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Abstract

Neuromorphic computing is a computing field that takes inspiration from the biolog-

ical and physical characteristics of the neocortex system to motivate a new paradigm

of highly parallel and distributed computing to take on the demands of the ever-

increasing scale and computational complexity of machine intelligence esp. in energy-

limited systems such as Edge devices, Internet-of-Things (IOT), and cyber physical

systems (CPS). Spiking neural network (SNN) is often studied together with neuro-

morphic computing as the underlying computational model . Similar to the biological

neural system, SNN is an inherently dynamic and stateful network. The state and

output of SNN do not only dependent on the current input, but also dependent on

the history information. Another distinct property of SNN is that the information is

represented, transmitted, and processed as discrete spike events, also referred to as

action potentials. All the processing happens in the neurons such that the computa-

tion itself is massively distributed and parallel. This enables low power information

transmission and processing.

However, it is inefficient to implement SNNs on traditional Von Neumann archi-

tecture due to the performance gap between memory and processor. This has led

to the advent of energy-efficient large-scale neuromorphic hardware such as IBM’s

TrueNorth and Intel’s Loihi that enables low power implementation of large-scale

neural networks for real-time applications. And although spiking networks have

theoretically been shown to have Turing-equivalent computing power, it remains a

challenge to train deep SNNs; the threshold functions that generate spikes are dis-

continuous, so they do not have derivatives and cannot directly utilize gradient-based



optimization algorithms for training. Biologically plausible learning mechanism spike-

timing-dependent plasticity (STDP) and its variants are local in synapses and time

but are unstable during training and difficult to train multi-layer SNNs.

To better exploit the energy-saving features such as spike domain representation

and stochastic computing provided by SNNs in neuromorphic hardware, and to ad-

dress the hardware limitations such as limited data precision and neuron fan-in/fan-

out constraints, it is necessary to re-design a neural network including its structure

and computing. Our work focuses on low-level (activations, weights) and high-level

(alternative learning algorithms) redesign techniques to enable inference and learning

with SNNs in neuromorphic hardware.

First, we focused on transforming a trained artificial neural network (ANN) to

a form that is suitable for neuromorphic hardware implementation. Here, we tackle

transforming Long Short-Term Memory (LSTM), a version of recurrent neural net-

work (RNN) which includes recurrent connectivity to enable learning long temporal

patterns. This is specifically a difficult challenge due to the inherent nature of RNNs

and SNNs; the recurrent connectivity in RNNs induces temporal dynamics which re-

quire synchronicity, especially with the added complexity of LSTMs; and SNNs are

asynchronous in nature. In addition, the constraints of the neuromorphic hardware

provided a massive challenge for this realization. Thus, in this work, we invented a

store-and-release circuit using integrate-and-fire neurons which allows the synchro-

nization and then developed modules using that circuit to replicate various parts

of the LSTM. These modules enabled implementation of LSTMs with spiking neu-

rons on IBM’s TrueNorth Neurosynaptic processor. This is the first work to realize

such LSTM networks utilizing spiking neurons and implement on a neuromorphic

hardware. This opens avenues for the use of neuromorphic hardware in applications

involving temporal patterns.

Moving from mapping a pretrained ANN, we work on training networks on the
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neuromorphic hardware. Here, we first looked at the biologically plausible learning

algorithm called STDP which is a Hebbian learning rule for learning without super-

vision. Simplified computational interpretations of STDP is either unstable and/or

complex such that it is costly to implement on hardware. Thus, in this work, we pro-

posed a stable version of STDP and applied intentional approximations for low-cost

hardware implementation called Quantized 2-Power Shift (Q2PS) rule. With this

version, we performed both unsupervised learning for feature extraction and super-

vised learning for classification in a multilayer SNN to achieve comparable to better

accuracy on MNIST dataset compared to manually labelled two-layered networks.

Next, we approached training multilayer SNNs on a neuromorphic hardware with

backpropagation, a gradient-based optimization algorithm that forms the backbone

of deep neural networks (DNN). Although STDP is biologically plausible, its not

as robust for learning deep networks as backpropagation is for DNNs. However,

backpropagation is not biologically plausible and not suitable to be directly applied

to SNNs, neither can it be implemented on a neuromorphic hardware. Thus, in the

first part of this work, we devise a set of approximations to transform backprogation to

the spike domain such that it is suitable for SNNs. After the set of approximations,

we adapted the connectivity and weight update rule in backpropagation to enable

learning solely based on the locally available information such that it resembled a

rate-based STDP algorithm. We called this Error-Modulated STDP (EMSTDP). In

the next part of this work, we implemented EMSTDP on Intel’s Loihi neuromorphic

chip to realize online in-hardware supervised learning of deep SNNs. This is the

first realization of a fully spike-based approximation of backpropagation algorithm

implemented on a neuromorphic processor. This is the first step towards building an

autonomous machine that learns continuously from its environment and experiences.
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Chapter 1

Introduction

1.1 Outline and Main contributions

The ever-increasing scale and computational complexity of machine intelligence have

been posing challenges on the traditional Von Neumann architecture and motivates

a new paradigm of highly parallel and distributed computing inspired by biological

neural systems, namely neuromorphic computing which aims to learn from the bio-

logical and physical characteristics of the neocortex system to provide energy efficient

solutions to state-of-the-art machine intelligence problems.

Spiking neural network (SNN) is often studied together with neuromorphic com-

puting as the underlying computational model. SNN is an inherently dynamic and

stateful network and has more biologically plausible features than conventional arti-

ficial neural networks (ANNs) [1]. One of the most distinct differences of SNN from

ANN is the ability to process temporal information. The state and output of SNN do

not only dependent on the current input, but also dependent on the history informa-

tion. Another distinct property of SNN is that the information is represented, trans-

mitted, and processed as discrete spike events, also referred to as action potentials

[2]. Spikes are electrical pulses in biological neural systems. In SNN mathematical
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models, spike is usually represented by Dirac Delta functions. All the processing hap-

pens in the neurons such the computation itself is massively distributed and parallel.

Communication through spikes and massively distributed computation in neurons

enables low power information transmission and processing.

However, due to the performance gap between memory and processor, it is inef-

ficient to implement SNNs on traditional Von Neumann architecture. This has led

to the advent of energy-efficient large-scale neuromorphic hardware that enables low

power implementation of large-scale neural networks for real-time applications. One

of the examples is IBM’s Neurosynaptic Processor, “TrueNorth”. Operating in the

spiking domain, TrueNorth has achieved close to state-of-the-art inference results in

various pattern recognition tasks [3] with very high energy efficiency. Converting

pretrained networks to an SNN has also produced good results in pattern recognition

[4] on platforms other than TrueNorth as well. TrueNorth has no facility for train-

ing SNNs in-hardware. Loihi [5] is a digital neuromorphic chip recently developed

by Intel which provides a programmable microcode learning engine for on-chip SNN

training.

Although spiking networks have theoretically been shown to have Turing-equivalent

computing power [6], it remains a challenge to train deep SNNs; the threshold func-

tions that generate spikes are discontinuous, so they do not have derivatives and

cannot directly utilize gradient-based optimization algorithms for training. Biologi-

cally plausible learning mechanism spike-timing-dependent plasticity (STDP) [7] and

its variants are local in synapse and time, thus the plasticity of the synaptic weights

depend on the relative timings of the pre-and post-synaptic spikes. STDP is also

unstable during training. Thus, it is difficult to train multilayer SNNs by utilizing

only the local information.

To better exploit the energy-saving features such as spike domain representation

and stochastic computing provided by SNNs in neuromorphic hardware, and to ad-

2



dress the hardware limitations such as limited data precision and neuron fan-in/fan-

out constraints, it is necessary to re-design a neural network including its structure

and computing. Our work focuses on low-level (activations, weights) and high-level

(alternative learning algorithms) redesign techniques to enable inference and learning

with SNNs in neuromorphic hardware. The former approach transforms a trained

artificial neural network (ANN) to a form that suitable for neuromorphic hardware

implementation, and the later approach adopts neural networks with innovative struc-

tures and/or learning algorithms that are more biologically plausible.

In this thesis, we first review the literature surrounding SNNs including neuron

and synapse models along with spike encoding and learning with spikes. Then, we

will introduce neuromorphic hardware along with briefly reviewing two popular neu-

romorphic systems; TrueNorth and Loihi. The rest of the chapters are ordered from

inference to learning with SNNs and in the neuromorphic hardware.

As mentioned previously, we start with a chapter dealing with inference with SNNs

in neuromorphic hardware, mainly TrueNorth.

In Chapter 2 we present a design flow that maps a special case of recurrent net-

works called Long Short-Term Memory (LSTM) onto a spike-based platform. The

framework utilizes various approximation techniques; activation discretization, weight

quantization, scaling, and rounding; spiking neural circuits that implement complex

gating mechanisms, and a store-and-release technique to enable neuron synchroniza-

tion and faithful storage. While the presented techniques can be applied to map

LSTM to any Spiking Neural Network (SNN) simulator/emulator, here we choose

the TrueNorth chip as the target platform by adhering to its hardware constraints.

Three LSTM applications, parity check, Extended Reber Grammar and Question

classification, are evaluated. The tradeoffs among accuracy, performance, and energy

tradeoffs achieved on TrueNorth are demonstrated. This is compared to the perfor-

mance on an SNN platform without hardware constraints, which represents the upper

3



bound of the achievable accuracy.

In the next chapters we discuss learning with SNNs. In Chapter 3 we present

a low-cost, simplified, yet stable STDP rule for layer-wise unsupervised and super-

vised training of a multilayer feed-forward SNN. We propose to approximate Bayesian

neurons using Stochastic Integrate and Fire (SIF) neuron model and introduce a su-

pervised learning approach using teacher neurons to train the classification layer with

one neuron per class. A SNN is trained for classification of handwritten digits with

multiple layers of spiking neurons, including both the feature extraction and classi-

fication layer, using the proposed STDP rule. Our method achieves comparable to

better accuracy on MNIST dataset than manually labelled two-layer networks for the

same sized hidden layer. We also analyze the parameter space to provide rationale

for parameter fine-tuning and provide additional methods to improve noise resilience

and input intensity variations. We further propose a Quantized 2-Power Shift (Q2PS)

STDP rule, which reduces the implementation cost of digital hardware while achieves

comparable performance.

In Chapter 4, we present an approximation of the backpropagation algorithm com-

pletely with spiking neurons and extend it to a local weight update rule which resem-

bles a biologically plausible learning rule spike-timing-dependent plasticity (STDP).

This will enable error propagation through spiking neurons for a more biologically

plausible and neuromorphic implementation friendly backpropagation algorithm for

SNNs. We test the proposed algorithm on various traditional and nontraditional

benchmarks with competitive results.

In Chapter 5, we present a spike-based backpropagation algorithm with biologi-

cal plausible local update rules and adapt it to fit the constraint in a neuromorphic

hardware. The algorithm is implemented on Intel’s Loihi chip enabling low power

in-hardware supervised online learning of multilayered SNNs for mobile applications.

We test this implementation on MNIST, Fashion-MNIST, CIFAR-10, and MSTAR
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Figure 1.1: Responses of LIF and IF spiking neurons

datasets with promising performance and energy efficiency, and demonstrate the pos-

sibility of incremental online learning with the implementation.

Finally, in Chapter 6 of this thesis, we summarize all the above-mentioned works

and discuss future research directions.

1.2 Spiking Neural Networks

Biological neurons communicate with each other by generating and propagating elec-

trical pulses called spikes [8, 9]. At the high abstraction level, all spiking models

share the following common properties inspired by a biological neuron: (1) they pro-

cess information coming from many inputs and produce single or multiple spikes; (2)

the probability of spike generation is increased by excitatory inputs and decreased by

inhibitory inputs; (3) at least one state variable is used to characterize their dynamics

and the model is supposed to generate one or more spikes when the internal variables

of the model reach a certain state.

A sequence of the spike events, i.e., a spike train, can be described as the following

S (t) =
∑
f

δ
(
t− tf

)
(1.1)
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where f = 1, 2, ... is the label of the spike and δ (.)is a Dirac function with

δ (t) 6= 0for t=0 and
∫∞
−∞ δ (t) dt = 1. The basic assumption underlying most spiking

neuron models is that it is the timing of spikes rather than the specific shape of the

spikes that carries neural information [10].

1.3 Neuron Models

The existing neuron models can mainly be categorized into two groups, conductance-

based models and spike-based models. Conductance-based models are based on an

equivalent circuit representation of a cell membrane as first put forth by Hodgkin

and Huxley [11]. These models are more biologically plausible and are used for

computational neuroscience purposes. Spike-based models are more efficient in terms

of computational complexity and thus are used in spike-based computational systems.

Among the spike-based models, the IF and LIF models [10] are the most widely used.

Both models abstract biological neurons as point dynamical systems. The dynamics

of the LIF unit is described by the following formula:

C
du

dt
(t) = − 1

R
u(t) +

(
io(t) +

∑
wjij(t)

)
(1.2)

where u(t) is the membrane potential, C is the membrane capacitance, R is the

input resistance, io(t) is the external current driving the neural state, ij(t) is the

input current from the j -th synaptic input, and wj represents the strength of the j -th

synapse. When R → ∞, Eq. 1.2 gives the IF model. In both IF and LIF models,

a neuron is supposed to fire a spike, whenever the membrane potential ureaches a

certain value υcalled a firing threshold. Immediately after a spike the neuron state is

reset to a new value ures<υ and hold at that level for the time interval representing

the refractory period. The responses of IF and LIF neurons for incoming spike trains

are shown in Figure 1.1.
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The Spike Response Model (SRM) model interprets the neuron dynamics in Eq.

1.2 as the convolution of an impulse response of a filter with the input spike train.

It expresses the membrane potential at time t as an integral over the past input and

kernel responses. A typical SRM model is defined as the following:

V (t) =
N∑
i=1

wi
∑
tji<t

K
(
t− tji

)
− Vth

∑
tjspike

h
(
t− tjspike

)
, (1.3)

where V (t) is the membrane potential, K(t) and h(t) are two convolution kernels

associated to synaptic dynamics and membrane potential reset events. Each input

spike at time tji convolves with the kernel K(t), which incurs a voltage called postsy-

naptic potential (PSP). When V (t) exceeds the threshold Vth, the neuron generates

a spike output indicated by the spike time tjspike.

1.4 Synapse Models

Neurons connect and communicate with one another through specialized junctions

called synapses [12, 13]. The arrival of a presynaptic spike at a synapse triggers an

input signal into the postsynaptic neuron. This signal corresponds to the synaptic

electric current flowing into the biological neuron [9]. It causes a change in the neuron

membrane potential, which is referred to as postsynaptic potential (PSP). In a general

form, the time course of PSP can be described by the convolution of the presynaptic

spike train S(t) and a kernel function K(t) scaled by a weight coefficient w as the

following:

PSP (t) = w

∫ ∞
0

S (s− t)K (s) ds = w
∑
tj<t

K
(
t− tj

)
(1.4)

K(t) can be an exponential, dual exponential, or an alpha kernel. The simplest

kernel is an ideal all-pass lossless filter.
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1.5 Neural Coding and spike timing

Neural coding refers to the way in which information is represented by discrete spikes.

Neural coding is tightly coupled with the neuron model and determines the perfor-

mance of SNN and hardware implementation. Hence, it is an essential part of the

SNN. However, exactly how brain and sensory systems encode information has not

been fully discovered.

The most straightforward way is to represent a value by the number of spikes in

a unit time. This type of encoding is referred to as rate coding. It agrees with the

observation that the sensory nerves’ spike frequency increases as the input stimulus

intensity increases. Rate coding is widely adopted. To represent a large value requires

high spike frequency, which impairs energy efficiency, and may even pose a challenge

to neuromorphic chip design [14, 15, 16]. 3) Rate coding has quantization error.

When spikes are generated as stochastic events, there is also sampling error. These

errors make SNN less accurate.

There are various coding schemes that take spike timing into account. They are

referred to as temporal coding [17, 18, 19]. In such a coding scheme, the temporal

structure of the spike train can convey information.

1.6 Learning

The ability of synaptic connections to change their strength is referred to as synaptic

plasticity. This is considered the basic mechanism underlying learning and memory

in biological neural networks [20]. Various forms of synaptic plasticity co-exist. Some

are determined only by the history of presynaptic stimulation, independently of the

postsynaptic responses [21, 22, 23]. Others depend on the temporal order of pre- and

postsynaptic activity [7, 21, 24].

In general, synaptic potential is observed when presynaptic spikes precede post-
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synaptic spikes, as it indicates a causal relationship. The reversed order of spikes

induces synaptic depression. This phenomenon is called Spike-Timing-Dependent-

Plasticity (STDP). It can be used for unsupervised learning. A popular choice for

the STDP rule [25] for potentiation ∆w+ and depression ∆w− is given as:

∆w+ = +A+ exp (−∆t/τ+) for ∆t > 0

∆w− = −A− exp (+∆t/τ−) for ∆t < 0
(1.5)

where τ+ and τ− determine the ranges of pre- to postsynaptic interspike intervals

over which synaptic strengthening and weakening occur. A+ and A− determine the

maximum amount of synaptic modification. And ∆t is the time of postsynaptic spike

minus the time of the presynaptic spike.

A wide range of SNN algorithms that can learn temporal spike patterns employ

more biologically realistic LIF neuron models with alpha or dual-exponential synapses

[26, 27, 28, 29, 30]. In these models, the PSP decays exponentially over time, hence,

can be utilized as a metric to reflect temporal dependency. These type of neuron

does not simply accumulate weighted spikes as a membrane potential, instead, it

integrates weighted time-varying PSP, hence exhibiting complex temporal dynamic

behavior. Various STDP learning rules also rely on spike timing by updating the

weight based on traces of different forms. Those traces are similar as PSPs. They are

decaying state variables reflecting the temporal history of input and output spikes.

A pairwise STDP rule using traces [31] is given as:

∆w = A+x (t)Sx (t)− A−y (t)Sy (t) (1.6)

where x(t)and y(t)are the pre- and postsynaptic traces. Sx (t) =
∑

x δ (t− tx)and

Sy (t) =
∑

y δ (t− ty) are the pre- and postsynaptic spike trains.

The most straightforward way to implement supervised learning is to use Hebbian

Learning [32, 30]. Supervision is introduced in Hebbian learning by an additional
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’teaching’ signal that reinforces the postsynaptic neuron to fire at target times and to

remain silent at other times. The ’teaching’ signal is usually transmitted to the neuron

in the form of synaptic currents or as intracellularly injected currents. Recently, the

backpropagation algorithm has been approximated in various forms for SNNs for

supervised learning [3, 33, 34, 35, 36, 37].

1.7 Neuromorphic Hardwares

The concept of neuromorphic computing was first proposed by Carver Mead in the

1980s [38, 39, 40, 41]. The early works in this area focused at emulating the analog

behavior of neural systems. It is observed that biological systems can achieve many

orders of magnitude higher efficiency than digital systems when performing certain

cognitive tasks. [38] and [41] credit such advantage to the fundamental differences

between digital circuits and biological systems. Digital systems eliminate noise as

much as possible to guarantee bit-level accuracy, and the mathematical operations

are explicitly defined and implemented as Boolean functions. Rather than encod-

ing information as binary forms, the neural system utilizes analog quantities, such

as membrane potential, synapse current, etc., as computing primitives. Although

inherently noisy, neural systems are naturally adaptive, noise can be eliminated by

feedback or jointly processing multiple signals. The early works in neuromorphic

computing tried to bridge the gap between the lower level physical details of bio-

logical systems and the higher-level computational functionality. [38, 42] claim that,

due to its adaptability, neuromorphic systems are more resistant to noise and compo-

nent failure and have the potential to be more energy efficient. [41] suggest that the

basic operations of neural computational primitives such as conservation of charge,

amplification, exponentiation, integration, thresholding, etc., can be emulated by

physical processes in analog devices implemented using complementary metal-oxide-
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(a) (b) (c)

Figure 1.2: (a)Structural view (b)Functional view of a core (c) corelet [86]

semiconductor (CMOS) Very Large-Scale Integration (VLSI) technology.

The scope of neuromorphic computing has been expanding in the recent decade.

Now it includes but not limited to the following areas 1) applying digital, analog or

mixed-signal Application Specific Integrated Circuits (ASICs) to implement biological

neuron and synapse networks at different plausibility levels for machine intelligence

applications, 2) leveraging large-scale computing systems to emulate biological neu-

ral networks to facilitate the understanding of brain and cognition; and 3) utilizing

emerging materials and devices such as memristors, phase-changing materials, pho-

tonic circuits to model the analog behavior of neurons and synapse plasticity. In

our work, we mainly utilize digital ASICS thus, we will review two popular digital

neuromorphic systems; TrueNorth and Loihi.

1.7.1 TrueNorth

This work uses TrueNorth neurosynaptic processor as an example hardware platform

to discuss the mapping of SNN based LSTM. The TrueNorth processor is a highly

efficient, scalable, and flexible neuromorphic hardware. It consists of 4096 cores [43]

each with 256 neurons and 256 axons connected via 256x256 directed synaptic con-

nections, thus providing 1 million programmable neurons and 268 million configurable

synapses. The communication between those neurons is in the form of spike events
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represented as address event representation (AER). These spike events are sparse in

time. Since the active power is proportional to the firing activity, the event-driven

nature of the architecture gives very high energy efficiency. In the normal mode, the

membrane potential is processed, and spike events routed asynchronously inside the

chip within 1 ms timesteps called a tick. A spike generated by a neuron can target

any single axon on the chip. Figure 1.2a shows a structural view of a TrueNorth

core with axons as input and neurons as outputs and synapses linking them. This

representation is similar to a traditional neural network. Figure 1.2b shows a func-

tional view of a core as a crossbar, where horizontal lines are axons, cross points are

individually programmable synapses, vertical lines are neuron inputs, and triangles

are neurons. Spikes flow from axons via active synapses to neurons.

Truenorth’s neuron model is based on the classic leaky integrate-and-fire neuron

(LIF) with five basic operations: synaptic integration, leak integration, threshold

comparison, spike generation, and membrane potential reset. The membrane poten-

tial Vj(t) of the neuron j is updated according to these five operations as summarized

in Equations 1.7, 1.8 and 1.9.

Synaptic integration:

Vj (t) = Vj (t− 1) +
N−1∑
i=0

xi (t) si (1.7)

Leak integration:

Vj (t) = Vj (t)− λj (1.8)

Membrane potential reset:

Vj (t) ≥ αj, spike and Vj (t) = Rj (1.9)

This LIF neuron model is augmented by configurable and reproducible stochas-
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ticity [44]. Each individual neuron can be configured to have stochastic synaptic

inputs, leaks, and threshold to enable rich dynamics across population and time. The

neuron model allows for four leak modes that bias the internal state dynamics in

four different ways so that neurons can have radically different responses to identical

inputs. The leaks can be either positive or negative to let the membrane potential to

diverge away from or converge towards a resting potential. The neuron model also

provides two types of thresholds; deterministic and stochastic, so that neurons can

fire at different patterns even with the same accumulated membrane potential. It

has six reset modes to determine the membrane potential after firing, enabling a rich

finite-state transition behavior.

Exploiting the provided configurability, users can use TrueNorth neurons to imple-

ment a wide variety of computational functions, including arithmetic, control, data

generation, logic, memory, classical neuron behavior, signal processing, and prob-

abilistic computation. The programmable leakage and threshold give neurons the

capacity to support a variety of neural codes including rate, population, binary, and

time-to-spike coding. By composing multiple neurons together, an extremely rich and

diverse array of complex computations and behaviors from simpler library elements

can be synthesized. They were able to qualitatively replicate the 20 behaviors of the

Izhikevich dynamical neuron model using a small number of elementary neurons.

The synapses themselves are binary (1: connected, 0: disconnected). Each synapse

connected to a neuron in the crossbar is allocated a choice of four 8-bit signed weights.

The synaptic connections and their weights between axons and neurons are cap-

tured by a crossbar matrix at an abstract level where the weight of the corresponding

synapse in the crossbar is selected from 4 possible integers determined by the axon

type at each neuron. A Corelet [45] describes a network on the TrueNorth cores by

encapsulating all details except external inputs and outputs as shown in Figure 1.2c.

The creating, composing, and decomposing of corelets is done in an object-oriented
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Corelet Language in the programming paradigm for TrueNorth called Corelet Pro-

gramming Environment (CPE). Programming TrueNorth includes creating corelets

with specific neuron behaviors, synaptic connections, weights, and delays to achieve

the desired functionalities. Multiple corelets can be combined through their input

and output connectors.

1.7.2 Loihi

Loihi [5] is a digital neuromorphic chip recently developed by Intel. Loihi is fabricated

in Intel’s 14-nm process. The 128-neuromorphic cores implement 130,000 artificial

CUBA leaky-integrate-and-fire neurons and 130 million synapses. Loihi also provides

a programmable microcode learning engine for on-chip SNN training. A Loihi chip

also consists of 3 Lakemont cores which help with advanced learning rules and with

managing the neuromorphic cores. The Loihi design supports scaling up to 4,096

on-chip cores and 16,384 chips.

Loihi adopts a variation of the well-known CUBA leaky integrate-and-fire model

that has two internal state variables, the synaptic response current ui (t) and the

membrane potential vi (t). The synaptic response current is the sum of filtered input

spike trains and a constant bias current:

ui(t) =
∑
j 6=i

wi,j (αu ∗ σj) (t) + bi (1.10)

where wij is the synaptic weight from neuron j to i, αu (t) = τ−1u exp (−tτu)H (t)

is the synaptic filter impulse response parameterized by the time constant τu with

H (t) the unit step function, and bi is a constant bias. The synaptic current is further

integrated as the membrane potential, and the neuron sends out a spike when its

membrane potential passes its firing threshold θi.
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v̇i (t) = − 1

τ v
vi (t) + ui (t)− θiσi (t) (1.11)

As shown in Eq. 1.11, the integration is leaky, as captured by the time constant

τ v. vi is initialized with a value less than θi, and is reset to 0 right after a spiking event

occurs. Loihi approximates the above continuous time dynamics using a fixed-size

discrete timestep model.

Each synapse corresponds to a 5-tuple: (i, j, weight, delay, tag), where i, j are

the source and destination neuron indices of the synapse, and weight, delay and

tag are integer-valued properties of the synapse. Synaptic delays enable advanced

temporal codes by delaying the accumulation of an incoming spike, while tags are

useful as an additional scratch variable within the learning engine. Each synapse

also associates with multiple presynaptic traces, and whereas the compartment with

postsynaptic traces. They use different exponential smoothing parameters with decay

α and impulse magnitude δ and evaluated as follows:

x [t] = α · x [t− 1] + δ · s [t] (1.12)

These traces enter the learning engine as input variables for synaptic weight adap-

tation. SNN synaptic weight adaptation rules must satisfy a locality constraint: each

weight can only be accessed and modified by the destination neuron, and the rule can

only use locally available information, such as the spike trains from the presynaptic

(source) and postsynaptic (destination) neurons. Based on the locality constraint, the

learning engine supports simple pairwise STDP rules and also much more complicated

rules such as triplet STDP, reinforcement learning with synaptic tag assignments, and

complex rules that reference both rate-averaged and spike-timing traces. The func-

tional form of adaptation rules to apply to the synapse’s state variables is described

in sum-of-products form in terms of a set of microcode operations associated with the
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synapse:

zz +

Np∑
i=1

Si

ni∏
j=1

(Vi,j + Ci,j) (1.13)

where zis the transformed synaptic variable (weight, delay or tag), Vi,jrefers to

some choice of input variable available to the learning engine, and Ci,j and Si are

microcode-specified signed constants.
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Chapter 2

Modular Spiking Neural Circuits

for Mapping Long Short-Term

Memory on a Neurosynaptic

Processor

2.1 Introduction

Feedforward neural networks are unable to build representations and learn patterns of

dynamic data, where the series of data have temporal dependencies. While recurrent

neural networks (RNNs) address this issue with feedback connections, it is difficult to

learn long temporal dependencies using vanilla RNNs [46]. Long Short-Term Memory

(LSTM) improves upon RNN with a complex gated mechanism, which allows it to

selectively forget, remember and output information [47], making it effective in cap-

turing long-term temporal dependencies. Thus, LSTM has become a prominent and

successful model for time-series processing. It has had recent successes in applications

such as machine translation [48], image captioning [49], image generation [50], video
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to text [51], etc.

The aforementioned neural network architectures are highly computationally in-

tensive and power hungry compared to our brain. Whereas, spiking neural networks

(SNN), which uses spikes for communication and computations, has the potential to

be very efficient as each neuron works asynchronously in an event-driven manner with

sparse spiking activity. Thus, converting these neural network architectures to SNNs

can greatly reduce their energy requirements.

However, it is inefficient to implement SNNs on traditional Von Neumann archi-

tecture due to the performance gap between memory and processor. This has led

to the advent of energy-efficient large-scale neuromorphic hardware that enables low

power implementation of large-scale neural networks for real-time applications. One

of the examples is IBM’s Neurosynaptic Processor, “TrueNorth”. Converting pre-

trained networks to an SNN has also produced good results in pattern recognition

[52] on platforms other than TrueNorth. However, almost all of these applications

aim at non-recurrent networks, such as convolutional neural networks. Capturing the

temporal dynamics of a recurrent network using spiking neurons is inherently diffi-

cult. With added hardware constraints in connectivity and synaptic weight precision,

implementing recurrent neural networks (RNNs) for temporal sequence processing in

the spike domain is still at the proof of concept level [53].

This chapter presents a design flow that overcomes the aforementioned difficulties

and maps LSTM, a special case of RNN, onto a spike-based platform, and implement

it using the TrueNorth processor. The main contributions of this work are summarized

as the following,

1. A modular approach is presented that converts a standard LSTM to a Spiked-

based LSTM and incrementally maps it onto a neurosynaptic processor.

2. To have a faithful representation of inputs, outputs and internal activation of

an LSTM in spike-domain, we adopted an encoding heuristic to maintain the
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consistency of spike representation throughout the network.

3. Novel neural circuit designs are presented that approximate the sigmoid and

hyperbolic tangent functions. The relationship between stored membrane po-

tential, the random firing threshold, and the firing rate is analyzed.

4. To synchronize the gated modules and achieve recurrent processing in the Spike-

based LSTM, we developed a store-and-release mechanism using locally gener-

ated and globally consistent store and release clock spikes.

2.2 Spiking Neural Modules for LSTM

Most implementations of SNNs [43, 54, 55] including the TrueNorth processor, have

event-driven neuron operation and asynchronous intercore communication. It reduces

the hardware active power, however, also imposes a fundamental challenge to realize

the LSTM. As shown in Figure 2.1a and 2.1b, the inputs and outputs of an LSTM

require synchronization. The output vector in t− 1 time step must concatenate with

the input vector xt in t time step to calculate the new output vector. This level

of synchronization requires ht−1 special neural circuits on an event-driven hardware

platform. Other challenges include the difficulty in representing both positive and

negative numerical values with spikes, and a lack of direct support of nonlinear acti-

vation functions such as sigmoid and tanh in the spike domain.

In this section, we address the aforementioned challenges and present some key

techniques that facilitate Spike-based LSTM and its mapping onto any crossbar-based

neurosynaptic processor. We will first discuss how values are represented using dif-

ferent spike encoding schemes. Then we will describe the spike-based constituent

modules of LSTM and how to maintain the temporal relation of these modules’ ac-

tivities with specifics for TrueNorth Corelet configurations. Finally, we present the

mapping algorithm.
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(a) (b)

(c)

Figure 2.1: (a) LSTM color coded based on operation phase (b) LSTM equations color
coded to represent operations in specific phases (c) 3 phases and partial pipelining

2.2.1 Temporal Behavior of Neurons in LSTM

Synchronization is necessary to maintain the temporal dynamics of recurrence in a

recurrent network. It is also the key to enable the complex gating mechanism of

the LSTM, which requires the synchronized interactions between inputs, gate out-

puts and the cell state feedback. Given the inherent difficulty in representing this

synchronization with asynchronously spiking neurons, we propose a store-and-release

mechanism. It is implemented with special neural circuits where neurons operate in

two modes, store and release. During the store mode, the neurons gate their outputs,

receive input spikes, and accumulate their membrane potential. During the release

mode, the neurons issue output spikes at an average rate proportional to its mem-

brane potential, either stochastically or in a burst. Two internal clock signals control
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when a neuron enters or exits the store or release modes by applying a high nega-

tive or positive potential respectively. How to configure and connect asynchronous

neurons to form such synchronous neural circuits will be discussed in Section 2.2.1.

Using the store-and-release mechanism, the entire LSTM network is divided into

three partitions as shown in Figure 2.1a and 2.1b. They are referred to as input,

processing, and output partitions and color-coded using blue, red, and green, respec-

tively. The system operation has two phases, processing phase and I/O phase. Each

partition must only generate output spikes during its designated phase, i.e., process-

ing partition spikes during the processing phase and input and output partitions spike

during the I/O phases. Please note that during the I/O phase, if the output partition

is working on the ith data, then the input partition is working on the (i+1)th data.

The output of each functional module is a spike train. These spike trains are

buffered at every partition and then released during the associated phase. Except for

the input partition, all inputs of the processing and output partitions are buffered

using the store-and-release neurons, which are shown as white circles in Figure 2.1a.

The inputs to the processing partition store during the I/O phase and release in the

processing phase, while the inputs to the output partition store in the processing

phase and release in the I/O phase. For the input partition, one of its inputs ht−1 is

released in the I/O phase, and the other input, xt, is an external signal. By careful

control, we can make sure that xt is released only during the I/O phase as well.

Thus, we can essentially overlap the activities of input and output partition in the

I/O phase. The xt and ht−1 go through the input partition and are buffered at the

input of the processing partition during the I/O phase. During the implementation,

the store-and-release neurons will be merged into their subsequent function modules

and be implemented as store-and-release tanh or store-and-release sigmoid, as we will

present in Section 2.2.3. The only exception is the store-and-release neurons before

the dot product, which will stay stand-alone.
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Figure 2.1c shows how these three partitions operate alternatively. The duration of

each phase is referred as phase length (PL). The input partition works on the matrix-

vector multiplications to generate the operands for the forget, input and output gates

during the I/O phase. They are buffered by the store-and-release neurons at the input

of the processing partition. In the processing phase, these neurons release what they

have stored, and the processing partition generates the cell state (Ct) and partial

output (ot), which are buffered by the store-and-release neurons at the input of the

output partition. In the next I/O phase, the Ct and ot is released and used to calculate

the ht, which is then further forwarded to the input partition to calculate the matrix-

vector multiplications again. The transition of phases is maintained through local

clock (globally consistent) spikes which produce the store and release spikes for all

the store-and-release capable neurons.

2.2.2 Encoding and Spike Representation

Since spikes are binary (on-off), they are inherently difficult to be used to represent

both positive and negative values. This is another challenge as in an LSTM it is

difficult to avoid numerical values (i.e. inputs, outputs and activations) ranging in

both negative and positive directions as the weights learnt can be negative and also

the tanh function outputs values in the range -1 to 1. A simple solution is to constrain

the values during training by replacing the hyperbolic tangents with ReLUs, which

have no negative range and have an open-ended positive range. ReLU improves the

performance of vanilla RNNs [56] because of to its ability to stop vanishing gradients.

However, vanishing gradients is no longer a problem in LSTM due to its gating scheme.

On the contrary, using unbounded activation functions like ReLU in an LSTM can

cause it to diverge, thus resulting in worse performance [57]. Therefore, we choose

to keep the Tanh function but solve the data range problem by using positive and

negative channels of spikes respectively.
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The inputs and outputs of an LSTM are rate-coded, where the firing rate is

determined by the phase length (PL) and the max value (mx) to be represented in

that phase. If we scale up the trained weights with a scaling factor sf , the input and

output should be scaled down by the same factor. Therefore, the number of spikes

(nS ) needed to represent value 1 can be calculated as: nS = PL
(mx∗sf) .

To represent a numerical value Iv, the spike firing rate is set to (Iv∗nS)
PL

, and n

spikes in a phase represent the value: RPV alue = n
nS

.

The choice of mx , phase length PL, and scaling factor sf defines the precision

of values that can be represented by spikes, as the minimum resolution is one spike,

which represents 1/nS(i.e. (mx∗sf)
PL

) in terms of numerical value. For example, let the

phase length PL = 100and max value in the phase be mx = 5with scaling factor

sf = 1. The number of spikes needed to represent value 1 is nS = 100
(5∗1)=20

. That

means a single spike in that phase represents a value of 1/20. So, if we want to

represent a value RPV alue = 3, then we expect to have 3 ∗ nS = 60 spikes in the

phase. Scaled weights can also be balanced by scaling the activation which we discuss

in Section 2.3.2.

All internal variables are rate-coded, except Ct. We found that the cell state Ct

needs to have more accurate representation, because any error on this variable will

be accumulated due to the feedback path. The stochastic rate coding is convenient

when implementing multiplication as it requires only an AND function, however, it

introduces not only rounding error but also random error due to stochastic sampling.

Previous work shows that the spike burst code, where the numerical value is repre-

sented by the number of spikes that burst in a window, has a much higher correlation

with the numerical value to be represented [58]. Therefore, we encode Ct using spike

burst code and use the spike-burst neurons for the sum function.
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Figure 2.2: Store-and-release mechanism

Figure 2.3: Store and release clock spikes for all gates

2.2.3 Spike-based LSTM Constituent Modules

Figure 2.1b shows a general LSTM unit consisting of the sigmoid gates, hyperbolic

tangent, dot products and sum. To implement a Spike-based LSTM (S-LSTM), we

approximate these modules using spiking neurons. The structure of these modules

can be implemented on any spike-based platform. On a crossbar-based neurosynaptic

hardware, these modules will be mapped across cores based on the consideration of

the fan-in and fan-out and other hardware constraints. On TrueNorth, these modules

are in the form of corelets. The corelets will be further connected to form the full

spike-based LSTM (S-LSTM.)
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2.2.3.1 Store-and-Release neurons

Store and release mechanism is implemented using a neuron with a high negative

threshold where it saturates. The store and release clocks are two inputs associated

with large negative and positive weights, respectively. A spike on the store clock turns

on the store mode by pushing the membrane potential to the negative threshold,

during its membrane potential rises as it accumulates the input spikes. The negative

initial state guarantees that the raised membrane potential is still below the firing

threshold, therefore, no output spikes are generated during the store mode. A spike

on the release clock pushes the membrane potential to 0 or higher if input spikes are

received during the store mode, and the neuron starts generating output spikes.

A drawback of the above scheme is that the neuron is unable to collect negative

spikes at the beginning of the store mode as its membrane potential is already at the

negative threshold where it saturates. We get around this problem by issuing a pre-

charge spike on the release clock immediately upon entering the store mode to push

the membrane potential to an intermediate level between the negative threshold and

0 to allow collecting negative spikes. Figure 2.2 shows an example where the neuron

enters the store mode through a negative potential of −250 and enters release mode

through two positive potentials of +100 administered by the store (red), pre-charge

(yellow) and release (blue) clock spikes respectively. Figure 2.3 shows all the clock

signals in the S-LSTM.

At the beginning of the release phase, the neuron’s accumulated membrane poten-

tial (AMP) equals to the total number of net input spikes that it collected during the

store mode. This is preserved throughout the release phase. The RPV alue stored

in the neuron can be calculated as RPV alue = AMP
nS

. To generate output spikes, a

random number drawn in the range [0, RThR], where RThR stands for the random

threshold range, becomes the threshold. If this number is less than the AMP, then an

output spike is generated. During a phase window PL, the expected number of spikes
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generated in this way is PL × AMP
RThR

. When we set RThR to PL, the number of the

output spikes equals to the total number of net input spikes, and the neuron relays in-

put to the output without any transformation. In the actual implementation, almost

all store-and-release neurons are merged to its subsequent sigmoid and tanh gate.

RThR should be selected differently due to the squash and linear transformation of

these functions.

2.2.3.2 Input Collection Module (IC Module)

In an LSTM, the inputs to each gate are fully connected. As in any fully connected

layer in a neural network, there is a matrix-vector multiplication between inputs and

the weight matrices. From the LSTM equations, we see that the weight matrices W

for each gate are multiplied by the input vector x and the previous time-step’s output

vector ht−1 respectively along with the biases. We develop a parameterized module

called input collection (IC ) module to implement such matrix-vector multiplication.

As shown in Figure 2.4d, each input and output are represented using two channels to

accommodate both positive and negative values. Specifically, for TrueNorth, which

allows for a maximum of four possible integer weights per neuron in a core, we decide

to use 4 axons with weights 1,2,4, and 8 to approximate weights up to +15 in each

channel. The absolute weight is assigned to the positive or negative output channel

based on the resultant sign of the product of input and axon weights. Given the

positive (+) and negative (-) channels of input x and output y, to calculate y = ax, if

a is positive, then y- will be connected to x -, and y+ be connected to x+. Otherwise,

if a is negative, then y- will be connected to x+, and y+ be connected to x -. For both

cases, the synaptic weights of the connections are |a|. For example, in Figure 2.4d,

the connection shows the relation that: out1 = 5 × (in1), and out2 = (−3) × (in1).

Hence, our two-channel weight mapping with 4 axons is capable of approximating

5-bit signed precision weights instead of 4-bit precision [53] on the TrueNorth chip.
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(a) (b)

(c) (d)

Figure 2.4: (a) Sigmoid module (b) Tanh module (c) Dot product module (d) IC
module

The above design results in positive and negative outputs in their respective chan-

nels. We use ReLU neurons for the output, which produces bursts of spikes equal to

the accumulated membrane potential when the threshold is 1. The two channels (i.e.,

positive and negative) are used in every input of the sigmoid and tanh gates in the

processing partition, which is then be merged to achieve the net results.

This module is also parameterized to accommodate matrices/vectors [Wi, Wh, X,

Y ] of various sizes and the mapping scales across multiple cores depending on the

sizes of those matrices/vectors.
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2.2.3.3 Gate Modules

Due to minimal cut points and linear interpolation between those cut points, piece-

wise linear functions are computationally efficient [59]. And these cut points and

linearity are more conducive than a smooth non-linearity to rate coding where the

spiking rate determines the computed values. Spiking rates of these gate modules have

definite max and min (0 and 1) and within this range, the rate is linearly proportional

to the number of input spikes or the accumulated membrane potential of a neuron.

LSTM uses sigmoid gates to allow the flow of input, cell state, and output, and

uses tanh to squeeze the inputs and outputs to a range. To implement this activation

function using neurons with linear responses, we develop modules which produce a

hard sigmoid and a hard tanh behavior with store and release capability and use them

during both training and recall.

The original sigmoid function as shown in Figure 2.5a is given as

σ (x) =
1

1 + e−x
(2.1)

Eq. 2.1 can be represented as a hard sigmoid using a piece-wise linear function

with slope msig.

σ (x) = max(0, min(1, x ∗msig + 0.5)) (2.2)

Similarly, the original hyperbolic tangent function as shown in Figure 2.5b is given

as

tanh (x) =
e2x − 1

e2x + 1
(2.3)

We represent Eq. 2.3 as a piece-wise linear function with slope mtanh given as
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tanh (x) = max(−1, min(1, x ∗mtanh) (2.4)

As positive and negative channels are used to represent the positive and negative

values, we rewrite Eq. 2.4 as:

 tanh(x) (−) = |max (−1,min (0, x ∗mtanh))| ,

tanh(x) (+) = max (0,min (1, x ∗mtanh)),
(2.5)

During the release mode, the spikes generated by the gate modules are rate-coded.

The value of Eq. 2.2 and 2.4 are encoded by the firing rates in a phase window.

These activation functions are implemented using stochastic neurons, which generate

stochastic rate-coded outputs. A stochastic neuron maintains a membrane potential

m, which is the sum of its weighted inputs plus any possible offset. It firing threshold

is generated as a uniformly distributed random number in the closed interval [0,

RThR], where RThR is the random threshold range. It is not difficult to see that the

probability that an output spike will be generated can be calculated as

y =
m

RThR
(2.6)

where y is the firing rate (i.e., the probability of x > uniform random(RTHR))

which represents the effective output of the activation function.

So, from Eq. 2.2 and 2.6, the hard sigmoid can be rewritten as

σ(x) = min

(
1,max

(
0,
AMP + offset

RThR

))
(2.7)

where xis the RPValue (which equals to AMP/nS) accumulated from the input,

AMP is the membrane potential accumulated from neuron inputs, and offset is the

offset membrane potential applied. The firing rate saturates at 0 when AMP +

offset ≤ 0 and 1 when AMP + offset ≥ RThR , thus producing the piece-wise
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linear sigmoid activation. Since x in Eq. 2.2 is the RPValue (i.e. = AMP/nS)

accumulated from the input, by setting RThR = ns
msig

,and offset = 0.5ns
msig

, we can

ensure that Eq. 2.2 and 2.7 are equivalent.

Similarly, from Eq. 2.4 and 2.6, hard tanh can be rewritten as

tanh (x) = max

(
−1,min

(
1,
AMP

RThR

))
(2.8)

For both channels, the firing rate saturates at 0 when AMP ≤ 0 and saturates

at 1 when AMP ≥ RThR, thus producing the piece-wise linear hyperbolic tangent

activation. By setting RThR = ns
mtanh

we can ensure that Eq. 2.4 and 2.8 are equiva-

lent.

The choice of RThR for both sigmoid and hyperbolic tangent depends on the slope

of the linear portions of these activation functions in Eq. (17) and (23),and that slope

depends on the choice of steepness and scaling of the activation function. Details of

the choice of RThR are discussed in Section 2.3.2 and 2.3.5.

2.2.3.4 Dot Product Module

The inputs of the dot product module are two-channeled inputs Ct, which is burst

coded, and a rate-coded sigmoid as shown in Figure 2.4c. The dot product allows

the gating function to regulate the flow of information. Because the output of sig-

moid function has numerical values between 0 and 1 and is stochastically rate-coded,

we explore the stochastic nature of the input and perform the multiplication using

stochastic computing. A simple logical AND of the two spike streams is used as the

multiplication.

An example is given in Figure 2.5c. In a window of 10 ticks, there are 5 spikes

from the sigmoid, which represents σ = 0.5, and 4 spikes in the in1, representing

in1 = 0.4. The logical AND produces 2 spikes at the output representing out1 = 0.2.

The logical AND operation can be easily realized using an integrate and fire neuron
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(a) (b)

(c)

Figure 2.5: (a) Sigmoid (b) Hyperbolic Tangent activations (c) Dot product through
logical AND of spikes

with threshold 2, by setting its input synapses weight and leak to be +1.

2.2.4 Mapping Algorithm

In crossbar-based neurosynaptic hardware, the number of fan-ins and fan-outs are

limited, for example, a single TrueNorth core consists of 256 neurons and axons.

Thus, there is a distinct fan-in and fan-out constraint. To deal with this constraint

and freely map LSTM networks of arbitrary sizes, we develop an incremental mapping

algorithm. The IC module’s size depends on the number of LSTM units as well as

the number of inputs. Thus, they are mapped and extended across two dimensions

(axons and neurons). Whereas the sizes of other modules are only dependent on the

number of LSTM units. Thus, these modules are mapped and extended only across

one dimension (axons). As shown in Figure 2.6, the mapping is incremental. New

cores are added only when the resources of the current core are filled up. This results
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(a) (b)

Figure 2.6: (a) Algorithm 1 (b) Algorithm 2 in action

in the number of cores and the average neuron density (number of neurons used per

core) increasing in steps of the number of LSTM.

2.3 Workflow

The LSTM network can be directly converted to SNN utilizing the spike-based con-

stituent modules of LSTM, and the encoding and spike representation schemes de-

scribed in Section 2.2.2. However, the approximations, such as using a piece-wise lin-

ear function to replace the original sigmoid and tanh and using rate or burst coding to

approximate real values, will give approximation errors. Furthermore, most neurosy-

naptic hardware has a precision limitation on the synaptic weights. This limitation

is even more visible in TrueNorth which utilizes integer weights. Thus, mapping this

trained network onto TrueNorth induces potential rounding errors. It is necessary to

constrain the network before and during training and accommodate these constraints

during implementation. In this section, we will discuss the “constrain-then-train-

then-approximate” workflow that minimizes potential errors on SNN conversion and
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hardware implementation. The discussion is carried out using TrueNorth as an ex-

ample hardware platform, however, the workflow can easily be adapted for other

neurosynaptic chips.

2.3.1 Constrain

To avoid potential errors caused by various approximations during the SNN conversion

and hardware implementation, we will consider these approximations in the training

process as types of constraints. This requires us to set a plan of how to carry out the

approximation before training the network. The plan includes which algorithm to be

used for the approximation and how to set parameters in the algorithm.

2.3.2 Steep Activation Functions

The rounding errors introduced by the rounded weights are especially harmful when

it propagates through the activation functions. The small changes of the input are

visible in the output of an activation function if it falls in its linear operating region.

Thus, a steeper slope of the activation function reduces the linear range of the input,

hence, limits the propagation of rounding errors.

In Eq. 2.2 and 2.4, msig and mtanh represent the slopes of piece-wise linear sigmoid

and hard tanh respectively. To maintain the same linear operating range for the

sigmoid and tanh, we must have mtanh=2*msig. Here, we choose msig = 1 and

mtanh = 2 during training and inference such that the linear operating range for both

sigmoid and tanh is from −0.5 to +0.5 . The constrained activation functions shown

in Figure 2.5a and 2.5b. For the gate modules in Eq. 2.7 and 2.8, the change in the

slope changes the choice of RThR.
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2.3.3 Weight Quantization

Binary and ternary integer weights have been used to produce close to state-of-the-art

results for feed-forward network architectures [60, 61], but both our preliminary work

and the existing research [62] show that it is difficult to train LSTMs with binary

and ternary integer weights. Recently, quantization methods have shown promising

results for RNNs [63]. But with these quantization methods, large performance degra-

dation occurs when quantizing weights to 2-bit or l-bit numbers. This is accredited

to the unbalanced distribution of the weights across the quantized values, which oc-

curs when these quantization methods employ uniform quantization on a bell-shaped

distribution of parameters with sporadic large outliers. As shown in Figure 2.7b for

2-bit quantization, for the original weights in Figure 2.7a, there is a large discrepancy

between the number of weights in the two middle quantized values and the two outer

quantized values. Thus, we utilize a balanced quantization approach as proposed

in [64, 65] which focuses on producing balanced distributions of quantized values of

data rather than preserving the outliers. The goal is to produce weights uniformly

distributed across the quantized values as shown in Figure 2.7c.

Consider a random variable w in a close interval [0, 1]. As an entry in the weight

matrix, w follows a bell-style distribution as shown in Figure 2.7a. Using the tradi-

tional k -bit uniform quantization, the quantized value Qk(w) can be calculated as:

Qk (w) =
1

2k − 1

⌊ (
2k − 1

)
w +

1

2

⌋
The distribution of 2-bit uniformly quantized values of variables in Figure 2.7a is

shown in Figure 2.7b. As we can see, a large portion of the variables are quantized

into the 2 levels in the center. This effectively reduces the data precision from 2-bit

to 1-bit.

A k -bit balanced quantization of w is calculated as
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Qbal
k (w) = Qk

(
w‘

scale

)
∗ scale (2.9)

where scale = mean (abs (W )) ∗ 2.5is the approximation of the parameter depen-

dent adaptive threshold 3∗median (abs (W )) to produce an auto-balancing effect [64]

at each layer using a standardization transform to produce w‘ with a close interval

[0,1] from w using the following equation:

w‘ = max
(
−0.5,min

(
0.5,

w

scale

))
+ 0.5

Scaling these weights and rounding to integer can produce rounding-off errors.

Thus, to minimize the rounding-off error from scaling and rounding, we introduce a

rounding in the quantization flow during training which rounds the weights to the nth

decimal place given as the following:

RQbal
k (W ) = round nD(Qbal

k (W )) (2.10)

where round nD(x) = round to integer(x∗10n)
10n

. This rounding enables scaling by 10n

and produces integer weights and thus removes rounding-off error.

The balanced quantization method combined with rounding during training can

be utilized to get trained weights at any fixed-point quantization level for an inference

hardware that utilizes fixed-point weights.

With weight quantization, along with minimizing the rounding error, the number

of axons can be reduced from 4 to 2 to allow for more efficient usage of the axons.

2.3.4 Train

The derivatives of the quantization function in Eq. 2.9 and 2.10 are equal to zero

or undefined as the function Qk (X) and RQbal
k (x) is non-differentiable. This causes

hindrance in training the network using backpropagation. So, we adopt the Straight
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(a)

(b) (c)

Figure 2.7: Histograms for (a)Original (b)Standard quantization (2-bit) (c) Balanced
quantization weights (2-bit)

Through Estimator (STE) proposed in [66, 67], and substitute the gradient with

respect to the quantized value ∂c
∂y

for the gradient of the original value ∂c
∂x

as if propa-

gating the gradient through a linear function. As STE produces approximation noise

while computing gradients, we limit it only to the necessary functions that are non-

differentiable. In Eq. 2.9, the STE method is applied to the floor function, and the

forward and backward propagation of the floor function is defined as the following

Forward : y ← floor(x)

Backward :
∂c

∂x
← ∂c

∂y
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Similarly, in RQbal
k (x) of Eq. 2.10, the STE method is applied to the round

-to-integer function and ts forward and backward propagation is defined as follows.

Forward : y ← round to integer(x)

Backward :
∂c

∂x
← ∂c

∂y

The forward propagation is performed using balanced quantized weight coeffi-

cients, the weight is also updated based on the derivative calculated with respect to

the quantized weights.

2.3.5 Approximate

After constraining and training the network, we have the quantized weights trained

with nth decimal precision. Now, to implement the trained network on a constrained

TrueNorth chip, some linear transformation is necessary.

As the synaptic weights in TrueNorth and many other neuromorphic hardware

only have integer precision, it is necessary to scale the weights and round them to

integer values. With nth decimal precision, the scaling is simplified by using scaling

factor sf = 10n, which directly generates integer weights.

To keep the output unchanged, it is necessary to counter the scaling up of the

weights by a scaling-down using the same scaling factor. The weighted sum of the IC

module can be written as: x =
∑
W ∗ Input + b. In our previous work [30], when

the weights W and b is scaled up by sf, we scaled down the Input by sf to preserve

the integrity of y. We call this mechanism the scaled-input approach. This scaling

mechanism is straightforward but reduces the precision of the input, which is already

low given that the inputs are represented in terms of rate-coded spikes. For example,

in a set-up with PL=50 and mx=5, it takes 10 spikes to represent a value “1”, hence

the data precision is 1/10. When the scaling factor sf is set to 10, data precision
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is drastically degraded to 1. Thus, in the previous work, it was necessary to use a

minimal scaling factor.

Because the outputs of the IC module always go through an activation function,

instead of scaling down the inputs of the IC module, in this work we integrate the

down scaling factor into the activation function and we call this scaled-activation

approach. This is similar to scaling the output x of the IC module instead of its

input. Since x is an accumulation of the inputs, it has a larger range than each

individual input, and scaling x usually has less impact on the accuracy than scaling

each input individually. This scaling will preserve network accuracy and allow the

use of a larger scaling factor.

In Section 2.2.2, we know that the activation functions (i.e., sigmoid and hyper-

bolic tangent) are formulated in terms of AMP and RThR. We also know that by

setting RThR = nS/msig and offset = 0.5ns
msig

, we can use a stochastic neuron to

implement the hard sigmoid function given in Eq. 2.2. For scaled-activation scaling,

we set RThR = (nS ∗ sf)/msig, and set the offset = 0.5 ∗RThR.

Similarly, without scaling, we set RThR = nS/mtanh to implement the hard

hyperbolic tangent function using a stochastic neuron. However, with activation-

scaling, the random threshold range should be set to RThR = (nS ∗ sf)/mtanh.

The blue lines in Figure 2.5a and 2.5b plot the activation function with the scaling

factor sf = 10 when implemented using a TrueNorth neuron. Compared to the orig-

inal function and the constrained function, it has a steeper slope due to the scaling

factor. As we utilize stochastic neurons to approximate the constrained activation

functions, the quality of the approximation is highly dependent on the random thresh-

old generation and the length of the window over which the approximation is made.

In Figure 2.5a and 2.5b, the approximated activation functions using TrueNorth have

some irregularities, which can be attributed to imperfect random number generation

for the random threshold and limited window length for the approximation.
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2.4 Experiments

In the following experiments, we compare the Spike-based LSTM mapped on TrueNorth

with the standard LSTM implemented using Keras with TensorFlow backend. We use

spike-based LSTM simulated on a full precision SNN simulator [68], as an ideal case

scenario as no scaling and rounding are necessary. Its result is denoted as FPW-SNN.

Please note that for FPW-SNN, the synaptic weights are not quantized, however, the

neuron activities are quantized to 1/ns precision. All other results with prefix S-

LSTM are results from TrueNorth. The results with prefix LSTM are results from a

non-spiking LSTM implemented on Tensorflow.

For all experiments, the network is comprised of one hidden layer of LSTM units.

The networks are trained with two setups: scaled-input scaling without weight quanti-

zation and scaled-activation scaling with 2-bit weight quantization. The quantization

is done with a single decimal place precision (n=1) such that we set sf=10 to achieve

quantized integer weights. And to account for the large sf which reduces the slope,

we train with a steep slope for both sigmoid (msig=1 ) and tanh (mtanh=2 ). The

networks are trained also with weights constrained to the range -1 to 1. Spike-based

LSTM is set to mx=5 and we vary the phase lengths to show how data precision

can affect the performance, speed, and accuracy. A longer phase length means high

precision of the internal data of the LSTM.

2.4.1 Parity check / XOR problem

Parity check of a bit stream is a classic problem that is difficult to solve with a

standard feed-forward network, but simple to solve with an RNN. In this problem,

we have to determine at each input of a sequence of binary inputs whether the number

of 1’s observed so far in the sequence is even or odd. Here, we train LSTM with one

hidden layer containing 2, 4, and 10 LSTM units on 9000 varying length binary
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Figure 2.8: Accuracy vs Phase Length for Spike-based LSTM [NWQ-SI: No Weight
Quantization with Scaled Input, WWQ-SA: With Weight Quantization with Scaled
Activation] (Keras/Tensorflow counterparts have 100 % for all cases)

(a) (b)

Figure 2.9: (a) Reber Grammar (b) Embedded Reber Grammar

sequences with a maximum length of 20. Then it is tested with 1000 sequences on

TrueNorth with varying phase lengths.

In Figure 2.8, we can see that the accuracy improves with the phase length as this

increases the precision of activations. The accuracy also increases when the number

of LSTM units is increased. The scaled-activation and weight quantization method

also improve the results as it removes rounding-off error from weights and reduces

the quantization error by preventing a reduction in precision. The full precision

simulation of the spike-based LSTM led to the accuracy close to (>98%) or equal to

the results on Tensorflow.
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2.4.2 Embedded Reber Grammar

Embedded Reber grammar (ERG) is a popular RNN benchmark [47] and is useful for

training sequences with short time lags. Figure 2.9a shows a Reber Grammar graph

which is extended to an Embedded Reber Grammar in Figure 2.9b. An ERG sequence

starts from the leftmost node ‘B’ of the ERG graph and sequentially generates a finite

number of symbols by following edges until the rightmost node ‘E’ is reached. At

some nodes, there can be two possible paths and the choice is made randomly. A

sequence that follows Reber Grammar defines a path in the Reber Grammar graph.

During training, the system is presented with sequences following Reber Grammar,

and during testing, the system is expected to generate sequences according to Reber

Grammar.

Input and target patterns are represented by 7-dimensional binary vectors, repre-

senting one symbol each, in the training set. And the task is to read the symbols one

at a time and to continually predict the next possible symbol(s). Input vectors have

exactly one nonzero component, but the target vector could have one or two nonzero

components representing one or two possible paths. The prediction is considered cor-

rect if it predicts either one or both possible symbols. Here, we train LSTM networks

with one hidden layer containing 10, 30, and 50 LSTM units on 5000 ERG sequences

with maximum sequence length 36. We tested on 500 ERG sequences on TrueNorth

with varying phase lengths.

Again, we see that the phase length has a direct impact on accuracy. For networks

without weight quantization and with scaled-input (NWQ-SI), when the phase length

increases above 10, the accuracy drastically improves, which means it requires the

minimum data precision that can be represented by 1 spike to be higher than 1/10.

The trend is noticeable in all 3 network sizes as shown in Figure 2.10. With weight

quantization and scaled-activation (WWQ-SA), the accuracy gets closer to the full

precision spike-based LSTM (FPW-SNN) as seen in Figure 2.10a, 2.10b and 2.10c and

41



achieves ˜5% improvement over NWQ-SI. The improvement is higher (5% - ˜30%)

when the phase length is small. This is understandable as at lower PL, the precision

reduced by scaled-input scaling is more noticeable than at higher PL.

The network using rate-coded internal cell state (S-LSTM-50RCt) instead of burst-

coded one (S-LSTM-50) performs significantly worse as shown in Figure 2.10d. In

average, using burst coding on Ct gives ˜30% improvement in accuracy. This, as men-

tioned in Section 2.2.2, is due to the accumulation of rounding error and additionally

the sampling error while the spikes move from one buffer to another and then feeds

back. The improvement is higher (up to 35%) when the phase length is large and

lower (˜20%) when the phase length is small. This is because at smaller phase lengths

the low precision of inputs and internal data has a higher impact than the sampling

errors.

The scaled-activation and weight quantization (WWQ-SA) methods improve the

results in this example by ˜15%. Keeping the internal cell state burst-coded is still

important under WWQ-SA. It gives an extra ˜15% improvement in accuracy in av-

erage. This is because scaled-activation and weight quantization do not change the

representation of the internal data, hence cannot be used to reduce the sampling error

introduced by rate coding.

For networks without weight quantization, when trained without any constraints,

the range of learned weights varies. If that range is wide, it is hard to find a scal-

ing factor that can raise smaller values to the hardware supported range with low

rounding errors without causing the larger values to overflow. So, we simply set the

scaling factor sf to be 1. Compared to the networks trained with constraints, the

rounding error of the unconstrained network is higher. However, setting sf = 1 leads

to higher nS and better precision (i.e. lower 1/nS ) than setting sf > 1. There-

fore, the unconstrained network (S-LSTM-50NoC) produces better accuracy than the

constrained network (S-LSTM-50 <35%) at lower PL, because it allows higher data
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(a) (b)

(c) (d)

Figure 2.10: Accuracy vs Phase Length (PL) for Spike-based LSTM with (a)10 (b)30
(c)50 units (d) with rate-coded Ct and no-constraint setup [NWQ-SI: No Weight
Quantization with Scaled Input, WWQ-SA: With Weight Quantization with Scaled
Activation, FPW-SNN: Full Precision Weights SNN, RCt: Rated coded Ct, NoC: No
Constraints](Keras/Tensorflow counterparts have 100 % for all cases)

precision. When the PL is high, the large window size already ensures reasonable

data precision, so the constrained network performs better than the unconstrained

version as shown in Figure 2.10d. However, for networks with weight quantization,

as they produce discrete weights with single decimal precision, we always set sf=10.

2.4.2.1 Power Analysis

Table 2.1 shows the results of 50-unit LSTM network with scaled-input scaling and

without weight quantization, and the respective TrueNorth implementations with

200 (high accuracy) phase lengths used for Embedded Reber Grammar. The table

demonstrates the energy versus performance trade-off between TrueNorth and the

GPUs. Compared to NVIDIA Tegra X1 (20nm technology) and NVIDIA Titan X
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Table 2.1: Power and performance on different platforms (*running at faster than
real time (3.5x faster)

Network Devices
Time/Sample

(ms)
Active Power

(W)
Energy/Sample

(ms)
50-LSTM NVIDIA

(Tegra X1)
1.928 2.45 4.72

NVIDIA
(Titan X)

0.5 46.5 23.3

50-LSTM
(200-PL)

IBM
(TrueNorth)

400 0.00014 0.056

*IBM
(TrueNorth)

114 0.00025 0.0285

(16nm technology), the TrueNorth networks (running at normal operating frequency

1 kHz) is more energy efficient. It consumes only 56 µJ at 0.8V for 200 PL per sample

and is up to 84x and 416x energy efficient than Tegra X1 and Titan X respectively. At

faster than real time operation (3.5 kHz operating frequency) and the same voltage

level of 0.8V, TrueNorth performs even better with 165x and 817x higher energy

efficiency compared to Tegra X1 and Titan X. All measurements were taken only

during inference.

Table 2.1 also shows the TrueNorth implementation is slower than the GPU im-

plementations. In practical deployment, this factor of time delay is unsuitable, and

it points to a large performance/energy tradeoff. This tradeoff is drastic mainly due

to the inability to reliably train LSTM networks with very limited precision. In the

experimental setup, we chose PL = 200 and sf > 1 for comparison to ensure reason-

able data precision and comparable accuracy as the GPU implementation. If we can

train an LSTM network with limited precision, then sf can be set to 1 and a much

lower PL can be used without reducing spike’s data representation precision. This

will reduce the delays to a tolerable level or even close to the GPU implementation

with the same or even lower energy footprint.
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(a)

(b)

Figure 2.11: (a) Total number of cores used vs LSTM units, (b) Average Neuron
density and Synaptic density vs LSTM units

2.4.2.2 Chip utilization

The actual power consumption only for the resources utilized on TrueNorth chip is

computed by measuring chip idle power which is the leakage power Pleak and total

power Ptotal with the network running [85]. Active power is Pactive = Ptotal−Pleak. The

scaled leakage power for the cores utilized is Pleak s = Pleak∗cores/4096. Therefore, the

total power consumed for the utilized resources is Ptotal s = Pactive+Pleak s. For a given

network, the active power is directly proportional to the spiking activity however, the

same network can be designed to be mapped utilizing a different number of cores.

To ensure minimum power consumption, it is critical to pack as many neurons as
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Figure 2.12: Accuracy vs Phase Length for Spike-based LSTM [NWQ-SI: No Weight
Quantization with Scaled Input, WWQ-SA: With Weight Quantization with Scaled
Activation, 1/nS: Tensorflow LSTM network tested with 1/nS input precision,
QW:Tensorflow LSTM trained with quantized weights, FPW: with full precision
weights]

possible on to each core for minimizing Ptotal s as Pleak s is the only free variable.

Packing/Efficient utilization of the TrueNorth chip can be described in terms of the

number of cores used and the average neuron and synaptic density. The incremental

mapping algorithm shown in Section 2.2.4 attempts to pack as many neurons as

possible in a core, incrementally adding cores as required. This behavior is illustrated

in Figure 2.11b which shows the average neuron and synaptic density increasing with

the number of LSTM units. This suggests that with the increasing number of LSTM

units, the cores are more densely packed and thus better utilized.

With weight quantization, the weights can be discretized to 2-bit or even 1-bit.

This allows for utilizing only 2 axons per input channel in the ICB module instead

of 4 axons. Utilizing just 2 axons per channel results in a reduced number of cores

and improved neuron and synaptic density as shown in Figure 2.11a and 2.11b with

the increase in the number of LSTM units. Thus, with weight quantization, the

scalability of mapping networks on TrueNorth is improved.
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2.4.3 Question Classification

In the previous tasks, the inputs are one-hot encoded, thus requiring no discretiza-

tion of the input. In the third experiment, we utilize a task requiring discretization

of the input as well. The goal of this task is to categorize a question into six coarse

classes (ABBREVIATION, ENTITY, DESCRIPTION, HUMAN, LOCATION and

NUMERIC VALUE) based on the sequence of words in the question sentence. The

training dataset [69] consists of 5500 sentences and the test set contains 500 sen-

tences. The LSTM network is trained on these sentences using a 50-dimensional

vector representation for words called GloVe [70], learnt on aggregated global word-

word co-occurrence statistics from a corpus. For this problem, each sentence is limited

to 10 words. Thus, the input is a sequence of 10 50-D word vectors and the output is

one of the six classes. As these word vectors are continuous values, the input is also

rounded to a precision given by 1/nS.

With 30 LSTM units, the LSTM network achieves ˜86% accuracy on Tensorflow.

It reduces to ˜84% when using 2-bit weights with full precision inputs. Rounding

the inputs to 1/nS precision, the performance decreases by ˜2% as shown in Figure

3.12 by the LSTM-QW data series. It is understandable as there is always some loss

of information associated with quantization. Using the full precision weights on an

SNN simulator, our S-LSTM achieves 79.9% accuracy which is within ˜3% of the

Tensorflow implementation. However, the networks on TrueNorth still lag behind

(both NWQ-SI and WWQ-SA) due to the added constraints.

2.5 Conclusion

This work presents a methodology to convert a general LSTM to a Spike-based

LSTM which can be deployed in any neuromorphic hardware. A standard LSTM

is divided into modules and separately approximated using spiking neurons. Here
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we target benchmark applications on IBM TrueNorth Neurosynaptic Processor. On

TrueNorth, the modules are in the form of corelets, which are then combined, con-

nected, and mapped to form Spike-based LSTM networks and synchronized using a

store-and-release mechanism. These networks are tested on three RNN benchmarks

with promising accuracy results and high power efficiency.
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Chapter 3

Stable Spike-Timing Dependent

Plasticity Rule for Multilayer

Unsupervised and Supervised

Learning

3.1 Introduction

STDP is a learning rule that potentiates or depresses a synapse depending on the

relative timing between single pre and post-synaptic spikes [10]: long-term potenti-

ation (LTP) occurs if the pre-synaptic spike arrives before the post-synaptic spike

and long-term depression (LTD) occurs otherwise. It is local as it always pertains to

a pair of pre- and post-synaptic neurons. And although it is correlation-based and

causality is important for the synaptic plasticity, it differs from the Hebbian learn-

ing rule as STDP also requires temporal precedence [10]. Purely rate-based Hebbian

rules on its own lead to runaway processes of potentiation causing instability. That

requires additional constraints and mechanisms [71, 25] for containment. Whereas
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many theoretical studies concerned with non-Hebbian rules of plasticity look for de-

sirable properties, such as a trend towards inherent stability in weight distribution,

neural activity, and competition among correlated inputs. STDP rules, which are

independent of the current synaptic weight (additive STDP) [72] induces competi-

tion but need mechanisms to prevent weights from either disappearing or exploding.

Weight-dependent STDP rules (multiplicative STDP) [73] are inherently stable pro-

ducing unimodal weight distribution but induce weak competition, thus requiring

additional mechanisms to induce competition [74]. These additional mechanisms in-

crease the complexity in their implementation. This is undesirable when it comes to

large-scale or neuromorphic hardware implementations. In this work, we introduce a

variation of a weight-dependent STDP rule which is inherently stable and yet simple

and lends well to computationally efficient and inexpensive implementations.

STDP is known to be selective to patterns. When used in a network with lateral

inhibition producing a Winner Take All (WTA) effect, STDP allows for learning

discriminative features without supervision [52]. These features could either be used

as intermediate features [75] or could be labelled [52] for classification. In addition

to improving the STDP rule for unsupervised learning, in this work we also apply

it for supervised learning by introducing teacher neurons. The unsupervised feature

learning and unsupervised classifier learning are stacked forming a multilayer SNN

trained with STDP.

The main contributions of this work are summarized as following.

1. We present a simplified approximation of conventional Bayesian neuron and an

improved STDP rule with extended LTD window, exponential weight depen-

dence and different learning rates during LTD and LTP. Experimental results

show that the modified STDP rule provides stable and competitive learning.

2. A layer-wise approach is used to combine unsupervised and supervised STDP

learning and train a multilayer SNN on MNIST dataset. It achieves comparable
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Figure 3.1: Generic neuron model

or better accuracy for handwritten digit recognition than other existing STDP

approaches with the similar size of trainable parameters and manually labelled

features for classification. The parameter space is analyzed to further fine-tune

the network.

3. We introduce an approximation of our STDP rule named Quantized 2-Power

Shift (Q2PS) rule which is hardware implementation friendly. This approxima-

tion produces comparable results on the handwritten recognition to the original

STDP rule.

3.2 Simplified Bayesian Neuron and STDP rules

In this section, we describe the neuron and the synapse model and discuss the sim-

plifications that allow for an efficient implementation. We also discuss the network

architecture for the MNIST digit pattern recognition, and the methods used for its

implementation.

3.2.1 Neuron Model

We utilize the generic Bayesian neuron model proposed in [76] as the starting point

and simplify the overall computation model as mentioned in [68]. For this model, we
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propose a stable and simplified STDP rule for efficient online learning. Bayesian model

has two computational stages compared to the regular integrate and fire neuron. The

first being the exponential function and the other being the Poisson firing. In the

generic neuron model as shown in Figure 3.1, the membrane potential u(t) of neuron

Z is computed as

u (t) = w0 +
n∑
i=1

wi · yi (t) (3.1)

where wi is the weight of the synapse connecting Z to its ith presynaptic neuron

yi, yi(t)is 1 if yi issues a spike at time t, and w0 models the intrinsic excitability of the

neuron Z. The stochastic firing model for Z, in which the firing probability depends

exponentially on the membrane potential, is expressed as

prob (Z fires at time t) ∝ exp(u (t)) (3.2)

In Eq. 3.2, small variations of u (t) resulting from the synaptic weight changes will

have an exponential impact on the firing probability, which is not desirable. A range

mapping function is proposed as detailed in [68] to mitigate this effect. However, this

introduces additional complexities.

Since the probability of the Bayesian neuron’s output firing rate has an exponen-

tial dependence on the membrane potential, the computation must be limited to a

small region of the exponential curve. This keeps the neuron computation within

its dynamic range, else it will saturate quickly or the firing probability builds up ex-

tremely slowly. This small region of the exponential curve can be safely approximated

with a linear equation. However, the accumulation of weighted spikes approximates

a linear function therefore a good dynamic range can be achieved.

For a Bayesian neuron, output firing pattern resembles a Poisson process. To

model this, we randomly vary the threshold after every spike generation. By limiting
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the range of threshold change to a small interval which satisfies the exponential distri-

bution with unit rate, we achieve a firing pattern which is similar to Poisson spiking

behavior as described in the model. With these simplifications and approximations,

we can replace the Bayesian neuron model with an Integrate and Fire neuron with a

stochastic threshold model. The general behavior of the neuron is still similar to the

Bayesian neuron model even with these simplifications. Now the membrane potential

u (t) of neuron Z is computed as

u (t) = w0 + u (t− 1) +
n∑
i=1

wi · yi (t) (3.3)

The neuron Z spikes when the membrane potential crosses the threshold and is

set to 0 (reset potential).

3.2.2 Stable STDP Rule

STDP forms the basis for learning in our synapse model. We use a multiplicative

STDP rule where the amount of weight increase scales inversely with present weight

size. Thus, learning is inherently stable and robust producing a unimodal weight

distribution. However, it lacks synaptic competition which is an attractive feature

which enables learning discriminative features in the input. In sharp contrast, in

additive STDP the weight change is independent of the current weight, producing a

bimodal distribution of weights and strong competition. However, without any hard

weight constraints, the learning is fragile and unstable.

We model our multiplicative STDP rule such that the weight change of a synapse

has an exponential dependence on its current weight as shown in Figure 3.2a. Thus,

in the text we refer to this rule as the Exp rule. Update for the weight wi of i th

synapse of the neuron Z from Eq. 3.3 is calculated as below
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: (a) Current weight vs Weight change for learning rates (b) STDP windows
(c) Stable unimodal distribution over period of learning (20, 60 and 100 % of final dis-
tribution) (d) Convergence of mean absolute weight change (e) Bimodal distribution
over period of learning (f) Learnt weights for pixel intensities
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If tpost − tpre < τLTPthen, ∆wi = ηLTP e
−wi , wi = wi + ∆wi (3.4)

If tpost− tpre > τLTPor tpre− tpost < τLTD then, ∆wi = ηLTDe
wi , wi = wi−∆wi (3.5)

where tpre and tpost are the time steps at which the pre and post-synaptic neuron

spikes, are the LTP and LTD window and ηLTP and ηLTD are the LTP and LTD

learning rates respectively. The intrinsic excitability w0 of neuron Z from Eq. 3.3

is potentiated when neuron Z fires and depressed when it does not fire with the

same exponential weight dependency as for the synaptic weights. These updates are

linearly added to their current counterpart.

Plasticity is implemented with LTP and LTD windows as shown in Figure 3.2b:

when a postsynaptic spike occurs after a presynaptic spike and is within the LTP

window, the synapse is potentiated according to Eq. 3.4. We assume all the STDP

events to be independent such that only the first postsynaptic spike causes potenti-

ation on that synapse even when the subsequent postsynaptic spikes are within the

LTP window. If the postsynaptic spike falls outside the LTP window or there is

no presynaptic spike, then the synapse is depressed as per Eq. 3.5. And similarly,

only the first presynaptic spike within the LTD window after a given spike depresses

the synapse; subsequent presynaptic spikes do not depress the synapse further before

another postsynaptic spike occurs. Whereas a presynaptic spike outside the LTD

window neither potentiate nor depress the synapse.

Ubiquity and fidelity of STDP as a general learning rule [77, 78] has regularly been

in question despite it being biologically realistic. Phenomenological STDP rules that

have simple biological precedence such as rate-based and spike-timing based models,

are inherently unstable [74]. For proper utilization, they demand complementary

mechanisms. Biologically-inspired mechanisms and ad-hoc mechanisms such as weight

constraints, weight normalization [79], firing rate normalization, and homeostasis [52]
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are usually used. These add computational complexity when simplicity is necessary,

especially for an efficient and large-scale implementation.

The above-mentioned complementary mechanisms are not required for our STDP

rule presented in Eq. 3.4 and 3.5 as it is inherent stable. The stability of a STDP rule

can be shown with three main properties [80, 81]: (a) shape of the weight distribution

is stable over time such that even if the synaptic weights change, the distributions

follow similar patterns, (b) unimodal distribution such that all the weights are not

concentrated at the boundaries and (c) limited weights without hard weight con-

straints such that no synaptic weights explode. We check our STDP rule for these

properties through simulations to verify its stability empirically.

Figure 3.2c shows the distribution of synaptic weight during different learning

stages when the input to the network with one SIF neuron and 28x28 input neurons

is random and uncorrelated, and the synapse is updated through our STDP rule. Per-

taining to the properties of a stable STDP rule. Figure 3.2c shows that our method

resonates those properties very closely. The distribution achieved is unimodal, and its

shape is stable over the period of learning. And the weights are naturally constrained

between the soft limits imposed by the formulation of the rule itself and not with any

complimentary mechanism. Figure 3.2a shows that the weight updates are exponen-

tially proportional to the current weights during both LTP and LTD; if the current

weight is highly positive, then it is penalized with a lower weight update for LTP case

(larger weight update for LTD case). On the contrary, if the current weight is highly

negative, then a larger weight update is produced for LTP case (lower weight update

for LTD case). Because of this weight dependence, strong synapses experience a net

depression, whereas weak synapses experience a net potentiation whose magnitudes

are controlled separately through separate learning rates for LTP and LTD in our

STDP rule. This net depression and potentiation confines the synaptic weights and

stabilizes the weight distribution. As the mean absolute weight change converges
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asymptotically, the distribution reaches equilibrium and becomes stationary. We can

see that in Figure 3.2c where the change in weight distribution decreases and becomes

stationary as the mean absolute weight change shown in Figure 3.2d converges and

remains in that equilibrium.

Usually in weight-dependent STDP models, there is a lack of competition [74].

Competition between inputs allows for a specific set of input synapses to drive a

neuron into firing. This is important for discriminative applications. In STDP models

in which potentiation and depression are independent of the synaptic weight, there is

strong competition [73, 82]. In these models of constrained plasticity, the potentiation

mainly occurs if the input has caused the spike. When one input starts driving

the postsynaptic spikes and its weight increases, the other inputs will become less

correlated with the postsynaptic spikes, and these inputs will effectively be depressed.

This pushes the distribution of the weights towards the applied hard constraints

forming a bimodal distribution.

To replicate such competitive behavior amongst the inputs and still maintain a

stable distribution, [74] utilizes Activity-dependent scaling of the synaptic weights.

Activity-dependent scaling is a homeostatic mechanism in which the neuron reacts

to changes in the postsynaptic activity, scales all synapses to keep the activity of the

neuron within bounds. The scaling is multiplicative. If one synapse is potentiated,

the postsynaptic activity rises, and the activity-dependent scaling kicks in to reduce

all the synaptic weights. The shape and stability of the weight distribution are not

affected by the scaling.

In our STDP model, a behavior similar to activity-dependent scaling is induced

through the elongated symmetric STDP window used as shown in Figure 3.2b. LTD

not only happens when the presynaptic spike falls in the LTD window but also when

the postsynaptic spike falls outside LTP window or there is no presynaptic spike at

all. So, when a certain synapse is potentiated due to strong correlation, synapses
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Figure 3.3: Correlation graph between synaptic weight and log conditional probability
with constant c=30

with weak correlation are depressed along with synapses with no correlation. This in-

duces good competition and learns discriminative separation even between correlated

inputs. When trained on a MNIST image, this induces good competition producing a

distribution similar to that of the input or a bimodal distribution with sparse strong

synapses and dense weak or silent synapses [83] as seen in Figure 3.2e. And Figure 3.2f

shows that higher pixel intensities induce higher weights, whereas lower pixel inten-

sities induce lower to negative weights in the corresponding synapses driving weights

to clusters in the opposite ends reiterating the sharpness of the discriminative ability.

One important feature of the Bayesian neuron model is that it allows for neural

sampling [76] such that the weight of the synapse is the log conditional probability of

pre-synaptic neuron firing given the post-synaptic neuron has fired with a log constant

(logP (y = 1 | Z = 1)+) and each spike is a sample of the posterior distribution. This

allows for Bayesian inference. Using an exponential dependence of weight update on

the current weight allows to retain the log conditional property as shown empirically

by the correlation graph in Figure 3.3. As the theoretical results remain true [76] for

any c > 1, we choose c = 30. Under this condition, the correlation coefficient of the
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synaptic weight and the log conditional probability (logP (y = 1 | Z = 1) + log 30)

is 0.9885. This also accounts for the learnt weights being positive and negative.

3.2.3 Quantized 2-Power Shift Rule

In terms of computation, the proposed STDP rule requires an exponential and a mul-

tiplication operation for both LTP and LTD for each synapse. From the perspective

of efficient digital hardware implementation, these are expensive operations in terms

of circuit area and computation time as explained in [68].Thus, substituting these

with simplified operations is highly desirable. In the next, we introduce a Quantized

2-power shift rule (Q2PS), which approximates our STDP rule in Eq. 3.4 by removing

both multiplication and exponential. The approximation is summarized in

If tpost − tpre < τLTP,∆wi = ηLTP2−wi = 2η′LTP − wi

where η′LTP = log2 ηLTP

(3.6)

If tpost − tpre > τLTP or tpre − tpost < τLTD,∆wi = ηLTD2wi = 2η
′
LLD̄+Wi

where η′LTD = log2 ηLTD

(3.7)

We denote Q = η′LTP−wi for LTP and Q = η′LTD+wi for LTD, also let Q̄ be

the quantization of Q through priority encoding. This encoding converts the binary

representation of Q into a new binary representation with the index of the most

significant active input bit as the highest priority. For example, if Q = 12 then its

binary representation is 1100. The priority encoding of this is 1000, hence Q̄ = 8.

After the quantization, the change of the synaptic weight is calculated by shifting the

value 1 by Q̄, either left or right, based on the sign of that result. In other words, for

both cases

59



∆wi =

 1�
∣∣Q̄∣∣ , if Q̄ > 0

1�
∣∣Q̄∣∣ , if Q̄ < 0

(3.8)

where� and� represent binary shift left and shift right operations, respectively.

This approximation allows implementation of the STDP rule presented in Eq. 3.4

and 3.5 on digital hardware by using a priority encoder, negligibly small lookup to

determine
∣∣Q̄∣∣ from the encoded value, barrel shifter and an adder circuit. Please

note that, based on Eq. 3.6 and 3.7, ∆wi should be calculated as 2Q, which can be

obtained by shifting the value 1 by Q. We refer to this as 2P approximation. However,

because the value of Q̄ has much coarser resolution than Q, the implementation of

Q2PS approximation is much simpler than the 2P approximation. We refer to the

original STDP rule in Eq. 3.4 and 3.5 as Exp rule. Figure 3.4 compares the ∆wi

calculated using the Exp, 2P and Q2PS rules, with a learning rate of 0.08 for all the

cases. As we can see, the Q2PS rule provides multilevel quantization, which enables

similar quality of trained weights even with approximations when compared to Exp

rule. This way, we can perform online learning in a quick and efficient manner from

the hardware perspective with a smaller footprint in terms of circuit area and energy

consumption.

3.3 Experiments

We build a spiking neural network to classify MNIST [84] handwritten digits and

perform the analysis of our proposed STDP learning rules. Both supervised learning

and unsupervised learning for training the entire network including the classifier layer

are discussed. We use a SNN simulator SpNSim [68] to simulate all the experiments

presented in the paper. SpNSim is a multithreaded and scalable simulation platform

built using C++. It is flexible and vectorized for efficient evaluation and capable of
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Figure 3.4: Comparison of the introduced STDP rules

handling large-scale networks of mixed neuron models.

3.3.1 Network Architecture

We create a 3-layer network as shown in Figure 3.5a. The input layer contains 28x28

neurons (one per pixel), the second layer has variable number of stochastic integrate

and fire (SIF) neurons for different trials (the hidden layer), and the third layer is

the classification layer with 10 SIF neurons (one per class). The input is fed to the

input layer which encodes the pixel intensities with 0 Hz – 300 Hz firing rates and

the classification result is obtained from the classification layer. Input layer is fully

connected to the hidden layer and hidden layer to the classification layer, and all

these synapses are plastic.

Along with the SIF neurons, hidden and classification layer neurons there are

supporting ReLU neurons [68] for lateral inhibition. At both layers, the ReLU neurons

(inhibitory) form WTA (Winner Take All) circuits with a connectivity as mentioned

in [68]; one-to-one connection from SIF neurons to the ReLU neurons and the ReLU

neurons are connected to all the SIF neurons except for the one from which it receives

a connection. Hard or soft WTA behavior can be achieved based on the degree of
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inhibition delivered. Hard WTA happens when the inhibition is strong such that

it brings down the firing rate of the non-preferred SIF neurons to zero, resulting in

only one neuron with the highest excitation being active. On the other hand, if a

plural voting action is required within the set, the degree of inhibition is tuned to

be moderate. This makes SIF neurons fire with different stable rates, which is a soft

WTA behavior where firing rate is proportional to their relative excitation levels.

The hidden layer learns features of the MNIST images and more than one neurons

could learn a feature concerning a certain class, thus requiring multiple neurons in

the layer to be firing. Thus, the hidden layer is set to a soft WTA inhibition level.

Whereas in the classification layer, a neuron is associated with a class in a one-to-one

basis, thus requiring only one neuron to fire in a period. Hence, the classification

layer is set to a hard WTA inhibition level. And these synapses are not plastic.

The stochasticity of the SIF neuron is important during learning to allow the

neurons in both layers learn unique features. However, having similar stochasticity

during recall becomes counterproductive as inappropriate inputs could excite a certain

feature in the hidden layer, and similarly an incorrect feature could excite an incorrect

neuron in the classification layer producing an incorrect classification. Thus, during

the recall phase, we disable learning and fix each neuron’s spiking threshold to make

them deterministic.

3.3.2 Learning

Using our STDP rule, we perform both unsupervised and supervised learning. STDP

is known to have the effect of concentrating high synaptic weights on afferents that

systematically fire early. It makes neurons naturally selective to patterns that are

reliably present in the input. These patterns are learnt without supervision and can

be used for categorization and discrimination. In this way, the hidden layer learns

patterns from the input layer as shown in Figure 3.5a.
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For classification purposes, supervision is necessary to label the neurons that have

learnt discriminative capabilities, thus categorization is in order during recall. In [52],

the feature learning neurons are manually labeled after training and their collective

firing rates are used to classify digits. This methodology creates issues in cases when

the learnt feature is not of a distinguishable class or it is common to several classes,

e.g., slanted “1” is a sub feature of “7”, “3” has feature elements common to “5” and

“8” and so on. Thus, labeling these features to one class or the other could lead to

mislabeling of undistinguished features or underutilization of a common feature. To

avoid such situations, we add a classification layer which learns intermediate features

from all the available learnt features in the hidden layer without having to manually

label them. The classification layer has one neuron per class to perform categorization

such that the neuron with the highest firing rate is the predicted class. And to train

the classification layer, we introduce a supervised learning approach using our STDP

rule on top of the already trained hidden layer.

During supervised training in ANN, the neurons in the classification layer are

driven by the class labels and the error is propagated down the network layers. Here

we add a neuron per class which fires at a specific rate based on the class being

observed. We call this Teacher neuron. These neurons are connected one-to-one to

the classification layer as shown Figure 3.5a. They excite one neuron per class to fire

at a specific rate when the label is presented. The teacher neurons to classification

layer neuron synapses are not learnt. However, it excites the connected classification

neuron and creates differentiable time dependent relations between the classification

layer and the hidden layer. Based on our STDP rule, the active input synapses from

the classification layer to the hidden layer are potentiated and the inactive ones are

depressed, thus propagating the error down through the incoming synapses
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3.4 Results and Discussions

In this section, we present the results on the handwritten digits classification. We

also analyze the performance for different sets of parameters to present the rationale

on how to tune the network, and what could be adapted in the case of noise and

variable intensities in the input images. Finally, we discuss the quality of the features

learnt.

3.4.1 Handwritten Digits Classification

We trained a 3-layer network as presented in this section with 10 classification neurons

and with 3 variations of hidden layers consisting of 100, 400, and 1600 neurons. The

training is done layer-wise; the inputs to hidden layer synapses are trained without

supervision by presenting the complete training set once, and then the hidden to

classification layer synapses are trained with supervision on top of the trained hidden

layer by presenting the complete training set again. Each input neuron is connected to

one pixel in the image and fires at a rate (maximum rate is 300Hz) that is proportional

to the pixel intensity. No preprocessing is done on the images and we present each

training image for 200 time steps during training. The learnt features and hidden to

classification layer synaptic weights are shown visualized in Figure 3.5a. The same

parameters are used throughout all these experiments.

Figure 3.5a also shows the t-SNE visualization for the input layer and the hidden

layer which provides a qualitative analysis. This technique performs t-distributed

stochastic neighbor embedding, which maps high-dimensional data that lie on several

different, but related, low-dimensional manifolds to lower dimensions by capturing

the local structure of the high-dimensional data. In our case 784 dimensions of the

input layer and 100 dimensions of the feature layer are mapped to 2 dimensions,

respectively. These visualizations are made using the firing rates of all the neurons in
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(a)

(b)

Figure 3.5: (a) Network architecture showing the connectivity, input, learnt features
by hidden and classification layer, the labels and t-SNE visualizations (b) Test accu-
racies for different sized networks

that layer. It is clear from the figure that the proposed STDP rule can form a tight

clustering of the input space when mapping it into the feature space. This generates

features that can be more easily classified by the classification layer.

The three networks; 100, 400, and 1600 hidden neurons achieved an average clas-

sification accuracy of 85, 87.4, and 89.7% for our STDP rule, respectively, as shown

in Figure 3.5a. We achieve better classification accuracy for networks with 100 and

400 hidden neurons compared to [52] for their respective network sizes, whereas for

1600 hidden neurons our results are slightly lower. This lower accuracy for a high
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Figure 3.6: Firing rate curve with and without adaptation for different pixel intensities

number of hidden neurons can be attributed to overfitting due to the large number of

trainable parameters per neuron for the classification layer. [52] don’t face this issue

as they manually labelled the features for classification instead of a classification layer

trained on top of those learnt features. We could resolve this issue in the future by

using dropout while training. The accuracies of 2P and Q2PS STDP rules for these

networks are also shown in Figure 3.5b. As can be seen from the results, even with

approximations and quantization, the Q2PS rule achieves accuracies reasonably close

to the Exp STDP rule.

3.4.1.1 Classifying Images with White Noise

Background clutter is a common form of noise which reduces the effective contrast

in a real-world image inputs. This reduces the discriminative properties between

images. To test the resilience of our network at different levels of background clutter,

we create artificial MNIST test sets with Additive White Gaussian Noise (AWGN) of

different SNRs (15, 20 and 25). The results are shown in Table 3.1.

With the current temporal sparseness (maximum rate 300 Hz) for encoding the

input, the AWGN noise has a significant impact on the accuracy. In biology, the
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Table 3.1: Performance with and without adaption in presence of AWGN noise

AWGN noise
SNR

Without
adaptation

With
adaptation

15 19.1% 34.5%
20 40.9% 83.9%
25 78.6% 85%

Table 3.2: Performance with and without NWTA for different intensity MNIST im-
ages

Intensity
level

Without
NWTA

With
NWTA

25% 62.9% 79.7%
50% 81.5% 84.1%
100% 85% 84.9%
Mixed 82.7% 84.4%

LGN neuron in the early visual pathway employs an adaptive strategy [85] which

decreases the temporal sparseness (increasing the firing rate) and shifts stimulus–

response curves toward higher stimulus intensities when the effective contrast is re-

duced due to white noise. This reduces the spike-timing jitters induced by lower

effective contrast by increasing the level of discrimination (in terms of firing rate) be-

tween similar stimuli and ignoring low intensity stimuli in the background. We apply

a similar adaptation strategy to deal with the AWGN noise. As shown in Figure 3.6,

we shift the intensity-firing rate (stimulus-response) curve towards higher intensities

and increase the range of the firing rate to 600 Hz. This leads to a dramatic improve-

ment in accuracy in the presence of AWGN noise. But this comes with the decrease

in sparsity and reduction in sensitivity to lower intensity discriminative properties.

3.4.1.2 Classifying Images with Variable Intensity

Resistance to variation in the image is important. The most common variation is

the intensity of the image. In real life, lighting conditions result in different intensity

images. Thus, we create artificial MNIST test sets with 25% intensity, 50% intensity
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and mixed intensity to test our network on. The results are shown in Table 3.2.

This leads into the discussion of when normalization becomes useful in our net-

work. Normalization mechanisms allow for intrinsic modulation of the firing rates of

the neurons in a layer; increase if the rate is low, and decrease if the rate is high.

Thus, keeping all the neurons approximately within a range of firing rates. With low

intensity images, there can be a propensity of a lack of excitation for the neurons in

the hidden layer to fire and thus for the classification layer. This negatively impacts

the classification layer’s ability to accurately categorize the image’s class.

Normalization mechanisms such as homeostasis [52] and weight normalization or

scaling [4, 86] add complexities onto the neuron model and the learning rule. With

our aim of simplicity, we utilize the normalized winner-take-all (NWTA) mechanism

as described in [68]. It adds three additional neurons in the hidden layer; upper

limiter (UL), lower limiter (LL), and exciter (Ex), which checks if the upper limit of

the desired firing rate range is reached and increases lateral inhibition, checks if the

lower limit of the desired firing rate is reached and provides additional excitation, re-

spectively. We incorporate NWTA in the hidden layer as low intensity image directly

impacts its firing rates. The results with and without NWTA mechanism is shown

in Table 3.2. for a network with 100 neurons in the hidden layer averaged over three

experiments.

From Table 3.2, we can see that normalization results in improvement for lower

intensity images, whereas for normal intensity images normalization is redundant as

the network was trained using normal intensity images.

3.5 Conclusion

In this work, we presented a simplified neuron model and introduced a stable and

competition inducing STDP learning rule. With simplicity in terms of computation
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and hardware implementation being a motivating factor, we also introduced Q2PS

rule which can be implemented with minimal digital hardware resources. We also

combined unsupervised and supervised learning with STDP using a layer-wise training

approach, applied the network for handwritten digit classification with competitive

results, and provided analysis for parameter tuning.
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Chapter 4

Approximating Back-propagation

for a Biologically Plausible Local

Learning Rule in Spiking Neural

Networks

4.1 Introduction

In contrast to SNNs, artificial neural networks (ANNs) are comprised of neurons with

continuous non-linear activation functions and communicate through high-precision

values. These neurons are differentiable enabling gradient-based optimization meth-

ods and they can be stacked in multiple (deep) layers producing a locally robust

universal function approximator. Recently, with the availability of computing power

and large labeled datasets, ANNs have become very deep, producing breakthrough

performances in various fields of pattern recognition. Despite their effectiveness,

they are computationally expensive and not suitable for implementations on portable

hardware.
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Even though ANNs were originally inspired by the brain and the representations

learned by ANNs in tasks like image classification is shown to be similar to those

observed in the receptive fields of the visual cortex [87], learning the synaptic weights

through backpropagation appears biologically unrealistic [88] in various ways: (a)

Neuron models in ANNs send a continuous-valued output which is biologically unre-

alistic. Whereas, it is not trivial to compute their derivatives. (b) Neuron activities

are not differentiable, while gradient descent requires local derivatives of the neuron

to backpropagate the error. (c) The connection between neurons in SNN is unidi-

rectional. A backward path must be added specifically. However, it then will create

the ”weight transport” problem. Two copies of the weight must be stored in both

the forward path and backward path. Since the weight is constantly changing dur-

ing learning, maintaining the coherence between the two copies will create significant

overhead. (d) Errors in ANN are propagated as real values. This representation is

not compatible with SNN.

In this chapter, we systematically solve the above biological implausibility issues

with backpropagation with an intent to approximate the entire backpropagation al-

gorithm utilizing only the spiking neurons and adapt it towards a local learning rule

which resembles STDP. We validate the approximation and the local learning rule

using three benchmarks. The following summarizes our contributions:

1. We formulated the backpropagation algorithm in terms of spiking neurons to

approximate the non-linearity of the forward pass and the linearity of the back-

ward pass.

2. We show that, through a proper connection between the forward and backward

paths, gradient descent can be achieved using local weight update that resembles

STDP. This connection is derived by adapting the back-propagated errors as

the target difference in the difference target propagation algorithm.
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3. We propose to use a neural circuit to calculate the derivative of the L2 loss in

terms of spikes.

4.2 Related Works

There have been various approaches to adopt the backpropagation algorithm to train

deep SNNs directly. One category of approaches keeps track of the membrane po-

tential at spike times and back-propagate errors based on that. SpikeProp [89] is the

first attempt to train an SNN using such an approach. However, SpikeProp is very

limited to single-spike learning. A similar category of approach [90] [33] treats the

discontinuities during spike times as noise and smoothens the membrane potential

to essentially make it continuous. These approaches utilize the spike rate to com-

pute the loss and membrane potential to compute the error derivative, and hence

create a discrepancy. [34] proposed an event-driven random backpropagation (eRBP)

algorithm simplifying the backpropagation chain path. However, this work requires

multicompartmental neurons to enable errors to locally modulate plasticity. In [35],

a supervised learning method was proposed (BP-STDP) where the backpropagation

update rules were converted to temporally local STDP rules for multilayer SNNs.

In summary, existing works have some major limitations: a) they either require

high-precision back-propagating error derivatives or do not adhere to the linearity

of the original backpropagation algorithm. b) Each neuron must know the mem-

brane potential of its presynaptic neighbors in order to determine the synaptic weight

change.c) Each neuron must also know the error derivatives of its postsynaptic neigh-

bors in order to calculate its own error derivative. All these limitations violate the

constraints of the local communication rule in the spike domain. Meanwhile, there are

approaches [91][92] to convert ANNs to SNNs, which is not condusive to neuromorphic

implementation and are thus out-of-scope for this work.
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Figure 4.1: Spiking Neuron Model

4.3 Methods

In this section, we analyze the root cause of biological implausibilities in the back-

propagation algorithm and later we will show that they can be eliminated for SNNs

through a suitable sequence of approximation techniques. This includes the approx-

imation of the derivatives of spiking neurons (Section 4.3.1), representing linearly

propagated errors using spiking neurons (Section 4.3.2), local learning through error

spikes (section 4.3.3) and a completely spike-based computation of L2 loss’s derivative

(Section 4.3.4). The whole method is put together in the algorithm in Section 4.3.6.

Table 4.1 provides a list of symbols used relating to the neuron’s state and output for

clarity.

Symbol Symbol Meaning
Forward pass Backward pass

U E Membrane potential

u ε
Accumulated
sub-threshold

membrane potential
h e Spike count
s es Spike train

Table 4.1: Symbols
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Figure 4.2: Approximation of the forward pass

4.3.1 Derivatives of Spiking Neuron Function

Figure 4.1 shows a general model of a simple neuron in a neural network in which there

are a set of inputs (x1, x2, x3), synapses from those inputs to the neuron (w1, w2, w3),

those inputs are accumulated and then goes through an activation function to produce

an output y. In SNNs, the inputs and outputs are spike trains, and the activation

function is a discontinuous threshold function. The Leaky Integrate-and-Fire (LIF) is

the most popular neuron model [35] because of its simplistic representation of a spiking

neuron. Here, we utilize a discrete-time variant of the non-leaky IF neuron that

accumulates input spikes over time and produces a binary spike when the membrane

potential crosses a clear threshold. The membrane potential of neurons in layer i at

time t is:

Ui(t) =
∑

wi−1,i.si−1(t) + bi + Ui(t− 1) (4.1)

if Ui(t) ≥ θ then si(t) = 1, else si(t) = 0

where wi−1,i is the synaptic weight between pre-synaptic neurons in layer i − 1
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and post-synaptic neurons in layer i, bi is the bias. si−1(t) and si(t) are pre and post-

synaptic spike trains, respectively. The neuron spikes when the membrane potential

reaches the threshold θ and it’s membrane potential is reset to the resting potential

of 0.

The spike in the spike train is represented as a delta Dirac function at the spike

time ts

s(ts) = δ(t− ts)

such that the sub-threshold membrane potential of the postsynaptic neuron between

consecutive spikes si(ts1) and si(ts2) is given by

Ui(t) =
∑

wi−1,i(

ts2∑
t=ts1

δ(t− ts)) + bi(ts2 − ts1) (4.2)

The activity of a neuron can be represented either in terms of their rate or spike

count. Here, as we intend to compute the loss based on the spike counts, we utilize

the spike counts as the neuron’s activity which is given by the sum of delta Dirac

functions over the spiking time interval T as shown in Eq. 4.3.

h(T ) =
T∑
t=0

s(ts) =
T∑
t=0

δ(t− ts) (4.3)

where ts are the post-synaptic spike times of neuron j.

The spike counts can also be represented in terms of the neuron ’s membrane

potential.

h(T ) = f(u(T )) =

⌊
u(T )

θ

⌋
(4.4)

where θ is the spiking threshold and u(T ) is the accumulated sub-threshold mem-

brane potential computed in Eq. 4.2 over the time period T
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u(T ) =
N∑
s=0

U(ts)

where ts is the post-synaptic spike time, N is the number of spikes in the post-synaptic

spike train such that T > tN

The Figure 4.2(a) shows the function f(u) for the spike count over time T is

a staircase function of the total accumulated sub-threshold membrane potential u.

This represents the activation function of the spiking neurons over that time window.

Figure 4.2(b) shows a strong correlation of the hidden layers in the forward pass

between the ANN and the SNN with the same weight initialization and input sample

in the MNIST experiments. The ladder-like effect seen in Figure 4.2(b) is due to the

discretization caused by the limited time window.

The function is clearly discontinuous and has no derivatives when u = nθ where

n = 1, 2, .., T . The derivative is zero at all other u. To estimate the function’s

gradient, we approximate f(u) by a piece-wise linear function as shown by the dotted

line in Figure 4.2(a). The function is zero for u < θ, then increases linearly with a

slope 1
θ
. This approximation resembles a ReLU function shifted by θ. This shift by

θ prevents computation of the gradient based on the membrane potential before the

first spike. This is important as we compute the loss in terms of spikes and require

the gradient on the basis of the spikes. Thus, the derivative of f(u) is approximated

as

h′ = f ′(u) =


1
θ

if u ≥ θ

0 if u < θ

(4.5)
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Figure 4.3: Approximation of the backward pass

4.3.2 Spike Representation of Error Derivatives

Let us assume a network with l layers. For a hidden layer i which is post-synaptic

for layer i− 1 and pre-synaptic for layer i+ 1 in a time period T ,

ui = wi−1,i · hi−1 + bi (4.6)

and the spike count from Eq. 4.4 is

hi =

⌊
ui
θi

⌋

Now, let us assume a loss function L such that the derivative of the loss function

at the i+ 1 layer is

εi+1 =
∂L

∂hi+1

Now, using the chain rule, the error derivative at layer i is:

εi =
∂L

∂hi
=

∂L

∂hi+1

· ∂hi+1

∂ui+1

· ∂ui+1

∂hi
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εi = εi+1 ·
1

θi+1

· wTi,i+1 when ui+1 > θi+1 (4.7)

We intend to represent the error derivative using spiking neurons such that ε now

represents the accumulated sub-threshold membrane potential for spiking neurons

without bias. Such that we utilize the same activation function as for the feedforward

path given in Eq. 4.4 to get a formulation as shown in Eq. 4.6

εi = ei+1 · wTi,i+1 (4.8)

where e3 is the error spike count such that we can model the error network with

IF neurons as well. In other words, εi is the accumulated sub-threshold membrane

potential of the error neuron whose input is the spikes ei+1 from the upper-level error

neuron.

So, the membrane potential of error neurons in in layer i at time t is:

Ei(t) =
∑

wTi,i+1.esi+1(t) + Ei(t− 1)

if Ei(t) ≥ θ then esi(t) = 1, else esi(t) = 0

where wi,i+1 is the synaptic weight matrix from layer i to layer i + 1 and esi+1(t) is

the spike train in the feedback path from layer i + 1. The neuron spikes when the

membrane potential reaches the threshold θ and it’s membrane potential is reset to

the resting potential of 0.

The activation function in Eq. 4.4 approximates a ReLU function which is non-

linear. To approximate the linearity of the backward pass of backpropagation, we

adopt a two-channel spikes approach; one for positive and another for a negative

spike as mentioned in [30] and the spike count for the error derivatives is given as
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e =


e+ =

⌊
ε
+θ

⌋
if ε > 0

e− =
⌊
ε
−θ

⌋
if ε < 0

0 otherwise

(4.9)

Eq. 4.9 essentially performs a linear combination of positive and negative versions

of the non-linear function Eq. 4.4 to approximate a linear function as shown in Figure

4.3(a). Figure 4.3(b) shows a fairly strong correlation of the hidden layers in the

backward pass between the ANN and the SNN with the same weight initialization

and input sample in the MNIST experiments.

4.3.3 Local Learning

Given Eq. 4.5 and 5.3 and the chain rule, we can derive the weight update for

incoming weights in layer i as

∆wi−1,i = εi · h
′

i · hi (4.10)

In terms of the synapse, this weight update is based on the local variables pre-

synaptic activity and derivative of the postsynaptic activity. However, the error

derivative is not local to the synapse. So, we take inspiration from the concept of

an alternate credit assignment method called difference target propagation [93] and

modify it to derive a local weight update formulation.

The main idea of target propagation is to provide each feedforward unit’s activa-

tion a target value which is close to the activation value. Once the target is computed,

the gradient of the loss between the feedforward value and the target value is propa-

gated only locally. In the limit where the target is very close to the feedforward value,

target propagation should behave like backpropagation.

Let us assume a network with l layers. Let ĥi be the target spike count for the
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hidden layer i, such that the local L2 loss is given as

L(ĥi, hi) =

∥∥∥∥ĥi − hi∥∥∥∥2
2

such that the local weight update using the chain rule is given as

∆wi−1,i =
∂L(ĥi, hi)

∂wi−1,i
=
∂L(ĥi, hi)

∂hi
· ∂hi
∂ui
· ∂ui
∂wi−1,i

∆wi−1,i ∝ (ĥi − hi) ·
1

θi
· hi−1 when ui > θi (4.11)

where the threshold θ is a constant that is incorporated in the learning rate η such

that the local weight update is given as

∆wi−1,i = η · (ĥi − hi) · hi−1 (4.12)

In [93], the targets are determined utilizing an autoencoder with inverse synaptic

weights which are learnt through reconstruction. Here, we use the error derivatives

as the difference to determine the target activation value.

ĥi = f(ûi) = f(ui + ei · wei)

From Eq. 4.4,

ĥi =

⌊
ui + ei · wei

θi

⌋
Now, if wei = γθi then

ĥi = hi + γei (4.13)

Eq. 4.13 essentially provides the connectivity from the error neurons to the feed-

forward neurons as shown in Figure 4.4(b) which is a one-to-one connection with
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non-plastic synaptic weight equal to a constant γ factor of the spiking threshold, to

produce the target spike count.

From Eq. 4.13 we can also conclude

ĥi − hi ∝ ei (4.14)

Interestingly, given Eq. 4.14, the local weight update in Eq. 4.12 relates closely

to the formulation of the rate-based STDP rule in [94] in which the synaptic weight

update is in proportion to the product of the presynaptic activity and the rate of

change of the postsynaptic activity. This conclusion is supported by Figure 4.6 which

shows the strong correlation between our local weight update and a basic two-factor

event-based STDP rule that fits the biological findings in [7]. Thus, we call the local

learning rule given by Eq. 4.12 Error-modulated STDP (EMSTDP).

4.3.4 Derivative of L2 Loss

We utilize the L2 loss for the output layer in a network with l layers given as

L(ĥl, hl) =

∥∥∥∥ĥl − hl∥∥∥∥2
2

where ĥo and ho are the target and output spike counts respectively.

L2 loss’s derivative results in a simple linear combination of the target and the

output value

∂L(ĥl, hl)

∂hl
= (ĥl − hl)

The choice of L2 loss is preferable as its derivative can be implemented simply by

a specific connectivity as shown in Figure 4.4(b) of IF neurons whose membrane
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Figure 4.4: Network structures

potential is given as

El(t) = wLŝl(t) + (−wL)sl(t) + El(t− 1)

where ˆsl(t) and sl(t) are the target and output spike trains respectively and wL is

the non-plastic synaptic weight to the neuron that asynchronously computes the loss

gradient in terms of spikes. The neural circuit is shown in Figure 4.4(b) with wL = 1.

Thus, the accumulated subthreshold membrane potential of the output loss deriva-

tive is

εl = wLĥl + (−wL)hl
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And its propagated backwards as the error derivatives for the hidden layer as per Eq.

4.9 with a threshold θl. As the loss is determined per spike basis, the target output

firing rate dictates the choice of θl. For example, if wL = 1 then for a target output

firing rate of 0.2 we fix the θl to 5.

4.3.5 Feedback Alignment

Probably, one of the most important issues is the weight transport problem in back-

propagation in terms of biological plausibility. Two coherent copies of the weight

must be stored in both the forward path and backward path, but there is no known

biological mechanism for synapses to know the synaptic strength of other synapses.

Also, since the weight is constantly changing during learning, maintaining the co-

herence between the two copies will create significant overhead. [95] proposed the

Feedback Alignment (FA) method, which involves using fixed and random weights

for the feedback path to convey error signals with no assumptions on its structure.

In fully connected networks with FA, it was observed that the angle between the

back-propagated gradient with symmetric weights and the FA propagated gradient

converges from approximately orthogonal to roughly 45◦, meaning that the FA weight

updates are correlated but not identical to those with symmetric weights. [96] intro-

duced direct feedback alignment (DFA) in which the output error signal is propagated

directly to all hidden layers instead of through adjacent layers using fixed and ran-

dom weights. In this work, we adopt both FA and DFA schemes to avoid the weight

transport problem. The resulting networks are shown in Figure 4.4(c).

4.3.6 Error-modulated STDP pipeline

The formulation provided in the previous sections shows how to represent the error

and backpropagate it in the spike domain. It also provides a guideline to design the

feedback path including its connectivity and neuron model as shown in Figure 4.4. In
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Algorithm 1: Error-Modulated STDP algorithm

Initialization: Time window T

Spiking neuron i in forward pass
Incoming spike train si−1
hi, ĥi, hi−1 ← 0
begin

while t < T do
si(t) = 0
Ui(t)+ = bi
if si−1(t) == 1 then

Ui(t)+ = wi−1,i
hi−1 + +

if esi(t) == 1 then
Ui(t)+ = γθi

if Ui(t) ≥ θi then
si(t) = 1
Ui(t)+ = 0
if t < T/2 then

hi + +
else

ĥi + +

∆wi−1,i = η(ĥi − hi) · hi−1
wi−1,i+ = ∆wi−1,i

Spiking neuron i in backward pass
Incoming spike train esi+1

begin
while t < T do

esi(t) = 0
if t > T/2 then

if esi+1(t) == 1 then
Ei(t)+ = wi+1,i

if Ei(t) ≥ θi then
esi(t) = 1
Ei(t) = 0
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Figure 4.4, red solid directed lines denote plastic synapses, whereas blue lines denote

fixed synapses. Figure 4.4(a) denotes a vanilla multilayer perceptron (MLP) with a

forward pass of continuous-valued activations and backward pass of continuous-valued

error derivatives. Figure 4.4(b) denotes the resultant network structure for EMSTDP

derived in Section 4.3.3 and the spiking circuitry for the derivative of L2 loss. Figure

4.4(c) denotes the variations of EMSTDP in which weight symmetry is avoided by

using feedback alignment and direct feedback alignment methods.

All operations in the network with an arbitrary number of layers are asynchronous

except for the weight update which is computed only when the error derivatives have

driven the hidden layers to its targets. Algorithm 1 shows the error-modulated STDP

algorithm for the SNN with an arbitrary number of layers.

Each input sample is a sequence of spikes (Poisson sampling of input intensity)

which is presented for a period of T time steps. Given the local weight update rule

Eq. 4.12, requires the postsynaptic spike counts before it’s driven to its target and

after it settles to the target, it necessitates two phases. The spikes are propagated

through the forward pass for the whole period. After a warm-up period, ideally, T
2

when the firing rates for the hidden layer settle to a fixed point, the spiking circuit

computing the derivative of the loss starts propagating spikes through the spiking

error circuit.

The spiking error circuit drives the hidden layers in the forward pass toward

its target. In the remaining time period, the neurons in the hidden layers settle

towards its target firing rate. During the two phases, the local activity i.e., pre and

postsynaptic spike counts are recorded, and at the end of T , the synaptic weight

update is calculated by Eq. 4.12.
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Figure 4.5: Forward and backward path correlation with phase length on MNIST for
EMSTDP

4.4 Experiments and Results

In this section, we will present different experiments and their results to evaluate the

performance of the error-modulated STDP algorithm. In the first experiment, we can

observe the conclusions presented in [94] such that our algorithm produces a profile

of weight updates similar to [7]. Then, we will test the algorithm on three datasets;

MNIST digit classification, Fashion MNIST and Sign language classification.

Training an SNN can be difficult as the performance can be sensitive to some

present hyperparameters. Thus, it is important to adopt and standardize hyper-

parameter selection during training, this means weight initialization and threshold

selection for the algorithm.

In deep learning, it is essential to have a proper initialization method that should

avoid reducing or magnifying the magnitude of input signals exponentially [97]. Simi-

larly, in SNNs, it is essential to prevent vanishing and explosion of spikes through the

layers. Variance matching initialization schemes attempt to keep V ar(yL) ≈ V ar(y1),

where y1 is the output of the first layer and yL is the output of the last. In order to do

so, the following condition must be met, for any given layer l: 1
2
nlV ar(wl) = 1 where
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Figure 4.6: Correlation between EMSTDP and a basic STDP weight change

nl is the number of neurons in the previous layer. Thus, based on [97], we draw the

weights from a Gaussian distribution with µ = 0 and var = scale
nl

.

Similarly, the choice of thresholds is also important to prevent the extreme sparsity

of spikes through the layers. Here, we adopt a simple standardization of the thresholds

given by θl = nl.σ(wl).β where β is the constant that determines the percentage of

input neurons to spike for the output neuron to spike.

Additionally, we look at the forward and backward path correlation between the

SNN and ANN networks in Figure 4.5 to determine the choice of the phase length

T/2 i.e. window size T . As we can see from Figure 4.5, the correlation coefficients

saturate towards phase length 100. Thus, we choose phase length T/2 = 100 i.e.

window size T = 200 for all experiments.

And throughout this section, we will use the following notations for the SNN

network structure: Input dimensions are separated by ×, layers are separated by −

and the last dimension of the network structure is the output layer. For example,

28 × 28 − 500 − 10 represents a network input of 28 × 28 dimension, a hidden layer

with 500 neurons and an output layer with 10 neurons.
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4.4.1 STDP Observation

[94] has shown that updating the weights in proportion to the rate of change of

postsynaptic activity times the presynaptic activity yielded a behavior similar to the

STDP observations. They also linked this STDP rule to stochastic gradient descent

and suggested that STDP would do gradient descent on the prediction errors if the

rate of change of postsynaptic activity is proportional to the gradient of the error. In

our formulation of EMSTDP, we have shown that the EMSTDP algorithm satisfies the

condition, i.e., the rate of change proportional to the error gradient. Thus, utilizing

EMSTDP, we should achieve a strong correlation between our local weight update

and a basic two-factor event-based STDP rule that fits the biological findings in [7].

In a simple network with two neurons (pre- and post-synaptic) connected through

a synapse, we first simulated random sets of post-synaptic spike trains (sj) induced

by an externally driven voltage or some intrinsic bias and without any pre-synaptic

spikes. This is recorded as post-synaptic spike counts (hj). Then we simulate ran-

dom sets of pre-synaptic spike trains (si) through the synapse with a random set of

strengths. For each of these combinations, we record the new post-synaptic spike

counts (ĥj) to calculate the respective change in post-synaptic activity. For each

configuration, we now compute the weight change based on Eq. 4.12. For the same

combinations, we also apply a basic two-factor event-based STDP rule with an STDP

window of 10ms and record the corresponding total weight change. The resulting

Figure 4.6 shows the relationship between weight change for EMSTDP and the basic

STDP rule.

4.4.2 MNIST Digit Classification

MNIST [84] is a standard benchmark to test the performance of representation learn-

ing algorithms. The task is to classify handwritten digits from 0 to 9. The MNIST

handwritten digit dataset consists of 60k samples for training and 10k for testing,
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Dataset Method Learning
Network
Structure

Accuracy%

MNIST Lee (2016) [33] BP −800− 10 98.64
Lee (2016) [33] BP −500− 500− 10 98.7

Neftci (2017) [34] BP −500− 10 97.71
Neftci (2017) [34] BP −500− 500− 10 97.98

O’Connor (2016) [98] BP −300− 300− 10 96.4
Jin (2019) [99] BP −800− 10 98.84

Diehl (2015) [52] STDP −1600− 10 95
Tavanaei (2017) [35] STDP −1000− 10 96.6
Tavanaei (2017) [35] STDP −500− 150− 10 97.2

EMSTDP-SW STDP −500− 10 97
EMSTDP-DFA STDP −500− 10 96.8
EMSTDP-SW STDP −500− 500− 10 97.3
EMSTDP-DFA STDP −500− 500− 10 96.8

Fashion
MNIST

Vanilla BP BP −100− 100− 10 87.7

EMSTDP-SW STDP −500− 500− 10 86.1
EMSTDP-DFA STDP −500− 500− 10 85.3

Australian
Sign

Language
Vanilla BP BP −150− 150− 50 98.5

EMSTDP-SW STDP −150− 150− 50 97.5
EMSTDP-DFA STDP −150− 150− 50 97.1

Table 4.2: Performance Comparisons
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Figure 4.7: Performance comparison of vanilla BP, EMSTDP in MLP and EMSTDP
in SNN with symmetric weights (SW) and direct feedback alignment (DFA). The
envelopes represent the variance over 5 runs with lowest variation from 10 random
initializations

each of which is a 28 × 28 grayscale image. We perform Poisson sampling based on

the pixel intensities to flatten and encode each 28× 28 image of the MNIST dataset

into a 784 spike trains with duration T . The simulation time step is set to be 1ms.

No pre-processing or data augmentation were done in our experiments.

The experiments are carried out for two network structures 28 × 28 − 500 − 10

and 28×28−500−500−10 for symmetric weights (SW) and direct feedback weights

(DFA) each. Each configuration is run for a time window of T = 200 i.e. phase length

of 100 for each spike sequence. Each network is trained for 200 epochs, each epoch

containing randomly sampled 10k images from the training set. For comparison, we

also train an MLP with vanilla back-prop (BP-MLP) and an MLP with a network

structure and weight update as given by EMSTDP (EMSTDP-MLP). All the results

presented in this section are an average of 5 trials after 200 epochs for the best set of

parameters obtained from an extensive grid search.

Figure 4.7 shows the convergence comparison for BP-MLP, EMSTDP-MLP, and

EMSTDP with spiking neurons (EMSTDP-S) with symmetric weights (SW) and di-
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rect feedback weights (DFA) for a time window T and two-layered architecture. As ex-

pected, MLP with backpropagation converges faster and to a higher accuracy (98.2%)

than EMSTDP-MLP (97.8%) which is a modification of difference target propagation

in which the change in activity does not purely represent the error derivative. The

spiking EMSTDP performed slightly worse (97.3%) that the MLP counterpart, which

is again expected due to the loss in precision due to spike encoding and approximations

in the forward and backward pass. The DFA versions of EMSTDP-MLP (97.5%) and

EMSTDP-S (96.8%) also perform worse than their symmetric weight counterparts as

DFA is a less exact optimization method compared to BP with symmetric weights

[96].

In the experiments, we also observed that with a larger time window T there is

faster convergence and better accuracies. This is expected as the input spikes trains

are generated with Poisson sampling and a larger time window allows the spike train

to better represent the input pixel values. Similarly, through the hidden layer, the

precision of the approximated activation function is better with higher time window.

Table 5.1 shows our results in comparison to related works. The results show that

EMSTDP produces competitive to better results as compared to other works such

as [35] where the learning rule is only temporally local or performs regular forms of

STDP [52]. Our work produces comparable but slightly worse results than related

works which only approximate backpropagation in an SNN [34] [33] [99] where the

error is non-spiking. The loss in performance can be assigned to the approximation

and propagation of error derivatives using spiking neurons and also to the attempt

to adapt backpropagation to a local weight update rule.

4.4.3 Fashion MNIST

Fashion-MNIST [100] is a dataset comprising of 28 × 28 grayscale images of 70, 000

fashion products from 10 categories. The training set has 60, 000 images and the test
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set has 10,000 images and it is intended to serve as a direct drop-in replacement for

the original MNIST dataset, as it shares the same image size, data format and the

structure of training and testing splits. Table 5.1 shows our results in comparison

to an ANN with vanilla BP. The results show that EMSTDP produces competitive

results for this dataset as well.

4.4.4 Sign Language

We trained an MLP with back-prop, SNN with EMSTDP-SW and EMSTDP-DFA

with network structure 45×22−150−150−50 to recognize Australian sign language

symbols. The Australian sign language dataset [101] involves movements of the hand,

wrist, and fingers. The data set is collected from two Fifth Dimension Technologies

(5DT) data gloves, one right and one left. Each sample is a sequence of data frames

containing sensor data. Each sign has approximately 45 frames on average. Since

the number of samples is limited, we augmented the data by adding 10% noise. The

objective in this domain is: given labeled recordings of different signs, learn to classify

an unlabelled instance. Table 5.1 shows the corresponding results.

4.5 Conclusion

In this work, we devised a set of approximations and formulations to move back-

propagation towards a more biologically plausible local learning algorithm EMSTDP.

We first separate the forward and backward pass of the back-prop algorithm into

two separate spiking networks. We formulate the discontinuous activation function

of the forward and backward in terms of spike counts such that it approximates a

ReLU function and a linear function respectively. We then apply the idea of differ-

ence target propagation to derive a local credit assignment rule which resembles as

well as produce STDP characteristics. And finally, we solve the problem of weight

symmetry in back-prop by utilizing direct feedback alignment. We tested this algo-
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rithm on MNIST, Fashion MNIST, and Australian sign language dataset with results

comparable to better than related works.
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Chapter 5

In-Hardware Learning of

Multilayer Spiking Neural

Networks on a Neuromorphic

Processor

5.1 Introduction

Emerging neuromorphic hardware that adopts the event-driven behavior of spiking

neural networks (SNN) has outstanding energy efficiency and is believed to be effective

for edge computing or working with a certain type of sensor, such as dynamic vision

sensor (DVS), whose output is sparse by nature [102, 15, 103]. However, the lack

of a unified robust learning algorithm limits the SNN to shallow networks with low

accuracies. The commonly accepted synaptic plasticity rule, the Hebbian rule, is an

unsupervised learning, which cannot be directly applied to solve the vast majority

of machine learning problems that require supervised learning. A common approach

is to train an artificial neural networks (ANNs) and convert it into spiking neural
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networks [52, 104] , however, this requires the training to be performed offline.

In-hardware learning is the first step towards building an autonomous machine

that learns continuously from its environment and experiences. It means performing

inference and learning using the same model running on the same hardware platform.

It provides the ability to compensate any device variation and/or environment noise

that may exist in the inference stage of the learning process and the possibility of

incremental learning when new classes become available to the system being deployed.

However, due to the limited storage capacity of low cost edge devices, the training data

for real life in-hardware learning is streamed instead of batched. Thus, the learning

must be online. This makes in-hardware learning a more significant challenge than

offline learning.

Backpropagation, a gradient-based optimization algorithm, is a standard training

technique for ANNs. However, as mentioned in Chapter 4, it cannot be directly

applied to the in-hardware learning of an SNN running on a neuromorphic processor

due to several reasons; (1) spiking neuron’s activities are not differentiable, while to

backpropagate error, the derivatives of neuron’s activation needs to be calculated,

(2) the connections between neurons in SNN are unidirectional such that a backward

path must be added explicitly with constantly updated weights during learning , (3)

errors in ANN are propagated as real values and (4) weight update of a synapse is

not dependent only on locally available information as required in a neuromorphic

hardware [5].

Most works approximating backpropagation for SNNs have some limitations. Some

require neurons to have high-precision backpropagating error derivatives [90, 35, 98].

In some other works, neuron must know the membrane potential of its presynaptic

neighbors in order to determine the synaptic weight change [99]. In [35, 98, 34], each

neuron must also know the error derivatives of its postsynaptic neighbors in order

to calculate its own error derivative. All these limitations violate the constraints of
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the local communication rule in the spike domain and require additional hardware to

support the backpropagation of real-valued error derivatives and communication of

membrane potentials. Meanwhile, approaches [91][92], which convert trained ANNs

to SNNs, are not conducive to neuromorphic implementation.

To the best of our knowledge, the Error-Modulated Spike-timing-dependent plas-

ticity (EMSTDP) algorithm [37], discussed in Section 4, is the only supervised learn-

ing model that applies the same type of integrate and fire (IF) neuron in the forward

and backpropagation path. The algorithm enhances the biological plausibility of

backpropagation by introducing a weight update rule that resembles the rate-based

STDP [94]. However, there is still a gap between the EMSTDP algorithm and the in-

hardware online learning on a neuromorphic hardware. First of all, EMSTDP assumes

arbitrary data precision in weight coefficients and unlimited neuron and synapse re-

sources. Secondly, the weight update rule of EMSTDP and the error modulation

process still require special hardware support. Finally, many of the existing data sets

were designed for ANN. The inputs are vectors of real numbers. Traditional rate

coding that represents the real number as a sequence of spike trains will introduce a

significant amount of I/O activity. In this work, we bridge the gap and adapt EM-

STDP to fit the constraints of a neuromorphic hardware and implement it on Intel’s

Loihi chip. The following four approximation techniques were introduced that enable

the neuromorphic hardware implementation of the EMSTDP :

• Multi-compartment neurons were adopted in the feedback path where the error

spikes can be gated by the activities of the feedforward neurons.

• The change in the post-synaptic spiking rate is approximated by using the

built-in post-synaptic trace counter and a two-phase operation.

• Direct feedback alignment is adopted to significantly reduce the number of neu-

rons in the feedback path and hence lower hardware cost and improve the learn-
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ing accuracy.

• Reduce the I/O activities by programming the bias of the input neurons using

the real-valued inputs and generating the spike sequences inside the chip.

The cost and accuracy impact of these techniques will be discussed in the paper.

This is the first work of fully spike-based online in-hardware supervised learning

on a neuromorphic hardware. The implementation is tested on MNIST, Fashion-

MNIST, CIFAR-10 and MSTAR datasets with promising performance and energy

efficiency. We also demonstrate a possibility of incremental online learning with the

implementation.

5.2 Background

5.2.1 Error-Modulated STDP

[37] extended the backpropagation algorithm for SNNs through a suitable sequence

of approximation techniques. First, the forward and backward paths are separated

into separate networks with spiking neurons. Simple Integrate-and-Fire (IF) neurons

are used in both paths. For the forward path, the membrane potential of neurons in

layer i at time t is:

Ui(t) =
∑

wi−1,i.si−1(t) + bi + Ui(t− 1) (5.1)

if Ui(t) ≥ θ then si(t) = 1, else si(t) = 0

where wi−1,i is the synaptic weight between pre-synaptic neurons in layer i − 1

and post-synaptic neurons in layer i, bi is the bias. si−1(t) and si(t) are pre and

postsynaptic spike trains, respectively. The neuron spikes when the membrane po-

tential reaches the threshold θ and is reset to the resting potential of 0. Its activation

97



function is approximated in terms of the spike count h, accumulated sub-threshold

membrane potential u, and spiking threshold θ over a duration T :

h = f(u) =
⌊u
θ

⌋
(5.2)

Its derivative is approximated as that of a shifted ReLU.

εi represents the backpropagated error derivatives of the ith layer, based on the

backpropagation algorithm such that

εi = εi+1 · h′i+1 · wTi,i+1 (5.3)

And the error spike count e in the error path is represented as:

ei+1 = εi+1 · h′i+1 (5.4)

Such that,

εi = ei+1 · wTi,i+1 (5.5)

This means that we can represent the error derivative also using spikes, and use

the same IF neurons (without bias) given by Eq. (5.1) in the feedback path. εi is the

accumulated sub-threshold membrane potential of the error neuron whose input is

the spikes ei+1 from the upper-level error neuron. In addition to the threshold based

firing, the output of the neurons in the feedback path is also gated by h′i, which is a

constant when the neuron in the corresponding feedforward layer has output activities

and zero otherwise.

L2 loss’s derivative is entirely spike-based. To represent that, the accumulated

subthreshold membrane potential of neurons in the first layer in the feedback path is

calculated as

εl = wLĥl + (−wL)hl (5.6)
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where ĥ and h are the target and predicted spike trains.

Local learning is achieved through the idea of target propagation. In [93] , the

targets are determined utilizing an autoencoder with inverse synaptic weights which

are learnt through reconstruction. In EMSTDP, the error derivatives are used as the

difference to determine the target spike count ĥl. Such that the local weight update

is formulated as

∆wi−1,i = η ·
(
ĥl − hi

)
· hi−1 (5.7)

where η is the learning rate. This computation is done in two phases: the first phase

to compute hi, and second phase to compute ĥı and perform the weight update.

Since, the weight is constantly changing during learning, maintaining the coherence

between the two copies will create significant overhead. EMSTDP adopts the Feed-

back Alignment (FA) method [95], to relax this constraint. Instead of maintaining an

exact copy of the weight in both the feedback and feedforward path, a random weight

matrix is used in the feedback path. In fully connected networks, it was observed

that the backpropagated gradient with symmetric weights and the FA propagated

gradient are correlated but not identical.

5.2.2 Synaptic Plasticity in Loihi

Loihi [5] is a digital neuromorphic chip recently developed by Intel. Loihi’s 128-

neuromorphic cores implement 130,000 artificial CUBA leaky- integrate-and-fire neu-

rons and 130 million synapses. The CUBA neurons have two internal state variables;

synaptic response current ui(t) and membrane potential vi(t). The synaptic response

current is the decaying weighted incoming spikes and the membrane potential is for-

mulated as:

v̇ı(t) = − 1

τv
vi(t) + ui(t) (5.8)

Here, the integration is leaky as captured by the time constant τv . The neuron
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Figure 5.1: (a) EMSTDP - Network (b) Loihi - Network (c) Loihi - Mapping

sends out a spike when its membrane potential passes its firing threshold θi and is

reset to 0 right after. The neuron parameters are tunable, thus they can be adapted

to an IF neuron and other more complicated behaviors.

Loihi also provides a programmable microcode learning engine for on-chip SNN

training. In Loihi, each synapse is associated with integer-valued synaptic variables

and multiple presynaptic traces, and whereas compartment with postsynaptic traces.

These traces enter the learning engine as input variables for synaptic weight adapta-

tion. SNN synaptic weight adaptation rules must satisfy a locality constraint: each

weight can only be accessed and modified by the destination neuron, and the update
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can only depend on locally available information, such as the spike trains from the

presynaptic (source) and postsynaptic (destination) neurons. The functional form of

the adaptation rules to apply is described in sum-of-products form:

z := z +

Np∑
i=1

Si

ni∏
j=1

(Vi,j + Ci,j) (5.9)

where z is the transformed synaptic variable (weight, delay or tag), Vi,j refers to

some choice of input variable (synaptic variables and traces) available to the learning

engine, and Ci,j and Si are microcode-specified signed constants. Regular pairwise

and triplet STDP rules can be implemented along with more complicated adaptation

rules utilizing this form.

Loihi has been shown to produce impressive performance and energy efficiency for

various tasks both for inference-only and in-hardware learning tasks. However, there

is still a lack of an online supervised learning algorithm to train multilayered SNNs

in Loihi due to the implicit constraints relating to the neuromorphic hardware such

as precision, connectivity across cores etc and also the constrained functional form of

the learning rule. The flexibility and in-hardware learning capabilities make Loihi a

suitable platform for EMSTDP learning.

5.3 Adapting EMSTDP for in-hardware online learn-

ing

5.3.1 Forward and Error Path

Since the synaptic connection between neurons in Loihi is directional, we have to

keep two copies of the networks, one for forward pass and the other to backpropagate

errors. And as mentioned in Section 5.2.1 and as keeping updated weights in the
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error path is not viable, we utilize FA weights B. Later, we will show that the error

path can be simplified away using DFA, which reduces the hardware usage and power

consumption. As shown in Figure 5.1b, both networks are built with IF neurons. We

simply configure the LIF neuron in Loihi into an IF neuron for the forward path. For

that, we utilize the maximum time constant τv in Eq. (5.8) such that the membrane

potential does not leak over time whereas the current decays immediately.

In order to represent both positive and negative errors in the error path, we utilize

two channels of spiking neurons. Thus, it is necessary to cross-connect between the

positive and negative channels of the source and target layers as shown in Figure 5.1b.

In both channels, the spike rate represents the absolute value of the error. Let ε+i and

ε−i represents the accumulated sub-threshold membrane potential in the positive and

negative channels in the ith layer. Following Eq. (5.5), they can be calculated as the

following: 
ε+i = e+i+1 · wTi,i+1 + e−i+1 · (−wTi,i+1)

ε−i = e+i+1 · (−wTi,i+1) + e−i+1 · wTi,i+1

(5.10)

Additionally, we have to consider h′, i.e., the derivative of the neuron activation

function in the forward path to gate the output activities in the feedback path as

described by Eq. (5.4) and Eq. (5.5). Since h′ is either 0 or a constant value, this can

be implemented utilizing an AND function in the case of bit streams. We utilize the

multi-compartment neurons in Loihi for that purpose. Two-compartment neurons

with a soma compartment and a corresponding auxiliary compartment are set up for

the error path such that the spiking activity of the soma is an AND function of the

activity of the soma and the auxiliary compartment. The setup of the forward and

error path is shown in Figure5.1b.

The original EMSTDP with FA has a one-to-one correspondence in the feedback

and feedforward neurons. It does not only double the hardware requirement but also
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degrade the learning quality. As the error propagated through layers, the quantization

errors accumulated. In this work, we further adopt the direct feedback alignment

(DFA) [96]. With DFA, we broadcast the error spike directly from the spike-based

loss function inEq. (5.6) with uniformly distributed random weights whereas FA

requires an error network through which the error spikes propagate down. Figure

5.1a compares the networks using FA and DFA. Compared to FA, the DFA does

not only eliminate the neurons on the feedback path, the number of connections on

the feedback path is also reduced. This is because the FA connects the neurons in

the corresponding hidden layers in the forward and feedback paths, while the DFA

directly connects the error neurons in the output layer to the hidden layers in the

forward path. Because the dimension of the output layer is usually smaller than

the hidden layer, the weight matrix of DFA is much smaller than that of the FA.

Therefore, the DFA not only reduces the number of compartments and neuron cores

used in the chip, but also reduces the number of synapses and thus the amount of

memory utilized by the synapses in the cores.

5.3.2 Learning

EMSTDP is set up to enable local learning. We need to calculate the product of the

change in postsynaptic activity and the presynaptic activity as given by Eq. (5.7).

The change in postsynaptic activity is computed through the difference of the target

spike count ĥi and the original spike count hi, thus, requiring a two-phase operation

occurring in a window of time T . In Phase 1 (time 0 to T/2), the neurons on the

forward path respond to the input, and settle down at a specific spiking rate h.

In Phase 2 (time T/2 to T ), the neurons in the backward path pass the errors to

the neurons in the corresponding layers in the forward path. The errors “correct”

the behavior of those feed forward neurons, and drive their spiking rate to ĥ. All

operations in the network with an arbitrary number of layer are asynchronous except
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(a)

(b)

Figure 5.2: EMSTDP weight update (a) Original (b) Loihi

for the weight update which is computed only at the end of T .

As the weight update rule should be tailored to a sum of products form utilizing

variables satisfying the locality constraint, EMSTDP update rule in Eq. (5.7) can

simply be represented as

∆wi−1,i = η · ĥl · hi−1 − η · hi · hi−1 (5.11)

However, this representation requires preserving information from the first phase

hi to use at the end of the second phase as shown in Figure 5.2a. Loihi has no means

to save this particular information for later use. Thus, we modify Eq. (5.11) such

that all the information is available at the end of the second phase when the update

is performed as shown in Figure 5.2b.

∆wi−1,i = 2.η · ĥl · hi−1 − η · Zi · hi−1 (5.12)
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Where Zi = ĥi + hi. In Loihi, we represent presynaptic spike count hi−1 by the

pre-trace, postsynaptic target spike count ĥi by the post-trace and Zi by the available

tag synaptic variable.

5.3.3 Mapping to cores

The core-based architecture of Loihi introduces the limitations of fan-ins and fan-outs,

which is not always reasonable for larger networks. Thus, it’s necessary to develop a

mapping algorithm to deal with those constraints. Here, we utilize a simple mapping

algorithm where the neurons are mapped incrementally onto the cores satisfying the

constraints a layer at a time as shown in Figure1(c) and Operation Flow 2. For this,

we first generate the adjacency matrices for the connectivity between adjacent layers

(convolution and dense). This provides the number of fan-ins and fan-outs for each

neuron, which is used to assign the number of neurons per core. This method not only

helps ensure that the constraints are in check but also utilizes the cores optimally by

managing the trade-off between the execution time and power usage. This trade-off

is analyzed in Section 5.4.1.2.

5.3.4 Running EMSTDP on Loihi

Operation Flow 2 shows the entire process of running the EMSTDP algorithm on

Intel’s Loihi. After creating the network N in Intel Loihi’s SDK, we initialize the

weights W and the random fixed weights B sampled from a uniform distribution and

then quantize and scale them to 8 bit integers to fit Loihi’s synapses. Now, we have a

network which can be mapped into Loihi which is done during compilation and then

deployed.

During runtime, in each epoch during training, for each sample x, the values are

quantized to the length of the phase T/2. This allows for rate coding the input over the
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phase length. Normally, inputs are provided through rate-coded spikes directly. Each

input data corresponds to a sequence of spikes at the corresponding rate. Each spike

insertion requires a communication between the host and the chip, thus a significant

overhead. Instead of inserting spikes directly, we program the the biases of the input

layer neuron, such that Uin (t) = Uin (t− 1) + i, 0 ≤ t ≤ T/2, where i is the input

and T/2 is the phase length. The accumulated membrane potential can be calculated

as uin =
∑T/2

t=1 Uin (t) = i∗T/2 and the spiking rate of the input neuron is hin =
⌊
uin
θ

⌋
which is linearly proportional to input i. In other words, this allows the input layer to

integrate the bias over time, thus producing spikes with the rate directly proportional

to the bias. Using this setup, we need to communicate with the chip only once for

every input sample. We insert the label as a bias as well to label neurons. The

network then goes through the two phases of the EMSTDP algorithm, updates the

weights, and then resets the network states (membrane potential and traces) to 0.

5.4 Experiments

5.4.1 Online Learning

In this experiment, we evaluate online learning using EMSTDP algorithm on Loihi.

In real life applications of in-hardware learning, the training data is received as a

stream, and training must be carried out in real-time as the data is received. Tech-

niques such as batch learning, data augmentation are not feasible in such an online

learning scenario. Biological neural systems may use multi-modal sensing and fusion

as regularization in the learning process, however, this is not within the scope of this

paper.

For all the experiments, we use a network with structure W ×H × C − 5× 5k ×

16c2s− 3× 3k × 8c2s− 100d− 10d (W : width, H: height, C: channel of the input,

k: kernel size, c: number of filters, s: stride size, d: dense layer), and learning rate
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Operation Flow 2: In-Hardware Learning on Loihi

Epoch E, Training set X, Testing set Y , Network N ;
Trainable Layers L with ln neurons, Phase Length T/2;
Create Network N ;
Initialize N and Quantize to 8 bits: W , B;
Compile and Deploy Network N on Loihi;
for each l ∈ L do

Build l − 1 : l adjacency matrix;
Compute lm Optimal neurons per core for l;

Map ln to ln
lm

cores;

end
for epoch← 0 to E do

for each x ∈ X do
Quantize x to T/2 bins;
Set input and label bias: x;
EMSTDP Phase 1: T/2 time steps;
EMSTDP Phase 2: T/2 time steps;
Update W ;
Reset network state;

end

end
for each y ∈ Y do

Quantize y to T/2 bins;
Set input bias: y;
EMSTDP Phase 1: T/2 time steps;
Evaluate;
Reset network state;

end

η = 2−3. Here, the convolutional layers are pretrained with their respective datasets

before mapping on to Loihi whereas the dense layers are trained from scratch in

the Loihi. This introduces opportunities for transfer learning when training such

convolutional layers in-hardware is not viable.

In the experiments, we compare the learning performance of EMSTDP running on

Loihi with its software (Python) implementation with batch size 1 and full precision

weights.
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Table 5.1: Performance

Loihi
Python

(FP)
Loihi

Python
(FP)

MNIST 94.5% 98.9% 94.7% 98.9%
Fashion-MNIST 84.3% 92.7% 84.8% 92.5%

MSTAR (10 class) 78.4% 83.5% 79.5% 83.3%
CIFAR10 61.6% 64.2% 62.2% 64.4%

FA DFA

Table 5.2: Power and Energy

FPS
Power
(W)

Energy
(mJ/img)

FPS
Power
(W)

Energy
(mJ/img)

i7 8700 422 58 137 1536 58 37
RTX 5000 625 48 77 2857 47 16

Loihi 50 0.42 8.4 97 0.24 2.47

Training Testing

5.4.1.1 Performance

We experiment on four datasets; MNIST, Fashion-MNIST, CIFAR-10 and MSTAR.

MNIST [84], Fashion-MNIST [100] and CIFAR-10 [105] are standard benchmarks.

The MSTAR dataset [106] is a collection of SAR (Synthetic Aperture Radar). The

subset we use is the MSTAR/IU Mixed Targets with 10 classes of vehicles. The

images are target chips taken from scenes of SAR images, where each chip is 128 by

128 which we center-crop 64x64 and resize it to 32x32. For each dataset, we convert

the pixels into rate coded spike trains of duration T/2. The choice of phase length

T/2 as 64 is chosen based on the trade-off shown in Figure 5.3. The Loihi learning

engine allows for the maximum phase length of 64. In Figure 5.3, at T/2 = 64, we

achieve the best accuracy at a FPS suitable for real-time application. Lowering T/2

increases the FPS but also degrades the accuracy dramatically.

Table 5.1 shows the testing results on MNIST, Fashion-MNIST, CIFAR-10 and

MSTAR dataset for EMSTDP (both FA and DFA). We see that even with the con-

straints in Loihi we achieve respectable performance as compared to the full precision

implementations. The drop in performance on Loihi can be attributed to the quanti-

108



10 20 30 40 50 60 70
Phase length (ms)

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

50

100

150

200

250

300

350

400

FP
S

Figure 5.3: Trade-off between FPS and Accuracy with phase length on MNIST for
EMSTDP on Loihi with FA while training with 10000 samples

zation error due to the limitation of 8 bit weights and computation in Loihi. We can

also see that the DFA based system has slightly better accuracy. This is probably

because the DFA skips the hidden layers in the backward path and hence has less

accumulated quantization errors.

5.4.1.2 Power

Table 5.2 shows power and energy comparison with CPU (i7 8700) and GPU’s (RTX

5000) versions with batch size 1. Given that Loihi’s maximum operating frequency is

10KHz and the SNN requires T/2 time steps to operate in each phase, each sample

takes a longer time than in CPUs and GPUs. The throughput is sufficient for online

image processing. Reducing the duration of each phase will improve the throughput

but also sacrifice the quality of learning. The active power consumed by Loihi running

these networks are several orders lower than CPUs and GPUs. This can be attributed

not only to the asynchronous and simplified architecture of Loihi but also the sparse

nature of SNNs. As we are learning SNNs in-hardware, we compare the energy per

sample for both training and testing time. During the inference mode, backward
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Figure 5.4: Trade-off between FPS and Active power consumption through En-
ergy/Sample for EMSTDP on Loihi with FA and DFA while training with 10000
samples

paths are not implemented, hence it has higher throughput and lower energy per

image than the training model.

In Figure 5.4, we show the effect of the iterative mapping of compartments (Sec-

tion 5.3.3) in the Loihi cores during training. When we increase the number of neurons

mapped to each core, the number of occupied cores is reduced and the active power

decreases as the cores that are not in use are power gated. At the same time, the

execution time increases as the core is shared by a higher number of neuron compart-

ments. As a result, the energy per sample first decreases and then increase. There

is a best mapping size that minimizes the energy and it is necessary to analyze the

trade-offs between the execution time and the power usage. For Table 5.2, we chose

10 logical neurons in the hidden layer to be packed in a single core based on Figure5.4.

5.4.1.3 FA versus DFA

As we discussed in Section 5.3.1, utilizing DFA reduces the number of total compart-

ments, cores, and synapses. This effect can be seen from Figure 5.4 where DFA based

system consistently utilizes less cores, thus consuming less active power. Because
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Figure 5.5: Incremental Online Learning with MNIST: 2 new classes are introduced
at rounds marked by the green dotted line (Baseline: result from the same network
trained with the entire dataset, IOL: Incremental Online Learning)

the execution time is determined by the number of neurons per core, DFA and FA

have similar throughput at the same neurons per core level. However, at the same

performance level, DFA consumes lower power and dissipates less energy per image.

5.4.2 Incremental Online Learning

The in-hardware online learning provides the flexibility for the system to learn new

classes after deployment or compensate possible model errors due to a poorly chosen

training set or potential sensor hardware drifting. Such adaptability cannot be found

in a system running models trained offline. In the second experiment, we demonstrate

such flexibility using incremental online learning.

We adopt a method similar to [107]. [107] utilizes an alternating two-step learning

technique; (1) learn new classes, (2) retrain with new and old classes. A modified

cross-distillation loss is used in step (1) to enable the model to minimize catastrophic

forgetting which is a phenomenon where the performance on the old classes degrades

dramatically as new classes are added. A regular cross-entropy loss is used in step (2)

in which the retraining is done with the recently observed new classes and an equal
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size sample of old classes from a set with new observations of old classes as well.

These new observations may have a different distribution to that of old observations

or could simply be noise or variations caused by the input device/sensor. This two

step method helps to minimize concept drift [107] caused by these new observations

in a standard online learning set up. Here, we set up our experiment to follow the

same steps.

For this experiment, we pretrain a model for 4 randomly selected classes in the

MNIST dataset. Then we have three incremental training iterations, each time 2 new

classes were added. We also divide 6000 samples of each class into 5 chunks such that

we can introduce the new classes over 5 rounds of learning new classes and retraining

for each incremental training iteration. To approximate the effect of cross-distillation

loss, we disable the classifier neurons of the old class and reduce the learning rate

during step (1). In each round, the sampling of old classes for step (2) is done from

a set with both old and new observations of the old classes. Figure 5.5 shows the

accuracy of the observed classes for all the incremental training steps at each round

at the end of step (1) and (2) for the same network used for MNIST in Section. 5.4.1.

As our method is only approximating cross-distillation, catastrophic forgetting can

have a large effect on our model’s performance seen from the green dotted line in the

beginning of each incremental training iteration. However, spreading the introduction

of new classes over 5 rounds helps to alleviate that and recover. Thus, we see a big

drop in accuracy in the first round of new classes and then recovery over the next

rounds in each incremental learning step.

5.5 Conclusion

In this work, we adapted a spike-based backpropagation algorithm with biologi-

cal plausible local update rules to fit the constraints of a neuromorphic hardware
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and implemented it on Intel’s Loihi chip. This resulting system enables low power

in-hardware online supervised learning of multilayered SNNs, which was tested on

MNIST, Fashion-MNIST, CIFAR-10 and MSTAR datasets with promising perfor-

mance and energy efficiency. We also demonstrate a possibility of incremental online

learning with the implementation.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we first reviewed the literature surrounding SNNs including neuron and

synapse models along with spike encoding and learning with spikes. Then we intro-

duced neuromorphic hardware along with briefly reviewing two popular neuromorphic

systems; TrueNorth and Loihi.

In Chapter 2, we presented a design flow that maps a special case of recur-

rent networks called Long Short-Term Memory (LSTM) onto a spike-based platform.

The framework utilized various approximation techniques; activation discretization,

weight quantization, scaling, and rounding; spiking neural circuits that implement

complex gating mechanisms, and a store-and-release technique to enable neuron syn-

chronization and faithful storage. While the presented techniques can be applied

to map LSTM to any Spiking Neural Network (SNN) simulator/emulator, here we

choose the TrueNorth chip as the target platform by adhering to its hardware con-

straints. Three LSTM applications, parity check, Extended Reber Grammar and

Question classification, are evaluated. The tradeoffs among accuracy, performance,

and energy tradeoffs achieved on TrueNorth are demonstrated. This is compared to
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the performance on an SNN platform without hardware constraints, which represents

the upper bound of the achievable accuracy. This is the first realization of LSTMs

on a neuromorphic hardware and allows for the use of a neuromorphic hardware for

applications requiring LSTMs to process temporal patterns.

In the next chapters, we discussed learning with SNNs. In Chapter 3, we presented

a low-cost, simplified, yet stable STDP rule for layer-wise unsupervised and supervised

training of a multilayer feed-forward SNN. We proposed to approximate Bayesian

neurons using Stochastic Integrate and Fire (SIF) neuron model and introduce a

supervised learning approach using teacher neurons to train the classification layer

with one neuron per class. A SNN is trained for classification of handwritten digits

with multiple layers of spiking neurons, including both the feature extraction and

classification layer, using the proposed STDP rule. Our method achieves comparable

to better accuracy on MNIST dataset than manually labelled two-layer networks

for the same sized hidden layer. We also analyzed the parameter space to provide

rationale for parameter fine-tuning and provide additional methods to improve noise

resilience and input intensity variations. We further propose a Quantized 2-Power

Shift (Q2PS) STDP rule, which reduces the implementation cost of digital hardware

while achieves comparable performance.

In Chapter 4, we presented an approximation of the backpropagation algorithm

completely with spiking neurons and extend it to a local weight update rule which re-

sembles a biologically plausible learning rule spike-timing-dependent plasticity (STDP).

This enabled error propagation through spiking neurons for a more biologically plausi-

ble and neuromorphic implementation friendly backpropagation algorithm for SNNs.

We tested the proposed algorithm on various traditional and nontraditional bench-

marks with competitive results.

In Chapter 5, we adapted a spike-based backpropagation algorithm with biolog-

ical plausible local update rules to fit the constraints of a neuromorphic hardware
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and implemented it on Intel’s Loihi chip. This resulting system enabled low power

in-hardware online supervised learning of multilayered SNNs which was tested on

MNIST, Fashion-MNIST, CIFAR-10 and MSTAR datasets with promising perfor-

mance and energy efficiency. We also demonstrated a possibility of incremental on-

line learning with the implementation. This is the first work that realized online

in-hardware supervised learning of deep SNN in a neuromorphic hardware. This on-

line in-hardware learning is the first step towards building an autonomous machine

that learns continuously from its environment and experiences.

6.2 Future Research Direction

In Chapter 4, we presented an approximation of the backpropagation algorithm called

Error-Modulated STDP (EMSTDP) with approximation with considerations towards

implementation in neuromorphic hardware. The algorithm is only dependent on spik-

ing neurons and is extended to a local weight update rule which resembles a biolog-

ically plausible learning rule spike-timing-dependent plasticity (STDP). In Chapter

5, we adapted the EMSTDP algorithm with biological plausible local update rules to

fit the constraints of a neuromorphic hardware and implemented it on Intel’s Loihi

chip. This resulting system enables low power in-hardware online supervised learn-

ing of multilayered SNNs. We also demonstrated a possibility of incremental online

learning with the implementation.

Incremental online learning is a form of continual learning that attempts to solve

two major obstacles that are challenges to implement for real life applications: (1)

Learning new classes makes the trained model quickly forget old classes knowledge,

which is referred to as catastrophic forgetting. (2) As new observations of old classes

come sequentially over time, the distribution may change in an unforeseen way, mak-

ing the performance degrade dramatically on future data, which is referred to as
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concept drift. However, the incremental online learning framework utilized in Chap-

ter 5 involved an alternating step of retraining with samples from already observed

classes. For real life applications on devices with limited memory such as autonomous

drones and other mobile devices, storing samples from already observed classes could

be prohibitive. Thus, to truly enable in-hardware learning for real life applications, it

is essential to have continual learning without the need of storing a large amount of

retraining data. Thus, in the next step, we need to investigate continual learning ap-

proaches in machine learning and adapt them to an online setting in SNNs to enable

fully in-hardware learning in neuromorphic hardware.
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networks of spiking neurons.” in ESANN. ESANN, 2000, pp. 419–424.

[90] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backpropagation

for training high-performance spiking neural networks,” Frontiers in Neuro-

science, vol. 12, 2018.

[91] W. Severa, C. M. Vineyard, R. Dellana, S. J. Verzi, and J. B. Aimone, “Whet-

stone: A method for training deep artificial neural networks for binary commu-

nication,” arXiv preprint arXiv:1810.11521, 2018.

[92] D. Rasmussen, “Nengodl: Combining deep learning and neuromorphic

modelling methods,” arXiv, vol. 1805.11144, pp. 1–22, 2018. [Online].

Available: http://arxiv.org/abs/1805.11144

[93] D.-H. Lee, S. Zhang, A. Fischer, and Y. Bengio, “Difference target propaga-

tion,” european conference on machine learning, pp. 498–515, 2015.

[94] Y. Bengio, T. Mesnard, A. Fischer, S. Zhang, and Y. Wu, “Stdp as presy-

naptic activity times rate of change of postsynaptic activity,” arXiv preprint

arXiv:1509.05936, 2015.

[95] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, “Random synap-

tic feedback weights support error backpropagation for deep learning,” Nature

Communications, vol. 7, p. 13276, 2016.

129

http://arxiv.org/abs/1805.11144


[96] A. Nøkland, “Direct feedback alignment provides learning in deep neural net-

works,” neural information processing systems, pp. 1037–1045, 2016.

[97] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpass-

ing human-level performance on imagenet classification,” in 2015 IEEE Inter-

national Conference on Computer Vision (ICCV). 2015 IEEE International

Conference on Computer Vision (ICCV), 2015, pp. 1026–1034.
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