In recent years, diagrammatic languages have been shown to be a powerful and
expressive tool for reasoning about physical, logical, and semantic processes
represented as morphisms in a monoidal category. In particular, categorical
quantum mechanics, or "Quantum Picturalism", aims to turn concrete features of
quantum theory into abstract structural properties, expressed in the form of
diagrammatic identities. One way we search for these properties is to start
with a concrete model (e.g. a set of linear maps or finite relations) and start
composing generators into diagrams and looking for graphical identities.
Naively, we could automate this procedure by enumerating all diagrams up to a
given size and check for equalities, but this is intractable in practice
because it produces far too many equations. Luckily, many of these identities
are not primitive, but rather derivable from simpler ones. In 2010, Johansson,
Dixon, and Bundy developed a technique called conjecture synthesis for
automatically generating conjectured term equations to feed into an inductive
theorem prover. In this extended abstract, we adapt this technique to
diagrammatic theories, expressed as graph rewrite systems, and demonstrate its
application by synthesising a graphical theory for studying entangled quantum
states.Comment: 10 pages, 22 figures. Shortened and one theorem adde