
Rose-Hulman Institute of Technology
Rose-Hulman Scholar
Graduate Theses - Electrical and Computer
Engineering Graduate Theses

5-2018

Long-Range Indoor Emitter Localization from
433MHz and 2.4GHz WLAN Received Signal
Strengths
Hang Du

Follow this and additional works at: https://scholar.rose-hulman.edu/electrical_grad_theses

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Graduate Theses at Rose-Hulman Scholar. It has been accepted for inclusion in Graduate
Theses - Electrical and Computer Engineering by an authorized administrator of Rose-Hulman Scholar. For more information, please contact
weir1@rose-hulman.edu.

Recommended Citation
Du, Hang, "Long-Range Indoor Emitter Localization from 433MHz and 2.4GHz WLAN Received Signal Strengths" (2018). Graduate
Theses - Electrical and Computer Engineering. 12.
https://scholar.rose-hulman.edu/electrical_grad_theses/12

https://scholar.rose-hulman.edu?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/electrical_grad_theses?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/electrical_grad_theses?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/grad_theses?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/electrical_grad_theses?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/electrical_grad_theses/12?utm_source=scholar.rose-hulman.edu%2Felectrical_grad_theses%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:weir1@rose-hulman.edu


   

 

 
 

LONG-RANGE INDOOR EMITTER LOCALIZATION FROM 

433MHZ AND 2.4GHZ WLAN RECEIVED SIGNAL STRENGTHS 

 
 

A Thesis 
 

Submitted to the Faculty 
 
 

of 
 
 

Rose-Hulman Institute of Technology 
 
 

by 
 
 

Hang Du 
 
 
 

In Partial Fulfillment of the Requirements for the Degree 
 

of 
 

Master of Science in Electrical Engineering 
 
 

May 2018 
 
 
 
 

© 2018 Hang Du 
 
 
 
 



   

 

 
 



   

 

ABSTRACT 

Hang Du 

M.S.E.E. 

Rose-Hulman Institute of Technology 

May 2018 

Long-Range Indoor Emitter Localization from 433MHz and 2.4GHz WLAN Received Signal 

Strengths 

Thesis Advisor: Dr. Jianjian Song 

 

An improved search method for localizing a radio emitter in a building from its signal 

strength is proposed and implemented. It starts from floor level determination, which samples the 

signal strength on each floor and determines the floor level of the emitter. Then the search is 

conducted iteratively on a specific floor. For each round of search, one-dimensional (1-D) or 

two-dimensional (2-D) signal strength is collected according to the actual structure of the floor. 

The signal strength data are processed to fit a 1-D curve or a 2-D surface with regression models 

to establish an indicator or trend, which can either locate the emitter or provide direction for the 

next round of search. The main contribution of this thesis is that the data processing results for 2-

D signal strength data can locate the emitter or show the direction of the emitter through 

gradient, which is helpful to future search. 

Our approach has been implemented with two wireless protocols: 433MHz protocol and 

2.4GHz wireless local area network (WLAN) protocol. A 433MHz module with LoRa 



   

 

modulation is chosen to provide long propagation distance. A 2.4GHz WLAN tester is used for 

close range search where 433MHz signal does not show enough attenuation spread to be 

effective. 

433MHz implementation consists of an emitter, a radio tester and an Android APP on a 

smartphone. The emitter is a board with an Arduino Uno and a 433MHz transceiver. The radio 

tester is a board with an Arduino Uno, a 433MHz transceiver and a Bluetooth-to-serial module to 

communicate with a smartphone. The radio tester and the APP work together to localize the 

emitter. 

2.4GHz WLAN implementation is composed of an emitter, which is emulated with a 

smartphone, a radio tester which consists of a smartphone, and a router and two Android APPs. 

Both phones are connected through the router and socket communication is initiated with the 

radio tester working as a server and the emitter working as a client. The APP on the emitter 

implements the client functions. The radio tester controls data acquisition process. The APP on 

the tester establishes the server functions and deals with received data. It compares signal 

strengths in different locations and finds the position that has the strongest signal strength to 

locate the emitter. 

The innovative idea of this thesis is to use 1-D and 2-D signal strength with regression 

models as it is convenient to provide location or unique search direction of the emitter. 1-D data 

is processed with linear and polynomial regressions to fit curves in order to find possible location 

of the emitter in either a narrow strip or a half a plane. 2-D data is processed with multiple 

regressions to fit contour-line surfaces in order to find either location of the emitter on the top of 

a surface or a unique search direction of the location of the emitter as indicated by the highest 

surface gradient. 



   

 

Our approach is compared with the centroid algorithm with an example. The centroid 

algorithm assumes the emitter is located in the search area and it is also easily influenced by 

sampling location biases. Our approach has two advantages over the centroid algorithm. The first 

advantage is that our approach can work even when the emitter is out of the initial search area 

since it searches iteratively. The second advantage is that when the emitter is in the initial search 

area, our approach is not influenced by sampling location biases. 



   

 

 

 

 

 

 

 

 

 

To My Parents Chuanjiu Du (father) and Huilan Jin (mother) 

 



  vii 

 

ACKNOWLEDGEMENTS 

I would like to thank my advisor, Dr. Song, for all the encouragement and instructions he 

provided during my Master of Science study and for guiding me to the conclusion of my study at 

Rose-Hulman. Dr. Song did a great job of encouraging me to pursue my interest and helping me 

to push my research further and further. I would also like to thank my other committee members, 

Drs. Claude Anderson and Drs. Mark Yoder. Their courses really impressed me and laid a solid 

basis for my thesis. Finally, I want to appreciate the support from my family and friends who 

give me lots of strength during my graduate study. I want to give special thanks to my parents 

who tried their best to give me the best education. Without them, I would not have the chance to 

go abroad, and graduate from Rose-Hulman Institute of Technology. 



  viii 

 

TABLE OF CONTENTS  

ABSTRACT .................................................................................................................................. III 

LIST OF FIGURES ....................................................................................................................... X 

LIST OF TABLES ....................................................................................................................... XII 

LIST OF ABBREVIATIONS .................................................................................................... XIII 

1. INTRODUCTION ...................................................................................................................... 1 

1.1. Overview of Indoor Emitter Localization ............................................................................ 1 

1.2. Radiation Pattern of Monopole Antenna and Energy Attenuation of Electromagnetic 
Waves .......................................................................................................................................... 4 

1.3. Our Proposed Scheme for Indoor Emitter Localization ....................................................... 9 

2. DESIGN AND IMPLEMENTATION OF THE 433MHZ METHOD..................................... 12 

2.1. Taylor Series, Linear Regression, Polynomial Regression and Multiple Regression........ 12 

2.2. Design of the 433MHz Method ......................................................................................... 14 

2.2.1. Revised Signal Strength Data ...................................................................................... 14 

2.2.2. Emitter and Tester Hardware Modules ....................................................................... 15 

2.2.3. Android APP for Interfacing with the 433MHz Tester ............................................... 22 

2.3. Determination of Floor Level of the Emitter ..................................................................... 27 

2.4. Emitter Localization from 1-D Data with Linear Regression and Polynomial Regression 29 

2.5. Emitter Localization from 2-D Data with Multiple Regression and Gradient ................... 34 

2.6. Performance Evaluation for 1-D and 1-D Localization ..................................................... 39 

3. DESIGN AND IMPLEMENTATION OF THE 2.4GHZ WLAN METHOD ......................... 42 

3.1. Design of the 2.4GHz WLAN Method .............................................................................. 42 

3.2. Evaluation of the WLAN Method ...................................................................................... 45 

4. OVERALL SYSTEM PERFORMANCE EVALUATION...................................................... 47 

5. COMPARISON WITH THE CENTROID ALGORITHM ...................................................... 52 

5.1. The Centroid Algorithm for Emitter Localization ............................................................. 52 

5.2. Accuracy Comparison ........................................................................................................ 53 

6. CONCLUSION AND FUTURE WORK ................................................................................. 54 

LIST OF REFERENCES .............................................................................................................. 56 

APPENDICES .............................................................................................................................. 58 

APPENDIX A. 433MHz Radio Tester and Emitter Programs on Arduino UNO Board ......... 58 



  ix 

 

Radio Tester Code ................................................................................................................. 58 

Emitter Code.......................................................................................................................... 60 

APPENDIX B. Android APP for Interfacing with the 433MHz Tester ................................... 63 

BluetoothConnectionService.java ......................................................................................... 64 

MainActivity.java .................................................................................................................. 70 

DeviceAdapter.java ............................................................................................................... 78 

Position.java .......................................................................................................................... 79 

PositionAdapter.java ............................................................................................................. 80 

SearchModeActivity.java ...................................................................................................... 80 

OneDimensionSampleActivity.java ...................................................................................... 85 

PolyFitActivity.java .............................................................................................................. 88 

AverageFilter.java ................................................................................................................. 92 

Expectation.java .................................................................................................................... 92 

PolyFit.java............................................................................................................................ 94 

Rsquared.java ........................................................................................................................ 96 

APPENDIX C. Android APP on the 2.4GHz Emitter .............................................................. 98 

MainActivity.java .................................................................................................................. 98 

APPENDIX D. Android APP on the 2.4GHz Radio Tester ................................................... 101 

MainActivity.java ................................................................................................................ 101 

Worker.java ......................................................................................................................... 104 

LabelDialog.java ................................................................................................................. 106 

Position.java ........................................................................................................................ 107 

PositionAdapter.java ........................................................................................................... 108 

APPENDIX E. Regression Analysis in MATLAB ................................................................. 109 

 



  x 

 

LIST OF FIGURES 

Figure 1.1 WLAN Fingerprint Method [11]. .................................................................................. 3 

Figure 1.2 Radiation Pattern of a Monopole Antenna [17]. ........................................................... 5 

Figure 1.3 Electric and Magnetic Field Vectors of a Plane Wave [18]. ......................................... 5 

Figure 1.4 Finite Dipole Geometry [19]. ........................................................................................ 6 

Figure 1.5 Radiated Power Attenuation in 2-D Free Space. ........................................................... 8 

Figure 1.6 Radiated Power Attenuation in 1-D Free Space. ........................................................... 8 

Figure 1.7 System Architecture of Our Proposed Indoor Emitter Localization Approach. ......... 11 

Figure 2.1 433MHz Method Design. ............................................................................................ 14 

Figure 2.2 The RFM96 433MHz Transceiver [28]. ...................................................................... 16 

Figure 2.3 The HC-06 Bluetooth to Serial Module [29]. .............................................................. 16 

Figure 2.4 Software Flowchart for the 433MHz Radio Tester. .................................................... 18 

Figure 2.5 Software Flowchart for the 433MHz Emitter. ............................................................. 19 

Figure 2.6 The Schematic of the 433MHz Radio Tester. ............................................................. 20 

Figure 2.7 The Schematic of the 433MHz Emitter. ...................................................................... 20 

Figure 2.8 The 433MHz Radio Tester Board. .............................................................................. 21 

Figure 2.9 The 433MHz Emitter Board. ....................................................................................... 21 

Figure 2.10 Software Flowchart of the Android APP to Interface with the 433MHz Tester. ...... 23 

Figure 2.11 Making Bluetooth Connection with the 433MHz Radio Tester. ............................... 24 

Figure 2.12 1-D Data Sampling .................................................................................................... 24 

Figure 2.13 2-D Data Sampling. ................................................................................................... 25 

Figure 2.14 1-D Data Regression Analysis................................................................................... 25 

Figure 2.15 1-D Data Sampling Process. ...................................................................................... 26 

Figure 2.16 2-D Data Sampling Process. ...................................................................................... 26 

Figure 2.17 Three Stairs and the Emitter in Room D210 on the Second Floor of Moench Hall.. 28 

Figure 2.18 The Emitter in Room D101 on the First Floor of Moench Hall. ............................... 29 

Figure 2.19 Case I: the Radio Tester Moves Away from the Emitter. ......................................... 31 

Figure 2.20  1-D Plot of Signal Strength vs. Distance for Case I. ................................................ 31 

Figure 2.21 Case II: the Radio Tester Approaches the Emitter. ................................................... 32 

Figure 2.22 1-D Plot of Signal Strength vs. Distance for Case II. ................................................ 32 

Figure 2.23 Case III: the Radio Tester Passes through the Emitter. ............................................. 33 



  xi 

 

Figure 2.24 1-D Plot of Signal Strength vs. Distance for Case III. .............................................. 33 

Figure 2.25 Case 2D-I: The Emitter is Placed on an Outdoor Playground. .................................. 35 

Figure 2.26 Side View of 2-D Surface of the Outdoor Playground for Case 2D-I. ...................... 36 

Figure 2.27 Top View of 2-D Surface of the Playground for Case 2D-I. ..................................... 36 

Figure 2.28 Case 2D-II: The Emitter is Placed In the Middle of Grid2 of an Indoor Area. ......... 38 

Figure 2.29 Top View of the Fitting Surface for Case 2D-II of an Indoor Area. ......................... 38 

Figure 2.30 2D Case III:The Emitter is Placed in the Middle of the Space of an Indoor Area. ... 39 

Figure 2.31 Top View of the Fitting Surface for Case 2D-III of an Indoor Area. ........................ 39 

Figure 2.32 Map of Lower Level of Moench Hall and Second Floor of Crapo Hall. .................. 40 

Figure 2.33 Top View of the Fitting Surface of Area 1 in Moench Hall. ..................................... 41 

Figure 2.34 1-D Plot of Signal Strength vs. Distance along a Line from Points A to B in Figure 
2.32................................................................................................................................................ 41 

Figure 3.1 The 2.4GHz WLAN Method Design. .......................................................................... 43 

Figure 3.2 The Emitter of the 2.4GHz Wireless System. ............................................................. 44 

Figure 3.3 The Radio Tester of the 2.4GHz Wireless System. ..................................................... 44 

Figure 3.4 Position of the Emitter in the Hallway. ....................................................................... 46 

Figure 4.1 Searching Steps. .......................................................................................................... 47 

Figure 4.2 System Case I: System Evaluation Environment. ....................................................... 48 

Figure 4.3 1-D Plot of Signal Strength vs. Distance for from A1 to B1. ...................................... 49 

Figure 4.4 1-D Plot of Signal Strength vs. Distance for from A2 to B2. ...................................... 49 

Figure 4.5 1-D Plot of Signal Strength vs. Distance for from A3 to B3. ...................................... 50 

Figure 4.6 System Case II: System Evaluation Environment and Area E200. ............................. 51 

Figure 4.7 Top View of Fitting Surface for System Case II. ........................................................ 51 

Figure 5.1 Localization Accuracy Comparison of the Centroid Algorithm and Our Proposed 
Scheme. ......................................................................................................................................... 53 

Figure 7.1 Diagram for Android APP Interfacing with Radio Tester in 433MHz Wireless 
System. .......................................................................................................................................... 63 

 



  xii 

 

LIST OF TABLES 

Table 2.1 Floor Level Signal Strength Data When the Emitter is in D210. ................................. 28 

Table 2.2 Floor Level Signal Strength Data When the Emitter is in D101. ................................. 29 

Table 3.1 433MHz Signal Strength Data. ..................................................................................... 46 

Table 3.2 2.4GHz WLAN Signal Strength Data. .......................................................................... 46 

Table 4.1 Floor Determination of System Evaluation. ................................................................. 48 

Table 4.2 Small Range Data Sampling. ........................................................................................ 50 

Table 7.1 Class Description for Figure 7.1. .................................................................................. 63 



  xiii 

 

LIST OF ABBREVIATIONS 

TOA   Time of Arrival 

AOA   Angle of Arrival 

RSSI   Received Signal Strength Indicator 

WLAN                Wireless Local Area Network 

SPI                      Serial Peripheral Interface 

SNR                    Signal-to-noise Ratio 

AP                       Access Point 

MSE   Mean Square Error 

GPS   Global Positioning System 

1-D   One-dimensional 

2-D   Two-dimensional 

 

 



  xiv 

 



  1 

 

1. INTRODUCTION 

Localization is to find the position or location (longitude and latitude) of a radio emitter 

by receiving and analyzing transmitted radio waveforms from the emitter. The emitter is an 

electronic device that radiates electromagnetic waves such as a cellphone, a radio station, a WiFi 

device, an access point, a 433MHz device, etc. Localization quest has been a challenge since the 

shortwave radio age in the 1920s. Localization technology has been developed and used mostly 

for defense_related systems [1]. The localization problem can be divided into two general 

categories: outdoor localization and indoor localization [2]. 

Various techniques have been developed and tested to identify the location of an emitter. 

Three types of information from the emitter have been investigated: radio signal strength [3], 

time of arrival (TOA) of radio signals [4], and angle of arrival (AOA) of radio signals [5]. A 

scheme for emitter indoor localization based on signal strength is proposed in this thesis, and it 

has been proved to work well in long-range indoor emitter localization. 

1.1. Overview of Indoor Emitter Localization 

Indoor localization research has been active in the past few years since indoor position 

information of an emitter is of great importance, especially due to the emerging Internet of 

Things [6, 7]. A wide range of services can be provided based on indoor localization, such as 

asset tracking [8] and navigation [9] in an airport or a shopping mall. Majority research on 

indoor localization over the decades can be divided into three categories: received radio signal 

strength analysis, Time of Arrival (TOA) of received radio signals, and Angle of Arrival (AOA) 

of received radio signals.  



  2 

 

The main method in applying received signal strength for localization is to analyze 

fingerprints of access points of a wireless location area network (WLAN) such as Horus [10]. A 

WLAN fingerprint is signal strengths of all the access points (APs) at one location. This 

technique leverages on the existing WLAN access points or routers in a building and saves the 

cost for the specific infrastructure for indoor emitter localization. A WLAN fingerprint location 

system, as shown in Figure 1.1, works in two phases: an offline training phase and an online 

location determination phase. In the offline training phase, signals from APs in a test area are 

sampled at various locations of a small distance from each other, for example, three meters per 

sample point. For each sample point location, signal strengths from all the access points are 

recorded as the fingerprint at this location. Fingerprints for each sample point are saved into a 

database. In the online location determination phase, the emitter will collect signal strengths 

from all of the access points as the fingerprint of its location and will compare this fingerprint 

with the fingerprints of sample points in the database. The sample point in the database which 

has the minimum distance between its fingerprint and the emitter’s fingerprint is chosen as the 

predicted position of the emitter. 



  3 

 

 

Figure 1.1 WLAN Fingerprint Method [11]. 

Another method of indoor emitter localization uses time of arrival (TOA) of radio signals 

from the emitter [4]. TOA is the propagation time of a radio signal from an emitter to a radio 

tester. By multiplying radio propagation time and radio propagation speed, the distance between 

the emitter and the radio tester can be calculated. One drawback of this approach is its high cost 

since the transmitter and receiver of a TOA system need to be highly synchronized to get 

accurate radio propagation time. Specialized hardware and techniques are required such as direct 

sequence spread-spectrum [12], and ultrawide band (UWB) [13, 14]. Another drawback of this 

approach is that it may suffer from multipath fading in a complex indoor environment.  

The third method is to use Angle of Arrival. Angle of Arrival is defined as the direction 

of propagation of radio signals from the emitter incident on an antenna array. Since the arrival 

times of a radio signal on each element of the antenna array may vary, the time differences can 

be used to decide the direction of the emitter.  The antenna array can also detect the direction of 



  4 

 

the maximum energy of the radio signal from the emitter and hence the direction of the emitter. 

This solution can be quite accurate. However, a large antenna array is needed and can be 

expensive and bulky. A cheaper and more portable alternative approach to emulate the 

functionality of an antenna array is to position a cellphone in regular patterns [15]. 

Received radio signal strength is used in this thesis to identify the location of the emitter. 

1.2. Radiation Pattern of Monopole Antenna and Energy Attenuation of 

Electromagnetic Waves 

An antenna is an energy conversion device that can convert guided electromagnetic 

waves to free space waves and vice versa. The emitter’s antenna used in our system is assumed 

to be a quarter-wave monopole antenna. 

Figure 1.2 shows the radiation pattern of a monopole antenna in space. A monopole 

antenna radiates equal power in all azimuthal directions perpendicular to the antenna, but the 

radiated power varies with elevation angle, with the radiation dropping off to zero at the zenith, 

on the antenna axis [16]. This feature is used in Section 2.3 determine the floor level of the 

emitter. 



  5 

 

 

Figure 1.2 Radiation Pattern of a Monopole Antenna [17]. 

Since received radio signal strength from the emitter will be used to localize the emitter, 

it is important to understand radio signal energy propagation and attenuation in space. Figure 1.3 

illustrates the directions of the electric field vector E


, magnetic field vector H


 and wave 

propagation of a typical planar wave. E


 and H


 are mutually perpendicular to each other. The 

direction of wave propagation is also the direction of energy propagation. This energy 

propagation can be described with power density vector or Poynting vector, S E H 
  

. 

 

Figure 1.3 Electric and Magnetic Field Vectors of a Plane Wave [18]. 



  6 

 

 

Figure 1.4 Finite Dipole Geometry [19]. 

Given the geometry of a finite dipole in Figure 1.4 [19], the equations for E , H  and 

rS are derived in [19]. The equation for E is showed in (Eq.  1.1). The equation for H  is 

showed in (Eq.  1.2). rS  is the power density Poynting vector component in  direction [20]. A 

monopole antenna should have the same E  and H  like those of a dipole antenna. However, a 

monopole antenna can radiate only half of the power of the corresponding dipole. It can be seen 

from (Eq.  1.3) that the power density and therefore energy of an electromagnetic wave from a 

monopole antenna source is attenuated as 
2

1

r
with distance r from the source. This relationship is 

simplified to free-space path loss formula which is shown is (Eq.  1.4). 



  7 

 

 0

cos( cos ) cos( )
2 2

2 sin

jkr
kl kl

I e
E j

r





 


 

 
 
 
 

  (Eq.  1.1)

 0

cos( cos ) cos( )
2 2

2 sin

jkr
kl kl

E I e
H j

r






  


 

 
 
 
 

   (Eq.  1.2)

 

2

2 2
0

2 2

cos( cos ) cos( )
2 2

4 sin

jkr

r

kl kl
I e

S E H E a H a a
r

   




 


 

 
       

 
 

     
 (Eq.  1.3)

  

This relationship of power attenuation is expressed as the ratio of transmitted and 

received powers as shown is (Eq.  1.4), where Pt  is signal power at transmitting antenna, Pr is 

signal power at receiving antenna,  is wavelength, d is propagation distance between two 

antennas and c is the speed of light in free space. 

 
 

2 2

2 2

(4 ) (4 )

Pr

Pt d fd

c

 


   (Eq.  1.4)

  

Equation (Eq.  1.4) is plotted in Figure 1.5 which looks like a mountain. Radiated power 

attenuation in one dimension is plotted in Figure 1.6. The concept of radiated energy attenuation 

of electromagnetic waves is heavily utilized in Section 2.4 and 2.5. 



  8 

 

 

Figure 1.5 Radiated Power Attenuation in 2-D Free Space. 

 

Figure 1.6 Radiated Power Attenuation in 1-D Free Space. 



  9 

 

1.3. Our Proposed Scheme for Indoor Emitter Localization 

The paper proposes a new scheme for indoor emitter localization with both 433MHz and 

2.4GHz WLAN signal strengths. A 433MHz tester is used to receive the 433MHz radio signal 

from the emitter to take advantage of long-distance transmission of the 433MHz signal. Assume 

the building where the emitter resides is known, the 433MHz tester can identify the floor in the 

building where the emitter is and zoom a small area on the floor. 2.4GHz WLAN signals are 

used when there is some difficulty to find the emitter in small range in the final stage, where the 

433MHz signal does not have enough attenuation to be effective. WLAN signals are used to 

screen the small area to identify the location of the emitter. This approach takes advantages of 

low attenuation of 433MHz transmission and high density and high attenuation of 2.4GHz 

WLAN signals. 

Our approach has been implemented with two wireless protocols: 433MHz protocol and 

2.4GHz wireless local area network (WLAN) protocol. A 433MHz module with LoRa 

modulation is chosen to provide long wave propagation distance. LoRa is a technology which 

can provide longer range transmission for radio signals. A WLAN tester is used for close range 

search where the 433MHz signal does show enough attenuation spread to be effective. 

The 433MHz implementation consists of an emitter, a radio tester and an Android APP 

on a smartphone. The emitter is a board with an Arduino Uno and a 433MHz transceiver. The 

radio tester is a board with an Arduino Uno, a 433MHz transceiver and a Bluetooth-to-serial 

module to be connected to the smartphone. The radio tester and the APP work together to 

localize the emitter. To start collecting signal strength from the emitter, the Android APP sends 

commands to the radio tester through the Bluetooth module. Then the radio tester sends out a 

LoRa packet. After the emitter receives the LoRa packet, it sends a LoRa packet back. The radio 



  10 

 

tester, after receiving the LoRa packet, fetches signal strength data and sends the data to the 

APP. After the APP finishes data collection, the data is copied to a laptop and is processed with 

regression models in MATLAB. 

The 2.4GHz WLAN implementation is composed of an emitter, which is emulated with a 

smartphone, a radio tester which consists of a smartphone and a router and two Android APPs. 

Both phones are connected through the router and socket communication is initiated with the 

radio tester working as a server and the emitter working as a client. The APP on the emitter 

implements the client functions. The radio tester controls data acquisition process. The APP on 

the tester establishes the server functions and deals with received data. It compares signal 

strengths in different locations and finds the position that has the strongest signal strength to 

locate the emitter. 

The system architecture of our approach is given in Figure 1.7. Localization of the 

emitter inside a building is done by two phases: vertical floor determination and horizontal 

location determination on the floor. For vertical floor determination, received signal strengths 

differences from 433MHz signal strengths in different floors are used to determine the floor 

where the emitter resides. Once the floor is identified, different search strategies are applied 

according to the actual structure of the floor. For a narrow path such as a hallway, 1-D 

localization is used. Otherwise, 2-D localization is used. Several rounds of searches are carried 

out until the emitter location is identified. Each round of search can provide some hints of 

direction for the next round of search. 

 



  11 

 

 

Figure 1.7 System Architecture of Our Proposed Indoor Emitter Localization Approach.



  12 

 

2. DESIGN AND IMPLEMENTATION OF THE 433MHZ METHOD 

The 433MHz radio signal is used for two reasons. One reason is that 433.050 - 434.090 

MHz band could be used without a license in many countries such as all European countries and 

some Asian countries. The other reason is that 433MHz signal can travel through walls and 

obstacles, which is good for long-range emitter localization because of its longer wavelength or 

lower frequency than those of WLAN signals.   

Section 2.1 introduces Taylor series and math models used in the localization algorithms. 

Section 2.2 discusses design details of the 433MHz method, including the hardware and the 

software. Section 2.3, 2.4 and 2.5 present the localization algorithms. Section 2.6 discusses the 

performance of the localization algorithms. 

2.1. Taylor Series, Linear Regression, Polynomial Regression and Multiple 

Regression 

Radio signals in an indoor environment can be noisy and distorted because of irregular 

radiation paths, complex attenuation patterns and multiple reflections of the signals. Received 

signals from a 433MHz emitter need to be processed to remove noises for ease of pattern 

recognition and trend identification.  We propose to process the received signal strengths and 

position data with linear regression, polynomial regression, and multiple regression. 

Linear regression is a linear approach for modeling the relationship between a scalar 

dependent variable and an explanatory variable denoted as x [21]. Equation (Eq.  2.1) shows one 

explanatory variable case, which is used in Section 2.4.1 to process 1-D signal strength data. 



  13 

 

 ( )f x a x b    (Eq.  2.1)
  

Polynomial regression is a form of regression analysis in which the relationship between 

the independent variable x and the dependent variable is modeled as an thn degree polynomial in 

x [22]. Equation (Eq.  2.2) shows the second-degree polynomial regression, which is used in 

Section 2.4.2 to process 1-D signal strength data. 

 2( )f x a x b x c      (Eq.  2.2)

  

Multiple regression is a form of regression analysis in which a scalar dependent variable 

and multiple explanatory variables are involved. Equation (Eq.  2.3) shows the x’s degree=1 and 

y’s degree=1 case. Equation (Eq.  2.4) shows the x’s degree=2 and y’s degree=1 case. Equation 

(Eq.  2.5) shows the x’s degree=1 and y’s degree=2 case. Equation (Eq.  2.6) the x’s degree=2 

and y’s degree=2 case. These equations are used in Section 2.5 to process 2-D signal strength 

data. 

 ( , ) 00 10 01f x y p p x p y      (Eq.  2.3)

 2( , ) 00 10 01 20 11f x y p p x p y p x p xy          (Eq.  2.4)

 2( , ) 00 10 01 11 02f x y p p x p y p xy p y          (Eq.  2.5)

 2 2( , ) 00 10 01 20 11 02f x y p p x p y p x p x y p y             (Eq.  2.6)

  

A Taylor series is a representation of a function as an infinite sum of terms that are 

calculated from the values of the function’s derivatives at a single point [23]. A function can be 

approximated by using a finite number of terms of its Taylor series as shown in Equation  (Eq.  

2.7). The polynomial expression formed by taking some initial terms of the Taylor series is 

called a Taylor polynomial. The Taylor series can also be generalized to functions of more than 

one variable. A second-order Taylor series can be used to approximate any function that depends 

on two variables. The fact that any function can be approximated by using a finite number of 



  14 

 

terms of its Taylor series is the reason of why the mathematical models of linear regression, 

polynomial regression, and multiple regression are used for fitting data in the proposed 

localization algorithms. 

 
( )

0

( )
( ) ( )

!

n
n

n

f a
f x x a

n





   (Eq.  2.7)

  

( ) ( )nf a ：nth derivative of f  evaluated at the point a. 

2.2. Design of the 433MHz Method 

The design of the 433MHz method includes two parts: hardware and software. As shown 

in Figure 2.1, the hardware part includes the emitter and the radio tester that receives signals 

from the emitter. The software part includes an Android application for interfacing with the 

tester and MATLAB code for data processing. 

 

Figure 2.1 433MHz Method Design. 

2.2.1. Revised Signal Strength Data 

In the 433MHz method, strength data of 433MHz signals with LoRa modulation is 

collected. LoRa is a proprietary, chirp spread spectrum (CSS) radio modulation technology for a 

low-power wide-area network from Semtech which uses a license-free sub-gigahertz radio 



  15 

 

frequency band [24]. It offers long range and low power data transmission. According to [25], it 

is possible to receive packets below the noise floor due to the nature of the LoRa modulation. In 

this situation, it is more accurate to use the signal-to-noise ratio (SNR) in conjunction with the 

packet RSSI to compute the signal strength of the received packet. We call this revised signal 

strength, and it is computed with Equations (Eq.  2.10) and (Eq.  2.11). SNR is defined as the 

ratio of signal power to the noise power as showed in Equation (Eq.  2.8). Equation (Eq.  2.9) 

shows how SNR is expressed in logarithmic decibel scale.  

 
signal

noise

P
SNR

P
  (Eq.  2.8)

 1010log
signal

dB

noise

P
SNR

P

 
  

 
 (Eq.  2.9)

 RevisedRSSI PacketRssi  (when 0dBSNR   ) (Eq.  2.10)

 Re 0.25visedRSSI PacketRssi PacketSnr   (when  0dBSNR   ) (Eq.  2.11)

2.2.2. Emitter and Tester Hardware Modules 

As shown in Figure 2.1, hardware modules include two microcontrollers (MCU), two 

433MHz transceivers with antennas, and one Bluetooth module.  

Arduino Uno boards are used as the microcontroller boards to construct both the emitter 

and the radio tester. Arduino boards use a variety of microprocessors and controllers equipped 

with sets of digital and analog input/output pins to interface with other boards [26]. There are 

also many software libraries available for the Arduino, which makes it easy to build a quick 

software prototype. RadioHead library is used for radio communications between the Arduino 

and the 433MHz transceiver [27]. 

The RFM96 LoRa Radio module from Adafruit is chosen to be used for the 433MHz 

transceiver as showed in Figure 2.2. It is an SX1276 LoRa based module with serial peripheral 



  16 

 

interface (SPI) interface. The power output capacity of the RFM96 can be up to 20dBm or 

100mW. The RFM96 has a range of about 2km line of sight with tuned unidirectional antennas 

[28]. Long wireless transmission distance is the main advantage of this module. This is because 

SX1276 features the LoRa long range modem that provides an ultra-long range spread spectrum 

from Semtech. The RFM96 interfaces with an Arduino Uno through SPI interface. 

 

Figure 2.2 The RFM96 433MHz Transceiver [28]. 

As for the Bluetooth part, the HC-06 Bluetooth to serial module as shown in Figure 2.3 is 

chosen. 

 

 

Figure 2.3 The HC-06 Bluetooth to Serial Module [29]. 



  17 

 

A wire antenna as a quarter-wave monopole antenna is used for the RFM96 on both the 

emitter and the radio tester. The length of the antenna is calculated by 
1 1

17.3
4 4

c
cm

f
    , 

where c=3x108m/s, f=433MHz. 

The main hardware operation is the two-way communications between the emitter and 

the radio tester. To obtain a sample of signal strength data, the following steps are carried out: 

(1) The radio tester sends one LoRa packet out. 

(2) The emitter receives this packet and then sends one LoRa packet back. 

(3) The radio tester receives this packet and then fetches RSSI data. 

Software flowcharts for the radio tester and the emitter are presented in Figure 2.4 and 

Figure 2.5. The schematics of the radio tester and the emitter are displayed in Figure 2.6 and 

Figure 2.7. Photos of the radio tester and the emitter are shown in Figure 2.8 and Figure 2.9. 



  18 

 

 

Figure 2.4 Software Flowchart for the 433MHz Radio Tester. 



  19 

 

 

Figure 2.5 Software Flowchart for the 433MHz Emitter. 



  20 

 

 

Figure 2.6 The Schematic of the 433MHz Radio Tester. 

 

Figure 2.7 The Schematic of the 433MHz Emitter. 



  21 

 

 

 

Figure 2.8 The 433MHz Radio Tester Board. 

 

Figure 2.9 The 433MHz Emitter Board. 



  22 

 

2.2.3. Android APP for Interfacing with the 433MHz Tester 

The APP running on an Android device aims at sending commands to the radio tester and 

receiving signal strength data from the radio tester. Then the data is moved from the Android 

APP to a laptop to be processed with the math models discussed in Section 2.1 that are 

implemented in MATLAB. 

Figure 2.10 describes the workflow of the Android APP to interface with the radio tester. 

The first main entry point of the APP is to make a Bluetooth connection with the radio tester. 

The HC-06 Bluetooth module can cover a distance of about nine meters. It can be assumed that 

the distance between the radio tester and the Android phone is within a reasonable range to make 

Bluetooth connection successfully since both the radio tester and the phone must be held by the 

same engineer at work. After this step of Bluetooth connection, the APP can go to the search 

mode in which RSSI data for each position is collected. To obtain a sample of data at a location, 

the following steps will be carried out: 

(1) APP sends a command to the radio tester by Bluetooth. 

(2) After receiving the command, the radio tester sends one LoRa packet out to the 

emitter. 

(3) The emitter receives this LoRa packet and then sends one LoRa packet back to the 

radio tester. 

(4) The radio tester receives this LoRa packet, fetches RSSI data and encodes data to a 

packet. 

(5) The radio tester sends this packet back to the APP by Bluetooth. 



  23 

 

 

Figure 2.10 Software Flowchart of the Android APP to Interface with the 433MHz Tester. 

Figure 2.11 shows the main page of the Android APP which is in charge of making a 

Bluetooth connection with the radio tester. From the main page, the APP can go to 1-D data 

sampling in Figure 2.12 or 2-D data sampling in Figure 2.13. Regression analysis may be applied 

in Figure 2.14 after 1-D data sampling. 



  24 

 

 

Figure 2.11 Making Bluetooth Connection with the 433MHz Radio Tester. 

 

Figure 2.12 1-D Data Sampling 



  25 

 

 

Figure 2.13 2-D Data Sampling. 

 

Figure 2.14 1-D Data Regression Analysis. 



  26 

 

Figure 2.15 describes the 1-D data sampling process using the APP. For 1-D data 

sampling, only one signal strength is collected for each position. The user is expected to walk at 

constant speed. During this process, the RSSI data is sampled every two seconds.  

 

Figure 2.15 1-D Data Sampling Process. 

Figure 2.16 describes the 2-D data sampling process using the APP. For 2-D data 

sampling, multiple signal strengths are collected for each position to be averaged to increase 

accuracy. The grid in Figure 2.16 is composed of four paths: from point A1 to point B1, A2 to 

B2, A3 to B3 and A4 to B4. For each path, sampling point locations which are represented as red 

points are spaced equally. For each location, the user clicks the button of adding a label and 

inputting a label, waits for some time to collect enough data for averaging and then clicks the 

Stop button. Then the averaged data for the position is saved to the APP. When the data 

sampling for all the locations in Figure 2.16 is completed, the 2-D data sampling process is 

completed.  

 

Figure 2.16 2-D Data Sampling Process. 



  27 

 

2.3. Determination of Floor Level of the Emitter 

The objective of the paper is to locate the emitter in a building. Since a building usually 

has several floors, the floor level where the emitter resides needs to be determined first. The 

algorithm for floor level determination is quite simple. Signal strength data is collected on 

different floors where the stairs are. For example, there are three stairs on the Second Floor of 

Moench Hall of our school as showed in Figure 2.17 and signal strength data is collected at 

position (1), (2) and (3) on each floor. Multiple signal strengths are collected at each location to 

be averaged to increase accuracy. To determine the floor level of the emitter, the signal strength 

data for each floor at different stairs are averaged to represent the signal strength for this floor. 

Assume there are in total m stairs, the equation to average the signal strengths of a floor is as 

follows where [ ][ ]s i j  is the signal strength at the ith stair on the jth floor. 

 
1

1
max{ [ ][ ]}

m

j
i

floor s i j
m 

   (Eq.  2.12)

  

Two experiments are designed to show the validity of this algorithm. In the first 

experiment, the emitter is placed in Room D210 on the 2nd Floor of Moench Hall in Figure 2.17, 

and the algorithm predicts that the emitter is on the second floor according to signal strength data 

in Table 2.1. In the second experiment, the emitter is placed in D101 on the 1st Floor of Moench 

Hall as shown in Figure 2.18 and the algorithm again makes the right prediction according to 

Table 2.2. 



  28 

 

 

Figure 2.17 Three Stairs and the Emitter in Room D210 on the Second Floor of Moench 
Hall. 

 

Table 2.1 Floor Level Signal Strength Data When the Emitter is in D210. 

 Stair 1 Stair 2 Stair 3 Average 
Floor -1 -64.97dB -63.33dB -72.47dB -66.92dB 
Floor 1 -53.9dB -50.43dB -71.21dB -58.51dB 
Floor 2 -49.5dB -56.4dB -62.83dB -56.24dB 

 



  29 

 

 

Figure 2.18 The Emitter in Room D101 on the First Floor of Moench Hall. 

Table 2.2 Floor Level Signal Strength Data When the Emitter is in D101. 

 Stair 1 Stair 2 Stair 3 Average 
Floor -1 -49.97dB -40.24dB -65.0dB -51.74dB 
Floor 1 -39.89dB -40.73dB -54.27dB -44.96dB 
Floor 2 -46.03dB -47.5dB -61.7dB -51.74dB 

2.4. Emitter Localization from 1-D Data with Linear Regression and 

Polynomial Regression 

1-D data means the sequential signal strengths from a straight line. The data is processed 

with a program in MATLAB as shown in Appendix B. Wherever the emitter is, there are three 

possible cases for the emitter: 

Case I: The radio tester moves away the emitter in Figure 2.19. 

Case II: The radio tester approaches the emitter in Figure 2.21. 

Case III: The radio tester passes through the emitter in Figure 2.23. 



  30 

 

In both Case I and Case II, received signal strength data is changing monotonically with 

distance. Two experiments are designed to verify our approach. The first experiment is described 

in Figure 2.19. Signal strength vs. relative distance for this experiment is plotted as shown in 

Figure 2.20. The horizontal axis in Figure 2.20 is relative distance represented by the index of 

the sequential signal strength data. The initial position of the radio tester is the origin of the 

horizontal axis. When the radio tester is moving at a constant speed, signal strength is collected 

at a fixed frequency, and these signal strengths are indexed sequentially starting from index 0. 

Four legends are showed in Figure 2.20. “Sampled data” means the scatter plot of the original 

signal strength data. “Filter plot” means average filtering [35] is applied to the original data and a 

plot is made from the filtered data. “Linear fit” and “2nd-order fit” are obtained by linear 

regression from Equation (Eq.  2.1) and polynomial regression Equation (Eq.  2.2) respectively.   

From Figure 2.20, it is observed that the original signal strength data can be quite messy. 

After averaging filtering with window size=2, the plot for filtered data is much smoother. The 

linear fitting result is   0.9417 21.7557f x x  while the 2nd-order fitting result is 

2( ) 0.0189 1.6989 16.5816f x x x    with the axis of symmetry 44.87x  . In this case, both 

linear fit and 2nd-order fit show the same trends. 



  31 

 

 

 

Figure 2.19 Case I: the Radio Tester Moves Away from the Emitter. 

 

 

Figure 2.20  1-D Plot of Signal Strength vs. Distance for Case I. 

Figure 2.21 shows one example of Case II. The fitting result is illustrated in Figure 2.22. 

The Linear fitting result is ( ) 0.9053 58.5346f x x  while the 2nd-order fitting result is 

2( ) 0.0129 0.3753 54.8246f x x x    with the axis of symmetry 14.518x   . In this case, both 

linear fit and 2nd-order fit present the same trend. 



  32 

 

 

 

Figure 2.21 Case II: the Radio Tester Approaches the Emitter. 

 

Figure 2.22 1-D Plot of Signal Strength vs. Distance for Case II. 

In Case III where the radio tester passes through the emitter, received signal strength data 

no longer changes monotonically with distance. The experiment is designed in Figure 2.23, and 

the fitting result is in Figure 2.24. The linear fitting result is ( ) 0.3127 32.018f x x   . The 2nd-

order fitting result is 2( ) 0.0705 2.0853 46.0064f x x x     with the axis of symmetry 

14.7834x  .In this case, linear fit and 2nd-order fit show different trends. 



  33 

 

 

Figure 2.23 Case III: the Radio Tester Passes through the Emitter. 

 

Figure 2.24 1-D Plot of Signal Strength vs. Distance for Case III. 

Here comes a problem. When linear fit and 2nd-order fit show different trends, which 

result should we choose to trust? Adjusted R-squared can help to make this choice. First, we will 

introduce R-squared which is also called coefficient of determination. It is the proportion of the 

variation in the dependent variable that is predictable from the independent variables in the 

regression model [30]. The larger the R-squared is, the more variability is explained by the 

regression model. However, it can sometimes be misleading since more terms in the regression 

model can always result in better R-squared. The adjusted R-squared is designed to address this 

problem. The adjusted R-squared is a modified version of R-squared that has been adjusted for 

the number of predictors in the model. The adjusted R-squared increases only if the new term 

improves the model more than would be expected by chance [30]. It decreases when a predictor 



  34 

 

improves the model by less than expected by chance [30]. The equations for the calculation for 

R-squared and adjusted R-squared are shown in (Eq.  2.16) and (Eq.  2.17). The conclusion is 

that the fitting result of the regression model with higher adjusted R-squared should be trusted.  

 
1

1 n

i
i

y y
n 

   (Eq.  2.13)

 
2( )tot i

i

SS y y   (Eq.  2.14)

 
2( )res i i

i

SS y f   (Eq.  2.15)

 
2 1 res

tot

SS
R

SS
   (Eq.  2.16)

 
2 1

1 ( ) res
adj

tot

SSn
R

n p SS


 


 (Eq.  2.17)

  

Let’s apply the above conclusion to case III. Adjusted R-squared for linear fit is 0.1188 

while the adjusted R-squared for 2nd-order fit is 0.6641. Since 2nd-order fit has higher adjusted 

R-squared value, 2nd-order fitting result is chosen to extract trend which is moving toward the 

emitter and then moving away. 

2.5. Emitter Localization from 2-D Data with Multiple Regression and 

Gradient 

2-D data are signal strengths collected from an area. These signal strength data with their 

locations in (x, y) coordinates are processed with the multiple regression program in MATLAB 

to fit a surface. There are in total four regression models to be considered as shown in Section 

2.1 from (Eq.  2.3) to (Eq.  2.6). As for how to choose among these regression models, it is the 

same with Section 2.4 that fitting result with the highest adjusted R-squared value is chosen. The 



  35 

 

main idea is to find the emitter direction from the fitting surface according to its gradient 

descent.  

A simple experiment called Case 2D-I is designed on an outdoor playground in Figure 

2.25 to verify this idea of gradient surface. The seven dashed lines in Figure 2.25 are the walking 

paths to collect signal strength data. The data is fit to a surface with the multiple regression 

model in Equation (Eq.  2.6) and Figure 2.26 shows the fitting result which looks like the half of 

a mountain. Figure 2.27 is the top view of Figure 2.26. From color blue to yellow, the signal 

strength is becoming stronger. It is very easy to figure out the direction of the emitter from 

Figure 2.27 as shown by three arrows. 

 

Figure 2.25 Case 2D-I: The Emitter is Placed on an Outdoor Playground. 



  36 

 

 

Figure 2.26 Side View of 2-D Surface of the Outdoor Playground for Case 2D-I. 

 

Figure 2.27 Top View of 2-D Surface of the Playground for Case 2D-I. 

In the top view of the surface fitting result in Figure 2.27, the yellow color (or light color 

in black and white) corresponds to positions with higher signal strength in this area. If the yellow 

color (or light color) is in the middle of the surface, it is concluded that the emitter is in the 

middle part of this area. However, if the yellow color is at the edge of the surface, there are two 



  37 

 

possible situations. One is that the emitter is at some position of the yellow (or light color) area. 

The other is that the emitter is out of this area and the arrow retrieved from this surface by 

gradient descent points to the direction of the emitter. We can differentiate these two situations 

by the actual signal strength data in the yellow color area. It is known that the strongest signal 

strength is about -20dB. If the signal strength data is close to -20dB in the yellow color area, it 

can be concluded that the emitter is within the yellow color area. Otherwise, it can be concluded 

that the emitter is out of the area and we need to conduct another round of searching in the area 

the arrow points toward. 

Two more experiments, Case 2D-II and Case 2D-III are designed in an indoor 

environment to further explore this gradient area idea. The experiment designs of two cases are 

showed in Figure 2.28 and Figure 2.30. In Case 2D-II, there are two areas where signal strength 

data are collected. The emitter is in the middle of grid2. Equation (Eq.  2.3) is used to fit a 

surface, and Figure 2.29 is the top view of this surface. Although there is an arrow in Figure 

2.28, no more searching is suggested in the arrow’s direction because the signal strength data in 

the yellow color area is very close to -20dB, which is the strongest strength. Therefore, it is 

concluded that the emitter is in the right part of this area. In Case 2D-III, the emitter is in the 

middle of the whole testing space. Equation (Eq.  2.4) is used to fit a surface, and Figure 2.31 is 

the top view of this surface. From Figure 2.31, it is concluded that the emitter is in the middle 

part of this area. 



  38 

 

 

Figure 2.28 Case 2D-II: The Emitter is Placed In the Middle of Grid2 of an Indoor Area. 

 

Figure 2.29 Top View of the Fitting Surface for Case 2D-II of an Indoor Area. 



  39 

 

 

Figure 2.30 2D Case III:The Emitter is Placed in the Middle of the Space of an Indoor 
Area. 

 

Figure 2.31 Top View of the Fitting Surface for Case 2D-III of an Indoor Area. 

2.6. Performance Evaluation for 1-D and 1-D Localization 

An experiment is designed to combine the 2-D case and the 1-D case when trying to 

locate the emitter. The testing situation is shown in Figure 2.32 which includes part of Moench 

Hall and part of Crapo Hall at Rose-Hulman Institute of Technology. The emitter is placed in 

Room G220 on the second floor of Crapo Hall in Figure 2.32. The initial signal strength data is 

collected in the red area Area 1, in Moench Hall in Figure 2.32. The 2-D signal strength data is 

fit to a surface, as shown in Figure 2.33 from the regression model in Equation (Eq.  2.3). From 

the signal strength data in the yellow color area, it is concluded that the emitter is in the direction 



  40 

 

of the derived arrow. Next, signal strength data is collected along the red line corridor in Figure 

2.32. The 1-D signal strength data is fit to a curve, and the fitting result is showed in Figure 2.34. 

The corresponding position of peak signal strength in Figure 2.34 is where the emitter is. 

 

Figure 2.32 Map of Lower Level of Moench Hall and Second Floor of Crapo Hall. 

 



  41 

 

 

Figure 2.33 Top View of the Fitting Surface of Area 1 in Moench Hall. 

 

Figure 2.34 1-D Plot of Signal Strength vs. Distance along a Line from Points A to B in 
Figure 2.32. 



  42 

 

3. DESIGN AND IMPLEMENTATION OF THE 2.4GHZ WLAN METHOD 

If the emitter is close to the radio tester, say within ten meters of each other, and they are 

in indoor open space without obstruction, 433MHz wave energy would not show clear 

attenuation to identify the location of the emitter further. This chapter discusses how wireless 

local area network (WLAN) can be used to fine-tune emitter localization to identify the location 

of the emitter with more accuracy. The range of WLAN carrier frequencies is 2.4GHz to 5.9GHz 

for IEEE 802.11 standard. Electromagnetic waves at these frequencies tend to attenuate much 

faster than that at 433MHz. this faster attenuation would help to locate the emitter within a close 

neighborhood. Section 3.1 discusses design details of WLAN method. Section 3.2 presents 

performance test results. 

3.1. Design of the 2.4GHz WLAN Method 

In the design of the WLAN method, the emitter is simulated with a smartphone which 

works well with WLAN signals. The user holds a router and the cellphone during the WLAN 

method in Figure 3.1. A router is needed because the emitter and the user’s cellphone are going 

to communicate with each other based on the local area network provided by the router. So, we 

don’t need to connect to the WiFi in the building for communication. It will not be influenced 

even when the building just doesn’t have any APs. The emitter is expected to connect to the 

router once it is in the range of the router. Further, the emitter and the cellphone of the user will 

create a socket connection and communicate with each other. The APP on the cellphone is 

working as the server of this socket connection, and the emitter is working as a client. The 

pictures for the emitter and the radio tester are in Figure 3.2 and Figure 3.3. The workflow in the 

WLAN method is as follows: 



  43 

 

(1) The radio tester is connected to the specified router. 

(2) The radio tester remains listening to the socket for the emitter to make a connection request. 

(3) Once the emitter is in the range of the specified router, the emitter is also connected to the 

specified router. 

(4) The emitter makes a request for connection by specifying the hostname and the port number. 

(5) The radio tester accepts the request, and socket connection is initiated between the radio 

tester and the emitter. 

(6) From now on, the radio tester can ask for signal strength data from the emitter. 

Only when the searching range is narrowed to quite small, the 2.4GHz WLAN method is 

used. At this time, several interesting points are chosen. For each point, signal strength data is 

collected and averaged. The position which has the strongest signal strength is chosen as the 

predicted position of the emitter. 

 

Figure 3.1 The 2.4GHz WLAN Method Design. 



  44 

 

 

Figure 3.2 The Emitter of the 2.4GHz Wireless System. 

 

Figure 3.3 The Radio Tester of the 2.4GHz Wireless System. 



  45 

 

3.2. Evaluation of the WLAN Method 

To show that the 2.4GHz WLAN method is needed in conjunction with the 433MHz 

method, a comparison experiment is designed. The emitter is placed in the hallway near the door 

of Room D201 in Figure 3.4. Signal strength data is collected at the doors of D209, D206, D205, 

D204, D203, D212, D201, C211, C210, C209 for the 433MHz signal and WLAN signal 

separately. 433MHz signal strength data is shown in Table 3.1. It is obvious that signal strengths 

from D204 to C210 are very similar to each other which results in localization error of about 

13m. The WLAN signal strength data is shown in Table 3.2. Since the energy for the WLAN 

signal attenuates more quickly than the 433MHz signal, it does a better job to differentiate each 

other from D204 to C210, and it is quite clear that the signal strength at the door of D201 is the 

strongest. 



  46 

 

 

 

Figure 3.4 Position of the Emitter in the Hallway. 

 

Table 3.1 433MHz Signal Strength Data. 

Position  D209 D206 D205 D204 D203 D212 D201 C211 C210 C209 

433MHz RSSI -30.3 -28.8 -26.5 -22 -22 -23 -22 -22 -22.2 -29 

 

Table 3.2 2.4GHz WLAN Signal Strength Data. 

Position  D209 D206 D205 D204 D203 D212 D201 C211 C210 C209 

WLAN RSSI -43.9 -41.6 -43.2 -41.2 -34.4 -34.5 -23.6 -34 -31.4 -41.3 

 



  47 

 

4. OVERALL SYSTEM PERFORMANCE EVALUATION 

To show the effectiveness of the scheme proposed in this thesis, some system 

experiments are designed. The whole searching starts from floor level determination and goes 

through all the steps in Figure 4.1. 

An experiment called System Case I is done in Moench Hall in Figure 4.2, and the 

emitter is placed in the room of D210. First, the signal strength data on three different floors 

from A0 to B0 are measured in Table 4.1. From the data, it is concluded that the emitter is on the 

second floor. Then, 1-D data from A1 to B1 are collected, and the processing result is in Figure 

4.3.  From the 2nd-order fitting curve, it is concluded that the emitter is in the middle range. 

Next, 1-D data from A2 to B2 are collected. From Figure 4.4, it is concluded that the emitter is 

close to B2. Then, 1-D data from A3 to B3 is collected. From Figure 4.5, it is concluded that the 

emitter is close to A3. Finally, small range data sampling is done from D208 to D211 as in Table 

4.2. The predicted position of the emitter is shown in Figure 4.2. In this experiment, the 

localization error is less than 10 meters. 

 

Figure 4.1 Searching Steps. 



  48 

 

 

Figure 4.2 System Case I: System Evaluation Environment. 

Floor determination: 

Table 4.1 Floor Determination of System Evaluation. 

Floor Signal strength 
Lower level 1 -60.5dB 

Level 1 -64.5dB 
Level 2 -48dB 

 



  49 

 

 

 

Figure 4.3 1-D Plot of Signal Strength vs. Distance for from A1 to B1. 

 

 

Figure 4.4 1-D Plot of Signal Strength vs. Distance for from A2 to B2. 



  50 

 

 

Figure 4.5 1-D Plot of Signal Strength vs. Distance for from A3 to B3. 

Table 4.2 Small Range Data Sampling. 

Label Signal strength 
D208 -31.8dB 
D209 -28.0dB 
D210 -33.6dB 
D205 -22.8dB 
D204 -31dB 
D211 -31.4dB 

 

Another comparison experiment is done as System Case II in Figure 4.6. The difference 

between the System Case I and System Case II is that after finishing floor determination, 2-D 

data is measured in the red area E200 in Figure 4.6 and the data processing result is in Figure 4.7 

for System Case II. The signal strength in the yellow area is about -55dB. So, it is concluded that 

another searching is needed and the arrow in Figure 4.7 gives us an idea about the direction of 

the emitter.  



  51 

 

 

Figure 4.6 System Case II: System Evaluation Environment and Area E200. 

 

 

Figure 4.7 Top View of Fitting Surface for System Case II. 



  52 

 

5. COMPARISON WITH THE CENTROID ALGORITHM 

The goal of the thesis is to locate the emitter from some received signal strength 

measurements from different locations. Two kinds of signals are used. One is the 433MHz 

signal. The other is the 2.4GHz WLAN signal. The data include location information and 

received signal strength information. One of the most common localization algorithms is the 

centroid algorithm [31]. In this chapter, we will compare the localization accuracy of the 

proposed scheme with the centroid algorithm. 

5.1. The Centroid Algorithm for Emitter Localization 

Given the set of measurement points  , ,i i ix y RSSI , centroid algorithms will locate the 

emitter at the averaged position 
1 1

( , )
N N

i i i i
i i

w x w y
 
  .  

1
iw

N
 .  

One drawback of the centroid algorithm is that it is assuming the emitter is in the data 

sampling area. This assumption is not always true which results in inaccuracy of the centroid 

algorithm. However, our proposed algorithm in Section 2.4 and 2.5 doesn’t make this 

assumption. After analyzing the signal strength data in the sampling area, our algorithm can 

decide whether the emitter is in this range or another round of searching is needed. 

Even though the emitter is in the data sampling area indeed, warwalking measurements 

introduce strong sampling biases which result in inaccuracy of the centroid algorithm. 

Warwalking means the way to collect data by people walking. 

To understand why our algorithm outperforms the central algorithm, the central algorithm 

is applied to the experiment in Chapter 4 as shown in Figure 5.1. 



  53 

 

5.2. Accuracy Comparison 

The experiment is designed in Figure 5.1. The emitter is in D210, and the signal strength 

data is collected on the red lines. The predicted position of the centroid algorithm and the 

predicted position of our proposed scheme are showed in Figure 5.1. It is obvious that our 

proposed scheme performs much better than the centroid algorithm in this case. 

 

Figure 5.1 Localization Accuracy Comparison of the Centroid Algorithm and Our 
Proposed Scheme. 



  54 

 

6. CONCLUSION AND FUTURE WORK 

Our approach uses emitter signal strength to localize its position. Our search for the 

emitter starts with floor level determination and then the location of the emitter on one floor of a 

building. 

The signal strength can be sampled in 1-D space or 2-D space. Those samples are 

processed with regression models to extract information on the direction or location of the 

emitter. The main contribution of this thesis is the idea of signal strength data collection and 

processing in 2-D space. The result of this data processing is a 2-D surface of signal strength 

changes over the area. This surface provides an excellent direction or guidance for further search 

through the gradient. Our approach has two advantages over the centroid algorithm, which is the 

most common localization algorithm. One is that our approach does not assume the emitter is 

inside the search area and our 2D surfaces will iteratively guide the search process. Our approach 

does not use sampling point average to decide the location of the emitter as the centroid 

algorithm does. Therefore, our approach will not be influenced by sampling location biases. 

An entire emitter indoor localization system composed of the 433MHz wireless system 

and 2.4GHz WLAN wireless system has been designed and implemented. The hardware 

components for the 433MHz implementation consists of an emitter and a radio tester. Its 

software components consist of an Android APP and MATLAB code. The 2.4GHz WLAN 

implementation uses a smartphone as the emitter and another smartphone and its router as the 

radio tester. One advantage of 433MHz radiation is its long-distance propagation, especially with 

LoRa modulation technology. Its drawback is also its slow attenuation so that its energy 



  55 

 

reduction cannot be used to distinguish the emitter in a short range. This is when the 2.4GHz 

WLAN can play an important role to cover short-range localization. 

Future expansion of our work could be in the following three areas. 

(1) To move 2-D data processing in the 433MHz wireless system from MATLAB to the 

Android APP. Currently, the Android APP which interfaces with the radio tester in 

the 433MHz wireless system can conduct 1-D data collection, 2-D data collection, 

and 1-D data regression analysis. However, it cannot do 2-D data regression analysis 

and gradient yet. So it would be nice to implement this function in the Android APP 

for convenience. 

(2) To add more examples of our iterative and integrated approach. Iteration means to 

conduct several searches until the emitter is located. Each search can provide a 

direction for the next search. The search can be 1-D search, 2-D search or small range 

point search. 

(3) To develop guidelines for switching between the 433MHz approach and 2.4GHz 

WLAN approach. The 433MHz approach is applied when the radio tester is quite far 

from the emitter while the 2.4GHz approach is applied when the radio tester is very 

close to the emitter. So, guidelines for switching between the 433MHz approach and 

2.4GHz WLAN approach need to be developed so that the user can be quite clear 

about when to use the 433MHz approach and when to use the 2.4GHz WLAN 

approach.  



  56 

 

LIST OF REFERENCES 

[1] Huai-Jing Du and Jim Lee, “Radar Emitter Localization Using TDOA Measurements 
from UAVs and Shipborne/Land-Based Platforms,” Defence R&D Canada, 2002. 

[2] Zafari, Faheem, Athanasios Gkelias, and Kin Leung, "A Survey of Indoor Localization 
Systems and Technologies," arXiv preprint arXiv:1709.01015 (2017). 

[3] Gorji, Aliakbar A., and Brian DO Anderson, "Emitter Localization Using Received-
strength-signal Data," Signal Processing 93.5 (2013): 996-1012. 

[4] Liu, Hui, et al, "Survey of Wireless Indoor Positioning Techniques and Systems," IEEE 
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 37.6 
(2007): 1067-1080.  

[5] Niculescu, Dragos, and Badri Nath. "Ad Hoc Positioning System (APS) using AOA." 
INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and 
Communications. IEEE Societies. Vol. 3. Ieee, 2003. 

[6] Macagnano, Davide, Giuseppe Destino, and Giuseppe Abreu, "Indoor Positioning: A Key 
Enabling Technology for IoT Applications." Internet of Things (WF-IoT), 2014 IEEE 
World Forum on. IEEE, 2014. 

[7] Xia, Feng, et al, "Internet of Things," International Journal of Communication Systems 
25.9 (2012): 1101. 

[8] Cho, Yong K., Jong Hoon Youn, and Diego Martinez, "Error Modeling for an Untethered 
Ultra-wideband System for Construction Indoor Asset Tracking," Automation in 
Construction 19.1 (2010): 43-54. 

[9] Shen, Shaojie, Nathan Michael, and Vijay Kumar, "Autonomous Multi-floor Indoor 
Navigation with a Computationally Constrained MAV," Robotics and automation 
(ICRA), 2011 IEEE international conference on. IEEE, 2011. 

[10] Youssef, Moustafa, and Ashok Agrawala, "The Horus WLAN Location Determination 
System," Proceedings of the 3rd International Conference on Mobile Systems, 
Applications, and Services. ACM, 2005. 

[11] Chen, Lina, et. al, "An Improved Algorithm to Generate a Wi-Fi Fingerprint Database for 
Indoor Positioning," Sensors 13.8 (2013): 11085-11096. 

[12] B. B. Peterson, C. Kmiecik, R. Hartnett, P. M. Thompson, J. Mendoza, H. Nguyen, 
"Spread Spectrum Indoor Geolocation,", J. Inst. Navigat., vol. 45, no. 2, pp. 97-102, 
1998. 

[13] N. S. Correal, S. Kyperountas, Q. Shi, M. Welborn, "An Ultra Wideband Relative 
Location System," in Proc. IEEE Conf. Ultra Wideband Syst. Technol., pp. 394-397, 
Nov. 2003. 

[14] Zhang, Cemin, et. al, "Accurate UWB Indoor Localization System Utilizing Time 
Difference of Arrival Approach," Radio and Wireless Symposium, 2006 IEEE. 



  57 

 

[15] Wang, Xiaopu, Yan Xiong, and Wenchao Huang, "An Accurate Direction Finding 
Scheme Using Virtual Antenna Array via Smartphones," Sensors 16.11 (2016): 1811. 

[16] https://en.wikipedia.org/wiki/Monopole_antenna. 

[17] Khan, Niazul Islam, Anwarul Azim, and Shadli Islam, "Radiation Characteristics of a 
Quarter-wave Monopole Antenna above Virtual Ground," Journal of Clean Energy 
Technologies 2.4 (2014). 

[18] Clayton A. Paul, Introduction to Electromagnetic Compatibility, 2nd Edition, John Wiley 
& Sons, Inc., 2006. 

[19] Constantine A. Balanis, Antenna Theory: Analysis and Design, Third Edition, John 
Wiley & Sons, Inc., 2005. 

[20] https://en.wikipedia.org/wiki/Poynting_vector. 

[21] https://en.wikipedia.org/wiki/Linear_regression.  

[22] https://en.wikipedia.org/wiki/Polynomial_regression. 

[23] https://en.wikipedia.org/wiki/Taylor_series. 

[24] https://www.link-labs.com/lora. 

[25] SX1276 datasheet, Page87. 

[26] https://en.wikipedia.org/wiki/Arduino. 

[27] http://www.airspayce.com/mikem/arduino/RadioHead/. 

[28] Adafruit RFM69HCW and RFM9X LoRa Packet Radio Breakouts Datasheet. 

[29] https://www.amazon.in/CENTIoT-Bluetooth-wireless-Serial-
Transceiver/dp/B01M14FKHV. 

[30] Coefficient of Determination Definition, Statrek website. 

[31] Han, Dongsu, et. al, "Access Point Localization Using Local Signal Strength Gradient," 
International Conference on Passive and Active Network Measurement. Springer, Berlin, 
Heidelberg, 2009. 



  58 

 

APPENDICES 

APPENDIX A. 433MHz Radio Tester and Emitter Programs on Arduino 

UNO Board 

Radio Tester Code 

#include <SPI.h> 

#include <RH_RF95.h> 

#define RFM95_CS 10 

#define RFM95_RST 9 

#define RFM95_INT 2 

// Singleton instance of the radio driver 

RH_RF95 rf95(RFM95_CS, RFM95_INT); 

//string that stores the incoming message 

String message;  

 

// the setup function runs once when you press reset or power the board 

void setup() { 

  pinMode(RFM95_RST, OUTPUT); 

  digitalWrite(RFM95_RST, HIGH); 

  while (!Serial); 

  Serial.begin(9600); 

  delay(100); 

  Serial.println("Arduino LoRa TX Test!"); 

  // manual reset 

  digitalWrite(RFM95_RST, LOW); 

  delay(10); 

  digitalWrite(RFM95_RST, HIGH); 

  delay(10); 

  while (!rf95.init()) { 

    Serial.println("LoRa radio init failed"); 

    while (1); 

  } 

  Serial.println("LoRa radio init OK!"); 

  // The initialization work for the radio module is done in rf95.init(). Defaults 
after init are 434.0MHz, 13dBm, Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on. 
The default transmitter power is 13dBm, using PA_BOOST. 



  59 

 

 

//To increase the Tx power, set the Tx power to be 23dB. 

  rf95.setTxPower(23, false);   

} 

 

int16_t packetnum = 0; // packet counter, we increment per mission 

void loop() { 

  while(Serial.available()) 

  { 

//while there is data available on the serial monitor 

    message+=char(Serial.read());//store string from serial command 

  } 

  if(!Serial.available()) 

  { 

    if(message!="") 

{ 

//If data is available from the Android APP, send a message to the emitter 

      char radiopacket[20] = "Hello World # "; 

      itoa(packetnum++, radiopacket+13, 10); 

      radiopacket[19] = 0; 

      delay(10); 

      rf95.send((uint8_t *)radiopacket, 20); 

      delay(10); 

      rf95.waitPacketSent(); 

      // Now wait for a reply from the emitter 

      uint8_t buf[RH_RF95_MAX_MESSAGE_LEN]; 

      uint8_t len = sizeof(buf); 

      delay(10); 

      if (rf95.waitAvailableTimeout(1000)) 

      { 

        // Should be a reply message for us now 

        if (rf95.recv(buf, &len)) 

        { 

          //Receive reply from the emitter successfully. Then send RSSI and SNR data 
back to the Android APP 

          uint8_t test[4]; 

          test[0] = 1; 

          test[1] = rf95.lastRssi(); 

          test[2] = rf95.getSNR(); 

          test[3] = 255; 



  60 

 

          Serial.write(test, sizeof(test));       

        } 

        else 

        { 

            uint8_t test[4]; 

            test[0] = 0; 

            test[1] = 1; 

            test[2] = 1; 

            test[3] = 255; 

            Serial.write(test, sizeof(test)); 

        } 

      } 

      else 

      { 

        //No reply from the emitter within the expected time. (Timeout) 

        uint8_t test[4]; 

        test[0] = 0; 

        test[1] = 2; 

        test[2] = 2; 

        test[3] = 255; 

        Serial.write(test, sizeof(test)); 

      }  

      message=""; //clear the data 

    } 

  }  

} 

 

Emitter Code 

#include <SPI.h> 

#include <RH_RF95.h> 

 

#define RFM95_CS 10 

#define RFM95_RST 9 

#define RFM95_INT 2 

#define RFM95_INT3 3 

 

// Set carrier frequency to be 434MHz 

#define RF95_FREQ 434 



  61 

 

// Singleton instance of the radio driver 

RH_RF95 rf95(RFM95_CS, RFM95_INT); 

// Blinky on receipt for debugging 

#define LED 13 

 

void setup() { 

  pinMode(LED, OUTPUT); 

  pinMode(RFM95_RST, OUTPUT); 

  digitalWrite(RFM95_RST, HIGH); 

  while (!Serial); 

  Serial.begin(9600); 

  delay(100); 

  Serial.println("Arduino LoRa RX Test!"); 

  // manual reset 

  digitalWrite(RFM95_RST, LOW); 

  delay(10); 

  digitalWrite(RFM95_RST, HIGH); 

  delay(10); 

  while (!rf95.init()) { 

    Serial.println("LoRa radio init failed"); 

    while (1); 

  } 

  Serial.println("LoRa radio init OK!"); 

  // Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM 

  if (!rf95.setFrequency(RF95_FREQ)) { 

    Serial.println("setFrequency failed"); 

    while (1); 

  } 

  Serial.print("Set Freq to: ");  

  Serial.println(RF95_FREQ); 

  // Defaults after init are 434.0MHz, 13dBm, Bw = 125 kHz, Cr = 4/5, Sf = 
128chips/symbol, CRC on. The default transmitter power is 13dBm, using PA_BOOST. 

  //To increase Tx power, set it to be 23dB 

  rf95.setTxPower(23, false); 

} 

 

void loop() { 

  if (rf95.available()) 

  { 

    // Should be a message for us now 



  62 

 

    uint8_t buf[RH_RF95_MAX_MESSAGE_LEN]; 

    uint8_t len = sizeof(buf); 

    if (rf95.recv(buf, &len)) 

{ 

  //A packet is received from the radio tester. 

      digitalWrite(LED, HIGH); 

      RH_RF95::printBuffer("Received: ", buf, len); 

      Serial.print("Got: "); 

      Serial.println((char*)buf); 

      Serial.print("RSSI: "); 

      int8_t Rssi = rf95.lastRssi(); 

      Serial.println(rf95.lastRssi(), DEC); 

      rf95.printSNR(); 

      //Send a reply to the radio tester 

      uint8_t data[] = "And hello back to you"; 

      rf95.send(data, sizeof(data)); 

      rf95.waitPacketSent(); 

      Serial.println("Sent a reply"); 

      digitalWrite(LED, LOW); 

    }else 

    { 

      Serial.println("Receive failed"); 

    } 

  } 

} 



  63 

 

APPENDIX B. Android APP for Interfacing with the 433MHz Tester 

 

Figure 7.1 Diagram for Android APP Interfacing with Radio Tester in 433MHz Wireless 
System. 

Table 7.1 Class Description for Figure 7.1. 

Class Description 

MainActivity In charge of making Bluetooth pair and connection with the 
radio tester 

OneDimensionSampleActivity In charge of 1-D data sampling 

SearchModeActivity In charge of 2-D data sampling and small range point data 
sampling 

PolyFitActivity In charge of 1-D data processing which is regression analysis 

 



  64 

 

BluetoothConnectionService.java 

package com.example.hang.bluetoothdatatest; 

public class BluetoothConnectionService { 

    private static final String TAG = "BluetoothConnectionServ"; 

    private static final String appName = "MYAPP"; 

    private static final UUID MY_UUID_INSECURE = UUID.fromString("8ce255c0-200a-11e0-
ac64-0800200c9a66"); 

 

    private AcceptThread mInsecureAcceptThread; 

    private ConnectThread mConnectThread; 

    private ConnectedThread mConnectedThread; 

 

    private BluetoothDevice mmDevice; 

    private UUID deviceUUID; 

    ProgressDialog mProgressDialog; 

    private final BluetoothAdapter mBluetoothAdapter; 

    Context mContext; 

 

    private BluetoothConnectionService(Context context) { 

        mContext = context; 

        mBluetoothAdapter = BluetoothAdapter.getDefaultAdapter(); 

    } 

 

    private static BluetoothConnectionService instance; 

    public static BluetoothConnectionService getInstance(Context context) { 

        if (instance == null) { 

            instance = new BluetoothConnectionService(context); 

        } 

        return instance; 

    } 

 

    public static BluetoothConnectionService getInstance() { 

        return instance; 

    } 

 

    /** 

     * This thread runs while listening for incoming connections. It behaves 

     * like a server-side client. It runs until a connection is accepted 

     * (or until cancelled). 



  65 

 

     */ 

    private class AcceptThread extends Thread { 

        private final BluetoothServerSocket mmServerSocket; 

        public AcceptThread() { 

            BluetoothServerSocket tmp = null; 

            try { 

                tmp = 
mBluetoothAdapter.listenUsingInsecureRfcommWithServiceRecord(appName, 
MY_UUID_INSECURE); 

                Log.d(TAG, "AcceptThread:Setting up Server using" + MY_UUID_INSECURE); 

            } catch (IOException e) { 

                e.printStackTrace(); 

            } 

            mmServerSocket = tmp; 

        } 

 

        public void run() { 

            Log.d(TAG, "run: AcceptThread Running."); 

            BluetoothSocket socket = null; 

 

            try { 

                Log.d(TAG, "run: RFCOM server socket start......"); 

                socket = mmServerSocket.accept(); 

                Log.d(TAG, "run: RFCOM server socket accept connection.."); 

            } catch (IOException e) { 

                e.printStackTrace(); 

            } 

 

            if (socket != null) { 

                connected(socket, mmDevice); 

            } 

            Log.i(TAG, "End mAcceptThread"); 

        } 

 

        public void cancel() { 

            Log.d(TAG, "cancel: Cancelling AcceptThread"); 

 

            try { 

                mmServerSocket.close(); 

            } catch (IOException e) { 

                e.printStackTrace(); 



  66 

 

            } 

        } 

    } 

 

    /** 

     * This thread runs while attempting to make an outgoing connection 

     * with a device. It runs straight through; the connection either 

     * succeeds or fails. 

     */ 

    private class ConnectThread extends Thread { 

        private BluetoothSocket mmSocket; 

        public ConnectThread(BluetoothDevice device, UUID uuid) { 

            Log.d(TAG, "ConnectThread: started"); 

            mmDevice = device; 

            deviceUUID = uuid; 

        } 

 

        public void run() { 

            BluetoothSocket tmp = null; 

            Log.i(TAG, "RUN mConnectThread"); 

 

            //Get a BluetoothSocket for a connection with the given BluetoothDevice 

            try{ 

                tmp = mmDevice.createRfcommSocketToServiceRecord(deviceUUID); 

            } catch (IOException e) { 

                e.printStackTrace(); 

            } 

            mmSocket = tmp; 

            //always cancel discovery because it will slow down a connection 

            mBluetoothAdapter.cancelDiscovery(); 

 

            try { 

                //This is a blocking call and will only return on a successful 
connection or an exception 

                mmSocket.connect(); 

                Log.d(TAG, "run: ConnectThread connected"); 

                connected(mmSocket, mmDevice); 

            } catch (IOException e) { 

                //close the socket 

                try { 



  67 

 

                    mmSocket.close(); 

                    Log.d(TAG, "Closed socket."); 

                } catch (IOException e1) { 

                    Log.e(TAG, "mConnectThread: run: could not close connection in 
socket " + e1.getMessage()); 

                } 

                Log.d(TAG, "run: mConnectThread: Could not connect to UUID: " + 
MY_UUID_INSECURE); 

            } 

        } 

        public void cancel() { 

            try { 

                Log.d(TAG, "cancel: Closing Client socket."); 

                mmSocket.close(); 

            } catch (IOException e) { 

               Log.e(TAG, "cancel: close() of mmSocket in ConnectThread failed. " + 
e.getMessage()); 

            } 

        } 

    } 

 

 

    /** 

     * Start the chat service. Specifically start AcceptThread to begin a 

     * session in listening (server) mode. Called by the Activity onResume() 

     */ 

    public synchronized void start() { 

        Log.d(TAG, "start"); 

 

        // Cancel any thread attempting to make a connection 

        if (mConnectThread != null) { 

            mConnectThread.cancel(); 

            mConnectThread = null; 

        } 

 

        if (mInsecureAcceptThread == null) { 

            mInsecureAcceptThread = new AcceptThread(); 

            mInsecureAcceptThread.start(); 

        } 

    } 

 



  68 

 

    //AcceptThread starts adn sits waiting for a connection 

    //Then ConnectThread starts and attempts to make a connection with the other 
devices AcceptThread 

 

    //I will call this method. 

    public void startClient(BluetoothDevice device, UUID uuid) { 

        Log.d(TAG, "startClient: started"); 

 

        //Initprogress dialog 

        mProgressDialog = ProgressDialog.show(mContext, "Connecting Bluetooth", 
"Please Wait...", true); 

        mConnectThread = new ConnectThread(device, uuid); 

        mConnectThread.start(); 

    } 

 

    /** 

     * This thread runs during a connection with a remote device. 

     * It handles all incoming and outgoing transmissions. 

     */ 

    private class ConnectedThread extends Thread { 

        private final BluetoothSocket mmSocket; 

        private final InputStream mmInStream; 

        private final OutputStream mmOutStream; 

 

        public ConnectedThread(BluetoothSocket socket) { 

            Log.d(TAG, "ConnectedThread: starting."); 

 

            mmSocket = socket; 

            InputStream tmpIn = null; 

            OutputStream tmpOut = null; 

 

            //dismiss the progressdialog when connection is established 

            mProgressDialog.dismiss(); 

//            Toast.makeText(mContext, "It is connected", Toast.LENGTH_LONG).show(); 

 

            try { 

                tmpIn = mmSocket.getInputStream(); 

                tmpOut = mmSocket.getOutputStream(); 

            } catch (IOException e) { 

                e.printStackTrace(); 

            } 



  69 

 

            mmInStream = tmpIn; 

            mmOutStream = tmpOut; 

        } 

 

        public void run() { 

            byte[] buffer = new byte[10]; 

            int bytes; 

            List<Byte> list = new ArrayList<>(); 

 

            while (true) { 

                //Read from inputStream 

                try { 

                    bytes = mmInStream.read(buffer); 

                    for (int i = 0; i < bytes; i++) { 

                        list.add(buffer[i]); 

                    } 

                    if ((buffer[bytes-1] & 0xFF) == 0xFF) { 

                        //end of this packet 

                        int size = list.size(); 

                        byte[] res = new byte[size]; 

                        for (int i = 0; i < list.size(); i++) { 

                            res[i] = list.get(i); 

                        } 

                        Intent incomingMessageIntent = new Intent("incomingMessage"); 

                        incomingMessageIntent.putExtra("MessageByteArray", res); 

                        
LocalBroadcastManager.getInstance(mContext).sendBroadcast(incomingMessageIntent); 

                        list.clear(); 

                    } 

                } catch (IOException e) { 

                    Log.e(TAG, "write : Error reading inputStream.." + e.getMessage()); 

                    break; 

                } 

            } 

        } 

 

        //call this from the main activity to send data to the remote device 

        public void write(byte[] bytes) { 

            String text = new String(bytes, Charset.defaultCharset()); 

            Log.d(TAG, "write: Writing to outputStream: " + text); 



  70 

 

            try { 

                mmOutStream.write(bytes); 

            } catch (IOException e) { 

                Log.e(TAG, "write : Error wriring to outputstream." + e.getMessage()); 

            } 

        } 

 

        //call this from the main activity to shutdown the connection 

        public void cancel() { 

            try { 

                mmSocket.close(); 

            } catch (IOException e) { 

                e.printStackTrace(); 

            } 

        } 

    } 

 

 

    private void connected(BluetoothSocket mmSocket, BluetoothDevice mmDevice) { 

        Log.d(TAG, "connected: starting"); 

        //Start the thread to manage the connection and perform transmissions 

        mConnectedThread = new ConnectedThread(mmSocket); 

        mConnectedThread.start(); 

    } 

 

    public void write(byte[] out) { 

        Log.d(TAG, "write: Write called."); 

        //Perform the write 

        mConnectedThread.write(out); 

    } 

} 

MainActivity.java 

package com.example.hang.bluetoothdatatest; 

public class MainActivity extends AppCompatActivity implements 
AdapterView.OnItemClickListener { 

    private static final String TAG = "MainActivity"; 

 

    // If you are connecting to a Bluetooth serial board then try using the well-known 
SPP UUID 00001101-0000-1000-8000-00805F9B34FB. 



  71 

 

    private static final UUID MY_UUID_INSECURE = UUID.fromString("00001101-0000-1000-
8000-00805F9B34FB"); 

    BluetoothAdapter mBluetoothAdapter; 

    BluetoothConnectionService mBluetoothConnection; 

    Button btnStartConnection; 

    Button btnSend2; 

    Button btn_OneDimension; 

    TextView incomingMessage; 

 

 

    Button btnSearchMode; 

 

    private ArrayList<BluetoothDevice> mBTDevices; 

    BluetoothDevice mBTDevice; 

    ArrayAdapter<BluetoothDevice> adapter; 

    ListView lvNewDevices; 

    StringBuilder messages; 

    @Override 

    protected void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

        setContentView(R.layout.activity_main); 

        mBTDevices = new ArrayList<>(); 

        adapter = new DeviceAdapter(this, mBTDevices); 

 

        Button btnONOFF = (Button) findViewById(R.id.btnONOFF); 

        btnSend2 =  (Button) findViewById(R.id.btnSend2); 

        btnStartConnection =  (Button) findViewById(R.id.btnStartConnection); 

        btnSearchMode = (Button) findViewById(R.id.btnSearchMode); 

        btn_OneDimension = (Button) findViewById(R.id.btn_OneDimension); 

        incomingMessage = (TextView) findViewById(R.id.incomingMessage); 

        messages = new StringBuilder(); 

 

        LocalBroadcastManager.getInstance(this).registerReceiver(mReceiver, new 
IntentFilter("incomingMessage")); 

 

        lvNewDevices = (ListView) findViewById(R.id.lvNewDevices); 

        lvNewDevices.setAdapter(adapter); 

 

        mBluetoothAdapter = BluetoothAdapter.getDefaultAdapter(); 

 



  72 

 

        IntentFilter filter = new 
IntentFilter(BluetoothDevice.ACTION_BOND_STATE_CHANGED); 

        registerReceiver(mBroadcastReceiver4, filter); 

        lvNewDevices.setOnItemClickListener(MainActivity.this); 

 

        btnONOFF.setOnClickListener(new View.OnClickListener() { 

            @Override 

            public void onClick(View view) { 

                enableDisableBluetooth(); 

            } 

        }); 

 

        btnStartConnection.setOnClickListener(new View.OnClickListener() { 

            @Override 

            public void onClick(View view) { 

                startConnection(); 

            } 

        }); 

 

 

        btnSend2.setOnClickListener(new View.OnClickListener() { 

            @Override 

            public void onClick(View view) { 

                byte[] bytes = "2".getBytes(Charset.defaultCharset()); 

                mBluetoothConnection.write(bytes); 

            } 

        }); 

 

 

        btnSearchMode.setOnClickListener(new View.OnClickListener() { 

            @Override 

            public void onClick(View view) { 

                Intent intent = new Intent(MainActivity.this, 
SearchModeActivity.class); 

                startActivity(intent); 

            } 

        }); 

 

        btn_OneDimension.setOnClickListener(new View.OnClickListener() { 

            @Override 

            public void onClick(View view) { 



  73 

 

                Intent intent = new Intent(MainActivity.this, 
OneDimensionSampleActivity.class); 

                startActivity(intent); 

            } 

        }); 

    } 

 

    public void startConnection() { 

        startBTConnection(mBTDevice, MY_UUID_INSECURE); 

    } 

 

    public void startBTConnection(BluetoothDevice device, UUID uuid) { 

        Log.d(TAG, "startBTConnection: Initializing RFCOM Bluetooth Connection"); 

        mBluetoothConnection.startClient(device, uuid); 

    } 

 

    BroadcastReceiver mReceiver = new BroadcastReceiver() { 

        @Override 

        public void onReceive(Context context, Intent intent) { 

            messages = new StringBuilder(); 

            byte[] bytes = intent.getByteArrayExtra("MessageByteArray"); 

            //messages.append(text + "\n"); 

            for (byte b : bytes) { 

                int v2 = b & 0xFF; // v2 is 200 (0x000000C8) 

                messages.append(v2 + " "); 

            } 

            //messages.append("\n"); 

            incomingMessage.setText(messages.toString()); 

        } 

    }; 

 

 

    private final BroadcastReceiver mBroadcastReceiver1 = new BroadcastReceiver() { 

        public void onReceive(Context context, Intent intent) { 

            String action = intent.getAction(); 

            if (action.equals(mBluetoothAdapter.ACTION_STATE_CHANGED)) { 

                final int state = intent.getIntExtra(BluetoothAdapter.EXTRA_STATE, 
mBluetoothAdapter.ERROR); 

                switch (state) { 

                    case BluetoothAdapter.STATE_OFF: 

                        Log.d(TAG, "OnReceive: STATE_OFF"); 



  74 

 

                        break; 

                    case BluetoothAdapter.STATE_ON: 

                        Log.d(TAG, "OnReceive: STATE_ON"); 

                        break; 

                    case BluetoothAdapter.STATE_TURNING_OFF: 

                        Log.d(TAG, "OnReceive: STATE_TURNING_OFF"); 

                        break; 

                    case BluetoothAdapter.STATE_TURNING_ON: 

                        Log.d(TAG, "OnReceive: STATE_TURNING_ON"); 

                        break; 

                } 

 

            } 

        } 

    }; 

 

    private final BroadcastReceiver mBroadcastReceiver2 = new BroadcastReceiver() { 

        public void onReceive(Context context, Intent intent) { 

            final String action = intent.getAction(); 

            if (action.equals(BluetoothAdapter.ACTION_SCAN_MODE_CHANGED)) { 

                int mode = intent.getIntExtra(BluetoothAdapter.EXTRA_SCAN_MODE, 
BluetoothAdapter.ERROR); 

                switch (mode) { 

                    case BluetoothAdapter.SCAN_MODE_CONNECTABLE_DISCOVERABLE: 

                        Log.d(TAG, "mBroadcastReceiver2: 
SCAN_MODE_CONNECTABLE_DISCOVERABLE"); 

                        break; 

                    case BluetoothAdapter.SCAN_MODE_CONNECTABLE: 

                        Log.d(TAG, "mBroadcastReceiver2: SCAN_MODE_CONNECTABLE"); 

                        break; 

                    case BluetoothAdapter.SCAN_MODE_NONE: 

                        Log.d(TAG, "mBroadcastReceiver2: SCAN_MODE_NONE"); 

                        break; 

                    case BluetoothAdapter.STATE_CONNECTING: 

                        Log.d(TAG, "mBroadcastReceiver2: STATE_CONNECTING"); 

                        break; 

                    case BluetoothAdapter.STATE_CONNECTED: 

                        Log.d(TAG, "mBroadcastReceiver2: STATE_CONNECTED "); 

                        break; 

                } 

 



  75 

 

            } 

        } 

    }; 

 

    private final BroadcastReceiver mBroadcastReceiver3 = new BroadcastReceiver() { 

        public void onReceive(Context context, Intent intent) { 

            final String action = intent.getAction(); 

            if (action.equals(BluetoothDevice.ACTION_FOUND)) { 

                BluetoothDevice device = 
intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE); 

                adapter.add(device); 

                Log.d(TAG, "adapter add device name" + device.getName()); 

            } 

        } 

    }; 

 

 

    private final BroadcastReceiver mBroadcastReceiver4 = new BroadcastReceiver() { 

        public void onReceive(Context context, Intent intent) { 

            final String action = intent.getAction(); 

            if (action.equals(BluetoothDevice.ACTION_BOND_STATE_CHANGED)) { 

                BluetoothDevice mDevice = 
intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE); 

 

                //3 cases 

                //case1: bonded already 

                if (mDevice.getBondState() == BluetoothDevice.BOND_BONDED) { 

                    Log.d(TAG, "mBroadcastReceiver4: BOND_BONDED"); 

                    Toast.makeText(MainActivity.this, "mBroadcastReceiver4: 
BOND_BONDED",Toast.LENGTH_SHORT).show(); 

                    mBTDevice = mDevice; 

                } else if (mDevice.getBondState() == BluetoothDevice.BOND_BONDING) { 

                    Log.d(TAG, "mBroadcastReceiver4: BOND_BONDING"); 

                } else if (mDevice.getBondState() == BluetoothDevice.BOND_NONE) { 

                    Log.d(TAG, "mBroadcastReceiver4: BOND_NONE"); 

                } 

            } 

        } 

    }; 

 

    public void enableDisableBluetooth() { 



  76 

 

        if (mBluetoothAdapter == null) { 

            Log.d(TAG, "No bluetooth available"); 

            return; 

        } 

 

        if (!mBluetoothAdapter.isEnabled()) { 

            Intent enableBTIntent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE); 

            startActivity(enableBTIntent); 

            //Filter intent by action 

            IntentFilter BTIntent = new 
IntentFilter(BluetoothAdapter.ACTION_STATE_CHANGED); 

            registerReceiver(mBroadcastReceiver1, BTIntent); 

        } else { 

            mBluetoothAdapter.disable(); 

            IntentFilter BTIntent = new 
IntentFilter(BluetoothAdapter.ACTION_STATE_CHANGED); 

            registerReceiver(mBroadcastReceiver1, BTIntent); 

        } 

    } 

 

    public void btnEnableDisable_Discoverable(View view) { 

        Log.d(TAG, "btnEnableDisable_Discoverable: Making device discoverable for 300 
seconds"); 

        Intent discoverableIntent = new 
Intent(BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE); 

        discoverableIntent.putExtra(BluetoothAdapter.EXTRA_DISCOVERABLE_DURATION, 300); 

        startActivity(discoverableIntent); 

 

        IntentFilter intentFilter = new 
IntentFilter(mBluetoothAdapter.ACTION_SCAN_MODE_CHANGED); 

        registerReceiver(mBroadcastReceiver2, intentFilter); 

    } 

 

    public void btn_Discover(View view) { 

        Log.d(TAG, "btnDiscover: Looking for unpaired devices."); 

        adapter.clear(); 

        if (mBluetoothAdapter.isDiscovering()) { 

            mBluetoothAdapter.cancelDiscovery(); 

            Log.d(TAG, "btnDiscover: Canceling discovery"); 

            checkBTPermissions(); 

            mBluetoothAdapter.startDiscovery(); 

        } else { 



  77 

 

            checkBTPermissions(); 

            mBluetoothAdapter.startDiscovery(); 

        } 

 

        IntentFilter discoveryDevicesIntent = new 
IntentFilter(BluetoothDevice.ACTION_FOUND); 

        registerReceiver(mBroadcastReceiver3, discoveryDevicesIntent); 

    } 

 

    /* 

    This method is required for all devices running API23+ 

    Android must programmatically check the permissions for bluetooth. Putting the 
proper permissions in the manifest is not enough. 

     */ 

    private void checkBTPermissions() { 

        if (Build.VERSION.SDK_INT > Build.VERSION_CODES.LOLLIPOP) { 

            int permissionCheck = 
this.checkSelfPermission(Manifest.permission.ACCESS_FINE_LOCATION); 

            permissionCheck += 
this.checkSelfPermission(Manifest.permission.ACCESS_COARSE_LOCATION); 

            if (permissionCheck != 0) { 

                this.requestPermissions(new 
String[]{Manifest.permission.ACCESS_FINE_LOCATION, 
Manifest.permission.ACCESS_COARSE_LOCATION}, 1001); 

            } 

        } 

        else { 

            Log.d(TAG, "checkBTPermissions: No need to check permission. SDK version < 
LOLLIPOP"); 

        } 

    } 

 

    @Override 

    public void onItemClick(AdapterView<?> adapterView, View view, int i, long l) { 

        mBluetoothAdapter.cancelDiscovery(); 

        Log.d(TAG, "onItemClick: You click on a device"); 

        String deviceName = mBTDevices.get(i).getName(); 

        String deviceAddress = mBTDevices.get(i).getAddress(); 

 

        Log.d(TAG, "Device name is " + deviceName); 

        Log.d(TAG, "Device address is " + deviceAddress); 

 



  78 

 

        if (Build.VERSION.SDK_INT > Build.VERSION_CODES.JELLY_BEAN_MR2) { 

            Log.d(TAG, "Trying to pair with " + deviceName); 

            mBTDevice = mBTDevices.get(i); 

            if (mBluetoothAdapter.getBondedDevices().contains(mBTDevice)) { 

                Toast.makeText(this, "This device is already 
paired",Toast.LENGTH_SHORT).show(); 

            } else { 

                boolean flag = mBTDevices.get(i).createBond(); 

                if (flag) { 

                    Log.d(TAG, "Bonding begin!"); 

                } else { 

                    Log.d(TAG, "Some immediate error happen"); 

                } 

            } 

            mBluetoothConnection = 
BluetoothConnectionService.getInstance(MainActivity.this); 

        } 

    } 

 

    @Override 

    protected void onDestroy() { 

        Log.d(TAG, "onDestroy is called."); 

        super.onDestroy(); 

        unregisterReceiver(mBroadcastReceiver1); 

        unregisterReceiver(mBroadcastReceiver2); 

        unregisterReceiver(mBroadcastReceiver3); 

        unregisterReceiver(mBroadcastReceiver4); 

        LocalBroadcastManager.getInstance(this).unregisterReceiver(mReceiver); 

    } 

} 

 

DeviceAdapter.java 

package com.example.hang.bluetoothdatatest; 

public class DeviceAdapter extends ArrayAdapter<BluetoothDevice> { 

    public DeviceAdapter(Context context, ArrayList<BluetoothDevice> devices) { 

        super(context, 0, devices); 

    } 

 

 



  79 

 

    @Override 

    public View getView(int position, View convertView, ViewGroup parent) { 

        // Get the data item for this position 

        BluetoothDevice device = getItem(position); 

        // Check if an existing view is being reused, otherwise inflate the view 

        if (convertView == null) { 

            convertView = 
LayoutInflater.from(getContext()).inflate(R.layout.device_item, parent, false); 

        } 

 

        // Lookup view for data population 

        TextView tvName = (TextView) convertView.findViewById(R.id.tvName); 

        TextView tvAddress = (TextView) convertView.findViewById(R.id.tvAddress); 

        // Populate the data into the template view using the data object 

        tvName.setText(device.getName()); 

        tvAddress.setText(device.getAddress()); 

        // Return the completed view to render on screen 

        return convertView; 

    } 

} 

 

Position.java 

public class Position { 

    private String label; 

    private double RSSI; 

    public Position(String label, double RSSI) { 

        this.label = label; 

        this.RSSI = RSSI; 

    } 

 

    public String getLabel() { 

        return label; 

    } 

 

    public double getRSSI() { 

        return RSSI; 

    } 

} 



  80 

 

PositionAdapter.java 

package com.example.hang.bluetoothdatatest; 

public class PositionAdapter extends ArrayAdapter<Position> { 

    public PositionAdapter(Context context, ArrayList<Position> positions) { 

        super(context, 0, positions); 

    } 

 

    @Override 

    public View getView(int position, View convertView, ViewGroup parent) { 

        // Get the data item for this position 

        Position curPos = getItem(position); 

        // Check if an existing view is being reused, otherwise inflate the view 

        if (convertView == null) { 

            convertView = 
LayoutInflater.from(getContext()).inflate(R.layout.position_item, parent, false); 

        } 

 

        // Lookup view for data population 

        TextView tv_label = (TextView) convertView.findViewById(R.id.tv_label); 

        TextView tv_RSSI = (TextView) convertView.findViewById(R.id.tv_RSSI); 

        // Populate the data into the template view using the data object 

        tv_label.setText(curPos.getLabel()); 

        tv_RSSI.setText(String.valueOf(curPos.getRSSI())); 

        // Return the completed view to render on screen 

        return convertView; 

    } 

} 

SearchModeActivity.java 

package com.example.hang.bluetoothdatatest; 

public class SearchModeActivity extends AppCompatActivity { 

    BluetoothConnectionService bluetoothConnectionService; 

    final static String TAG= "SearchModeActiviry"; 

    private Button btn_addLabel; 

    private Button btn_stop; 

    private TextView textView; 

    private Handler handler; 

    private boolean sendAndreceiveData = false; 



  81 

 

    private ListView listview_label; 

    private List<Integer> tempRSSIlist; 

    private List<Integer> tempSNRlist; 

    private List<Integer> revisedRSSIlist; 

    private PositionAdapter adapter; 

    private ArrayList<Position> positionList; 

    Set<String> labels; 

    String curLabel = null; 

    int count = 0; 

 

    @Override 

    protected void onDestroy() { 

        LocalBroadcastManager.getInstance(this).unregisterReceiver(mReceiver); 

        super.onDestroy(); 

    } 

 

    BroadcastReceiver mReceiver = new BroadcastReceiver() { 

        @Override 

        public void onReceive(Context context, Intent intent) { 

            count++; 

            StringBuilder messages = new StringBuilder(); 

            messages.append("index = " + count + "\n"); 

            byte[] bytes = intent.getByteArrayExtra("MessageByteArray"); 

            //messages.append(text + "\n"); 

            int RSSI = 0; 

            int SNR = 0; 

            for (int i = 0; i < bytes.length; i++) { 

                byte b = bytes[i]; 

                int v2; 

                if (i == 1) { 

                    //RSSI 

                    v2 = b & 0xFF; 

                    v2 = (256-v2)*(-1); 

                    RSSI = v2; 

                }  else if (i == 2) { 

                    //SNR 

                    v2 = b & 0xFF; 

                    if (v2 > 127) { 

                        v2 = (256-v2)*(-1); 

                    } 



  82 

 

                    SNR = v2; 

                } else { 

                    v2 = b & 0xFF; 

                } 

                messages.append(v2 + " "); 

            } 

            if (sendAndreceiveData) { 

                textView.setText(messages.toString()); 

                Log.d(TAG, "get RSSI = " + messages.toString()); 

                if ((bytes[0] & 0xFF) == 0x01) { 

                    tempRSSIlist.add(RSSI); 

                    tempSNRlist.add(SNR); 

 

                    if (SNR > 0) { 

                        revisedRSSIlist.add(RSSI); 

                    } else { 

                        revisedRSSIlist.add((int)(RSSI + 0.25 * SNR)); 

                    } 

                } 

            } 

        } 

    }; 

 

    @Override 

    protected void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

        setContentView(R.layout.activity_search_mode_activiry); 

        this.setTitle("SearchModeActivity"); 

        LocalBroadcastManager.getInstance(this).registerReceiver(mReceiver, new 
IntentFilter("incomingMessage")); 

        handler = new Handler(Looper.getMainLooper()) { 

            @Override 

            public void handleMessage(Message inputMessage) { 

                switch (inputMessage.what) { 

                    case 1: 

                        //send command 2 

                        byte[] bytes = "2".getBytes(Charset.defaultCharset()); 

                        bluetoothConnectionService.write(bytes); 

                        handler.sendEmptyMessageDelayed(1, 2000); 

//                        if (sendAndreceiveData) { 



  83 

 

//                            handler.sendEmptyMessageDelayed(1, 4000); 

//                        } 

                        break; 

                    default: 

                        break; 

                } 

            } 

        }; 

 

        tempRSSIlist = new ArrayList<>(); 

        tempSNRlist = new ArrayList<>(); 

        revisedRSSIlist = new ArrayList<>(); 

        positionList = new ArrayList<>(); 

        labels = new HashSet<>(); 

        adapter = new PositionAdapter(this, positionList); 

 

        bluetoothConnectionService = BluetoothConnectionService.getInstance(); 

        btn_addLabel = (Button) findViewById(R.id.btn_addLabel); 

        btn_stop = (Button) findViewById(R.id.btn_stop); 

        textView = (TextView) findViewById(R.id.textView); 

        listview_label = (ListView) findViewById(R.id.lv_label); 

        listview_label.setAdapter(adapter); 

 

        final View view = getLayoutInflater().inflate(R.layout.dialog_add_label, null); 

        final AlertDialog alertDialog = new AlertDialog.Builder(this).create(); 

        alertDialog.setTitle("Add a label"); 

        alertDialog.setCancelable(false); 

        final EditText et_addLabel = (EditText) view.findViewById(R.id.etLabel); 

        alertDialog.setButton(AlertDialog.BUTTON_POSITIVE, "OK", new 
DialogInterface.OnClickListener() { 

            @Override 

            public void onClick(DialogInterface dialogInterface, int i) { 

                curLabel = et_addLabel.getText().toString(); 

                et_addLabel.setText(""); 

                if (labels.contains(curLabel)) { 

                    Toast.makeText(SearchModeActivity.this, "This label is already 
included!", Toast.LENGTH_SHORT).show(); 

                    return; 

                } 

 

                Log.d(TAG, "A new label is added as " + curLabel); 



  84 

 

                sendAndreceiveData = true; 

                //sent command 2 every 4 second. 

//                Message msg = Message.obtain(); 

//                msg.what = 1; 

//                handler.sendMessage(msg); 

                handler.sendEmptyMessage(1); 

                count = 0; 

            } 

        }); 

 

        alertDialog.setButton(AlertDialog.BUTTON_NEGATIVE, "Cancel", new 
DialogInterface.OnClickListener() { 

            @Override 

            public void onClick(DialogInterface dialogInterface, int i) { 

                alertDialog.dismiss(); 

            } 

        }); 

        alertDialog.setView(view); 

        btn_addLabel.setOnClickListener(new View.OnClickListener() { 

            @Override 

            public void onClick(View view) { 

                alertDialog.show(); 

            } 

        }); 

 

        btn_stop.setOnClickListener(new View.OnClickListener() { 

            @Override 

            public void onClick(View view) { 

                sendAndreceiveData = false; 

//                Log.d(TAG, "Stop button is clicked"); 

                handler.removeMessages(1); 

                double aveRSSI = getAverage(); 

 

                StringBuilder s = new StringBuilder(); 

                s.append("RSSI:"); 

                for (int i = 0; i < tempRSSIlist.size(); i++) { 

                    s.append(tempRSSIlist.get(i) + ","); 

                } 

                s.append("\n"); 

                s.append("SNR:"); 



  85 

 

                for (int i = 0; i < tempSNRlist.size(); i++) { 

                    s.append(tempSNRlist.get(i) + ","); 

                } 

 

                s.append("\n"); 

                s.append("revised RSSI:"); 

                for (int i = 0; i < revisedRSSIlist.size(); i++) { 

                    s.append(revisedRSSIlist.get(i) + ","); 

                } 

                textView.setText(s); 

                tempRSSIlist.clear(); 

                tempSNRlist.clear(); 

                revisedRSSIlist.clear(); 

 

                labels.add(curLabel); 

 

                Position pos = new Position(curLabel, aveRSSI); 

                adapter.add(pos); 

            } 

        }); 

    } 

 

    private double getAverage() { 

        if (revisedRSSIlist.size() == 0) { 

            return -1; 

        } 

        double sum = 0; 

        for (int i = 0; i < revisedRSSIlist.size(); i++) { 

            sum += revisedRSSIlist.get(i); 

        } 

        return sum / revisedRSSIlist.size(); 

    } 

} 

OneDimensionSampleActivity.java 

package com.example.hang.bluetoothdatatest; 

public class OneDimensionSampleActivity extends AppCompatActivity { 

    private BroadcastReceiver mReceiver = new BroadcastReceiver() { 

        @Override 



  86 

 

        public void onReceive(Context context, Intent intent) { 

            byte[] bytes = intent.getByteArrayExtra("MessageByteArray"); 

            //messages.append(text + "\n"); 

            int RSSI = 0; 

            int SNR = 0; 

            for (int i = 0; i < bytes.length; i++) { 

                byte b = bytes[i]; 

                int v2; 

                if (i == 1) { 

                    //RSSI 

                    v2 = b & 0xFF; 

                    v2 = (256-v2)*(-1); 

                    RSSI = v2; 

                }  else if (i == 2) { 

                    //SNR 

                    v2 = b & 0xFF; 

                    if (v2 > 127) { 

                        v2 = (256-v2)*(-1); 

                    } 

                    SNR = v2; 

                } else { 

                    v2 = b & 0xFF; 

                } 

            } 

            double revisedRSSI = RSSI; 

            if (SNR < 0) { 

                revisedRSSI = RSSI + 0.25 * SNR; 

            } 

            strengthList.add(revisedRSSI); 

            textView.setText("RSSI="+RSSI+";SNR="+SNR+";revisedRSSI="+revisedRSSI); 

        } 

    }; 

    private BluetoothConnectionService bluetoothConnectionService; 

    private Button btn_StartCollect; 

    private Button btn_Stop; 

    private Button btn_Process; 

    private TextView textView; 

    private final ScheduledExecutorService scheduler = 
Executors.newScheduledThreadPool(1); 

    private final Runnable sendCommandRunnable = new Runnable() { 



  87 

 

        @Override 

        public void run() { 

            byte[] bytes = "2".getBytes(Charset.defaultCharset()); 

            bluetoothConnectionService.write(bytes); 

        } 

    }; 

    private ScheduledFuture<?> SendCommandHandler; 

    private ArrayList<Double> strengthList; 

 

    @Override 

    protected void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

        setContentView(R.layout.activity_one_dimension_sample); 

        btn_StartCollect = (Button) findViewById(R.id.btn_StartCollect); 

        btn_Stop = (Button) findViewById(R.id.btn_StopCollect); 

        btn_Process = (Button) findViewById(R.id.btn_Process); 

        textView = (TextView) findViewById(R.id.textView1); 

        LocalBroadcastManager.getInstance(this).registerReceiver(mReceiver, new 
IntentFilter("incomingMessage")); 

        bluetoothConnectionService = BluetoothConnectionService.getInstance(); 

        strengthList = new ArrayList<>(); 

 

        btn_StartCollect.setOnClickListener(new View.OnClickListener() { 

            @Override 

            public void onClick(View view) { 

                strengthList.clear(); 

                SendCommandHandler = scheduler.scheduleAtFixedRate(sendCommandRunnable, 
0, 2, TimeUnit.SECONDS); 

            } 

        }); 

 

        btn_Stop.setOnClickListener(new View.OnClickListener() { 

            @Override 

            public void onClick(View view) { 

                scheduler.schedule(new Runnable() { 

                    @Override 

                    public void run() { 

                        SendCommandHandler.cancel(true); 

                    } 

                }, 0, TimeUnit.SECONDS); 

                String str = listToStr(); 



  88 

 

                textView.setText("revisedRSSI list : " + str); 

            } 

        }); 

 

        btn_Process.setOnClickListener(new View.OnClickListener() { 

            @Override 

            public void onClick(View view) { 

                Intent intent = new Intent(OneDimensionSampleActivity.this, 
PolyFitActivity.class); 

                intent.putExtra("array", strengthList); 

                startActivity(intent); 

            } 

        }); 

    } 

 

    @Override 

    protected void onDestroy() { 

        super.onDestroy(); 

        LocalBroadcastManager.getInstance(this).unregisterReceiver(mReceiver); 

    } 

 

    private String listToStr() { 

        StringBuilder builder = new StringBuilder(); 

        for (double strength : strengthList) { 

            builder.append(strength + ";"); 

        } 

        return builder.toString(); 

    } 

} 

PolyFitActivity.java 

package com.example.hang.bluetoothdatatest; 

public class PolyFitActivity extends AppCompatActivity { 

    private XYPlot plot; 

    private TextView tv_result; 

 

    @Override 

    protected void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 



  89 

 

        setContentView(R.layout.activity_poly_fit); 

 

        plot = (XYPlot) findViewById(R.id.plot); 

        tv_result = (TextView) findViewById(R.id.tv_result); 

 

        Intent intent = getIntent(); 

        ArrayList<Double> list = 
(ArrayList<Double>)intent.getSerializableExtra("array"); 

        double[] original = new double[list.size()]; 

        for (int i = 0; i < list.size(); i++) { 

            original[i] = list.get(i); 

        } 

        double[] filtered = new AverageFilter(2, original).filter(); 

        int len = original.length; 

        // create a couple arrays of y-values to plot: 

        Number[] series1Numbers = getSeriesNumbers(original); 

        // (Y_VALS_ONLY means use the element index as the x value) 

        XYSeries series1 = new SimpleXYSeries(Arrays.asList(series1Numbers), 
SimpleXYSeries.ArrayFormat.Y_VALS_ONLY, "Or"); 

        // create formatters to use for drawing a series using LineAndPointRenderer 

        // and configure them from xml: 

        LineAndPointFormatter series1Format = new LineAndPointFormatter(this, 
R.xml.point_formatter); 

        series1Format.setInterpolationParams(new CatmullRomInterpolator.Params(10, 
CatmullRomInterpolator.Type.Centripetal)); 

        // add a new series' to the xyplot: 

        plot.addSeries(series1, series1Format); 

 

        Number[] series2Numbers = getSeriesNumbers(filtered); 

        XYSeries series2 = new SimpleXYSeries( 

                Arrays.asList(series2Numbers), SimpleXYSeries.ArrayFormat.Y_VALS_ONLY, 
"F"); 

        LineAndPointFormatter series2Format = new LineAndPointFormatter(this, 
R.xml.line_point_formatter_purple); 

        series2Format.setInterpolationParams(new CatmullRomInterpolator.Params(10, 
CatmullRomInterpolator.Type.Centripetal)); 

        plot.addSeries(series2, series2Format); 

 

        PolyFit polyFit = new PolyFit(filtered); 

        polyFit.init(); 

        double[] oneOrderFitRes = polyFit.oneOrderFit(); 

        LineAndPointFormatter series3Format = new LineAndPointFormatter(this, 
R.xml.line_point_formatter_red); 



  90 

 

        series3Format.setInterpolationParams(new CatmullRomInterpolator.Params(10, 
CatmullRomInterpolator.Type.Centripetal)); 

        XYSeries series3 = generateSeries(0, len-1, len*10, 1, oneOrderFitRes[0], 
oneOrderFitRes[1], 0); 

        plot.addSeries(series3, series3Format); 

 

        //get y_predicted 

        double[] yOneOrder_predicted = new double[filtered.length]; 

        for (int i = 0; i < len; i++) { 

            yOneOrder_predicted[i] = OneOrderfx(i, oneOrderFitRes[0], 
oneOrderFitRes[1]); 

        } 

        RSquared rSuqred1 = new RSquared(filtered, yOneOrder_predicted, 2); 

        double rsquared = rSuqred1.getRSquared(); 

        double adrsquared = rSuqred1.getAdjustedRSquared(); 

        double[] twoOrderFitRes = polyFit.twoOrderFit(); 

        LineAndPointFormatter series4Format = new LineAndPointFormatter(this, 
R.xml.line_point_formatter_green); 

        series4Format.setInterpolationParams(new CatmullRomInterpolator.Params(10, 
CatmullRomInterpolator.Type.Centripetal)); 

        XYSeries series4 = generateSeries(0, len-1, len*10, 2, twoOrderFitRes[0], 
twoOrderFitRes[1], twoOrderFitRes[2]); 

        plot.addSeries(series4, series4Format); 

        double[] yTwoOrder_predicted = new double[filtered.length]; 

        for (int i = 0;i < len; i++) { 

            yTwoOrder_predicted[i] = TwoOrderfx(i, twoOrderFitRes[0], 
twoOrderFitRes[1], twoOrderFitRes[2]); 

        } 

        RSquared rSuqred2 = new RSquared(filtered, yTwoOrder_predicted, 3); 

        double rsquared2 = rSuqred2.getRSquared(); 

        double adjustedR2 = rSuqred2.getAdjustedRSquared(); 

 

        tv_result.setText("OneOrderFit Adjust_R2="+adrsquared+"\n"+"TwoOrderFit 
Adjust_R2="+adjustedR2); 

    } 

 

    Number[] getSeriesNumbers(double[] array) { 

        Number[] nums = new Number[array.length]; 

        for (int i = 0; i < nums.length; i++) { 

            nums[i] = array[i]; 

        } 

        return nums; 

    } 



  91 

 

 

    protected XYSeries generateSeries(double minX, double maxX, double resolution, int 
order, double a, double b, double c) { 

        //the value of order only has two choices: 1 or 2. Otherwise, throw exception 

        final double range = maxX - minX; 

        final double step = range / resolution; 

        List<Number> xVals = new ArrayList<>(); 

        List<Number> yVals = new ArrayList<>(); 

        if (order == 1) { 

            double x = minX; 

            while (x <= maxX) { 

                xVals.add(x); 

                yVals.add(OneOrderfx(x, a, b)); 

                x +=step; 

            } 

            return new SimpleXYSeries(xVals, yVals, "One"); 

        } else { 

            double x = minX; 

            while (x <= maxX) { 

                xVals.add(x); 

                yVals.add(TwoOrderfx(x, a, b, c)); 

                x +=step; 

            } 

            return new SimpleXYSeries(xVals, yVals, "Two"); 

        } 

    } 

 

    protected double TwoOrderfx(double x, double a, double b, double c) { 

        return a*Math.abs(x*x) + b*x + c; 

    } 

 

    protected double OneOrderfx(double x, double a, double b) { 

        return a*x + b; 

    } 

 

    double[] getYValules(XYSeries series) { 

        double[] yVals = new double[series.size()]; 

        for (int i = 0; i <  yVals.length; i++) { 

            yVals[i] = series.getY(i).doubleValue(); 

        } 



  92 

 

        return yVals; 

    } 

} 

AverageFilter.java 

package com.example.hang.bluetoothdatatest.PolyFitLib; 

public class AverageFilter { 

    int windowSize; 

    double[] yArray; 

    public AverageFilter(int size, double[] array) { 

        windowSize = size; 

        yArray = array; 

    } 

 

    public double[] filter() { 

        double[] res = new double[yArray.length]; 

        for (int i = windowSize-1; i < res.length; i++) { 

            //find res[i] 

            double temp = 0; 

            for (int j = i+1-windowSize; j <= i; j++) { 

                temp += yArray[j]; 

            } 

            res[i] = temp/windowSize; 

        } 

 

        for (int i = 0; i <  windowSize; i++) { 

            res[i] = yArray[i]; 

        } 

        return res; 

    } 

} 

Expectation.java 

package com.example.hang.bluetoothdatatest.PolyFitLib; 

public class Expectation { 

    double[] xArray; 

    double[] yArray; 

    public Expectation(double[] xArray, double[] yArray) { 



  93 

 

        //the length of two arrays should be the same 

        this.xArray = xArray; 

        this.yArray= yArray; 

    } 

 

    double getExpectOfX() { 

        double sum = 0; 

        for (double temp : xArray) { 

            sum += temp; 

        } 

        return sum/xArray.length; 

    } 

 

    double getExpectOfY() { 

        double sum = 0; 

        for (double temp : yArray) { 

            sum += temp; 

        } 

        return sum/yArray.length; 

    } 

 

    double getExpectOfXY() { 

        double sum = 0; 

        for (int i = 0; i < xArray.length; i++) { 

            double x = xArray[i]; 

            double y = yArray[i]; 

            sum += x*y; 

        } 

        return sum/yArray.length; 

    } 

 

    double getExpectOfX2() { 

        double sum = 0; 

        for (double temp : xArray) { 

            sum += temp*temp; 

        } 

        return sum/xArray.length; 

    } 

 

    double getExpectOfX3() { 



  94 

 

        double sum = 0; 

        for (double temp : xArray) { 

            sum += temp*temp*temp; 

        } 

        return sum/xArray.length; 

    } 

 

    double getExpectOfX4() { 

        double sum = 0; 

        for (double temp : xArray) { 

            sum += temp*temp*temp*temp; 

        } 

        return sum/xArray.length; 

    } 

 

    double getExpectOfX2Y() { 

        double sum = 0; 

        for (int i = 0; i < xArray.length; i++) { 

            double x = xArray[i]; 

            double y = yArray[i]; 

            sum += x*x*y; 

        } 

        return sum/yArray.length; 

    } 

} 

PolyFit.java 

package com.example.hang.bluetoothdatatest.PolyFitLib; 

public class PolyFit { 

    private double[] xArray; 

    private double[] yArray; 

    private Expectation expectation; 

 

    private double expectofX; 

    private double expectofY; 

    private double expectofXY; 

    private double expectofX2Y; 

    private double expectofX2; 

    private double expectofX3; 



  95 

 

    private double expectofX4; 

 

    public PolyFit(double[] yArray) { 

        this.yArray = yArray; 

        xArray = new double[yArray.length]; 

        for (int i = 0; i < yArray.length; i++) { 

            xArray[i] = i+1; 

        } 

        expectation = new Expectation(xArray, this.yArray); 

    } 

 

    //must call init first before calling oneOrderFit and twoOrderFit functions 

    public void init() { 

        expectofX = expectation.getExpectOfX(); 

        expectofY = expectation.getExpectOfY(); 

        expectofXY = expectation.getExpectOfXY(); 

        expectofX2Y = expectation.getExpectOfX2Y(); 

        expectofX2 = expectation.getExpectOfX2(); 

        expectofX3 = expectation.getExpectOfX3(); 

        expectofX4 = expectation.getExpectOfX4(); 

    } 

 

    public double[] oneOrderFit() { 

        double[][] left = new double[][] { { expectofX, 1 }, {expectofX2, 
expectofX } }; 

        double[] right = new double[] {expectofY, expectofXY}; 

        RealMatrix coefficients =new Array2DRowRealMatrix(left, false); 

        DecompositionSolver solver = new LUDecomposition(coefficients).getSolver(); 

        RealVector constants = new ArrayRealVector(right, false); 

        RealVector solution = solver.solve(constants); 

 

        double a = solution.getEntry(0); 

        double b = solution.getEntry(1); 

        return new double[] {a, b}; 

    } 

 

    public double[] twoOrderFit() { 

        double[][] left = new double[][] { { expectofX2, expectofX, 1 }, { expectofX3, 
expectofX2, expectofX }, { expectofX4, expectofX3, expectofX2 } }; 

        double[] right = new double[] {expectofY, expectofXY, expectofX2Y}; 

        RealMatrix coefficients =new Array2DRowRealMatrix(left, false); 



  96 

 

        DecompositionSolver solver = new LUDecomposition(coefficients).getSolver(); 

        RealVector constants = new ArrayRealVector(right, false); 

        RealVector solution = solver.solve(constants); 

 

        double a = solution.getEntry(0); 

        double b = solution.getEntry(1); 

        double c = solution.getEntry(2); 

        return new double[] {a,b,c}; 

    } 

} 

Rsquared.java 

package com.example.hang.bluetoothdatatest.PolyFitLib; 

public class RSquared { 

    double[] yArray; 

    double[] yPredict; 

    private double average; 

    private double SS_tot; 

    private double SS_reg; 

    private double SS_res; 

    int p; 

    public RSquared(double[] yArray, double[] yPredict, int p) { 

        this.yArray = yArray; 

        this.yPredict = yPredict; 

        this.p = p; 

        average = getAverageY(); 

        SS_tot = getSS_tot(); 

        SS_reg = getSS_reg(); 

        SS_res = getSS_res(); 

    } 

 

    private double getAverageY() { 

        double sum = 0; 

        for (double temp : yArray) { 

            sum += temp; 

        } 

        return sum/yArray.length; 

    } 

 



  97 

 

    private double getSS_tot() { 

        double sum = 0; 

        for (int i = 0; i < yArray.length; i++) { 

            double temp = (yArray[i]-average)*(yArray[i]-average); 

            sum += temp; 

        } 

        return sum; 

    } 

 

    private double getSS_reg() { 

        double sum = 0; 

        for (int i = 0; i < yArray.length; i++) { 

            double temp = (yPredict[i]-average)*(yPredict[i]-average); 

            sum += temp; 

        } 

        return sum; 

    } 

 

    private double getSS_res() { 

        double sum = 0; 

        for (int i = 0; i < yArray.length; i++) { 

            double temp = (yPredict[i]-yArray[i])*(yPredict[i]-yArray[i]); 

            sum += temp; 

        } 

        return sum; 

    } 

 

    public double getRSquared() { 

        return 1-SS_res/SS_tot; 

    } 

 

    public double getAdjustedRSquared() { 

        int n = yArray.length; 

        return 1-SS_res/SS_tot*(n-1)/(n-p); 

    } 

} 



  98 

 

APPENDIX C. Android APP on the 2.4GHz Emitter 

MainActivity.java 

package com.example.hang.client; 

public class MainActivity extends AppCompatActivity { 

    Socket socket; 

    String SOCKET_HOST = "192.168.3.50"; 

    DataOutputStream out; 

    DataInputStream in; 

 

    TextView tv_status; 

    BlockingDeque<Integer> queue; 

    private final ScheduledExecutorService scheduler = 
Executors.newScheduledThreadPool(1); 

    private ScheduledFuture<?> RSSIStrengthHandler; 

    final Runnable fetchRSSI = new Runnable() { 

        @Override 

        public void run() { 

            int strength = getSignalStrength(); 

            queue.add(strength); 

 

            Message msg = Message.obtain(); 

            msg.what = 0; 

            msg.obj = String.valueOf(strength); 

            myHandler.sendMessage(msg); 

        } 

    }; 

    final Runnable stopFetchRSSI = new Runnable() { 

        @Override 

        public void run() { 

            RSSIStrengthHandler.cancel(true); 

            myHandler.sendEmptyMessage(1); 

        } 

    }; 

 

    Handler myHandler = new Handler(Looper.getMainLooper()) { 

        @Override 

        public void handleMessage(Message inputMessage) { 



  99 

 

            // Gets the image task from the incoming Message object. 

            if (inputMessage.what == 0) { 

                String str = inputMessage.obj.toString(); 

                tv_status.setText("RSSI="+str); 

            } else { 

                tv_status.setText(""); 

            } 

        } 

    }; 

 

 

    @Override 

    protected void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

        setContentView(R.layout.activity_main); 

        tv_status = (TextView) findViewById(R.id.tv_status); 

        queue = new LinkedBlockingDeque<>(); 

 

        //create socket connection 

        Runnable runnable = new Runnable() { 

            @Override 

            public void run() { 

                try { 

                    socket = new Socket(SOCKET_HOST, 12345); 

                    out = new DataOutputStream(socket.getOutputStream()); 

                    in = new DataInputStream(socket.getInputStream()); 

                } catch (UnknownHostException e) { 

                    System.out.println("Unknown host: " + SOCKET_HOST); 

                    System.exit(1); 

                } catch (IOException e) { 

                    System.out.println("No I/O"); 

                    System.exit(1); 

                } 

            } 

        }; 

        Thread connectThread = new Thread(runnable); 

        connectThread.start(); 

        try { 

            connectThread.join(); 

        } catch (InterruptedException e) { 



  100 

 

            e.printStackTrace(); 

        } 

 

        Runnable readTask = new Runnable() { 

            @Override 

            public void run() { 

                while (true) { 

                    try { 

                        String message = in.readUTF(); 

                        System.out.println("Get command from Server : " + message); 

                        if (message.equals("1")) { 

                            RSSIStrengthHandler = 
scheduler.scheduleAtFixedRate(fetchRSSI, 0, 1, TimeUnit.SECONDS); 

                        } else { 

                            scheduler.schedule(stopFetchRSSI, 0, TimeUnit.SECONDS); 

                        } 

                    } catch (IOException e) { 

                        System.out.println("Read failed"); 

                        System.exit(-1); 

                    } 

                } 

            } 

        }; 

        new Thread(readTask).start(); 

 

 

        Runnable writeTask = new Runnable() { 

            @Override 

            public void run() { 

                while (true) { 

                    Integer RSSI = null; 

                    try { 

                        RSSI = queue.poll(300, TimeUnit.MILLISECONDS); 

                        if (RSSI != null) { 

                            System.out.println("writeTask: strength = " + RSSI); 

                            out.writeUTF(String.valueOf(RSSI)); 

                            out.flush(); 

                        } 

                    } catch (InterruptedException e) { 

                        e.printStackTrace(); 



  101 

 

                    } catch (IOException e) { 

                        e.printStackTrace(); 

                    } 

                } 

 

            } 

        }; 

        new Thread(writeTask).start(); 

    } 

 

 

 

    private int getSignalStrength() { 

        WifiManager wifiManager = (WifiManager) 
getApplicationContext().getSystemService(Context.WIFI_SERVICE); 

        wifiManager.startScan(); 

        List<ScanResult> wifiList = wifiManager.getScanResults(); 

        if (wifiList.size() == 0) { 

            return 100; 

        } 

 

        for (int i = 0; i < wifiList.size(); i++) { 

            ScanResult scanResult = wifiList.get(i); 

            String macAddress = scanResult.BSSID; 

            if (macAddress.equals("d0:ff:98:81:46:f8")) { 

                return scanResult.level; 

            } 

        } 

        return 101; 

    } 

} 

APPENDIX D. Android APP on the 2.4GHz Radio Tester 

MainActivity.java 

package com.example.hang.server; 

public class MainActivity extends AppCompatActivity implements 
LabelDialog.LabelDialogListener { 

    ServerSocket server; 



  102 

 

    Socket client; 

    Worker worker; 

    Button btn_startCollect; 

    TextView tv_status; 

    private ListView listView; 

    String label = null; 

    List<Integer> strengthList; 

    private PositionAdapter positionAdapter; 

    private List<Position> list; 

 

    Handler myHandler = new Handler(Looper.getMainLooper()) { 

        @Override 

        public void handleMessage(Message inputMessage) { 

            // Gets the image task from the incoming Message object. 

            if (inputMessage.what == 0) { 

                String str = inputMessage.obj.toString(); 

                tv_status.setText("RSSI = " + str); 

                strengthList.add(Integer.valueOf(str)); 

            } else { 

                tv_status.setText(""); 

            } 

        } 

    }; 

    @Override 

    protected void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

        setContentView(R.layout.activity_main); 

        btn_startCollect = (Button) findViewById(R.id.btn_startCollect); 

        tv_status = (TextView) findViewById(R.id.tv_status); 

        listView = (ListView) findViewById(R.id.lv_label); 

        strengthList = new ArrayList<>(); 

        list = new ArrayList<>(); 

        positionAdapter = new PositionAdapter(this, list); 

        listView.setAdapter(positionAdapter); 

 

        try { 

            server = new ServerSocket(12345); 

        } catch (IOException e) { 

            System.out.println("Could not listen on port 12345"); 

            System.exit(-1); 



  103 

 

        } 

 

        Runnable runnable = new Runnable() { 

            @Override 

            public void run() { 

                try { 

                    client = server.accept(); 

                    System.out.println("New client"); 

                    worker = new Worker(client, myHandler); 

                } catch (IOException e) { 

                    System.out.println("Accept failed: 12345"); 

                    System.exit(-1); 

                } 

            } 

        }; 

        Thread connectThread = new Thread(runnable); 

        connectThread.start(); 

 

 

        btn_startCollect.setOnClickListener(new View.OnClickListener() { 

            @Override 

            public void onClick(View v) { 

                String buttonText = btn_startCollect.getText().toString(); 

                if (buttonText.equals("Start to collect")) { 

                    openDialog(); 

                } else { 

                    worker.addCommand(0); 

                    btn_startCollect.setText("Start to collect"); 

 

                    //process strengthList 

                    double ave = getAvearge(); 

                    tv_status.setText("Label="+label+";     aveRSSI="+ave); 

                    System.out.println("Label="+label+";aveRSSI="+ave); 

                    positionAdapter.add(new Position(label, ave)); 

                } 

            } 

        }); 

    } 

 

    public void openDialog() { 



  104 

 

        LabelDialog labelDialog = new LabelDialog(); 

        labelDialog.show(getSupportFragmentManager(), "label dialog"); 

    } 

 

 

    @Override 

    public void applyText(String label) { 

        this.label = label; 

        tv_status.setText("label is " + label); 

        strengthList.clear(); 

        worker.addCommand(1); 

        btn_startCollect.setText("Stop"); 

    } 

 

 

    private double getAvearge() { 

        double res = 0; 

        for (int val : strengthList) { 

            res += val; 

        } 

        if (strengthList.size() == 0) { 

            return 0; 

        } else { 

            return res/strengthList.size(); 

        } 

    } 

} 

Worker.java 

package com.example.hang.server; 

public class Worker { 

    DataInputStream in; 

    DataOutputStream out; 

    Socket client; 

    BlockingDeque<Integer> queue; 

    Handler handler; 

    public Worker(Socket client, Handler myHandler) { 

        this.client = client; 

        handler = myHandler; 



  105 

 

        queue = new LinkedBlockingDeque<>(); 

        try { 

            in = new DataInputStream(client.getInputStream()); 

            out = new DataOutputStream(client.getOutputStream()); 

 

        } catch (IOException e) { 

            System.out.println("Read failed"); 

            System.exit(-1); 

        } 

 

        new Thread(writeTask).start(); 

        new Thread(readTask).start(); 

    } 

 

    Runnable writeTask = new Runnable() { 

        @Override 

        public void run() { 

            while (true) { 

                Integer command = null; 

                try { 

                    command = queue.poll(300, TimeUnit.MILLISECONDS); 

                    if (command != null) { 

                        System.out.println("command="+command); 

                        out.writeUTF(String.valueOf(command)); 

                        out.flush(); 

                    } 

                } catch (InterruptedException e) { 

                    e.printStackTrace(); 

                } catch (IOException e) { 

                    e.printStackTrace(); 

                } 

            } 

        } 

    }; 

 

    Runnable readTask = new Runnable() { 

        @Override 

        public void run() { 

            while (true) { 

                try { 



  106 

 

                    String message = in.readUTF(); 

                    System.out.println("From Client : " + message); 

                    Message msg = Message.obtain(); 

                    msg.what = 0; 

                    msg.obj = message; 

                    handler.sendMessage(msg); 

 

                } catch (IOException e) { 

                    System.out.println("Read failed"); 

                    System.exit(-1); 

                } 

            } 

 

        } 

    }; 

 

 

    public void addCommand(int command) { 

        queue.add(command); 

    } 

} 

LabelDialog.java 

package com.example.hang.server; 

public class LabelDialog extends AppCompatDialogFragment { 

    private EditText editLabel; 

    private LabelDialogListener listener; 

 

    @Override 

    public void onAttach(Context context) { 

        super.onAttach(context); 

 

        try { 

            listener = (LabelDialogListener) context; 

        } catch (ClassCastException e) { 

            throw new ClassCastException(context.toString() +"must implement 
LabelDialogListener"); 

        } 

    } 



  107 

 

 

    @Override 

    public Dialog onCreateDialog(Bundle savedInstanceState) { 

        AlertDialog.Builder builder = new AlertDialog.Builder(getActivity()); 

        LayoutInflater inflater = getActivity().getLayoutInflater(); 

        View view = inflater.inflate(R.layout.layout_dialog, null); 

 

        builder.setView(view) 

                .setTitle("Label") 

                .setNegativeButton("cancel", new DialogInterface.OnClickListener() { 

                    @Override 

                    public void onClick(DialogInterface dialog, int which) { 

 

                    } 

                }) 

                .setPositiveButton("ok", new DialogInterface.OnClickListener() { 

                    @Override 

                    public void onClick(DialogInterface dialog, int which) { 

                        String label = editLabel.getText().toString(); 

                        listener.applyText(label); 

 

                    } 

                }); 

 

        editLabel = view.findViewById(R.id.edit_label); 

        return builder.create(); 

    } 

 

    public interface LabelDialogListener { 

        void applyText(String label); 

    } 

} 

Position.java 

package com.example.hang.server; 

public class Position { 

    private String label; 

    private double RSSI; 

    public Position(String label, double RSSI) { 



  108 

 

        this.label = label; 

        this.RSSI = RSSI; 

    } 

 

    public String getLabel() { 

        return label; 

    } 

 

    public double getRSSI() { 

        return RSSI; 

    } 

} 

PositionAdapter.java 

package com.example.hang.server; 

public class PositionAdapter extends ArrayAdapter<Position> { 

    public PositionAdapter(Context context, List<Position> positions) { 

        super(context, 0, positions); 

    } 

 

    @Override 

    public View getView(int position, View convertView, ViewGroup parent) { 

        // Get the data item for this position 

        Position curPos = getItem(position); 

        // Check if an existing view is being reused, otherwise inflate the view 

        if (convertView == null) { 

            convertView = 
LayoutInflater.from(getContext()).inflate(R.layout.position_item, parent, false); 

        } 

 

        // Lookup view for data population 

        TextView tv_label = (TextView) convertView.findViewById(R.id.tv_label); 

        TextView tv_RSSI = (TextView) convertView.findViewById(R.id.tv_RSSI); 

        // Populate the data into the template view using the data object 

        tv_label.setText(curPos.getLabel()); 

        tv_RSSI.setText(String.valueOf(curPos.getRSSI())); 

        // Return the completed view to render on screen 

        return convertView; 

    } 



  109 

 

} 

APPENDIX E. Regression Analysis in MATLAB 

y=-1*[65,53,56,53,60,55]; 

x = 1:length(y); 

windowSize = 2;  

b = (1/windowSize)*ones(1,windowSize); 

a = 1; 

y_filter = filter(b, a, y); 

for i=1:windowSize 

    y_filter(i) = y(i); 

end 

 

figure 

plot(y_filter); 

xlabel("Relative Distance"); 

ylabel("Received signal strength(dB)"); 

 

hold on 

rho = getRho(x,y) 

 

p2 = polyfit(x, y_filter, 2) 

y2 = polyval(p2,x); 

error2 = y_filter - y2; 

MSE2 = 0; 

for i=1:length(x) 

    temp = error2(i)*error2(i); 

    MSE2 = MSE2 + temp; 

end 

MSE2 

 

plot(x,y,'o') 

hold on 

plot(x,y2) 

 

p1 = polyfit(x, y_filter, 1) 

y1 = polyval(p1, x); 

error1  = y_filter - y1; 

MSE1 = 0; 



  110 

 

for i=1:length(x) 

    temp = error1(i) * error1(i); 

    MSE1 = MSE1 + temp; 

end 

MSE1 

hold on 

plot(x, y1, '--') 

legend("Filter plot", "Sample data", "2nd-order fit", "Linear fit"); 

 

function sigma = getSigma(A, mu) 

    temp = 0; 

    for i=1:length(A) 

        temp = temp+(A(i)-mu)*(A(i)-mu); 

    end 

    sigma = sqrt(temp/(length(A)-1)); 

end 

 

function rho = getRho(x, y) 

    meanX = mean(x); 

    meanY = mean(y); 

    sigmaX = getSigma(x, meanX); 

    sigmaY = getSigma(y, meanY); 

    sum = 0; 

    for i = 1:length(x) 

        sum = sum + (x(i)-meanX)*(y(i)-meanY); 

    end 

 

    cov = sum/(length(x)-1); 

    rho = cov/sigmaX/sigmaY; 

end 


	Rose-Hulman Institute of Technology
	Rose-Hulman Scholar
	5-2018

	Long-Range Indoor Emitter Localization from 433MHz and 2.4GHz WLAN Received Signal Strengths
	Hang Du
	Recommended Citation


	

