2,155 research outputs found

    Mechatronics versus Robotics

    Get PDF
    In Bolton, mechatronics is defined as the integration of electronics, control engineering, and mechanical engineering, thus recognizing the fundamental role of control in joining electronics and mechanics. A robot is commonly considered as a typical mechatronic system, which integrates software, control, electronics, and mechanical designs in a synergistic manner. Robotics can be considered as a part of mechatronics; i.e., all robots are mechatronic systems, but not all mechatronic systems are robots. Advanced robots usually plan their actions by combining an assigned functional task with the knowledge about the environment in which they operate. By using a simplified approach, advanced robots could be defined as mechatronic devices governed by a smart brain, placed at a higher hierarchical level. Actuators are building blocks of any mechatronic system. Such systems, however, have a huge application span, ranging from low-cost consumer applications to high-end, high-precision industrial manufacturing equipment

    The Next-Generation Surgical Robots

    Get PDF
    The chronicle of surgical robots is short but remarkable. Within 20 years since the regulatory approval of the first surgical robot, more than 3,000 units were installed worldwide, and more than half a million robotic surgical procedures were carried out in the past year alone. The exceptionally high speeds of market penetration and expansion to new surgical areas had raised technical, clinical, and ethical concerns. However, from a technological perspective, surgical robots today are far from perfect, with a list of improvements expected for the next-generation systems. On the other hand, robotic technologies are flourishing at ever-faster paces. Without the inherent conservation and safety requirements in medicine, general robotic research could be substantially more agile and explorative. As a result, various technical innovations in robotics developed in recent years could potentially be grafted into surgical applications and ignite the next major advancement in robotic surgery. In this article, the current generation of surgical robots is reviewed from a technological point of view, including three of possibly the most debated technical topics in surgical robotics: vision, haptics, and accessibility. Further to that, several emerging robotic technologies are highlighted for their potential applications in next-generation robotic surgery

    Optical coherence tomography-based consensus definition for lamellar macular hole.

    Get PDF
    BackgroundA consensus on an optical coherence tomography definition of lamellar macular hole (LMH) and similar conditions is needed.MethodsThe panel reviewed relevant peer-reviewed literature to reach an accord on LMH definition and to differentiate LMH from other similar conditions.ResultsThe panel reached a consensus on the definition of three clinical entities: LMH, epiretinal membrane (ERM) foveoschisis and macular pseudohole (MPH). LMH definition is based on three mandatory criteria and three optional anatomical features. The three mandatory criteria are the presence of irregular foveal contour, the presence of a foveal cavity with undermined edges and the apparent loss of foveal tissue. Optional anatomical features include the presence of epiretinal proliferation, the presence of a central foveal bump and the disruption of the ellipsoid zone. ERM foveoschisis definition is based on two mandatory criteria: the presence of ERM and the presence of schisis at the level of Henle's fibre layer. Three optional anatomical features can also be present: the presence of microcystoid spaces in the inner nuclear layer (INL), an increase of retinal thickness and the presence of retinal wrinkling. MPH definition is based on three mandatory criteria and two optional anatomical features. Mandatory criteria include the presence of a foveal sparing ERM, the presence of a steepened foveal profile and an increased central retinal thickness. Optional anatomical features are the presence of microcystoid spaces in the INL and a normal retinal thickness.ConclusionsThe use of the proposed definitions may provide uniform language for clinicians and future research

    Industrial, Collaborative and Mobile Robotics in Latin America: Review of Mechatronic Technologies for Advanced Automation

    Get PDF
    Mechatronics and Robotics (MaR) have recently gained importance in product development and manufacturing settings and applications. Therefore, the Center for Space Emerging Technologies (C-SET) has managed an international multi-disciplinary study to present, historically, the first Latin American general review of industrial, collaborative, and mobile robotics, with the support of North American and European researchers and institutions. The methodology is developed by considering literature extracted from Scopus, Web of Science, and Aerospace Research Central and adding reports written by companies and government organizations. This describes the state-of-the-art of MaR until the year 2023 in the 3 Sub-Regions: North America, Central America, and South America, having achieved important results related to the academy, industry, government, and entrepreneurship; thus, the statistics shown in this manuscript are unique. Also, this article explores the potential for further work and advantages described by robotic companies such as ABB, KUKA, and Mecademic and the use of the Robot Operating System (ROS) in order to promote research, development, and innovation. In addition, the integration with industry 4.0 and digital manufacturing, architecture and construction, aerospace, smart agriculture, artificial intelligence, and computational social science (human-robot interaction) is analyzed to show the promising features of these growing tech areas, considering the improvements to increase production, manufacturing, and education in the Region. Finally, regarding the information presented, Latin America is considered an important location for investments to increase production and product development, taking into account the further proposal for the creation of the LATAM Consortium for Advanced Robotics and Mechatronics, which could support and work on roboethics and education/R+D+I law and regulations in the Region. Doi: 10.28991/ESJ-2023-07-04-025 Full Text: PD

    Surgery from a Distance—Application of Intelligent Control for Telemedicine

    Get PDF

    Robots in Industry. Past,present and future of a growing collaboration with humans

    Get PDF
    Robots have been part of automation systems for a very long time, and in public perception, they are often synonymous with automation and industrial revolution perse. Fueled by Industry 4.0 and Internet of Things (IoT) concepts as well as by new software technologies, the field of robotics in industry is currently undergoing a revolution on its own. This article gives an overview of the evolution of robotics from its beginnings to recent trends like collaborative robotics, autonomous robots, and human- robot interaction. Particular attention is devoted to the deep changes of the last decades, from the traditional industrial scenario based on isolated robotic cells up to the most recent coworking and collaborative robots. The role of robotics in the Industry 4.0 framework is analyzed, and the relationships with industrial communications and software technologies are also discussed. Some future directions for robotics are envisaged, focusing on the contributions coming from new materials, sensors, actuators, and technologies. Open issues are highlighted as well as the main barriers that currently limit the deployment of industrial robots in the small and medium enterprise (SME) world

    Generalized Method Of Designing Unmanned Remotely Operated Complexes Based On The System Approach

    Get PDF
    Self-propelled underwater systems belong to the effective means of marine robotics. The advantages of their use include the ability to perform underwater work in real time with high quality and without risk to the life of a human operator. At present, the design of such complexes is not formalized and is carried out separately for each of the components – a remotely operated vehicle, a tether-cable and cable winch, a cargo device and a control and energy device. As a result, the time spent on design increases and its quality decreases. The system approach to the design of remotely operated complexes ensures that the features of the interaction of the components of the complex are taken into account when performing its main operating modes. In this paper, the system interaction between the components of the complex is proposed to take into account in the form of decomposition of “underwater tasks (mission) – underwater technology of its implementation – underwater work on the selected technology – task for the executive mechanism of the complex” operations. With this approach, an information base is formed for the formation of a list of mechanisms of the complex, the technical appearance of its components is being formed, which is important for the early design stages. Operative, creative and engineering phases of the design of the complex are proposed. For each phase, a set of works has been formulated that cover all the components of the complex and use the author's existence equations for these components as a tool for system analysis of technical solutions.The perspective of the scientific task of the creative phase to create accurate information models of the functioning of the components of the complex and models to support the adoption of design decisions based on a systematic approach is shown.The obtained results form the theoretical basis for finding effective technical solutions in the early stages of designing remotely operated complexes and for automating the design with the assistance of modern applied computer research and design packages

    A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems

    Get PDF
    Small-scale rotorcraft unmanned robotic systems (SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relative research in the future. In the past decade, aerial manipulation of SRURSs has attracted the interest of researchers globally. This paper provides a literature review of the last 10 years (2008–2017) on SRURSs, and details achievements and challenges. Firstly, the definition, current state, development, classification, and challenges of SRURSs are introduced. Then, related papers are organized into two topical categories: mechanical structure design, and modeling and control. Following this, research groups involved in SRURS research and their major achievements are summarized and classified in the form of tables. The research groups are introduced in detail from seven parts. Finally, trends and challenges are compiled and presented to serve as a resource for researchers interested in aerial manipulation of SRURSs. The problem, trends, and challenges are described from three aspects. Conclusions of the paper are presented, and the future of SRURSs is discussed to enable further research interests
    • …
    corecore