22 min for all 30 images per run (equivalent to around 44s per image),

where size(DA) ≈ 9× 108. No signi�cant di�erence was identi�ed between the use of ξvar, ξstd

and ξapd prior models. The algorithm generally took about 20 iterations to converge. On the

other hand, the baseline RPCA method generally took about 30 iterations to converge, which

inreased the average processing time to 34 min (equivalent to around 68s per image).
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In the case of Dataset B, the RPCA-P algorithm average processing was around 10 min (equiv-

alent to around 42s per image), which was also faster than the baseline method which took an

average 15.5 min (equivalent to around 66s per image) to process, with size(DB) ≈ 3 × 108.

There was no notable di�erence between the use of variation prior model either. In addition, a

faster convergence rate was witnessed again with RPCA-P generally taking about 20 iterations

to converge while the baseline RPCA taking about 30 iterations.

4.5 Discussion

Over the past decades, there have been numerous studies trying to make the PCA technique

more robust to signi�cant outlier presence or partial data distortion. With its substantial per-

formance guarantees, the PCP approach has gradually become the standard RPCA framework.

In addition to feature extraction and dimensionality reduction, this framework also provides a

feature decomposition capability that is able to decompose a collection of (distorted) observa-

tion data, into a low-dimensional regular structure and a sparse component mainly composed

of distortion factors. For that reason, it can be employed either to recover the undistorted

form of the data (such as to recover a matrix with missing entries), or detect the presence of

anomaly within the data (such as to detect intrusion in video surveillance). The decomposition

process can be adjusted by a tunable parameter λ that balances the weights between including

marginal data into the regular or singular components. In the mouse phenotyping study, our

methodology is centred on leveraging its anomaly detection capability.

However, despite the considerable success in computer vision, the application of the baseline

RPCA method to biomedical imaging has proven to be much more challenging. This is pri-

marily due to the wide prevalence of various forms of natural variation in biomedical data,

which substantially undermines the PCP assumption of a stationery background for subspace

estimation. As a remedy, our proposed RPCA-P method can relax this condition by allowing a

certain degree of background variation, and applying a tailored outlier tolerance for each single

voxel/dimension. In other words, it allows voxel-wise adjustment of feature decomposition, so
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that in the regions experiencing higher or lower natural variability, the level of strictness for

outliers to be considered anomalous can be relaxed or tightened by some localised �ne-tuning.

In this case, RPCA-P can be applied to the entire embryo (or entire image if memory is not

concerned) directly, instead of a dedicated ROI as in the case of the baseline RPCA in our

original methodology.

The local adjustment is realised by the inclusion of a variation prior ξ in the modi�ed PCP

formulation. In the phenotyping application, it is essentially a weight image that estimates

the degree of natural variation at voxel level, and is learned from the data itself, bearing the

assumption that abnormal deformations are sparse and thus do not signi�cantly a�ect the ξ

estimation based on a majority of normal images in the test dataset. In this sense, the RPCA-

P method could be regarded as a special semi-supervised learning approach, compared to the

purely unsupervised approach using the baseline RPCA method and the purely supervised ap-

proach in a standard label classi�cation problem. Three simple learning models were proposed

in this study: voxel-wise intensity variance ξvar, voxel-wise standard deviation ξstd and average

pair-wise discrepancy ξapd. Each was proven to be e�ective in terms of local tolerance adjust-

ment, leading to di�erent feature decomposition outcomes. In general, the use of PRCA-P led

to improved performance of abnormal phenotype detection compared to the baseline RPCA,

except for the case applied to Dataset B with ξvar. In particular, both RPCA-P with ξstd and

ξapd contributed to around 12% increase of detection speci�city in the case of VSD phenotype,

and respectively, achieved 9% and 13.5% increase in the case of polydactyly phenotype.

4.6 Conclusion

In this study we proposed a novel RPCA-P framework that is able to incorporate prior infor-

mation regarding the local degree of outlier tolerance at each data dimension in the feature

decomposition process. In terms of anomaly detection in biomedical imaging data, the natural

variation can be learned a priori at the voxel level, and a prior model is then incorporated in

the subsequent RPCA-P process to locally adjust outlier tolerance. In this case, the proposed
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method in theory should be able to address natural variation and improve the performance of

feature decomposition in the biomedical domain.

In our test application to the mouse embryo phenotyping problem, three simple learning models

were suggested for prior estimation, respectively, based on voxel-wise intensity variance, voxel-

wise standard deviation and average pair-wise discrepancy, each was proven to be e�ective in

terms of local decomposition adjustment. Moreover, the re�ned methodology using the RPCA-

P technique (with ξapd in particular) signi�cantly outperformed the original methodology using

the baseline RPCA technique, without restricting feature decomposition to a dedicated ROI.

The best anomaly detection performance achieved was 100% sensitivity, 94.12±1.36% speci�city

and 95.24±1.09% overall accuracy for the VSD phenotype, and 100% sensitivity, 90.97±1.68%

speci�city and 93.78± 1.17% overall accuracy for the polydactyly phenotype.
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Chapter 5

Summary and Future Work

5.1 Summary

To sum up, the work presented in this thesis is centred on developing machine learning tech-

niques for e�cient recognition of anatomical structures and morphological abnormalities in

biomedical images. Three investigations have been carried out during the course of this thesis:

Image segmentation using a patch-based canonical neural network

The �rst study explores the use of deep learning in patch-based image segmentation. Seg-

mentation of anatomical structures in the biomedical image is a fundamental step of image

analytics, and is often a prerequisite to advanced procedures such as diagnostics. A large pro-

portion of existing image segmentation frameworks proposed over the past decades have heavily

rested on two signal processing-based paradigms: label propagation via image registration and

pair-wise patch-based pattern matching. Despite a high segmentation accuracy having been

reported in many applications, the computational e�ciency is generally limited, and an addi-

tional atlas selection process is often required to identify the most suitable atlases to help with

segmentation.

More recently, the employment of machine learning has gained wider attention. In particular,

139
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we argue that better patch-based classi�cation can be achieved by harnessing the power of deep

learning. In contrast to the low-level hand-engineered features (such as the sum of squared dif-

ferences) used in the conventional patch-based segmentation approaches, we train a deep neural

network that is able to achieve highly intricate feature representation and classi�cation capa-

bilities. Following the remarkable success in computer vision, some deep learning approaches,

especially with the use of the convolutional neural network (ConvNet), have been frequently

applied to biomedical imaging lately. The ConvNet model is a special type of neural network

that features a structure with multiple layers, each is composed of a set of independent com-

putational neurons that perform convolutional �lterings on images. In each single convolution

process, an image is �ltered with a sliding kernel typically of a small size (such as 5 × 5 × 5).

By projecting images over many layers of convolution �lters, a deep ConvNet architecture can

yield advanced feature representation capacity while using far less learning weights compared

to a canonical neural network (CanonNet) model.

In terms of image segmentation, the process is often broken down to voxel-wise label classi�ca-

tion with a patch-based setting, where each patch is treated as a mini-image for the classi�cation

of its centre voxel. However, we argue that in the context of patch-based segmentation, the

ConvNet has little advantage over the CanonNet architecture. This is because a patch is small

(often around 9× 9 to 15× 15 only), and thus do not need further decomposition and will not

bene�t from convolution. Instead, we make use of the CanonNet in which neurons only compute

dot products. Meanwhile we also incorporate modern techniques of deep learning, including

GPU programming, Recti�ed Linear Unit (ReLU) activation, dropout layers and 2.5D tri-planar

patch multi-pathway setting. The resulting classi�er is much faster and less memory-hungry

than convolution based networks. In our test application to the segmentation of hippocampus

in human brain MR images, we signi�cantly outperformed prior state-of-the-art with a median

Dice score up to 90.98% at a near real-time speed (<1s). To the best of our knowledge, this is

the fastest hippocampus segmentation algorithm with the highest segmentation accuracy ever

reported on a comparable size of experiments at the time of the work.
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Mouse phenotyping with the combined use of non-rigid registration and robust

principal component analysis

The second study is an investigation into mouse phenotyping, and develops a high-throughput

framework to detect morphological abnormality in imaging data with the combined use of

non-rigid registration and robust principal component analysis (RPCA).

Signi�cant research e�orts have been underway toward leveraging gene modi�cation and im-

age analytics to help phenotype the mouse genome. Existing research can be broadly divided

into two branches of work, respectively, based on the detection of phenotype-speci�c features

and comparative analytics. The �rst branch is primarily centred on the classi�cation of cer-

tain known phenotypes and is thus unable to deliver a general phenotyping purpose. The

second branch, despite being more general, primarily rests on either volumetric contrast or

deformation-based morphometrics to separate abnormal subjects from the normal. Detection

of morphological abnormality via volumetric contrast often fails when there is no severe volume

variation involved, whereas the detection via deformation-based morphometrics on the other

hand is not very robust since the deformation features may vary signi�cantly with the use of

di�erent registration settings and templates. Furthermore, existing approaches often require

image segmentation on certain structures of interest before proceeding to further analysis, which

is very challenging when applied to mouse embryo phenotyping.

In contrast, we propose a novel phenotyping approach centred on feature decomposition, which

divides imaging data into a regular and a singular component, the latter of which is then used to

detect morphological abnormality. In essence, we make use of non-rigid registration to group-

wise align target images in a locally generated template space, followed by RPCA processing to

realise the desired feature decomposition. The proposed framework is able to e�ciently perform

abnormality detection in a batch of images simultaneously, sensitive to both volumetric and non-

volumetric variations, and does not require image segmentation. A validation study has been

applied to two datasets of mouse embryo µ-CT images, and successfully distinguished the VSD

and polydactyly from the normal phenotype with a 100% sensitivity. The detection speci�cities

achieved for these two abnormal phenotypes were, respectively, 85.19±1.29% and 88.89±3.15%,
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and the resulting overall accuracies were, respectively, 87.10± 1.13% and 93.34± 1.84%.

Robust principal component analysis with variation priors (RPCA-P)

The third study investigates the RPCA framework in more depth and proposes a novel RPCA-

P framework that is better able to address the prevailing natural variations in biomedical data.

RPCA is an extension of the classic PCA, which is a widely used statistical data analytical

technique concerning feature extraction and dimensionality reduction. Due to its strong per-

formance guarantees, RPCA via principal component pursuit (PCP) has gradually become the

standard RPCA method, and has previously been applied to many computer vision problems,

attaining fruitful results. However, all these applications rest on a common condition, in which

there is a stationery background that is invariant across the majority of the imaging data being

processed.

In contrast, there is a signi�cant natural variation in the biomedical domain, which distinguishes

one subject from another. In this case, the baseline RPCA does not work to the demanding

quality when directly applied to biomedical imaging. Although image registration can be used

to group-wise align these images non-rigidly and to some extent reduces such variance. The

problem however cannot be eliminated entirely. In particular, di�erent anatomical structures

often have individual natural variations, whereas the level of outlier tolerance for feature de-

composition in the baseline RPCA framework is solely controlled by a single parameter that

applies globally regardless of local variability, which further complicates the situation.

To improve this purely unsupervised machine learning approach without leveraging any prior

knowledge, we propose a semi-supervised approach with a modi�ed RPCA framework (RPCA-

P), which is able to incorporate variation priors in the model and adjusts outlier tolerance

locally so that voxels associated to structures of higher natural variability are compensated

by allowing a higher tolerance during feature decomposition. Furthermore, the variation prior

model can be learned in advance from the data itself using a range of learning models.

A revised methodology using RPCA-P was proposed in the application to the mouse embryo
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phenotyping problem. In particular, feature decomposition was applied to the whole embryo

rather than restricted to the structure of interest. Furthermore, we proposed three learning

models, respectively, based on voxel-wise intensity variance, voxel-wise standard deviation and

average pair-wise discrepancy, to estimate the variation priors using local data. In our eval-

uation using the same mouse embryo data, the revised methodology achieved better feature

decomposition and anomaly detection results, with the performance metrics raised to 100%

sensitivity, 94.12 ± 1.36% speci�city and 95.24 ± 1.09% overall accuracy for the VSD pheno-

type, and to 100% sensitivity, 90.97± 1.68% speci�city and 93.78± 1.17% overall accuracy for

the polydactyly phenotype.

5.2 Future Work

Extensions on the patch-based deep learning segmentation framework

There are a number of future extensions that can be suggested based on the patch-based deep

learning segmentation work presented in this thesis. To start with, as a pilot validation study,

this framework has only been tested on the segmentation of hippocampus in the adult human

brain with 100 MR images retrieved from one database. A broader experimentation on a range

of anatomical structures, tissues or brain parcellations using larger, potentially multi-modality

and/or cross-database image sets should be carried out, before a more comprehensive conclusion

could be drawn regarding the full capacity of the proposed method in terms of both feature

representation potential and segmentation performance (accuracy and speed).

Furthermore, while boasting the superiority of the proposed architecture based on the Canon-

Net, one of the limitations of the current work is the lack of a direct comparative study with

ConvNet methods. A major reason is the lack of ConvNet work on hippocampus segmenta-

tion reporting a state-of-the-art accuracy, and adapting a more general framework from other

studies (such as the U-Net [131] or DeepMedic [78], which were, respectively, validated on the

segmentation of neuronal structures in microscopy images and brain lesion in multi-modality

MR images) requires non-trivial engineering and experimentation work. Nevertheless, the pros
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and cons of �CanonNet vs ConvNet� should be more comprehensively addressed in an exten-

sional study.

Last but not least, recent years have witnessed an exponential growth of deep learning studies,

applied to a large variety of problems, including image classi�cation, face recognition, natural

language understanding in addition to biomedical imaging. However, in the majority of these

studies, usually only a �xed network architecture was described and tested. The reasons for

choosing the hyper-parameter con�guration, such as the number of layers in the network, the

number of neurons in each layer, or the impact of a di�erent con�guration, were generally not

elucidated. A detailed investigation into hyper-parameter con�guration would be not only very

demanding, but also highly constructive to the future development of deep learning in general.

Extensions on the mouse phenotyping framework

First of all, registering an image undergoing abnormal deformations with a normal subject in

practice is challenging, since the abnormal features do not match with the normal counterparts.

Although the nature of di�erence is utilised for feature decomposition, it may also cause minor

displacement of the target structures, which in turn leads to more singular features generated

around the boundaries and can potentially trigger false positive detection. Recently, a novel

registration approach [105] has been proposed to address the presence of defects such as lesions

and tumours, also by leveraging non-rigid registration and RPCA. It starts with a standard

group-wise non-rigid image alignment. After that, RPCA is carried out to recover all the im-

ages into their regular forms (and separate the singular factors out), followed by a group-wise

non-rigid registration performed on the recovered images, where the generated transformations

are then used to align the original images. This process is iteratively executed until the im-

ages align to a satisfactory quality. A similar group-wise alignment scheme has also been used

in computer vision to deal with images with partial occlusion or corruption [124]. This ap-

proach may be incorporated in our phenotyping framework to replace the current group-wise

alignment method. We consider it might be able to improve the follow-up feature decomposi-

tion and anomaly detection performance, yet on the other hand would signi�cantly increases
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computational burden. Its practical merit requires further investigations.

Secondly, there were only two phenotypes tested in our evaluation studies: VSD and poly-

dactyly. Also, the test datasets were relatively small, with a total of 46 mouse embryo images.

To fully examine the performance of our phenotyping approach, a more comprehensive study

should be carried out on many other phenotypes with a much larger test dataset. Moreover,

all our test data were µ-CT images, and the performance on other modalities such as µ-MRI

requires further experimentation.

Furthermore, anomaly detection in the current framework is a region-level classi�cation based

on measuring anomaly rate over a target region. A bad selection of such a region, for example

a small one that covers the target structure only by a portion, or a large one that covers many

other structures, could potentially undermine the detection performance. A more desirable

anomaly detection outcome may be a label map that accurately annotates the anomalous part

of each defective structure in the original image. This may be achieved by some post-processing

on the singular feature images, yet it could easily lead to scattered false positive signals and

may require additional �ne-tuning. Last but not least, if a large pool of samples of di�erent

genotypes is available, further statistical analysis may be conducted on the regions consistently

showing large inter-genotype discrepancy, to examine systematic correlation of the abnormality

with genotype and gene modi�cation.

Extensions on the RPCA-P technique

To start with, there were three learning models to estimate variation priors examined in this

thesis, respectively, based on voxel-wise intensity variance, voxel-wise standard deviation and

average pair-wise discrepancy. Although the e�ectiveness of local tolerance adjustment was

demonstrated for each prior model, they all ended up with somewhat di�erent feature decom-

position outcomes, and led to di�erent anomaly detection results. Also, there could be many

other learning models besides the proposed three. Therefore a direct future study could be

an extensional investigation regarding the optimal learning model for variation prior estima-

tion, which in fact is probably application-dependent. Moreover, in our work we learned the
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variation priors using all images in the test dataset, based on the assumption that abnormal

deformations are sparse and thus will make limited impact on the estimation outcome. Learn-

ing approaches in other situations could also be explored, for example when there is a large

proportion of subjects with abnormal phenotypes, and/or some of the subjects are known to be

normal/abnormal in advance. In other words, an insightful generalisation over variation prior

learning is highly desirable, and can signi�cantly improve the applicability of the RPCA-P

technique to di�erent problem domains.

Furthermore, the nature of RPCA or RPCA-P lies on feature decomposition, and thereby we

consider it to be widely applicable to many other problems regarding anomaly detection and

regular structure recovery. The fundamental purpose of the RPCA-P technique is to enhance

the performance of RPCA, in the conditions where the background undergoes certain levels of

variation. Such variation is particularly common in biomedical data, but also applies to other

computer vision problems, such as a partially moving background or the use of a non-stationery

camera in video surveillance, and a direct RPCA application is likely to fail in these conditions.

For that reason, a future study in this line of work could be an investigation regarding whether

or how we would be able to improve the detection of anomalous objects in these scenarios

using RPCA-P. For instance, if the background includes a vibrating or swinging object (like

a pendulum) during the course of surveillance, one might be able to learn and incorporate

variation priors into feature decomposition, so that it only triggers anomaly detection when

there is a more substantial variation occurring in that region, such as the presence of another

object.



Appendix: Elastix con�guration in Chapter 3

Con�guration of Rigid Registration

//ImageTypes

(FixedImagePixelType "�oat")

(FixedImageDimension 3)

(MovingImagePixelType "�oat")

(MovingImageDimension 3)

//Multi-Resolution

(Registration "MultiResolutionRegistration")

(NumberOfResolutions 3)

(MaximumNumberOfIterations 500)

//Pyramid

(FixedImagePyramid "FixedSmoothingImagePyramid")

(MovingImagePyramid "MovingSmoothingImagePyramid")

//ImageSampler

(ImageSampler "RandomCoordinate")

(NumberOfSpatialSamples 3000 )

(NewSamplesEveryIteration "true")

(UseRandomSampleRegion "true")

(SampleRegionSize 2.5 2.25 3)

//Metric

(Metric "AdvancedMattesMutualInformation")
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(NumberOfHistogramBins 64)

(CheckNumberOfSamples "true")

//Optimizer

(Optimizer "AdaptiveStochasticGradientDescent")

(AutomaticParameterEstimation "true")

(MaximumNumberOfSamplingAttempts 10)

//Transform

(Transform "EulerTransform")

(AutomaticScalesEstimation "true")

(AutomaticTransformInitialization "true")

(AutomaticTransformInitializationMethod "GeometricalCenter")

(UseDirectionCosines "true")

(HowToCombineTransforms "Compose")

//Interpolator and Resampler

(Interpolator "LinearInterpolator")

(Resampler "DefaultResampler")

(ResampleInterpolator "FinalBSplineInterpolator")

(FinalBSplineInterpolationOrder 3)

Con�guration of A�ne Registration

//ImageTypes

(FixedImagePixelType "�oat")

(FixedImageDimension 3)

(MovingImagePixelType "�oat")

(MovingImageDimension 3)

//Multi-Resolution

(Registration "MultiResolutionRegistration")
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(NumberOfResolutions 3)

(MaximumNumberOfIterations 500)

//Pyramid

(FixedImagePyramid "FixedSmoothingImagePyramid")

(MovingImagePyramid "MovingSmoothingImagePyramid")

//ImageSampler

(ImageSampler "RandomCoordinate")

(NumberOfSpatialSamples 3000 )

(NewSamplesEveryIteration "true")

(UseRandomSampleRegion "true")

(SampleRegionSize 2.5 2.25 3)

//Metric

(Metric "AdvancedMattesMutualInformation")

(NumberOfHistogramBins 64)

(CheckNumberOfSamples "true")

//Optimizer

(Optimizer "AdaptiveStochasticGradientDescent")

(AutomaticParameterEstimation "true")

(MaximumNumberOfSamplingAttempts 10)

//Transform

(Transform "A�neTransform")

(AutomaticScalesEstimation "true")

(UseDirectionCosines "true")

(HowToCombineTransforms "Compose")

//Interpolator and Resampler

(Interpolator "LinearInterpolator")

(Resampler "DefaultResampler")

(ResampleInterpolator "FinalBSplineInterpolator")
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(FinalBSplineInterpolationOrder 3)

Con�guration of B-spline Registration

//ImageTypes

(FixedImagePixelType "�oat")

(FixedImageDimension 3)

(MovingImagePixelType "�oat")

(MovingImageDimension 3)

//Multi-Resolution

(Registration "MultiMetricMultiResolutionRegistration")

(NumberOfResolutions 4)

(MaximumNumberOfIterations 4000)

//Pyramid

(FixedImagePyramid "FixedSmoothingImagePyramid")

(MovingImagePyramid "MovingSmoothingImagePyramid")

//ImageSampler

(ImageSampler "RandomCoordinate")

(NumberOfSpatialSamples 3000 )

(NewSamplesEveryIteration "true")

(UseRandomSampleRegion "true")

(SampleRegionSize 2.5 2.25 3)

//Metric

(Metric "AdvancedMattesMutualInformation" "TransformBendingEnergyPenalty")

(Metric0Weight 1.0)

(Metric1Weight 0.01)

(NumberOfHistogramBins 64)

//Optimizer
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(Optimizer "AdaptiveStochasticGradientDescent")

(AutomaticParameterEstimation "true")

(MaximumNumberOfSamplingAttempts 5)

//Transform

(Transform "BSplineTransform")

(BSplineTransformSplineOrder 3)

(FinalGridSpacingInPhysicalUnits 0.2) // 0.4 for 400µm and 0.1 for 100µm settings

(UseDirectionCosines "true")

(HowToCombineTransforms "Compose")

//Interpolator and Resampler

(Interpolator "LinearInterpolator")

(Resampler "DefaultResampler")

(ResampleInterpolator "FinalBSplineInterpolator")

(FinalBSplineInterpolationOrder 3)



152 Chapter 5. Summary and Future Work



Bibliography

[1] D. Adams, R. Baldock, S. Bhattacharya, A. J. Copp, M. Dickinson, N. D. Greene, et

al. Bloomsbury report on mouse embryo phenotyping: recommendations from the IMPC

workshop on embryonic lethal screening. Disease Models & Mechanisms, 6(3):571�579, 2013.

[2] C. B. Akgul, D. L. Rubin, S. Napel, C. F. Beaulieu, H. Greenspan, and B. Acar. Content-

based image retrieval in radiology: current status and future directions. Journal of Digital

Imaging, 24(2), 208�222, 2011.

[3] A. A. Ali, A. M. Dale, A. Badea, and G. A. Johnson. Automated segmentation of neu-

roanatomical structures in multispectral MR microscopy of the mouse brain. NeuroImage,

27(2):425�435, 2005.

[4] P. Aljabar, R. Heckemann, A. Hammers, J. Hajnal, D. Rueckert. Multi-atlas based segmen-

tation of brain images: atlas selection and its e�ect on accuracy. NeuroImage, 46(3):726�738,

2009.

[5] P. R. Andresen and M. Nielsen. Non-rigid registration by geometry-constrained di�usion.

Medical Image Analysis, 5(2):81�88, 2001.

[6] X. Artaechevarria, A. Munoz-Barrutia, and C. Ortiz-de-Solorzano. E�cient classi�er gen-

eration and weighted voting for atlas-based segmentation: two small steps faster and closer

to the combination oracle. In: SPIE Medical Imaging, vol. 6914, no. 69141W, 2008.

[7] X. Artaechevarria, A. Munoz-Barrutia, and C. Ortiz-de-Solorzano. Combination strategies

in multi-atlas image segmentation: application to brain MR data. IEEE Transactions on

Medical Imaging, 28(8):1266�1277, 2009.

153



154 Bibliography

[8] S. D. Babacan, M. Luessi, R. M. Molina, and A. Katsaggelos. Sparse Bayesian methods

for low-rank matrix estimation. IEEE Transactions on Signal Processing, 60(8):3964�3977,

2011.

[9] M. H. Bae, R. Pan, T. Wu, and A. Badea. Automated segmentation of mouse brain images

using extended MRF. NeuroImage, 46(3):717�725, 2009.

[10] W. Bai, W. Shi, D. P. O'Regan, T. Tong, H. Wang, S. Jamil-Copley, N. S. Peters, and D.

Rueckert. A probabilistic patch-based label fusion model for multi-atlas segmentation with

registration re�nement: application to cardiac MR images. IEEE Transactions on Medical

Imaging, 32(7):1302�1315, 2013.

[11] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman. Patchmatch: A randomized

correspondence algorithm for structural image editing. ACM Transactions on Graphics (Proc.

SIGGRAPH), 28(3), 2009.

[12] P.-L. Bazin and D. L. Pham. Homeomorphic brain image segmentation with topological

and statistical atlases. Medical Image Analysis, 12(5):616�625, 2008.

[13] A. Beck and M. Teboulle: A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. SIAM Journal on Imaging Sciences, 2(1):183�202, 2009.

[14] S. Becker, E. Candes, and M. Grant. TFOCS: �exible �rst-order methods for rank min-

imization, In: SIAM Conference on Optimization: Low-Rank Matrix Optimization Sympo-

sium, 2011.

[15] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and power-

ful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Method-

ological), 57(1): 289�300, 1995.

[16] Y. Benjamini and D. Yekutieli. The control of the false discovery rate in multiple testing

under dependency. The Annals of Statistics, 29(4): 1165�1188, 2001.

[17] D. Bertsekas. Constrained Optimization and Lagrange Multiplier Method. Academic Press,

1982.



Bibliography 155

[18] K. K. Bhatia, J. Hajnal, A. Hammers, and D. Rueckert. Similarity metrics for group-

wise non-rigid registration. InMedical Image Computing and Computer-Assisted Intervention

(MICCAI), LNCS vol. 4792, pp. 544�552. Springer, 2007.

[19] D. L. Bihan. Looking into the functional architecture of the brain with di�usion MRI.

Nature Reviews Neuroscience, 4(6):469�480, 2003.

[20] C. Bishop . Pattern Recognition and Machine Learning. Springer, 2007.

[21] M. Black and A. Rangarajan. On the uni�cation of line processes, outlier rejection, and

robust statistics with applications in early vision. International Journal of Computer Vision,

19(1):57�92, 1996.

[22] M. Boccardi, R. Ganzola, M. Bocchetta, M. Pievani, A. Redol�, G. Bartzokis, R. Camicioli,

J. G. Csernansky, M. J. de Leon, L. deToledo-Morrell, et al. Survey of protocols for the

manual segmentation of the hippocampus: preparatory steps towards a joint EADC-ADNI

harmonized protocol. Journal of Alzheimer's Disease, 26:61�75, 2011.

[23] F. L. Bookstein. Principal warps: thin-plate splines and the decomposition of deformations.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(6): 567�585, June 1989.

[24] S. D. M. Brown and M. W. Moore. Towards an encyclopaedia of mammalian gene function:

the International Mouse Phenotyping Consortium. Disease Models & Mechanisms, 5(3):289�

292, 2012.

[25] S. D. M. Brown, J. M. Hancock, and H. Gates. Understanding mammalian genetic systems:

the challenge of phenotyping in the mouse. PLoS Genetics, 2(8):1131�1137, 2006.

[26] M. Cabezas, A. Oliver, X. Llado, J. Freixenet, and M. B. Cuadra. A review of atlas-

based segmentation for magnetic resonance brain images. Computer Methods and Programs

in Biomedicine, 104(3):e158�e177, 2011.

[27] J.-F. Cai, E. J. Candes, and Z. Shen. A singular value thresholding algorithm for matrix

completion. SIAM Journal on Optimization, 20(4):1956�1982, 2010.



156 Bibliography

[28] E. J. Candes and B. Recht. Exact matrix completion via convex optimzation. Foundations

of Computational Mathematics, 9:717�772, 2009.

[29] E. J. Candes and T. Tao. The power of convex relaxation: Near-optimal matrix completion.

IEEE Transactions on Information Theory, 56(5):2053�2080, 2010.

[30] E. J. Candes and Y. Plan. Matrix completion with noise. Proceedings of the IEEE,

98(6):925�936, 2010.

[31] E. J. Candes and T. Tao. Decoding by linear programming. IEEE Transactions on Infor-

mation Theory, 51(12):4203�4215, 2005.

[32] E. J. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component analysis?. Journal

of the ACM, 58(3):article 11, 2011.

[33] M. R. Capecchi. Generating mice with targeted mutations. Nature Medicine, 7(10):1086�

1090, 2001.

[34] X. J. Chen, N. Kovacevic, N. J. Lobaugh, J. G. Sled, R. M. Henkelman, and J. T. Hen-

derson. Neuroanatomical di�erences between mouse strains as shown by high-resolution 3D

MRI. NeuroImage, 29(1):99�105, 2006.

[35] J. O. Cleary, M. Modat, F. C. Norris, A. N. Price, S. A. Jayakody, J. P. Martinez-Barbera,

N. D. E. Greene, D. J. Hawkes, R. J. Ordidge, P. J. Scambler, S. Ourselin and M. F. Lythgoe.

Magnetic resonance virtual histology for embryos: 3D atlases for automated high-throughput

phenotyping. NeuroImage, 54(2):769�778, 2011.

[36] D. Collins and J. Pruessner. Towards accurate, automatic segmentation of the hippocam-

pus and amygdala from MRI by augmenting ANIMAL with a template library and label

fusion. NeuroImage, 52(4): 1355�1366, 2010.

[37] P. Coupe, J. V. Manjon, V. Fonov, J. Pruessner, M. Robles, and D. L. Collins. Patch-based

segmentation using expert priors: application to hippocampus and ventricle segmentation.

NeuroImage, 54(2):940�954, 2011.



Bibliography 157

[38] P. Coupe, P. Yger, S. Prima, P. Hellier, C. Kervrann, and C. Barillot. An optimized block-

wise nonlocal means denoising �lter for 3-D magnetic resonance images. IEEE Transactions

on Medical Imaging, 27(4):425�441, 2008.

[39] E. D'Agostino, F. Maes, D. Vandermeulen, and P. Suetens. A viscous �uid model for

multimodal non-rigid image registration using mutual information. Medical Image Analysis,

7(4):565�575, 2003.

[40] R. Datteri, A. Asman, B. Landman, and B. Dawan. Estimation of registration accuracy

applied to multiatlas segmentation. In: MICCAI Workshop on Multi-Atlas Labeling and

Statistical Fusion, 2011.

[41] F. De la Torre and M. J. Black. A robust principal component analysis for computer vision.

In: International Conference on Computer Vision, Vancouver, Canada, 2001.

[42] F. De la Torre and M. J. Black. A framework for robust subspace learning. International

Journal of Computer Vision, 54(1):117�142, 2003.

[43] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the

EM algorithm. Journal of the Royal Statistical Society: Series B, 39(1):1�38, 1977.

[44] A. P. Dhawan. Medical Image Analysis. Wiley, 2011.

[45] N. Dhungel, G. Carneiro, and A.P. Bradley. Deep learning and structured prediction for

the segmentation of mass in mammograms. In: Medical Image Computing and Computer-

Assisted Intervention (MICCAI), LNCS vol. 9349, pp. 605�612. Springer, Heidelberg, 2015.

[46] L. Z. Diaz-de-Grenu, J. Acosta-Cabronero, J. Pereira, G. Pengas, G. B. Williams, and P. J.

Nestor. MRI detection of tissue pathology beyond atrophy in Alzheimer's disease: introducing

T2-VBM. NeuroImage, 56(4):1946�1953, 2011.

[47] A. E. Dorr, J. P. Lerch, S. Spring, N. Kabani, and R. M. Henkelman. High resolution three-

dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J

mice. NeuroImage, 42(1):60�69, 2008.



158 Bibliography

[48] K. M. Downs and T. Davies. Staging of gastrulating mouse embryos by morphological

landmarks in the dissecting microscope. Development, 118(4):1255�1266, 1993.

[49] S.F. Eskildsen, P. Coupe, V. Fonov, J. V. Manjon, K. K. Leung, N. Guizard, S.N. Wassef,

L. R. Ã�stergaard, and D. L. Collins, Alzheimer's Disease Neuroimaging Initiative. BEaST:

Brain extraction based on nonlocal segmentation technique. NeuroImage, 59(3):2362�2373,

2012.

[50] L. Feldkamp, L. Davis, and J. Kress. Practical cone-beam algorithm. Journal of the Optical

Society of America A, 1(6):612�619, 1984.

[51] B. Fischer and J. Modersitzki. A uni�ed approach to fast image registration and a new

curvature based registration technique. Linear Algebra and its Applications, 380(15):107�124,

2004.

[52] B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe,

R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale.

Whole brain segmentation: automated labeling of neuroanatomical structures in the human

brain. Neuron, 33(3):341�355, 2002.

[53] K. Friston, J. Ashburner, C. D. Frith, J.-B. Poline, J. D. Heather, R. S. Frackowiak, and R.

S. J. Frackowiak. Spatial registration and normalization of images. Human Brain Mapping,

3(3):165�189, 1995.

[54] Z. Gao, L. Cheong, and M. Shan. Block-sparse RPCA for consistent foreground detection.

In: European Conference on Computer Vision (ECCV), 2012.

[55] C. R. Genovese, N. A. Lazar, and T. Nichols. Thresholding of statistical maps in functional

neuroimaging using the false discovery rate. NeuroImage, 15(4): 870�878, 2002.

[56] I.S. Gousias, D. Rueckert, R. A. Heckemann, L. E. Dyet, J. P. Boardman, A. D. Edwards,

and A. Hammers. Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of

interest. NeuroImage, 40:672�684, 2008.



Bibliography 159

[57] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming. URL:

http://cvxr.com/cvx/, last visit: July 2016.

[58] D. Gross, Y.-K. Liu, S. T. Flammia, and J. Eisert. Quantum state tomography via com-

pressed sensing. Physical Review Letters, 105(15):150401, 2010.

[59] D. Gross. Recovering low-rank matrices from few coe�cients in any basis. IEEE Transac-

tions on Information Theory, 57(3):1548�1566, 2011.

[60] E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkatesan. Magnetic Resonance

Imaging: Physical Principles and Sequence Design, John Wiley & Sons, 1999.

[61] J. V. Hajnal, D. L. G. Hill, and D. J. Hawkes (eds). Medical Image Registration. CRC

Press, 2001.

[62] E. T. Hale, W. Yin, and Y. Zhang. Fixed-point continuation for L1-minimization: Method-

ology and convergence. SIAM Journal on Optimization, 19(3)1107�1130, 2008.

[63] L. Harper, F. Barkhof, P. Scheltens, J. M. Schott, and N. C. Fox. An algorithmic ap-

proach to structural imaging in dementia. Journal of Neurology, Neurosurgery & Psychiatry,

85(6):692-698, 2014.

[64] R. A. Heckemann, J. V. Hajnal, P. Aljabar, D. Rueckert, and A. Hammers: Automatic

anatomical brain MRI segmentation combining label propagation and decision fusion. Neu-

roImage, 33(1), 115â��26, Oct. 2006.

[65] R. A. Heckemann, J. V. Hajnal, P. Aljabar, D. Rueckert, and A. Hammers. Multiclassi�er

fusion in human brain MR segmentation: modelling convergence. In Medical Image Com-

puting and Computer-Assisted Intervention (MICCAI), LNCS vol. 4191, pp. 815â��822.

Springer Berlin Heidelberg, 2006.

[66] J. R. Hesselink. Basic Principle of MR Imaging. URL: http://spinwarp.ucsd.edu/

neuroweb/Text/br-100.htm, last visit: July 2016.

[67] D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes. Medical image registration.

Physics in Medicine and Biology, 46(3):R1�R45, 2001.

http://cvxr.com/cvx/
http://spinwarp.ucsd.edu/neuroweb/Text/br-100.htm
http://spinwarp.ucsd.edu/neuroweb/Text/br-100.htm


160 Bibliography

[68] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. Im-

proving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580,

2012.

[69] J. I. E. Ho�man and S. Kaplan. The incidence of congenital heart disease. Journal of the

American College of Cardiology, 39(12):1890�1900, 2002.

[70] Y. Hsu, N. Schu�, A. Du, K. Mark, X. Zhu, D. Hardin, and M. Weiner. Comparison

of automated and manual MRI volumetry of hippocampus in normal aging and dementia.

Journal of Magnetic Resonance Imaging, 16(3):305�310, 2002.

[71] J. E. Iglesias and M. R. Sabuncu: Multi-atlas segmentation of biomedical images: A survey.

Medical Image Analysis, 24(1):205�219, 2015.

[72] International Mouse Knockout Consortium, F. S. Collins, J. Rossant, and W. Wurst. A

mouse for all reasons. Cell, 128(1):9�13, 2007.

[73] C. Jack, M. Bernstein, N. C. Fox, P. Thompson, G. Alexander, et al. The Alzheimer's

Disease Neuroimaging Initiative (ADNI): MRI methods. Journal of Magnetic Resonance

Imaging, 27 (4):685�691, 2008.

[74] G. A. Johnson, A. Badea, J. Brandenburg, G. Cofer, B. Fubara, S. Liu, and J. Nissanov.

Waxholm space: an image-based reference for coordinating mouse brain research. NeuroIm-

age, 53(2):365�372, 2010.

[75] I. T. Jolli�e. Principal Component Analysis. Springer-Verlag, 1986.

[76] S. Joshi, B. Davis, M. Jomier, and G. Gerig. Unbiased di�eomorphic atlas construction

for computational anatomy. NeuroImage, 23:S151-S160, 2004.

[77] S. Joshi, B. Davis, M. Jomier, and G. Gerig. Unbiased di�eomorphic atlas construction

for computational anatomy. NeuroImage, 23:S151�S160, 2004.

[78] K. Kamnitsas, C. Ledig, V. F.J. Newcombe, J. P. Simpson, A. D. Kane, D. K. Menon,

D. Rueckert, and B. Glocker. E�cient multi-scale 3D CNN with fully connected CRF for

accurate brain lesion segmentation. Medical Image Analysis, 36: 61�78, 2016.



Bibliography 161

[79] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active contour models. International

Journal of Computer Vision, 1(4):321�331, 1988.

[80] M. H. Kaufman. The Atlas of Mouse Development. Academic Press, London, 1994.

[81] Q. Ke and T. Kanade. Robust L1-norm factorization in the presence of outliers and missing

data. In: IEEE International Conference on Computer Vision and Pattern Recognition, 2005.

[82] R. H. Keshavan, A. Montanari, and S. Oh. Matrix completion from a few entries. IEEE

Transactions on Information Theory, 56(6):2980�2998, 2010.

[83] S. Klein and M. Staring. Elastix: the manual, 2015. URL: http://elastix.isi.uu.nl/

download/elastix_manual_v4.8.pdf, last visit: July 2016.

[84] S. Klein, M. Staring, and J. P. W. Pluim. Evaluation of optimization methods for nonrigid

medical image registration using mutual information and B-splines. IEEE Transactions on

Image Processing, 16(12):2879�2890, 2007.

[85] A. Klein, B. Mensh, S. Ghosh, J. Tourville, and J. Hirsch. Mindboggle: automated brain

labeling with multiple atlases. BMC Medical Imaging, 5(7), 2005.

[86] S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P. W. Pluim. Elastix: a tool-

box for intensity based medical image registration. IEEE Transactions on Medical Imaging,

29(1):196�205, 2010.

[87] E. Konukoglu, B. Glocker, D. Zikic, and A. Criminisi. Neighbourhood approximation

forests. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), LNCS

vol. 7512, pp. 75�82, 2012.

[88] E. Konukoglu, B. Glocker, D. Zikic, and A. Criminisi. Neighbourhood approximation using

randomized forests. Medical Image Analysis, 17: 790�804, 2013.

[89] N. Kovacevic, J. T. Henderson, E. Chan, N. Lifshitz, J. Bishop, A. C. Evans, R. M.

Henkelman, and X. J. Chen. A three-dimensional MRI atlas of the mouse brain with estimates

of the average and variability. Cerebral Cortex, 15(5):639�645, 2005.

http://elastix.isi.uu.nl/download/elastix_manual_v4.8.pdf
http://elastix.isi.uu.nl/download/elastix_manual_v4.8.pdf


162 Bibliography

[90] A. Krizhevsky, I. Sutskever, and G.E. Hinton. ImageNet classi�cation with deep convolu-

tional neural networks. In: Advances in Neural Information Processing Systems (NIPS), vol.

25, pp. 1106-1114, 2012.

[91] B. Landman, and S. War�eld (eds). MICCAI 2012 Workshop on Multi-Atlas Labeling.

CreateSpace, Nice, France, 2012.

[92] M. Larobina and L. Murino. Medical image �le formats. Journal of Digital Imaging,

27(2):200�206, 2014.

[93] J. C. Lau, J. P. Lerch, J. G. Sled, R. M. Henkelman, A. C. Evans, and B. J. Bedell.

Longitudinal neuroanatomical changes determined by deformation-based morphometry in a

mouse model of Alzheimer's disease. NeuroImage, 42(1):19�27, 2008.

[94] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436�444, 2015.

[95] S. Lee, G. Wolberg, K.-Y. Chwa, and S. Y. Shin. Image metamorphosis with scattered

feature constraints. IEEE Transactions on Visualization and Computer Graphics, 2(4):337�

354, 1996.

[96] S. Lee, G. Wolberg, and S. Y. Shin. Scattered data interpolation with multilevel B-splines.

IEEE Transactions on Visualization and Computer Graphics, 3(3):228�244, 1997.

[97] J. Lee, J. Jomier, S. Aylward, M. Tyszka, S. Moy, J. Lauder, and M. Styner. Evaluation

of atlas based mouse brain segmentation. In: SPIE Medical Imaging, vol. 7259, no. 725943,

2009.

[98] K. van Leemput, F. Maes, D. Vandermeulen, and P. Suetens. Automated model-based

bias �eld correction of MR images of the brain. IEEE Transactions on Medical Imaging,

18(10):885�896, 1999.

[99] T. M. Lehmann, C. Gonner, and K. Spitzer. Survey: Interpolation methods in medical

image processing. IEEE Transactions on Medical Imaging, 18(11):1049�1075, 1999.



Bibliography 163

[100] J. P. Lerch, J. B. Carroll, S. Spring, L. N. Bertram, C. Schwab, M. R. Hayden, and R.

M. Henkelman. Automated deformation analysis in the YAC128 Huntington disease mouse

model. NeuroImage, 39(1):32�39, 2008.

[101] H. Lester and S. R. Arridge. A survey of hierarchical non-linear medical image registration.

Pattern Recognition, 32(1):129�149, 1999.

[102] F. van der Lijn, T. den Heijer, M. M. B. Breteler, and W. J. Niessen. Hippocampus

segmentation in MR images using atlas registration, voxel classi�cation, and graph cuts.

NeuroImage, 43(4):708�720, 2008.

[103] Z. Lin, M. Chen, and Y. Ma. The augmented Lagrange multiplier method for exact

recovery of corrupted low-rank matrices. arXiv:1009.5055, 2009.

[104] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma. Fast convex optimization algo-

rithms for exact recovery of a corrupted low-rank matrix. In: IEEE International Workshop

on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2009.

[105] X. Liu, M. Niethammer, R. Kwitt, M. McCormick, and S. Aylward. Low-rank to the

rescue � atlas-based analyses in the presence of pathologies. In: Medical Image Computing

and Computer-Assisted Intervention (MICCAI), LNCS vol. 8675, pp. 97�104, 2014.

[106] N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, and A. Oeltermann. Neurophysiolog-

ical investigation of the basis of the fMRI signal. Nature, 412(6843):150�157, 2001.

[107] M. Lorenzo-Valdes, G. I. Sanchez-Ortiz, A. G. Elkington, R. H. Mohiaddin, and D.

Rueckert: Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM

algorithm. Medical Image Analysis, 8(3):255�265, 2004.

[108] J. Lotjonen, R. Wolz, J. Koikkalainen, L. Thurfjell, G. Waldemar, H. Soininen, and D.

Rueckert. Fast and robust multi-atlas segmentation of brain magnetic resonance images.

NeuroImage, 49(3):2352�2365, 2010.



164 Bibliography

[109] J. Lotjonen, R. Wolz, J. Koikkalainen, V. Julkunen, L. Thurfjell, R. Lundqvist, G. Walde-

mar, H. Soininen, and D. Rueckert. Fast and robust extraction of hippocampus from MR

images for diagnostics of Alzheimer's disease. NeuroImage, 56(1):185�196, 2011.

[110] Y. Ma, P. R. Hof, S. C. Grant, S. J. Blackband, R. Bennett, L. Slatest, M. D. McGuigan,

and H. Benveniste. A three-dimensional digital atlas database of the adult C57BL/6J mouse

brain by magnetic resonance microscopy. Neuroscience, 135(4):1203�1215, 2005.

[111] J. V. Manjon, P. Coupe, L. Marti-Bonmati, D. L. Collins, and M. Robles. Adaptive non-

local means denoising of MR images with spatially varying noise levels. Journal of Magnetic

Resonance Imaging, 31:192�203, 2010.

[112] B. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren,

N. Porz, J. Slotboom, R. Wiest, et al. The multimodal brain tumor image segmentation

benchmark (BRATS). IEEE Transactions on Medical Imaging, 34(10):1993�2024, 2014.

[113] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[114] M. Modat, G. Ridgway, Z. Taylor, M. Lehmann, J. Barnes, D. Hawkes, N. Fox, and S.

Ourselin. Fast free-form deformation using graphics processing units. Computer Methods and

Programs in Biomedicine, 98(3):278�284, 2010.

[115] J. Modersitzki. Numerical Methods for Image Registration. Oxford University Press, 2004.

[116] Mouse Genome Sequencing Consortium, R. H. Waterston, K. Lindblad-Toh, E. Birney, J

Rogers, J. F. Abril, et al. Initial sequencing and comparative analysis of the mouse genome.

Nature, 420(6915):520�562, 2002.

[117] S. G. Mueller, M. W. Weiner, L. J. Thal, R. C. Petersen, C. Jack, W. Jagust, J. Q.

Trojanowski, A. W. Toga, and L. Beckett. The Alzheimer's disease neuroimaging initiative.

Neuroimaging Clinics of North America, 15(4):869�877, 2005.

[118] Y. Nesterov. A method of solving a convex programming problem with convergence rate

O(1/k2), Soviet Mathematics Doklady, 27(2):372�376, 1983.



Bibliography 165

[119] J. Nie and D. Shen. Automated segmentation of mouse brain images using multi-atlas

multi-ROI deformation and label fusion. Neuroinformatics, 11(1):35�45, 2013.

[120] F. C. Norris, M. Modat, J. O. Cleary, A. N. Price, K. McCue, P. J. Scambler, S. Ourselin,

and M. F. Lythgoe. Segmentation propagation using a 3D embryo atlas for high-throughput

MRI phenotyping: comparison and validation with manual segmentation. Magnetic Reso-

nance in Medicine, 69(3):877�883, 2012.

[121] L. Nyul and J. Udupa. Standardizing the MR image intensity scales: making MR in-

tensities have tissuespeci�c meaning. In: SPIE Medical Imaging, vol. 3976, pp. 496�504,

2000.

[122] R. O'Rahilly and F. Muller (eds). Developmental stages in human embryos. Carnegie

Institution of Washington, Washington, DC, 1987.

[123] H. Park, P. H. Bland and C. R. Meyer. Construction of an abdominal probabilistic atlas

and its application in segmentation. IEEE Transactions on Medical Imaging, 22(4):483�492,

2003.

[124] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma. RASL: robust alignment by sparse

and low-rank decomposition for linearly correlated images. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 34(11):2233�2246, 2012.

[125] K. M. Pohl, J. Fisher, W. E. L. Grimson, R. Kikinis, and W.M. Wells. A Bayesian model

for joint segmentation and registration. NeuroImage, 31(1):228�239, 2006.

[126] A. Prasoon, K. Petersen, C. Igel, F. Lauze, E. Dam, and M. Nielsen. Deep feature learning

for knee cartilage segmentation using a triplanar convolutional neural network. In: Medical

Image Computing and Computer-Assisted Intervention (MICCAI), LNCS vol. 8150, pp. 246�

253. Springer, Heidelberg, 2013.

[127] W. K. Pratt. Digital Image Processing. John Wiley & Sons, New York, 1978.



166 Bibliography

[128] C. E. Rodriguez-Carranza and M. H. Loew. Weighted and deterministic entropy measure

for image registration using mutual information. In: SPIE Medical Imaging, vol. 3338, pp.

155�166, 1998.

[129] T. Rohl�ng and C. R. Maurer. Multi-classi�er framework for atlas-based image segmen-

tation. Pattern Recognition Letters, 26(13):2070�2079, 2005.

[130] T. Rohl�ng, R. Brandt, R. Menzel, and C. R. Maurer. Evaluation of atlas selection

strategies for atlas-based image segmentation with application to confocal microscopy images

of bee brains. NeuroImage, 21(4):1428�1442, 2004

[131] O. Ronneberger, P. Fischer, and T. Brox. U-net: convolutional networks for biomedical

image segmentation. Medical Image Computing and Computer-Assisted Intervention (MIC-

CAI), LNCS vol. 9351, pp. 234�241. Springer, Heidelberg, 2015. 2015.

[132] H. R. Roth, L. Lu, A. Farag, H.-C. Shin, J. Liu, E. B. Turkbey, and R. M. Summers.

DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmenta-

tion. Medical Image Computing and Computer-Assisted Intervention (MICCAI), LNCS vol.

9349, pp. 556�564. Springer, Heidelberg, 2015.

[133] F. Rousseau, P. Habas, and C. Studholme. A supervised patch-based approach for human

brain labeling. IEEE Transactions on Medical Imaging, 30(10):1852�1862, 2011.

[134] S. Roy, X. Liang, A. Kitamoto, M. Tamura, T. Shiroishi, and M. S. Brown. Phenotype

detection in morphological mutant mice using deformation features. In: Medical Image Com-

puting and Computer-Assisted Intervention (MICCAI), LNCS vol. 8151, pp. 437�444, 2013.

[135] D. Rueckert, L. Sonoda, C. Hayes, D. Hill, M. Leach, and D. Hawkes. Nonrigid registra-

tion using free-form deformations: application to breast MR images. IEEE Transactions on

Medical Imaging, 18(8):712�721, 1999.

[136] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-

propagating errors. Nature, 323:533�536, 1986.



Bibliography 167

[137] J. E. Schneider, S. D. Bamforth, C. R. Farthing, K. Clarke, S. Neubauer, and S. Bhat-

tacharya. Rapid identi�cation and 3D reconstruction of complex cardiac malformations in

transgenic mouse embryos using fast gradient echo sequence magnetic resonance imaging.

Journal of Molecular and Cellular Cardiology, 35(2):217�222, 2003.

[138] D. W. Shattuck, M. Mirza , V. Adisetiyo, C. Hojatkashani, G. Salamon, K. L. Narr, R. A.

Poldrack, R. M. Bilder, and A. W. Toga. Construction of a 3D probabilistic atlas of human

cortical structures. NeuroImage, 39(3): 1064�1080, 2008.

[139] J. G. Sled, A. P. Zijdenbos, and A. C. Evans. A nonparametric method for automatic

correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging,

17(1):87�97, 1998.

[140] M. Staring, S. Klein, and J. P. W. Pluim. A rigidity penalty term for nonrigid registration.

Medical Physics, 34(11):4098�4108, 2007.

[141] C. Studholme, D. L. Hill, and D. J. Hawkes. An overlap invariant entropy measure of 3D

medical image alignment. Pattern Recognition, 32(1):71�86, 1999.

[142] P. Suetens. Fundamentals of Medical Imaging. Cambridge University Press, 2009.

[143] V.-T. Ta, R.Giraud, D. L. Collins, and P. Coupe. Optimized patchMatch for near real time

and accurate label fusion. In: Medical Image Computing and Computer-Assisted Intervention

(MICCAI), LNCS vol. 8675, pp. 105�112. Springer, Heidelberg, 2014.

[144] M. Tamura, M. Hosoya, M. Fujita, T. Iida, T. Amano, A. Maeno, T. Kataoka, T. Otsuka,

S. Tanaka, S. Tomizawa, and T. Shiroishi. Overdosage of hand2 causes limb and heart defects

in the human chromosomal disorder partial trisomy distal 4q. Human Molecular Genetics,

22(12):2471�2481, 2013.

[145] G. Tang and A. Nehorai. Robust principal component analysis based on low-rank and

block-sparse matrix decomposition, In: Annual Conference on Information Sciences and

Systems (CISS), 2011.



168 Bibliography

[146] K. Theiler. The House Mouse: Atlas of Mouse Development. Springer-Verlag, New York,

1989.

[147] P. Thevenaz and M. Unser. Optimization of mutual information for multi-resolution image

registration. IEEE Transactions on Image Processing, 9(12):2083�2099, 2000.

[148] R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal

Statistical Society: series B, 58:267�288, 1994.

[149] K. D. Toennies. Guide to Medical Image Analysis: Methods and Algorithms. Springer,

2012.

[150] K.-C. Toh and S. Yun. An accelerated proximal gradient algorithm for nuclear norm

regularized least squares problems. Paci�c Journal of Optimization, 6(3):615�640, 2010.

[151] T. Tong, R. Wolz, P. Coupe, J. V. Hajnal, and D. Rueckert. Segmentation of MR images

via Discriminative Dictionary Learning and Sparse Coding: application to hippocampus

labeling. NeuroImage, 76(1):11�23, 2013.

[152] P. Viola and W. M. Wells III. Alignment by maximization of mutual information. Inter-

national Journal of Computer Vision, 24(2):137�154, 1997.

[153] Y. Wang and L. H. Staib. Elastic model based non-rigid registration incorporating statis-

tical shape information. In: Medical Image Computing and Computer-Assisted Intervention

(MICCAI), LNCS vol. 1496, pp. 1162�1173, 1998.

[154] Y. Wang and L. H. Staib. Physical model-based non-rigid registration incorporating sta-

tistical shape information. Medical Image Analysis, 4(1):7�21, 2000.

[155] H. Wang, J. W. Suh, S. Das, J. Pluta, C. Craige and P. Yushkevich. Multi-Atlas Seg-

mentation with Joint Label Fusion. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(3):611�623, 2013.

[156] Z. Wang, R.Wolz, T. Tong, and D. Rueckert. Spatially aware patch-based segmentation:

an alternative patch-based segmentation framework. In: Medical Computer Vision: Recogni-

tion Techniques and Applications in Medical Imaging, pp. 93�103, 2013.



Bibliography 169

[157] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from

error visibility to structural similarity. IEEE Transactions on Image Processing, 13:600�612,

2004.

[158] Z. Wang, C. Donoghue, and D. Rueckert. Patch-based segmentation without registration:

application to knee MRI. In: Machine Learning in Medical Imaging, LNCS vol. 8184, pp.

98�105, 2013.

[159] Z. Wang. Patch-based Segmentation with Spatial Context for Medical Image Analysis.

PhD Thesis, Imperial College London, 2014.

[160] S. K. War�eld, K. H. Zou, and W. M. Wells. Simultaneous truth and performance level

estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans-

actions on Medical Imaging, 23(7):903�921, 2004.

[161] W. J. Weninger, B. Maurer, B. Zendron, K. Dorfmeister, and S. H. Geyer. Measurements

of the diameters of the great arteries and semi-lunar valves of chick and mouse embryos.

Journal of Microscopy, 234(2):173�190, 2009.

[162] M. D. Wong, A. E. Dorr, J. R. Walls, J. P. Lerch, and R. M. Henkelman. A novel 3D

mouse embryo atlas based on micro-CT. Development, 139(17):3248�3256, 2012.

[163] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma. Robust principal component analysis:

exact recovery of corrupted low-rank matrices via convex optimization. In: Advances in

Neural Information Processing Systems (NIPS), vol. 22, pp. 2080�2088, 2009.

[164] Y.-T. Wu, T. Kanade, C.-C. Li, and J. Cohn. Image registration using wavelet-based

motion model. International Journal of Computer Vision, 38(2):129�152, 2000.

[165] G. Wu, F. Qi, and D. Shen. Learning-based deformable registration of MR brain images.

IEEE Transactions on Medical Imaging, 25(9):1145�1157, 2006.

[166] Z. Xie and D. Gillies. Patch forest: a hybrid framework of random forest and patch-based

segmentation. In: SPIE Medical Imaging, vol. 9784, no. 978428. San Diego, USA, 2016.



170 Bibliography

[167] Z. Xie, X. Liang, L. Guo, A. Kitamoto, M. Tamura, T. Shiroishi, and D. Gillies. Automatic

classi�cation framework for ventricular septal defects: a pilot study on high-throughput

mouse embryo cardiac phenotyping. Journal of Medical Imaging, 2(4):041003, 2015.

[168] Z. Xie, D. Yang, D. Stephenson, D. Morton, C. Hicks, T. Brown, and T. Bocan. Charac-

terizing the regional structural di�erence of the brain between tau transgenic (rTg4510) and

wild-type mice using MRI. In: Medical Image Computing and Computer-Assisted Interven-

tion (MICCAI), LNCS vol. 6361, pp. 308�315, 2010.

[169] L. Xu and A. Yuille. Robust principal component analysis by self-organizing rules based

on statistical physics approach. IEEE Transactions on Neural Networks, 6(1):131�143, 1995.

[170] W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman iterative algorithms for L1-

minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences,

1(1): 143�168, 2008.

[171] X. Yuan and J. Yang. Sparse and low-rank matrix decomposition via alternating direc-

tion methods. Optimization Online, 2009. URL: http://www.optimization-online.org/

DB_HTML/2009/11/2447.html, last visit: July 2016.

[172] M. Zamyadi, L. Baghdadi, J. P. Lerch, S. Bhattacharya, J. E. Schneider, R. M. Henkel-

man, and J. G. Sled. Mouse embryonic phenotyping by morphometric analysis of MR images.

Physiological Genomics, 42(2):89�95, 2010.

[173] Y. Zhang, M. Brady, and S. Smith. Segmentation of brain MR images through a hidden

Markov random �eld model and the expectation-maximization algorithm. IEEE Transactions

on Medical Imaging, 20(1):45�57, 2001.

[174] Q. Zhao, D. Meng, Z. Xu, W. Zuo, and L. Zhang. Robust principal component analysis

with complex noise. In: International Conference on Machine Learning, Beijing, China, 2014.

[175] T. Zhou and D. Tao. GoDec: randomized low-rank & sparse matrix decomposition in

noisy case. In: International Conference on Machine Learning, Bellevue, WA, USA, 2011.

http://www.optimization-online.org/DB_HTML/2009/11/2447.html
http://www.optimization-online.org/DB_HTML/2009/11/2447.html


Bibliography 171

[176] Z. Zhou, X. Li, J. Wright, E. Candes, and Y. Ma, Stable principal component pursuit,

In: IEEE International Symposium on Information Theory (ISIT), pp. 1518�1522, 2010.

[177] S. Zhou. Medical Image Recognition, Segmentation and Parsing. Elsevier, 2015.

[178] S. C. Zhu, and A. Yuille. Region Competition: Unifying Snakes, Region Growing, and

Bayes/MDL for Multi-band Image Segmentation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 18(9):884�900, 1996.

[179] D. Zikic, B. Glocker, and A. Criminisi. Atlas encoding by randomized forests for e�-

cient label propagation. In: Medical Image Computing and Computer-Assisted Intervention

(MICCAI), LNCS vol. 8151, pp. 66�73, 2013.

[180] D. Zikic, B. Glocker, and A. Criminisi. Encoding atlases by randomized classi�cation

forests for e�cient multi-atlas label propagation. Medical Image Analysis, 18:1262�1273,

2014.

[181] B. Zitova and J. Flusser. Image registration methods: a survey. Image and Vision Com-

puting, 21(11):977�1000, 2003.

[182] T. Zouagui, E. Chereul, M. Janier, and C. Odet. 3D MRI heart segmentation of mouse

embryos. Computers in Biology and Medicine, 40(1):64�74, 2010.



172 Bibliography


	Abstract
	Acknowledgements
	Declaration of originality
	Copyright Declaration
	Acronyms
	Introduction
	Research Overview
	Study One: efficient image segmentation using a patch-based canonical neural network
	Study Two: high-throughput mouse phenotyping using non-rigid registration and robust principal component analysis
	Study Three: robust principal component analysis with variation priors (RPCA-P)

	Imaging modalities in this thesis
	Computed tomography (CT)
	Magnetic resonance imaging (MRI)
	CT vs MRI
	Micro-level imaging: -CT and -MRI

	Summary of Key Contributions
	Structure of the Thesis
	List of publications

	Efficient Image Segmentation Using A Patch-based Canonical Neural Network
	Introduction
	Segmentation via registration-based label propagation
	Image registration
	The label propagation framework
	Notable variants

	Segmentation via patch-based pattern matching
	The patch-based segmentation framework
	Notable variants

	Deep learning and the Proposed Approach
	The neural network framework
	Convolutional neural network
	Efficient biomedical image segmentation using a patch-based canonical neural network: the proposed approach 
	Network architecture
	Network training
	Application to hippocampus segmentation

	Results
	Experimental setting and evaluation method
	Training parameters
	Training and testing time
	Comparison with prior state-of-the-art

	Discussion and Conclusion

	High-throughput Mouse Phenotyping Using Non-rigid Registration and Robust Principal Component Analysis
	Introduction
	Existing phenotyping work and limitations
	Phenotyping via comparative analytics
	Phenotyping via detection of phenotype-specific features

	Further challenges of mouse embryo phenotyping
	Rapidity of mouse embryo development
	Challenges of image segmentation

	Overview: Methods and Materials
	Anomaly detection by non-rigid registration and RPCA
	Data acquisition

	Detailed Methodology
	Image denoising
	Mouse embryo extraction
	Creation of the local mouse template
	Group-wise non-rigid image alignment
	Feature decomposition using RPCA
	'Normal-vs-Abnormal' classification

	Evaluation
	Results of mouse embryo extraction
	Results of template creation
	Results of feature decomposition: the influence of tolerance parameter  in RPCA processing
	Results of feature decomposition: the influence of registration parameters in group-wise image alignment
	Abnormality detection performance
	Experimental Environment and Computation Time

	Comparison with the baseline PCA approach
	Discussion
	Conclusion

	Robust Principal Component Analysis with Variation Priors
	Introduction
	The RPCA Framework
	PCP problem formulation
	Algorithms to solve PCP optimisation problems

	RPCA with Variation Priors
	Challenges of RPCA in biomedical imaging
	The RPCA-P framework
	RPCA-P application to mouse embryo phenotyping

	Evaluation
	Test data
	Results of variation prior  estimation
	Results of feature decomposition: the influence of the baseline tolerance 
	Results of feature decomposition: the influence of the variation prior 
	Results of abnormality detection
	Computation time

	Discussion
	Conclusion

	Summary and Future Work
	Summary
	Future Work

	Appendix
	Bibliography

