1,034 research outputs found

    High speed event-based visual processing in the presence of noise

    Get PDF
    Standard machine vision approaches are challenged in applications where large amounts of noisy temporal data must be processed in real-time. This work aims to develop neuromorphic event-based processing systems for such challenging, high-noise environments. The novel event-based application-focused algorithms developed are primarily designed for implementation in digital neuromorphic hardware with a focus on noise robustness, ease of implementation, operationally useful ancillary signals and processing speed in embedded systems

    Neuromorphic perception for greenhouse technology using event-based sensors

    Get PDF
    Event-Based Cameras (EBCs), unlike conventional cameras, feature independent pixels that asynchronously generate outputs upon detecting changes in their field of view. Short calculations are performed on each event to mimic the brain. The output is a sparse sequence of events with high temporal precision. Conventional computer vision algorithms do not leverage these properties. Thus a new paradigm has been devised. While event cameras are very efficient in representing sparse sequences of events with high temporal precision, many approaches are challenged in applications where a large amount of spatially-temporally rich information must be processed in real-time. In reality, most tasks in everyday life take place in complex and uncontrollable environments, which require sophisticated models and intelligent reasoning. Typical hard problems in real-world scenes are detecting various non-uniform objects or navigation in an unknown and complex environment. In addition, colour perception is an essential fundamental property in distinguishing objects in natural scenes. Colour is a new aspect of event-based sensors, which work fundamentally differently from standard cameras, measuring per-pixel brightness changes per colour filter asynchronously rather than measuring “absolute” brightness at a constant rate. This thesis explores neuromorphic event-based processing methods for high-noise and cluttered environments with imbalanced classes. A fully event-driven processing pipeline was developed for agricultural applications to perform fruits detection and classification to unlock the outstanding properties of event cameras. The nature of features in such data was explored, and methods to represent and detect features were demonstrated. A framework for detecting and classifying features was developed and evaluated on the N-MNIST and Dynamic Vision Sensor (DVS) gesture datasets. The same network was evaluated on laboratory recorded and real-world data with various internal variations for fruits detection such as overlap, variation in size and appearance. In addition, a method to handle highly imbalanced data was developed. We examined the characteristics of spatio-temporal patterns for each colour filter to help expand our understanding of this novel data and explored their applications in classification tasks where colours were more relevant features than shapes and appearances. The results presented in this thesis demonstrate the potential and efficacy of event- based systems by demonstrating the applicability of colour event data and the viability of event-driven classification

    Digital signal processing for the analysis of fetal breathing movements

    Get PDF

    Utilization and experimental evaluation of occlusion aware kernel correlation filter tracker using RGB-D

    Get PDF
    Unlike deep-learning which requires large training datasets, correlation filter-based trackers like Kernelized Correlation Filter (KCF) uses implicit properties of tracked images (circulant matrices) for training in real-time. Despite their practical application in tracking, a need for a better understanding of the fundamentals associated with KCF in terms of theoretically, mathematically, and experimentally exists. This thesis first details the workings prototype of the tracker and investigates its effectiveness in real-time applications and supporting visualizations. We further address some of the drawbacks of the tracker in cases of occlusions, scale changes, object rotation, out-of-view and model drift with our novel RGB-D Kernel Correlation tracker. We also study the use of particle filter to improve trackers\u27 accuracy. Our results are experimentally evaluated using a) standard dataset and b) real-time using Microsoft Kinect V2 sensor. We believe this work will set the basis for better understanding the effectiveness of kernel-based correlation filter trackers and to further define some of its possible advantages in tracking

    Mathematics and Digital Signal Processing

    Get PDF
    Modern computer technology has opened up new opportunities for the development of digital signal processing methods. The applications of digital signal processing have expanded significantly and today include audio and speech processing, sonar, radar, and other sensor array processing, spectral density estimation, statistical signal processing, digital image processing, signal processing for telecommunications, control systems, biomedical engineering, and seismology, among others. This Special Issue is aimed at wide coverage of the problems of digital signal processing, from mathematical modeling to the implementation of problem-oriented systems. The basis of digital signal processing is digital filtering. Wavelet analysis implements multiscale signal processing and is used to solve applied problems of de-noising and compression. Processing of visual information, including image and video processing and pattern recognition, is actively used in robotic systems and industrial processes control today. Improving digital signal processing circuits and developing new signal processing systems can improve the technical characteristics of many digital devices. The development of new methods of artificial intelligence, including artificial neural networks and brain-computer interfaces, opens up new prospects for the creation of smart technology. This Special Issue contains the latest technological developments in mathematics and digital signal processing. The stated results are of interest to researchers in the field of applied mathematics and developers of modern digital signal processing systems

    A Survey of Applications and Human Motion Recognition with Microsoft Kinect

    Get PDF
    Microsoft Kinect, a low-cost motion sensing device, enables users to interact with computers or game consoles naturally through gestures and spoken commands without any other peripheral equipment. As such, it has commanded intense interests in research and development on the Kinect technology. In this paper, we present, a comprehensive survey on Kinect applications, and the latest research and development on motion recognition using data captured by the Kinect sensor. On the applications front, we review the applications of the Kinect technology in a variety of areas, including healthcare, education and performing arts, robotics, sign language recognition, retail services, workplace safety training, as well as 3D reconstructions. On the technology front, we provide an overview of the main features of both versions of the Kinect sensor together with the depth sensing technologies used, and review literatures on human motion recognition techniques used in Kinect applications. We provide a classification of motion recognition techniques to highlight the different approaches used in human motion recognition. Furthermore, we compile a list of publicly available Kinect datasets. These datasets are valuable resources for researchers to investigate better methods for human motion recognition and lower-level computer vision tasks such as segmentation, object detection and human pose estimation

    Adaptive hypertext and hypermedia : proceedings of the 2nd workshop, Pittsburgh, Pa., June 20-24, 1998

    Get PDF
    corecore