113,128 research outputs found

    Synthesising Graphical Theories

    Full text link
    In recent years, diagrammatic languages have been shown to be a powerful and expressive tool for reasoning about physical, logical, and semantic processes represented as morphisms in a monoidal category. In particular, categorical quantum mechanics, or "Quantum Picturalism", aims to turn concrete features of quantum theory into abstract structural properties, expressed in the form of diagrammatic identities. One way we search for these properties is to start with a concrete model (e.g. a set of linear maps or finite relations) and start composing generators into diagrams and looking for graphical identities. Naively, we could automate this procedure by enumerating all diagrams up to a given size and check for equalities, but this is intractable in practice because it produces far too many equations. Luckily, many of these identities are not primitive, but rather derivable from simpler ones. In 2010, Johansson, Dixon, and Bundy developed a technique called conjecture synthesis for automatically generating conjectured term equations to feed into an inductive theorem prover. In this extended abstract, we adapt this technique to diagrammatic theories, expressed as graph rewrite systems, and demonstrate its application by synthesising a graphical theory for studying entangled quantum states.Comment: 10 pages, 22 figures. Shortened and one theorem adde

    Progression and Verification of Situation Calculus Agents with Bounded Beliefs

    Get PDF
    We investigate agents that have incomplete information and make decisions based on their beliefs expressed as situation calculus bounded action theories. Such theories have an infinite object domain, but the number of objects that belong to fluents at each time point is bounded by a given constant. Recently, it has been shown that verifying temporal properties over such theories is decidable. We take a first-person view and use the theory to capture what the agent believes about the domain of interest and the actions affecting it. In this paper, we study verification of temporal properties over online executions. These are executions resulting from agents performing only actions that are feasible according to their beliefs. To do so, we first examine progression, which captures belief state update resulting from actions in the situation calculus. We show that, for bounded action theories, progression, and hence belief states, can always be represented as a bounded first-order logic theory. Then, based on this result, we prove decidability of temporal verification over online executions for bounded action theories. © 2015 The Author(s

    Formal Concept Analysis and Resolution in Algebraic Domains

    Full text link
    We relate two formerly independent areas: Formal concept analysis and logic of domains. We will establish a correspondene between contextual attribute logic on formal contexts resp. concept lattices and a clausal logic on coherent algebraic cpos. We show how to identify the notion of formal concept in the domain theoretic setting. In particular, we show that a special instance of the resolution rule from the domain logic coincides with the concept closure operator from formal concept analysis. The results shed light on the use of contexts and domains for knowledge representation and reasoning purposes.Comment: 14 pages. We have rewritten the old version according to the suggestions of some referees. The results are the same. The presentation is completely differen

    A Spatial-Epistemic Logic for Reasoning about Security Protocols

    Full text link
    Reasoning about security properties involves reasoning about where the information of a system is located, and how it evolves over time. While most security analysis techniques need to cope with some notions of information locality and knowledge propagation, usually they do not provide a general language for expressing arbitrary properties involving local knowledge and knowledge transfer. Building on this observation, we introduce a framework for security protocol analysis based on dynamic spatial logic specifications. Our computational model is a variant of existing pi-calculi, while specifications are expressed in a dynamic spatial logic extended with an epistemic operator. We present the syntax and semantics of the model and logic, and discuss the expressiveness of the approach, showing it complete for passive attackers. We also prove that generic Dolev-Yao attackers may be mechanically determined for any deterministic finite protocol, and discuss how this result may be used to reason about security properties of open systems. We also present a model-checking algorithm for our logic, which has been implemented as an extension to the SLMC system.Comment: In Proceedings SecCo 2010, arXiv:1102.516

    Metatheory of actions: beyond consistency

    Get PDF
    Consistency check has been the only criterion for theory evaluation in logic-based approaches to reasoning about actions. This work goes beyond that and contributes to the metatheory of actions by investigating what other properties a good domain description in reasoning about actions should have. We state some metatheoretical postulates concerning this sore spot. When all postulates are satisfied together we have a modular action theory. Besides being easier to understand and more elaboration tolerant in McCarthy's sense, modular theories have interesting properties. We point out the problems that arise when the postulates about modularity are violated and propose algorithmic checks that can help the designer of an action theory to overcome them

    Global semantic typing for inductive and coinductive computing

    Get PDF
    Inductive and coinductive types are commonly construed as ontological (Church-style) types, denoting canonical data-sets such as natural numbers, lists, and streams. For various purposes, notably the study of programs in the context of global semantics, it is preferable to think of types as semantical properties (Curry-style). Intrinsic theories were introduced in the late 1990s to provide a purely logical framework for reasoning about programs and their semantic types. We extend them here to data given by any combination of inductive and coinductive definitions. This approach is of interest because it fits tightly with syntactic, semantic, and proof theoretic fundamentals of formal logic, with potential applications in implicit computational complexity as well as extraction of programs from proofs. We prove a Canonicity Theorem, showing that the global definition of program typing, via the usual (Tarskian) semantics of first-order logic, agrees with their operational semantics in the intended model. Finally, we show that every intrinsic theory is interpretable in a conservative extension of first-order arithmetic. This means that quantification over infinite data objects does not lead, on its own, to proof-theoretic strength beyond that of Peano Arithmetic. Intrinsic theories are perfectly amenable to formulas-as-types Curry-Howard morphisms, and were used to characterize major computational complexity classes Their extensions described here have similar potential which has already been applied

    On Deciding Local Theory Extensions via E-matching

    Full text link
    Satisfiability Modulo Theories (SMT) solvers incorporate decision procedures for theories of data types that commonly occur in software. This makes them important tools for automating verification problems. A limitation frequently encountered is that verification problems are often not fully expressible in the theories supported natively by the solvers. Many solvers allow the specification of application-specific theories as quantified axioms, but their handling is incomplete outside of narrow special cases. In this work, we show how SMT solvers can be used to obtain complete decision procedures for local theory extensions, an important class of theories that are decidable using finite instantiation of axioms. We present an algorithm that uses E-matching to generate instances incrementally during the search, significantly reducing the number of generated instances compared to eager instantiation strategies. We have used two SMT solvers to implement this algorithm and conducted an extensive experimental evaluation on benchmarks derived from verification conditions for heap-manipulating programs. We believe that our results are of interest to both the users of SMT solvers as well as their developers
    • …
    corecore