22 research outputs found

    Norm Monitoring under Partial Action Observability

    Get PDF
    In the context of using norms for controlling multi-agent systems, a vitally important question that has not yet been addressed in the literature is the development of mechanisms for monitoring norm compliance under partial action observability. This paper proposes the reconstruction of unobserved actions to tackle this problem. In particular, we formalise the problem of reconstructing unobserved actions, and propose an information model and algorithms for monitoring norms under partial action observability using two different processes for reconstructing unobserved actions. Our evaluation shows that reconstructing unobserved actions increases significantly the number of norm violations and fulfilments detected.Comment: Accepted at the IEEE Transaction on Cybernetic

    On Binary Max-Sum and Tractable HOPs

    Get PDF
    The Max-Sum message-passing algorithm has been used to approximately solve several unconstrained optimization problems, specially in the distributed context. In general, the complexity of computing messages is exponential. However, if the problem is modeled using the so called Tractable HOPs (THOPs), binary MaxSum's messages can be computed in polynomial time. In this paper we review existing THOPs, and present new ones, aiming at providing an updated view of efficient message computation.Peer Reviewe

    Resilience, reliability, and coordination in autonomous multi-agent systems

    Get PDF
    Acknowledgements The research reported in this paper was funded and supported by various grants over the years: Robotics and AI in Nuclear (RAIN) Hub (EP/R026084/1); Future AI and Robotics for Space (FAIR-SPACE) Hub (EP/R026092/1); Offshore Robotics for Certification of Assets (ORCA) Hub (EP/R026173/1); the Royal Academy of Engineering under the Chair in Emerging Technologies scheme; Trustworthy Autonomous Systems “Verifiability Node” (EP/V026801); Scrutable Autonomous Systems (EP/J012084/1); Supporting Security Policy with Effective Digital Intervention (EP/P011829/1); The International Technology Alliance in Network and Information Sciences.Peer reviewedPostprin

    Boolean Game with Prioritized Norms

    Get PDF
    In this paper we study boolean game with prioritized norms. Norms distinguish illegal strategies from legal strategies. Notions like legal strategy and legal Nash equilibrium are introduced. Our formal model is a combination of (weighted) boolean game and so called (prioritized) input/output logic. After formally presenting the model, we use examples to show that non-optimal Nash equilibrium can be avoided by making use of norms.We study various complexity issues related to legal strategy and legal Nash equilibrium

    Desen: Specification of Sociotechnical Systems via Patterns of Regulation and Control

    Get PDF
    We address the problem of engineering a sociotechnical system (STS) with respect to its stakeholders’ requirements. We motivate a two-tier STS conception comprising a technical tier that provides control mechanisms and describes what actions are allowed by the software components, and a social tier that characterizes the stakeholders’ expectations of each other in terms of norms. We adopt agents as computational entities, each representing a different stakeholder. Unlike previous approaches, our framework, Desen, incorporates the social dimension into the formal verification process. Thus, Desen supports agents potentially violating applicable norms—a consequence of their autonomy. In addition to requirements verification, Desen supports refinement of STS specifications via design patterns to meet stated requirements. We evaluate Desen at three levels. We illustrate how Desen carries out refinement via the application of patterns on a hospital emergency scenario. We show via a human-subject study that a design process based on our patterns is helpful for participants who are inexperienced in conceptual modeling and norms. We provide an agent-based environment to simulate the hospital emergency scenario to compare STS specifications (including participant solutions from the human-subject study) with metrics indicating social welfare and norm compliance, and other domain dependent metrics

    Comodo: Collaborative Monitoring of Commitment Delegations

    Get PDF
    Understanding accountability in contract violations, e.g., whom is accountable for what, is a tedious, time-consuming, and costly task for human decision-making, especially when contractual responsibilities are delegated among parties. Intelligent software agents equipped with expert capabilities such as monitoring and diagnosis help save time and improve accuracy of diagnosis by formal reasoning upon electronic contracts. Such contracts are represented as commitment norms, a well studied artifact in multi-agent systems, which provide semantics for agent interactions. Due to the open and heterogeneous nature of multi-agent systems, commitments are often violated. When a commitment is violated, e.g., an exception occurs, agents need to collaborate to understand what went wrong and which agent is responsible. We propose Comodo: a framework for monitoring commitment delegations and detecting violations. We define a complete set of possible rational delegation schemes for commitments, identifying for each combination of delegations what critical situations may lead to an improper delegation and potentially to a commitment violation. Comodo provides a sound and complete distributed reasoning procedure that is able to find all improper delegations of a given commitment. We provide the complete implementation of Comodo using the Reactive Event Calculus, and present an e-commerce case study to demonstrate its workings. Due to its generic nature, we discuss the application of our approach to other distributed diagnosis problems in emergency healthcare, Internet of Things and smart environments, and security, privacy, and accountability in the context of socio-technical system
    corecore