244 research outputs found

    Analysis of various steady states and transient phenomena in digital maps : foundation for theory construction and engineering applications

    Get PDF
    研究成果の概要 (和文) : デジタルマップ(Dmap)の解析と実装に関して以下のような成果を得た。まず、周期軌道の豊富さと安定性に関する特徴量を用いた解析法を考案し、典型例を解析し、現象の基本的な分類を行った。次に、簡素な進化計算によって所望のDmapを合成するアルゴリズムを考案した。アルゴリズムの個体はDmapに対応し、個体数は柔軟に変化する。典型的な例題によってアルゴリズムの妥当性を確認した。さらに、Dmapをデジタルスパイキングニューロン(DSN)によって実現する方法を構築した。DSNは2つのシフトレジスタと配線回路で構成され、様々なスパイク列を生成する。FPGAによる簡素な試作回路を構成し、動作を確認した。研究成果の概要 (英文) : We have studied analysis and implementation of digital maps (Dmaps). The major results are as the following. First, we have developed an analysis method based on two feature quantities. The first quantity characterizes plentifulness of periodic orbits and the second quantity characterizes stability of the periodic orbits. Applying the method, typical Dmap examples are analyzed and basic phenomena are classified. Second, we have developed a simple evolutionary algorithm to realize a desired Dmap. The algorithm uses individuals each of which corresponds to one Dmap and the number of individuals can vary flexibly. Using typical example problems, the algorithm efficiency is confirmed. Third, we have developed a realization method of Dmaps by means of digital spiking neurons (DSNs). The DSN consists of two shift registers connected by a wiring circuit and can generate various periodic spike-trains. Presenting a FPGA based simple test circuit, the DSN dynamics is confirmed

    Boosting Throughput and Efficiency of Hardware Spiking Neural Accelerators using Time Compression Supporting Multiple Spike Codes

    Full text link
    Spiking neural networks (SNNs) are the third generation of neural networks and can explore both rate and temporal coding for energy-efficient event-driven computation. However, the decision accuracy of existing SNN designs is contingent upon processing a large number of spikes over a long period. Nevertheless, the switching power of SNN hardware accelerators is proportional to the number of spikes processed while the length of spike trains limits throughput and static power efficiency. This paper presents the first study on developing temporal compression to significantly boost throughput and reduce energy dissipation of digital hardware SNN accelerators while being applicable to multiple spike codes. The proposed compression architectures consist of low-cost input spike compression units, novel input-and-output-weighted spiking neurons, and reconfigurable time constant scaling to support large and flexible time compression ratios. Our compression architectures can be transparently applied to any given pre-designed SNNs employing either rate or temporal codes while incurring minimal modification of the neural models, learning algorithms, and hardware design. Using spiking speech and image recognition datasets, we demonstrate the feasibility of supporting large time compression ratios of up to 16x, delivering up to 15.93x, 13.88x, and 86.21x improvements in throughput, energy dissipation, the tradeoffs between hardware area, runtime, energy, and classification accuracy, respectively based on different spike codes on a Xilinx Zynq-7000 FPGA. These results are achieved while incurring little extra hardware overhead

    Inference and Learning in Spiking Neural Networks for Neuromorphic Systems

    Get PDF
    Neuromorphic computing is a computing field that takes inspiration from the biological and physical characteristics of the neocortex system to motivate a new paradigm of highly parallel and distributed computing to take on the demands of the ever-increasing scale and computational complexity of machine intelligence esp. in energy-limited systems such as Edge devices, Internet-of-Things (IOT), and cyber physical systems (CPS). Spiking neural network (SNN) is often studied together with neuromorphic computing as the underlying computational model . Similar to the biological neural system, SNN is an inherently dynamic and stateful network. The state and output of SNN do not only dependent on the current input, but also dependent on the history information. Another distinct property of SNN is that the information is represented, transmitted, and processed as discrete spike events, also referred to as action potentials. All the processing happens in the neurons such that the computation itself is massively distributed and parallel. This enables low power information transmission and processing. However, it is inefficient to implement SNNs on traditional Von Neumann architecture due to the performance gap between memory and processor. This has led to the advent of energy-efficient large-scale neuromorphic hardware such as IBM\u27s TrueNorth and Intel\u27s Loihi that enables low power implementation of large-scale neural networks for real-time applications. And although spiking networks have theoretically been shown to have Turing-equivalent computing power, it remains a challenge to train deep SNNs; the threshold functions that generate spikes are discontinuous, so they do not have derivatives and cannot directly utilize gradient-based optimization algorithms for training. Biologically plausible learning mechanism spike-timing-dependent plasticity (STDP) and its variants are local in synapses and time but are unstable during training and difficult to train multi-layer SNNs. To better exploit the energy-saving features such as spike domain representation and stochastic computing provided by SNNs in neuromorphic hardware, and to address the hardware limitations such as limited data precision and neuron fan-in/fan-out constraints, it is necessary to re-design a neural network including its structure and computing. Our work focuses on low-level (activations, weights) and high-level (alternative learning algorithms) redesign techniques to enable inference and learning with SNNs in neuromorphic hardware. First, we focused on transforming a trained artificial neural network (ANN) to a form that is suitable for neuromorphic hardware implementation. Here, we tackle transforming Long Short-Term Memory (LSTM), a version of recurrent neural network (RNN) which includes recurrent connectivity to enable learning long temporal patterns. This is specifically a difficult challenge due to the inherent nature of RNNs and SNNs; the recurrent connectivity in RNNs induces temporal dynamics which require synchronicity, especially with the added complexity of LSTMs; and SNNs are asynchronous in nature. In addition, the constraints of the neuromorphic hardware provided a massive challenge for this realization. Thus, in this work, we invented a store-and-release circuit using integrate-and-fire neurons which allows the synchronization and then developed modules using that circuit to replicate various parts of the LSTM. These modules enabled implementation of LSTMs with spiking neurons on IBM\u27s TrueNorth Neurosynaptic processor. This is the first work to realize such LSTM networks utilizing spiking neurons and implement on a neuromorphic hardware. This opens avenues for the use of neuromorphic hardware in applications involving temporal patterns. Moving from mapping a pretrained ANN, we work on training networks on the neuromorphic hardware. Here, we first looked at the biologically plausible learning algorithm called STDP which is a Hebbian learning rule for learning without supervision. Simplified computational interpretations of STDP is either unstable and/or complex such that it is costly to implement on hardware. Thus, in this work, we proposed a stable version of STDP and applied intentional approximations for low-cost hardware implementation called Quantized 2-Power Shift (Q2PS) rule. With this version, we performed both unsupervised learning for feature extraction and supervised learning for classification in a multilayer SNN to achieve comparable to better accuracy on MNIST dataset compared to manually labelled two-layered networks. Next, we approached training multilayer SNNs on a neuromorphic hardware with backpropagation, a gradient-based optimization algorithm that forms the backbone of deep neural networks (DNN). Although STDP is biologically plausible, its not as robust for learning deep networks as backpropagation is for DNNs. However, backpropagation is not biologically plausible and not suitable to be directly applied to SNNs, neither can it be implemented on a neuromorphic hardware. Thus, in the first part of this work, we devise a set of approximations to transform backprogation to the spike domain such that it is suitable for SNNs. After the set of approximations, we adapted the connectivity and weight update rule in backpropagation to enable learning solely based on the locally available information such that it resembled a rate-based STDP algorithm. We called this Error-Modulated STDP (EMSTDP). In the next part of this work, we implemented EMSTDP on Intel\u27s Loihi neuromorphic chip to realize online in-hardware supervised learning of deep SNNs. This is the first realization of a fully spike-based approximation of backpropagation algorithm implemented on a neuromorphic processor. This is the first step towards building an autonomous machine that learns continuously from its environment and experiences

    Inference And Learning In Spiking Neural Networks For Neuromorphic Systems

    Get PDF
    Neuromorphic computing is a computing field that takes inspiration from the biological and physical characteristics of the neocortex system to motivate a new paradigm of highly parallel and distributed computing to take on the demands of the ever-increasing scale and computational complexity of machine intelligence esp. in energy-limited systems such as Edge devices, Internet-of-Things (IOT), and cyber physical systems (CPS). Spiking neural network (SNN) is often studied together with neuromorphic computing as the underlying computational model . Similar to the biological neural system, SNN is an inherently dynamic and stateful network. The state and output of SNN do not only dependent on the current input, but also dependent on the history information. Another distinct property of SNN is that the information is represented, transmitted, and processed as discrete spike events, also referred to as action potentials. All the processing happens in the neurons such that the computation itself is massively distributed and parallel. This enables low power information transmission and processing. However, it is inefficient to implement SNNs on traditional Von Neumann architecture due to the performance gap between memory and processor. This has led to the advent of energy-efficient large-scale neuromorphic hardware such as IBM\u27s TrueNorth and Intel\u27s Loihi that enables low power implementation of large-scale neural networks for real-time applications. And although spiking networks have theoretically been shown to have Turing-equivalent computing power, it remains a challenge to train deep SNNs; the threshold functions that generate spikes are discontinuous, so they do not have derivatives and cannot directly utilize gradient-based optimization algorithms for training. Biologically plausible learning mechanism spike-timing-dependent plasticity (STDP) and its variants are local in synapses and time but are unstable during training and difficult to train multi-layer SNNs. To better exploit the energy-saving features such as spike domain representation and stochastic computing provided by SNNs in neuromorphic hardware, and to address the hardware limitations such as limited data precision and neuron fan-in/fan-out constraints, it is necessary to re-design a neural network including its structure and computing. Our work focuses on low-level (activations, weights) and high-level (alternative learning algorithms) redesign techniques to enable inference and learning with SNNs in neuromorphic hardware. First, we focused on transforming a trained artificial neural network (ANN) to a form that is suitable for neuromorphic hardware implementation. Here, we tackle transforming Long Short-Term Memory (LSTM), a version of recurrent neural network (RNN) which includes recurrent connectivity to enable learning long temporal patterns. This is specifically a difficult challenge due to the inherent nature of RNNs and SNNs; the recurrent connectivity in RNNs induces temporal dynamics which require synchronicity, especially with the added complexity of LSTMs; and SNNs are asynchronous in nature. In addition, the constraints of the neuromorphic hardware provided a massive challenge for this realization. Thus, in this work, we invented a store-and-release circuit using integrate-and-fire neurons which allows the synchronization and then developed modules using that circuit to replicate various parts of the LSTM. These modules enabled implementation of LSTMs with spiking neurons on IBM’s TrueNorth Neurosynaptic processor. This is the first work to realize such LSTM networks utilizing spiking neurons and implement on a neuromorphic hardware. This opens avenues for the use of neuromorphic hardware in applications involving temporal patterns. Moving from mapping a pretrained ANN, we work on training networks on the neuromorphic hardware. Here, we first looked at the biologically plausible learning algorithm called STDP which is a Hebbian learning rule for learning without supervision. Simplified computational interpretations of STDP is either unstable and/or complex such that it is costly to implement on hardware. Thus, in this work, we proposed a stable version of STDP and applied intentional approximations for low-cost hardware implementation called Quantized 2-Power Shift (Q2PS) rule. With this version, we performed both unsupervised learning for feature extraction and supervised learning for classification in a multilayer SNN to achieve comparable to better accuracy on MNIST dataset compared to manually labelled two-layered networks. Next, we approached training multilayer SNNs on a neuromorphic hardware with backpropagation, a gradient-based optimization algorithm that forms the backbone of deep neural networks (DNN). Although STDP is biologically plausible, its not as robust for learning deep networks as backpropagation is for DNNs. However, backpropagation is not biologically plausible and not suitable to be directly applied to SNNs, neither can it be implemented on a neuromorphic hardware. Thus, in the first part of this work, we devise a set of approximations to transform backprogation to the spike domain such that it is suitable for SNNs. After the set of approximations, we adapted the connectivity and weight update rule in backpropagation to enable learning solely based on the locally available information such that it resembled a rate-based STDP algorithm. We called this Error-Modulated STDP (EMSTDP). In the next part of this work, we implemented EMSTDP on Intel\u27s Loihi neuromorphic chip to realize online in-hardware supervised learning of deep SNNs. This is the first realization of a fully spike-based approximation of backpropagation algorithm implemented on a neuromorphic processor. This is the first step towards building an autonomous machine that learns continuously from its environment and experiences

    Bio-inspired learning and hardware acceleration with emerging memories

    Get PDF
    Machine Learning has permeated many aspects of engineering, ranging from the Internet of Things (IoT) applications to big data analytics. While computing resources available to implement these algorithms have become more powerful, both in terms of the complexity of problems that can be solved and the overall computing speed, the huge energy costs involved remains a significant challenge. The human brain, which has evolved over millions of years, is widely accepted as the most efficient control and cognitive processing platform. Neuro-biological studies have established that information processing in the human brain relies on impulse like signals emitted by neurons called action potentials. Motivated by these facts, the Spiking Neural Networks (SNNs), which are a bio-plausible version of neural networks have been proposed as an alternative computing paradigm where the timing of spikes generated by artificial neurons is central to its learning and inference capabilities. This dissertation demonstrates the computational power of the SNNs using conventional CMOS and emerging nanoscale hardware platforms. The first half of this dissertation presents an SNN architecture which is trained using a supervised spike-based learning algorithm for the handwritten digit classification problem. This network achieves an accuracy of 98.17% on the MNIST test data-set, with about 4X fewer parameters compared to the state-of-the-art neural networks achieving over 99% accuracy. In addition, a scheme for parallelizing and speeding up the SNN simulation on a GPU platform is presented. The second half of this dissertation presents an optimal hardware design for accelerating SNN inference and training with SRAM (Static Random Access Memory) and nanoscale non-volatile memory (NVM) crossbar arrays. Three prominent NVM devices are studied for realizing hardware accelerators for SNNs: Phase Change Memory (PCM), Spin Transfer Torque RAM (STT-RAM) and Resistive RAM (RRAM). The analysis shows that a spike-based inference engine with crossbar arrays of STT-RAM bit-cells is 2X and 5X more efficient compared to PCM and RRAM memories, respectively. Furthermore, the STT-RAM design has nearly 6X higher throughput per unit Watt per unit area than that of an equivalent SRAM-based (Static Random Access Memory) design. A hardware accelerator with on-chip learning on an STT-RAM memory array is also designed, requiring 1616 bits of floating-point synaptic weight precision to reach the baseline SNN algorithmic performance on the MNIST dataset. The complete design with STT-RAM crossbar array achieves nearly 20X higher throughput per unit Watt per unit mm^2 than an equivalent design with SRAM memory. In summary, this work demonstrates the potential of spike-based neuromorphic computing algorithms and its efficient realization in hardware based on conventional CMOS as well as emerging technologies. The schemes presented here can be further extended to design spike-based systems that can be ubiquitously deployed for energy and memory constrained edge computing applications

    Dynamical Systems in Spiking Neuromorphic Hardware

    Get PDF
    Dynamical systems are universal computers. They can perceive stimuli, remember, learn from feedback, plan sequences of actions, and coordinate complex behavioural responses. The Neural Engineering Framework (NEF) provides a general recipe to formulate models of such systems as coupled sets of nonlinear differential equations and compile them onto recurrently connected spiking neural networks – akin to a programming language for spiking models of computation. The Nengo software ecosystem supports the NEF and compiles such models onto neuromorphic hardware. In this thesis, we analyze the theory driving the success of the NEF, and expose several core principles underpinning its correctness, scalability, completeness, robustness, and extensibility. We also derive novel theoretical extensions to the framework that enable it to far more effectively leverage a wide variety of dynamics in digital hardware, and to exploit the device-level physics in analog hardware. At the same time, we propose a novel set of spiking algorithms that recruit an optimal nonlinear encoding of time, which we call the Delay Network (DN). Backpropagation across stacked layers of DNs dramatically outperforms stacked Long Short-Term Memory (LSTM) networks—a state-of-the-art deep recurrent architecture—in accuracy and training time, on a continuous-time memory task, and a chaotic time-series prediction benchmark. The basic component of this network is shown to function on state-of-the-art spiking neuromorphic hardware including Braindrop and Loihi. This implementation approaches the energy-efficiency of the human brain in the former case, and the precision of conventional computation in the latter case

    Digital Implementation of Bio-Inspired Spiking Neuronal Networks

    Get PDF
    Spiking Neural Network as the third generation of artificial neural networks offers a promising solution for future computing, prosthesis, robotic and image processing applications. This thesis introduces digital designs and implementations of building blocks of a Spiking Neural Networks (SNNs) including neurons, learning rule, and small networks of neurons in the form of a Central Pattern Generator (CPG) which can be used as a module in control part of a bio-inspired robot. The circuits have been developed using Verilog Hardware Description Language (VHDL) and simulated through Modelsim and compiled and synthesised by Altera Qurtus Prime software for FPGA devices. Astrocyte as one of the brain cells controls synaptic activity between neurons by providing feedback to neurons. A novel digital hardware is proposed for neuron-synapseastrocyte network based on the biological Adaptive Exponential (AdEx) neuron and Postnov astrocyte cell model. The network can be used for implementation of large scale spiking neural networks. Synthesis of the designed circuits shows that the designed astrocyte circuit is able to imitate its biological model and regulate the synapse transmission, successfully. In addition, synthesis results confirms that the proposed design uses less than 1% of available resources of a VIRTEX II FPGA which saves up to 4.4% of FPGA resources in comparison to other designs. Learning rule is an essential part of every neural network including SNN. In an SNN, a special type of learning called Spike Timing Dependent Plasticity (STDP) is used to modify the connection strength between the spiking neurons. A pair-based STDP (PSTDP) works on pairs of spikes while a Triplet-based STDP (TSTDP) works on triplets of spikes to modify the synaptic weights. A low cost, accurate, and configurable digital architectures are proposed for PSTDP and TSTDP learning models. The proposed circuits have been compared with the state of the art methods like Lookup Table (LUT), and Piecewise Linear approximation (PWL). The circuits can be employed in a large-scale SNN implementation due to their compactness and configurability. Most of the neuron models represented in the literature are introduced to model the behavior of a single neuron. Since there is a large number of neurons in the brain, a population-based model can be helpful in better understanding of the brain functionality, implementing cognitive tasks and studying the brain diseases. Gaussian Wilson-Cowan model as one of the population-based models represents neuronal activity in the neocortex region of the brain. A digital model is proposed for the GaussianWilson-Cowan and examined in terms of dynamical and timing behavior. The evaluation indicates that the proposed model is able to generate the dynamical behavior as the original model is capable of. Digital architectures are implemented on an Altera FPGA board. Experimental results show that the proposed circuits take maximum 2% of the resources of a Stratix Altera board. In addition, static timing analysis indicates that the circuits can work in a maximum frequency of 244 MHz

    Neuromorphic nanophotonic systems for artificial intelligence

    Get PDF
    Over the last decade, we have witnessed an astonishing pace of development in the field of artificial intelligence (AI), followed by proliferation of AI algorithms into virtually every domain of our society. While modern AI models boast impressive performance, they also require massive amounts of energy and resources for operation. This is further fuelling the research into AI-specific, optimised computing hardware. At the same time, the remarkable energy efficiency of the brain brings an interesting question: Can we further borrow from the working principles of biological intelligence to realise a more efficient artificial intelligence? This can be considered as the main research question in the field of neuromorphic engineering. Thanks to the developments in AI and recent advancements in the field of photonics and photonic integration, research into light-powered implementations of neuromorphic hardware has recently experienced a significant uptick of interest. In such hardware, the aim is to seize some of the highly desirable properties of photonics not just for communication, but also to perform computation. Neurons in the brain frequently process information (compute) and communicate using action potentials, which are brief voltage spikes that encode information in the temporal domain. Similar dynamical behaviour can be elicited in some photonic devices, at speeds multiple orders of magnitude higher. Such devices with the capability of neuron-like spiking are of significant research interest for the field of neuromorphic photonics. Two distinct types of such excitable, spiking systems operating with optical signals are studied and investigated in this thesis. First, a vertical cavity surface emitting laser (VCSEL) can be operated under a specific set of conditions to realise a high-speed, all-optical excitable photonic neuron that operates at standard telecom wavelengths. The photonic VCSEL-neuron was dynamically characterised and various information encoding mechanisms were studied in this device. In particular, a spiking rate-coding regime of operation was experimentally demonstrated, and its viability for performing spiking domain conversion of digital images was explored. Furthermore, for the first time, a joint architecture utilising a VCSEL-neuron coupled to a photonic integrated circuit (PIC) silicon microring weight bank was experimentally demonstrated in two different functional layouts. Second, an optoelectronic (O/E/O) circuit based upon a resonant tunnelling diode (RTD) was introduced. Two different types of RTD devices were studied experimentally: a higher output power, µ-scale RTD that was RF coupled to an active photodetector and a VCSEL (this layout is referred to as a PRL node); and a simplified, photosensitive RTD with nanoscale injector that was RF coupled to a VCSEL (referred to as a nanopRL node). Hallmark excitable behaviours were studied in both devices, including excitability thresholding and refractory periods. Furthermore, a more exotic resonate and-fire dynamical behaviour was also reported in the nano-pRL device. Finally, a modular numerical model of the RTD was introduced, and various information processing methods were demonstrated using both a single RTD spiking node, as well as a perceptron-type spiking neural network with physical models of optoelectronic RTD nodes serving as artificial spiking neurons.Over the last decade, we have witnessed an astonishing pace of development in the field of artificial intelligence (AI), followed by proliferation of AI algorithms into virtually every domain of our society. While modern AI models boast impressive performance, they also require massive amounts of energy and resources for operation. This is further fuelling the research into AI-specific, optimised computing hardware. At the same time, the remarkable energy efficiency of the brain brings an interesting question: Can we further borrow from the working principles of biological intelligence to realise a more efficient artificial intelligence? This can be considered as the main research question in the field of neuromorphic engineering. Thanks to the developments in AI and recent advancements in the field of photonics and photonic integration, research into light-powered implementations of neuromorphic hardware has recently experienced a significant uptick of interest. In such hardware, the aim is to seize some of the highly desirable properties of photonics not just for communication, but also to perform computation. Neurons in the brain frequently process information (compute) and communicate using action potentials, which are brief voltage spikes that encode information in the temporal domain. Similar dynamical behaviour can be elicited in some photonic devices, at speeds multiple orders of magnitude higher. Such devices with the capability of neuron-like spiking are of significant research interest for the field of neuromorphic photonics. Two distinct types of such excitable, spiking systems operating with optical signals are studied and investigated in this thesis. First, a vertical cavity surface emitting laser (VCSEL) can be operated under a specific set of conditions to realise a high-speed, all-optical excitable photonic neuron that operates at standard telecom wavelengths. The photonic VCSEL-neuron was dynamically characterised and various information encoding mechanisms were studied in this device. In particular, a spiking rate-coding regime of operation was experimentally demonstrated, and its viability for performing spiking domain conversion of digital images was explored. Furthermore, for the first time, a joint architecture utilising a VCSEL-neuron coupled to a photonic integrated circuit (PIC) silicon microring weight bank was experimentally demonstrated in two different functional layouts. Second, an optoelectronic (O/E/O) circuit based upon a resonant tunnelling diode (RTD) was introduced. Two different types of RTD devices were studied experimentally: a higher output power, µ-scale RTD that was RF coupled to an active photodetector and a VCSEL (this layout is referred to as a PRL node); and a simplified, photosensitive RTD with nanoscale injector that was RF coupled to a VCSEL (referred to as a nanopRL node). Hallmark excitable behaviours were studied in both devices, including excitability thresholding and refractory periods. Furthermore, a more exotic resonate and-fire dynamical behaviour was also reported in the nano-pRL device. Finally, a modular numerical model of the RTD was introduced, and various information processing methods were demonstrated using both a single RTD spiking node, as well as a perceptron-type spiking neural network with physical models of optoelectronic RTD nodes serving as artificial spiking neurons
    corecore