2,304 research outputs found

    Recurrent Neural Networks For Accurate RSSI Indoor Localization

    Full text link
    This paper proposes recurrent neuron networks (RNNs) for a fingerprinting indoor localization using WiFi. Instead of locating user's position one at a time as in the cases of conventional algorithms, our RNN solution aims at trajectory positioning and takes into account the relation among the received signal strength indicator (RSSI) measurements in a trajectory. Furthermore, a weighted average filter is proposed for both input RSSI data and sequential output locations to enhance the accuracy among the temporal fluctuations of RSSI. The results using different types of RNN including vanilla RNN, long short-term memory (LSTM), gated recurrent unit (GRU) and bidirectional LSTM (BiLSTM) are presented. On-site experiments demonstrate that the proposed structure achieves an average localization error of 0.750.75 m with 80%80\% of the errors under 11 m, which outperforms the conventional KNN algorithms and probabilistic algorithms by approximately 30%30\% under the same test environment.Comment: Received signal strength indicator (RSSI), WiFi indoor localization, recurrent neuron network (RNN), long shortterm memory (LSTM), fingerprint-based localizatio

    Joint received signal strength, angle-of-arrival, and time-of-flight positioning

    Get PDF
    This paper presents a software positioning framework that is able to jointly use measured values of three parameters: the received signal strength, the angle-of-arrival, and the time-of-flight of the wireless signals. Based on experimentally determined measurement accuracies of these three parameters, results of a realistic simulation scenario are presented. It is shown that for the given configuration, angle-of-arrival and received signal strength measurements benefit from a hybrid system that combines both. Thanks to their higher accuracy, time-of-flight systems perform significantly better, and obtain less added value from a combination with the other two parameters

    Millimeter-wave Wireless LAN and its Extension toward 5G Heterogeneous Networks

    Full text link
    Millimeter-wave (mmw) frequency bands, especially 60 GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60 GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60 GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase the total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is the distributed antenna type architecture to realize centralized coordination, while the other is an autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.Comment: 18 pages, 24 figures, accepted, invited paper

    A Soft Range Limited K-Nearest Neighbours Algorithm for Indoor Localization Enhancement

    Full text link
    This paper proposes a soft range limited K nearest neighbours (SRL-KNN) localization fingerprinting algorithm. The conventional KNN determines the neighbours of a user by calculating and ranking the fingerprint distance measured at the unknown user location and the reference locations in the database. Different from that method, SRL-KNN scales the fingerprint distance by a range factor related to the physical distance between the user's previous position and the reference location in the database to reduce the spatial ambiguity in localization. Although utilizing the prior locations, SRL-KNN does not require knowledge of the exact moving speed and direction of the user. Moreover, to take into account of the temporal fluctuations of the received signal strength indicator (RSSI), RSSI histogram is incorporated into the distance calculation. Actual on-site experiments demonstrate that the new algorithm achieves an average localization error of 0.660.66 m with 80%80\% of the errors under 0.890.89 m, which outperforms conventional KNN algorithms by 45%45\% under the same test environment.Comment: Received signal strength indicator (RSSI), WiFi indoor localization, K-nearest neighbor (KNN), fingerprint-based localizatio

    Real-time localization using received signal strength

    Get PDF
    Locating and tracking assets in an indoor environment is a fundamental requirement for several applications which include for instance network enabled manufacturing. However, translating time of flight-based GPS technique for indoor solutions has proven very costly and inaccurate primarily due to the need for high resolution clocks and the non-availability of reliable line of sight condition between the transmitter and receiver. In this dissertation, localization and tracking of wireless devices using radio signal strength (RSS) measurements in an indoor environment is undertaken. This dissertation is presented in the form of five papers. The first two papers deal with localization and placement of receivers using a range-based method where the Friis transmission equation is used to relate the variation of the power with radial distance separation between the transmitter and receiver. The third paper introduces the cross correlation based localization methodology. Additionally, this paper also presents localization of passive RFID tags operating at 13.56MHz frequency or less by measuring the cross-correlation in multipath noise from the backscattered signals. The fourth paper extends the cross-correlation based localization algorithm to wireless devices operating at 2.4GHz by exploiting shadow fading cross-correlation. The final paper explores the placement of receivers in the target environment to ensure certain level of localization accuracy under cross-correlation based method. The effectiveness of our localization methodology is demonstrated experimentally by using IEEE 802.15.4 radios operating in fading noise rich environment such as an indoor mall and in a laboratory facility of Missouri University of Science and Technology. Analytical performance guarantees are also included for these methods in the dissertation --Abstract, page iv

    RF Localization in Indoor Environment

    Get PDF
    In this paper indoor localization system based on the RF power measurements of the Received Signal Strength (RSS) in WLAN environment is presented. Today, the most viable solution for localization is the RSS fingerprinting based approach, where in order to establish a relationship between RSS values and location, different machine learning approaches are used. The advantage of this approach based on WLAN technology is that it does not need new infrastructure (it reuses already and widely deployed equipment), and the RSS measurement is part of the normal operating mode of wireless equipment. We derive the Cramer-Rao Lower Bound (CRLB) of localization accuracy for RSS measurements. In analysis of the bound we give insight in localization performance and deployment issues of a localization system, which could help designing an efficient localization system. To compare different machine learning approaches we developed a localization system based on an artificial neural network, k-nearest neighbors, probabilistic method based on the Gaussian kernel and the histogram method. We tested the developed system in real world WLAN indoor environment, where realistic RSS measurements were collected. Experimental comparison of the results has been investigated and average location estimation error of around 2 meters was obtained

    A Hybrid Indoor Location Positioning System

    Get PDF
    Indoor location positioning techniques have experienced impressive growth in recent years. A wide range of indoor positioning algorithms has been developed for various applications. In this work a practical indoor location positioning technique is presented which utilizes off-the-shelf smartphones and low-cost Bluetooth Low Energy (BLE) nodes without any further infrastructure. The method includes coarse and fine modes of location positioning. In the coarse mode, the received signal strength (RSS) of the BLE nodes is used for location estimation while in the fine acoustic signals are utilized for accurate positioning. The system can achieve centimeter-level positioning accuracy in its fine mode. To enhance the system’s performance in noisy environments, two digital signal processing (DSP) algorithms of (a) band-pass filtering with audio pattern recognition and (b) linear frequency modulated chirp signal with matched filter are implemented. To increase the system’s robustness in dense multipath environments, a method using data clustering with sliding window is employed. The received signal strength of BLE nodes is used as an auxiliary positioning method to identify the non-line-of-sight (NLoS) propagation paths in the acoustic positioning mode. Experimental measurement results in an indoor area of 10 m2 indicate that the positioning error falls below 6 cm

    Interference Effects of Blue tooth on WLAN Performance

    Get PDF
    In this paper, Network stumbler version 0.4.0 was used to estimate the impact of impulsive interference on Wireless Local Area Network (WLAN) when Bluetooth coexist by measuring radiation from a WiFi Access Point (AP) in a homogeneous and heterogeneous scenarios. The parameters measured include Received Signal Strength (RSS) and Signal-to-Noise ratio (SNR) while Bit Error Rate (BER) performance was theoretically deduced from the measured data. Results obtained from the measurements of both scenarios were compared and used in describing the interference problem. The study revealed that Bluetooth impact on performance was minimally significant with mean degradation of 4.74% in RSS and 0.77% in SNR despite the fact that its signal are weak and are designed to accommodate WiFi devices by AFH technology.http://dx.doi.org/10.4314/njt.v34i1.2

    Long-Range Indoor Emitter Localization from 433MHz and 2.4GHz WLAN Received Signal Strengths

    Get PDF
    An improved search method for localizing a radio emitter in a building from its signal strength is proposed and implemented. It starts from floor level determination, which samples the signal strength on each floor and determines the floor level of the emitter. Then the search is conducted iteratively on a specific floor. For each round of search, one-dimensional (1-D) or two-dimensional (2-D) signal strength is collected according to the actual structure of the floor. The signal strength data are processed to fit a 1-D curve or a 2-D surface with regression models to establish an indicator or trend, which can either locate the emitter or provide direction for the next round of search. The main contribution of this thesis is that the data processing results for 2- D signal strength data can locate the emitter or show the direction of the emitter through gradient, which is helpful to future search. Our approach has been implemented with two wireless protocols: 433MHz protocol and 2.4GHz wireless local area network (WLAN) protocol. A 433MHz module with LoRa modulation is chosen to provide long propagation distance. A 2.4GHz WLAN tester is used for close range search where 433MHz signal does not show enough attenuation spread to be effective. 433MHz implementation consists of an emitter, a radio tester and an Android APP on a smartphone. The emitter is a board with an Arduino Uno and a 433MHz transceiver. The radio tester is a board with an Arduino Uno, a 433MHz transceiver and a Bluetooth-to-serial module to communicate with a smartphone. The radio tester and the APP work together to localize the emitter. 2.4GHz WLAN implementation is composed of an emitter, which is emulated with a smartphone, a radio tester which consists of a smartphone, and a router and two Android APPs. Both phones are connected through the router and socket communication is initiated with the radio tester working as a server and the emitter working as a client. The APP on the emitter implements the client functions. The radio tester controls data acquisition process. The APP on the tester establishes the server functions and deals with received data. It compares signal strengths in different locations and finds the position that has the strongest signal strength to locate the emitter. The innovative idea of this thesis is to use 1-D and 2-D signal strength with regression models as it is convenient to provide location or unique search direction of the emitter. 1-D data is processed with linear and polynomial regressions to fit curves in order to find possible location of the emitter in either a narrow strip or a half a plane. 2-D data is processed with multiple regressions to fit contour-line surfaces in order to find either location of the emitter on the top of a surface or a unique search direction of the location of the emitter as indicated by the highest surface gradient. Our approach is compared with the centroid algorithm with an example. The centroid algorithm assumes the emitter is located in the search area and it is also easily influenced by sampling location biases. Our approach has two advantages over the centroid algorithm. The first advantage is that our approach can work even when the emitter is out of the initial search area since it searches iteratively. The second advantage is that when the emitter is in the initial search area, our approach is not influenced by sampling location biases
    • 

    corecore